Емкость конденсаторов: определение, формулы, примеры.
Определение 1Конденсатор – это совокупность двух любых проводников, заряды которых одинаковы по значению и противоположны по знаку.
Его конфигурация говорит о том, что поле, созданное зарядами, локализовано между обкладками. Тогда можно записать формулу электроемкости конденсатора:
C=qφ1-φ2=qU.
Значением φ1-φ2=U обозначают разность потенциалов, называемую напряжением, то есть U. По определению емкость положительна. Она зависит только от размерностей обкладок конденсатора их взаиморасположения и диэлектрика. Ее форма и место должны минимизировать воздействие внешнего поля на внутреннее. Силовые линии конденсатора начинаются на проводнике с положительным зарядом, а заканчиваются с отрицательным. Конденсатор может являться проводником, помещенным в полость, окруженным замкнутой оболочкой.
Выделяют три большие группы: плоские, сферические, цилиндрические. Чтобы найти емкость, необходимо обратиться к определению напряжения конденсатора с известными значениями зарядов на обкладках.
Плоский конденсатор
Определение 2Плоский конденсатор – это две противоположно заряженные пластины, которые разделены тонким слоем диэлектрика, как показано на рисунке 1.
Формула для расчета электроемкости записывается как
C=εε0Sd, где S является площадью обкладки, d – расстоянием между ними, ε — диэлектрической проницаемостью вещества. Меньшее значение d способствует большему совпадению расчетной емкости конденсатора с реальной.
Рисунок 1
При известной электроемкости конденсатора, заполненного N слоями диэлектрика, толщина слоя с номером i равняется di, вычисление диэлектрической проницаемости этого слоя εi выполняется, исходя из формулы:
C=ε0Sd1ε1+d2ε2+…+dNεN.
Сферический конденсатор
Определение 3Когда проводник имеет форму шара или сферы, тогда внешняя замкнутая оболочка является концентрической сферой, это означает, что конденсатор сферический.
Он состоит из двух концентрических проводящих сферических поверхностей с пространством между обкладками, заполненным диэлектриком, как показано на рисунке 2. Емкость рассчитывается по формуле:
C=4πεε0R1R2R2-R1, где R1 и R2 являются радиусами обкладок.
Рисунок 2
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Цилиндрический конденсатор
Емкость цилиндрического конденсатора равняется:
C=2πεε0llnR2R1, где l — высота цилиндров, R1 и R2 — радиусы обкладок. Данный вид конденсатора имеет две соосные поверхности проводящих цилиндрических поверхности, как показано на рисунке 3.
Рисунок 3
Определение 4Важной характеристикой конденсаторов считается пробивное напряжение — напряжение, при котором происходит электрический разряд через слой диэлектрика.
Umax находится от зависимости от толщины слоя и свойств диэлектрика, конфигурации конденсатора.
Электроемкость плоского конденсатора. Формулы
Кроме отдельных конденсаторов используются их соединения. Наличие параллельного соединения конденсаторов применяют для увеличения его емкости. Тогда поиск результирующей емкости соединения сводится к записи суммы Ci, где Ci- это емкость конденсатора с номером i:
C=∑i=1NCi.
При последовательном соединении конденсаторов суммарная емкость соединения всегда будет по значению меньше, чем минимальная любого конденсатора, входящего в систему. Для расчета результирующей емкости следует сложить величины, обратные к емкостям отдельных конденсаторов:
Пример 1Произвести вычисление емкости плоского конденсатора при известной площади обкладок
1 см2 с расстоянием между ними 1 мм. Пространство между обкладками находится в вакууме.
Решение
Чтобы рассчитать электроемкость конденсатора, применяется формула:
C=εε0Sd.
Значения:
ε=1, ε0=8,85·10-12 Фм;S=1 см2=10-4 м2;d=1 мм=10-3 м.
Подставим числовые выражения и вычислим:
C=8,85·10-12·10-410-3=8,85·10-13 (Ф).
Ответ: C≈0,9 пФ.
Пример 2Найти напряженность электростатического поля у сферического конденсатора на расстоянии x=1 см=10-2 м от поверхности внутренней обкладки при внутреннем радиусе обкладки, равном R1=1 см=10-2 м, внешнем – R2=3 см=3·10-2 м. Значение напряжения — 103 В.
Решение
Производящая заряженная сфера создает напряженность поля. Его значение вычисляется по формуле:
E=14πεε0qr2, где q обозначают заряд внутренней сферы, r=R1+x — расстояние от центра сферы.
Нахождение заряда предполагает применение определения емкости конденсатора С:
q=CU.
Для сферического конденсатора предусмотрена формула вида
C=4πεε0R1R2R2-R1 с радиусами обкладок R1 и R2.
Производим подстановку выражений для получения искомой напряженности:
E=14πεε0U(x+R1)24πεε0R1R2R2-R1=U(x+R1)2R1R2R2-R1.
Данные представлены в системе СИ, поэтому достаточно заменить буквы числовыми выражениями:
E=103(1+1)2·10-4·10-2·3·10-23·10-2-10-2=3·10-18·10-6=3,45·104 Вм.
Ответ: E=3,45·104 Вм.
По какой формуле найти ёмкость (объем) конденсаторов
Во всех электронных устройствах используются конденсаторы. При их конструировании или изготовлении своими руками параметры устройств рассчитываются по специальным формулам.
Конденсаторы
Расчёт конденсаторов
Один из главных параметров таких устройств – ёмкость. Рассчитать её можно по следующей формуле:
C=q/U, где:
- C – ёмкость,
- q – заряд одной из обкладок элемента,
- U – разность потенциалов между обкладками.
В электротехнике вместо понятия «разность потенциалов между обкладками» используется «напряжение на конденсаторе».
Ёмкость элемента не зависит от конструкции и размеров устройства, а только от напряжения на нём и заряда обкладок. Но эти параметры могут изменяться в зависимости от расстояния между ними и материала диэлектрика. Это учитывается в формуле:
С=Co*ε, где:
- С – реальная ёмкость,
- Со – идеальная, при условии, что между пластинами вакуум или воздух,
- ε – диэлектрическая проницаемость материала между ними.
Например, если в качестве диэлектрика используется слюда, «ε» которой 6, то ёмкость такого устройства в 6 раз больше, чем воздушного, а при изменении количества диэлектрика меняются параметры конструкции. На этом принципе основана работа ёмкостного датчика положения.
Устройство конденсатора
Единицей ёмкости в системе СИ является 1 фарад (F). Это большая величина, поэтому чаще применяются микрофарады (1000000mkF=1F) и пикофарады (1000000pF=1mkF).
Расчет плоской конструкции
Если нужно рассчитать плоский конденсатор, то необходимо учесть площадь обкладок и расстояние между ними. Это отражено в формуле, по которой рассчитывается ёмкость плоского конденсатора:
C=ε/d, где:
- ε – диэлектрическая проницаемость изолирующего материала,
- d – расстояние между пластинами.
Расчет конструкции цилиндрической формы
Цилиндрический конденсатор – это две соосные трубки различного диаметра, вставленные друг в друга. Между ними находится диэлектрик. При радиусе цилиндров, близком друг к другу и намного большем, чем расстояние между ними, цилиндрической формой можно пренебречь и свести расчёт к формуле, аналогичной той, по которой рассчитывается плоский конденсатор.
Вычисляются параметры такого устройства по формуле:
C=(2π*l*R*ε)/d, где:
- l – длина устройства,
- R – радиус цилиндра,
- ε – диэлектрическая проницаемость изолятора,
- d – его толщина.
Расчёт сферической конструкции
Есть устройства, обкладки которых представляют собой два шара, вложенные друг в друга. Формула ёмкости такого прибора:
C=(4π*l*R1*R2*ε)/(R2-R1), где:
- R1 – радиус внутренней сферы,
- R2 – радиус внешней сферы,
- ε – диэлектрическая проницаемость.
Формулы ёмкости конденсаторов различной формы
Ёмкость одиночного проводника
Кроме конденсаторов, способностью накапливать заряд обладают отдельные проводники. Одиночным проводником считается такой проводник, который бесконечно далёк от других проводников. Параметры заряженного элемента рассчитывается по формуле:
C=Q/φ, где:
- Q – заряд,
- φ – потенциал проводника.
Объём заряда определяется размером и формой устройства, а также окружающей средой. Материал прибора значения не имеет.
Способы соединения элементов
Не всегда есть в наличии элементы с необходимыми параметрами. Приходится соединять их различными способами.
Соединение конденсаторов
Параллельное соединение
Это такое соединение деталей, при котором к одной клемме или контакту присоединяются первые обкладки каждого конденсатора. При этом вторые обкладки присоединяются к другой клемме.
При таком соединении напряжение на контактах всех элементов будет одинаковым. Заряд каждого из них происходит независимо от остальных, поэтому общая ёмкость равна сумме всех величин. Её находят по формуле:
C=C1+C2+…Cn,
где C1-Cn – параметры деталей, участвующих в параллельном соединении.
Важно! Конденсаторы имеют предельное допустимое напряжение, превышение которого приведёт к выходу элемента из строя. При параллельном соединении устройств с различным допустимым напряжением этот параметр получившейся сборки равен элементу с наименьшим значением.
Последовательное соединение
Это такое соединение, при котором к клемме присоединяется только одна пластина первого элемента. Вторая пластина присоединяется к первой пластине второго элемента, вторая пластина второго – к первой пластине третьего и так далее. Ко второй клемме присоединяется только вторая обкладка последнего элемента.
При таком соединении заряд на обкладках конденсатора в каждом приборе будет равен остальным, однако напряжение на них будет разным: для зарядки устройств большей ёмкости тем же зарядом требуется меньшая разность потенциалов. Поэтому вся цепочка представляет собой одну конструкцию, разность потенциалов которой равна сумме напряжений на всех элементах, а заряд конденсатора равен сумме зарядов.
Последовательное соединение увеличивает допустимое напряжение и уменьшает общую ёмкость, которая меньше самого меньшего элемента.
Рассчитываются эти параметры следующим образом:
- Допустимое напряжение:
Uобщ=U1+U2+U3+…Un, где U1-Un – напряжение на конденсаторе;
- Общая ёмкость:
1/Собщ=1/С1+1/С2+1/С3+…1/Сn, где С1-Сn – параметры каждого устройства.
Интересно. Если в цепи только два элемента, то можно воспользоваться упрощённой формулой: Собщ=(С1*С2)/(С1+С2).
Смешанное соединение
Это такое соединение, в котором есть детали, соединённые последовательно, и есть соединённые параллельно. Параметры всей цепи рассчитывается в следующей последовательности:
- определяются группы элементов, соединённые параллельно;
- для каждой группы в отдельности рассчитывается эквивалентные значения;
- рядом с каждой группой параллельно соединённых деталей пишутся получившиеся величины;
- получившаяся схема эквивалентна последовательной схеме и рассчитывается по соответствующим формулам.
Знание формул, по которым можно найти емкость при изготовлении конденсаторов или их соединении необходимо при конструировании электронных схем.
Видео
Оцените статью:формула для расчета электрической емкости
В чем измеряется емкость конденсатора
Что такое заряд еще проходят в школе, когда эбонитовую палочку натирают о шерстяную ткань и подносят к маленьким кусочкам бумаги. Под действием электромагнитных сил бумага прилипает к палочке. Подобный заряд накапливается в конденсаторе. Но для начала познакомимся с самим конденсатором.
Простейшим конденсатором являются две металлические пластины, разделенные диэлектриком. От качества диэлектрика зависит, как долго энергия заряженного конденсатора может сохраняться. На этих пластинах, они еще называются обкладками, накапливается разноименный заряд. Как это происходит?
Электрический заряд, а в случае с металлами это электроны, способен перемещаться под действием электродвижущей силы (э. д. с.). Подключая металлические пластинки к источнику тока, мы получаем замкнутую цепь, но разделенную диэлектриком. Электростатическое поле проходит этот диэлектрик, замыкая цепь, а электроны, дойдя до препятствия, останавливаются и скапливаются.
Получается, на одной обкладке наблюдается избыток электронов, и эта пластина имеет отрицательный знак, а на другой пластине электронов недостает настолько же, знак на этой обкладке, конечно же, будет положительным.
Вот теперь нужна для определения емкости конденсатора формула, определяющая, какой заряд способен разместится на конкретном конденсаторе.
В качестве единицы измерения в международной системе (СИ) емкость определяется в Фарадах. |
Много это или мало — емкость в 1Ф? Чтобы конденсатор обладал емкостью в 1Ф, он должен содержать в себе заряд в 1К (кулон) и при этом напряжение между обкладками должно равняться 1 вольту.
Интересно. Что такое заряд в 1 кулон? Если два предмета, каждый из которых имеет заряд в один кулон разместить в вакууме на расстоянии один метр, то сила притяжения между ними будет равна силе притяжения землей тела массой в один миллион тонн. |
Как и любая буквальная емкость один и тот же конденсатор может вмещать разное количество заряда.
Рассмотрим пример.
- В трехлитровую банку входит три литра воздуха. Его хватит для дыхания, допустим, на 3 минуты. Но если воздух закачать под каким-то давлением, то емкость так и останется три литра, однако дышать можно будет дольше. Так устроен акваланг для ныряльщиков. Получается, количество воздуха в банке зависит от давления, которое в ней создается. Точно так же есть некая зависимость между различными силами, влияющими на емкость.
Формула емкости плоского конденсатора
Прежде чем узнать, по какой формуле вычисляется емкость плоского конденсатора, рассмотрим формулу для одиночного проводника. Она имеет вид:
- где Q – заряд,
- φ – потенциал.
Как видно емкость конденсатора, формула которого здесь приведена, будет тем больше, чем больший заряд способен накапливаться на нем при незначительном потенциале. Чтобы легче это было понять, рассмотрим получившие широкое распространение плоские конденсаторы разных размеров.
Для получения качественного конденсатора важны любые мелочи:
- ровная поверхность каждой обкладки;
- обе пластинки по всей площади должны располагаться на одинаковом расстоянии;
- размеры обкладок должны быть строго идентичными;
- от качества диэлектрика, расположенного между пластинками, будет зависеть ток утечки;
- емкость напрямую зависит от расстояния между обкладками, чем оно меньше, тем больше емкость.
Теперь обратимся к плоскому конденсатору. Формула определения емкости конденсатора несколько отличается от приведенной выше:
- где S – площадь одной обкладки,
- εr — диэлектрическая проницаемость диэлектрика,
- ε0 — электрическая постоянная,
Электрическая постоянная выражается числом 8,854187817×10-12.
Внимание! Эта формула справедлива только тогда, когда расстояние между пластинами намного меньше их площади. |
Попробуем разобраться с каждой переменной подробнее. Площадь измеряется в м2, точнее, приводится к этой величине. А вот проницаемость диэлектрика может обозначаться по-разному.
В России это εr (также означает относительная проницаемость), в англоязычной литературе встречается εa (также означает абсолютная проницаемость), а то может и вовсе использоваться без индекса, просто ε. О том, что здесь используется диэлектрическая проницаемость диэлектрика можно понять из контекста.
Дальше идет ε0. Это уже вычисленное значение, измеряемое в Ф/м. Последняя переменная – d. Измеренное расстояние также приводится к метру. Емкость конденсатора, формула которого сейчас рассматривается, показывает сильную зависимость от расстояния обкладок. Поэтому стараются это расстояние по возможности сокращать. Почему этот показатель так важен?
Идеальными условиями для получения наибольшей емкости – это отсутствие промежутка между обкладками, чего, конечно, добиться невозможно. Чем ближе находятся разноименные заряды, тем сильнее сила притяжения, но здесь возникает компромисс.
При уменьшении толщины диэлектрика, а именно он разделяет разноименные заряды, возникает вероятность его пробоя из-за разности потенциалов на обкладках. С другой стороны, как уже говорилось, при увеличении напряжения увеличивается количество зарядов. Вот и приходится выбирать между емкостью и рабочим напряжением конденсатора.
Есть другая формула для плоского переменного конденсатора:
Здесь диэлектрическая проницаемость обозначена буквой ε, π = 22/7 ≈ 3,142857142857143, d – толщина диэлектрика. Формула предназначена для конденсатора, состоящего из нескольких пластин.
Допустимая толщина диэлектрика d также зависит от εr, чем выше коэффициент, тем тоньше можно использовать диэлектрик, тем большую емкость будет иметь конденсатор. Это был самый сложный материал, дальше будет легче.
Формула емкости цилиндрического конденсатора
Теперь поговорим о том, как найти емкость конденсатора цилиндрической формы. К ним относятся конденсаторы, состоящие из двух металлических цилиндров, вставленных один в другой. Для разделения между ними расположен диэлектрик. Формула емкости конденсатора выглядит следующим образом:
Здесь видим несколько новых переменных:
- l – высота цилиндра;
- R1 и R2 – радиус первого и второго (внешнего) цилиндров;
- ln – это не переменная, а математический символ натурального логарифма. На некоторых калькуляторах он имеется.
Всегда нужно помнить, что все величины должны приводиться к единой системе, в приведенной ниже таблице указаны международные системы единиц (СИ).
Из нее видно, что все расстояния нужно приводить к метру.
Еще стоит обращать внимание на качество диэлектрика. Если толщина диэлектрика влияет только на емкость конденсатора, то его качество затрагивает сохранность энергии. Другими словами, конденсатор с качественным диэлектриком будет иметь меньший саморазряд.
Определить качество можно по числу, стоящему возле вещества, чем оно больше, тем лучше качество. Сравнение производится по вакууму, значение которого равно единице.
Формула емкости сферического конденсатора
Последнее что осталось разобрать – формулу определения емкости конденсатора, состоящего из двух сфер. Причем одна сфера находится внутри другой. Формула имеет следующий вид:
Из приведенных переменных здесь все знакомо. Стоит обратить внимание лишь на сам конденсатор.
Кроме своей необычной формы у него есть свои особенности: внутри малой сферы никакого заряда нет, он образуется на внешней части малой сферы и внутренней части большого шара. Также заряд отсутствует и на внешней стороне внешней сферы.
Так же как и все другие конденсаторы, сферы разделены диэлектриком. Толщина и качество диэлектрика оказывают такое же влияние на емкость, как в случае с другими конденсаторами.
После того как были рассмотрены формулы, стоит испробовать их на практике. Рассмотрим, как найти емкость конденсатора каждого вида.
Примеры решения задач
Начнем с плоского конденсатора. Формула для этого вида:
Допустим, у нас есть следующие значения:
- в качестве диэлектрика возьмем слюду толщиной 0,02 мм, ε = 6;
- конденсатор квадратный со сторонами в 7 мм.
Определяем площадь пластин: 7×7 = 49 мм2.
Приводим к единой системе: 4,9×10-5 = 0,000049 м2. Толщина диэлектрика 0,02×10-5 = 0,00002 м. Электрическая постоянная 8,854187817×10-12.
Подставляем в формулу и высчитываем числитель: 6×8,854187817×10-12 ×4,9×10-5, сокращаем и решаем 6×49×8,854187817×10-17 = 2,603131218198×10-14.
Делим на толщину диэлектрика: 2,603131218198×10 / 2×10 = 1301,565609099×10 = 1,301565609099×10. Шесть нулей – это тысячи или приставка «микро», получается округлено 1,3 мкФ.
Возможно, при вычислении была допущена ошибка, но это не экзамен по математике. Важно понять сам метод вычисления.
Формула для цилиндрического конденсатора:
Выбираем значения:
- l = 1 см;
- R1 = 0,25 мм;
- R2 = 0,26 мм;
- ε = 2.
Подгоняем под единую систему: l — 1 см = 1×10-2 = 0,01 м; R1 – 0,25 мм = 0,0025 м; R2 – 0,26 мм = 0,0026 м.
Подставляем значения в числитель: 2×3,142857142857143×8,854187817×10-12×2×0,01 1,11×10-12. Находим знаменатель: 0,26:0,25 = 1,04.
Находим натуральный логарифм, он равен примерно 0,39. Числитель делим на знаменатель: 1,11×10-12/0,39 = 2,85×10-12.
Число с 12 нулями это приставка «пико», получаем 2,85 пФ.
Формула для сферического конденсатора:
Выбираем значения:
- ε= 4;
- r1= 5 см;
- r2= 5,01 см.
Снова все подгоняем: 5 см = 0,05 м; 5,01 см = 0,0501 м. Заполняем числитель. 4×3,142857142857143×4×8,854187817×10-12×0,05×0,0501 1,11×10-12 Вычисляем знаменатель: 0,0501 – 0,05 = 0,01. Производим деление: 1,11×10-12×0,01 = 1,11×10-10. Снова получили пикофарады, а именно 1,11 пФ.
Похожие материалы на сайте:
Понравилась статья — поделись с друзьями!
Глава 20. Конденсаторы
Для накопления разноименных электрических зарядов служит устройство, которое называется конденсатором. Конденсатор — система двух изолированных друг от друга проводников (которые часто называют обкладками конденсатора), один из которых заряжен положительным, второй — таким же по величине, но отрицательным зарядом. Если эти проводники представляют собой плоские параллельные пластинки, расположенные на небольшом рас-стоянии друг от друга, то конденсатор называется плоским.
Для характеристики способности конденсатора накапливать заряд вводится понятие электроемкости (часто говорят просто емкости). Емкостью конденсатора называется отношение заряда конденсатора к той разности потенциалов , которая возникает между обкладками при их заряжении зарядами и (эту разность потенциалов проводников часто называют электрическим напряжением между обкладками и обозначают буквой ):
(20.1) |
Поскольку величины и (или ) в формуле (20.1) зависимы, то емкость (20.1) не зависит от и , а является характеристикой геометрии системы проводников. Действительно, при сообщении проводникам зарядов и проводники приобретут потенциалы, разность которых будет пропорциональна заряду . Поэтому в отношении (20.1) заряд сокращается.
Выведем формулу для емкости плоского конденсатора (эта формула входит в программу школьного курса физики). При заряжении параллельных пластин, расположенных на небольшом расстоянии друг от друга, зарядами и , в пространстве между ними возникает однородное электрическое поле с напряженностью (см. гл. 18):
(20.2) |
Разность потенциалов между пластинами равна
(20.3) |
где — площадь пластин, — расстояние между ними. Отсюда, вычисляя отношение заряда к разности потенциалов (20.3), находим емкость плоского конденсатора
(20.4) |
Если все пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью , то поле (20.2) и разность потенциалов (20.3) убывает в раз, а емкость конденсатора в раз взрастает
(20.5) |
Для конденсаторов, соединенных в батареи, вводится понятие эквивалентной емкости, как емкости одного конденсатора, который при заряжении его тем же зарядом, что и батарея дает ту же разность потенциалов, что и батарея конденсаторов. Приведем формулы для эквивалентной емкости, а также для заряда и электрического напряжения на каждом конденсаторе при последовательном и параллельном их соединении.
Последовательное соединение (см. рисунок). При сообщении левой пластине левого конденсатора заряда , а правой пластине правого заряда , на внутренних пластинах благодаря поляризации будут индуцироваться заряды (см. рисунок; значения индуцированных зарядов приведены под пластинами). Можно доказать, что в результате поляризации каждый конденсатор будет заряжен такими же зарядами и , как и заряды крайних пластин, напряжение на всей батарее конденсаторов равно сумме напряжений на каждом, а обратная эквивалентная емкость батареи — сумме обратных емкостей всех конденсаторов
(20.6) |
Параллельное соединение (см. рисунок). В этом случае если сообщить левому проводнику заряд , правому сообщить заряд , заряд распределится между конденсаторами, вообще говоря, не одинаково, но по закону сохранения заряда .
Поскольку правые пластины всех конденсаторов соединены между собой, левые — тоже, то они представляют собой единые проводники, и, следовательно, разность потенциалов между пластинами каждого конденсатора будет одинакова: . Можно доказать, что при таком соединении конденсаторов эквивалентная емкость батареи равна сумме емкостей отдельных конденсаторов
(20.7) |
Заряженный конденсатор обладает определенной энергией. Если конденсатор емкости заряжен зарядом , то энергия этого конденсатора (можно говорить энергия электрического поля конденсатора) равна
(20.8) |
С помощью определения электрической емкости (20.1) можно переписать формулу (20.8) еще в двух формах:
(20.9) |
Рассмотрим в рамках этого минимума сведений о конденсаторах типичные задачи ЕГЭ по физике, которые были предложены в первой части книги.
Электроемкость конденсатора — его геометрическая характеристика, которая при неизменной геометрии не зависит от заряда конденсатора (задача 20.1.1 — ответ 3). Аналогично не меняется емкость конденсатора при увеличении напряжения на конденсаторе (задача 20.1.2 — ответ 3).
Связь между единицами измерений (задача 20.1.3) следует из определения емкости (20.1). Единица электрической емкости в международной системе единиц измерений СИ называется Фарада. 1 Фарада — это емкость такого конденсатора, между пластинами которого возникает напряжение 1 В при зарядах пластин 1 Кл и -1 Кл (ответ 4).
Поскольку электрическое поле в плоском конденсаторе однородно, то напряженность поля в конденсаторе и напряжение между пластинами связаны соотношением (см. формулу (18.9)) , где — расстояние между пластинами. Отсюда находим напряженность поля между обкладками плоского конденсатора в задаче 20.1.4
(ответ 4).
Согласно определению электрической емкости имеем в задаче 20.1.5
(ответ 2).
Из формулы (20.4) для емкости плоского конденсатора заключаем, что при увеличении площади его пластин в 3 раза (задача 20.1.6) его емкость увеличивается в 3 раза (ответ 1).
При уменьшении в раз расстояния между пластинами емкость плоского конденсатора возрастет в раз. Поэтому новое напряжение на конденсаторе (задача 20.1.7) можно найти из следующей цепочки формул
где и — новый заряд конденсатора (ответ 3).
Так как конденсатор в задаче 20.1.8 подключен к источнику, то между его пластинами поддерживается постоянное напряжение независимо от расстояния между ними. Поэтому заряд конденсатора изменяется при раздвигании пластин так же, как изменяется его емкость. А поскольку при увеличении расстояния между пластинами вдвое емкость конденсатора уменьшается вдвое (см. формулу (20.4)), то вдвое уменьшается и заряд конденсатора (ответ 2).
В задаче 20.1.9 конденсатор отключен от источника в процессе сближения пластин. Поэтому не меняется их заряд. А поскольку напряженность электрического поля между пластинами определяется соотношением (20.2)
то напряженность электрического поля между пластинами также не изменяется (ответ 3). Этот же результат можно получить и через определение емкости с учетом того, что
произведение от расстояния между пластинами не зависит (см. формулу (20.4)).
Из формул (20.8), (20.9) видим, что только одно из приведенных в качестве ответов к задаче 20.1.10 соотношений (а именно — 2) определяет энергию конденсатора.
При последовательном соединении конденсаторов (задача 20.2.1) одинаковыми будут их заряды независимо от значений их электрических емкостей (ответ 2). При параллельном соединении конденсаторов (задача 20.2.2) одинаковыми будут напряжения на каждом из них (ответ 3).
Поскольку конденсатор в задаче 20.2.3 отключен от источ-ника напряжения, его заряд не меняется в процессе раздвигания пластин. Поэтому для исследования изменения энергии конденсатора удобно воспользоваться формулой (20.8)
(1) |
Так как при увеличении расстояния между пластинами в раз электрическая емкость конденсатора уменьшается в раз, то согласно формуле (1) энергия конденсатора увеличится в раз (ответ 1).
В задаче 20.2.4 не изменяется напряжение на конденсаторе. Поэтому воспользуемся первой из формул (20.9)
Из этой формулы заключаем, что при увеличении в раз расстояния между пластинами энергия конденсатора уменьшится в раз — ответ 2. (Разница с предыдущей задачей связана с тем, что здесь кроме внешних сил, совершающих работу при раздвигании пластин, совершает работу источник напряжения.)
В задаче 20.2.5 изменяют расстояние между пластинами (и, следовательно, емкость) и заряд конденсатора. Поэтому удобно воспользоваться формулой (20.8)
Из этой формулы заключаем, что при увеличении расстояния между пластинами в 2 раза и увеличении заряда конденсатора в 2 раза его энергия возрастет в 8 раз (ответ 4).
Поскольку в задаче 20.2.6 конденсаторы соединены последовательно, емкость батареи конденсаторов можно найти по формуле (20.6), откуда находим емкость батареи конденсаторов (ответ 2).
В задаче 20.2.7 конденсаторы соединены параллельно, поэтому емкость батареи конденсаторов можно найти по формуле (20.7): (ответ 2).
Основной вопрос, на который нужно ответить в задаче 20.2.8, это как соединены конденсаторы? Последовательно, параллельно, по-другому? Попробуем по-другому расположить в пространстве и изменить длину соединительных проводов, чтобы схема стала более понятной. Очевидно, что можно соединить вершину 1 и вершину 3 («уменьшив» длину провода 1-3), а также вершины 2 и 4. При этом средний конденсатор разворачивается в пространстве, и схема приобретает вид, показанный на рисунке, откуда видно, что конденсаторы соединены параллельно. Поэтому (ответ 1).
Когда в заряженный плоский конденсатор вставляют металлическую пластинку (задача 20.2.9), параллельную обкладкам конденсатора, напряженность электрического поля внутри пластинки становится равным нулю, вне пластинки между обкладками конденсатора остается таким же, каким оно было в отсутствие пластинки , где — заряд конденсатора, — площадь его пластин. Поэтому напряжение между обкладками конденсатора определяется соотношением:
где — расстояние между обкладками конденсатора, — толщина пластинки. Отсюда находим емкость рассматриваемого конденсатора
(ответ 4).
Чтобы найти емкость сферического конденсатора (задача 20.2.10) сообщим его обкладкам заряды и , найдем напряжение между обкладками, вычислим отношение заряда к напряжению. Разность потенциалов двух концентрических сфер, заряженных зарядами и (напряжение между обкладками сферического конденсатора), определена в задаче 19.2.5., откуда находим электрическую емкость сферического конденсатора (ответ 3):
Урок 28. электрическая ёмкость. конденсатор — Физика — 10 класс
Физика, 10 класс
Урок 28. Электрическая ёмкость. Конденсатор
Перечень вопросов, рассматриваемых на уроке:
- Электрическая ёмкость
- Плоский конденсатор
- Энергия конденсатора
Глоссарий по теме:
Конденсатор – устройство для накопления электрического заряда.
Электроёмкостью конденсатора называют физическую величину, численно равную отношению заряда, одного из проводников конденсатора к разности потенциалов между его обкладками.
Под зарядом конденсатора понимают модуль заряда одной из его обкладок.
Последовательное соединение – электрическая цепь не имеет разветвлений. Все элементы цепи включают поочередно друг за другом. При параллельном соединении концы каждого элемента присоединены к одной и той же паре точек.
Смешанное соединение — это такое соединение, когда в цепи присутствует и последовательное, и параллельное соединение.
Энергия конденсатора прямо пропорциональна квадрату напряжённости электрического поля внутри его:
Для любых конденсаторов энергия равна половине произведения электроёмкости и квадрата напряжения.
Основная и дополнительная литература по теме:
1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. С. 321-330.
2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. С. 97-100.
Теоретический материал для самостоятельного изучения
Конденсатор при переводе с латиницы означает, то что уплотняет, сгущает – устройство, предназначенное для накопления зарядов энергии электрического поля. Конденсатор состоит из двух одинаковых параллельных пластин, находящихся на малом расстоянии друг от друга. Главной характеристикой этого прибора, является его электроёмкость, которая зависит от площади его пластин, расстояния между ними и свойств диэлектрика.
Заряд конденсатора определяется – модулем заряда на любой одной из её обкладок. Заряд конденсатора прямо пропорционален напряжению между обкладками конденсатора. Коэффициент пропорциональности С называется электрической ёмкостью, электроёмкостью или просто ёмкостью конденсатора.
Электрической ёмкостью конденсатора называется физическая величина, которая численно равна отношению заряда, одного из проводников конденсатора к разности потенциалов между его обкладками.
Чем больше площадь проводников и чем меньше пространство заполняющего диэлектриком, тем больше увеличивается ёмкость обкладок конденсатора.
Измеряется электрическая ёмкость в Международной системе СИ в Фарадах. Эта единица имеет своё название в честь английского физика экспериментатора Майкла Фарадея который внёс большой вклад в развитие теории электромагнетизма. Один Фарад равен ёмкости такого конденсатора, между пластинами которого возникает напряжение, равное одному Вольту, при сообщении заряда в один Кулон.
Электрическая ёмкость конденсаторов определяется их конструкцией, самыми простыми из них являются плоские конденсаторы.
Чем больше площадь взаимного перекрытия обкладок и чем меньше расстояние между ними, тем значительнее будет увеличение ёмкости обкладок конденсатора. При заполнении в пространство между обкладками стеклянной пластины, электрическая ёмкость конденсатора значительно увеличивается, получается, что она зависит от свойств используемого диэлектрика.
Электрическая ёмкость плоского конденсатора зависит от площади его обкладок, расстояния между ними, диэлектрической проницаемости диэлектрика, заполняющего пространство между обкладками и определяется по формуле:
где – электрическая постоянная.
Для того чтобы получить необходимую определённую ёмкость, берут несколько конденсаторов и собирают их в батарею применяя при этом параллельное, последовательное или смешанное соединения.
Параллельное соединение:
q = q1 + q2 + q3
u = u1 = u2 = u3
с = с1+с2+с3
с = n∙с
Последовательное соединение:
q = q1 = q2 = q3
u = u1 + u2 + u3
Энергия конденсатора равна половине произведения заряда конденсатора напряжённости поля и расстояния между пластинами конденсатора: u = Еd
Эта энергия равна работе, которую совершит электрическое поле при сближении пластин, это поле совершает положительную работу. При этом энергия электрического поля уменьшается:
Для любых конденсаторов энергия равна половине произведения электроёмкости и квадрата напряжения:
Примеры и разбор решения заданий:
1. Плоский конденсатор, расстояние между пластинами которого равно 3 мм, заряжен до напряжения 150 В и отключен от источника питания. Разность потенциалов между пластинами возросла до 300 В.
- Во сколько раз увеличилась разность потенциалов между пластинами?
- Какое расстояние между пластинами конденсатора стало после того, как пластины были раздвинуты?
- Во сколько раз изменилось расстояние между пластинами.
Решение:
Электрическая ёмкость конденсатора определяется по формуле:
1.По условию разность потенциалов увеличилось в два раза. U1 = 150В→ U2 = 300В.
2.По условию d = 3 мм, если разность потенциалов увеличилось в два раза, по формуле соответственно и расстояние между пластинами увеличилось в два раза, и d =2·3 мм = 6 мм.
3.Расстояние между пластинами увеличилось в два раза.
Ответ:
1. 2
2. 6мм
3. 2
2. Конденсатор электроёмкостью 20 мкФ имеет заряд 4 мкКл. Чему равна энергия заряженного конденсатора?
Дано: С = 20 мкФ = 20 · 10-6 Ф, q = 4 мкКл = 4·10-6 Кл.
Найти: W.
Решение:
Энергия заряженного конденсатора W через заряд q и электрическую ёмкость С определяется по формуле:
Ответ: W = 0,4 мкДж.
Формула для определения емкости конденсатора
Определение емкости конденсатора по маркировке
Практически каждая электрическая схема, включает в себя различные элементы, которые определяют ее назначение и правильность работы. Помимо разнообразных резисторов и транзисторов, схемы включают себя конденсаторы.
Конденсаторы классифицируют по следующим параметрам:
- Назначение;
- Защита от внешних факторов;
- Изменение емкости;
- Способ монтажа.
Конденсаторы служат для изменения работы электрического тока в данном участке цепи. В отличие от резисторов, маркировка конденсаторов более разнообразна. Их различают по форме (цилиндрические, плоские), по материалу (электролитические, керамические (СМД – SMD), пленочные), и их не сложно отличить.
Единицей принятой для измерения емкости, является фарад – Ф. Существует несколько видов маркировки: uF, mF – 1мкФ (один микрофарад), что равно 10-6, nF – 1 нанофарад – 10-9, pF – mmF – uuF – (пикофарад) – 10-12.
И для того, чтобы определить емкость конденсатора необходимо прочесть маркировку нанесенную на его корпус. Так же стоит учитывать, что маркировка может отличаться от привычных значений. Например, при обнаружении на конденсаторе значения MF, не будет являться (мегафарадом), данное значение соответствует (кикрофарад). Еще одним отличием может быть маркировка в виде (fd), что означает только наименование (фарад).
На некоторые виды конденсаторов наноситься маркировка для обозначения допуска (значение допустимого отклонения от номинального значения емкости). Предположим, маркировка конденсатора представляет собой – 5000 uF (-50%+50%). И если посчитать, то это значит, что допустимое отколонение от номинальной емкости составляет – 5000 + (5000х0,5) = 7500, и 5000 – (5000:0,5) = 2500.
В случаях, когда проценты не указываются, допустимое отклонение определяется буквой или цифрой идущей после числового ряда.
Так же, к маркировке емкости конденсаторов относят один важный параметр как допустимое рабочее напряжение, которое обозначается в виде букв – V, DVC. Данное значение является максимальным рабочим напряжением для конденсатора.
Для полярных конденсаторов используют обозначения для контактов (анод и катод). Если такой маркировки на конденсаторе нет, значит он не поляризован.
Емкость конденсатора: как померить самостоятельно
Бывают ситуации, когда маркировка на конденсаторе совершенно не читаема, или просто отсутствует. Но вам необходимо узнать его емкость. Существуют различные методы расчетов и вычислений, но самым точным является способ с использованием мультиметра.
Данный способ поможет узнать:
- Емкость;
- Нет ли короткого замыкания;
- Обрыва цепи.
Выполненные из различных материалов и в разнообразной форме, конденсаторы имеют очень важную отличительную особенность, они способны накапливать некоторое количество электрического заряда, которого вполне достаточно, что бы вывести из строя измерительный прибор. Поэтому первое, что нужно сделать перед измерением емкости конденсатора мультиметром, разрядить его. Сделать это можно используя обычную изолированную отвертку. Необходимо просто замкнуть контакты конденсатора.
Далее, мультиметр выставляем в положение для измерения емкости (на шкале должны быть соответствующие обозначения (600 uF – 2 nF) – от 600 микрофарад до 2 нанофарад. Разряжаем конденсатор.
Обратите внимание! Если конденсатор является полярным, то подсоединение его контактов должно быть соответствующим катоду и аноду.
Подсоединяем щупы мультиметра к конденсатору. Так как, емкость не известна, измерение стоит начать с минимального значения на мультиметре. В случае, если емкость конденсатора не соответствует значению на приборе или произошел обрыв, на дисплее будет показываться единица. Путем переключения значений находим нужное. Так же для рассчета емкости конденсатора используются формула t = RC.
Данный метод используется для всех видов конденсаторов (например, керамического или электролитического).
Как правильно определить сопротивление резистора мультиметром
Для точного измерения сопротивления определенного резистора, не нужно обладать специальными знаниями в области электротехники. Для этого понадобится набор инструментов и четкое следование инструкции.
Для работы потребуется:
- Мультиметр;
- Паяльник;
- Резисторы.
В первую очередь, необходимо убедиться, что мультиметр работает исправно. Проверьте качество контактов измерительных щупов с проводниками, а так же постоянство показаний на дисплее прибора.
Далее, если резистор, проверка которого должна быть осуществлена, находится в составе какой – либо микросхемы, его нужны выпаять. Обусловлено это тем, что показания на измерительном приборе будут соответствовать сопротивлению всех элементов цепи.
После того, как резистор извлечен, а мультиметр прошел проверку на исправность, можно переходить к измерению сопротивления. Для этого, находим на шкале мультиметра обозначения для измерения сопротивления. Они представлены в виде греческой буквы омега. И предположительно определив сопротивление резистора, выставляем нужное значение на мультиметре.
Важно знать! При измерении сопротивления резистора, недопустимо касание щупов руками, так как к сопротивлению резистора, добавится сопротивление вашего тело, и значения на дисплее не будут соответствовать правильным. Щуп придерживать можно только одной рукой.
Например, если резистор с сопротивлением предположительно в 1 кОм (1000 Ом) до 10 кОм (10000 Ом), значение на мультиметре выбираем немного большее (20 кОм). Если значение подобрано несоответственно, то на дисплее мультиметра будет показана единица.
Специальный прибор для определения емкости конденсатора
Определить емкость конденсатора представляется возможным разными способами, в том числе и мультиметром. Но очень часто, заявленная емкость (например 6000мкф), в несколько раз превышает значения на измерительном приборе (не более 600 мкф), поэтому определить емкость таких конденсаторов не возможно используя обычный мультиметр. Для этих целей существуют специализированные приборы для определения емкости.
Прибор состоит:
- Корпус;
- Дисплей;
- Переключатель со шкалой;
- Две кнопки.
Корпус прибора выполнен из обычного пластика в различной цветовой гамме. Прибор оснащен жидкокристаллическим дисплеем высокой информативности. Ниже дисплея располагаются две кнопки (с лева и справа). Левая, служит для фиксации показаний на дисплее, правая включает и выключает подсветку дисплея.
Между кнопками, сразу под дисплеем находится коннектор, при помощи которого призводятся замеры емкости конденсаторов малого размера. Ниже располагается переключатель с нанесенной на корпус шкалой для измерения. Значения шкалы варьируются от 200 пкф (покофарад), до 20000 мкф (микрофарад).
Важной особенностью прибора является возможность установки нулевого значения показаний.
В самом низу располагаются гнезда для подключения измерительных щупов, изоляция которых выполнена из мягкого пластика.
Данный измерительный прибор служит для одной определенной цели, но несомненно обладает большими возможностями.
Как выглядит формула емкости конденсатора (видео)
Для построения различных электрических схем, а так же для их правильной работы используются определенные радиодетали. В свою очередь данные элементы цепи нужно подобрать и проверить на работоспособность, что можно сделать, используя полученные знания.
формулы для конденсаторов
Формула и примеры расчета емкостного сопротивления и применение на практике. Характеристика и свойства емкости конденсаторов. Что такое импеданс элемента.
Формулы емкости конденсаторов
Для любого конденсатора справедлива формула:
где C – емкость конденсатора; q – величина заряда одной из обкладок конденсатора; – разность потенциалов между его обкладками.
Емкость конденсатора, между пластинами которого находится диэлектрик (C) (диэлектрическая проницаемость которого равна в раз больше, чем емкость такого же воздушного конденсатора ():
Для расчета емкости плоского конденсатора применяют формулу:
где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.
Емкость плоского конденсатора, содержащего N слоев диэлектрика (толщина i-го слоя равна , диэлектрическая проницаемость i-го слоя , определяется как:
Электрическая емкость цилиндрического конденсатора вычисляют как:
где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.
Емкость сферического (шарового) конденсатора находят по формуле:
где – радиусы обкладок конденсатора.
Что такое конденсатор?
Конденсатор состоит из двух проводящих пластин, расположенных очень близко друг к другу и разделённых диэлектриком. Применение постоянного напряжения к пластинам вызовет протекание тока и появление на обеих крышках одинаковых по модулю, но противоположных по знаку зарядов: отрицательных – на одной и положительных – на другой. Отключение источника питания приведёт к тому, что заряд не исчезнет моментально, игнорируя явление его постепенной утечки. Затем, если крышки детали подключены к какой-то нагрузке, например, к вспышке, конденсатор разрядится сам и вернёт всю накопленную в нём энергию во вспышку.
Обозначение конденсаторов
Конденсаторы – это пассивные компоненты, которые хранят электрический заряд. Эта простая функция применяется в различных случаях:
- При переменном токе.
- При постоянном токе.
- В аналоговых сетях.
- В цифровых цепях.
Примеры использования приборов: системы синхронизации, формирование сигнала, связь, фильтрация и сглаживание сигнала, настройка телевизоров и радиоприёмников.
Удельная ёмкость конденсаторов
Конденсаторытакже характеризуются удельной ёмкостью – отношением ёмкости к объёму(или массе) диэлектрика. Максимальное значение удельной ёмкостидостигается при минимальной толщине диэлектрика, однако при этомуменьшается его напряжение пробоя.
Применение на практике
Свойства конденсатора используются при конструировании различных фильтров. Действие ёмкостного сопротивления в этом случае зависит от способа подключения детали:
- Если он присоединён параллельно нагрузке, то получится фильтр, задерживающий высокие частоты. С их ростом падает сопротивление конденсатора. Соответственно, нагрузка на высоких частотах шунтируется сильнее, чем на низких.
- Если деталь подключена последовательно с нагрузкой, то получится фильтр, задерживающий низкие частоты. Эта схема также не пропускает постоянное напряжение.
- Ещё одна область применения — отделение переменной составляющей от постоянной. Например, в оконечных каскадах усилителей звуковой частоты. Чем выше ёмкость, тем более низкую частоту способен воспроизвести подключённый громкоговоритель.
В фильтрах электропитания, наряду с ёмкостным сопротивлением, используется также свойство накопления и отдачи заряда. В момент повышения нагрузки заряженная ёмкость фильтра разряжается, отдавая дополнительную энергию. Она также осуществляет подавление пульсаций и прочих паразитных сигналов, пропуская их через себя и замыкая на общий провод. Таким образом, обеспечивается сглаживание и поддержание напряжения на нагрузке в заданных пределах, и устранение нежелательных междукаскадных связей, вызывающих нестабильную работу.
Измерение сопротивления конденсаторов.
Формулы для расчета емкости соединения конденсаторов
При параллельном соединении конденсаторов суммарная емкость батареи (C) равна сумме емкостей отдельных конденсаторов (), ее составляющих:
Электрическая емкость последовательного соединения конденсаторов может быть вычислена по формуле:
Если последовательно соединены N конденсаторов, с емкостями то емкость батареи вычислим как:
Формула заряда конденсатора
Для выполнения зарядки, конденсатор должен быть подключен к цепи постоянного тока. С этой целью может использоваться генератор. У каждого генератора имеется внутреннее сопротивление. При замыкании цепи происходит зарядка конденсатора. Между его обкладками появляется напряжение, равное электродвижущей силе генератора: Uc = E.
Обкладка, подключенная к положительному полюсу генератора, заряжается положительно (+q), а другая обкладка получает равнозначный заряд с отрицательной величиной (- q). Величина заряда q находится в прямой пропорциональной зависимости с емкостью конденсатора С и напряжением на обкладках Uc. Эта зависимость выражается формулой: q = C x Uc.
В процессе зарядки одна из обкладок конденсатора приобретает, а другая теряет определенное количество электронов. Они переносятся по внешней цепи под влиянием электродвижущей силы генератора. Такое перемещение является электрическим током, известным еще как зарядный емкостной ток (Iзар).
Течение зарядного тока в цепи происходит практически за тысячные доли секунды, до того момента, пока напряжение конденсатора не станет равным электродвижущей силе генератора. Напряжение увеличивается плавно, а потом постепенно замедляется. Далее значение напряжения конденсатора будет постоянным. Во время зарядки по цепи течет зарядный ток. В самом начале он достигает максимальной величины, так как напряжение конденсатора имеет нулевое значение. Согласно закона Ома Iзар = Е/Ri, поскольку к сопротивлению Ri приложена вся ЭДС генератора.
Формула емкости цилиндрического конденсатора
Теперь поговорим о том, как найти емкость конденсатора цилиндрической формы. К ним относятся конденсаторы, состоящие из двух металлических цилиндров, вставленных один в другой. Для разделения между ними расположен диэлектрик. Формула емкости конденсатора выглядит следующим образом:
Здесь видим несколько новых переменных:
- l – высота цилиндра;
- R1 и R2 – радиус первого и второго (внешнего) цилиндров;
- ln – это не переменная, а математический символ натурального логарифма. На некоторых калькуляторах он имеется.
Всегда нужно помнить, что все величины должны приводиться к единой системе, в приведенной ниже таблице указаны международные системы единиц (СИ).
Из нее видно, что все расстояния нужно приводить к метру.
Еще стоит обращать внимание на качество диэлектрика. Если толщина диэлектрика влияет только на емкость конденсатора, то его качество затрагивает сохранность энергии. Другими словами, конденсатор с качественным диэлектриком будет иметь меньший саморазряд.
Определить качество можно по числу, стоящему возле вещества, чем оно больше, тем лучше качество. Сравнение производится по вакууму, значение которого равно единице.
Паразитные параметры конденсаторов
Реальныеконденсаторы, помимо ёмкости, обладают также собственнымисопротивлением и индуктивностью. С высокой степенью точности,эквивалентную схему реального конденсатора можно представить следующимобразом:
С – собственная ёмкость конденсатора;r – сопротивление изоляции конденсатора;R – эквивалентное последовательное сопротивление;L – эквивалентная последовательная индуктивность.
Основные формулы ёмкости
Базовый расчёт конденсатора предполагает выявление зависимости емкости и заряда, удерживаемого на элементе, а также напряжением на пластинах.
C=QVC=QV
C – емкость, или объём в Фарадах
Q – заряд, удерживаемый на пластинах в кулонах
V – разность потенциалов между пластинами в вольтах
Это уравнение используется для расчета работы, необходимой для зарядки конденсатора и энергии, хранящейся в нем.
Формула энергии
W=∫Q0V dQW=∫0QV dQ
W=∫Q0qC dQW=∫0QqC dQ
W=12CV2
Важно! Необходимо знать, какое влияние конденсатор будет оказывать на любую цепь, в которой он работает. Он не только предотвращает прохождение постоянной составляющей тока сигнала, но и оказывает влияние на любой переменный сигнал.
Реактивное сопротивление
В цепи постоянного тока помимо батареи может присутствовать резистор, который оказывает сопротивление току в цепи. То же справедливо и для схемы переменного тока с элементом, накапливающим заряд. Конденсатор с небольшой площадью пластины позволяет хранить только небольшое количество заряда, и это будет препятствовать протеканию тока. Конденсатор имеет определенное реактивное сопротивление, и оно зависит от его величины, а также от частоты срабатывания. Чем выше частота, тем меньше реактивное сопротивление.
Фактическое реактивное сопротивление можно вычислить по формуле:
Xc = 1 / (2 pi f C)
где
Xc – ёмкостное реактивное сопротивление в Омах.
f – частота в Герцах.
C – ёмкость в Фарадах.
Текущий расчет
Реактивное сопротивление конденсатора, рассчитанное по приведенной выше формуле, измеряется в Омах. Затем ток, протекающий в цепи, может быть рассчитан обычным способом с использованием закона Ома:
V = I Xc
Главный показатель конденсатора
Формула тока утечки конденсатора
Ток утечки конденсатора вполне можно сравнить с воздействием подключенного к нему резистора с каким-либо сопротивлением R. Ток утечки тесно связан с типом конденсатора и качеством используемого диэлектрика. Кроме того, важным фактором становится конструкция корпуса и степень его загрязненности.
Некоторые конденсаторы имеют негерметичный корпус, что приводит к проникновению влаги из воздуха и возрастанию тока утечки. В первую очередь это касается устройств, где в качестве диэлектрика использована промасленная бумага. Значительные токи утечки возникают из-за снижения электрического сопротивления изоляции. В результате нарушается основная функция конденсатора – способность получать и сохранять заряд электрического тока.
Основная формула для расчета выглядит следующим образом: Iут = U/Rd, где Iут, – это ток утечки, U – напряжение, прилагаемое к конденсатору, а Rd – сопротивление изоляции.
Цветовая маркировка конденсаторовНа корпусе большинства конденсаторов написаны их номинальная емкость и рабочее напряжение. Однако встречается и цветовая маркировка. Некоторые конденсаторы маркируют надписью в две строки. На первой строке указаны их емкость (пФ или мкФ) и точность (К = 10%, М – 20%). На второй строке приведены допустимое постоянное напряжение и код материала диэлектрика.
Монолитные керамические конденсаторы маркируются кодом, состоящим из трех цифр. Третья цифра показывает, сколько нулей нужно подписать к первым двум, чтобы получить емкость в пикофарадах. Что означает код 103 на конденсаторе? Код 103 означает, что нужно приписать три нуля к числу 10, тогда получится емкость конденсатора – 10 000 пФ. Конденсатор маркирован 0,22/20 250. Это означает, что конденсатор имеет емкость 0,22 мкФ ± 20% и рассчитан на постоянное напряжение 250 В.
Электромеханические аналогии
В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.
Для пружинного маятника мы имеем соотношение, аналогичное (1):
(2)
Здесь, как вы уже поняли, — жёсткость пружины, — масса маятника, и — текущие значения координаты и скорости маятника, и — их наибольшие значения.
Сопоставляя друг с другом равенства (1) и (2), мы видим следующие соответствия:
(3)
(4)
(5)
(6)
Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.
В самом деле, период колебаний пружинного маятника, как мы знаем, равен:
B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:
(7)
Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона
. Мы вскоре приведём её более строгий вывод.
Тангенс угла потерь
Потери энергии вконденсаторе определяются потерями в диэлектрике и обкладках. Припротекании переменного тока через конденсатор векторы напряжения и токасдвинуты на угол , где – угол диэлектрических потерь. При отсутствии потерь . Тангенс угла потерь определяется отношением активной мощности Pа креактивной Pр при синусоидальном напряжении определённой частоты.Величина, обратная , называется добротностью конденсатора. Термины добротности и тангенсаугла потерь применяются также для катушек индуктивности итрансформаторов.
Температурный коэффициент ёмкости (ТКЕ) конденсаторов
ТКЕ – коэффициент измененияёмкости в зависимости от температуры. Таким образом значение ёмкости оттемпературы представляется линейной формулой:
где?T – увеличение температуры в °C или °К относительно нормальныхусловий, при которых специфицировано значение ёмкости. TKE применяетсядля характеристики конденсаторов со значительной линейной зависимостьюёмкости от температуры. Однако ТКЕ определяется не для всех типовконденсаторов. Для характеристики конденсаторов с выраженной нелинейнойзависимостью обычно указывают предельные величины отклонений отноминала в рабочем диапазоне температур.
Емкость конденсатора Formula
Емкость конденсатора — это способность конденсатора накапливать электрический заряд на единицу напряжения на своих пластинах конденсатора. Емкость определяется делением электрического заряда на напряжение по формуле C = Q / V. Его единица — Фарад.
Формула
Его формула выглядит так:
C = Q / V
Где C — емкость, Q — напряжение, а V — напряжение. Мы также можем найти заряд Q и напряжение V, переписав приведенную выше формулу как:
Q =
CVВ = Q / C
Фарад — единица измерения емкости.Один фарад — это величина емкости, когда один кулон заряда хранится с одним вольт на пластинах.
Большинство конденсаторов, которые используются в электронике, имеют значения емкости, указанные в микрофарадах (мкФ) и пикофарадах (пФ). Микрофарад — это одна миллионная фарада, а пикофарад — одна триллионная фарада.
Какие факторы влияют на емкость конденсатора?
Зависит от следующих факторов:
Площадь плит
Емкость прямо пропорциональна физическому размеру пластин, определяемому площадью пластины A.Большая площадь пластины дает большую емкость и меньшую емкость. На рисунке (а) показано, что площадь пластины конденсатора с параллельными пластинами равна площади одной из пластин. Если пластины перемещаются относительно друг друга, как показано на рис (b), площадь перекрытия определяет эффективную площадь пластины. Это изменение эффективной площади пластины является основным для определенного типа переменного конденсатора.
Пластины разделительные
`Емкость обратно пропорциональна расстоянию между пластинами.Разделение пластин обозначено буквой d, как показано на рис. (А). Чем больше разделение пластин, тем меньше емкость, как показано на рис. (B). Как обсуждалось ранее, напряжение пробоя прямо пропорционально расстоянию между пластинами. Чем дальше разделены пластины, тем больше напряжение пробоя .
Диэлектрическая проницаемость материала
Как известно, изоляционный материал между пластинами конденсатора называется диэлектриком. Диэлектрические материалы имеют тенденцию уменьшать напряжение между пластинами при заданном заряде и, таким образом, увеличивать емкость.Если напряжение фиксировано, из-за наличия диэлектрика может храниться больше заряда, чем может храниться без диэлектрика. Мера способности материала создавать электрическое поле называется диэлектрической постоянной или относительной диэлектрической проницаемостью и обозначается как? r .
Емкость прямо пропорциональна диэлектрической проницаемости. Диэлектрическая проницаемость вакуума определяется как 1, а диэлектрическая проницаемость воздуха очень близка к 1. Эти значения используются в качестве справочных, а для всех других материалов значения ∈r указаны по отношению к таковым для вакуума или воздуха.Например, материал с εr = 8 может иметь емкость в восемь раз большую, чем у воздуха, при прочих равных условиях.
Диэлектрическая проницаемость ∈r безразмерна, поскольку является относительной мерой. Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈ 0 , которое выражается следующей формулой:
∈ r = ∈ / ∈ 0
Ниже приведены некоторые общие диэлектрические материалы и типичные диэлектрические постоянные для каждого из них.Значения могут варьироваться, потому что они зависят от конкретного состава материала.
Материал Стандартные значения ∈r
- Воздух 1.0
- тефлон 2,0
- Бумага 2.5
- Масло 4.0
- Слюда 5,0
- Стекло 7,5
- Керамика 1200
Диэлектрическая проницаемость ∈r безразмерна, поскольку является относительной мерой.Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈0, которое выражается следующей формулой:
∈r = ∈ / ∈0
Значение ∈0 составляет 8,85 × 10-12 Ф / м.
Формула емкости по физическим параметрам
Вы видели, как емкость напрямую связана с площадью пластины, A, и диэлектрической проницаемостью, ∈r, и обратно пропорциональна расстоянию между пластинами, d. Точная формула для расчета емкости по этим трем величинам:
C = A ∈ r ∈ / d
где ∈ = ∈ r ∈ 0 = ∈r (8.85 × 10-12Ф / м)
Емкость параллельного вывода конденсатора
Рассмотрим конденсатор с параллельными пластинами. Размер пластины большой, а расстояние между пластинами очень маленькое, поэтому электрическое поле между пластинами однородно.
Электрическое поле «E» между конденсаторами с параллельными пластинами составляет:
Емкость цилиндрических конденсаторов физика
Рассмотрим цилиндрический конденсатор длиной L, образованный двумя коаксиальными цилиндрами радиусами «a» и «b».Предположим, что L >> b, такое, что на концах цилиндров нет окаймляющего поля.
Пусть «q» — это заряд конденсатора, а «V» — это разность потенциалов между пластинами. Внутренний цилиндр заряжен положительно, а внешний цилиндр — отрицательно. Мы хотим узнать выражение емкости для цилиндрического конденсатора. Для этого мы рассматриваем цилиндрическую гауссовскую поверхность радиуса «r», такую что a << b.
Если «E» — напряженность электрического поля в любой точке цилиндрической гауссовой поверхности, то по закону Гаусса:
Если «V» — разность потенциалов между пластинами, тогда
Это соотношение для емкости цилиндрического конденсатора.
Емкость сферического конденсатора
Емкость изолированного сферического конденсатора
Внешний источник
https://en.wikipedia.org/wiki/Capacitance
8.1 Конденсаторы и емкость — University Physics Volume 2
Задачи обучения
К концу этого раздела вы сможете:
- Объясните понятие конденсатора и его емкости
- Опишите, как оценить емкость системы проводов
Конденсатор — это устройство, используемое для хранения электрического заряда и электрической энергии.Конденсаторы обычно состоят из двух электрических проводников, разделенных расстоянием. (Обратите внимание, что такие электрические проводники иногда называют «электродами», но, точнее, они «обкладки конденсатора».) Пространство между конденсаторами может быть просто вакуумом, и в этом случае конденсатор будет известен как «Вакуумный конденсатор». Однако пространство обычно заполнено изолирующим материалом, известным как диэлектрик. (Вы узнаете больше о диэлектриках в разделах, посвященных диэлектрикам, далее в этой главе.) Объем памяти в конденсаторе определяется свойством, называемым емкостью , емкостью , о котором вы узнаете больше чуть позже в этом разделе.
Конденсаторыимеют различные применения: от фильтрации статического электричества, от радиоприема до накопления энергии в дефибрилляторах сердца. Обычно в промышленных конденсаторах две токопроводящие части расположены близко друг к другу, но не соприкасаются, как на рис. 8.2. В большинстве случаев между двумя пластинами используется диэлектрик. Когда клеммы батареи подключены к первоначально незаряженному конденсатору, потенциал батареи перемещает небольшой заряд величиной Q с положительной пластины на отрицательную.Конденсатор в целом остается нейтральным, но с зарядами + Q + Q и −Q − Q, находящимися на противоположных пластинах.
Рис. 8.2 Оба конденсатора, показанные здесь, были изначально разряжены перед подключением к батарее. Теперь у них на пластинах есть заряды + Q + Q и −Q − Q (соответственно). (a) Конденсатор с параллельными пластинами состоит из двух пластин противоположного заряда с площадью A , разделенных расстоянием d . (b) Катаный конденсатор имеет диэлектрический материал между двумя проводящими листами (пластинами).Система, состоящая из двух идентичных параллельно проводящих пластин, разделенных расстоянием, называется конденсатором с параллельными пластинами (рис. 8.3). Величина электрического поля в пространстве между параллельными пластинами равна E = σ / ε0E = σ / ε0, где σσ обозначает поверхностную плотность заряда на одной пластине (напомним, что σσ — заряд Q на площадь поверхности A ). Таким образом, величина поля прямо пропорциональна Q .
Рис. 8.3 Разделение зарядов в конденсаторе показывает, что заряды остаются на поверхности обкладок конденсатора.Линии электрического поля в конденсаторе с параллельными пластинами начинаются с положительных зарядов и заканчиваются отрицательными зарядами. Величина электрического поля в пространстве между пластинами прямо пропорциональна количеству заряда на конденсаторе.
Конденсаторы с разными физическими характеристиками (такими как форма и размер пластин) накапливают разное количество заряда для одного и того же приложенного напряжения В на своих пластинах. Емкость C конденсатора определяется как отношение максимального заряда Q , который может храниться в конденсаторе, к приложенному напряжению В на его пластинах.Другими словами, емкость — это наибольшее количество заряда на вольт, которое может храниться на устройстве:
Единица измерения емкости в системе СИ — фарад (Ф), названная в честь Майкла Фарадея (1791–1867). Поскольку емкость — это заряд на единицу напряжения, один фарад равен одному кулону на один вольт, или
.По определению, конденсатор емкостью 1,0 мкФ может сохранять заряд 1,0 К (очень большой заряд), когда разность потенциалов между его пластинами составляет всего 1,0 В. Следовательно, один фарад является очень большой емкостью.Типичные значения емкости варьируются от пикофарад (1пФ = 10−12Ф) (1пФ = 10−12Ф) до миллифарад (1мФ = 10−3Ф) (1мФ = 10−3Ф), что также включает микрофарады (1мкФ = 10−6F1мкФ = 10− 6F). Конденсаторы могут быть разных форм и размеров (рис. 8.4).
Рисунок 8.4 Это некоторые типичные конденсаторы, используемые в электронных устройствах. Размер конденсатора не обязательно зависит от его емкости. (кредит: Windell Oskay)
Расчет емкости
Мы можем рассчитать емкость пары проводов с помощью следующего стандартного подхода.
Стратегия решения проблем
Расчет емкости
- Предположим, что конденсатор заряжен Q .
- Определить электрическое поле E → E → между проводниками. Если в расположении проводников присутствует симметрия, вы можете использовать закон Гаусса для этого расчета.
- Найдите разность потенциалов между проводниками из
VB − VA = −ABE → · dl →, VB − VA = −ABE → · dl →,
8,2
где путь интегрирования ведет от одного проводника к другому.Тогда величина разности потенциалов равна V = | VB-VA | V = | VB-VA |. - Зная В , определите емкость непосредственно из уравнения 8.1.
Чтобы показать, как работает эта процедура, мы теперь вычисляем емкости параллельных пластин, сферических и цилиндрических конденсаторов. Во всех случаях мы предполагаем вакуумные конденсаторы (пустые конденсаторы) без диэлектрического вещества в пространстве между проводниками.
Конденсатор с параллельными пластинами
Конденсатор с параллельными пластинами (рисунок 8.5) имеет две идентичные проводящие пластины, каждая с площадью поверхности A , разделенными расстоянием d . Когда на конденсатор подается напряжение В, , он сохраняет заряд Q , как показано. Мы можем увидеть, как его емкость может зависеть от A и d , рассматривая характеристики кулоновской силы. Мы знаем, что сила между зарядами увеличивается с увеличением заряда и уменьшается с расстоянием между ними. Следует ожидать, что чем больше пластины, тем больше заряда они могут хранить.Таким образом, C должно быть больше для большего значения A . Точно так же, чем ближе пластины расположены друг к другу, тем сильнее на них притяжение противоположных зарядов. Следовательно, C должно быть больше для меньшего d .
Рис. 8.5 В конденсаторе с параллельными пластинами с пластинами, разнесенными на расстояние d , каждая пластина имеет одинаковую площадь поверхности A .
Определим плотность поверхностного заряда σσ на пластинах как
Из предыдущих глав мы знаем, что, когда d мало, электрическое поле между пластинами довольно однородно (без учета краевых эффектов) и что его величина определяется как
.где постоянная ε0ε0 — диэлектрическая проницаемость свободного пространства, ε0 = 8.85 × 10–12Ф / м. Ε0 = 8,85 × 10–12Ф / м. Единица СИ в Ф / м эквивалентна C2 / N · m2.C2 / N · m2. Поскольку электрическое поле E → E → между пластинами однородно, разность потенциалов между пластинами составляет
. V = Ed = σdε0 = Qdε0A.V = Ed = σdε0 = Qdε0A.Следовательно, уравнение 8.1 дает емкость конденсатора с параллельными пластинами как
C = QV = QQd / ε0A = ε0Ad.C = QV = QQd / ε0A = ε0Ad.8,3
Обратите внимание на это уравнение, что емкость является функцией только геометрии и того, какой материал заполняет пространство между пластинами (в данном случае вакуум) этого конденсатора.Фактически, это верно не только для конденсатора с параллельными пластинами, но и для всех конденсаторов: емкость не зависит от Q или V . Если заряд изменяется, соответственно изменяется и потенциал, так что Q / V остается постоянным.
Пример 8.1
Емкость и заряд в конденсаторе с параллельными пластинами
(a) Какова емкость пустого конденсатора с параллельными пластинами с металлическими пластинами, каждая из которых имеет площадь 1,00 м 21.00м2, разделенных расстоянием 1,00 мм? (b) Сколько заряда хранится в этом конденсаторе, если к нему приложено напряжение 3,00 × 103 В3,00 × 103 В?Стратегия
Определение емкости C является прямым применением уравнения 8.3. Найдя C , мы сможем найти накопленный заряд, используя уравнение 8.1.Решение
- Ввод заданных значений в уравнение 8.3 дает C = ε0Ad = (8,85 × 10−12Fm) 1,00м21,00 × 10−3м = 8,85 × 10−9F = 8,85nF.C = ε0Ad = (8,85 × 10−12Fm) 1,00м21,00 × 10−3m = 8 .85 × 10−9F = 8,85 нФ. Это небольшое значение емкости указывает на то, насколько сложно изготовить устройство с большой емкостью.
- Обращение уравнения 8.1 и ввод известных значений в это уравнение дает Q = CV = (8,85 × 10–9F) (3,00 × 103 В) = 26,6 мкКл. Q = CV = (8,85 × 10–9F) (3,00 × 103 В) = 26,6 мкКл.
Значение
Этот заряд лишь немного больше, чем в типичных приложениях для статического электричества. Поскольку воздух разрушается (становится проводящим) при напряженности электрического поля около 3.0 МВ / м, на этом конденсаторе больше нельзя накапливать заряд при увеличении напряжения.Пример 8.2
А, 1-Ф, конденсатор с параллельными пластинами
Предположим, вы хотите сконструировать конденсатор с параллельными пластинами емкостью 1,0 F. Какую площадь вы должны использовать для каждой пластины, если пластины разделены на 1,0 мм?Решение
Преобразуя уравнение 8.3, получаем A = Cdε0 = (1.0F) (1.0 × 10−3m) 8.85 × 10−12F / m = 1.1 × 108m2 A = Cdε0 = (1.0F) (1.0 × 10−3m) 8,85 × 10−12F / m = 1,1 × 108 м2.Каждая квадратная пластина должна быть 10 км в поперечнике.Раньше было обычным розыгрышем — попросить студента пойти в склад лаборатории и попросить конденсатор с параллельными пластинами 1F, пока обслуживающий персонал не устанет от шуток.
Проверьте свое понимание 8.1
Емкость конденсатора с параллельными пластинами составляет 2,0 пФ. Если площадь каждой пластины составляет 2,4 см 22,4 см2, каково расстояние между пластинами?
Проверьте свое понимание 8.2
Убедитесь, что у σ / Vσ / V и ε0 / dε0 / d одинаковые физические единицы.
Сферический конденсатор
Сферический конденсатор — это еще один набор проводников, емкость которых можно легко определить (Рисунок 8.dr) = Q4πε0∫R1R2drr2 = Q4πε0 (1R1−1R2).
В этом уравнении разность потенциалов между пластинами равна V = — (V2 − V1) = V1 − V2V = — (V2 − V1) = V1 − V2. Мы подставляем этот результат в уравнение 8.1, чтобы найти емкость сферического конденсатора:
C = QV = 4πε0R1R2R2 − R1.C = QV = 4πε0R1R2R2 − R1.8,4
Рисунок 8.6 Сферический конденсатор состоит из двух концентрических проводящих сфер. Обратите внимание, что заряды на проводнике находятся на его поверхности.
Пример 8.3
Емкость изолированной сферы
Вычислите емкость одиночной изолированной проводящей сферы радиуса R1R1 и сравните ее с уравнением 8.dr) = Q4πε0∫R1 + ∞drr2 = 14πε0QR1.Таким образом, емкость изолированной сферы равна
. C = QV = Q4πε0R1Q = 4πε0R1.C = QV = Q4πε0R1Q = 4πε0R1.Значение
Тот же результат можно получить, взяв предел уравнения 8.4 при R2 → ∞R2 → ∞. Таким образом, одиночная изолированная сфера эквивалентна сферическому конденсатору, внешняя оболочка которого имеет бесконечно большой радиус.Проверьте свое понимание 8.3
Радиус внешней сферы сферического конденсатора в пять раз превышает радиус его внутренней оболочки.Каковы размеры этого конденсатора, если его емкость 5,00 пФ?
Цилиндрический конденсатор
Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров (рисунок 8.7). Внутренний цилиндр радиуса R1R1 может быть либо оболочкой, либо полностью твердым. Внешний цилиндр представляет собой оболочку внутреннего радиуса R2R2. Мы предполагаем, что длина каждого цилиндра составляет l и что избыточные заряды + Q + Q и −Q − Q находятся на внутреннем и внешнем цилиндрах соответственно.dr) = Q2πε0l∫R1R2drr = Q2πε0llnr | R1R2 = Q2πε0llnR2R1.
Таким образом, емкость цилиндрического конденсатора составляет
C = QV = 2πε0lln (R2 / R1). C = QV = 2πε0lln (R2 / R1).8,6
Как и в других случаях, эта емкость зависит только от геометрии расположения проводников. Важным применением уравнения 8.6 является определение емкости на единицу длины коаксиального кабеля , который обычно используется для передачи изменяющихся во времени электрических сигналов. Коаксиальный кабель состоит из двух концентрических цилиндрических проводников, разделенных изоляционным материалом.(Здесь мы предполагаем наличие вакуума между проводниками, но физика качественно почти такая же, когда пространство между проводниками заполнено диэлектриком.) Эта конфигурация защищает электрический сигнал, распространяющийся по внутреннему проводнику, от паразитных электрических полей, внешних по отношению к проводнику. кабель. Ток течет в противоположных направлениях во внутреннем и внешнем проводниках, при этом внешний проводник обычно заземлен. Теперь из уравнения 8.6 емкость коаксиального кабеля на единицу длины равна
. Cl = 2πε0ln (R2 / R1).Cl = 2πε0ln (R2 / R1).В практических приложениях важно выбирать конкретные значения C / l . Это может быть достигнуто за счет соответствующего выбора радиусов проводников и изоляционного материала между ними.
Проверьте свое понимание 8.4
Когда цилиндрический конденсатор получает заряд 0,500 нКл, между цилиндрами измеряется разность потенциалов 20,0 В. а) Какова емкость этой системы? (b) Если цилиндры 1.Длина 0 м, каково соотношение их радиусов?
Несколько типов конденсаторов, которые можно использовать на практике, показаны на рис. 8.4. Обычные конденсаторы часто состоят из двух небольших кусочков металлической фольги, разделенных двумя небольшими кусочками изоляции (см. Рисунок 8.2 (b)). Металлическая фольга и изоляция покрыты защитным покрытием, а два металлических вывода используются для подключения фольги к внешней цепи. Некоторые распространенные изоляционные материалы — это слюда, керамика, бумага и антипригарное покрытие Teflon ™.
Другой популярный тип конденсатора — электролитический конденсатор.Он состоит из окисленного металла в проводящей пасте. Основным преимуществом электролитического конденсатора является его высокая емкость по сравнению с другими распространенными типами конденсаторов. Например, емкость одного типа алюминиевого электролитического конденсатора может достигать 1,0 F. Однако вы должны быть осторожны при использовании электролитического конденсатора в цепи, потому что он работает правильно только тогда, когда металлическая фольга находится под более высоким потенциалом, чем проводящая паста. Когда возникает обратная поляризация, электролитическое действие разрушает оксидную пленку.Этот тип конденсатора не может быть подключен к источнику переменного тока, потому что в половине случаев переменное напряжение будет иметь неправильную полярность, поскольку переменный ток меняет свою полярность (см. Схемы переменного тока в цепях переменного тока).
Конденсатор переменного тока (рисунок 8.8) имеет два набора параллельных пластин. Один набор пластин закреплен (обозначен как «статор»), а другой набор пластин прикреплен к валу, который может вращаться (обозначается как «ротор»). Поворачивая вал, можно изменять площадь поперечного сечения в перекрытии пластин; следовательно, емкость этой системы может быть настроена на желаемое значение.Настройка конденсатора находит применение в любом типе радиопередачи и при приеме радиосигналов от электронных устройств. Каждый раз, когда вы настраиваете автомобильное радио на любимую станцию, думайте о емкости.
Рис. 8.8 В конденсаторе переменного тока емкость можно регулировать, изменяя эффективную площадь пластин. (кредит: модификация работы Робби Спроул)
Символы, показанные на рисунке 8.9, представляют собой схемные изображения различных типов конденсаторов. Обычно мы используем символ, показанный на рисунке 8.9 (а). Символ на Рисунке 8.9 (c) представляет конденсатор переменной емкости. Обратите внимание на сходство этих символов с симметрией конденсатора с параллельными пластинами. Электролитический конденсатор представлен символом на рис. 8.9 (b), где изогнутая пластина обозначает отрицательный вывод.
Рисунок 8.9 Здесь показаны три различных схемных представления конденсаторов. Символ в (а) является наиболее часто используемым. Символ в (b) представляет собой электролитический конденсатор. Символ в (c) представляет конденсатор переменной емкости.
Интересный прикладной пример модели конденсатора взят из клеточной биологии и имеет дело с электрическим потенциалом в плазматической мембране живой клетки (рис. 8.10). Клеточные мембраны отделяют клетки от их окружения, но позволяют некоторым отобранным ионам проходить внутрь или из клетки. Разность потенциалов на мембране составляет около 70 мВ. Клеточная мембрана может иметь толщину от 7 до 10 нм. Рассматривая клеточную мембрану как наноразмерный конденсатор, оценка наименьшей напряженности электрического поля на его « пластинах » дает значение E = Vd = 70 × 10−3V10 × 10−9m = 7 × 106V / m> 3MV / mE. = Vd = 70 × 10−3V10 × 10−9m = 7 × 106V / m> 3MV / m.
Этой величины электрического поля достаточно, чтобы вызвать электрическую искру в воздухе.
Рис. 8.10. Полупроницаемая мембрана биологической клетки имеет разные концентрации ионов на внутренней поверхности, чем на внешней. Диффузия перемещает ионы K + K + (калий) и Cl – Cl– (хлорид) в показанных направлениях, пока кулоновская сила не остановит дальнейший перенос. Таким образом, внешняя поверхность мембраны приобретает положительный заряд, а ее внутренняя поверхность приобретает отрицательный заряд, создавая разность потенциалов на мембране.Мембрана обычно непроницаема для Na + (ионов натрия).Конденсаторы и диэлектрики | Физика II
Цели обучения
К концу этого раздела вы сможете:
- Опишите действие конденсатора и определите емкость.
- Объясните, почему конденсаторы с параллельными пластинами и их емкости.
- Обсудите процесс увеличения емкости диэлектрика.
- Определите емкость при заданном заряде и напряжении.
Конденсатор — это устройство, используемое для хранения электрического заряда. Конденсаторы имеют разные применения: от фильтрации статического электричества при радиоприеме до накопления энергии в дефибрилляторах сердца. Обычно в промышленных конденсаторах две токопроводящие части расположены близко друг к другу, но не соприкасаются, как показано на рисунке 1. (В большинстве случаев между двумя пластинами используется изолятор для обеспечения разделения — см. Обсуждение диэлектриков ниже). Клеммы батареи подключены к первоначально незаряженному конденсатору, равные количества положительного и отрицательного заряда, + Q и — Q , разделены на его две пластины.Конденсатор в целом остается нейтральным, но в этом случае мы называем его хранящим заряд Q .
Рис. 1. Оба конденсатора, показанные здесь, были изначально разряжены перед подключением к батарее. Теперь у них разделены заряды + Q и — Q на своих двух половинах. (а) Конденсатор с параллельными пластинами. (b) Скрученный конденсатор с изоляционным материалом между двумя проводящими листами.
Конденсатор
Конденсатор — это устройство, используемое для хранения электрического заряда.
Количество заряда Q , которое может хранить конденсатор , зависит от двух основных факторов — приложенного напряжения и физических характеристик конденсатора, таких как его размер.
Количество заряда
Q конденсатор может хранитьКоличество заряда Q , которое может хранить конденсатор , зависит от двух основных факторов — приложенного напряжения и физических характеристик конденсатора, таких как его размер.
Рис. 2. Силовые линии электрического поля в этом конденсаторе с параллельными пластинами, как всегда, начинаются с положительных зарядов и заканчиваются отрицательными.Поскольку напряженность электрического поля пропорциональна плотности силовых линий, она также пропорциональна количеству заряда на конденсаторе.
Система, состоящая из двух идентичных параллельных проводящих пластин, разделенных расстоянием, как на рисунке 2, называется конденсатором с параллельными пластинами . Легко увидеть взаимосвязь между напряжением и накопленным зарядом для конденсатора с параллельными пластинами, как показано на рисунке 2. Каждая линия электрического поля начинается с отдельного положительного заряда и заканчивается отрицательным, так что поля будет больше. линии, если есть больше заряда.(Рисование одной силовой линии для каждого заряда — это только удобство. Мы можем нарисовать много силовых линий для каждого заряда, но их общее количество пропорционально количеству зарядов.) Таким образом, напряженность электрического поля прямо пропорциональна Ом. .
Поле пропорционально начислению:
E ∝ Q ,
, где символ ∝ означает «пропорционально». Из обсуждения в разделе «Электрический потенциал в однородном электрическом поле» мы знаем, что напряжение на параллельных пластинах равно
.V = Ed .
Таким образом, V ∝ E . Отсюда следует, что V ∝ Q , и, наоборот,
Q ∝ V .
В целом это верно: чем больше напряжение, приложенное к любому конденсатору, тем больше в нем хранится заряд.
Различные конденсаторы будут накапливать разное количество заряда для одного и того же приложенного напряжения, в зависимости от их физических характеристик. Мы определяем их емкость C так, чтобы заряд Q , хранящийся в конденсаторе, был пропорционален C .Заряд, накопленный в конденсаторе, равен
.Q = CV .
Это уравнение выражает два основных фактора, влияющих на количество накопленного заряда. Этими факторами являются физические характеристики конденсатора C и напряжение В . Изменив уравнение, мы видим, что емкость , C, , , — это величина заряда, накопленного на вольт, или
.[латекс] C = \ frac {Q} {V} \\ [/ latex].
Емкость
Емкость C — величина накопленного заряда на вольт, или
[латекс] C = \ frac {Q} {V} \\ [/ latex]
Единица измерения емкости — фарад (Ф), названная в честь Майкла Фарадея (1791–1867), английского ученого, внесшего вклад в области электромагнетизма и электрохимии. Поскольку емкость — это заряд на единицу напряжения, мы видим, что фарад — это кулон на вольт, или
.[латекс] 1 \ text {F} = \ frac {1 \ text {C}} {1 \ text {V}} \\ [/ latex].
Конденсатор емкостью 1 фарад может хранить 1 кулон (очень большое количество заряда) при приложении всего 1 вольт. Таким образом, одна фарада — это очень большая емкость. Типичные конденсаторы варьируются от долей пикофарада (1 пФ = 10 −12 Ф) до миллифарадов (1 мФ = 10 −3 Ф).
На рисунке 3 показаны некоторые распространенные конденсаторы. Конденсаторы в основном изготавливаются из керамики, стекла или пластика, в зависимости от назначения и размера. Как обсуждается ниже, в их конструкции обычно используются изоляционные материалы, называемые диэлектриками.
Рисунок 3. Некоторые типичные конденсаторы. Размер и значение емкости не обязательно связаны. (Источник: Windell Oskay)
Конденсатор с параллельными пластинами
Рис. 4. Конденсатор с параллельными пластинами, разделенные пластинами на расстояние d. Каждая пластина имеет площадь A.
Конденсатор с параллельными пластинами, показанный на рисунке 4, имеет две идентичные проводящие пластины, каждая из которых имеет площадь поверхности A , разделенных расстоянием d (без материала между пластинами).Когда на конденсатор подается напряжение В, , он сохраняет заряд Q , как показано. Мы можем увидеть, как его емкость зависит от A и d , рассмотрев характеристики кулоновской силы. Мы знаем, что одинаковые заряды отталкиваются, в отличие от зарядов притягиваются, и сила между зарядами уменьшается с расстоянием. Поэтому кажется вполне разумным, что чем больше пластины, тем больше заряда они могут хранить, потому что заряды могут расходиться больше. Таким образом, C должен быть больше для большего A .Точно так же, чем ближе пластины расположены друг к другу, тем сильнее на них притяжение противоположных зарядов. Таким образом, C должен быть больше для меньшего d .
Можно показать, что для конденсатора с параллельными пластинами есть только два фактора ( A, и d ), которые влияют на его емкость C . Емкость конденсатора с параллельными пластинами в форме уравнения равна
.[латекс] C = \ epsilon_ {o} \ frac {A} {d} \\ [/ latex].
Емкость параллельного пластинчатого конденсатора
[латекс] C = \ epsilon_ {o} \ frac {A} {d} \\ [/ latex]
A — это площадь одной пластины в квадратных метрах, а d — это расстояние между пластинами в метрах.Константа ε 0 — диэлектрическая проницаемость свободного пространства; его числовое значение в единицах СИ составляет ε 0 = 8,85 × 10 −12 Ф / м. Единицы измерения Ф / м эквивалентны C 2 / Н · м 2 . Небольшое числовое значение ε 0 связано с большим размером фарада. Конденсатор с параллельными пластинами должен иметь большую площадь, чтобы его емкость приближалась к фарадам. (Обратите внимание, что приведенное выше уравнение действительно, когда параллельные пластины разделены воздухом или свободным пространством.Когда между пластинами помещается другой материал, уравнение изменяется, как обсуждается ниже.)
Пример 1. Емкость и заряд в параллельном пластинчатом конденсаторе
- Какова емкость конденсатора с параллельными пластинами, каждая из которых имеет площадь 1,00 м 2 , разделенных расстоянием 1,00 мм?
- Какой заряд хранится в этом конденсаторе, если к нему приложено напряжение 3,00 × 10 3 В?
Стратегия
Определение емкости C представляет собой прямое приложение уравнения [латекс] C = \ epsilon_ {o} \ frac {A} {d} \\ [/ latex].{-9} \ text {F} = 8.85 \ text {nF} \ end {array} \\ [/ latex]
Обсуждение части 1
Это небольшое значение емкости указывает на то, насколько сложно сделать устройство с большой емкостью. Помогают специальные методы, такие как использование тонких пленок очень большой площади, расположенных близко друг к другу.
Решение для Части 2
Заряд любого конденсатора определяется уравнением Q = CV . Ввод известных значений в это уравнение дает
[латекс] \ begin {array} {lll} Q & = & CV = \ left (8.{3} \ text {V} \ right) \\\ text {} & = & 26.6 \ mu \ text {C} \ end {array} \\ [/ latex]
Обсуждение части 2
Этот заряд лишь немного больше, чем у обычного статического электричества. Поскольку воздух разрывается при примерно 3,00 × 10 6 В / м, на этом конденсаторе не может быть накоплено больше заряда за счет увеличения напряжения.
Другой интересный биологический пример, связанный с электрическим потенциалом, обнаружен в плазматической мембране клетки. Мембрана отделяет клетку от окружающей среды, а также позволяет ионам выборочно входить и выходить из клетки.Существует разность потенциалов на мембране около –70 мВ. Это связано с преобладанием отрицательно заряженных ионов в клетке и преобладанием положительно заряженных ионов натрия (Na + ) снаружи. {6} \ text {V / m} \\ [/ latex]
Этого электрического поля достаточно, чтобы вызвать пробой в воздухе.
Диэлектрик
Предыдущий пример подчеркивает сложность сохранения большого количества заряда в конденсаторах. Если d сделать меньше, чтобы получить большую емкость, то максимальное напряжение должно быть уменьшено пропорционально, чтобы избежать пробоя (поскольку [латекс] E = \ frac {V} {d} \\ [/ latex]). Важным решением этой проблемы является размещение изоляционного материала, называемого диэлектриком , между пластинами конденсатора и обеспечение минимально возможного размера d .Мало того, что меньший d увеличивает емкость, многие изоляторы могут выдерживать более сильные электрические поля, чем воздух, перед тем, как сломаться.
Есть еще одно преимущество использования диэлектрика в конденсаторе. В зависимости от используемого материала емкость больше, чем заданная уравнением [латекс] C = \ kappa \ epsilon_ {0} \ frac {A} {d} \\ [/ latex], на коэффициент κ , называемый диэлектрическая постоянная . Конденсатор с параллельными пластинами с диэлектриком между пластинами имеет емкость, определяемую выражением [латекс] C = \ kappa \ epsilon_ {0} \ frac {A} {d} \\ [/ latex] (конденсатор с параллельными пластинами с диэлектриком).
Значения диэлектрической проницаемости κ для различных материалов приведены в таблице 1. Обратите внимание, что κ для вакуума равно 1, и поэтому приведенное выше уравнение справедливо и в этом случае. Если использовать диэлектрик, например, поместив тефлон между пластинами конденсатора в примере 1, то емкость будет больше в κ раз, что для тефлона составляет 2,1.
Эксперимент на вынос: создание конденсатора
Насколько большой конденсатор можно сделать из обертки от жевательной резинки? Пластины будут из алюминиевой фольги, а разделитель (диэлектрик) между ними — из бумаги.
Таблица 1. Диэлектрическая проницаемость и диэлектрическая прочность для различных материалов при 20ºC | ||
---|---|---|
Материал | Диэлектрическая проницаемость κ | Диэлектрическая прочность (В / м) |
Вакуум | 1,00000 | – |
Воздух | 1.00059 | 3 × 10 6 |
Бакелит | 4,9 | 24 × 10 6 |
Плавленый кварц | 3.78 | 8 × 10 6 |
Неопреновый каучук | 6,7 | 12 × 10 6 |
Нейлон | 3,4 | 14 × 10 6 |
Бумага | 3,7 | 16 × 10 6 |
Полистирол | 2,56 | 24 × 10 6 |
Стекло Pyrex | 5,6 | 14 × 10 6 |
Кремниевое масло | 2.5 | 15 × 10 6 |
Титанат стронция | 233 | 8 × 10 6 |
Тефлон | 2,1 | 60 × 10 6 |
Вода | 80 | – |
Обратите внимание, что диэлектрическая проницаемость воздуха очень близка к 1, так что конденсаторы с воздушным наполнением действуют так же, как конденсаторы с вакуумом между пластинами , за исключением , что воздух может стать проводящим, если напряженность электрического поля становится равной. слишком большой.(Напомним, что [латекс] E = \ frac {V} {d} \\ [/ latex] для конденсатора с параллельными пластинами.) В таблице 1 также показаны максимальные напряженности электрического поля в В / м, которые называются диэлектрической прочностью , для нескольких материалов. Это поля, над которыми материал начинает разрушаться и проводить. Диэлектрическая прочность накладывает ограничение на напряжение, которое может быть приложено для данного расстояния между пластинами. 6 \ text {V / m} \ right) \ left ( 1.{-3} \ text {m} \ right) \\\ text {} & = & 3000 \ text {V} \ end {array} \\ [/ latex]
Однако предел для расстояния 1,00 мм, заполненного тефлоном, составляет 60 000 В, поскольку диэлектрическая прочность тефлона составляет 60 × 10 6 В / м. Таким образом, тот же конденсатор, заполненный тефлоном, имеет большую емкость и может подвергаться гораздо большему напряжению. Используя емкость, которую мы рассчитали в приведенном выше примере для конденсатора с параллельными пластинами, заполненного воздухом, мы обнаружили, что конденсатор с тефлоновым заполнением может хранить максимальный заряд
[латекс] \ begin {array} {lll} Q & = & CV \\\ text {} & = & \ kappa {C} _ {\ text {air}} V \\\ text {} & = & (2.4 \ text {V}) \\\ text {} & = & 1.1 \ text {mC} \ end {array} \\ [/ latex]
Это в 42 раза больше заряда того же конденсатора, заполненного воздухом.
Диэлектрическая прочность
Максимальная напряженность электрического поля, при превышении которой изоляционный материал начинает разрушаться и становится проводником, называется его диэлектрической прочностью.
Микроскопически, как диэлектрик увеличивает емкость? За это отвечает поляризация изолятора. Чем легче он поляризуется, тем больше его диэлектрическая проницаемость κ .Вода, например, представляет собой полярную молекулу , потому что один конец молекулы имеет небольшой положительный заряд, а другой конец имеет небольшой отрицательный заряд. Полярность воды обуславливает ее относительно большую диэлектрическую проницаемость, равную 80. Эффект поляризации лучше всего объясняется характеристиками кулоновской силы. На рис. 5 схематично показано разделение зарядов в молекулах диэлектрического материала, помещенных между заряженными пластинами конденсатора. Кулоновская сила между ближайшими концами молекул и зарядом на пластинах притягивает и очень сильна, поскольку они расположены очень близко друг к другу.Это притягивает к пластинам больше заряда, чем если бы пространство было пустым, а противоположные заряды находились на расстоянии d от них.
Рис. 5. (a) Молекулы изоляционного материала между пластинами конденсатора поляризованы заряженными пластинами. Это создает слой противоположного заряда на поверхности диэлектрика, который притягивает больше заряда на пластину, увеличивая ее емкость. (б) Диэлектрик снижает напряженность электрического поля внутри конденсатора, что приводит к уменьшению напряжения между пластинами при одинаковом заряде.Конденсатор сохраняет тот же заряд при меньшем напряжении, что означает, что он имеет большую емкость из-за диэлектрика.
Другой способ понять, как диэлектрик увеличивает емкость, — это рассмотреть его влияние на электрическое поле внутри конденсатора. На рисунке 5 (b) показаны силовые линии электрического поля с установленным диэлектриком. Поскольку силовые линии заканчиваются зарядами в диэлектрике, их меньше, идущих от одной стороны конденсатора к другой. Таким образом, напряженность электрического поля меньше, чем если бы между пластинами был вакуум, даже если бы на пластинах был одинаковый заряд.Напряжение между пластинами составляет В, = Ед, , поэтому оно тоже снижается за счет диэлектрика. Таким образом, есть меньшее напряжение В для того же заряда Q ; поскольку [латекс] C = \ frac {Q} {V} \\ [/ latex], емкость C больше.
Диэлектрическая проницаемость обычно определяется как [латекс] \ kappa = \ frac {E_0} {E} \\ [/ latex], или отношение электрического поля в вакууме к электрическому полю в диэлектрическом материале, и в конечном итоге связанные с поляризуемостью материала.
Великие и малые вещи: субмикроскопическое происхождение поляризации
Поляризация — это разделение зарядов в атоме или молекуле. Как уже отмечалось, планетарная модель атома описывает его как имеющее положительное ядро, вращающееся вокруг отрицательных электронов, аналогично планетам, вращающимся вокруг Солнца. Хотя эта модель не совсем точна, она очень полезна для объяснения широкого круга явлений и будет уточнена в других местах, например, в атомной физике. Субмикроскопическое происхождение поляризации можно смоделировать, как показано на рисунке 6.
Рис. 6. Художественное представление о поляризованном атоме. Орбиты электронов вокруг ядра слегка смещены внешними зарядами (показаны в преувеличении). Получающееся разделение зарядов внутри атома означает, что он поляризован. Обратите внимание, что непохожий заряд теперь ближе к внешним зарядам, вызывая поляризацию.
В атомной физике мы обнаружим, что орбиты электронов более правильно рассматривать как электронные облака с плотностью облака, связанной с вероятностью обнаружения электрона в этом месте (в отличие от определенных местоположений и путей движения планет на их орбитах). вокруг Солнца).Это облако сдвигается кулоновской силой, так что в среднем атом имеет разделенный заряд. Хотя атом остается нейтральным, теперь он может быть источником кулоновской силы, поскольку заряд, поднесенный к атому, будет ближе к одному типу заряда, чем к другому.
Некоторым молекулам, например молекулам воды, присуще разделение зарядов, поэтому они называются полярными молекулами. На рисунке 7 показано разделение зарядов в молекуле воды, которая имеет два атома водорода и один атом кислорода (H 2 O).Молекула воды несимметрична — атомы водорода отталкиваются в одну сторону, придавая молекуле форму бумеранга. Электроны в молекуле воды более сконцентрированы вокруг более заряженного ядра кислорода, чем вокруг ядер водорода. Это делает кислородный конец молекулы слегка отрицательным, а водородный конец — слегка положительным. Внутреннее разделение зарядов в полярных молекулах облегчает их выравнивание с внешними полями и зарядами. Следовательно, полярные молекулы проявляют более сильные поляризационные эффекты и имеют более высокие диэлектрические проницаемости.Те, кто изучает химию, обнаружат, что полярная природа воды имеет множество эффектов. Например, молекулы воды собирают ионы гораздо эффективнее, потому что у них есть электрическое поле и разделение зарядов для притяжения зарядов обоих знаков. Кроме того, как было показано в предыдущей главе, полярная вода обеспечивает защиту или экранирование электрических полей в сильно заряженных молекулах, представляющих интерес в биологических системах.
Рис. 7. Художественная концепция молекулы воды. Существует внутреннее разделение зарядов, поэтому вода — полярная молекула.Электроны в молекуле притягиваются к ядру кислорода и оставляют избыток положительного заряда около двух ядер водорода. (Обратите внимание, что схема справа является приблизительной иллюстрацией распределения электронов в молекуле воды. На ней не показано фактическое количество протонов и электронов, участвующих в структуре.)
Исследования PhET: лаборатория конденсаторов
Узнайте, как работает конденсатор! Измените размер пластин и добавьте диэлектрик, чтобы увидеть влияние на емкость.Измените напряжение и посмотрите, как на пластинах накапливаются заряды. Наблюдайте за электрическим полем в конденсаторе. Измерьте напряжение и электрическое поле.
Щелкните, чтобы загрузить симуляцию. Запускать на Java.
Сводка раздела
- Конденсатор — это устройство, используемое для хранения заряда.
- Количество заряда Q , которое может хранить конденсатор, зависит от двух основных факторов — приложенного напряжения и физических характеристик конденсатора, таких как его размер.
- Емкость C — это количество накопленного заряда на вольт, или [латекс] C = \ frac {Q} {V} \\ [/ latex].
- Емкость конденсатора с параллельными пластинами составляет [латекс] C = {\ epsilon} _ {0} \ frac {A} {d} \\ [/ latex], когда пластины разделены воздухом или свободным пространством. [latex] {\ epsilon} _ {\ text {0}} [/ latex] называется диэлектрической проницаемостью свободного пространства.
- Конденсатор с параллельными пластинами с диэлектриком между пластинами имеет емкость, определяемую выражением [латекс] C = \ kappa \ epsilon_ {0} \ frac {A} {d} \\ [/ latex], где κ — диэлектрик. постоянная материала.
- Максимальная напряженность электрического поля, при превышении которой изоляционный материал начинает разрушаться и становится проводником, называется диэлектрической прочностью.
Концептуальные вопросы
- Зависит ли емкость устройства от приложенного напряжения? А как насчет хранящегося в нем заряда?
- Используйте характеристики кулоновской силы, чтобы объяснить, почему емкость должна быть пропорциональна площади пластины конденсатора. Аналогичным образом объясните, почему емкость должна быть обратно пропорциональна расстоянию между пластинами.
- Объясните причину, по которой диэлектрический материал увеличивает емкость по сравнению с воздухом между пластинами конденсатора.Какова независимая причина того, что диэлектрический материал также позволяет приложить большее напряжение к конденсатору? (Таким образом, диэлектрик увеличивает C и допускает более В .)
- Как полярный характер молекул воды помогает объяснить относительно большую диэлектрическую проницаемость воды? (См. Рисунок 7.)
- Искры возникают между пластинами заполненного воздухом конденсатора при более низком напряжении, когда воздух влажный, чем когда сухой. Объясните почему, учитывая полярный характер молекул воды.
- Вода имеет большую диэлектрическую проницаемость, но редко используется в конденсаторах. Объяснить, почему.
- Мембраны в живых клетках, в том числе в человеческих, характеризуются разделением заряда через мембрану. Таким образом, мембраны представляют собой заряженные конденсаторы, важные функции которых связаны с разностью потенциалов на мембране. Требуется ли энергия для разделения этих зарядов в живых мембранах, и если да, то является ли ее источником метаболизм пищевой энергии или каким-либо другим источником?
Рисунок 8.Полупроницаемая мембрана клетки имеет разную концентрацию ионов внутри и снаружи. Диффузия перемещает ионы K + (калий) и Cl — (хлорид) в показанных направлениях, пока кулоновская сила не остановит дальнейший перенос. Это приводит к слою положительного заряда снаружи, слою отрицательного заряда внутри и, следовательно, к напряжению на клеточной мембране. Мембрана обычно непроницаема для Na + (ионы натрия).
Задачи и упражнения
- Какой заряд сохраняется в конденсаторе 180 мкФ, когда к нему приложено 120 В?
- Найдите накопленный заряд, когда 5.50 В подается на конденсатор емкостью 8,00 пФ.
- Какой заряд хранится в конденсаторе в Примере 1?
- Рассчитайте напряжение, приложенное к конденсатору 2,00 мкФ, когда он имеет заряд 3,10 мкКл.
- Какое напряжение необходимо приложить к конденсатору емкостью 8,00 нФ для накопления заряда 0,160 мкКл?
- Какая емкость необходима для хранения 3,00 мкКл заряда при напряжении 120 В?
- Какая емкость терминала большого генератора Ван-де-Граафа, учитывая, что он хранит 8?00 мкКл заряда при напряжении 12,0 МВ?
- Найдите емкость конденсатора с параллельными пластинами, площадь пластин которого составляет 5,00 м 2 , разделенных слоем тефлона 0,100 мм.
- (a) Какова емкость конденсатора с параллельными пластинами, площадь пластин которого составляет 1,50 м 2 , разделенных 0,0200 мм неопренового каучука? (b) Какой заряд он держит, когда к нему приложено 9,00 В?
- Интегрированные концепции. Шутник подает 450 В на 80.Конденсатор 0 мкФ, а затем бросает его ничего не подозревающей жертве. Палец пострадавшего обгорел от разряда конденсатора через 0,200 г мяса. Какое повышение температуры мяса? Разумно ли предполагать отсутствие изменения фазы?
- Необоснованные результаты. (a) Конденсатор с параллельными пластинами имеет площадь пластин 4,00 м 2 , разделенных нейлоном толщиной 0,0100 мм, и накапливает 0,170 Кл заряда. Какое приложенное напряжение? б) Что неразумного в этом результате? (c) Какие допущения являются ответственными или противоречивыми?
Глоссарий
конденсатор: устройство, накапливающее электрический заряд
емкость: количество заряда, хранимого на единицу вольт
диэлектрик: изоляционный материал
диэлектрическая прочность: максимальное электрическое поле, выше которого изоляционный материал начинает разрушаться и проводить
конденсатор с параллельными пластинами: две идентичные проводящие пластины, разделенные расстоянием
полярная молекула: молекула с внутренним разделением заряда
Избранные решения проблем и упражнения
1.21,6 мК
3. 80.0 мС
5. 20,0 кВ
7. 667 пФ
9. (а) 4,4 мкФ; (б) 4.0 × 10 −5 C
11. (а) 14,2 кВ; (b) Напряжение неоправданно велико, более чем в 100 раз больше напряжения пробоя нейлона; (c) Предполагаемый заряд неоправданно велик и не может храниться в конденсаторе таких размеров.
Конденсаторыи формулы для расчета емкости
Конденсаторы — это пассивные устройства. в электронных схемах для хранения энергии в виде электрического поля.Они комплимент индукторы, хранящие энергию в виде магнитного поля. Идеальный конденсатор является эквивалентом разомкнутой цепи (бесконечное сопротивление) для постоянного тока (DC) и представляет собой импеданс (реактивное сопротивление) для переменные токи (AC), зависящие от частоты тока (или напряжения). Реактивное сопротивление (сопротивление току расход) конденсатора обратно пропорционален частоте сигнала, воздействующего на него. Конденсаторы изначально были называемые «конденсаторами» по причине, которая восходит к временам Лейденской банки, когда считалось, что электрические заряды накапливаться на пластинах в процессе конденсации.
Свойство емкости, которая препятствует изменению напряжения, используется для передачи сигналов с компонент с более высокой частотой, предотвращая прохождение сигналов компонентов с более низкой частотой. Обычное применение конденсатор в РЧ (радиочастотной) цепи — это место, где есть напряжение смещения постоянного тока, которое необходимо заблокировать от присутствия в цепи, позволяя РЧ-сигналу проходить. Источники питания постоянного тока используют большие значения емкости параллельно с выходом. клеммы для сглаживания низкочастотных пульсаций из-за выпрямления и / или переключения форм сигналов.
При использовании последовательно (левый рисунок) или параллельно (правый рисунок) с его комплемент цепи, индуктор, комбинация индуктора-конденсатора образует цепь, которая резонирует на определенной частоте это зависит от значений каждого компонента. В последовательной цепи сопротивление протеканию тока на резонансной частоте равен нулю с идеальными компонентами. В параллельной цепи (справа) сопротивление току бесконечно с идеальными компонентами.
Реальные конденсаторы, состоящие из физических компонентов, демонстрируют больше, чем просто емкость, когда присутствует в цепи переменного тока.Слева показана модель симулятора общей схемы. Он включает в себя собственно идеальный конденсатор с параллельным резистивным подключением. компонент («Утечка»), реагирующий на переменный ток. Эквивалентный резистивный компонент постоянного тока (‘ESR’) последовательно с идеальным конденсатором и эквивалентной последовательной индуктивной составляющей. («ESL») присутствует из-за металлических выводов (если они есть) и характеристик поверхностей пластин. Эта индуктивность в сочетании с емкостью создает резонансную частоту, на которой конденсатор выглядит как чистое сопротивление.
Когда рабочая частота увеличивается за пределы резонанса (также известного как собственная резонансная частота или SRF), схема ведет себя как индуктивность, а не как емкость. Следовательно, требуется тщательное рассмотрение SRF, когда выбор конденсаторов. Симуляторы типа SPICE используют эту или даже более сложную модель для облегчения более точных расчетов. в широком диапазоне частот.
Уравнения для последовательного и параллельного объединения конденсаторов приведены ниже.Для конденсаторов приведены дополнительные уравнения. различной конфигурации. Как показывают эти цифры и формулы, емкость — это мера способности двух поверхностей. для хранения электрического заряда. Разделенный и изолированный диэлектриком (изолятором), чистый положительный заряд накапливается на одна поверхность и чистый отрицательный заряд хранится на другой поверхности. В идеальном конденсаторе заряд будет храниться бесконечно; однако реальные конденсаторы постепенно теряют заряд из-за токов утечки через неидеальный диэлектрик.
|
|
Связанные страницы RF Cafe
— Конденсаторы и
Расчет емкости
—
Конденсатор
Цветовой код
— Преобразование емкости
—
Конденсатор Диэлектрики
—
Стандартные значения конденсаторов
—
Продавцы конденсаторов
—
Благородное искусство разъединения
Dynamics Track Конденсатор Цепи Wave Tank Оптическая скамья | Параллельный пластинчатый конденсатор Заряд конденсаторов, разделение пластин и напряжение Конденсатор используется для хранения электрического заряда. Чем большее напряжение (электрическое давление) вы прикладываете к конденсатору, тем больше заряда нагнетается в конденсатор. Кроме того, чем большей емкостью обладает конденсатор, тем больший заряд будет вызван данным напряжением.Это соотношение описывается формулой q = CV, где q — накопленный заряд, C — емкость, а V — приложенное напряжение. Глядя на эту формулу, можно спросить, что бы произошло, если бы заряд оставался постоянным, а емкость изменялась. Ответ, разумеется, таков, что напряжение изменится! Это то, что вы будете делать в этой лаборатории. Лабораторный конденсатор Конденсатор с параллельными пластинами — это устройство, используемое для изучения конденсаторов.Это сводит к минимуму функцию конденсатора. Конденсаторы в реальном мире обычно скручены по спирали в небольших корпусах, поэтому конденсатор с параллельными пластинами значительно упрощает привязку функции к устройству. Этот конденсатор работает, накапливая противоположные заряды на параллельных пластинах, когда напряжение подается с одной пластины на другую. Количество заряда, который перемещается в пластины, зависит от емкости и приложенного напряжения в соответствии с формулой Q = CV, где Q — заряд в кулонах, C — емкость в фарадах, а V — разность потенциалов между пластинами в вольт. Конденсаторы накапливают энергию Если напряжение подается на конденсатор, а затем отключается, заряд, накопленный в конденсаторе, сохраняется до тех пор, пока конденсатор каким-либо образом не разрядится. Между пластинами возникает электрическое поле, которое позволяет конденсатору накапливать энергию. Это один из полезных аспектов конденсаторов, способность накапливать энергию в электрическом поле, чтобы ее можно было использовать позже. От чего зависит емкость? Количество заряда, которое может храниться на один приложенный вольт, определяется площадью поверхности пластин и расстоянием между ними.Чем больше пластины и чем ближе они расположены, тем больше заряда может храниться на каждый вольт разности потенциалов между пластинами. Заряд, накопленный на приложенный вольт, представляет собой емкость, измеряемую в фарадах. Может ли изменение емкости заряженного конденсатора изменить его напряжение? Лабораторный конденсатор можно регулировать, поэтому мы можем провести интересный эксперимент с емкостью и напряжением. Если конденсатор имеет постоянный заряд, изменение емкости должно вызвать изменение напряжения.Раздвигание пластин приведет к уменьшению емкости, поэтому напряжение должно увеличиться. Как можно математически определить емкость нашего конденсатора? С = ε 0 А / сут Где C — емкость в Фарадах, ε 0 — постоянная диэлектрической проницаемости свободного пространства (8,85×10 -12), A — площадь пластин в квадратных метрах, а d — расстояние между пластинами в метрах. Фарада — это очень большая величина емкости, поэтому мы будем использовать метрические префиксы для получения более удобных чисел. Емкость обычно измеряется в микрофарадах (мкФ), что составляет 1,0×10 -6F, или пикофарадах (пФ), что составляет 1,0×10 -12F. 1.0F = 1,000,000 мкФ = 1,000,000,000,000 пФ! Будьте очень внимательны с расчетами! Этот расчет даст вам приблизительное значение емкости лабораторного конденсатора. Однако есть и другие факторы, которые вносят ошибки в реальные измерения емкости и напряжения.Вам нужно внимательно учитывать эти факторы. Лабораторное оборудование: Для получения хороших результатов эта лабораторная деятельность требует специального оборудования. Вам нужен хороший стабилизированный источник питания, чтобы напряжение, подаваемое на конденсатор, было одинаковым при каждом испытании. Вам также понадобится очень точный способ измерения напряжения между пластинами без резистивной нагрузки на конденсатор. Количество накопленного заряда очень мало, поэтому обычный вольтметр не подойдет.Мельчайший заряд, накопленный в конденсаторе, просто разрядится через измеритель, делая любые измерения бесполезными. Вы будете использовать специальный прибор для измерения напряжения, называемый электрометром, который измеряет напряжение без разряда конденсатора. Одна из проблем электрометра заключается в том, что он имеет некоторую собственную емкость. Поскольку эта емкость параллельна емкости конденсатора, встроенная емкость выводов должна быть добавлена к емкости конденсатора. Назначение: Целью данной лабораторной работы является исследование взаимосвязи между разделением пластин и напряжением в конденсаторе с параллельными пластинами, имеющем постоянный заряд. Оснащение:
Осторожно: Это хрупкое оборудование. Все должно сочетаться с легчайшими прикосновениями. Ничего не заставляйте! Ваша первая задача — предсказать, что произойдет с напряжением конденсатора, когда вы зарядите его источником 10 В, а затем раздвинете пластины (что уменьшит емкость). Вы сделаете это в следующем разделе. Теоретические расчеты: Сначала необходимо рассчитать теоретическую емкость для каждого расстояния между пластинами. Мы сделаем первое, а потом вы сможете сделать все остальное! Самая сложная часть этого — правильно настроить юниты. Проще всего поставить все в метрах для расчетов:
В следующих разделах вы проведете реальный эксперимент для проверки (или, возможно, не проверки!) Ваших теоретических расчетов. Процедура настройки переменного конденсатора (если лаборатория уже настроена, переходите к следующему разделу!)
Сбор экспериментальных данных
Анализ данных:
|
4.1 Конденсаторы и емкость — Введение в электричество, магнетизм и схемы
ЦЕЛИ ОБУЧЕНИЯ
К концу этого раздела вы сможете:
- Объясните понятие конденсатора и его емкости
- Опишите, как оценить емкость системы проводов
Конденсатор — это устройство, используемое для хранения электрического заряда и электрической энергии.Он состоит как минимум из двух электрических проводников, разделенных расстоянием. (Обратите внимание, что такие электрические проводники иногда называют «электродами», но, точнее, они «обкладки конденсатора».) Пространство между конденсаторами может быть просто вакуумом, и в этом случае конденсатор будет известен как «Вакуумный конденсатор». Однако пространство обычно заполняется изолирующим материалом, известным как диэлектрик . (Вы узнаете больше о диэлектриках в разделах, посвященных диэлектрикам, далее в этой главе.) Объем накопителя в конденсаторе определяется свойством, называемым емкостью , , о котором вы узнаете больше чуть позже в этом разделе.
Конденсаторыимеют различные применения: от фильтрации статического электричества, от радиоприема до накопления энергии в дефибрилляторах сердца. Обычно в промышленных конденсаторах две токопроводящие части расположены близко друг к другу, но не соприкасаются, как показано на рисунке 4.1.1. В большинстве случаев между двумя пластинами используется диэлектрик. Когда клеммы батареи подключены к первоначально незаряженному конденсатору, потенциал батареи перемещает небольшое количество заряда величиной
с положительной пластины на отрицательную.Конденсатор в целом остается нейтральным, но заряжается и находится на противоположных пластинах.
(рисунок 4.1.1)
Рисунок 4.1.1 Оба конденсатора, показанные здесь, были изначально разряжены перед подключением к батарее. Теперь у них есть заряды и (соответственно) на своих тарелках. (a) Конденсатор с параллельными пластинами состоит из двух пластин противоположного заряда с площадью A, разделенной расстоянием d. (b) Катаный конденсатор имеет диэлектрический материал между двумя проводящими листами (пластинами).Система, состоящая из двух идентичных параллельно проводящих пластин, разделенных расстоянием, называется конденсатором с параллельными пластинами (рисунок 4.1.2). Величина электрического поля в пространстве между параллельными пластинами составляет
, где обозначает поверхностную плотность заряда на одной пластине (напомним, что σσ — это заряд на площадь поверхности). Таким образом, величина поля прямо пропорциональна.
(рисунок 4.1.2)
Рисунок 4.1.2 Разделение зарядов в конденсаторе показывает, что заряды остаются на поверхности пластин конденсатора.Линии электрического поля в конденсаторе с параллельными пластинами начинаются с положительных зарядов и заканчиваются отрицательными зарядами. Величина электрического поля в пространстве между пластинами прямо пропорциональна количеству заряда на конденсаторе.Конденсаторы с разными физическими характеристиками (такими как форма и размер пластин) накапливают разное количество заряда для одного и того же приложенного напряжения
на своих пластинах. Емкость конденсатора определяется как отношение максимального заряда, который может храниться в конденсаторе, к приложенному напряжению на его пластинах.Другими словами, емкость — это наибольшее количество заряда на вольт, которое может храниться на устройстве:
(4.1.1)
Единица измерения емкости в системе СИ — фарад (
), названная в честь Майкла Фарадея (1791–1867). Поскольку емкость — это заряд на единицу напряжения, один фарад равен одному кулону на один вольт, или
.По определению, конденсатор
способен накапливать заряд (очень большой заряд), когда разность потенциалов между его пластинами равна всего.Следовательно, одна фарада — это очень большая емкость. Типичные значения емкости варьируются от пикофарад () до миллифарад (), включая микрофарады (). Конденсаторы могут изготавливаться различных форм и размеров (рисунок 4.1.3).
(рисунок 4.1.3)
Рисунок 4.1.3 Это некоторые типичные конденсаторы, используемые в электронных устройствах. Размер конденсатора не обязательно зависит от его емкости.Расчет емкости
Мы можем рассчитать емкость пары проводов с помощью следующего стандартного подхода.
Стратегия решения проблем: расчет емкости
Чтобы показать, как работает эта процедура, мы теперь вычисляем емкости параллельных пластин, сферических и цилиндрических конденсаторов. Во всех случаях мы предполагаем вакуумные конденсаторы (пустые конденсаторы) без диэлектрического вещества в пространстве между проводниками.
Конденсатор с параллельными пластинами
Конденсатор с параллельными пластинами (рисунок 4.1.4) имеет две идентичные проводящие пластины, каждая из которых имеет площадь поверхности
, разделенных расстоянием.Когда на конденсатор подается напряжение, он накапливает заряд, как показано на рисунке. Мы можем увидеть, как его емкость может зависеть от и , рассматривая характеристики кулоновской силы. Мы знаем, что сила между зарядами увеличивается с увеличением заряда и уменьшается с расстоянием между ними. Следует ожидать, что чем больше пластины, тем больше заряда они могут хранить. Таким образом, должно быть больше для большего значения. Точно так же, чем ближе пластины расположены друг к другу, тем сильнее на них притяжение противоположных зарядов.Следовательно, должно быть больше за меньшее.
(рисунок 4.1.4)
Рисунок 4.1.4 В конденсаторе с параллельными пластинами, обкладки которых разнесены на расстояние, каждая пластина имеет одинаковую площадь поверхности.Определим плотность поверхностного заряда σσ на пластинах как
Из предыдущих глав мы знаем, что, когда
мало, электрическое поле между пластинами довольно однородно (без учета краевых эффектов) и что его величина равна
., где постоянная ε0ε0 — диэлектрическая проницаемость свободного пространства,
.Единица СИ эквивалентна. Поскольку электрическое поле между пластинами однородно, разность потенциалов между пластинами составляет
.Следовательно, уравнение 4.1.3 дает емкость конденсатора с параллельными пластинами как
(4.1.3)
Обратите внимание на это уравнение, что емкость является функцией только геометрии и того, какой материал заполняет пространство между пластинами (в данном случае вакуум) этого конденсатора. Фактически, это верно не только для конденсатора с параллельными пластинами, но и для всех конденсаторов: емкость не зависит от или.Если заряд изменяется, соответственно изменяется и потенциал, так что он остается постоянным.ПРИМЕР 4.1.1
Емкость и заряд в конденсаторе с параллельными пластинами
(a) Какова емкость пустого конденсатора с параллельными пластинами с металлическими пластинами, каждая из которых имеет площадь
, разделенных? (б) Сколько заряда хранится в этом конденсаторе, если к нему приложено напряжение?
Стратегия
Определение емкости
— это прямое приложение уравнения 4.1.3. Как только мы найдем, мы сможем найти накопленный заряд, используя уравнение 4.1.1.
Решение
а. Ввод данных значений в уравнение 4.1.3 дает
Это небольшое значение емкости указывает на то, насколько сложно сделать устройство с большой емкостью.
г. Обращение уравнения 4.1.1 и ввод известных значений в это уравнение дает
Значение
Этот заряд лишь немного больше, чем в типичных приложениях статического электричества.Поскольку воздух разрушается (становится проводящим) при напряженности электрического поля около
, на этом конденсаторе больше не может храниться заряд при увеличении напряжения.
ПРИМЕР 4.1.2
1-фазный конденсатор с параллельными пластинами
Предположим, вы хотите построить конденсатор с параллельными пластинами емкостью
. Какую площадь нужно использовать для каждой пластины, если пластины разделены?
Решение
Преобразуя уравнение 4.1.3, получаем
Каждая квадратная пластина должна быть поперечной.Раньше было обычной шуткой просить студента пойти в склад лаборатории и попросить конденсатор с параллельными пластинами, пока обслуживающий персонал не устанет от шуток.ПРОВЕРЬТЕ ПОНИМАНИЕ 4.1
Емкость конденсатора с параллельными пластинами
. Если площадь каждой пластины равна, каково расстояние между пластинами?
ПРОВЕРЬТЕ ПОНИМАНИЕ 4.2
Убедитесь, что
и имеют те же физические единицы.
Сферический конденсатор
Сферический конденсатор — это еще один набор проводников, емкость которых можно легко определить (рисунок 4.1.5). Он состоит из двух концентрических токопроводящих сферических оболочек радиусов
(внутренняя оболочка) и (внешняя оболочка). Снарядам придаются равные и противоположные заряды и соответственно. Из-за симметрии электрическое поле между оболочками направлено радиально наружу. Мы можем получить величину поля, применив закон Гаусса к сферической гауссовой поверхности радиуса r , концентричной оболочкам.Вложенная плата есть; поэтому у нас есть
Таким образом, электрическое поле между проводниками равно
Мы подставляем
в уравнение 4.1.2 и интегрируем по радиальному пути между оболочками:
В этом уравнении разность потенциалов между пластинами составляет
. Мы подставляем этот результат в уравнение 4.1.1, чтобы найти емкость сферического конденсатора:
(4.1,4)
(рисунок 4.1.5)
Рисунок 4.1.5 Сферический конденсатор состоит из двух концентрических проводящих сфер. Обратите внимание, что заряды на проводнике находятся на его поверхности.ПРИМЕР 4.1.3
Емкость изолированной сферы
Рассчитайте емкость одиночной изолированной проводящей сферы радиусом
и сравните ее с уравнением 4.1.4 в пределе как.
Стратегия
Мы предполагаем, что заряд на сфере равен
, поэтому мы выполняем четыре шага, описанные ранее.Мы также предполагаем, что другой проводник представляет собой концентрическую полую сферу бесконечного радиуса.
Решение
На внешней стороне изолированной проводящей сферы электрическое поле задается уравнением 4.1.2. Величина разности потенциалов между поверхностью изолированной сферы и бесконечностью составляет
.Таким образом, емкость изолированной сферы равна
.Значение
Тот же результат можно получить, взяв предел из уравнения 4.1.4 как
. Таким образом, одиночная изолированная сфера эквивалентна сферическому конденсатору, внешняя оболочка которого имеет бесконечно большой радиус.
ПРОВЕРЬТЕ ПОНИМАНИЕ 4.3
Радиус внешней сферы сферического конденсатора в пять раз превышает радиус его внутренней оболочки. Каковы размеры этого конденсатора, если его емкость
?
Цилиндрический конденсатор
Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров (рисунок 4.1.6). Внутренний цилиндр радиуса
может быть либо оболочкой, либо полностью твердым. Внешний цилиндр представляет собой оболочку внутреннего радиуса. Мы предполагаем, что длина каждого цилиндра равна и что избыточные заряды и находятся на внутреннем и внешнем цилиндрах соответственно.
(рисунок 4.1.6)
Рисунок 4.1.6 Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров. Здесь заряд на внешней поверхности внутреннего цилиндра положительный (обозначен), а заряд на внутренней поверхности внешнего цилиндра отрицательный (обозначен).Если не учитывать краевые эффекты, электрическое поле между проводниками направлено радиально наружу от общей оси цилиндров. Используя гауссову поверхность, показанную на рисунке 4.1.6, мы имеем
Следовательно, электрическое поле между цилиндрами равно
(4.1.5)
Здесь \ hat {\ mathrm {r}} — единичный радиальный вектор по радиусу цилиндра. Мы можем подставить в уравнение 4.1.2 и найти разность потенциалов между цилиндрами:
Таким образом, емкость цилиндрического конденсатора составляет
(4.1,6)
Как и в других случаях, эта емкость зависит только от геометрии расположения проводников. Важным применением уравнения 4.1.6 является определение емкости на единицу длины коаксиального кабеля , который обычно используется для передачи изменяющихся во времени электрических сигналов. Коаксиальный кабель состоит из двух концентрических цилиндрических проводников, разделенных изоляционным материалом. (Здесь мы предполагаем наличие вакуума между проводниками, но физика качественно почти такая же, когда пространство между проводниками заполнено диэлектриком.) Эта конфигурация защищает электрический сигнал, распространяющийся по внутреннему проводнику, от паразитных электрических полей, внешних по отношению к кабелю. Ток течет в противоположных направлениях во внутреннем и внешнем проводниках, при этом внешний проводник обычно заземлен. Теперь из уравнения 4.1.6 емкость коаксиального кабеля на единицу длины равна
.В практических приложениях важно выбирать конкретные значения
. Это может быть достигнуто за счет соответствующего выбора радиусов проводников и изоляционного материала между ними.
ПРОВЕРЬТЕ ПОНИМАНИЕ 4.4
Когда цилиндрический конденсатор получает заряд
, между цилиндрами измеряется разность потенциалов. а) Какова емкость этой системы? б) Если цилиндры длинные, каково соотношение их радиусов?
Несколько типов практических конденсаторов показаны на рисунке 4.1.3. Обычные конденсаторы часто состоят из двух небольших кусочков металлической фольги, разделенных двумя небольшими кусочками изоляции (см. Рисунок 4.1.1 (б)). Металлическая фольга и изоляция покрыты защитным покрытием, а два металлических вывода используются для подключения фольги к внешней цепи. Некоторые распространенные изоляционные материалы — это слюда, керамика, бумага и антипригарное покрытие Teflon ™.
Другой популярный тип конденсатора — электролитический конденсатор . Он состоит из окисленного металла в проводящей пасте. Основным преимуществом электролитического конденсатора является его высокая емкость по сравнению с другими распространенными типами конденсаторов.Например, емкость одного типа алюминиевого электролитического конденсатора может достигать
. Однако вы должны быть осторожны при использовании электролитического конденсатора в цепи, потому что он работает правильно только тогда, когда металлическая фольга находится под более высоким потенциалом, чем проводящая паста. Когда возникает обратная поляризация, электролитическое действие разрушает оксидную пленку. Этот тип конденсатора не может быть подключен к источнику переменного тока, потому что в половине случаев переменное напряжение будет иметь неправильную полярность, поскольку переменный ток меняет свою полярность (см. Схемы переменного тока в цепях переменного тока).
Переменный воздушный конденсатор (рисунок 4.1.7) имеет два набора параллельных пластин. Один набор пластин закреплен (обозначен как «статор»), а другой набор пластин прикреплен к валу, который может вращаться (обозначается как «ротор»). Поворачивая вал, можно изменять площадь поперечного сечения в перекрытии пластин; следовательно, емкость этой системы может быть настроена на желаемое значение. Настройка конденсатора находит применение в любом типе радиопередачи и при приеме радиосигналов от электронных устройств.Каждый раз, когда вы настраиваете автомобильное радио на любимую станцию, думайте о емкости.
(рисунок 4.1.7)
Рисунок 4.1.7. В конденсаторе переменного тока емкость можно регулировать, изменяя эффективную площадь пластин. (кредит: модификация работы Робби Спроула)Символы, показанные на рисунке 4.1.8, представляют собой схемные изображения различных типов конденсаторов. Обычно мы используем символ, показанный на рис. 4.1.8 (а). Символ на Рисунке 4.1.8 (c) представляет конденсатор переменной емкости.Обратите внимание на сходство этих символов с симметрией конденсатора с параллельными пластинами. Электролитический конденсатор представлен символом на рис. 4.1.8 (b), где изогнутая пластина обозначает отрицательный вывод.
(рисунок 4.1.8)
Рисунок 4.1.8 Здесь показаны три различных схемных представления конденсаторов. Символ в (а) является наиболее часто используемым. Символ в (b) представляет собой электролитический конденсатор. Символ в (c) представляет конденсатор переменной емкости.Интересный прикладной пример модели конденсатора взят из клеточной биологии и имеет дело с электрическим потенциалом в плазматической мембране живой клетки (рис. 4.1.9). Клеточные мембраны отделяют клетки от окружающей их среды, но позволяют некоторым отобранным ионам проходить внутрь или из клетки. Разность потенциалов на мембране составляет около
. Клеточная мембрана может быть слишком толстой. Рассматривая клеточную мембрану как наноразмерный конденсатор, оценка наименьшей напряженности электрического поля на его «пластинах» дает значение.
Этой величины электрического поля достаточно, чтобы вызвать электрическую искру в воздухе.
(рисунок 4.1.9)
Рисунок 4.1.9 Полупроницаемая мембрана биологической клетки имеет разные концентрации ионов на внутренней поверхности, чем на внешней. Диффузия перемещает ионы (калия) и (хлорида) в показанных направлениях, пока кулоновская сила не остановит дальнейший перенос. Таким образом, внешняя поверхность мембраны приобретает положительный заряд, а ее внутренняя поверхность приобретает отрицательный заряд, создавая разность потенциалов на мембране.Мембрана обычно непроницаема для (ионов натрия).Кандела Цитаты
Лицензионный контент CC, особая атрибуция
- Загрузите бесплатно по адресу http://cnx.org/contents/[email protected]. Получено с : http://cnx.org/contents/[email protected]. Лицензия : CC BY: Attribution
Формулы и калькуляторы емкости
На этой странице представлены формулы и калькуляторы емкостей конденсаторы различной формы или типа.Это также полезно, если вы собираетесь использовать свой конденсатор в Танк LC резонансный схема.
Емкость конденсаторов с параллельными пластинами
Конденсатор с параллельными пластинами состоит из двух плоских параллельных пластин, которые электроды, разделенные диэлектрик или изолятор. Для формулы и калькулятора здесь пластины могут быть любой формы, если они плоские, параллельные и вы знаете площадь тарелки или что-то еще, что нужно, чтобы найти этот район.
Формула емкости конденсатора с параллельными пластинами:
Где:
- ε r = относительная диэлектрическая проницаемость диэлектрика (реже К, диэлектрическая проницаемость)
- ε 0 = 8.854×10 -12 Ф / м (фарад / метр) = диэлектрическая проницаемость вакуума или диэлектрическая проницаемость свободного пространства
На схемах показаны конденсаторы с параллельными пластинами разной формы. пластины, одна прямоугольная и одна круглая. Формула для расчета площадь прямоугольника:
а формула для вычисления площади круга:
Где π — это число пи, равное 3,14159.
Емкость цилиндрических конденсаторов
Цилиндрический конденсатор состоит из двух цилиндров, также называемых пластины, которые являются электродами, разделены диэлектрик или изолятор.
Формула емкости цилиндрического конденсатора:
Где:
- ε r = относительная диэлектрическая проницаемость диэлектрика (реже К, диэлектрическая проницаемость)
- ε 0 = 8,854×10 -12 Ф / м (фарад / метр) = диэлектрическая проницаемость вакуума или диэлектрическая проницаемость свободного пространства
Видео — Как сделать конденсаторы — Низкое напряжение
В этом видео не только показано, как делать конденсаторы, но и формула емкости в более динамичном формате, чем указано выше.После всего, если вы делаете конденсатор, вам сначала нужно знать, как спроектировать конденсатор.
Видео — Как сделать конденсаторы — высокое напряжение
В этом видео показано, как разработать конденсаторы для высокого напряжения, объясняя, измерение и построение для напряжения пробоя / диэлектрической прочности, чтобы что конденсатор может выдерживать желаемое высокое напряжение.