Схема включения пускателя с тепловым реле: Схема подключения теплового реле для электродвигателя

Содержание

Схема подключения теплового реле для электродвигателя

Техника, которая оснащается двигателями нуждается в защите. Для этих целей в нее устанавливается система принудительного охлаждения, чтобы обмотки не превышали допустимую температуру. Иногда ее бывает недостаточно, поэтому дополнительно может быть смонтировано тепловое реле. В самоделках его приходится монтировать своими руками. Поэтому важно знать схему подключения теплового реле.

Принцип работы теплового реле


В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин. Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test. Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop. Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Обратите внимание! Описание приводится для теплового реле LR2 D1314. Другие варианты имеют схожее строение и схему подключения.

Функционировать тепловое реле может в ручном и автоматическом режиме. С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset. Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом. Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset. Она практически моментально возвращает контактные площадки в нормальное положение.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Обратите внимание! Тепловое реле не предназначено для защиты двигателя от короткого замыкания. Это связано с высокой скоростью пробоя. Пластины просто не успевают отреагировать. Для этих целей необходимо предусматривать специальные автоматические выключатели, которые также включаются в цепь питания.

Характеристики реле


При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

Процесс подключения


Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Резюме


Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

Отправить комментарий

Схема подключения магнитного пускателя с тепловым реле

Схема подключения магнитного пускателя от А до Я — советы экспертов по выбору и пошаговая инструкция по монтажу и подключению (145 фото и видео)

Подача электропитания на двигатели осуществляется либо через контактор, либо через магнитный пускатель. По выполняемым функциям эти устройства очень схожи между собой, и нередко в прайс-листах их даже путают. Между ними, тем не менее, существуют и серьезные различия. Виды магнитных пускателей, с фото и примерами, а также схема их подключения будут разобраны в рамках статьи.

Краткое содержимое статьи:

Сходство и различие контакторов и пускателей

Оба устройства служат, чтобы замыкать и размыкать цепь по мере надобности. В основу их конструкции заложен электромагнит, работают они и от переменного, и от постоянного тока. Оснащены силовыми, или основными, а также сигнальными, или вспомогательными, контактами.

Разница заключается в степенях защиты устройств. Контакторы оснащаются камерой для гашения дуги. Благодаря этой особенности они применяются в цепях с большей мощностью, чем пускатели. Кроме того, само устройство более массивное за счет дугогасящих камер. Максимально допустимая сила тока для пускателей составляет до 10 ампер.

Пускатели изготавливают в пластмассовом корпусе и оснащены восемью контактами – шесть для питания трехфазного двигателя, и два для его обеспечения электропитанием после прекращения нажатия кнопки «пуск». Применяют их как для питания электродвигателей, так и приборов, для которых подходит данная схема.

Контакторы нередко изготавливаются без корпуса, поэтому в процессе эксплуатации для них необходимо предусмотреть защитный кожух, предохраняющий его от влаги и загрязнения, и поражения людей током.

Как работает пускатель

Главными частями прибора являются индуктивная катушка и магнитопровод, состоящий из статической и динамической частей Ш-образной формы. Они расположены выводами один к другому. Стационарная часть закреплена на корпусе, а подвижная – не закреплена. Внизу магнитопровода в специальную прорезь вводится катушка индуктивности.

В зависимости от ее параметров, меняется номинальное напряжение работы устройства – от 12 до 380 вольт. Вверху магнитопровода находится две пары контактов – статичные и динамичные.

Когда питания нет, то пружинка удерживает контакты разомкнутыми. Когда питание появляется, в катушке наводится магнитное поле, и верхний сердечник притягивается к нижнему. Контакты в результате замыкаются. После снятия питания, исчезает и электромагнитное поле, а пружина разжимает контакты.

Устройство может работать от источника постоянного тока, и при одно- и трехфазном переменном токе, главное, чтобы его значения не превышали номинал, указанный заводом-изготовителем.

Сеть на 220 вольт

При питании от сети 220 вольт с одной фазой, подключение осуществляется через выводы, которые, как правило, обозначают А1 и А2. Расположены они в верху корпуса пускателя. При подсоединении к ним провода с вилкой, прибор включается в сеть. На выводы, маркированные L1, L2, L3 подается любое напряжение, снимаемое с контактов Т1, Т2 и Т3.

Ноль и фазу при подсоединении к устройству возможно спокойно перебрасывать, это не принципиально. Обычно питание подается через датчик температуры или степени освещения, например, при подсоединении пускателя к автономному отоплению или уличному освещению.

Кнопки «пуск» и «стоп»

При запуске и выключении двигателя при помощи пускателя удобно подключение устройства с кнопками, включенными последовательно с прибором.

Чтобы по окончанию нажатия на кнопку «пуск» работа двигателя не прекратилась, в цепь вводят самоподхват за счет запараллеленных с «пуском» выводов. Благодаря им двигатель работает после того, как на «пуск» уже не нажимают, до того момента, пока не нажмут на кнопку остановки.

На двигатель подают напряжение через любой маркированный буквой L контакт, и снимают его с соответствующего контакта под литерой Т. Данная схема подключения справедлива для однофазной сети.

Трехфазная сеть на 380 В

При подключении к трехфазной сети, задействуется три группы контактов L и Т. Одна из фаз подключается к контакту А1 или А2, ко второму из них подсоединяют «ноль». Для защиты асинхронного двигателя от перегрева в цепь вводится тепловое реле. Больше никаких принципиальных отличий в подключении нет.

Тепловое реле для электродвигателя схема подключения

Техника, которая оснащается двигателями нуждается в защите. Для этих целей в нее устанавливается система принудительного охлаждения, чтобы обмотки не превышали допустимую температуру. Иногда ее бывает недостаточно, поэтому дополнительно может быть смонтировано тепловое реле. В самоделках его приходится монтировать своими руками. Поэтому важно знать схему подключения теплового реле.

Принцип работы теплового реле


В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин. Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test . Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop . Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Функционировать тепловое реле может в ручном и автоматическом режиме. С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset . Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом. Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset . Она практически моментально возвращает контактные площадки в нормальное положение.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Характеристики реле


При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

Процесс подключения


Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Резюме


Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

Схема подключения магнитного пускателя и теплового реле

Магнитным пускателем называют специальную установку, с помощью которой производится дистанционный запуск и управление работой асинхронного электрического двигателя. Данное приспособление характеризуется простотой конструкции, что позволяет произвести подключение мастеру без соответствующего опыта.

Проведение подготовительных работ

Перед подключением теплового реле и магнитного участка необходимо помнить, что вы работаете с электрическим прибором. Именно поэтому, чтобы обезопасить себя от поражения электрическим током, нужно произвести обесточивание участка и проверить его. С этой целью, наиболее часто, используется специальная индикаторная отвертка.

Следующим этапом подготовительных работ является определение величины рабочего напряжения катушки. В зависимости от производителя приспособления увидеть показатели можно на корпусе или на самой катушке.

Этап правильного определения катушки достаточно важен при подключении магнитного пускателя. В противном случае она может перегореть во время работы устройства.

Для подключения данного оборудования необходимо использовать две кнопки:

Первая из них, может иметь черный или зеленый цвет. Эта кнопка характеризуется постоянно разомкнутыми контактами. Вторая кнопка имеет красный цвет и постоянно замкнутые контакты.

Во время подключения теплового реле необходимо помнить о том, что с помощью силовых контактов производится включение и выключение фаз. Нули, которые подходят и отходят, а также проводники, которые заземляют, между собой необходимо соединять в области клеммника. При этом, в обязательном порядке, пускатель необходимо отходить. Коммутация этих приспособлений не производится.

Для того чтобы произвести подключение катушки, величина рабочего напряжения которой составляет 220 Вольт, необходимо взять ноль с клеммника и подсоединить его к схеме, которая предназначается для работы пускателя.

Особенности подключения магнитных пускателей

Схема магнитного пускателя характеризуется наличием:

  • трех пар контактов, с помощью которых производится подача питания на электрическое оборудование;
  • Схемы управления, в состав которой входит катушка, дополнительные контакты и кнопки. С помощью дополнительных контактов производится поддержка работоспособности катушки, а также блокировка ошибочных включений.

Для сборки магнитного пускателя требуется использование трехжильного кабеля, который подводится к кнопкам, а также одной пары контактов, которые хорошо разомкнуты.

При использовании катушки в 220 Вольт необходимо произвести подключение проводов красного или черного цветов. При использовании катушки 380 Вольт используется разноименная фаза. Четвертую свободную пару в этой схеме используют как блок-контакт. Три пары силовых контактов включаются наряду с этой свободной парой. Расположение всех проводников производится сверху. В том случае, если есть два дополнительных проводника, то их размещают сбоку.

Силовые контакты пускателя характеризуются наличием трех фаз. Для их включения во время нажатия кнопки Пуск, необходимо произвести подачу на катушку напряжения. Это позволит цепи замкнуться. Для размыкания цепи необходимо произвести отключение катушки. Для сборки цепи управления зеленая фаза напрямую подключается к катушке.

Включение работы магнитного пускателя производится с помощью кнопки Пуск, которая смыкает цепь, а отключение – с помощью кнопки Стоп, которая производит расцепление цепи.

Особенности подключения теплового реле

Между магнитным пускателем и электрическим двигателем располагается тепловое реле. Его подключение осуществляется к выходу магнитного пускателя. Через данное приспособление осуществляется прохождение электрического тока. Тепловое реле характеризуется наличием дополнительных контактов. Их необходимо соединить последовательно с катушкой пускателя.

Тепловое реле характеризуется наличием специальных нагревателей, через которые может проходить электрический ток определенной величины. При возникновении опасных ситуаций (возрастание тока выше указанных пределов), благодаря наличию биметаллических контактов, производится разрыв цепи и впоследствии отключения пускателя. Для того чтобы запустить работу механизма, необходимо включить биметаллические контакты с помощью кнопки.

Подключение электромагнитного пускателя и теплового реле производится достаточно просто. Для этого необходимо всего лишь придерживаться схемы.

Схемы подключения магнитного пускателя

Пускатель, схема “звезда-треугольник”

Сразу отсылаю читателя к статьям, которые предшествуют этой – Виды и отличия контакторов и пускателей, и Подключение асинхронного электродвигателя. Очень рекомендую ознакомиться, перед дальнейшим чтением.

Скажу также, что на языке электриков “контактор” и “пускатель” очень переплетены, и я в статье буду говорить и так, и эдак.

Повторюсь, чтобы освежить в памяти. Магнитный пускатель – устройство, которое обязательно содержит контактор (как главный коммутационный элемент), а также может содержать:

  • мотор-автомат либо защитный автомат (как устройство рабочего или аварийного отключения),
  • тепловое реле (как устройство аварийного отключения при перегрузке и обрыве фазы),
  • кнопки “Пуск”, “Стоп”, различные переключатели режимов схемы,
  • схема управления (может содержать те же кнопки, а может – контроллер),
  • индикация работы и аварии.

Различные схемы подключения магнитных пускателей и их отличия рассмотрим ниже.

Типовая схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских станках и другом простом оборудовании на 2-3 двигателя используется и по сей день.

Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “ Пуск ” и “ Стоп ” , которые могут быть вынесены на пульт управления через 3 провода любой длины.

Пример такой схемы – в статье про восстановление схемы гидравлического пресса, см. последнюю в статье схему, пускатель КМ0.

5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод 1) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2).

Часто в таких схемах пускатель не включается из-за того, что у этой кнопки “подгорают” контакты.

На схеме не показан защитный автомат цепи управления, он ставится последовательно с кнопкой “Стоп”, номинал – несколько ампер.

Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.

Не путать с блокировкой в реверсивных схемах, см. ниже.

Контакты “Самоподхвата” физически расположены на одном креплении с силовыми контактами контактора, и работают одновременно.

Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.

Часто в таких схемах бывает, что пускатель не становится на “самоподхват”. Дело в том самом четвертом контакте.

Схема подключения пускателя с тепловым реле

В схеме выше я упустил из виду тепловую защиту ради простоты схемы. На практике обязательно применяют тепловое реле типа РТЛ (по крайней мере, это было принято до 2000 г. у нас и до 1990 г. у “них”)

6. Схема подключения пускателя с кнопками и тепловым реле

Как только ток двигателя возрастает выше установленного (из-за перегрузки, пропадания фазы) – контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя рвётся.

Таким образом, тепловое реле выполняет роль кнопки “Стоп”, и стоит в той же цепи, последовательно. Где его поставить – не особо важно, можно на участке схемы L1 – 1, если это удобно в монтаже.

Однако, тепловое реле не спасает от КЗ на корпус и между фазами. Поэтому в таких схемах обязательно ставят защитный автомат, как показано на схеме 7:

А что там свежего в группе ВК СамЭлектрик.ру?

Подписывайся, и читай статью дальше:

7. Схема подключения пускателя с кнопками автоматом и тепловым реле. ПРАКТИЧЕСКАЯ СХЕМА

Внимание! Цепь управления (цепь, через которую питается катушка пускателя КМ) должна обязательно быть защищена автоматом с током не более 10А. Данный защитный автомат на схеме не показан. Спасибо внимательным читателям!)

Ток защитного автомата двигателя QF не надо подбирать так тщательно, как в схеме 3, поскольку с тепловой перегрузкой справится РТЛ. Достаточно, чтобы он защищал подходящие провода от перегрева.

Пример. Двигатель 1,5кВт, ток по каждой фазе 3А, ток теплового реле – 3,5 А. Провода питания двигателя можно взять 1,5 мм2. Ток они держат до 16А. И автомат вроде можно поставить на 16А? Однако, не надо действовать топорно. Лучше поставить что-то среднее – 6 или 10А.

Схема подключения магнитного пускателя от контроллера

Последние 10 лет в новой промышленной автоматике широко применяются контроллеры. Катушки пускателей также включаются с выходов контроллера. И в данном случае для защиты от КЗ и теплового перегрева используется схема подключения двигателя номер 8:

8. Схема подключения пускателя с управлением от контроллера. ПРАКТИЧЕСКАЯ СХЕМА

На схеме QF – это мотор-автомат, или автомат защиты двигателя, как в схеме 4. Только изобразил я его по современному. В данном схема подключения пускателя “спрятана” в пунктире. Там находится контроллер, который всем управляет, и включает двигатель согласно программе, заложенной в нём.

При перегрузке двигателя мотор-автомат его отключает, и размыкает свой дополнительный (четвертый, сигнальный) контакт. Это необходимо только для того, чтобы “проинформировать” контроллер о аварии. Часто этот контакт просто-напросто входит в контрольную цепь, и останавливает весь станок.

Схема подключения реверсивного магнитного пускателя

Фактически это два магнитных пускателя, объединенные электрически и механически, дальше подробнее.

Реверсивное управление электродвигателем

Реверсивный пускатель нужен тогда, когда необходимо, чтобы двигатель вращался поочередно в обоих направлениях.

Правое вращение (применяется чаще всего) – когда двигатель крутится по часовой стрелке, если смотреть ему “в зад”. Левое вращение – против часовой.

Смена направления вращения реализуется общеизвестным способом – меняются местами любые две фазы. Посмотрите на схему реверсивного включения двигателя ниже:

9. Схема подключения реверсивного магнитного пускателя на 220В с управлением от кнопок. ПРАКТИЧЕСКАЯ СХЕМА

Когда включен пускатель КМ1, это будет “правое” вращение. Когда включается КМ2 – первая и третья фазы меняются местами, движок будет крутиться “влево”. Включение пускателей КМ1 и КМ2 реализуется разными кнопками “ Пуск вперед ” и “ Пуск назад “, выключение – одной, общей кнопкой “ Стоп ” , как и в схемах без реверса.

Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2. Он означает “защиту от дурака”. Может произойти так, что по какой-то причине включатся оба пускателя сразу. Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, “Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!” А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!

Поэтому реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.

Теперь посмотрите на контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Это – электрическая защита от того же дурака. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если наш дурак будет со всей своей дури жать на обе кнопки “Пуск” сразу, ничего не получится – двигатель будет слушаться той кнопки, которая нажата раньше.

Механическая и электрическая защиты в схеме подключения реверсивного пускателя должны быть всегда, они дополняют друг друга. Не ставить одну либо другую – моветон среди электриков.

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. контакт. Например, для пускателя типа ПМЛ используют приставку ПКИ. А если, как в схеме 8, используется контроллер, самоподхват не нужен, и достаточно одного НЗ контакта на каждое направление вращения.

Реверсивное управление гидравликой

А вот пример реверсивного управления клапанами, из статьи про гидравлический пресс:

То, что применяются реле, не должно сбивать с толку. Фактически контактор и реле – суть одно устройство, отличие только в конструкции и параметрах.

Фактически, схема повторяет схему для двигателя, только вместо кнопки “Стоп” – два концевых выключателя, и кнопки SB1, SB2 – с дополнительными блокировочными НЗ контактами. Подробное описание работы схемы – здесь.

Работа реверсивного пускателя также подробно описана в статье про подключение генератора к сети дома.

Различие пускателей на 220В и 380В

Катушки магнитных пускателей для работы в сетях 380В могут быть на 220 и 380 Вольт без особых переделок схемы. Во всех схемах, приведённых в этой статье, электромагнитные пускатели имеют катушку на напряжение 220 В. Что же делать, если в руки попал пускатель не на 220В, а на 380В?

Всё очень просто – надо нижний (по схеме) вывод катушки пускателя на 380В подключить не к нулю (N), а к L2 или L3. Эта схема даже более предпочтительна, так как вся схема с пускателем на 380В может быть собрана вообще без нуля. Три фазы приходят, и три фазы уходят на двигатель, не считая управления.

Варианты нагрузок

К выходу магнитного пускателя можно подключить что душе угодно, не только двигателя, как в статье. Привожу примеры статей, в которых через пускатели включаются ТЭНы:

Видео

Вот как интересно вещает на тему статьи Алекс Жук:

На этом всё, жду комментариев и обмена опытом!

Магнитный пускатель с тепловым реле и кнопками управления, схема, принцип действия

Магнитный пускатель наиболее часто используется для управления электродвигателями. Хотя есть у него и другие сферы применения: управление освещением, отоплением, коммутация мощных нагрузок. Их включение и отключение может выполняться как вручную, при помощи кнопок управления, так и с применением систем автоматики. О подключении кнопок управления к магнитному пускателю мы и поговорим.

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки. У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Для дистанционного управления используются кнопочные станции, содержащие две кнопки в одном корпусе. Станция соединяется с местом установки пускателя с помощью контрольного кабеля. В нем должно быть не менее трех жил, сечение которых может быть небольшим.

Простейшая рабочая схема пускателя с тепловым реле

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Схема управления пускателем на 220 В

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже).

Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Теперь можно подключить провода или кабели силовой цепи, не позабыв о том, что рядом с одним из них на входе присутствует провод на схему управления. И только с этой стороны на пускатель подается питание (традиционно – сверху). Попытка подключить кнопки на выход пускателя ни к чему не приведет.

Схема управления пускателем на 380 В

Все то же самое, но для того, чтобы катушка заработала, проводник от вывода «А2» надо подключить не к нулевой шинке, а к любой другой фазе, не использующейся до этого. Вся схема будет работать от двух фаз.

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать.

Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

В описанном выше случае для этого потребуется от вывода «А2» отправить провод на контакт теплового реле, а от второго его контакта – уже туда, где до этого был подключен проводник. В случае с управлением от 220 В это – нулевая шинка, с 380 В – фаза на пускателе. Срабатывание теплового реле у большинства моделей никак не заметно.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает контакты при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Ещё одно интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

СХЕМА ПОДКЛЮЧЕНИЯ МАГНИТНОГО ПУСКАТЕЛЯ

Прежде чем приступить к практическому подключению пускателя — напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом. Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)

Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп» и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск», «Вперёд», «Назад».

Если катушка рассчитана на срабатывание от 220 В, то цепь управления коммутирует нейтраль. Если рабочее напряжение электромагнитной катушки 380 В, то в цепи управления протекает ток, «снятый» с другой питающей клеммы пускателя.

Схема подключения магнитного пускателя на 220 В

Здесь ток на магнитную катушку КМ 1 подается через тепловое реле и клеммы, соединенных в цепь кнопок SB2 для включения — «пуск» и SB1 для остановки — «стоп». Когда мы нажимаем «пуск» электрический ток поступает на катушку. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку. При отпускании «пуск» не происходит размыкание цепи, поскольку параллельно этой кнопке выполнено подключение блок-контакта КМ1 с замкнутыми магнитными контактами. Благодаря этому на катушку поступает фазное напряжение L3. При нажатии «стоп» питание отключается, подвижные контакты приходят в исходное положение, что приводит к обесточиванию нагрузки. Те же процессы происходят при работе теплового реле Р – обеспечивается разрыв ноля N, питающего катушку.

Схема подключения магнитного пускателя на 380 В

Подключение к 380 В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки. В данном случае питание осуществляется с использованием двух фаз L2 и L3, тогда как в первом случае — L3 и ноль.

На схеме видно, что катушка пускателя (5) питается от фаз L1 и L2 при напряжении 380 В. Фаза L1 присоединяется напрямую к ней, а фаза L2 – через кнопку 2 «стоп», кнопку 6 «пуск» и кнопку 4 теплового реле, соединенные последовательно между собой. Принцип действия такой схемы следующий: После нажатия кнопки 6 «пуск» через включенную кнопку 4 теплового реле напряжение фазы L2 попадает на катушку магнитного пускателя 5. Происходит втягивание сердечника, замыкающее контактную группу 7 на определенную нагрузку (электродвигатель М), при этом подается ток, напряжением 380 В. В случае выключения «пуск» цепь не прерывается, ток проходит через контакт 3 – подвижный блок, замыкающийся при втягивании сердечника.

При аварии в обязательном порядке должно сработать теплового реле 1, его контакт 4 разрывается, отключается катушка и возвратные пружины приводят сердечник в исходное положение. Контактная группа размыкается, снимая напряжение с аварийного участка.

Подключение магнитного пускателя через кнопочный пост

В данную схему включены дополнительные кнопки включения и остановки. Обе кнопки «Стоп» подключены в цепь управления последовательно, а кнопки «Пуск» соединяются параллельно.Такое подключение позволяет производить коммутацию кнопками с любого поста.

Вот ещё вариант. Схема состоит из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220 В. Питание кнопок взято с клеммы силовых контактов пускателя, цифра 1. Напряжение подходит до кнопки “Стоп” цифра 2. Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра 3.

Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра 4. Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Вспомогательный блок контакт 6 шунтирует контакт кнопки “пуск” 4, для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился. Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра 7, снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.

Подключение двигателя через пускатели

Нереверсивный магнитный пускатель

Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая – «Пуск», другая замкнутая – «Стоп». Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов – одну нормально разомкнутую, другую замкнутую. Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.

Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп». Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй – подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода – «прямой» и «блокирующий».

Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

Реверсивный магнитный пускатель

Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1–3–5, а те, к которым подключен двигатель как 2–4–6.

Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом – через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

Советы и хитрости установки

  • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
  • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 – значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
  • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
  • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.

А ещё вам понадобится полезный прибор — пробник электрика, который легко можно сделать самому.

Подключение теплового реле. Основная функция и принцип работы

Автор newwebpower На чтение 7 мин. Просмотров 4.4k. Опубликовано Обновлено

Для защиты электродвигателя от недопустимых длительных токовых перегрузок, которые могут возникнуть при увеличении нагрузки на вал или потери одной из фаз применяется тепловое защитное реле. Также защитное реле защитит обмотки от дальнейшего разрушения при возникшем междувитковом замыкании.

Тепловым данное реле (сокращенно ТР) называют из-за принципа действия, который схож с работой автоматического выключателя, в котором изгибающиеся при нагреве электрическим током биметаллические пластины разрывают электрическую цепь, надавливая на спусковой механизм.

Особенности теплового реле

Но, в отличие от автоматического защитного выключателя, ТР не размыкает силовые цепи питания, а разрывает

цепь самоподхвата магнитного пускателя. Нормально замкнутый контакт защитного устройства действует аналогично кнопке «Стоп», и подключается последовательно с ней.

Тандем контактора и теплового реле

Поскольку тепловое реле подключается сразу же после магнитного пускателя, то нет нужды дублировать функции контактора при аварийном размыкании цепей. При таком выборе реализации защиты достигается ощутимая экономия материала для контактных силовых групп – значительно проще коммутировать небольшой ток в одной цепи управления, чем разрывать три контакта под большой токовой нагрузкой.

Тепловое реле не разрывает силовые цепи напрямую, а лишь выдает сигнал управления в случае превышения нагрузки – данную особенность следует помнить при подключении устройства.

Как правило, в тепловом реле присутствует два контакта – нормально замкнутый и нормально разомкнутый. При срабатывании устройства данные контакты одновременно меняют свое состояние.

Нормально разомкнутые и нормально замкнутые контакты

Характеристики теплового реле

Выбор ТР следует производить, сопоставляя типичные характеристики данного защитного устройства соответственно имеющейся нагрузке и условиям эксплуатации электродвигателя:

  • Номинальный ток защиты;
  • Предел регулировки уставки тока срабатывания;
  • Напряжение силовой цепи;
  • Количество и тип вспомогательных контактов управления;
  • Мощность коммутации контактов управления;
  • Порог срабатывания (коэффициент отношения к номинальному току)
  • Чувствительность к асимметричности фаз;
  • Класс отключения;

Схема подключения

В большинстве схем при подключениях теплового реле к магнитному пускателю используется нормально замкнутый контакт, который подключается последовательно с кнопкой «Стоп» пульта управления. Обозначением данного контакта является сочетание букв NC (normal connected) или НЗ (нормально замкнутый).

Схема подключения ТР к контактору в магнитном пускателе

Нормально разомкнутый контакт (NO) при данной схеме подключения может использоваться для сигнализации о срабатывании тепловой защиты электродвигателя. В более сложных автоматических схемах управления он может использоваться для инициализации аварийного алгоритма останова конвейерной цепи оборудования.

Для самостоятельного подключения теплового реле для защиты электродвигателя, не имея опыта работы с подобным оборудованием, будет правильно сначала ознакомиться с принципом работы и подключением магнитного пускателя на данном сайте.

В независимости от типа подключения электродвигателя и количества контакторов магнитного пускателя (прямой и реверсивный запуск), внедрение теплового реле в схему является достаточно простым. Оно устанавливается после контакторов перед электродвигателем, а размыкающийся (нормально замкнутый) контакт подключается последовательно с кнопкой «Стоп».

Тепловое реле в схеме реверсивного подключения контакторов
Элементы подключения, управления и настройки ТР

По ГОСТ клеммы контактов управления имеют обозначение 95-96 (нормально замкнутый) и 97-98 (нормально разомкнутый).

На данном рисунке показана схема теплового реле с обозначением выводов и элементов управления. Кнопка «Тестирование служит для проверки работоспособности механизма.

Кнопка «Стоп» служит для ручного выключения устройства защиты.

Функция «Повторный взвод» позволяет заново запустить электродвигатель после срабатывания защиты. Многие ТР поддерживают два варианта – автоматический (возвращение в исходное состояние происходит после остывания биметаллических пластин) и ручной взвод, требующий непосредственного действия оператора для нажатия соответствующей кнопки.

Управление повторным взводом

Уставка тока срабатывания позволяет сделать выбор значения перегрузки, при котором реле отключит катушку контактора, который обесточит электродвигатель.

Регулировка уставки срабатывания относительно метки

При выборе устройства защиты нужно помнить, что по аналогии с автоматическим выключателем у тепловых реле также имеется времятоковая характеристика. То есть, при превышении уставленного тока на некоторое значение, отключение произойдет не сразу, а по истечению некоего времени. Быстрота срабатывания будет зависеть от кратности превышения тока уставки.

Графики времятоковой характеристики

Разные графики соответствуют характеру нагрузки, количеству фаз и температурному режиму.

Как видно из графиков, при двукратном превышении нагрузки может пройти больше минуты времени, прежде, чем защита сработает. Если же выбрать ТР недостаточно мощным, то двигатель может не успеть разогнаться при многократном стартовом превышении уставки тока перегрузки.

Также у некоторых тепловых реле имеется флажок срабатывания защиты.

Защитное закрывающееся стекло служит одновременно для нанесения маркировки и защиты настроек при помощи пломбирования,

Защита настроек и маркировка

Подключение и установка ТР

Как правило, современные тепловые реле имеют защиту по всем трем фазам, в отличие от распространенных в советское время тепловых реле, имеющих обозначения ТРН, где контроль тока производился только в двух проводах, идущих к электродвигателю.

Тепловое реле ТРН с контролем тока только в двух фазах

По типу подключения тепловые реле можно разделить на две разновидности:

  • Устанавливаемые рядом с магнитным пускателем, и подключаемые при помощи перемычек (ТРН, РТТ).

    Реле РТТ, подключенное при помощи жестких пластинчатых перемычек

  • Монтируемые непосредственно на контактор магнитного пускателя (современные модели).

    Реле устанавливается непосредственно на контакторе

Входные токопроводящие выводы в современных моделях одновременно служат частью крепежа теплового реле к контактору магнитного пускателя. Они вставляются в выходные клеммы контактора.

Подключение теплового реле к контактору

Как видно из фото внизу, в некоторых пределах можно изменять расстояние между выводами, чтобы подстраиваться под различные виды контакторов.

Подстройка выводов под клеммы контактора

Для дополнительной фиксации ТР предусмотрены соответствующие выступы на самом устройстве и на контакторе.

Элемент крепежа на корпусе теплового релеСпециальный паз крепления на контакторе

Механика теплового реле

Существует много разновидностей ТР, но принцип действия у них одинаков – при протекании увеличенного тока через

биметаллические пластины они искривляются и воздействуют через систему рычагов на спусковой механизм контактных групп.

Рассмотрим для примера устройство теплового реле LR2 D1314 фирмы «Schneider Electric».

ТР в разобранном виде

Условно данное устройство можно разделить на две части: блок биметаллических пластин и система рычагов с контактными группами. Биметаллические пластины состоят из двух полос различных сплавов, соединенных в одну конструкцию, имеющих разный тепловой коэффициент расширения.

Изгибающаяся биметаллическая пластина

Благодаря неравномерному расширению при больших значениях тока данная конструкция расширяется неравномерно, что заставляет ее изгибаться. При этом один конец пластины зафиксирован неподвижно, а подвижная часть воздействует на систему рычагов.

Система рычагов

Если убрать рычаги, то будут видны контактные группы теплового реле.

Коммутационный узел ТР

Не рекомендуется сразу же включать тепловое реле после срабатывания и заново запускать электродвигатель – пластинам нужно время, чтобы остыть и вернуться в первоначальное состояние. К тому же, будет благоразумней сначала найти причину срабатывания защиты.


Схема включения теплового реле — Морской флот

Что важно знать?

Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).

При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:


Как видно на бирке, номинальный ток электродвигателя 13.6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.

При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров. К примеру, как на реле РТИ-1314:

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Реле снабжены двумя группами контактов нормально замкнутой и нормально открытой группой, которые подписаны на корпусе 96-95, 97-98. На картинке ниже структурная схема обозначения по ГОСТу:Давайте разберемся каким образом собрать схему управления которая бы отключала двигатель от сети при возникновении аварийной ситуации перегрузки или обрыва фазы. Из нашей статьи про подключение двигателя через магнитный пускатель, вы уже узнали некоторые нюансы. Если еще не успели ознакомится то просто перейдите по ссылке.

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

В течение длительного рабочего процесса у любых электродвигателей перегреваются обмотки, портится изоляционное покрытие. Подобные ситуации нередко приводят к межвитковым замыканиям, выгоранию полюсов и другим негативным последствиям, требующим срочного дорогостоящего ремонта. Избежать этого помогает тепловое реле для электродвигателя, установленное в цепь питания и обеспечивающее надежную защиту от перегрева. Данный прибор осуществляет контроль над величиной тока, и в случае длительного отклонения от номинала установки производит размыкание контактов. Таким образом, цепь управления остается без питания, а пусковое устройство размыкается. Тепловое реле надежно защищает агрегат от механических перегрузок, заклинивания ротора, перекоса фаз и других аварийных ситуаций.

Как работает тепловое реле защиты электродвигателя

Общее устройство всех тепловых реле включает в себя одни и те же детали, отличающиеся лишь небольшими конструктивными особенностями. Основной элемент представляет собой чувствительную биметаллическую пластину, состоящую из двух металлических сплавов – железа с никелем и железа с латунью. Они соединяются друг с другом с помощью пайки и обладают различными коэффициентами теплового расширения.

Данный коэффициент указывает на степень удлинения металлической пластины при ее нагреве. Этот показатель составляет для латуни 18,7, а для сплава железа с никелем – 1,5. В результате, длина латуни во время нагревания увеличивается значительно быстрее, давая тем самым толчок для изгиба биметаллической пластины в свою сторону. Данное свойство лежит в основе работы всех тепловых реле.

Внутри корпуса прибора находятся биметаллическая пластина с нагревательным элементом, толкатель, исполнительная пластина и пружина замыкающего контакта. Температурный компенсатор состоит из пластины и регулировочного винта. Кроме того, тепловое реле оборудуется контактами, эксцентриком с движком уставки тока срабатывания и кнопкой возврата прибора в рабочее состояние.

Причины срабатывания теплового реле электродвигателя

Под действием электрического тока, протекающего по проводнику, происходит его нагревание. С возрастанием силы тока в проводнике с одним и тем же поперечным сечением, увеличивается и его нагрев, то есть происходит рост нагрузки. В связи с этим, причины срабатывания заключаются преимущественно в повышении температуры.

Эта же тепловая энергия нагревает и биметаллическую пластину, которая под влиянием температуры изгибается и соприкасается с исполнительной пластиной температурного компенсатора через толкатель. В свою очередь, эта пластина расцепляет замкнутые контакты в магнитном пускателе и приводит в рабочее состояние кнопку включения реле. Сам температурный компенсатор является своеобразным противовесом, снижающим влияние дополнительного нагрева под действием температуры окружающей среды. Изгиб пластины происходит в противоположную сторону, а для его регулировки используется специальный винт.

Эксцентрик или регулятор тока срабатывания оборудован шкалой на 5 делений влево и 5 делений вправо, для соответствующего уменьшения и увеличения тока относительно центральной риски. Чтобы отрегулировать ток срабатывания, необходимо изменить зазор между исполнительной пластиной и толкателем. Изменение зазора выполняется движком эксцентрика, воздействующим на пластину температурного компенсатора. После срабатывания теплового реле специалисты рекомендуют выдержать временную паузу, чтобы тепловой расцепитель мог остыть. Следует тщательно осмотреть электродвигатель и найти причину срабатывания прибора.

Тепловое реле для электродвигателя схема подключения

Непосредственное подключение тепловых реле к контакторы осуществляется напрямую с помощью штыревых контактов. После подключения, в зависимости от величины тока, протекающего в цепи, необходимо отрегулировать уставки срабатывания колесиком поворотного регулятора. Нужный ток уставки обозначен на шкале специальными рисками, нанесенными на корпус прибора.

Панель управления реле оборудована кнопкой TEST, с помощью которой проверяется работоспособность устройства путем имитации срабатывания защиты. Кнопка STOP красного цвета позволяет принудительно разомкнуть нормально замкнутый контакт. При этом отключается питание, поступающее на катушку контактора, что в свою очередь приводит к отключению нагрузки. Примерно по такой схеме подключаются и работают все тепловые реле для защиты электродвигателей и их модификации.

Для работы теплового реле предусмотрен ручной или автоматический режим, задаваемый при помощи поворотного переключателя RESET. Автоматический режим предполагает утопленный выключатель и автоматическое включение реле после срабатывания, когда остынет биметаллическая пластина. Перевод прибора в ручной режим осуществляется поворотом переключателя против часовой стрелки.

Схема подключения с нормально замкнутыми контактами используется для управления электродвигателем с помощью магнитного пускателя. К силовым контактам теплового реле выполняется подключение лишь двух фаз, а третья фаза подключается напрямую к двигателю. В работе современных устройств принимают участие все три фазы совместно с дополнительным нормально замкнутым контактом реле. При возникновении перегрузок он размыкается и разрывает цепь питания контактора.

Выбор теплового реле для электродвигателя

В условиях разнообразия конструкций и моделей электрических двигателей и соответствующих тепловых реле, выбор наиболее подходящего сочетания может вызвать определенные затруднения, особенно у неспециалистов. Для того чтобы выбрать наиболее оптимальное устройство, отвечающее всем требованиям, необходимо придерживаться определенных рекомендаций.

Основным требованием ко всем тепловым реле является соответствие их номинала току оборудования, которое требуется защитить. Сами устройства тоже должны быть защищены от коротких замыканий, поэтому в схемах подключения используются предохранители.

Необходимо заранее установить условия эксплуатации тепловых реле, и в каких пределах они могут применяться. Если в системе защиты велика вероятность работы электродвигателя в аварийных режимах, не связанных с ростом потребления электроэнергии, в этих случаях тепловое реле будет бесполезным и не обеспечит надежную защиту. Для этого в обмотку статора электродвигателя включаются элементы специальной тепловой защиты.

Если же тепловая защита двигателя не связана с какими-либо специальными требованиями, решение вопроса как подобрать тепловое реле для электродвигателя, таблица поможет выбрать наиболее подходящее устройство с оптимальными техническими характеристиками.

Защитное устройство выбирается с учетом максимального рабочего тока реле, который не должен быть меньше, чем номинальный ток защищаемого электродвигателя. Тем не менее, рекомендуется, чтобы установочный ток реле незначительно превышал номинал агрегата.

Следует обращать внимание и на возможность регулировок тока с большим запасом в обе стороны – увеличения и уменьшения. В этом случае обеспечивается более надежная и управляемая защита.

17 Дек 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Схема и подключение магнитного пускателя с тепловым реле

Магнитный пускатель это, по сути, мощное реле специального назначения. Оно сконструировано для коммутации в электрических цепях с обмотками асинхронных двигателей. Это устройство не требует особых знаний для того, чтобы самостоятельно подключить его и пользоваться им. Тепловое реле это ещё одна специальная конструкция электромеханического устройства. Оно в паре с магнитным пускателем выполняет коммутации в электрических цепях, которые содержат обмотки асинхронных двигателей.

Особенности монтажа

Но при этом тепловое реле срабатывает в отличие от магнитного пускателя не по воле человека, а от перегрузки по току асинхронного двигателя. Его также можно без особых проблем задействовать своими руками в схеме управления асинхронным движком. В связи с этим не будет лишним напомнить умельцам о том, что любые работы по присоединению электрических цепей к сети должны начинаться с гарантированного отключения напряжения в месте подключения с последующим контролем этого индикаторной отвёрткой или тестером.

  • Чтобы правильно выполнить подключение магнитного пускателя с тепловым реле надо вначале определить величину напряжения, на которое они рассчитаны. Его значение указывается как в техническом паспорте, так и на шильдике, расположенном на корпусе устройства.
  • Если указано напряжение 220 В устройство необходимо подключать к фазному напряжению, то есть к фазному и нулевому проводам. Если указано напряжение 380 В для подключения используется линейное напряжение, то есть к фазным проводам двух любых фаз.
  • Если напряжение не будет соответствовать паспортным данным устройства, возможна, либо его порча от перегрева, либо неправильная работа по причине недостаточно сильного магнитного поля в катушке управления.

Особенностью работы магнитного пускателя является его контакт, который, замыкаясь, шунтирует кнопку включения его управляющей катушки. Это позволяет выполнять коммутацию электрических цепей кратковременным нажатием кнопки «пуск», что удобно и легко для пользователя. При подключении пускателя надо будет присоединять нормально разомкнутый контакт и нормально замкнутый контакт. Их вид в самом устройстве и на электрической схеме показан на изображении. Они используются для управления катушкой пускателя и располагаются в управляющем блоке пускателя. Он называется «кнопочный пост». В нём установлены две кнопки. Каждая из них приводит в действие: одна нормально замкнутый контакт и одна нормально разомкнутый контакт. Кнопки окрашены обычно в чёрный цвет (используется для пуска или реверса), и в красный цвет (используется для остановки двигателя отключением катушки пускателя).

Схема с фазным напряжением (220 В)

Напряжение для питания цепи управления катушки КМ1 магнитного пускателя поступает от фазы L3 и нейтрали N. Контакты кнопок для управления работой катушки соединяются последовательно. Это даёт возможность контакту SB2 приводимому в действие кнопкой «пуск» замкнуть электрическую цепь. Катушка приведёт в действие контакты КМ1 и они замкнут цепи с обмотками двигателя. На обмотках двигателя появится напряжение, и его вал начнёт вращение. Остановка двигателя возможна либо при срабатывании теплового реле, либо при нажатии на кнопку «стоп», которая разомкнёт цепь катушки КМ1.

Контакт Р теплового реле размыкается из-за нагрева специального элемента, расположенного в нём. При увеличении тока усиливается и нагрев этого элемента. Тепловое реле пропускает через каждую пару своих клемм ток одной из фаз движка. При этом с каждой парой клемм связан соответствующий нагревающийся элемент. При достижении заданной температуры, которая соответствует заданной электрической мощности, от механического воздействия нагретого элемента срабатыванием контакта Р катушка КМ1 обесточивается. Температурная деформация элементов достигается применением биметаллических материалов.

Контакты КМ1 размыкают электрические цепи с обмотками асинхронного двигателя который после этого останавливается. Конструктивно разные модели тепловых реле могут отличаться друг от друга конструкцией основных шести клемм, устройством нагревающихся элементов, контактов и дополнительных регуляторов. Поэтому при инсталляции тепловых реле необходимо подключать и настраивать их в соответствии с техническим паспортом и сопроводительной документацией.

Схема с линейным напряжением (380 В)

Как видно из схемы напряжение для электрической цепи катушки КМ1 получается от двух фазных проводов L2 и L3. Напряжение между ними для трёхфазной электрической сети составляет 380 В. Других отличий, как в соединениях элементов схемы, так и в её работе в сравнении со схемой с фазным напряжением, нет.

Тепловое реле для электродвигателя схема подключения

Магнитный пускатель — устройство, отвечающее за бесперебойную и соответствующую требованиям стандартов работу оборудования. С его помощью осуществляют распределение питающего напряжения и управляют работой подключенных нагрузок.

Чаще всего через него подают питание на электродвигатели. И через него же осуществляют реверс двигателя, его остановку. Все эти манипуляции позволит осуществить правильная схема подключения магнитного пускателя, которую можно собрать и самостоятельно.

В этом материале мы расскажем об устройстве и принципах работы магнитного пускателя, а также разберемся в тонкостях подключения устройства.

Блок: 1/8 | Кол-во символов: 621
Источник: https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки. У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Для дистанционного управления используются кнопочные станции, содержащие две кнопки в одном корпусе. Станция соединяется с местом установки пускателя с помощью контрольного кабеля. В нем должно быть не менее трех жил, сечение которых может быть небольшим. Простейшая рабочая схема пускателя с тепловым реле

Блок: 2/7 | Кол-во символов: 1303
Источник: https://pue8.ru/elektricheskie-seti/950-magnitnyj-puskatel-s-teplovym-rele-i-knopkami-upravleniya-skhema-printsip-dejstviya.html

Что важно знать?

Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).

При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:


Как видно на бирке, номинальный ток электродвигателя 13.6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.

При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров.К примеру, как на реле РТИ-1314:

Блок: 2/3 | Кол-во символов: 1329
Источник: https://samelectrik.ru/kak-podklyuchit-teplovoe-rele.html

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Блок: 3/7 | Кол-во символов: 1518
Источник: https://pue8.ru/elektricheskie-seti/950-magnitnyj-puskatel-s-teplovym-rele-i-knopkami-upravleniya-skhema-printsip-dejstviya.html

Процесс подключения


Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Блок: 4/5 | Кол-во символов: 2751
Источник: https://2proraba.com/elektrika/teplovoe-rele-dlya-elektrodvigatelya-sxema-podklyucheniya.html

Характеристики реле


При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

Блок: 3/5 | Кол-во символов: 946
Источник: https://2proraba.com/elektrika/teplovoe-rele-dlya-elektrodvigatelya-sxema-podklyucheniya.html

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Реле снабжены двумя группами контактов нормально замкнутой и нормально открытой группой, которые подписаны на корпусе 96-95, 97-98. На картинке ниже структурная схема обозначения по ГОСТу:Давайте разберемся каким образом собрать схему управления которая бы отключала двигатель от сети при возникновении аварийной ситуации перегрузки или обрыва фазы. Из нашей статьи про подключение двигателя через магнитный пускатель, вы уже узнали некоторые нюансы. Если еще не успели ознакомится то просто перейдите по ссылке.

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

Блок: 3/3 | Кол-во символов: 4536
Источник: https://samelectrik.ru/kak-podklyuchit-teplovoe-rele.html

Тонкости подключения устройства на 220 В

Независимо от того, как решено подключить магнитный пускатель, в проекте обязательно присутствуют две цепи — силовая и сигнальная. Через первую подают напряжение, посредством второй управляют работой оборудования.

Особенности силовой цепи

Питание для МП подключают через контакты, обычно обозначаемые символами А1 и А2. На них попадает напряжение 220 В, если сама катушка рассчитана на такое напряжение.

Удобнее «фазу» подключать к А2, хотя принципиальной разницы в подключении нет. Источник питания подключают к контактам, находящимся ниже на корпусе.

Тип напряжения не имеет значения, главное, чтобы номинал не выходил за пределы 220 В.

Через магнитный пускатель, оснащенный катушкой 220 В, возможна подача напряжения от дизель- и ветрогератора, аккумулятора, других источников. Съем его происходит с клемм Т1, Т2, Т3

Минусом этого варианта подключения является тот момент, что для ее включения или отключения нужно совершать манипуляции с вилкой. Схему можно усовершенствовать путем установки перед МП автомата. С его помощью включают и отключают питание.

Изменение цепи управления

Эти изменения не касаются силовой цепи, модернизируется в этом случае лишь цепь управления. Вся схема в целом претерпевает незначительные изменения.

Когда клавиши находятся в одном кожухе, узел называется «кнопочным постом». Любая из них обладает парой входов и парой выходов. У клавиши «Пуск» клеммы нормально разомкнутые (НЗ), у прямо противоположной — нормально замкнутые (NC)

Клавиши встраивают последовательно перед МП. Первая — «Пуск», за ней идет «Стоп». Контактами магнитного пускателя манипулируют посредством управляющего импульса.

Источником его является нажатая пусковая кнопка, открывающая путь для подачи напряжения к управляющей катушке. «Пуск» не обязательно удерживать во включенном состоянии.

Оно поддерживается по принципу самозахвата. Заключается он в том, что параллельно кнопке «Пуск» подключаются добавочные самоблокирующиеся контакты. Они и снабжают напряжением катушку.

После их замыкания, катушка самоподпитывается. Разрыв этой цепи приводит к отключению МП.

Отключающая клавиша «Стоп» обычно красная. Стартовая кнопка может иметь не только надпись «Пуск», но и «Вперед», «Назад». Чаще всего она зеленого цвета, хотя может быть и черного.

Подсоединение к 3-фазной сети

Возможно подключение 3-фазного питания через катушку МП, функционирующей от 220 В. Обычно схему применяют с асинхронным двигателем. Сигнальная цепь при этом не изменяется.

Одну фазу и «ноль» подключают к соответствующим контактам. Проводник фазный прокладывают через стартовую и выключающую клавиши. На контакты NO13, NO14 ставят перемычку между замкнутым и разомкнутым контактами

Силовая цепь имеет отличия, но не очень существенные. Три фазы подают на входы, обозначенные на плане, как L1, L2, L3. Трехфазную нагрузку подключают к T1, T2, T3.

Ввод в схему теплового реле

В промежутке между магнитным пускателем и асинхронным электродвигателем последовательно подсоединяют тепловое реле. Выбор его осуществляют в зависимости от типа мотора.

Тепловое реле обезопасит электрический двигатель от неисправностей и аварийных ситуаций, которые могут возникнуть при пропадании одной из фаз

Подключают реле к выводу с магнитным пускателем. Ток в нем проходит к мотору последовательно, попутно нагревая реле. Верх реле оснащен придаточными контактами, объединенными с катушкой.

Нагреватели реле рассчитывают на предельную величину тока, протекающего через них. Делают это для того, чтобы, когда двигатель окажется в опасности из-за перегрева, реле смогло бы отключить пускатель.

Блок: 6/8 | Кол-во символов: 3575
Источник: https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html

Популярные схемы подключения МП

Наиболее часто используют монтажную схему с одним устройством. Чтобы соединить ее основные элементы используют 3-жильный кабель и два разомкнутых контакта в случае, если устройство выключено.

Это предельно простая схема. Она собирается, когда замыкается выключатель автоматический QF. От КЗ (короткого замыкания) схему управления защищает предохранитель PU

В нормальных обстоятельствах контакт реле Р замкнут. При нажатии клавиши «Пуск» цепь замыкается. Нажатие кнопки «Стоп» разбирает схему. В случае перегрузки тепловой датчик Р сработает и разорвет контакт Р, машина остановится.

При этой схеме большое значение имеет номинальное напряжение катушки. Когда усилие на ней 220 В, двигателя 380 В, в случае соединения в звезду, такая схема не подходит.

Для этого применяют схему с нейтральным проводником. Применять ее целесообразно в случае соединения обмоток двигателя треугольником.

Блок: 5/8 | Кол-во символов: 911
Источник: https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

Блок: 7/7 | Кол-во символов: 1323
Источник: https://pue8.ru/elektricheskie-seti/950-magnitnyj-puskatel-s-teplovym-rele-i-knopkami-upravleniya-skhema-printsip-dejstviya.html

Запуск мотора с реверсным ходом

Для функционирования отдельного оборудование необходимо, чтобы двигатель мог вращаться как влево, так и вправо.

Схема подключения для такого варианта содержит два МП, кнопочный пост либо отдельные три клавиши — две стартовые «Вперед», «Назад» и «Стоп».

Для реализации этого варианта в схему с одним МП добавляют еще одну сигнальную цепь. В нее входит клавиша SB3, МП КМ2. Немного изменена и силовая часть

От к.з. силовую цепь защищают контакты нормально замкнутые КМ1.2, КМ2.2.

Подготовку схемы к работе осуществляют следующим образом:

  1. Включают АВ QF1.
  2. На силовые контакты МП КМ1, КМ2 поступают фазы А, В, С.
  3. Фаза, которая снабжает цепь управления (А) через SF1 (автомат защиты сигнальных цепей) и клавишу SB1 «Стоп» подается на контакт 3 (клавиши SB2, SB3), контакт 13НО (МП КМ1, КМ2).

Далее схема работает по алгоритму, зависящему от направления вращения мотора.

Управление реверсом двигателя

Вращение начинается при задействовании клавиши SB2. При этом фаза А через КМ2.2 подается на катушку МП КМ1. Начинается включение пускателя с замыканием нормально разомкнутых контактов и размыканием нормально замкнутых.

Замыкание КМ1.1 провоцирует самоподхват, а за смыканием контактов КМ1 следует подача фаз А, В, С на идентичные контакты обмоток двигателя и он начинает вращение.

Перед запуском мотора в противоположном направлении необходимо остановить заданное прежде вращение посредством кнопки «Стоп». Для кручения в обратном направлении стоит только при помощи пускателя КМ2 поменять дислокацию каких-то двух питающих фаз

Предпринятое действие разъединит цепь, на дроссель КМ1 перестанет подаваться управляющая фаза А, а сердечник с контактами, посредством возвратной пружины, восстановится в исходном положении.

Контакты разъединятся, на двигатель М прекратится подача напряжения. Схема будет пребывать в ждущем режиме.

Запускают ее путем нажатия на кнопку SB3. Фаза А через КМ1.2 поступит на КМ2, МП, сработает и через КМ2.1 окажется на самоподхвате.

Далее, МП посредством контактов КМ2 поменяет фазы местами. В результате двигатель М изменит направление вращения. В это время соединение КМ2.2, находящееся в цепи, питающей МП КМ1, рассоединится, не допуская включения КМ1 пока функционирует КМ2.

Работа силовой схемы

Ответственность за переключение фаз для перенаправления вращения двигателя возложена на силовую схему.

Провод белого цвета заводит фазу А на левый контакт МП КМ1, затем через перемычку заходит на левый контакт КМ2. Выходы пускателей также объединены перекрестной перемычкой и далее через КМ1 на первую обмотку поступает фаза А двигателя

При срабатывании контактов МП КМ1 на первую обмотку поступает фаза А, на вторую обмотку — фаза В, а на третью — фаза С. При этом мотор вращается влево.

Когда срабатывает КМ2, передислоцируются фазы В и С. Первая попадает на третью обмотку, вторая — на вторую. Изменений по фазе А не происходит. Двигатель начнет вращаться вправо.

Блок: 7/8 | Кол-во символов: 2899
Источник: https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html

Выводы и полезное видео по теме

Подробности об устройстве и подключении контактора:

Практическая помощь в подключении МП:

По приведенным схемам можно подключить магнитный пускатель своими руками как к сети 220, так и 380 В.

Необходимо помнить, что сборка не отличается сложностью, но для реверсивной схемы важно наличие двухсторонней защиты, делающей невозможным встречное включение. При этом блокировка может быть как механической, так и посредством блокировочных контактов.

Если у вас появились вопросы по теме статьи, пожалуйста, оставляйте свои в расположенном ниже блоке. Там же вы можете сообщить интересную информацию или дать совет по подключению магнитных пускателей посетителям нашего сайта.

Блок: 8/8 | Кол-во символов: 697
Источник: https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html

Кол-во блоков: 15 | Общее кол-во символов: 23364
Количество использованных доноров: 4
Информация по каждому донору:
  1. https://pue8.ru/elektricheskie-seti/950-magnitnyj-puskatel-s-teplovym-rele-i-knopkami-upravleniya-skhema-printsip-dejstviya.html: использовано 4 блоков из 7, кол-во символов 4388 (19%)
  2. https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html: использовано 5 блоков из 8, кол-во символов 8703 (37%)
  3. https://2proraba.com/elektrika/teplovoe-rele-dlya-elektrodvigatelya-sxema-podklyucheniya.html: использовано 3 блоков из 5, кол-во символов 4408 (19%)
  4. https://samelectrik.ru/kak-podklyuchit-teplovoe-rele.html: использовано 2 блоков из 3, кол-во символов 5865 (25%)

Источник: m-strana.ru

Схема подключения пускателя через тепловое реле

Магнитным пускателем называют специальную установку, с помощью которой производится дистанционный запуск и управление работой асинхронного электрического двигателя. Данное приспособление характеризуется простотой конструкции, что позволяет произвести подключение мастеру без соответствующего опыта.

Проведение подготовительных работ

Перед подключением теплового реле и магнитного участка необходимо помнить, что вы работаете с электрическим прибором. Именно поэтому, чтобы обезопасить себя от поражения электрическим током, нужно произвести обесточивание участка и проверить его. С этой целью, наиболее часто, используется специальная индикаторная отвертка.

Следующим этапом подготовительных работ является определение величины рабочего напряжения катушки. В зависимости от производителя приспособления увидеть показатели можно на корпусе или на самой катушке.

Этап правильного определения катушки достаточно важен при подключении магнитного пускателя. В противном случае она может перегореть во время работы устройства.

Для подключения данного оборудования необходимо использовать две кнопки:

Первая из них, может иметь черный или зеленый цвет. Эта кнопка характеризуется постоянно разомкнутыми контактами. Вторая кнопка имеет красный цвет и постоянно замкнутые контакты.

Во время подключения теплового реле необходимо помнить о том, что с помощью силовых контактов производится включение и выключение фаз. Нули, которые подходят и отходят, а также проводники, которые заземляют, между собой необходимо соединять в области клеммника. При этом, в обязательном порядке, пускатель необходимо отходить. Коммутация этих приспособлений не производится.

Для того чтобы произвести подключение катушки, величина рабочего напряжения которой составляет 220 Вольт, необходимо взять ноль с клеммника и подсоединить его к схеме, которая предназначается для работы пускателя.

Особенности подключения магнитных пускателей

Схема магнитного пускателя характеризуется наличием:

  • трех пар контактов, с помощью которых производится подача питания на электрическое оборудование;
  • Схемы управления, в состав которой входит катушка, дополнительные контакты и кнопки. С помощью дополнительных контактов производится поддержка работоспособности катушки, а также блокировка ошибочных включений.

Для сборки магнитного пускателя требуется использование трехжильного кабеля, который подводится к кнопкам, а также одной пары контактов, которые хорошо разомкнуты.

При использовании катушки в 220 Вольт необходимо произвести подключение проводов красного или черного цветов. При использовании катушки 380 Вольт используется разноименная фаза. Четвертую свободную пару в этой схеме используют как блок-контакт. Три пары силовых контактов включаются наряду с этой свободной парой. Расположение всех проводников производится сверху. В том случае, если есть два дополнительных проводника, то их размещают сбоку.

Силовые контакты пускателя характеризуются наличием трех фаз. Для их включения во время нажатия кнопки Пуск, необходимо произвести подачу на катушку напряжения. Это позволит цепи замкнуться. Для размыкания цепи необходимо произвести отключение катушки. Для сборки цепи управления зеленая фаза напрямую подключается к катушке.

Включение работы магнитного пускателя производится с помощью кнопки Пуск, которая смыкает цепь, а отключение – с помощью кнопки Стоп, которая производит расцепление цепи.

Особенности подключения теплового реле

Между магнитным пускателем и электрическим двигателем располагается тепловое реле. Его подключение осуществляется к выходу магнитного пускателя. Через данное приспособление осуществляется прохождение электрического тока. Тепловое реле характеризуется наличием дополнительных контактов. Их необходимо соединить последовательно с катушкой пускателя.

Тепловое реле характеризуется наличием специальных нагревателей, через которые может проходить электрический ток определенной величины. При возникновении опасных ситуаций (возрастание тока выше указанных пределов), благодаря наличию биметаллических контактов, производится разрыв цепи и впоследствии отключения пускателя. Для того чтобы запустить работу механизма, необходимо включить биметаллические контакты с помощью кнопки.

Подключение электромагнитного пускателя и теплового реле производится достаточно просто. Для этого необходимо всего лишь придерживаться схемы.

Реле тепловое устанавливается для недопущения воздействия на электродвигатели от значительных и продолжительных токовых перегрузок, образующихся при обрыве одной из фаз либо перегрузки вала. Также при помощи ТР осуществляется защита обмотки от последующего повреждения после междувиткового замыкания. Читайте также статью ⇒ Реле напряжения.

Что такое тепловое реле?

Реле называется тепловым из-за его принципа действия, во многом подобного на принцип работы выключателя-автомата, в котором биметаллические пластины, нагретые электротоком, выполняют разрыв цепи и давят на механизм спуска.

Так как тепловое реле в схемах требуется подключать за магнитным пускателем, отсутствует необходимость дублирования функции контактора после размыкания цепей в аварийных случаях. Выбор в пользу такой защиты позволяет достичь существенной экономии материала для силовых контактных групп. Ведь гораздо проще коммутировать малые токи единой управляющей цепи, чем разрывать сразу три контакта под высокой токовой нагрузкой.

Совет №1: При подключении прибора следует помнить, что тепловым реле силовые цепи не разрываются напрямую, им подается управляющий сигнал при повышении нагрузок.

Обычно в конструкции тепловых реле предусмотрено наличие двух контактов:

  • нормально замкнутого;
  • разомкнутого в нормальном положении.

После сработки реле оба этих контакта одновременно изменяют сове положение.

Устройство и виды

Реле тепловые выпускаются нескольких типов, для каждого из них характерны свои конструктивные особенности и область использования. Основными типами являются следующие реле:

РТЛ представляют собой 3-х фазные устройства, предназначенные для защиты электродвигателей от перегрузок, заклинивания ротора, продолжительного пуска, фазного перекоса. Устройства ставятся на клеммные контакты пускателя ПМЛ. Могут самостоятельно работать как защитный прибор с клеммами типа КРЛ.

Реле типа РТТ — также трехфазное устройство, обеспечивающее защиту короткозамкнутых двигателей от затяжных пусков, заклинивания, токовых перегрузок, иных, не менее опасных аварийных ситуаций. Благодаря особенностям конструкции реле крепятся к корпусу магнитных пускателей типов ПМА и ПМЕ, а также в качестве отдельного устройства на специальной панели.

Трехфазные реле РТИ используются для защиты электромотора от перегрузок, перекосов фаз, стопорения и других тяжелых режимов функционирования. Крепятся к корпусу пускателей КМТ и КМИ.

ТРН — тепловой 2-х фазное реле, посредством которого осуществляется контроль за пуском и работой приборов. Оснащается механизмом ручного возврата клемм в первоначальное положение, при этом температура среды на эффективность функционирования реле не влияет.

Реле перезагрузки тепловое РТЛ с уровнем защиты IP20 на номинальный ток 100А

Твердотельные реле — 3-х фазные устройства, конструкция которого не предусматривает наличия подвижных частей. Реле также не восприимчивы к воздействию окружающей среды, применяются в местах с риском разрыва.

В реле типа РТК контроль температуры выполняется посредством щупа, размещенного в корпусе прибора.

Термореле типа РТЭ состоит из проводника, изготовленного из специального сплава. При достижении температуры порового значения проводник плавится, тем самым разрывая цепь. Встраивается в конструкцию электромотора. Читайте также статью ⇒Как работает реле контроля напряжения?

Как выбрать реле по характеристикам?

При подборе реле следует изначально разобраться в его основных параметрах:

  • значению номинального тока;
  • диапазона регулирования тока сработки;
  • сетевого напряжения;
  • тип и количество клемм;
  • расчетной мощности подключаемого устройства;
  • минимальной границы сработки;
  • класса устройства;
  • реакции на фазный перекос.

Номинальный ток реле должен быть идентичным указанному на электромоторе, к которому устройство будет подсоединяться. Величину тока двигателя можно увидеть на планке, размещенной на его крышке или корпусе.

Сетевое напряжение для реле должно быть равным значению сети, в которой оно будет располагаться — 220 либо 380/400 В. Также значение имеет тип и число клемм, так как в контакторах различных типов реализованы различные способы подсоединения.

Реле также должно выдерживать мощность электромотора для недопущения ложной сработки. Для двигателей трехфазных следует подбирать реле, обеспечивающее дополнительную защиту от фазного перекоса.

Особенности подключения

Обычно монтаж теплового реле осуществляется вместе с магнитным пускателем, выполняющим соединение и запуск электродвигателя. Выпускаются также и устройства, устанавливающиеся как самостоятельный прибор на DIN-рейке либо на монтажной панели — ТРН или РТТ.

Если у реле ТРН присутствует лишь пара входящих подключений, фаз в нем все равно три. Отключенный фазный провод выходит с пускателя к двигателю, минуя устройство. Изменение тока в электромоторе происходит пропорционально во всех фазах, потому достаточно выполнять контроль только за двумя из них.

Устройства снабжаются двумя группами клемм в нормально открытой и нормально замкнутой группах.

Структурная схема подключения теплового реле согласно требований ГОСТ с обозначениями

Ниже представлена схема управления, отключающая мотор от сети при возникновении нештатной ситуации от обрыва фазы либо перегрузки. Вращение двигателя осуществляется в одну сторону, управление включением выполняется с одного места посредством кнопок ПУСК и СТОП.

Включение реле в 3-х фазную сеть, управление выполняется через кнопки Стоп и Старт

Автомат подключен и к верхним контактом поступает напряжение. После нажима кнопки ПУСК происходит подключение катушки пускателя А1 и А2 к сети L1 и L2. В представленной схеме установлен пускатель, катушка которого рассчитана на 380 В.

При включении пускателя катушкой происходит замыкание дополнительных контактов 13 и 14. Кнопку ПУСК теперь можно отпустить, но контактор останется включенным. Такая схема получила название «Пуск с самоподхватом».

Для отключения электромотора от сети нужно обесточить катушку. Проследив на представленной схеме направление течения тока, можно заметить, что отключение произойдет при нажиме кнопки СТОП либо размыкании клемм теплового реле (на схеме прибор обозначен прямоугольником красного цвета).

Таким образом, при возникновении нештатной ситуации при сработке реле разрывается цепь, пускатель снимается с самоподхвата, обесточивая при этом электромотор. Перед повторным пуском после сработки необходимо выполнить осмотр механизма для выявления причин внепланового отключения и не включать вновь до их устранения.

Зачастую причиной сработки служит повышенная температура внешнего воздуха — такой момент также следует учесть при настройке механизмов и их эксплуатации.

Совет№2: В домашних хозяйствах область использования тепловых реле не ограничивается лишь станками и иными механизмами собственного производства. Не лишним было бы применять устройства для установки в системах, контролирующих ток в насосах отопительной системы.

Работа циркуляционного агрегата выполняется весьма специфическая. Дело в том, что на улитке и лопастях со временем появляется известковый налет, служащий одной из причин заклинивания и выхода из строя электродвигателя. Применяя приведенные схемы подключения можно собственными силами собрать контролирующий блок и блок защиты. В питающей цепи достаточно выставить номинал теплового реле и подключить контакты.

Помимо этого, не менее интересна схема подсоединения теплового реле посредством токовых трансформаторов, предназначенная для применения при подключении мощных двигателей, например, поливочных систем крупных фермерских хозяйств. При добавлении в питающую цепь трансформатор следует иметь в виду параметр трансформации, равный, например, 60/5. Этот параметр означает, что при поступлении через первичную обмотку тока в 60 А, на вторичной обмотке его величина будет равна 5 А. Использование такой схемы позволит сократить расходы на приобретение комплектующих без снижения эксплуатационных характеристик. Читайте также статью ⇒ Подключение указательное реле.

Схема, при помощи которой осуществляется контроль работы посредством трансформаторов тока

Красным цветом на схеме указаны трансформаторы тока, подключающиеся к амперметру и реле контроля, для визуального представления о проходящих в цепи процессов. Подключение трансформатора выполняется по схеме «звездочка» с одной общей точкой.

Обзор моделей

В таблице приведен краткий сравнительный обзор моделей тепловых реле с указанием основных параметров и примерной стоимости.

Прежде чем приступить к практическому подключению пускателя – напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом. Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)

Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп» и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск», «Вперёд», «Назад».

Если катушка рассчитана на срабатывание от 220 В, то цепь управления коммутирует нейтраль. Если рабочее напряжение электромагнитной катушки 380 В, то в цепи управления протекает ток, «снятый» с другой питающей клеммы пускателя.

Схема подключения магнитного пускателя на 220 В

Здесь ток на магнитную катушку КМ 1 подается через тепловое реле и клеммы, соединенных в цепь кнопок SB2 для включения – «пуск» и SB1 для остановки – «стоп». Когда мы нажимаем «пуск» электрический ток поступает на катушку. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку. При отпускании «пуск» не происходит размыкание цепи, поскольку параллельно этой кнопке выполнено подключение блок-контакта КМ1 с замкнутыми магнитными контактами. Благодаря этому на катушку поступает фазное напряжение L3. При нажатии «стоп» питание отключается, подвижные контакты приходят в исходное положение, что приводит к обесточиванию нагрузки. Те же процессы происходят при работе теплового реле Р – обеспечивается разрыв ноля N, питающего катушку.

Схема подключения магнитного пускателя на 380 В

Подключение к 380 В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки. В данном случае питание осуществляется с использованием двух фаз L2 и L3, тогда как в первом случае – L3 и ноль.

На схеме видно, что катушка пускателя (5) питается от фаз L1 и L2 при напряжении 380 В. Фаза L1 присоединяется напрямую к ней, а фаза L2 – через кнопку 2 «стоп», кнопку 6 «пуск» и кнопку 4 теплового реле, соединенные последовательно между собой. Принцип действия такой схемы следующий: После нажатия кнопки 6 «пуск» через включенную кнопку 4 теплового реле напряжение фазы L2 попадает на катушку магнитного пускателя 5. Происходит втягивание сердечника, замыкающее контактную группу 7 на определенную нагрузку (электродвигатель М), при этом подается ток, напряжением 380 В. В случае выключения «пуск» цепь не прерывается, ток проходит через контакт 3 – подвижный блок, замыкающийся при втягивании сердечника.

При аварии в обязательном порядке должно сработать теплового реле 1, его контакт 4 разрывается, отключается катушка и возвратные пружины приводят сердечник в исходное положение. Контактная группа размыкается, снимая напряжение с аварийного участка.

Подключение магнитного пускателя через кнопочный пост

В данную схему включены дополнительные кнопки включения и остановки. Обе кнопки «Стоп» подключены в цепь управления последовательно, а кнопки «Пуск» соединяются параллельно.Такое подключение позволяет производить коммутацию кнопками с любого поста.

Вот ещё вариант. Схема состоит из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220 В. Питание кнопок взято с клеммы силовых контактов пускателя, цифра 1. Напряжение подходит до кнопки “Стоп” цифра 2. Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра 3.

Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра 4. Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Вспомогательный блок контакт 6 шунтирует контакт кнопки “пуск” 4, для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился. Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра 7, снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.

Подключение двигателя через пускатели

Нереверсивный магнитный пускатель

Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая – «Пуск», другая замкнутая – «Стоп». Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов – одну нормально разомкнутую, другую замкнутую. Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.

Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп». Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй – подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода – «прямой» и «блокирующий».

Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

Реверсивный магнитный пускатель

Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1–3–5, а те, к которым подключен двигатель как 2–4–6.

Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом – через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

Советы и хитрости установки

  • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
  • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 – значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
  • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
  • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.

А ещё вам понадобится полезный прибор – пробник электрика, который легко можно сделать самому.

В статье подробно рассказано о нескольких способах обновления BIOS на материнской плате Asus.

Теперь вы точно подберете идеальный ноутбук для работы или учебы!

Данная статья описывает преимущества SSD накопителей для приложений и игр. Также здесь выполняется сравнение между достоинств данного накопителя с устаревшим аналогом.

В статье речь идет о том, как отремонтировать пластмассовый китайский электрочайник.

Самостоятельный ремонт ноутбука ASUS X50SL – очищаем от пыли вентилятор с радиатором процессора и ставим новые драйвера.

Органы управления двигателем | Контакторы | Перегрузки | Ручные устройства защиты двигателя

Органы управления двигателем | Контакторы | Перегрузки | Ручные устройства защиты электродвигателей | Мотор стартеры

Магазин не будет работать корректно, если куки отключены.

Похоже, в вашем браузере отключен JavaScript. Для наилучшего взаимодействия с нашим сайтом обязательно включите Javascript в своем браузере.

  • Дом
  • Категория управления двигателем Страница

Контакторы

Контакторы используются для включения и отключения электронной цепи, как правило, для включения / выключения нагрузки двигателя.

Они являются одним из компонентов пускателя двигателя и рассчитаны на номинальное напряжение.

По сравнению с реле, контакторы используются для более высоких номинальных мощностей.

Реле перегрузки

Иногда их называют «нагревателями», они защищают двигатель, считывая ток, идущий в двигатель.

Когда ток слишком велик, они размыкают контакты реле, по которым ток идет к катушке контактора.

Ручные устройства защиты двигателя (MMP)

Ручные устройства защиты двигателя, также называемые ручными пускателями двигателя, используются для включения / выключения двигателей вручную.

Обеспечивают беспредохранительную защиту от перегрузки, обрыва фазы и короткого замыкания.

При электрической перегрузке они отключатся, выключат и остановят двигатель.

После выключения их необходимо снова включить вручную.

Пускатели двигателей

Пускатели двигателей используются для запуска, остановки, реверса и защиты двигателей.

Пускатель двигателя состоит из контактора и защиты от перегрузки и обычно рассчитывается в зависимости от мощности двигателя или силы тока.

Комбинированный пускатель двигателя имеет контактор и реле перегрузки, а также защиту от короткого замыкания и устройство отключения.

Блоги об управлении двигателями:

% PDF-1.7 % 2 0 obj > эндобдж 1056 0 объект > поток 10.8758.375852018-10-15T19: 23: 47.190ZPDF-XChange Core API SDK (7.0.325.1) 2986a3d117139ddb06b48bee9740c9c3be4c33ce2873875

  • стран: Канада
  • Редактор PDF-XChange 7.0.325.12018-09-22T10: 36: 05.000Z2018-09-22T10: 36: 05.000Zapplication / pdf2018-10-17T13: 29: 09.417Z
  • язык: en
  • uuid: 63c03b9c-bcb9-4a89-8dd8-b5c4810bc8aauuid: ea282df2-5629-4eca-b8a3-1202050c3f47PDF-XChange Core API SDK (7.0.32577.1)
  • mastertree / key_9182983 / key_91829907 / key_9182983 / key_9182983 / ключ key_9178676
  • конечный поток эндобдж 5 0 obj > эндобдж 6 0 obj > эндобдж 9 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC / ImageI] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 10 0 obj > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 11 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 12 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 13 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 14 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 15 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 16 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 17 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 18 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 19 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC / ImageI] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 20 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 21 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 22 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 23 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 24 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 25 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 26 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC / ImageI] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 27 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 28 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 29 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 30 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC / ImageI] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 31 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC / ImageI] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 32 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 33 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 34 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 35 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 36 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 37 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 38 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 39 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 40 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 41 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 42 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 43 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 44 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 45 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 46 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 47 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 48 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 49 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 50 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 51 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 52 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 53 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 54 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 55 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 56 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 57 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 58 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 59 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 60 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 61 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 62 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 63 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 64 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 65 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 66 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 67 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 68 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 69 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 70 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 71 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 72 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 73 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 74 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 75 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 76 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 77 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 78 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 79 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 80 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 81 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 82 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 83 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 84 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 85 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 86 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 87 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 88 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 89 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC / ImageI] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 90 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 91 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 92 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 93 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / TrimBox [0 0 603 783] / Type / Page >> эндобдж 734 0 объект > поток HWIo cw.վ SZbLe.Ao ߾ wr5> ӓwӷ 焑 t9 | `| C ~ / oBq,; aSl0} LsCK & QL | 7GYNnw 𥅤) LW) V

    Планы управления Обучение устранению ошибок

    Пускатели магнитных двигателей переменного тока Тип пускателя для двигателей переменного тока, который сочетает в себе магнитный контактор и реле перегрузки. Магнитными пускателями переменного тока можно управлять дистанционно.
    Поперечные пускатели Пускатель двигателя, в котором двигатель напрямую подключен к источнику питания.Сетевые пускатели при пуске позволяют подавать на двигатель полное напряжение.
    активировать Чтобы привести машину или устройство в движение или работу. Контакты могут активировать устройства вывода.
    переменного тока AC. Ток образуется, когда электроны движутся в одном направлении, а затем в противоположном.Переменный ток нестабилен и часто должен быть преобразован в постоянный.
    Ампер ампер. Единица электрического измерения, которая описывает как количество электричества, так и время, необходимое электричеству для прохождения определенного расстояния. Один ампер или ампер равен одному кулону в секунду.
    дугогасительные камеры Устройство для гашения дуги.Дугогасительные камеры гаснут дуги, направляя их в камеры над контактами.
    дуговая колонна Электрическая искра в форме струны, проходящая через промежуток между двумя контактами. Колонны дуги возникают, когда электричество проходит через молекулы ионизированного воздуха или испаренный металл, что приводит к повреждению контактов.
    Подавление дуги Любой метод тушения электрической дуги между контактами.Гашение дуги необходимо для обеспечения безопасности работников и продления срока службы контактов.
    дуга Перегрев, возникающий при перетекании электричества с одной поверхности на другую. Электрическая дуга опасна, поскольку может привести к травмам операторов и повреждению оборудования.
    якорь Любой магнитный полюс, вызывающий механическое движение.Якорь — это механическая деталь, которая перемещается в реле и контакторах.
    Биметаллическая лента Полоса, полученная путем соединения двух разнородных металлов, которые расширяются с разной скоростью при нагревании. Биметаллическая полоса скручивается при разной скорости расширения.
    биметаллическое тепловое реле перегрузки Тип механизма тепловой перегрузки, в котором используется полоса, состоящая из двух разных металлов.При нагревании два металла в биметаллическом тепловом реле перегрузки расширяются с разной скоростью, вызывая деформацию полосы и образование разрыва в цепи.
    удар В предохранителях, чтобы прервать электрическую цепь из-за расплавленного компонента. Предохранитель перегорает или срабатывает, когда ток превышает установленный предел.
    обдувочные змеевики Устройство подавления дуги, использующее магнитные катушки для создания магнитных полей, которые толкают дугу вверх, пока она не сломается.Вытяжные катушки обычно используются для контакторов и пускателей двигателей постоянного тока.
    перерыв Место, в котором цепь может быть разомкнута или замкнута. Разрывы можно открывать или закрывать с помощью переключателей разных типов.
    цепь Полностью закрытый путь различных устройств, по которому проходит электрический ток.Цепи обычно включают в себя источник, путь, нагрузку и элемент управления.
    выключатели Устройство безопасности, обнаруживающее перегрузку по току в цепи. Автоматические выключатели размыкают цепи во избежание коротких замыканий.
    замкнутый контур Контролируемый путь, по которому движется живое электричество.Замкнутая цепь может быть образована реле.
    замкнутые контакты Точка, в которой два контакта соединяются друг с другом, позволяя течь току. Замкнутые контакты создают цепь.
    катушек Пучок проводов, непрерывно намотанных на магнитный сердечник.Катушки используются для создания магнитного поля, когда через них проходит ток.
    проводящий Способность материала действовать как путь для движения электричества. Проводящие материалы часто представляют собой металлы.
    дребезг контакта Нежелательный эффект, который возникает, когда контакты замыкаются под высоким давлением, а затем отскакивают друг от друга из-за силы.Отскок контакта нежелателен, поскольку он может создавать вторичные дуги, сокращать срок службы контактов и приводить к точечной коррозии.
    контакторы Тип реле, предназначенное для работы с большими и переменными токовыми нагрузками. Контакторы обеспечивают безопасное подключение и отключение нагрузки двигателя и используют электромагнитную катушку для управления контактами.
    контакты Проводящая металлическая деталь в электрической цепи.Контакты размыкают или замыкают цепи, соединяясь или отделяясь друг от друга.
    Цепь управления Тип схемы, в которой используются устройства управления для определения включения или отключения нагрузки путем управления протеканием тока. В цепях управления обычно меньше напряжения, чем в цепях питания.
    реле управления Электрический выключатель, размыкающий и замыкающий цепь.Реле управления могут размыкать или замыкать один или несколько наборов контактов.
    текущий Поток электричества по цепи. Сила тока в цепи может колебаться.
    постоянного тока Постоянный ток. Ток, возникающий, когда электроны непрерывно движутся в одном направлении.Постоянный ток контролируется катушками на контакторах.
    деионизация Процесс удаления ионов для снятия электрического заряда. Деионизацию можно использовать как метод гашения дуги.
    дельта Соединение трех компонентов в виде последовательной треугольной цепи.Соединения треугольником используются в пускателях звезда-треугольник.
    постоянный ток DC. Ток, возникающий, когда электроны непрерывно движутся в одном направлении. Постоянный ток контролируется катушками на контакторах.
    рассеивать Распасться, разойтись и исчезнуть.Устройства гашения дуги рассеивают дуги, которые могут образоваться между контактами.
    отклонение Чтобы изменить путь или движение чего-либо. Устройства гашения дуги отводят дуги, которые могут образоваться между контактами.
    двухполюсный двухходовой DPDT. Набор из двух подвижных контактов, каждый из которых может разорвать цепь в двух местах.Двухполюсный двухпозиционный переключатель — это тип переключателя.
    двухполюсный одинарный ДПСТ. Набор из двух подвижных контактов, каждый из которых может разорвать цепь в одном месте. Двухполюсный однопозиционный переключатель — это тип переключателя.
    Двигатели с двойным напряжением Тип трехфазного двигателя, работающего на двух уровнях напряжения.Двигатели с двойным напряжением позволяют использовать один и тот же двигатель с двумя разными напряжениями в линии питания.
    двухэлементные предохранители с выдержкой времени Устройство защиты двигателя от перегрузки, обеспечивающее протекание пускового тока. Двухэлементный предохранитель с выдержкой времени содержит три элемента, которые плавятся при броске тока и, таким образом, позволяют двигателю запускаться без сгорания предохранителя.
    электрическая дуга Область, в которой электричество переходит от одного проводника к другому, вызывая сильное тепло и свет.Электрические дуги используются в сварочных и некоторых промышленных печах.
    электромагнит Магнит, образованный электрическим током. Электромагнит обычно формируется путем наматывания нескольких витков проволоки на железный сердечник.
    электронное реле перегрузки Тип реле, которое обнаруживает перегрузку путем контроля тока двигателя.Электронные реле перегрузки очень гибкие и могут быть запрограммированы для решения многих задач.
    элементов Компоненты, расположенные на обоих концах двухэлементного предохранителя с выдержкой времени для предотвращения перегрузки двигателя. При перегрузке элементы плавятся, но предохранители не перегорают, давая двигателю время для запуска.
    эвтектический сплав Смесь металлов, плавящихся для активации механического устройства.Когда эвтектические сплавы плавятся в реле перегрузки, они сигнализируют реле о размыкании цепи.
    эвтектическая перегрузка Тип теплового реле перегрузки, в котором для активации механических устройств используется плавящийся сплав. Эвтектическая перегрузка, также известная как реле перегрузки плавящегося сплава, размыкает цепь в случае перегрузки.
    предохранители Устройство безопасности, обнаруживающее превышение тока в цепи.В предохранителях часто есть компонент, который плавится и размыкает цепь при возникновении перегрузки по току.
    термочувствительность Склонность к изгибу при нагревании. Тепловая чувствительность приводит к короблению, которое часто вызывается физическим скручиванием или поворотом детали из-за внутреннего напряжения.
    л.с. Единица измерения, которая указывает количество электроэнергии в более крупных устройствах.Для описания мощности электродвигателей вместо ватт используется лошадиная сила.
    МЭК Международная электротехническая комиссия. Международная организация, которая разрабатывает и публикует все стандарты для электрических, электронных и связанных с ними технологий. IEC разрабатывает стандарты, которые применяются в Европе и других странах.
    пусковой ток Первоначальный выброс тока в двигатель.Пусковой ток может быть до десяти раз выше постоянного необходимого тока из-за отсутствия сопротивления.
    изоляция Непроводящий материал. Изоляция предотвращает контакт электрически заряженных компонентов с другими компонентами.
    ионизированный Вещество, обладающее отрицательным или положительным зарядом.Ионизация происходит после получения или потери одного или нескольких электронов.
    нагрузок Компонент схемы, преобразующий электричество в свет, тепло или механическое движение. Примеры нагрузок включают лампочки, бытовую технику или другие машины.
    Магнитный контактор Контактор, который управляется дистанционно с помощью соленоида.Магнитные контакторы предлагают операторам удобство и безопасность, обеспечивая удаленный доступ к цепи.
    Магнитный контактор Контактор с дистанционным управлением. Магнитные контакторы предлагают операторам удобство и безопасность, обеспечивая удаленный доступ к цепи.
    контакторы магнитные Контактор, который управляется дистанционно с помощью соленоида.Магнитные контакторы предлагают операторам удобство и безопасность, обеспечивая удаленный доступ к цепи.
    магнитное поле Сила притяжения, окружающая магниты или электрическое поле. Магнитные поля создаются электричеством.
    магнитное реле перегрузки Тип реле перегрузки, которое определяет силу магнитного поля, создаваемого током.Магнитные реле перегрузки отключают двигатели при слишком сильном магнитном поле.
    ручной контактор Тип контактора, для работы с которым требуется физическое управление человеком. Ручные контакторы включают механические переключатели или кнопки, замыкающие или размыкающие цепь.
    ручной контроллер Механическая кнопка или переключатель, который человек должен задействовать физически для размыкания и замыкания цепи в ручном контакторе.Ручные контроллеры являются составными частями ручных контакторов.
    ручной пускатель Тип пускателя электродвигателя переменного тока, который должен физически запускаться или останавливаться с помощью переключателя непосредственно на пускателе. Ручные пускатели обеспечивают защиту двигателя как от перегрузки, так и от поражения электрическим током.
    Реле перегрузки плавленого сплава Тип теплового реле перегрузки, в котором для активации механических устройств используется плавящийся сплав.Реле перегрузки плавящегося сплава, также известное как эвтектическая перегрузка, размыкает цепь в случае перегрузки.
    Компоненты управления двигателем Устройство, выполняющее определенные функции в электродвигателях. Компоненты управления двигателем включают реле, контакторы и пускатели двигателя.
    защита двигателя от перегрузки Использование устройств для размыкания цепи в случае перегрузки.Защита двигателя от перегрузки предотвращает чрезмерный ток обмоток двигателя с течением времени, пока в двигателе сохраняется ток.
    стартер двигателя Устройство, запускающее двигатель при срабатывании триггера. Пускатели двигателей рассчитываются по току или мощности и служат одной из форм защиты двигателя.
    пускатели электродвигателей Переключатель с электрическим приводом, который использует магнитную индукцию для подачи пускового тока на двигатель.Пускатели двигателей не обладают достаточной мощностью по току для самостоятельного пуска двигателей, и для этого требуются другие компоненты управления.
    двигатели Машина, преобразующая одну форму энергии, например электричество, в механическую энергию или движение. Двигатели работают по принципу магнитной индукции.
    подвижные контакты Контакт на подвижной арматуре.Подвижные контакты подключаются к соответствующим стационарным контактам.
    NEMA Национальная ассоциация производителей электрооборудования. Ассоциация, устанавливающая стандарты для электрического оборудования, используемого в Соединенных Штатах. Устройства NEMA обычно более прочные и дорогие, чем устройства, оцененные IEC.
    нормально замкнутые контакты НЗ контакт.Устройство, поддерживающее цепь во время нормальной работы. Нормально замкнутые контакты размыкаются для размыкания цепи при срабатывании реле.
    нормально разомкнутые контакты НО контакты. Устройство, которое отключает цепь, предотвращая протекание тока. Для образования замкнутой цепи нормально разомкнутые контакты должны быть замкнуты.
    открытые контакты Контакты отделены друг от друга пробелом, что препятствует прохождению тока.Открытые контакты предотвращают образование цепей.
    устройства вывода Устройство, выполняющее механическое действие. Выходные устройства должны получать электрический сигнал, чтобы действовать.
    перегрузка Превышение тока в замкнутой цепи с течением времени. Перегрузка вызвана накоплением тока в двигателе.
    реле перегрузки Реле, которое подключается к контактору для создания пускателя двигателя. Реле перегрузки защищают двигатель от перегрузки, отключая питание двигателя и останавливая его работу.
    Пускатели с частичной обмоткой Пускатель пониженного напряжения, который подает питание на один набор обмоток, а затем на другой, когда двигатель набирает обороты.Этот процесс пуска с частичной обмоткой позволяет обмоткам производить пониженный пусковой ток и крутящий момент.
    собачка Шарнирное или поворотное устройство, которое вставляется в паз храпового колеса, шестерни или стержня. Собачка и храповик работают вместе, чтобы обеспечить движение вперед или предотвратить движение назад.
    питтинг Коррозия металла, возникающая в определенных местах детали или компонента.Точечная коррозия проявляется на поверхности в виде небольших трещин или вмятин на поверхности.
    силовая цепь Тип цепи, по которой подается питание на электрические нагрузки. Силовые цепи часто имеют высокое напряжение и состоят из входящего основного источника питания, пускателя двигателя и двигателя.
    силовые реле Реле с прочными контактами, рассчитанными на 15 ампер или выше.Силовые реле также известны как контакторы.
    Первичный резистор Пускатели пониженного напряжения Пускатель двигателя с резисторами, предотвращающими пусковой ток. Пускатели с пониженным напряжением с первичным резистором обеспечивают плавное ускорение двигателя при запуске с постепенным увеличением крутящего момента и напряжения.
    кнопка Регулятор мощности, который активирует или деактивирует компонент или систему.Кнопки управляются вручную и обычно имеют два положения.
    храповое колесо Зубчатое колесо, в котором используется собачка для предотвращения вращения в одном направлении. Храповое колесо часто используется при работе с системами, поднимающими тяжелые грузы.
    Пускатели пониженного напряжения Пускатель двигателя, который снижает мощность, поступающую в двигатель при его первоначальном запуске.Пускатели пониженного напряжения помогают в защите двигателя.
    Пускатели пониженного напряжения Пускатель двигателя, который снижает мощность, поступающую в двигатель при его первоначальном запуске. Пускатели пониженного напряжения защищают двигатели большой мощности от ударов.
    реле Электрический выключатель, который размыкает и замыкает цепь с помощью электромагнитной катушки.Реле могут размыкать или замыкать один или несколько наборов контактов.
    резисторы Электронный компонент, который регулирует, ограничивает и препятствует прохождению электрического тока. Резисторы склонны преобразовывать электрическую энергию в тепло.
    Селекторный переключатель Переключатель, который можно поворачивать в разные положения.В каждом положении селекторный переключатель подключается к определенному набору контактов.
    Принцип соленоида Использование катушки, которая позволяет напряжению изменять электрическую энергию. Принцип соленоида использует магнитные поля для преобразования электрической энергии в механическую.
    стационарные контакты Контакт, который остается в фиксированном положении во время работы.Стационарные контакты часто подключаются к соответствующим подвижным контактам.
    напряжение питания Ток, которым питается двигатель. Напряжение питания часто отключается с помощью защитных устройств, чтобы предотвратить повреждение двигателя и его компонентов.
    переключатель Устройство управления, которое замыкает или размыкает цепь для включения или выключения цепи.Переключатель может быть ручным, механическим или автоматическим.
    тепловое реле перегрузки Устройство, отключающее двигатель от его силовой цепи, когда реле обнаруживает избыточный ток в виде тепла. Реле тепловой перегрузки содержат нагреватели.
    трансформаторы Устройство, которое передает электрическую энергию из одной цепи в другую без изменения частоты с помощью электромагнитной индукции.Трансформаторы чаще всего используются для изменения сетевого напряжения.
    поездка В предохранителях, чтобы прервать электрическую цепь из-за расплавленного компонента. Предохранитель срабатывает или перегорает, когда ток превышает установленный предел.
    Расцепитель Механическая часть магнитного реле перегрузки, которая наклоняется во время перегрузки и освобождает набор размыкающих контактов.Расцепители размыкают цепи.
    время поездки Время, необходимое устройству для размыкания цепи в случае перегрузки. Время поездки варьируется от устройства к устройству.
    отключение Процесс, при котором устройство размыкает цепь. Отключение происходит при перегрузке.
    испаряется Процесс превращения жидкости в газ. При испарении металла может образоваться дуга.
    напряжение Мера электрического давления или потенциала, известная как электродвижущая сила. Напряжение измеряется в вольтах.
    вольт Единица измерения электромагнитной силы или давления.Вольты указывают напряжение.
    основа Для сгибания того, что раньше было прямым. Деформация часто вызывается физическим скручиванием или поворотом детали из-за внутреннего напряжения.
    обмоток Проводящая катушка в двигателе, намотанная на якорь.Обмотки могут использоваться для передачи напряжения в трансформаторах.
    обмоток Проводящие катушки в двигателе, намотанные на якорь. Обмотки могут использоваться для передачи напряжения в трансформаторах.
    звезда-треугольник Тип пускателя пониженного напряжения, в котором обмотки образуют букву Y, а затем треугольник.Пускатели звезда-треугольник уменьшают пусковой ток и лучше всего подходят для приложений с медленными и частыми запусками.

    404 Не найдено | Fuji Electric FA Components & Systems Co., Ltd.

    Информация о новинках

    Информация об изменениях в продукте

    Отображается информация об изменении продукта за последний месяц.Прошедшую информацию можно просмотреть, выполнив поиск по типу, категории продукта, времени и т. Д.

    Поиск товаров, снятых с производства

    Отображается информация о последних пяти изделиях, производство которых было прекращено. Прошлую информацию можно просмотреть, выполнив поиск по типу, категории продукта, времени и т. Д.

    Информационное письмо FUJI ED&C TIMES

    Распределение низкого напряжения

    С ускорением глобализации рынка оборудования для приема и распределения энергии мы предлагаем различные устройства для приема и распределения энергии, которые можно использовать на международных рынках, благодаря нашему широкому ассортименту продукции, соответствующему основным мировым стандартам.

    Управление двигателем

    Благодаря слиянию Fuji Electric FA Components & Systems, имеющей самую высокую долю рынка в Японии в области устройств управления электродвигателями, и Schneider Electric, имеющей самую высокую долю рынка в мире, мы теперь можем предложить превосходную ценность для наших клиентов как подлинный производитель №1 в мире.

    Контроль

    Мы будем удовлетворять потребности наших клиентов, добавляя широкий спектр устройств управления и индикации и датчиков мирового стандарта, а также предлагая комплексные решения, такие как реле и реле с выдержкой времени.

    Распределение МВ

    Мы удовлетворяем потребности наших клиентов с помощью высоконадежных продуктов и различных типов аппаратов среднего напряжения, которые поддерживают современные сложные системы приема и распределения энергии, включая наш вакуумный выключатель среднего напряжения, который обеспечивает безопасность электрического оборудования.

    Оборудование для контроля энергии

    Мы помогаем нашим клиентам «визуализировать электроэнергию» с помощью широкого спектра продуктов и наших надежных инженерных возможностей.Мы делаем предложения по энергосбережению в соответствии с энергетической средой наших клиентов в различных областях, от обеспечения качества и защиты электроэнергии высокого напряжения до управления уровнем потребления низкого напряжения.

    Электрическая схема теплового реле перегрузки и инструкции по настройке сброса

    Электрическая схема теплового реле перегрузки и инструкции по настройке сброса
    Электрическая схема теплового реле перегрузки
    Прежде всего, основная структура теплового реле перегрузки состоит из двух частей, включая тепловой элемент и выходной вспомогательный контакт.Согласно схеме подключения ниже, мы можем ясно видеть, что клемма слева — это клемма для реле в главной цепи, которая разделена на 3 канала и всего 6 точек, а клемма справа — это выход клемма вспомогательного контакта. Тепловые компоненты тепловых реле перегрузки обычно изготавливаются из металлических материалов с разными коэффициентами расширения, поэтому они изгибаются при нагревании.
    При работе термоэлемент и главная цепь в цепи соединены последовательно (точно так же, как цепь питания двигателя в пускателе двигателя).Конкретный метод подключения теплового реле перегрузки показан на рисунке ниже, вверху и внизу слева. В каждом из двух рядов имеется по 3 контакта, и каждый термоэлемент подключается между верхними и нижними клеммами. Всего 3 термоэлемента подключены последовательно к 3 проводам питания двигателя. Вспомогательные контакты обычно бывают нормально разомкнутыми (NO) и одним нормально замкнутыми (NC), которые подходят для контура управления пускателем двигателя.

    Когда двигатель перегружен, ток, подаваемый на двигатель, будет превышать номинальный ток двигателя, поэтому тепловой элемент в тепловом реле перегрузки будет выделять тепло и изгибаться в соответствии с протекающим чрезмерным током.Внутренняя механическая структура заставляет выходные контакты выполнять коммутационные действия, чтобы достичь цели вывода сигнала «перегрузки». Группа размыкающих контактов вспомогательного контакта реле может быть подключена последовательно к цепи питания цепи управления (одновременно с кнопкой останова). Как только двигатель перегружен, нормально замкнутый контакт вспомогательного контакта может немедленно отключить питание цепи управления, чтобы осуществить останов двигателя. Операция играет защитную роль.В то же время группа замыкающих контактов вспомогательного контакта может быть подключена к дополнительным устройствам аварийной сигнализации (например, световым индикаторам), и когда двигатель останавливается из-за перегрузки, это может указать причину остановки двигателя «перегрузка».
    Схема подключения реле тепловой перегрузки и контактора

    В целом это 95 вход и 96 выход.
    Способ подключения теплового реле перегрузки с воздушным выключателем и контактором переменного тока
    Если вы хотите выполнить подключение, мы должны сначала понять функцию устройства.Я считаю, что все прекрасно понимают, что такое воздушный переключатель. Обычные бытовые электроприборы можно увидеть, открыв бытовую распределительную коробку. Если эти три оборудования настроены в соответствии с. Если проводка расположена сверху вниз, это воздушный выключатель, контактор и тепловое реле перегрузки.
    Прежде всего, контактор имеет три пары главных контактов и катушку (поскольку характеристики напряжения катушки относительно велики, поэтому вы должны четко видеть при подключении, обычно AC380V, 220V или DC24) Я считаю, что здесь в этом нет необходимости Подробнее.Контактор также имеет пару нормально разомкнутых контактов и пару нормально замкнутых контактов в соответствии с различными моделями, но есть также конструкции, которые предназначены как для нормально разомкнутых, так и нормально замкнутых контактов.
    Обычно нормально разомкнутый контакт контактора используется в основном для самоблокировки. Самоблокировка — это функция блокировки собственной цепи устройства. Ранее упомянутая самозащита означает, что он может продолжать поддерживать свою собственную цепь управления в непрерывном рабочем состоянии.Нормально замкнутый контакт контактора обычно используется в режиме блокировки, а средство блокировки предотвращает одновременное срабатывание контакторов. Когда есть прямое вращение в прямом и обратном контуре, обратное вращение невозможно, для чего требуется нормально замкнутая точка, используемая для блокировки. Если вращение вперед и назад выполняется одновременно, это вызовет короткое замыкание.
    Во-вторых, поговорим о тепловых реле перегрузки, которые обычно имеют пару нормально разомкнутых и пару нормально замкнутых точек.По своему назначению он может в основном защищать цепь от тепла. Нормально замкнутая точка теплового реле перегрузки обычно подключается к цепи последовательно. Как только нормально замкнутая точка будет перегружена, ее можно отключить, и цепь будет отключена. Здесь следует отметить, что лучше всего регулировать рабочий ток теплового реле перегрузки в соответствии с размером нагрузки. Если регулировка слишком большая, она не обеспечит защиты. Напротив, если регулировка небольшая, нормально работать не будет.Это нужно контролировать. .
    Наконец, мы говорим о конкретном способе подключения теплового реле перегрузки и воздушного выключателя в соответствии со спецификациями контактора 380 В. Три провода под напряжением воздушного выключателя подключаются к трем парам главных контактов контактора, а затем нижний конец контактора подключается к тепловому реле. Одновременно подключите три клеммы на нижнем конце теплового реле к контактору 380 В. Подключите провод от главного контакта контактора переменного тока к нормально замкнутому контакту теплового реле, а затем подключите другой конец нормально замкнутого контакта к A1 контактора.Затем подключите провод питания от главного контакта контактора переменного тока к катушке A2 контактора. Электромонтажные работы на этом в основном завершены, но помните, что основное питание от контактора не должно быть тем же проводом. Ниже прилагается физическая схема подключения теплового реле перегрузки при трехфазном питании.

    Инструкции по настройке сброса реле тепловой перегрузки
    Обычно красная кнопка на передней панели устройства является кнопкой остановки, а синяя кнопка — кнопкой сброса.Также есть ручка для регулировки силы тока. Метод регулировки сброса теплового реле перегрузки можно разделить на два вида, включая ручной сброс и автоматический сброс.
    Регулировка ручного сброса реле: после того, как устройство выполнит действие защиты от перегрузки, вы должны нажать кнопку сброса рукой, чтобы восстановить его нормально замкнутый контакт до замкнутого состояния, и вы должны подождать от 2 до 3 минут, когда выполняете ручной сброс. будет сделано позже.
    Регулировка автоматического сброса реле: после того, как устройство выполнит защиту от перегрузки, нормально замкнутый контакт может автоматически вернуться в замкнутое состояние, а время автоматического сброса не будет превышать 5 минут.
    Метод сброса теплового реле перегрузки может быть выбран путем переустановки регулировочного винта. Используйте отвертку с плоским лезвием, чтобы продвинуться в регулировочное отверстие на нижней стороне устройства, а затем затяните винт регулировки сброса по часовой стрелке (отрегулируйте вниз), что является операцией регулировки автоматического сброса. Чтобы вернуться к ручному управлению, просто ослабьте регулировочный винт против часовой стрелки на определенное расстояние.

    В настоящее время многие тепловые реле перегрузки оснащены регулировочными ручками на верхней крышке, как показано на рисунке выше.Когда ручка регулировки выровнена в положение H, это означает ручной сброс, а когда она выровнена в положение A, это означает автоматический сброс.
    Метод регулировки величины тока теплового реле перегрузки состоит в том, чтобы отрегулировать ручку регулировки величины тока на передней части корпуса устройства в соответствии с фактическим номинальным током двигателя, потому что выше в основном четко видны шкалы тока.
    Выше приведена электрическая схема реле тепловой перегрузки и инструкции по настройке сброса, я надеюсь, что вам поможет.okplazas.com — профессиональный агент по продаже реле и другой продукции. Добро пожаловать на адрес электронной почты: [email protected] для консультации, и вы также можете связаться со службой поддержки WeChat + 86-13689242098 онлайн для консультации по продукту!

    Все о ручных пускателях двигателей

    Пускатели двигателей — это устройства, которые запускают и останавливают электродвигатели с помощью ручных или автоматических переключателей и обеспечивают защиту цепей двигателя от перегрузки. Основные характеристики включают предполагаемое применение, тип пускателя, электрические характеристики, включая количество фаз, ток, напряжение и номинальную мощность, а также характеристики.Пускатели двигателей используются везде, где работают электродвигатели с определенной мощностью. Существует несколько типов пускателей, в том числе ручные, магнитные, плавные, многоскоростные и пускатели полного напряжения. В этой статье рассматриваются ручные пускатели двигателей и объясняется, как они работают, их применение и некоторые соображения по выбору пускателя двигателя.

    Как работает ручной пускатель двигателя?

    Ручные пускатели двигателей — это простейшие устройства для пуска двигателей, которые состоят из двухпозиционного переключателя и реле перегрузки.Как следует из названия, они управляются вручную. Кнопка, тумблер или поворотный переключатель, установленные непосредственно на стартере, нажимаются для запуска или остановки подключенного электрического оборудования. Механические соединения от кнопок или тумблера заставляют контакты размыкаться и замыкаться, запуская и останавливая двигатель.

    В ручном пускателе двигателя конденсатор и катушки, присутствующие в двигателе, будут управлять направлением однофазного асинхронного двигателя. Если двигатель достигает определенной скорости, встроенная обмотка стартера начинает издавать щелчок.Ручные пускатели двигателя обеспечивают защиту двигателя от перегрузки. Они следят за тем, чтобы к двигателю поступал необходимый ток, и помогают контролировать температуру в двигателе.

    Все пускатели двигателей имеют определенные функции управления мощностью. Они рассчитаны на ток (в амперах) или мощность (в лошадиных силах) и имеют дистанционное управление включением / выключением и защиту двигателя от перегрузки. У них есть функции включения и выключения, которые быстро включают или отключают ток.

    Пускатель с самозащитой представляет собой разновидность ручного пускателя и часто используется в панелях управления с несколькими двигателями.Панели управления имеют низкоуровневую мгновенную максимальную токовую защиту, которая позволяет одному устройству защиты от короткого замыкания на входе защитить несколько пускателей. Это означает, что двигатели не нуждаются в индивидуальной защите от короткого замыкания. Эти ручные пускатели могут использоваться как с однофазными, так и с трехфазными двигателями.

    Приложения и отрасли

    Поскольку ручные пускатели двигателей обычно не предусматривают отключения мощности двигателя в случае прерывания подачи электроэнергии, они обычно используются для двигателей меньшего размера, где полезно возобновить работу после восстановления мощности.Сюда входят небольшие насосы, вентиляторы, пилы, воздуходувки, упаковочное, сортировочное и другое оборудование.

    Пускатели с ручным пуском

    с защитой от пониженного напряжения обеспечивают обесточивание цепи пускателя после сбоя питания и, следовательно, используются для конвейеров и т. Д., Где существует опасность автоматического перезапуска как для оборудования, так и для персонала. Ручные пускатели двигателей с защитой от пониженного напряжения используются на станках, деревообрабатывающем оборудовании и т. Д., Где требования безопасности требуют отключения двигателя после сбоя питания.

    Они доступны как в конфигурациях NEMA и IEC, так и в стандартных размерах. Ручные стартеры меньше по размеру и имеют более низкую начальную стоимость, чем другие стартеры. Они используются в сетях с полным напряжением для однофазных и трехфазных двигателей малой и средней мощности

    Соображения

    Ручные пускатели двигателей ограничены размером двигателя, который они могут запускать, начиная с дробных уровней л.с. и обычно увеличивая максимум до 10-15 л.с., в зависимости от напряжения.Они, как правило, используются с оборудованием, которое запускается нечасто или работает непрерывно с несколькими остановками. Кроме того, разработчикам необходимо рассмотреть магнитные пускатели или даже устройства плавного пуска. Особые случаи, такие как реверсирование или многоскоростное обслуживание, решаются с помощью стилей для конкретных приложений. Другие соображения, помимо размера двигателя и напряжения, включают в себя рассмотрение приложений и изучение таких опций, как взрывозащищенность, характеристики корпуса и защита предохранителем или автоматическим выключателем.

    Сводка

    В этой статье представлены сведения о ручных пускателях двигателей.Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

    Прочие изделия для стартеров двигателей

    Больше от Machinery, Tools & Supplies

    Реле перегрузки — Принцип действия, типы, подключение

    Каждый двигатель должен быть защищен от всех возможных неисправностей, чтобы обеспечить длительную и безопасную работу, а также потерю времени из-за поломки.Почти все отрасли промышленности полагаются на электродвигатель для управления своими процессами и производством. Следовательно, необходимо обеспечить отказоустойчивость двигателя.

    Реле перегрузки

    — одно из таких устройств, которое защищает двигатель от повреждений, вызванных перегрузками и токами . Он используется с контакторами и может быть найден в центрах управления двигателями и пускателях двигателей.

    Изображение: реле перегрузки

    Определение реле перегрузки

    Реле перегрузки — это устройство, которое защищает электродвигатель от перегрузок и обрыва фазы.

    Он определяет перегрузку двигателя и прерывает поток энергии к двигателю, тем самым защищая его от перегрева и повреждения обмотки. Помимо перегрузок, он также может защитить двигатель от обрыва / пропадания фаз и дисбаланса фаз . Они широко известны как OLR .

    Что такое перегрузка?

    Перегрузка — это состояние, при котором двигатель потребляет ток, превышающий его номинальное значение, в течение длительного периода.

    Это наиболее распространенная неисправность, которая может привести к повышению температуры обмотки двигателя. Следовательно, важно быстрое возвращение к нормальной работе.

    Принцип операция

    Тепловое реле перегрузки работает по принципу электротермических свойств биметаллической ленты. Он размещен в цепи двигателя таким образом, чтобы ток, подаваемый на двигатель, проходил через его полюса. Биметаллическая полоса прямо или косвенно нагревается током и, когда ток превышает установленное значение, изгибается.

    Они всегда работают в сочетании с контакторами. Когда биметаллические ленты нагреваются, срабатывает контакт отключения, который, в свою очередь, прерывает подачу питания на катушку контактора, обесточивая ее и прерывая ток, протекающий к двигателю. Это время отключения всегда обратно пропорционально току, протекающему через OLR. Следовательно, чем больше ток, тем быстрее он сработает. Следовательно, тепловые реле перегрузки называются реле , зависящими от тока и с обратной выдержкой времени.

    A = Биметаллические ленты с косвенным нагревом
    B = Шток выключателя
    C = Рычаг выключения
    D = Рычаг контакта
    E = Биметаллическая планка компенсации
    Авторы и права: Rockwell

    Виды перегрузки реле

    Реле перегрузки можно классифицировать следующим образом:

    1. Биметаллические тепловые реле перегрузки
    2. Электронные реле перегрузки

    Принцип работы выше немного отличается друг от друга.Давайте обсудим это в следующих разделах.

    Как объяснено выше, биметаллическое тепловое реле работает на нагревательные свойства биметаллической полосы. В методе прямого нагрева полный ток двигателя протекает через OLR. Следовательно, он нагревается непосредственно током.

    Но в случае косвенного нагрева биметаллическая полоса удерживается в тесном контакте с проводником с током внутри OLR. Чрезмерный ток, протекающий к двигателю, нагревает проводник и, следовательно, биметаллическую полосу.Проводник должен быть изолирован, чтобы ток через ленту не протекал.

    Работа электронного реле перегрузки

    Электронные реле перегрузки не имеют внутри биметаллической планки. Вместо этого он использует датчики температуры или трансформаторы тока, чтобы определять величину тока, протекающего к двигателю. Для защиты используется микропроцессорная технология. Температура измеряется с помощью PTC, и он используется для отключения цепи в случае сбоев из-за перегрузки.Некоторые электронные реле перегрузки поставляются с трансформаторами тока и датчиками Холла, которые напрямую определяют величину протекающего тока.

    Основным преимуществом электронного OLR перед тепловым OLR является то, что отсутствие биметаллической ленты приводит к низким тепловым потерям внутри реле. Кроме того, электронные реле более точны, чем тепловые реле. Некоторые производители создают электронные реле с расширенными функциями, такими как защита от замыкания на землю, защита двигателя от опрокидывания и т. Д. Электронные реле перегрузки хорошо подходят для приложений, требующих частого запуска и остановки двигателей.

    Они сконструированы таким образом, чтобы выдерживать пусковой ток (который обычно в 6-10 раз превышает ток полной нагрузки) двигателя в течение ограниченного периода (обычно 15-30 секунд в зависимости от порогового значения тока).

    Детали теплового реле перегрузки

    Помимо биметаллической ленты и контактов, обсуждаемых в Раздел принципа работы, в реле перегрузки есть еще несколько частей это необходимо упомянуть.

    Терминал

    Клеммы L1, L2, L3 являются входными клеммами.Это может быть прямо установлен на контактор. Питание двигателя может быть подключено к клеммам T1, Т2, Т3.

    Установка диапазона ампер

    Поворотная ручка присутствует над реле перегрузки. С помощью этой ручки можно установить номинальный ток двигателя. Сила тока может быть установлена ​​между предусмотренными верхним и нижним пределами. В случае электронного реле перегрузки также предусмотрена дополнительная ручка для выбора класса срабатывания.

    Кнопка сброса

    На реле перегрузки имеется кнопка сброса для сброса реле перегрузки после отключения и устранения неисправности.

    Выбор ручного / автоматического сброса

    С помощью кнопки выбора ручного / автоматического сброса мы можем выбирать между ручным и автоматическим сбросом этих реле после отключения. Если устройство настроено на автоматический режим, возможен удаленный сброс OLR.

    Вспомогательный контакт

    Они снабжены двумя вспомогательными контактами — одним нормально разомкнутым (97-98) и другим нормально замкнутым (95-96). НО контакт предназначен для сигнализации срабатывания, а НЗ контакт — для отключения контактора. НЗ-контакты должны обеспечивать прямое переключение катушки контактора.

    Тестовая кнопка

    Используя кнопку тестирования, можно проверить проводку управления.

    Символ реле перегрузки Символ теплового OLR

    Здесь 1, 2, 3, 4, 5 и 6 — клеммы питания, 95 и 96 — контакты отключения, а 97 и 98 — контакты сигнализации.

    Что такое поездка Класса реле перегрузки?

    Время, затрачиваемое ими на размыкание контактора при перегрузках, определяется классом отключения .Обычно он подразделяется на Класс 10, Класс 20, Класс 30 и Класс 5. OLR отключается через 10 секунд, 20 секунд, 30 секунд и 5 секунд соответственно при 600% тока полной нагрузки двигателя.

    Очень часто используются

    Class 10 и Class 20. Реле перегрузки класса 30 используются для защиты двигателей, приводящих в движение высокоинерционные нагрузки, а реле класса 5 используются для двигателей, требующих очень быстрого отключения.

    Предоставлено: Шнайдер.

    Как пользоваться реле перегрузки в цепи?

    Они всегда используются в комбинации с контакторами в цепи.Он подключен к двигателю так, что ток, идущий к двигателю, полностью протекает через него. Ниже представлены различные типы соединений для однофазных и трехфазных двигателей.

    Где К1 и К1М — реле перегрузки. Первый и второй рисунки показывают подключение однофазного двигателя, а третий показывает подключение трехфазного двигателя.

    Что вызывает отключение OLR?

    Как обсуждалось выше, существует трех основных условий отключения по перегрузке :

    1. Перегрузка мотора.
    2. Обрыв входной фазы
    3. Асимметрия фаз.

    Помимо этого, может быть доступна дополнительная функция защиты. Это варьируется от одного производителя к другому.

    Как реле перегрузки защищает от обрыва фазы?

    Во время нормальной работы ток, протекающий через каждый полюс реле перегрузки к двигателю, остается неизменным. Если какая-либо фаза прерывается, ток в двух других фазах возрастает до 1.73 раза больше нормального значения. Следовательно, реле перегрузки нагревается и срабатывает. Обрыв фазы также известен как однофазный двигатель или обрыв фазы.

    Может OLR защитить от короткие замыкания?

    Реле перегрузки не могут защитить от короткого замыкания. Их всегда следует использовать с устройствами защиты от короткого замыкания. В противном случае короткое замыкание в двигателе может привести к его повреждению. Они могут защитить от перегрузок, потери фазы и дисбаланса фаз, но не от короткого замыкания.

    Сводка

    Реле перегрузки — это устройство, которое может защитить двигатель от перегрузок, обрыва фазы и дисбаланса фаз. По принципу действия они подразделяются на тепловые и электронные реле перегрузки. Thermal OLR основан на принципе деформации биметаллической ленты при нагревании, а электронное реле перегрузки представляет собой микропроцессорное устройство.

    OLR используются в сочетании с контакторами. Он размыкает контактор всякий раз, когда обнаруживает неисправность.Время, затрачиваемое ими на размыкание контактора при перегрузках, определяется его классом отключения. Реле перегрузки не могут защитить от короткого замыкания.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *