ШИМ контроллеры — справочник по микросхемам для импульсных блоков питания
Наибольшее распространение в источниках питания для бытовой аппаратуры получили импульсные блоки питания с импульсным трансформатором, в которых силовой ключ работает на постоянной частоте повторения импульсов, а длительность самих импульсов изменяется под действием формирователя широтно-импульсной модуляции ШИМ (ШИМ, англ. pulse-width modulation (PWM)).
Определение: широтно-импульсная модуляция — процесс управления мощностью, подводимой к нагрузке, путем изменения скважности импульсов, при постоянной частоте.
Принцип работы импульсных блоков питания на основе широто-импульсной модуляции
Рис. 1. Принцип формирования ШИМ.
Формирование ШИМ осуществляется с помощью порогового элемента ПЭ, на один вход которого подается пилообразное напряжение Uпил а на второй — медленно изменяющееся напряжение Uизм, пропорциональное значению выходного напряжения лока питания Uвых. Изменение наклона пилы или уровня напряжения Uизм приводит к изменению момента срабатывания ПЭ, а значит, и длительности импульсов t
В схему управления обычно входят задающий генератор (чаще всего, RC-типа или блокинг-гене-ратор), широтно-импульсный модулятор (ШИМ), цепи запуска, стабилизации (цепи обратных связей) и защиты. Весьма часто, для уменьшения помех на изображении, работу задающего генератора синхронизируют со строчной разверткой, для чего на схему управления поступают строчные импульсы обратного хода (СИОХ).
Рис. 2. Структурная схема импульсного стабилизатора телевизора с ШИМ.
Напряжение с выпрямителя Uвх подается на ключ К, соединенный последовательно с первичной обмоткой импульсного автотрансформатора L1 и эталонным резистором R24. Ключ К открывается в моменты прихода на него импульсов с усилителя У, длительность которых определяет значения напряжений на выходах вторичных выпрямителей В1 и В2. С выхода выпрямителя В2 через измерительную схему ИС напряжение поступает на один — из входов СС; на другой ее вход подается напряжение с источника опорного напряжения (ИОН).
Выходное напряжение ошибки с СС управляет проводимостью генератора тока ГТ, которая определяет длительность импульсов на выходе схемы ШИМ. Период следования импульсов с генератора Г, поступающих на формирователь ШИМ, соответствует периоду следования импульсов строчной развертки телевизора, так как синхронизируется ими по входу «Синхр».
Формирователь Ф улучшает форму прямоугольных импульсов. При возрастании падения напряжения на R24 срабатывает схема защиты СЗ и запрещает проход импульсов на ключ К. При включении телевизора стабилизатор запускается броском тока через резистор R14; в стационарном режиме стабилизатор питается от схемы самоподпитки С.
Схема импульсного блока питания предъявляет высокие требования к значениям предельно допустимых электрических параметров транзистора, используемого в ключевом каскаде. В течение времени t
Максимальное напряжение, прикладываемое к коллектору транзистора, Uк = Еп (1 + tо/tз.) может оказаться значительным (например, при tо = tз Uк=2Eп). Таким образом, эффективным средством защиты транзистора ключевого каскада от пробоя и от перегрузки по току является соответствующая регулировка соотношения tо/tз с помощью схемы широтно-импульсной модуляции ШИМ. Кроме того, для защиты выходного транзистора от пробоя к его коллектору подключают демпфирующие цепочки, составленные из резисторов, конденсаторов, диодов; между базой и эмиттером включают низкоомный резистор. Для демпфирования паразитных колебаний применяется специальная рекуперационная обмотка импульсного трансформатора с подключенным к ней выпрямителем.
Для уменьшения наводок от импульсного блока питания диоды выпрямителей шунтируются конденсаторами небольшой емкости; в цепи сглаживающих фильтров включают дроссели, роль которых нередко выполняет кусочек проволоки, продетой в ферритовую трубку; большое внимание уделяется экранированию и заземлению.
С целью получения дополнительных номиналов стабильного выходного напряжения в состав импульсных блоков питания нередко входит маломощный линейный стабилизатор, подключаемый к выходу одного из вторичных выпрямителей. В бестрансформаторных импульсных блоках питания сетевое напряжение подается на выпрямитель через специальный резистор, ограничивающий бросок тока в момент включения телевизора. Специфической особенностью блоков питания, применяемых в цветных телевизорах, является наличие в некоторых из них схемы размагничивания маски и бандажа кинескопа.
Смотрите также материалы, где рассматриваются основные принципы работы импульсных блоков питания на основе широто-импульсной модуляции:
Импульсные блоки питания структурная схема, принципы работы
Трансформаторные преобразователи с задающими генераторами
Онлайн справочник по микросхемам для импульсных блоков питания
Самый простой способ найти нужную документацию на микросхему для блоков питания, их цоколевку, типовую схему включения — воспользоваться быстропоиском в конце страницы или пролистать справочник и ознакомиться с его содержанием.
Быстропоиск:
Микросхемы: HM9207
| IX1779ce
| KA3842
| KA3882
| M67209
| MA2830
| MA2831
| STK730-080
| STK7348
| STR451
| STR6307
| STR10006
| STR11006
| STR40115
| STR50103
| STR50115
| STR54041
| STR80145
| STRD1816
| STRD6004
| STRD6601
| STR-M6549
| STR-S5941
| TDA4600
| TDA4601
| TDA4601b
| TDA4605
| TDA8380
| TEA1039
| TEA2018
| TEA2019
| TEA2162
| TEA2164
| TEA2260
| TEA2262
| TEA5170
| UAA4600
| UC2842 | UC3842
| UC2844 | UC2845 | UC3844 | UC3845
www.xn--b1agveejs.su
MP2359DJ неплохой мелкий ШИМ контроллер
Как обещал ранее, выкладываю обзор на радиолюбительскую тематику.Ну а раз уж заказал, да еще и получил (в последнее время это происходит не всегда), то перед подтверждением получения ведь неплохо бы его и проверить.
Описание, проверка, результаты, все под катом.
Вообще получил я данные микросхемы очень давно, но проверить время нашлось только сейчас.
Заказаны они были в районе Нового года, а получил я их 3 февраля.
Продавец приятно удивил несколько раз, за что ему в отзыв будет добавлена ссылка на обзор.
На это я ему написал, что микросхемы получил, но подтверждение сделаю после проверки.
Пришли микросхемы в самом обычном бумажном конвертике с пупыркой, хотя недавно получил светодиод в полиэтиленовом пакете вообще без какой либо защиты.
Второе что удивило, продавец положил не 10 микросхем, а 11. Оно как бы мелочь, 20 центов, но приятно. можно сказать что одна микросхема на эксперименты 🙂
Микросхемы в корпусе SOT-23-6, маркировка присутствует с обеих сторон.
Данная микросхема является понижающим ШИМ контроллером со встроенным силовым транзистором
Для начала технические характеристики (перевод из даташита), полный даташит на английском доступен по ссылке.
Пиковый выходной ток — 1.2 Ампера
Сопротивление внутреннего полевого транзистора — 0.35 Ома
Стабильная работа с выходным LowESR керамическим конденсатором
КПД до 92%
0.1мкА потребление в дежурном режиме.
Защита от перегрева
Ограничение максимального тока в каждом такте.
Диапазон входного напряжения 4.5-24 Вольта
Выходное напряжение 0.81-15 Вольт
Типовая схема включения имеет небольшое количество внешних компонентов.
Есть конечно микросхемы где компонентов еще меньше, но как по мне, то и так вполне нормально.
Внутреннее устройство микросхемы.
Пожалуй из минусов микросхемы (и то условно) можно назвать лишь то, что в качестве силового применен N канальный транзистор. Это добавляет сложности, необходимость применения внешнего конденсатора и невозможность микросхеме обеспечить 100% цикл, так как необходимо время для перезарядки внешнего конденсатора питания драйвера.
Также большим плюсом является низкое опорное напряжение, составляющее всего 0.81 Вольта, позже я объясню почему.
Также есть и усложненная схема применения этой микросхемы.
При входном напряжении менее 5 Вольт желательно установить дополнительный диод D3.
При выходном напряжении менее 5 Вольт желательно установить диод D2
В остальных ситуациях дополнительные компоненты не требуются.
Выше я написал что микросхема имеет низкое опорное напряжение.
Это позволяет сделать на ее базе простой драйвер для светодиодов.
Дело в том, что чем выше это напряжение, тем больше будут потери на токоизмерительном шунте. Запустить так можно большинство микросхем, но чем напряжение ниже, тем выше будет КПД такого драйвера.
Да и просто всегда лучше иметь запас в нижнюю сторону, так как большая часть известных мне простых ШИМ контроллеров имеет 1.23-2.5 Вольта.
Так как мне надо было проверить то, что я получил, то пришлось собрать небольшую тестовую платку.
Собирать я решил по простому варианту схемы, хотя и с изменениями, обусловленными тем, что собирал «из того, что было».
Изменения коснулись конденсаторов.
Производитель рекомендует емкость входного и выходного конденсатора 10 и 22мкФ, я применил 2х2.8 и 2х5.6 соответственно, т.е. примерно в 2 раза меньше.
Также конденсатор питания драйвера рекомендуется ставить около 10нФ, с дополнительными диодами до 1мкФ, но я поставил 0,1мкФ без всяких диодов.
Диод поставил также из того что было, банальный SS34.
Дроссель рекомендуется ставить на 4.7мкГн, у меня был на 10мкГн.
Т.е. я сознательно ухудшил характеристики преобразователя, а кроме того хотел проверить как ведет себя микросхема при номиналах отличных от даташита.
Печатную плату я сначала страссировал свою, но она мне не нравилась и я решил сделать так как рекомендует производитель.
Вообще трассировка таких вещей дело довольно ответственное, мало просто соединить выводы как надо по схеме, требуется соблюсти правильно топологию платы, так как это может влиять на многие вещи.
Например неправильная разводка платы может увеличить пульсации напряжения на выходе, а может вовсе привести к полной неработоспособности устройства.
Так видит плату производитель.
А такую плату страссировал я.
Ну дальше все в принципе просто. плата изготавливалась по ЛУТ технологии, которую я описывал здесь. Только после того я уже купил еще бумаги, самое недорогое предложение оказалось как ни странно в магазине Бангуд, рекомендую.
Единственно, я как то забыл про то что у меня травится плата и передержал ее, потому результат вышел хуже.
Для платы использовался текстолит толщиной 1мм. Кстати. Текстолит отличный, когда плата вытравлена, то он полупрозрачный, сейчас ищу такой текстолит, желательно стандартный лист.
Подобрал компоненты.
Резисторы делителя обратной связи можно легко рассчитать зайдя на эту страничку, думаю понятно и без объяснений что есть что 🙂
Исходные данные — 5 Вольт на выходе, 0.81 Вольта напряжение на выходе делителя.
Я выбрал номинал верхнего резистора 10к, программа выдала номинал нижнего как 2к.
Конденсаторы выпаяны из платы от какого то монитора, дроссель и диод новые.
В итоге у меня получилась небольшая и почти аккуратная платка.
Размеры платы около 23 х12,5мм
Сначала я протестировал платку при помощи «стенда», состоящего из:
Блока питания
Электронной нагрузки
Мультиметра
Осциллографа
Бесконтактного термометра
Был протестирован нагрев и работа под нагрузкой.
Но так как кроме нагрева меня интересовал еще и КПД, то пришлось воспользоваться еще одним мультметром.
Дело в том, что амперметр блока питания имеет больше погрешность чем мультиметр, а мне хотелось получить более точные результаты измерения.
Так как нагрузка была неизменна, то я сгруппировал фото измерения потребляемого тока и осциллограммы, полученные в прошлом тесте.
Входное напряжение 10 Вольт
1. Ток нагрузки 0.6 Ампера, выходное напряжение 4.84 Вольта
2. Ток нагрузки 1.2 Ампера, выходное напряжение 4.80 Вольт
В обоих случаях пульсации были на грани чувствительности при том, что щуп стоял в режиме 1:1.
Входное напряжение 15 Вольт
1. Ток нагрузки 0.6 Ампера, выходное напряжение 4.83 Вольта
2. Ток нагрузки 1.2 Ампера, выходное напряжение 4.81 Вольта
Ситуация с уровнем пульсаций аналогична первому тесту.
Входное напряжение 20 Вольт
1. Ток нагрузки 0.6 Ампера, выходное напряжение 4.83 Вольта
2. Ток нагрузки 1.2 Ампера, выходное напряжение 4.81 Вольта
И опять уровень пульсаций на грани чувствительности.
После этого я проверил плату еще в нескольких режимах, но уже без фото.
1. Собственное потребление преобразователя составляет 1.3мА при 10 Вольт и 1.4мА при 20 Вольт. Из этих 1.3-1.4мА около 0.3мА потребляет делитель обратной связи. Так что с собственным потреблением (не в дежурном режиме) все отлично.
2. Проверка работы преобразователя в режиме КЗ. Ток потребления по входу составляет около 0.1 Ампера в диапазоне входного напряжения 10-20 Вольт. Микросхема в этом режиме начинает нагреваться.
3. Так как в режиме КЗ я получил нагрев микросхемы, то проверил и работу термозащиты.
После достижения температуры корпуса микросхемы около 100 градусов (сложно измерять температуру такого мелкого компонента), микросхема перешла в старт/стоп режим с частотой около 0.5Гц. Ток потребления в паузах снижался до 50мА.
Если убрать перегрузку, то микросхема сразу переходила в нормальный режим работы.
В даташите была найдена табличка со значениями КПД а разных режимах.
Я проверял при немного других входных напряжениях, но не думаю что это критично.
Как можно видеть из графика, максимальный КПД микросхема имеет при выходном токе около 0.6 Ампера и входном напряжении 12 Вольт.
Мои расчеты показали, что преобразователь реально имеет КПД почти 92%, но при входном напряжении около 15 Вольт.
Но опять же, оговорюсь, я использовал компоненты, которые на КПД сказались скорее отрицательно, чем положительно, но даже в таком варианте КПД не падал ниже чем 87.7%.
Резюме.
Плюсы
Цена
Корректная отработка защиты от превышения выходного тока и КЗ
Не менее корректная работа защиты от перегрева
Неплохой КПД
Простая схема, нет необходимости применять большие электролитические конденсаторы
Очень низкий уровень пульсаций
Частота работы 1.4МГц
Низкое напряжение встроенного ИОНа, составляющее 0.81 Вольта
Отличный продавец
Минусы
Пожалуй невозможность 100% рабочего цикла, так как требуется время на зарядку конденсатора питания драйвера.
Мое мнение. Микросхема понравилась, недорого, просто, отлично работает, да и продавцу зачет.
Конечно есть микросхемы лучше, с синхронным выпрямителем, на больший ток, но мне больше не надо было, а габарит, простота и цена перевесили эти преимущества.
В общем рекомендую.
В качестве дополнительных материалов предлагаю архив с даташитом, схемой и трассировкой — ссылка.
mysku.ru
Микросхема UC3842 (ШИМ) или изготавливаем Зарядное устройство для автомобильных аккумуляторов
Всем привет дорогие Муськовчани. Предлагаю Вашему вниманию обзор на 8DIP микросхему UC3842. Микросхема уже давно классика и даже «легендарная» классика, но до сих пор она активно используется в производстве Блоков Питания для большого числа электронных девайсов. Микросхема 3842 представляет собой ШИМ (широтно-импульсный) преобразователь, ссылку на её полное описание на русском языке, я дам в конце своего обзора. Ну и по традиции я постараюсь не только протестировать микросхему на работоспособность, но и использовать её для изготовления полезного в хозяйстве устройства — Зарядного устройства для автомобильного (и не только) аккумулятора… В общем, всем, кому интересны электронные самоделки, у кого машина не заводится с утра из-за подсевшего аккумулятора, ну и просто всем, кому интересна радиотехника — добро пожаловать под «кат»…Предупреждение: Данный обзор может содержать синтаксические и даже орфографические ошибки (я постараюсь их исправлять), так же в обзоре будет некоторое число технических терминов, радиотехнических жаргонных слов. Я так же постараюсь в этом обзоре учесть некоторые замечания, что Вы высказывали в комментариях к моим более ранним обзорам. В общем, так сказал Юрий Гагарин свою легендарную фразу — «Поехали!!!!»…
И как всегда предыстория: После внесения в правила ПДД пункта включать в дневное время ближний свет в населенных пунктах (ПДД Казахстана), торговля автомобильными аккумуляторами пошла «в гору», поскольку автолюбители стали забывать выключать фары после парковки автомобиля. Ярким примером была моя родственница, которая посадила так уже несколько раз АКБ, и мне через весь город приходилось ездить и «прикуривать» её машину от своей. Потому было принято решение подарить ей на 8 Марта — зарядное устройство (кстати этот подарок вызвал полный восторг, вот что не хватает девушкам для полного счастья!) Можно было бы поискать «зарядку» в магазинах или заказать у китайцев… Но… Это же не наш метод!!! ©
Ранее на Али были куплены ШИМ микросхемы UC3842, той ссылки, по которой я сделал заказ уже не существует, потому я нашел на Али аналогичный товар. Микросхемы пришли за месяц, были упакованы в замечательную «пупырку», в которые китайцы заботливо упаковывают свои посылки. Что бы протестировать микросхему на работоспособность был изготовлен подлючаемый модуль микросхемы с обвязкой, который в последствии был вставлен в силовую плату Зарядного устройства. На фото модуль с ШИМ микросхемой
На модуль подавалось питание с внешнего ЛабБП, и осциллографом смотрели что дает микросхема на выходе.
Частото-задающая цепочка рассчитывалась на 60кГц, но из за разброса емкости конденсаторов реальная частота была чуть ниже, что в принципе не критично.
Вставив в контактную площадку по очереди все полученные микросхемы, я убедился, что они все работоспособные и пригодные для использования. Можно было бы конечно для большей наглядности менять плавно частоту и скважность, но у нас не «обзор для обзора», потому я этого делать не буду.
Что ж идем дальше… Я бы по привычке использовал бы корпус от АТХ компьютерного БП, но поскольку это будет подарок, пошел искать коробку для ЗУ в магазины…
Обойдя несколько магазинов был куплен вот такой симпатичный корпус для поделки
В таком корпусе не стыдно будет подарить девушке на 8 Марта подарок…))))
Ну вот мы и определились с размерами печатной платы. На форуме «Паяльника», была позаимствована схема комрада «Старичка», а так же в качестве образца была использована «печатка» комрада FOLKSDOICH, которую он мне выслал в личку. Плата была перерисована под детали, которые я выпаял в основном из радиотехнического «мусора».
Доработанная под мои задачи схема Зарядного устройства
Вкратце — это будет Обратноходовый Импульсный преобразователь на микросхеме UC3842, в качестве схемы управления будет использована широко распространенная микросхема LM358. Зарядное устройство выполнено по классической схеме, позволяет ограничить начальный ток в пределах от 500мА и до 6А, в конце зарядки ограничивается напряжение на уровне 14.4В. Потому в качестве измерительного прибора, на лицевой панеле, будет один цифровой амперметр, и один переменный резистор для установления начального зарядного тока, ну и клеммы для подключения проводов.
Расчет трансформатора под спойлером
Хочется особое внимание обратить на силовой импульсный трансформатор. По сути в обратноходовом ИИП он является накопительным дросселем. Поэтому трансформатор должен содержать зазор из немагнитного материала между половинками феррита. Размер зазора берется из расчета, и необходимо обязательно контролировать индуктивность первичной обмотки пр помощи LC метра. Индуктивность должна быть близко к расчетной.
Травим плату и впаиваем детали. Желающим повторить конструкцию даю ссылку на скачивание платы в формате .lay6
drive.google.com/file/d/0B_7BDIUy7CVzWDBfY2ktZ25xTWs/view?usp=sharing
Печатная плата на фото
Конструктивно выполнено так, что вентилятор всегда подключен и обдувает радиаторы силового транзистора и диода Шотки на выходе с силового трансформатора. Цифровой амперметр получает питание от своего миниатюрного понижающего трансформатора, где выходное напряжение выпрямляется и сглаживается при помощи конденсатора.
Включаем собранное ЗУ через лампу накаливания первый раз. Предварительно на выходе подключаем нагрузку и проверяем осциллографом, что у нас на вторичной обмотке силового импульсного трансформатора
Видим характерную картинку обратноходового ИИП. Все нормально…
В дальнейшем пришлось еще немного модифицировать ЗУ — добавлением защиты от «дурака». На выходе установлено реле от автомобильной сигнализации с диодом, которое срабатывает от напряжения от 6В при подключении Аккумуляторной батареи, и только тогда возможна зарядка. Если будут перепутаны клеммы, то реле не сработает и не подключит зарядное устройство к выходным клеммам. Это накладывает определенные ограничения, т.к невозможно заряжать АКБ имеющие на выходе меньше чем 6 Вольт, но обычно такие сильно разряженные аккумуляторы уже полутрупы, и как минимум их нужно заряжать устройствами имеющими режим десульфатации, что бы попытаться реанимировать АКБ.
Ну и еще несколько фотографий собранного зарядного устройства
Зарядка 12В аккумулятора от ИБП
Ссылка на описание микросхемы UC3842
cxema.my1.ru/publ/istochniki_pitanija/bloki_pitanija_impulsnye/opisanie_raboty_princip_dejstvija_shim_mikroskhemy_ka3842_uc3842_a_takzhe_ljuboj_drugoj_serii_384x/65-1-0-5306
Ну и в заключении мой напарник, принявший меры безопасности при включении свежесобранного ЗУ…
фото под спойлером
UPD: я вот думаю, что хорошо, что я пошел спать, а только на утро обнаружил 90 комментариев с разными советами… Иначе бы пол ночи бегал бы, с криками «все пропало», и выставлял бы напряжение отсечки на уровне 13.89В, 14,4В или 16 вольт… )))))
mysku.ru
Схемы включения uc3843, uc3842, ka3525a, uc3845, sg3525, uc3844, uc3846
В настоящее время существует огромное количество различных микросхем, или микрочипов, которые используются в самых различных блоках питания аппаратуры. Если говорить обобщенно, интегральная микросхема представляет собой пластмассовый прямоугольник с гибкими выходами, внутри которого находится вся «умная начинка».
- uc3843 — описание, принцип работы, схема включения
- ka3525a — описание, принцип работы, схема включения
- uc3845 — описание, принцип работы, схема включения
- sg3525 — описание, принцип работы, схема включения
- uc3844 — описание, принцип работы, схема включения
- uc3846 — описание, принцип работы, схема включения
uc3843 — описание, принцип работы, схема включения
Микросхема uc3843 — интегральная схема (ИС), которая предназначена для построения стабилизированных импульсных источников питания с широтно-импульсной модуляцией. В промышленном производстве выпускается в корпусах типа SOIC-8(14), DIP-8.
Основным принципом работы можно назвать применение вместе с uc3843 МОП транзистора. Это объясняется тем фактом, что мощность выходного каскада uc3843 незначительная. Поскольку амплитуда выходного сигнала может достигать напряжения питания МС, в качестве ключа используют МОП-транзистор.
Схема включения uc3843 приведена на рисунке.
Рисунок 1. Схема включения uc3843
uc3842 — описание, принцип работы, схема включения
uc3842 является широтно-импульсным контроллером, который применяется в основном, в преобразователях постоянного напряжения. Очень часто uc3842 используют в блоках питания различной аппаратуры. Подобный элемент можно встретить в «начинке» современных телевизоров и компьютерных мониторов.
Микросхема uc3842 имеет восемь выводов, каждый из которых выполняет свое предназначение:
- на первый подается напряжение;
- второй нужен для создания обратной связи;
- в случае подачи на третий вывод напряжения более 1В, на выходе МС не будет никаких импульсов;
- четвертый — место подключение переменного резистора;
- пятый — общий;
- шестой служит для снятия ШИМ-импульсов;
- седьмой необходим для подключения питания от 16 до 34В, в нем срабатывает защита от перенапряжения;
- восьмой подключается специальное устройство, которое стабилизирует частоту импульсов.
Типовая схема включения микрочипа uc3842 представлена на рисунке 2.
Рисунок 2. Типовая схема включения uc3842
ka3525a — описание, принцип работы, схема включения
ka3525a — это импульсные стабилизаторы напряжения от производителя Fairchild. Он позволяет обеспечить внутренний мягкий старт, контроль времени. Схема включения отображена на рисунке 3.
Рисунок 3. Схема подключения микрочипа ka3525a
uc3845 — описание, принцип работы, схема включения
uc3845 — это универсальный микрочип для однотактных преобразователей напряжения. Используется в прямо- и обратноходовых преобразователях. Работает в режиме реле и полноценного ШИМ стабилизатора напряжения с ограничениями по току. Во время перегрузки микрочип переходит в режим стабилизации тока. Чтобы обеспечить стабилизацию напряжения, необходимы дополнительные резисторы и транзистор.
Принцип работы ШИМ uc3845 основан на контроле среднего значения выходного напряжения и максимального значения тока. Если уменьшается нагрузка, выходное напряжение увеличивается. Амплитуда на токоизмерительном резисторе уменьшается, длительность импульса уменьшается до восстановления баланса между напряжением и током.
Схема включения микросхемы (8 выводов) uc3845 отображена на рисунке 4.
Рисунок 4. Схема включения микрочипа uc3845
sg3525 — описание, принцип работы, схема включения
Микросхема sg3525 — широтно-импульсный модулятор в интегральном исполнении. Обеспечивает повышение производительности и уменьшение числа внешних деталей при проектировании и производстве всех видов импульсных источников питания. Имеет встроенный источник опорного напряжения +5,1В. Вход генератора обеспечивает синхронизированную работу различны устройств. sg3525 имеет встроенный плавный пуск схемы, что обеспечивается благодаря наличию внешнего конденсатора. Входные каскады микросхемы обеспечивают ток на выходе до 400 мА .
Схема подключения видна на рисунке 5.
Рисунок 5. Схема подключения ШИМ sg3525
uc3844 — описание, принцип работы, схема включения
Микросхема uc3844 широко распространена в импульсных блоках питания компьютерной и различной бытовой техники. uc3844 используется для управления полевым ключевым транзистором в схемах ИБП.
Микрочипы uc3844 разработаны специально для DC-DC преобразователей, поскольку преобразовывают постоянное напряжение одной величины в постоянное напряжение другой величины.
Если напряжение питания в норме, на выводе 8 появляется напряжение +5В, которое приводит в запуск генератор OSC.
Производством чипов uc3844 занимаются фирмы UNITRODE, ST и TEXAS INSTRUMENTS.
Схема включения отображена на рисунке 6.
Рисунок 6. Схема включения микрочипа uc3844
uc3846 — описание, принцип работы, схема включения
ШИМ контроллер uc3846 имеет 16 выводов. Основные принципы работы можно обозначить тезисами:
- если на 16 выводе напряжение ниже 0,35В, выходные импульсы на выводах 11 и 14 будут заблокированы полностью;
- если на выводе 1 напряжение низкое (ниже 0,35В), результат будет таким же;
- на 2 выводе напряжение должно составлять 5,1В;
- 13 и 15 выводам соответствует напряжение питания 8-40В;
- вывод 10 построен для внешней синхронизации в схеме;
- 9 и 6 выводы нужны для подключения резистора и конденсатора, которые будут задавать частоту работу ШИМ;
- выводы 3,4, а также 5,6 служат для сигналов ошибок общей схемы источника питания или преобразователя;
- вывод 12 — общий провод;
- вывод 7 — выход усилителя ошибки;
- вывод 1 — ограничение предельного тока.
Основная схема включения микрочипа uc3846 представлена на рисунке 7.
Рисунок 7. Схема включения микрочипа uc3846
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:Проголосовавших: 44 чел.
Средний рейтинг: 4.3 из 5.
principraboty.ru
MP2359DJ неплохой мелкий ШИМ контроллер
Как обещал ранее, выкладываю обзор на радиолюбительскую тематику.Увидел как то на одном из форумов упоминание о данном ШИМ контроллере. А так как я иногда занимаюсь изготовлением всяких электронных устройств, то решил заказать для пробы.
Ну а раз уж заказал, да еще и получил (в последнее время это происходит не всегда), то перед подтверждением получения ведь неплохо бы его и проверить.
Описание, проверка, результаты, все под катом.
Вообще получил я данные микросхемы очень давно, но проверить время нашлось только сейчас.
Заказаны они были в районе Нового года, а получил я их 3 февраля.
Продавец приятно удивил несколько раз, за что ему в отзыв будет добавлена ссылка на обзор.
Для начала он быстро выслал микрухи, а потом сам продлил срок защиты заказа, без напоминания.
На это я ему написал, что микросхемы получил, но подтверждение сделаю после проверки.
Пришли микросхемы в самом обычном бумажном конвертике с пупыркой, хотя недавно получил светодиод в полиэтиленовом пакете вообще без какой либо защиты.
MP2359DJ неплохой мелкий ШИМ контроллерВторое что удивило, продавец положил не 10 микросхем, а 11. Оно как бы мелочь, 20 центов, но приятно. можно сказать что одна микросхема на эксперименты 🙂MP2359DJ неплохой мелкий ШИМ контроллер
Микросхемы в корпусе SOT-23-6, маркировка присутствует с обеих сторон.
Внешне претензий у меня не возникло, хотя скотч, которым была замотана лента, сначала немного насторожил.MP2359DJ неплохой мелкий ШИМ контроллер
Данная микросхема является понижающим ШИМ контроллером со встроенным силовым транзистором
Для начала технические характеристики (перевод из даташита), полный даташит на английском доступен по ссылке.
Пиковый выходной ток — 1.2 Ампера
Сопротивление внутреннего полевого транзистора — 0.35 Ома
Стабильная работа с выходным LowESR керамическим конденсатором
КПД до 92%
0.1мкА потребление в дежурном режиме.
Фиксированная частота работы 1.4МГц
Защита от перегрева
Ограничение максимального тока в каждом такте.
Диапазон входного напряжения 4.5-24 Вольта
Выходное напряжение 0.81-15 Вольт
Типовая схема включения имеет небольшое количество внешних компонентов.
Есть конечно микросхемы где компонентов еще меньше, но как по мне, то и так вполне нормально.
Внутреннее устройство микросхемы.
Пожалуй из минусов микросхемы (и то условно) можно назвать лишь то, что в качестве силового применен N канальный транзистор. Это добавляет сложности, необходимость применения внешнего конденсатора и невозможность микросхеме обеспечить 100% цикл, так как необходимо время для перезарядки внешнего конденсатора питания драйвера.
Но у такого решения есть и плюс, N канальные транзисторы обычно имеют лучшие характеристики в сравнении с Р канальными.
Также большим плюсом является низкое опорное напряжение, составляющее всего 0.81 Вольта, позже я объясню почему.
MP2359DJ неплохой мелкий ШИМ контроллерТакже есть и усложненная схема применения этой микросхемы.
При входном напряжении менее 5 Вольт желательно установить дополнительный диод D3.
При выходном напряжении менее 5 Вольт желательно установить диод D2
В остальных ситуациях дополнительные компоненты не требуются.MP2359DJ неплохой мелкий ШИМ контроллер
Выше я написал что микросхема имеет низкое опорное напряжение.
Это позволяет сделать на ее базе простой драйвер для светодиодов.
Дело в том, что чем выше это напряжение, тем больше будут потери на токоизмерительном шунте. Запустить так можно большинство микросхем, но чем напряжение ниже, тем выше будет КПД такого драйвера.
Да и просто всегда лучше иметь запас в нижнюю сторону, так как большая часть известных мне простых ШИМ контроллеров имеет 1.23-2.5 Вольта.MP2359DJ неплохой мелкий ШИМ контроллер
Так как мне надо было проверить то, что я получил, то пришлось собрать небольшую тестовую платку.
Собирать я решил по простому варианту схемы, хотя и с изменениями, обусловленными тем, что собирал «из того, что было».
Изменения коснулись конденсаторов.
Производитель рекомендует емкость входного и выходного конденсатора 10 и 22мкФ, я применил 2х2.8 и 2х5.6 соответственно, т.е. примерно в 2 раза меньше.
Также конденсатор питания драйвера рекомендуется ставить около 10нФ, с дополнительными диодами до 1мкФ, но я поставил 0,1мкФ без всяких диодов.
Диод поставил также из того что было, банальный SS34.
Дроссель рекомендуется ставить на 4.7мкГн, у меня был на 10мкГн.
Т.е. я сознательно ухудшил характеристики преобразователя, а кроме того хотел проверить как ведет себя микросхема при номиналах отличных от даташита.
MP2359DJ неплохой мелкий ШИМ контроллерПечатную плату я сначала страссировал свою, но она мне не нравилась и я решил сделать так как рекомендует производитель.
Вообще трассировка таких вещей дело довольно ответственное, мало просто соединить выводы как надо по схеме, требуется соблюсти правильно топологию платы, так как это может влиять на многие вещи.
Например неправильная разводка платы может увеличить пульсации напряжения на выходе, а может вовсе привести к полной неработоспособности устройства.
Так видит плату производитель.
А такую плату страссировал я.
Ну дальше все в принципе просто. плата изготавливалась по ЛУТ технологии, которую я описывал здесь. Только после того я уже купил еще бумаги, самое недорогое предложение оказалось как ни странно в магазине Бангуд, рекомендую.
Единственно, я как то забыл про то что у меня травится плата и передержал ее, потому результат вышел хуже.
Для платы использовался текстолит толщиной 1мм. Кстати. Текстолит отличный, когда плата вытравлена, то он полупрозрачный, сейчас ищу такой текстолит, желательно стандартный лист.MP2359DJ неплохой мелкий ШИМ контроллер
Подобрал компоненты.
Резисторы делителя обратной связи можно легко рассчитать зайдя на эту страничку, думаю понятно и без объяснений что есть что 🙂
Исходные данные — 5 Вольт на выходе, 0.81 Вольта напряжение на выходе делителя.
Я выбрал номинал верхнего резистора 10к, программа выдала номинал нижнего как 2к.
Конденсаторы выпаяны из платы от какого то монитора, дроссель и диод новые.MP2359DJ неплохой мелкий ШИМ контроллер
В итоге у меня получилась небольшая и почти аккуратная платка.MP2359DJ неплохой мелкий ШИМ контроллер
Размеры платы около 23 х12,5ммMP2359DJ неплохой мелкий ШИМ контроллер
Сначала я протестировал платку при помощи «стенда», состоящего из:
Блока питания
Электронной нагрузки
Мультиметра
Осциллографа
Бесконтактного термометра
Был протестирован нагрев и работа под нагрузкой.
MP2359DJ неплохой мелкий ШИМ контроллерНо так как кроме нагрева меня интересовал еще и КПД, то пришлось воспользоваться еще одним мультметром.
Дело в том, что амперметр блока питания имеет больше погрешность чем мультиметр, а мне хотелось получить более точные результаты измерения.
Так как нагрузка была неизменна, то я сгруппировал фото измерения потребляемого тока и осциллограммы, полученные в прошлом тесте.
Входное напряжение 10 Вольт
1. Ток нагрузки 0.6 Ампера, выходное напряжение 4.84 Вольта
2. Ток нагрузки 1.2 Ампера, выходное напряжение 4.80 Вольт
В обоих случаях пульсации были на грани чувствительности при том, что щуп стоял в режиме 1:1.
Входное напряжение 15 Вольт
1. Ток нагрузки 0.6 Ампера, выходное напряжение 4.83 Вольта
2. Ток нагрузки 1.2 Ампера, выходное напряжение 4.81 Вольта
Ситуация с уровнем пульсаций аналогична первому тесту.MP2359DJ неплохой мелкий ШИМ контроллер
Входное напряжение 20 Вольт
1. Ток нагрузки 0.6 Ампера, выходное напряжение 4.83 Вольта
2. Ток нагрузки 1.2 Ампера, выходное напряжение 4.81 Вольта
И опять уровень пульсаций на грани чувствительности.MP2359DJ неплохой мелкий ШИМ контроллер
После этого я проверил плату еще в нескольких режимах, но уже без фото.
1. Собственное потребление преобразователя составляет 1.3мА при 10 Вольт и 1.4мА при 20 Вольт. Из этих 1.3-1.4мА около 0.3мА потребляет делитель обратной связи. Так что с собственным потреблением (не в дежурном режиме) все отлично.
2. Проверка работы преобразователя в режиме КЗ. Ток потребления по входу составляет около 0.1 Ампера в диапазоне входного напряжения 10-20 Вольт. Микросхема в этом режиме начинает нагреваться.
3. Так как в режиме КЗ я получил нагрев микросхемы, то проверил и работу термозащиты.
После достижения температуры корпуса микросхемы около 100 градусов (сложно измерять температуру такого мелкого компонента), микросхема перешла в старт/стоп режим с частотой около 0.5Гц. Ток потребления в паузах снижался до 50мА.
Если убрать перегрузку, то микросхема сразу переходила в нормальный режим работы.
В даташите была найдена табличка со значениями КПД а разных режимах.
Я проверял при немного других входных напряжениях, но не думаю что это критично.
Как можно видеть из графика, максимальный КПД микросхема имеет при выходном токе около 0.6 Ампера и входном напряжении 12 Вольт.
Мои расчеты показали, что преобразователь реально имеет КПД почти 92%, но при входном напряжении около 15 Вольт.
Но опять же, оговорюсь, я использовал компоненты, которые на КПД сказались скорее отрицательно, чем положительно, но даже в таком варианте КПД не падал ниже чем 87.7%.
Резюме.
Плюсы
Цена
Корректная отработка защиты от превышения выходного тока и КЗ
Не менее корректная работа защиты от перегрева
Неплохой КПД
Простая схема, нет необходимости применять большие электролитические конденсаторы
Очень низкий уровень пульсаций
Частота работы 1.4МГц
Низкое напряжение встроенного ИОНа, составляющее 0.81 Вольта
Отличный продавец
Минусы
Пожалуй невозможность 100% рабочего цикла, так как требуется время на зарядку конденсатора питания драйвера.
Мое мнение. Микросхема понравилась, недорого, просто, отлично работает, да и продавцу зачет.
Конечно есть микросхемы лучше, с синхронным выпрямителем, на больший ток, но мне больше не надо было, а габарит, простота и цена перевесили эти преимущества.
В общем рекомендую.
В качестве дополнительных материалов предлагаю архив с даташитом, схемой и трассировкой — ссылка.
www.kirich.blog
Микросхемы ШИМ — контроллеров для импульсных источников питания (ИИП).
| ||||||
---|---|---|---|---|---|---|
В справочник отобраны распространенные недорогие микросхемы | ||||||
Наименование | Ucc, В | Uвых, В | Iмакс, A | Примечание | ||
— простое схемное решение для маломощных источников питания, не требующих гальваноразвязки. Надежные встроенные токовая и температурная защиты. | ||||||
LNK302-306 | 50…450* | .5..24… | 0.36 | регулирование выпусканием импульсов | шим контроллер с встроенным ключом | |
Viper12 | 40…450* | 10..35… | 0.2* | ШИМ, Pвых до 13Вт | контроллер для простого импульсного источника питания. может использоваться для питания светодиодов, микроконтроллеров от сетевого напряжения | |
Viper22 | 40…450* | 10..35… | 0.35* | ШИМ, Pвых до 20Вт | высоковольтный понижающий стабилизатор напряжения | |
BP5048-15 | 250…358 | 15 | 0.2 | нужен только дроссель | простой понижающий импульсный DC/DC источник питания на 15В | |
BP5048-24 | 250…358 | 24 | 0.2 | нужен только дроссель | DC/DC бестрансформаторный импульсный источник питания на 24В на 24В | |
для маломощных трансформаторных источников питания. Минимум внешних компонентов. Встроенные токовая и температурная защиты. | ||||||
LNK362-364 | 100..400* | 0.2…0.4 | встроенный источник собственного питания | ШИМ контроллер для простого импульсного источника питания | ||
LNK623-626 | 100..400* | 0.4…0.7 | до 7Вт | ШИМ контроллер со встроенным силовым ключом для простого блока питания | ||
TOP252-262 | 100..460* | 0.68…11 | до 244Вт | шим контроллер для источников питания средней мощности | ||
TOP264-271 | 100..400* | 2…11 | для качественных источников, до 244Вт | микросхема контроллера для импульсных источников питания | ||
TNY274-280 | 100..400* | 0.4…1.3 | встроенный источник собственного питания, до 36Вт | |||
NCP1010-1014 | 100..400* | 0.1…0.5 | встроенный источник собственного питания, | |||
ICE2Axxx | 100..400* | 0.5…7 | от 23 до 240Вт | |||
ALTAIR05-800 | ?…400* | 1 | квазирезонансный, ключ на 800В | ШИМ контроллер для импульсных источников питания, работающих в квазирезонансном режиме | ||
ALTAIR04-900 | ?…400* | 0.7 | квазирезонансный ключ на 900В | |||
UC3842-3845 КР1033ЕУ10, ЕУ11 | 7…30 | 1 | шим контроллер обратноходовых источников питания | |||
NCP1230-1238 | 7…18 | 0.5/0.8 | 3 фиксированных частоты, непосредственное подключение оптрона ОС | шим контроллер для обратноходовых импульсных преобразователей напряжения | ||
UCC28600 | 8…32 | 1/0.8 | квазирезонансный режим | шим контроллер для преобразователей напряжения | ||
L6565 | 10…18 | 0.7 | квазирезонансный режим | микросхема для обратноходовых преобразователей | ||
TDA4605 КР1033ЕУ2 | 7…20 | квазирезонансный режим | шим контроллер для Flyback преобразователей | |||
UCC38083-38086 | 4…15* | 1/0.5 | шим контроллер для источников питания мостовой и полумостовой схемой включения транзисторов | |||
MC33025 | 9…30 | 2*/0.5 | шим контроллер для двухтактных источников питания | |||
NCP1395 | 10…20 | резонансный | шим контроллер для двухтактных источников питания | |||
На главную | ||||||
www.trzrus.ru
Микросхемы ШИМ-контроллера KA3842, UC3842, UC2842
Микросхемы ШИМ-контроллера ka3842 или UC3842 (uc2842) является самой распространенной при построении блоков питания для бытовой и компьютерной техники, часто используется для управления ключевым транзистором в импульсных блоках питания.
Принцип работы микросхем ka3842, UC3842, UC2842
Микросхема 3842 или 2842 представляет собой ШИМ — Широтно-импульсная модуляция (ШИМ, англ. pulse-width modulation (PWM)) преобразователь, в основном применяется для работы в режиме DC-DC(преобразовывает постоянное напряжение одной величины в постоянное напряжение другой) преобразователя.
Рассмотрим структурную схему микросхем 3842 и 2842 серий:
На 7 вывод микросхемы подается напряжение питания в диапазоне от 16 Вольт до 34. Микросхема имеет встроенный триггер Шмидта (UVLO), который включает микросхему, если напряжение питания превышает 16 Вольт, и выключает если напряжение питания по каким-либо причинам станет ниже 10 Вольт. Микросхемы 3842 и 2842 серий также обладает защитой от перенапряжения: если напряжение питания превысит 34 Вольта, микросхема отключится. Для стабилизации частоты генерации импульсов микросхема имеет внутри свой собственный 5 вольтовый стабилизатор напряжения выход которого подключен к выводу 8 микросхемы. Вывод 5 масса (земля). На 4 выводе задается частота импульсов. Достигается это резистором RT и конденсатором CT подключенных к 4 выв. — смотрите типовую схему включения ниже.
6 вывод – выход ШИМ импульсов. 1 вывод микросхемы 3842 служит для обратной связи, если на 1 выв. напряжение занизить ниже 1 Вольта, то на выходе (6 выв.) микросхемы будет уменьшаться длительность импульсов, тем самым уменьшая мощность шим преобразователя. 2 вывод микросхемы, как и первый, служит для уменьшения длительности импульсов на выходе, если напряжение на выводе 2 выше +2,5 Вольт, то длительность импульсов уменьшится, что в свою очередь снизит выдаваемую мощность.
Микросхему с наименованием UC3842 кроме UNITRODE выпускают фирмы ST и TEXAS INSTRUMENTS, аналогами этой микросхемы являются: DBL3842 фирмы DAEWOO, SG3842 фирмы MICROSEMI/LINFINITY, KIA3842 фирмы КЕС, GL3842 фирмы LG, а также микросхемы других фирм с различными литерами (AS, МС, IP и др.) и цифровым индексом 3842.
Схема импульсного блок питания на базе ШИМ-контроллера UC3842
Принципиальная схема 60 Ваттного импулсного блока питания на базе ШИМ-контролера UC3842 и силовом ключе на полевом транзисторе 3N80.
Микросхема ШИМ-контроллера UC3842 — полный datasheet с возможностью скачать бесплатно в pdf формате или смотреть в онлайн справочнике по электронным компонентам на Времонт.su
www.xn--b1agveejs.su