Схема подключения электрокотла к электросети
Электрокотел, установленный в системе отопления, зачастую является самым энергоёмким устройством во всем доме, более того, его потребляемая мощность нередко выше, чем у всего остального электрооборудования помещений вместе взятого.
И это не удивительно, ведь даже негласное правило выбора котла для дома гласит, что 1кВт (киловатт) мощности, требуется для обогрева 10 квадратных метров дома. Следуя ему, для отопления относительно небольшого (по современным меркам) дома в 100кв.м., потребуется электрокотел мощностью 10кВт.
Конечно, это правило общее, в реальных же условиях, при выборе мощности котла, учитывается множество факторов, но в целом, ориентировочные, средние требования к котлу правило отражает верно.
Поэтому, для такого «прожорливого» потребителя электроэнергии как электрокотел, от стабильной работы которого зимой зависит очень многое, важно сделать правильную электропроводку, подобрать надежную защитную автоматику и верно выполнить подключение.
Чтобы лучше понимать принцип подключения котла, необходимо знать из чего он обычно состоит и как работает. Речь пойдет о самых распространённых, ТЭНовых котлах, сердцем которых являются Трубчатые ЭлектроНагреватели (ТЭН).
Проходящий через ТЭН электрический ток разогревает его, этим процессом управляет электронный блок, следящий за важными показателями работы котла, с помощью различных датчиков. Также электрокотел может включать циркуляционный насос, пульт управления и т.п.
В зависимости от потребляемой мощности, в быту обычно используются электрокотлы рассчитанные на питающее напряжение 220 В — однофазные или 380 В — трехфазные.
Разница между ними простая,
Соответственно электрокотлы на 380В бывают более мощными и могут эффективно отапливать большие по площади дома.
Схемы подключения, правила выбора кабеля и защитной автоматики для котлов на 220В и 380В различаются, поэтому мы рассмотрим их раздельно, начнем с однофазных.
Схема подключения электрокотла к электросети 220 В (однофазного)
Как видите, питающую линию котла на 220 В защищает дифференциальный автоматический выключатель, совмещающий в себе функции автоматического выключателя (АВ) и Устройства защитного отключения (УЗО). Так же, в обязательном порядке к корпусу устройства подключается заземление.
ТЭН или ТЭНы (если их несколько) в таком котле рассчитаны на напряжение 220В, соответственно к одному из концов трубчатого электрического нагревателя подключается фаза, а к другому ноль.
Для подключения котла требуется проложить трехжильный кабель (Фаза, Рабочий ноль, Защитный ноль — заземление).
Если же вам не удалось найти подходящий дифференциальный автоматический выключать или просто он слишком дорог в выбранной вами линейке защитной автоматики, его всегда можно заменить связкой Автоматический выключатель (АВ) + Устройство защитного отключения (УЗО), в таком случае схема подключения однофазного котла к электросети выглядит так:
Теперь осталось выбрать кабель нужной марки и сечения и номиналы защитной автоматики, для правильной электропроводки к электрокотлу.
В выборе необходимо отталкиваться от мощности будущего котла, а лучше всего рассчитывать с запасом, ведь в будущем, реши вы поменять котел, выбрать старшую модель (более мощную) вы уже не сможете, без серьезной переделки проводки.
Не буду загружать вас лишними формулами и расчетами, а просто выложу таблицу выбора кабеля и защитной автоматики в зависимости от мощности однофазного электрокотла 220 В. При этом в таблице будут учтены оба варианта подключения: через дифференциальный выключатель и через связку Автоматический выключатель + УЗО.
Для прокладки будут указаны характеристики медного кабеля марки ВВГнгLS, минимально допустимого ПУЭ (правилами устройства электроустановок) для использования в жилых зданиях, при этом расчеты сделаны для трассы от счетчика до электрокотла длинной 50 метров, если у вас это расстояние больше, возможно потребуется корректировка значений.
Таблица выбора защитной автоматики и сечения кабеля по мощности электрокотла 220 В
Устройство защитного отключения (узо) всегда выбирается на ступень выше стоящего с ним в паре автоматического выключателя, если же вам не удается найти УЗО необходимого номинала, можете взять защиту следующей ступени, главное не брать ниже положенного.
Особых сложностей и разночтений при подключении элекрокотла на 220В обычно не возникает, переходим к трехфазному варианту.
Схема подключения электрокотла к электросети 380 В (трехфазного)
Общая электрическая схема подключения электрокотла 380 В, выглядит следующим образом:
Как видите, линия защищена трехфазным автоматическим выключателем дифференциального тока, к корпусу котла обязательно подключено заземление.
Как обычно, по традиции, выкладываю схему подключения трехфазного электрокотла со связкой автоматический выключатель (АВ) плюс устройство защитного отключения (УЗО) в цепи, которая нередко бывает дешевле и доступнее Диф. автомата.
Выбор номиналов защитной автоматики и сечения кабеля для трезфазных электрокотлов различной мощности удобно делать по следующей таблице:
В трехфазных электрокотлах обычно установлено сразу три ТЭНа, бывает и больше. При этом практически во всех бытовых котлах каждый из трубчатых электронагревателей рассчитан на напряжение 220 В и подключён следующим образом:
Это так называемое подключение «звезда», для этого случая и подводится к котлу нулевой проводник.
Сами ТЭН подключаются к сети следующим образом: перемычкой соединены по одному из концов каждого из трубчатых электронагревателей, к оставшимся трем свободным поочередно подключаются фазы: L1, L2 и L3.
Если же в вашем котле стоят ТЭН, рассчитанные на напряжение 380 В, схема их соединения совершенно другая и выглядит она так:
Такое подключение ТЭН электрокотла называется «треугольник» и при одинаковом напряжении 380 В, как в предыдущем способе «Звезда», мощность котла значительно увеличивается. Нулевой проводник при этом не требуется, подключаются лишь фазные провода, электрическая схема подключения при этом соответственно выглядит вот так:
Не отступайте от схем подключения допустимых для вашего электрокотла, если там стоят ТЭН на 220В при трехфазном подключении, не переделывайте схему на «треугольник». Как вы понимаете, теоретически их можно переподключить и получить на ТЭН напряжение 380 В, соответственно и повышение их мощности, но при этом они у вас скорее всего просто сгорят.
Как определить правильную схему подключения ТЭН звездой или треугольником и, соответственно, на какое напряжение они рассчитаны?
Если утеряна инструкция по подключению вашего электрокотла или просто нет возможности к ней обратиться, определить правильную схему подключения в бытовых условиях можно так:
1. В первую очередь осмотрите клеммы ТЭН, скорее всего производителем контакты уже подготовлены под определенную схему. Так, например, для подключения «звездой» и ТЭНах на 220В, три клеммы будут объединены перемычкой.
2. Само наличие нулевой клеммы — «N», свидетельствует о том, что ТЭН на 220 В и подключать их требуется по схеме «Звезда». При этом её отсутствие, вовсе не означает, что ТЭН на 380 В.
3. Самый же надежный вариант узнать наряжение ТЭН — это посмотреть маркировку, указанную либо на фланце, к которому закреплены трубчатые электронагреватели
Либо на самом ТЭН в обязательном порядке выдавливаются его параметры:
Если же у вас не получается наверняка узнать напряжение, на которое расчитан ваш электрический котел и схему подключения его ТЭН, а подключить «очень надо», советую использовать схему «Звезда». При этом варианте, если Тэн окажутся расчитаны на 220 В, они будут работать в штатном режиме, а если на 380 В, то просто будут выдавать меньшую мощность, но главное не сгорят.
Вообще, случаи бывают разные, и все их охватить в формате одной статьи очень тяжело, поэтому обязательно пишите в комментариях свои вопросы, дополнения, истории из личного опыта и практики, это будет полезно многим!
Схема подключения электрокотла к сети 220 и 380 Вольт
Подключать котел к сети можно двумя способами: от розетки и через распределительную коробку. Схему более сложного варианта, мы предоставили в данной статье!
Главный вопрос, который будет рассматриваться в данной статье – типовая схема подключения электрического котла отопления к сети 220 и 380 Вольт. Именно поэтому основной уклон будет направлен только на правила и последовательность соединения проводов. Что касается схемы установки радиаторов, трубопровода и остальных элементов системы центрального отопления, ее мы предоставим только в общем виде. Содержание:
Варианты установки
Итак, для начала разберемся с вариантами подключения электрокотла в частном доме и квартире своими руками:
- Если мощность водонагревателя не превышает 3,5 кВт, то обычно он запитывается от розетки. При этом допускается использование однофазной сети 220В.
- В том случае, если мощность варьируется в пределах 3,5-7 кВт, необходимо осуществлять электромонтаж своими руками напрямую от распределительной коробки. Это связано с тем, что розетка может не выдержать высоких токовых нагрузок. Как и в предыдущем случае, 220-вольтная сеть допускается для применения.
- Ну и последний вариант, который может встретиться – электрокотел, мощностью свыше 7 кВт. В этом случае необходимо не только вести отдельный кабель от распредкоробки, но и использовать более мощную 3-х фазную сеть 380В.
Электромонтаж в однофазной сети
Как мы уже говорили, подсоединять водонагреватель к однофазной сети можно через вилку либо отдельно запитанный кабель. На первом варианте даже останавливаться нет смысла, т.к. вставить вилку в розетку сможет любой.
Что касается второго варианта, то для начала необходимо осуществить расчет сечения кабеля по току (если необходимый диаметр жил не указан в паспорте изделия), после чего подвести проводник к месту установки котла. Далее все просто – соединяем фазу, ноль и заземление с соответствующими клеммами в агрегате (на них указана маркировка). К Вашему вниманию принципиальная схема подключения электрического котла с терморегулятором в систему отопления:
Электромонтаж в трехфазной сети
Схема подключения электрического котла к трехфазной сети более сложная, но все же под силу даже новичку.
Три фазы нужно подсоединить следующим образом:
Обратите внимание на следующие нюансы:
- С каждым водонагревателем в комплекте идет технический паспорт, в котором обязательно указывается рекомендуемая производителем схема обвязки электрокотла. Руководствуйтесь только этим документом в своем случае, т.к. далеко не всегда предоставленные в интернете примеры могут подходить для Вашей отопительной системы.
- Обязательно защитите котел автоматическим выключателем и УЗО. Данные устройства предотвратят перегрузку агрегата, короткое замыкание и утечку тока в электросети.
- Обязательно должно присутствовать заземление проводки.
К Вашему вниманию наглядный проект электрического отопления на двухэтажной даче с использованием котла:
Помимо этого рекомендуем просмотреть видео, на котором наглядно продемонстрировано подключение электрического котла на 380 В:
Подсоединение трехфазного электрокотлаПохожие материалы:
- Самое дешевое и экономичное отопление дома
- Как подключить бойлер к электросети?
- Как подключить УЗО к сети?
Подсоединение трехфазного электрокотла
Нравится0)Не нравится0)
Подключение электрокотла к электричеству | Расчет электропроводки
Чтобы правильно подключить любой электрокотел к электричеству, необходимо знать несколько основных, чаще всего применяемых, схем и правил подключения и конечно же понимать, когда их следует использовать.
В качестве примера подключения, возьмем трехфазный электрокотел 380 В, который будет установлен в системе отопления дома, площадью 120 кв.м. (квадратных метров).
Начнем с самого начала, с выбора электрокотла для отопления дома.
ВЫБОР ЭЛЕКТРОКОТЛА ДЛЯ ДОМА
Чтобы правильно выбрать электрокотел для отопления дома, необходимо учитывать множество факторов, в том числе материал и толщину стен, площадь остекления, температуру воздуха на улице зимой в вашем регионе, высоту потолков и множество других.
Нередко, такие расчеты поручают специалистам, которые делают проект отопления дома, учитывающий все необходимые характеристики системы, в том числе тип и мощность электрокотла, нередко предлагается даже определенная конкретная модель или несколько на выбор.
При самостоятельном выборе необходимой мощности электрокотла для отопления, обычно принято использовать следующую формулу: 1 кВт мощности требуется для отопления 10кв.м. дома.
Правило актуально для одноконтурных котлов, используемых только для обогрева помещений, если же контура два, один из которых используется для подогрева воды в системе горячего водоснабжения, расчет необходимо изменять, так же следует поступить при высоте потолков выше стандартных 2,5-2,7 м и в некоторых других случаях.
Итак, в нашем примере, площадь дома 120 кв.м. поэтому выбран электрокотел мощностью 12 кВт, модель ZOTA — 12 серия «Econom».
После всех теоретических расчетов посомтрим, подойдет ли данный котел под разрешенную (выделенную) на дом мощность. У нас это 15кВт, при трехфазном вводе, соответственно по мощности котел на 12кВт нам подходит.
Конечно, если электрокотел будет работать на максимуме своих возможностей, на остальные потребители дома останется всего 3кВт из разрешенных, чего достаточно мало. Но так как котел будет резервным, и будет включаться лишь только когда основной газовый котел неисправен, такое решение было принято приемлемым.
ЭЛЕКТРОПРОВОДКА ДЛЯ ЭЛЕКТРОКОТЛА
Теперь, когда определена требуемая мощность котла для отопления дома и выбрана конкретная модель, делаем для него электропроводку.
Для этого воспользуемся данными из статьи «Схема подключения электрокотла к электросети», в которой подробно показаны все основные схемы подключения любых электрокотлов к электричеству, а кроме того даны рекомендации по выбору сечения кабеля и автомата защиты.
Наш котел «ZOTA – 12» трехфазный, рассчитан на работу в сети с напряжением 380 В, эта информация отражена в документации к котлу, кроме того косвенно об этом указывает потребляемая мощность, котлы на 220 В довольно редко бывают более 8кВт.
Кроме того, можно посмотреть на количество установленных ТЭН (Трубчатых электронагревателей) и схему их подключения. У котлов на 380 В обычно установлено не менее трех.
Возможных схем подключения котла к трехфазной сети, как минимум две, одна используется, когда ТЭНы рассчитаны на 220 В и подключены «звездой», а другая применяется в случаях, когда ТЭНы электрокотла рассчитаны на напряжение 380 В и подключены «треугольником».
Определить какая именно схема подключения подходит для вашего котла можно несколькими способами, самый простой — обратиться к схеме в документации, у котла «ZOTA – 12» она расположена на тыльной стороне пульта управления и выглядит вот так:
Как видите, у этого котла реализована схема подключения «Звезда», а значит ТЭН рассчитаны на напряжение 220 В. Это же подтверждает непосредственный осмотр контактов для подключения проводов к ТЭНам, они так же подготовлены к подключению звездой. Их контакты для подключения нулевого проводника соединены перемычкой, к свободным контактам будут подключатся поочередно фазы, к каждому своя.
Отсюда следует, что нам подходит схема подключения трехфазного электрокотла к электричеству с ТЭНами на 220 В, соединение «звездой».
Осталось выбрать нужное сечение кабеля для электрокотла по мощности и номинал защитного автомата. Для этого смотрим в таблицу из статьи:
Откуда следует, что при длине трассы до 50 метров, нам потребуется проложить до трехфазного электрокотла мощность 12кВт, пятижильный кабель ВВГнгLS с сечением жилы 4 кв.мм. (ВВГнгLS 5×4кв.мм.) и поставить дифференциальный автоматический выключатель на 25А, либо связку автоматический выключатель (АВ) рассчитанный на 25 ампер — С25 и устройство защитного отключения (УЗО) на 32А.
Теперь, выбрав электрокотел и определившись со схемой подключения и параметрами электропроводки можно выполнить её монтаж, после чего продолжим подключение к электричеству.
Подключение электрокотла ZOTA к электросети описана в следующей части статьи — ЗДЕСЬ!
Электрические котлы для отопления частного дома на 380в: преимущества, монтаж
Содержание статьи:
Котел, работающий на электричестве, является выгодной альтернативой приборам твердотопливного или газового типа. Он имеет повышенный КПД, не шумит в процессе работы, для него не требуется отдельное помещение и получение специального разрешения на монтаж. Электрические котлы для отопления частного дома на 380 В относятся к категории мощных трехфазных приборов и делятся на несколько типов. Перед покупкой и установкой такого котла полезно изучить его плюсы и минусы, правила эксплуатации и монтажа, а также доступные варианты подключения.
Виды электрических котлов
Электрический ТЭНовый котел
Электрокотлы для отопления частного дома на 380 вольт могут быть ТЭНовыми, электродными либо индукционными в зависимости от типа передачи энергии носителю тепла. Производители предлагают напольные и настенные варианты, подходящие для больших и стандартных домов и коттеджей. Они имеют различную степень защиты и повышенный КПД.
Электрические агрегаты могут быть трехфазными или однофазными, первый вариант обычно выбирают для домов с площадью больше 100 метров. Мощность трехфазных котлов начинается от 10 кВт, в список их преимуществ входит стабильное напряжение и защита цепи. При этом они ограничены в плане монтажа, поскольку требуется установка понижающей станции. Чтобы узнать, какую из моделей выбрать, лучше обратиться к специалисту.
ТЭНовые
Такие агрегаты считаются наиболее популярными и работают по единому принципу. Трубчатый элемент нагревает воду, циркулирующую внутри системы, за счет чего обеспечивается равномерный и быстрый обогрев. Внутри такого котла может быть от 1 до 6 ТЭНов, их число напрямую зависит от мощности прибора. ТЭНовый электрокотел трехфазный оборудован специальной системой автоматики, за счет которой отслеживается и регулируется температура носителя тепла.
Прибор имеет простую и надежную конструкцию, легко устанавливается и не доставляет проблем во время использования. Котлы на ТЭНах достаточно дешевые, в качестве теплоносителя для них подходит практически любая жидкость. Помимо основных преимуществ современные ТЭНовые модели отличаются лаконичным и современным дизайном, что позволяет вписать их в каждый интерьер. Нужно использовать качественные теплоносители, предотвращающие появление накипи.
Чтобы сократить образование накипи, устанавливают анодные стержни, собирающие излишки солей. Их можно менять по мере износа, как и сами ТЭНы.
Индукционные
Индукционный котел
Котлы, работающие по принципу электромагнитной индукции, часто используются для жилых помещений. Внутри цилиндрического корпуса такого прибора находится сердечник из металла с намотанной на него катушкой. Во время подачи напряжения на катушку образуется вихревой поток, за счет которого труба с циркулирующим теплоносителем нагревает воду. Во избежание перегрева вода должна циркулировать постоянно.
КПД таких приборов достигает максимального значения в 98%, что делает индукционные котлы самыми производительными. Помимо этого электрокотел 3 кВт на 3 фазы не подвержен образованию внутри накипи и считается самым безопасным, поскольку в нем отсутствуют нагревательные элементы. Монтировать индукционные агрегаты можно за максимально короткий срок благодаря небольшому весу и компактным размерам.
Индукционному отопительному котлу не требуется насос циркуляции, если он используется в домашней системе отопления. Эта деталь потребуется для больших систем в многоэтажных домах.
Электродные
Электродная модель
Котлы электродного типа работают на специально подготовленной воде, в которой растворяют соли для повышения плотности до нужного уровня. Трехфазный электрический котел состоит из трубы, в которую вставлена пара электродов. За счет разницы потенциалов и смены полярностей ионы внутри начинают хаотично двигаться, в результате носитель тепла нагревается быстрее.
Благодаря ускоренному нагреванию мощные потоки конвекции прогревают большой объем без необходимости применять циркуляционный насос. Из преимуществ электродных приборов на 380 кВт отмечают компактные размеры, ускоренный выход на номинальную мощность, простую конструкцию и низкий уровень аварийности, даже если из отопительной системы начнет вытекать вода.
Для электродных агрегатов оборудуют заземление. К заземляющему контуру подключают котел и все элементы отопительной системы в доме.
Достоинства и недостатки трехфазных котлов
Электрический котел для отопления дома на 380 В имеет больше плюсов, чем минусов. Агрегаты надежны, не доставляют сложностей во время установки, представлены в широком ценовом диапазоне и функционале. Они дешевле газовых и при этом оснащены простой и удобной системой автоматики, включающей список режимов, контроллер GSM, возможность поддержания нужной температуры. Также в перечень плюсов входят:
- компактные размеры и эстетичный дизайн;
- отсутствие проблем во время использования;
- бесшумная работа;
- повышенный КПД.
Самый главный недостаток – высокая стоимость электроэнергии и сопутствующие затраты. Котлы электрического типа полностью зависимы от электропитания. Для них подходят только качественные теплоносители со специально подобранным составом.
Правила монтажа и эксплуатации электрических котлов на 380 В
Схема монтажа
Подключать любой электрокотел на 380 В нужно с соблюдением всех требований, касающихся безопасного монтажа. Важно правильно рассчитать сечение для силового кабеля, от которого зависит безопасность всей системы в целом. Поскольку приборы на 380 киловатт самые мощные, нужно подбирать наиболее прочный кабель. Сечение рассчитывают по формуле, с учетом которой на 1 мм2 кабеля приходится не больше 8 А тока.
В процессе эксплуатации котла следят за исправностью электрической проводки и не допускают протечек носителя тепла. Также нужно уделять внимание работоспособности заземляющей жилы. При наличии любых повреждений нужно как можно скорее обесточить агрегат и полностью восстановить заземление. Современные приборы с мощностью 380 Вт хорошо зарекомендовали себя в процессе длительной эксплуатации. Во избежание проблем нужно соблюдать правила:
- не трогать заземляющие элементы;
- доверять ремонт только специалистам, имеющим соответствующую квалификацию;
- проверять электросеть перед включением;
- периодически промывать котел;
- контролировать температуру;
- не допускать механических повреждений котла.
Для отслеживания уровня нагрева и контроля системы можно дополнительно поставить специальный термовыключатель. Он будет блокировать работу котла в аварийных ситуациях и поможет избежать возможных проблем.
Подключение в систему отопления
Схема подключения к сети
Для подключения трехфазного котла нужно придерживаться специальной схемы. Этот процесс лучше доверить специалисту, который должен разбираться в нагревательных приборах и знать принципы работы датчиков, насосов и прочих элементов. Схема подключения электрических котлов к отопительной системе состоит из нескольких стандартных этапов. Чтобы избежать возможных проблем, нужно соблюдать основные правила:
- Для закрепления элементов агрегата нужно использовать трубы из пластика либо перемычки из диэлектрического материала.
- Насос циркуляции ставят на трубе для обратной подачи.
- На трубе для подачи нагретого носителя тепла ставят группу безопасности.
- При использовании малого контура запорную арматуру нужно ставить после него.
Открытый расширительный бак нужно ставить в верхней точке системы без необходимости применять запорные приспособления. Закрытые баки ставят недалеко от прибора до запорной арматуры.
Производители электрических котлов на 380 В
На рынке представлен большой выбор электрических одноконтурных и двухконтурных агрегатов от российских и зарубежных брендов. Самый полный модельный ряд отопительного оборудования представляют Bosch, TermIT, Protherm, Ferroli, Данко и ATON. Немецкие производители уделяют больше внимания качеству сборки, итальянские – дизайну и панелям управления, польские компании выпускают самые недорогие котлы напольного и настенного типа. Котлы от ATON имеют двойную защиту, изоляцию и встроенные насосы, являются экологически безвредными и имеют высокий уровень автоматизации.
Наиболее многофункциональными считаются котлы Bosch. Модели популярной серии Tronic оснащены защитными клапанами, имеют емкость от 7 литров и максимальную площадь обогрева, способны быстро нагревать воду и представлены в большом перечне вариантов. Приборы от Ferroli обычно приобретают для многоэтажных домов. Они оснащены встроенной системой циркуляционной подачи воды и экономично потребляют энергию за счет оптимальной мощности насосов. В недорогих моделях КПД меньше 100%, давление теплового носителя составляет 0,4-0,6 бар.
Электрический котел: однофазный или трехфазный?
31 августа 2015 г.
Несмотря на экспансию дизельных и газовых котлов, электрические котлы считаются востребованными в деле отопления домов с относительно небольшой площадью. И правда, если отопительная площадь составляет не более 80-100 кв.м, зачем покупать дорогостоящее тепловое оборудование?
Для отопления частных домов среднего размера рекомендуем купить небольшой однофазный электрический котел, который подключается к стандартной электрической розетке на 220 В. Котел сразу же начнет функционировать — вначале обогревать с помощью тэна теплоноситель (воду), который далее начнет отдавать аккумулированное тепло радиаторам отопления. Принцип его работы практически не отличается от любого нагревательного прибора, не требуется получение специального разрешения.
Для домов с большей отопительной площадью рекомендуется установка трехфазного электрического котла, для работы которого понадобится дополнительная третья фаза. Мощность данных котлов составляет более 10 кВт и для них требуется проводить дополнительный третий провод с траверзы. Но в плюсе – постоянный подвод электрический энергии по проводам. Проводить отдельную газовую трубу и устанавливать понижающую станцию, как это принято при инсталляции с газовыми котлами, не придется. Покупать внушительные топливные емкости, как это принято в отношении дизельных версий котлов, также не придется. Экономия выходит существенная.
2 вида трёхфазных электрокотлов
Процесс нагрева трехфазного электродного отопительного котла осуществляется за счет воздействия электротока непосредственно на теплоноситель. Преимущество — быстрый нагрев жидкости.
- Индукционные.
Нагревание происходит за счет создания магнитного поля. Сердцевина электрокотла представляет собой медную обмотку, как в трансформаторе. Индукционный трехфазный электрический котел 380В работает за счет преобразования постоянного и переменного тока. Плюс — экономичный расход электроэнергии. Минус — большой вес и дороговизна.
Преимущества и недостатки работы электрических котлов
Электрические котлы отличаются абсолютной бесшумностью в работе, они не сушат воздух, стоят недорого и способны к мгновенной инсталляции. Если нужно обогреть дом быстро и с минимальными финансовыми издержками, то выбирается безотказная версия электрического котла.
Последние версии электрических котлов могут иметь дополнительный расширительный бак, в котором будет аккумулироваться горячая вода, необходимая для домашних нужд. С помощью циркуляционного насоса вода будет подаваться на кран ванной комнаты и кухни.
Но учтите — электричество в наше время стоит недешево. Для минимизации расходов на электричество (в России на обогрев дома с помощью электричества уходит более 100 Евро на дом) рекомендуется устанавливать дополнительный двухтарифный электронный счетчик электрической энергии. В данном случае дом будет на максимальной мощности обогреваться с помощью электрического котла ночью, а днем, когда энергия окажется дороже, котел будет работать только на поддержание заданной температуры.
Если в Вашем городе или населенном пункте часто случаются перебои с электроснабжением, электрический котел лучше использовать совместно с твердотопливным.
Производители
Рынок электрических котлов представлен как отечественными, так и зарубежными производителями.
Немецкие электрокотлы (Bosch, Wespe Heizung, Protherm) считаются лидерами электрического отопительного оборудования благодаря гарантированному производителем качеству. Отсюда и высокая стоимость.
Чешские модели (Dakon) не уступают по уровню качества продукции из Германии, а цена здесь несколько ниже.
Российские электрические котлы (РусНИТ, Ромстар) характеризуются тем, что их дополнительные функциональные возможности минимальны, упор здесь делается на качестве основного блока.
Как использовать трехфазный двигатель в однофазном источнике питания
На этот раз я хотел бы поделиться некоторыми важными знаниями, которые я использовал при возникновении аварийной или критической ситуации. Что вы делаете, если у вас есть только трехфазный двигатель и однофазный источник питания?
Как использовать трехфазный двигатель в однофазном источнике питания? На самом деле трехфазный двигатель может работать в однофазном питании с помощью постоянного КОНДЕНСАТОРА. Эта маленькая вещь (конденсатор) очень полезна для работы трехфазного двигателя в однофазном питании. поставка.
Согласно нашему последнему обсуждению трехфазного двигателя, обычно у него есть две (2) общие обмотки, соединение ЗВЕЗДА или ТРЕУГОЛЬНИК. В этом посте я объяснил, как подключить конденсатор в трехфазном двигателе, как изменить вращение двигателя, как оценить значение емкости и выбрать подходящий конденсатор.
Как установить и подключить конденсатор для трехфазного двигателя с однофазным питанием?
1) Подключение конденсатора для вращения ВПЕРЕД
-Для вращения ВПЕРЕД, мы должны установить конденсатор в соединение ТРЕУГОЛЬНИК, как показано на рисунке ниже.
* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.
2) Подключение конденсатора для ОБРАТНОГО вращения
— Для ОБРАТНОГО вращения мы должны установить конденсатор в любые две фазы обмотки в соединении ЗВЕЗДА (Y), как показано на рисунке ниже.
* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.
Мощность двигателя
Мы должны учитывать выходную мощность двигателя при переходе с трехфазного источника питания на однофазный, чтобы соответствовать и подходить для нашего приложения. Но мы не можем получить фактическое значение из-за множества аспектов, которые мы должны рассчитать, и это так сложно. можно оценить приблизительное значение мощности двигателя в процентах (%) ниже: —
Как выбрать подходящий конденсатор?
Это очень важное решение, которое мы должны учитывать в отношении размера конденсатора, когда планируем запускать трехфазный двигатель от однофазного источника питания.При неправильном выборе это может повлиять на состояние двигателя, а его производительность также может повредить обмотку двигателя.
Ниже приводится приблизительное значение необходимого конденсатора. Мы должны учитывать рабочее напряжение VS напряжение сети, чтобы избежать повреждения обмотки трехфазного двигателя или самого конденсатора. См. Таблицу ниже: —
,
Объяснение трехфазной электрической мощности> ENGINEERING.com
Электротехника имеет репутацию загадочной, поэтому термин «волшебный дым» стал частой шуткой среди инженеров-электриков и техников. Однако практическое знание принципов электротехники может быть невероятно полезным, даже если вы не инженер-электрик, особенно если вам приходится с ним работать!Имея это в виду, в данной статье рассматривается основная концепция электротехники: трехфазная электроэнергия.Мы начнем с основ и постепенно продвинемся дальше, чтобы к концу этой статьи волшебный дым не казался таким волшебным.
Электромагнитная индукция
Иллюстрация закона Фарадея. (Изображение любезно предоставлено автором.)
Этот феномен был первоначально описан Майклом Фарадеем. Если проводник помещен в переменное магнитное поле (как показано на рисунке ниже), индуцированная электромагнитная сила (ЭДС), то есть напряжение, появляется на его противоположном конце.Электрический ток течет, когда петля, состоящая из цепи проводника, замкнута, при условии, что проводник, помещенный в переменное магнитное поле, пересекает силовые линии магнитного поля.Переменный ток и электромагнитная индукция
Переменный ток (AC) имеет синусоидальную форму и попеременно меняет свое направление и амплитуду. Переменный ток генерируется электрическим генератором переменного тока, работающим по принципу электромагнитной индукции (EMI). Следовательно, электрический генератор преобразует механическую энергию в электрическую.Его основные части — статор и ротор. Последний представляет собой источник магнитного поля, в то время как первый содержит проводник, в котором индуцируется ЭДС (обычно проводник имеет форму спиральной проволоки).
Генератор состоит из источника переменного магнитного поля (магнита или электромагнита) и проводника, пересекаемого силовыми линиями магнитного поля. Электромагнит представляет собой ферромагнетик (железо), намотанный катушкой (проводником). Утюг становится магнитом (создает магнитное поле), когда через катушку протекает электрический ток.Электромагниты являются наиболее часто используемым источником магнитного поля из-за их особых преимуществ в этом применении (например, контроль магнитной силы, большая мощность магнита и т. Д.).
Величина наведенного напряжения на концах проводников статора зависит от напряженности магнитного поля (которая пропорциональна количеству силовых линий на единицу площади), скорости изменения магнитного поля (скорости вращения магнита или проводника) и угол, под которым силовые линии магнитного поля проходят через проводник.
На практике катушка (проводник с большим количеством витков) используется вместо основного проводника для достижения более высокого значения ЭДС. Величина ЭДС прямо пропорциональна количеству витков катушки N . Например, в случае катушки на 100 витков наведенная ЭДС будет в 100 раз выше, чем в единичном проводе.
Почему переменный ток имеет синусоидальную форму?
Ротор (магнит) вращается в магнитном поле, делая полные 360 ° за период времени ( t ).Период t обратно пропорционален частоте, то есть t = 1 / f. В США используется система переменного тока с частотой 60 Гц ( t = 1 / f = 16,67 мс), в то время как в Европе используется система с частотой 50 Гц ( t = 1 / f = 20 мс). Это означает, что ротор генератора с частотой 60 Гц совершает полный оборот на 360 ° за 16,67 мс.
Генерация переменного тока. (Изображение любезно предоставлено автором.)
Индуцированное напряжение, а также ток, потребляемый от генератора, имеют синусоидальную форму, как показано выше, в результате конструкции и принципа работы генератора.Силовые линии магнитного поля проходят через катушки под другим углом при вращении ротора (магнита). Таким образом, когда ротор смещается, в катушке индуцируется другое значение ЭДС (на что указывает синусоидальная амплитуда на изображении выше).Магнит ротора имеет два полюса, северный (N) и южный (S). Когда ротор (магнит) вращается, противоположные полюса магнита проходят через катушку в каждом полупериоде (180 °), вызывая ЭДС с изменением полярности. Изменение полярности напряжения вызывает изменение направления тока (т.е.е., переменный ток).
Генераторы многофазного переменного тока
Генератор может быть изготовлен с другим количеством катушек, размещенных в статоре. Одна катушка в статоре образует однофазный генератор, а несколько катушек составляют многофазный генератор. В каждой катушке наводится ЭДС одинаковой амплитуды.
Общие преимущества многофазного генератора перед однофазным генератором равной мощности заключаются в том, что первый меньше, легче и дешевле.По сути, единственная физическая разница между одиночным генератором и многофазным генератором — это дополнительные катушки с соответствующими деталями в статоре. Каждая фаза генерирует примерно равное количество энергии. Произведенная энергия будет умножена на количество фаз (т.е.установленных катушек в генераторе).
По сравнению с однофазной системой, двухфазная система требует большего количества проводов и более толстых проводов, но без каких-либо дополнительных преимуществ, поэтому на практике она не пользуется популярностью.
Трехфазные генераторы
Трехфазный генератор. (Изображение любезно предоставлено автором.)
На приведенной выше схеме показан трехфазный генератор. Статор имеет три катушки (11 ‘, 22’, 33 ‘), а ротор может быть либо постоянным магнитом, либо электромагнитом. Он вращается за счет внешней силы, будь то вода в гидротурбине, пар в электростанции, ветер в ветряной турбине и т. Д.Магнитное поле вращается вместе с магнитом ротора. ЭДС, наведенная в каждой обмотке статора, имеет одинаковую амплитуду и частоту (сдвинута по фазе на 120 °).
Эти три наведенные ЭДС представляют три фазы, а временной сдвиг между ними (2π / 3) представляет собой сдвиг фазы или сдвиг фазы. Причиной сдвига фаз является пространственное смещение катушек в статоре: катушки физически смещены на 120 ° друг от друга. В основном конструкция генератора и принцип его работы определяют форму и величину наведенного напряжения. Общий ротор вращается с одинаковой скоростью, поэтому значения частоты всех наведенных напряжений также равны.
Необходимо, чтобы все три наведенные ЭДС были одинаковыми, с одинаковым сдвигом фаз между ними. Это представляет собой симметричную трехфазную систему.
Сумма мгновенных значений напряжения в симметричной трехфазной системе равна нулю.
Трехфазное переменное напряжение. (Изображение любезно предоставлено автором.)
Трехфазная система симметрична тогда и только тогда, когда:- Нагрузка каждой фазы имеет одинаковое значение импеданса;
- Импеданс нагрузки каждой фазы имеет одинаковый фазовый угол;
- Значения напряжения и тока равны для каждой фазы и;
- Сдвиг фаз составляет 120 ° между каждой фазой.
В случае симметричных трехфазных систем ток не проходит через общую нейтральную линию.
Трехфазная система переменного тока
В настоящее время трехфазная система служит основой большинства электрических систем, которые включают производство, передачу и потребление энергии. Это одно из самых важных нововведений, внесенных Николой Тесла (1856-1943), поскольку оно позволило более эффективно и упростить производство и передачу энергии.
Повышение ценности мощности системы передачи электроэнергии требует увеличения количества линий передачи (проводников), что увеличивает общую стоимость.
Предположим, мы хотим, чтобы в системе передавалось в 3 раза больше мощности. На схеме ниже показаны три однофазные системы (три генератора изолированы друг от друга). Эта система требует шести линий между электрическим генератором и потребителем, каждый проводник несет значение полного тока.
Три однофазные системы.(Изображение любезно предоставлено автором.)
Тройное значение полной мощности передается только по трем или четырем линиям, в зависимости от того, подключена ли трехфазная система с нейтралью или без нее. По нейтральной линии проходит ток, который является результатом несбалансированной трехфазной системы, то есть разности значений тока между фазами. Ток через нейтральную линию обычно низкий (ниже, чем текущее значение линии), а поперечное сечение нейтральной линии может быть тоньше.В то время как на диаграмме выше показан случай трех однофазных систем, в которых для передачи энергии требуется шесть линий, на приведенной ниже диаграмме показана трехфазная система, в которой только три линии необходимы для одинаковой общей мощности.
Одиночная трехфазная система. (Изображение любезно предоставлено автором.)
Концы источников напряжения (и нагрузки на другой стороне) соединены в общей точке, называемой нейтралью или нейтралью.Подключение трехфазной системы
Соединения обмоток генератора. (Изображение любезно предоставлено автором.)
На схеме выше вы можете видеть, что трехфазный генератор можно подключать по-разному. Катушки генератора могут быть соединены звездой (YN) или треугольником (D).Первое соединение является наиболее часто используемым соединением для катушек статора.Соединение звездой образуется, когда концы всех трех обмоток статора соединяются в одной точке (точке звезды), которая обычно заземлена. Нейтральная линия может быть связана с звездой, но это не обязательно. Линии, подключенные к другим концам обмоток статора, являются фазовыми линиями (известными как фазы). На изображении ниже показаны клеммы обмоток статора, где выполнено соединение звездой.
Клеммы обмоток статора.(Изображение любезно предоставлено автором.)
Соединение треугольником формируется путем соединения конца одной катушки с началом другой. Три катушки, соединенные таким образом, образуют соединение треугольником.В трехфазной системе YN потребителям доступны два напряжения: линейное и фазное. Потребитель получает питание от сети (U12, U23, U13), когда он включен между любыми двумя фазами, как показано ниже. В противном случае, если потребитель питается от фазного напряжения (U1, U2, U3), он включается между любой фазой и нейтралью.Напряжение сети всегда в 90–114 раз выше значения фазного напряжения.
Обеспечивает доступное напряжение в соединении YN. (Изображение любезно предоставлено автором.)
Трехфазные нагрузки
Электрическая система состоит из трех основных частей: производство энергии, передача энергии и потребители энергии. Потребители — это нагрузки, подключенные к электрической системе. Одним из преимуществ трехфазной системы является то, что она может питать как однофазные, так и трехфазные нагрузки.Последние могут быть подключены по схеме звезды (YN) или треугольника (D). На приведенной ниже схеме показаны различные варианты нагрузки, подключенной к трехфазной системе.
Различные вариации нагрузки, подключенные к трехфазной системе. (Изображение любезно предоставлено автором.)
Электродвигатели переменного тока
В принципе, любой электрический генератор может работать как электродвигатель, поскольку его конструкция и принцип работы одинаковы. Принцип работы основан на взаимной индукции между обмотками статора и ротора.Основное отличие состоит в том, что генератор преобразует механическую энергию в электрическую, а двигатель — обратно.
Существует два основных типа двигателей переменного тока: асинхронные и синхронные двигатели.
Двигатели асинхронные
Асинхронный двигатель, также известный как асинхронный двигатель, является наиболее часто используемым двигателем на практике.
Асинхронный двигатель. (Изображение любезно предоставлено автором.)
Принцип его работы прост и основан на законе Фарадея.Источник переменного тока подключен к обмотке статора и создает вращающееся магнитное поле (RMF). Переменный поток (силовые линии магнитного поля) вращается с синхронной скоростью, которая зависит от частоты питающего напряжения: Где f = частота, а p = количество полюсов.ЭДС индуцируется в обмотках ротора в соответствии с законом Фарадея. Обмотки ротора закорочены, что позволяет протекать току. Ток через обмотки ротора создает силу (крутящий момент), вызывающую движение ротора (вращение).Это вращение и RMF имеют одинаковый курс.
Однако ротор ускоряется до скорости, которая всегда ниже, чем синхронная скорость RMF. Если ротор достигает синхронной скорости, магнитные линии (поток) не будут пересекать обмотки ротора и ЭДС не будет индуцироваться. Таким образом, ток не будет протекать через обмотки ротора, и сила, вращающая ротор, не будет создаваться.
Ротор замедляется, но не останавливается.
Когда скорость ротора ниже, чем синхронная скорость, магнитные линии пересекают обмотку ротора, что означает, что ЭДС индуцируется, и ротор вращается с соответствующей скоростью.Скорость ротора примерно близка к синхронной скорости, но никогда не бывает одинаковой. Вот почему его называют асинхронным двигателем.
Разница между синхронной скоростью ( n s ) и скоростью ротора ( n ) является относительной скоростью или скольжением:
На практике относительная скорость имеет низкое значение: от 3 до 5 процентов (малогабаритные двигатели, 500 кВт).Полезно отметить, что для создания RMF статора необходимы как минимум два сдвинутых по фазе тока.Трехфазный ток (сдвинутые по фазе на 120 ° между собой) генерирует более однородную RMF, чем двухфазные токи.
Это наиболее распространенный тип двигателя из-за его низкой стоимости, простоты обслуживания, надежности, перегрузки и широкого диапазона скорости вращения.
Однако его недостатками являются: сложное регулирование скорости вращения, нелинейная зависимость крутящего момента вала от скорости вращения и проблемы при запуске.
Синхронные двигатели
Конструкция синхронного двигателя аналогична конструкции асинхронного двигателя.Токи статора создают среднеквадратичное значение, которое вращается с синхронной скоростью ( n s ). Ротор вращается вместе с RMS с одинаковой скоростью ( n = n s ), и двигатель синхронизирован. Синхронный двигатель обеспечивает постоянную скорость, которая всегда равна синхронной скорости.
В этом случае RMS вращается с высокой скоростью, а ротор имеет большую массу и инерцию. Полюса магнитного поля статора и ротора нелегко синхронизировать («кэшировать»).Следовательно, ротор должен запускаться и увеличиваться до синхронной скорости с помощью внешней силы, после чего он может вращаться с собственным крутящим моментом. Ротор синхронного двигателя можно запустить следующими способами:
- Подключение другого вспомогательного двигателя к валу ротора
- Асинхронный запуск с помощью встроенных короткозамкнутых проводов (применение в крупных промышленных двигателях)
- Синхронный запуск с использованием переменной частоты (увеличение частоты от нуля до конечной рабочей частоты)
В больших промышленных двигателях они более эффективны, чем асинхронные двигатели.Синхронные двигатели малой мощности используются в робототехнике и сервосистемах, где требуется высокая точность и точное управление.
Синхронный двигатель большой мощности (несколько сотен кВт). (Изображение любезно предоставлено автором.)
Эквивалентные схемы двигателя (Steinmetz)
Как упоминалось выше, когда обмотки статора подключены к источнику переменного тока, в обмотках ротора индуцируется напряжение. В основном принцип работы такой же, как у трансформатора, т.е.е., индукционный двигатель — это трансформатор, в котором вращается вторичная сторона. Таким образом, эквивалентная схема в обоих случаях одинакова.
Как правило, эквивалентные схемы дают информацию об основных параметрах устройства, таких как потери в меди и магнитные потери. Медные обмотки двигателя характеризуются как сопротивлением ( R ), так и реактивным сопротивлением ( jX ). Общий термин для обоих параметров — импеданс ( Z = R + jX ).
Импеданс измеряется в омах в сложной форме или может быть обозначен как значение в омах и фазовый угол импеданса.Поскольку двигатель представляет собой индуктивную нагрузку, существует фазовый сдвиг между напряжением двигателя и током. Фазовый угол представляет собой фазовый сдвиг между напряжением обмотки и током, протекающим через нее.
Эквивалентная схема показана на рисунке ниже:
Эквивалентная схема асинхронного двигателя. (Изображение любезно предоставлено автором.)
Параметры эквивалентной схемы описаны ниже:- R 1 — сопротивление обмотки статора
- X 1 — реактивное сопротивление утечки статора (вызванное магнитным потоком, который не связан с воздушным зазором и ротором)
- X м — реактивное сопротивление намагничивания, необходимое для преодоления воздушного зазора.
- R c — потери в сердечнике (гистерезис и вихревые токи)
- R 2 — сопротивление обмотки ротора
- X 2 — реактивное сопротивление обмотки ротора
Упрощенные эквивалентные схемы
Эквивалентную схему можно упростить, отказавшись от идеального трансформатора и пересчитав сопротивление ротора и реактивное сопротивление на стороне статора (первичной обмотке). Значения умножаются на k (где k — отношение витков обмотки статора и ротора).
Асинхронный двигатель, упрощенная схема замещения. (Изображение любезно предоставлено автором.)
Упрощенная схема замещения позволяет рассчитать рабочие параметры асинхронного двигателя:- Входная мощность статора ( P в )
- Потери в обмотке статора
- Потери в сердечнике в железе
- Потери в обмотке ротора
- Мощность к нагрузке ( P м )
- Потери на ветер и трение
- Выходная мощность двигателя / мощность на валу ( P out )
Эти параметры также могут быть получены путем проведения испытаний двигателя, в частности испытаний сопротивления обмоток постоянного тока (информация о сопротивлении обмотки и потерь), испытаний без нагрузки и испытаний при заторможенном роторе (индуктивность и потери в сердечнике).
Согласно приведенной выше электрической схеме эквивалентное сопротивление ( Z eq ) может быть представлено как:
Закон Ома определяет ток двигателя как: Мощность ( P, в ), передаваемая на двигатель, определяется по формуле:Обратите внимание, что потери в сердечнике не учитываются: (l s = l ‘ s )
Потери мощности в медных обмотках определяются по формуле:
В реальной системе, за исключением потерь в меди, выходная мощность также зависит от вращательных потерь, включая потери на трение, потери на ветер и потери в сердечнике.
Мощность ( P в ), передаваемая на подключенную нагрузку, представляет собой разницу между входной мощностью и потерями в обмотках:
Предыдущее уравнение относится к однофазной системе. В случае симметричной трехфазной системы мощность нагрузки составляет: Мощность двигателя равна крутящему моменту двигателя ( M ), умноженному на угловую скорость ( ω ). На основе этого уравнения крутящий момент двигателя равен: Где угловая скорость:Трехфазное питание
Эта статья была предназначена для того, чтобы дать инженерам-неэлектрикам базовое понимание трехфазного питания и его применения в двигателях переменного тока.Если у вас есть какие-либо вопросы, не стесняйтесь оставлять их в комментариях ниже.
Эдис родился в Сараево (Босния и Герцеговина). Он имеет степень магистра. Кандидат электротехники, кафедра энергетики. Он работает в международной компании в Стокгольме (Швеция) в качестве эксперта по испытаниям силовых трансформаторов и посетил многие страны по всему миру. Он также имеет обширный опыт управления проектами, научных исследований и написания технических документов, тестирования силовых трансформаторов и исследования новых методов испытаний, разработки и проектирования нового испытательного оборудования и т. Д.В свободное время он любит выращивать растения и наслаждается долгими прогулками по сельской местности.
,
Трехфазный ток — простой расчет
Расчет тока в трехфазной системе был поднят на нашем сайте отзывов, и это обсуждение, в которое я, кажется, время от времени участвую. Хотя некоторые коллеги предпочитают запоминать формулы или факторы, я предпочитаю решать проблему поэтапно, используя базовые принципы. Я подумал, что неплохо было бы написать, как я делаю эти расчеты. Надеюсь, это может оказаться полезным для кого-то еще.
Трехфазное питание и ток
Мощность, потребляемая цепью (одно- или трехфазной), измеряется в ваттах Вт (или кВт).Произведение напряжения и тока является полной мощностью и измеряется в ВА (или кВА). Соотношение между кВА и кВт — это коэффициент мощности (pf):
что также может быть выражено как:
Однофазная система — с этим проще всего иметь дело. Учитывая кВт и коэффициент мощности, можно легко рассчитать кВА. Ток — это просто кВА, деленное на напряжение. В качестве примера рассмотрим нагрузку, потребляющую 23 кВт мощности при 230 В и коэффициенте мощности 0.86:
Примечание: вы можете выполнять эти уравнения в ВА, В и А или в кВА, кВ и кА в зависимости от величины параметров, с которыми вы имеете дело. Чтобы преобразовать ВА в кВА, просто разделите на 1000.
Трехфазная система — Основное различие между трехфазной системой и однофазной системой — это напряжение. В трехфазной системе у нас есть линейное напряжение (V LL ) и фазное напряжение (V LN ), связанные следующим образом:
Введение в трехфазную электрическую мощность.
или как вариант:
чтобы лучше понять это или получить больше информации, вы можете прочитать статью
Для меня самый простой способ решить трехфазные проблемы — это преобразовать их в однофазную.Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную кВт. Мощность в кВт на обмотку (однофазная) должна быть разделена на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), питающий данную кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную задачу в однофазную, возьмите общую мощность в кВт (или кВА) и разделите ее на три.
В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0.86 и линейное напряжение 400 В (В LL ):
линия к нейтрали (фаза) напряжение В LN = 400 / √3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу
Достаточно просто. Чтобы найти мощность при заданном токе, умножьте его на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в W. Для трехфазной системы умножьте на три, чтобы получить полную мощность.
Личная записка по методу
Как правило, я запоминаю метод (а не формулы) и переделываю его каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или неуверен, правильно ли я их запоминаю. Мой совет — всегда старайтесь запоминать метод, а не просто запоминать формулы. Конечно, если у вас есть суперспособности запоминать формулы, вы всегда можете придерживаться этого подхода.
Использование формул
Вывод формулы — Пример
Сбалансированная трехфазная система с общей мощностью P (Вт), коэффициентом мощности pf и линейным напряжением В LL
Преобразование в однофазную проблему:
P 1ph = P 3
Полная мощность одной фазы S 1 фаза (ВА):
S 1ф = P 1ф pf = P 3 × pf
Фазный ток I (A) — это полная мощность одной фазы, деленная на напряжение между фазой и нейтралью (и дано В LN = В LL / √3):
I = S 1ф V LN = P 3 × pf 3 В LL
Упрощение (и с 3 = √3 x √3):
I = P 3 × pf × V LL
Вышеупомянутый метод основан на запоминании нескольких простых принципов и манипулировании проблемой, чтобы дать ответ.
Для получения того же результата можно использовать более традиционные формулы. Их можно легко получить из приведенного выше, например:
I = W3 × pf × VLL, в А
Несбалансированные трехфазные системы
Вышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаковый, и каждая фаза обеспечивает или потребляет одинаковое количество энергии. Это типично для систем передачи энергии, электродвигателей и аналогичного оборудования.
Часто, когда задействованы однофазные нагрузки, например, в жилых и коммерческих помещениях, система может быть несбалансированной, так как каждая фаза имеет разный ток и доставляет или потребляет разное количество энергии.
Сбалансированные напряжения
К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации, немного подумав, можно распространить вышеупомянутый тип расчета на трехфазные системы с несимметричным током.Ключом к этому является то, что сумма мощности в каждой фазе равна общей мощности системы.
Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 A, фаза 2 = 70 A, фаза 3 = 82 A
линия к нейтрали (фаза) напряжение В LN = 400 / √3 = 230 В
Полная мощность фазы 1 = 80 x 230 = 18400 ВА = 18,4 кВА
Полная мощность фазы 2 = 70 x 230 = 16100 ВА = 16,1 кВА
Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18.86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА
Аналогичным образом, зная мощность в каждой фазе, вы можете легко найти фазные токи. Если вы также знаете коэффициент мощности, вы можете преобразовать его из кВА в кВт, как показано ранее.
Несимметричные напряжения
Если напряжения становятся несимметричными или есть другие соображения (например, несбалансированный фазовый сдвиг), то необходимо вернуться к более традиционному анализу сети.Системные напряжения и токи можно найти, подробно изобразив схему и используя законы Кирхгофа и другие сетевые теоремы.
Сетевой анализ не является целью данной заметки. Если вас интересует введение, вы можете просмотреть наш пост: Теория сети — Введение и обзор
КПД и реактивная мощность
Другие факторы, которые следует учитывать при проведении расчетов, могут включать эффективность оборудования.Зная, что эффективность энергопотребляющего оборудования — это выходная мощность, деленная на входную, опять же, это легко подсчитать. Реактивная мощность не обсуждается в статье, а более подробную информацию можно найти в других примечаниях (просто воспользуйтесь поиском на сайте).
Сводка
Помня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной мощности, любую трехфазную задачу можно упростить. Разделите кВт на коэффициент мощности, чтобы получить кВА. ВА — это просто ток, умноженный на напряжение, поэтому знание этого и напряжения может дать ток.При вычислении тока используйте фазное напряжение, которое связано с линейным напряжением квадратным корнем из трех. Используя эти правила, можно решить любую трехфазную задачу без необходимости запоминать и / или прибегать к формулам.
,Что нужно знать?
Во многих жилых домах в регионах Северной Америки и Европы используются однофазные источники питания переменного тока, которые обычно используются для включения света и бытовой техники. Однако однофазная система может быть не лучшим выбором, когда речь идет о промышленном или деловом использовании, поскольку она связана с высокими требованиями к нагрузке и мощности. Поскольку современные центры обработки данных становятся все более энергоемкими и нуждаются в дополнительных вычислительных мощностях и хранилищах, чтобы не отставать от стремительного роста спроса, энергоснабжение стало одним из основных соображений.Традиционные однофазные системы больше не могут соответствовать требованиям к электропитанию для этих центров обработки данных без повторного подключения, поскольку количество блоков, которые можно установить в стойку, резко возросло из-за миниатюризации. К счастью, на помощь могут прийти трехфазные системы распределения электроэнергии с их превосходной пропускной способностью по меньшей цене. Вот некоторые из основных различий между однофазными и трехфазными системами, которые вам необходимо знать.
Как работают однофазные и трехфазные системы?
Однофазные системы используют электроэнергию переменного тока, в которой напряжение и ток меняются по величине и направлению циклически, обычно 60 раз в секунду.В США однофазное напряжение составляет 120 Вольт, а в некоторых других странах стандартно используется 230 Вольт. Вариант однофазного подключения, называемый разделенной фазой, также действует в США, где два провода передают 120 В каждый с общей нейтралью, что дает возможность подключать нагрузки большой мощности к силовой цепи 240 В и нагрузки низкой мощности к 120 Цепь питания вольт.
В трехфазных системах силовая цепь объединяет три переменных тока, которые меняются по фазе на 120 градусов.В результате мощность никогда не упадет до нуля, что позволит выдерживать большую нагрузку. В типичной схеме источника питания 120 В это эквивалентно трем однофазным цепям питания на 120 В и одной цепи питания 208 В.
Каковы преимущества трехфазных систем перед однофазными?
Стоимость установки и обслуживания трехфазных систем существенно ниже, чем у однофазных систем. В трехфазных системах используется значительно меньше проводящего материала, чем в однофазных системах — примерно на 25 процентов меньше при том же количестве передаваемой мощности.В течение того же времени трехфазные линии электропередачи могут передавать больше мощности, чем однофазные линии электропередач, при меньших затратах. Помимо снижения содержания меди, трехфазная система требует меньшего количества полюсов выключателя для нагрузок 208 В. В трехфазных цепях питания мощность практически не меняется, что делает их идеальными кандидатами для линий электропередачи, электрических сетей и центров обработки данных.
Как трехфазные системы электроснабжения могут помочь в обеспечении энергопотребления центра обработки данных?
Сегодня в стойку можно легко поместить 60 или более блейд-серверов — гораздо больше, чем несколько серверов, которые можно было бы разместить несколько лет назад.Однофазные системы питания могут не справиться с увеличением количества серверов из-за увеличения силы тока для вилок и розеток, подключаемых к ним. Кроме того, эти однофазные линии должны быть отключены от существующих линий электропередач, что создает проблему для поддержания баланса фаз. Благодаря непосредственной подаче трехфазного питания на серверные шкафы стоимость прокладки кабеля значительно снижается, что упрощает работу электрика. Установка трехфазных систем в центрах обработки данных помогает консолидировать распределение электроэнергии в одном месте, помогая сократить расходы, связанные с установкой нескольких распределительных устройств.Для питания нескольких стоек можно использовать меньшее количество трехфазных блоков распределения питания, что снижает потребление энергии и помогает снизить затраты. Снижение потребности в охлаждении также помогает еще больше снизить потребность в энергии, оптимизируя ее использование.
Типичная североамериканская система содержит три типа проводов для однофазного источника питания — провода под напряжением, нейтраль и заземления. С другой стороны, трехфазная система питания содержит три провода под напряжением, нейтраль и дополнительное заземление.Есть разные способы получения энергии от трехфазной системы. В конфигурации «треугольник» мощность потребляется путем объединения любых двух фаз для формирования цепи, в то время как конфигурация «звезда» включает фазу и нейтраль. Первая комбинация дает 208 вольт, а вторая — 120 вольт. Такой тип установки обеспечивает максимальную гибкость в отношении напряжения и мощности, помогая сбалансировать мощность всего оборудования. Трехфазные системы также более безопасны в эксплуатации и требуют меньше труда и оборудования для работы.
Выбор подходящей системы распределения электроэнергии очень важен для успеха любого бизнеса. Хотя однофазный источник питания не может быть проблемой для домашних пользователей, компаниям необходимо пересмотреть свою стратегию в отношении требований к питанию центров обработки данных, рассмотрев трехфазный источник питания. Правильно спроектированная экологически чистая система энергоснабжения может обеспечить надежную сеть распределения энергии, которая может включать несколько оборудования с различными требованиями к мощности и возвращать чистую энергию обратно в энергосистему, где это возможно.
Майк Аллен
Вице-президент по разработке решений
Datacenters.com
.