Обозначение диммера на схеме
Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.
Нормативные документы
Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.
Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.
Номер ГОСТа | Краткое описание |
2.710 81 | В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы. |
2.747 68 | Требования к размерам отображения элементов в графическом виде. |
21.614 88 | Принятые нормы для планов электрооборудования и проводки. |
2.755 87 | Отображение на схемах коммутационных устройств и контактных соединений |
2.756 76 | Нормы для воспринимающих частей электромеханического оборудования. |
2.709 89 | Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода. |
21.404 85 | Схематические обозначения для оборудования, используемого в системах автоматизации |
Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.
Виды электрических схем
- Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
- Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка
Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.
Пример однолинейной схемы
- Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов
Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.
Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.
Графические обозначения
Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.
Примеры УГО в функциональных схемах
Ниже представлен рисунок с изображением основных узлов систем автоматизации.
Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85
Описание обозначений:
- А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
- В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
- С – Отображение исполнительных механизмов (ИМ).
- D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
- Происходит открытие РО
- Закрытие РО
- Положение РО остается неизменным.
- Е – ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
- F- Принятые отображения линий связи:
- Общее.
- Отсутствует соединение при пересечении.
- Наличие соединения при пересечении.
УГО в однолинейных и полных электросхемах
Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.
Источники питания.
Для их обозначения приняты символы, приведенные на рисунке ниже.
УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
- A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
- В – значок электричества, отображающий переменное напряжение.
- С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
- D – Отображение аккумуляторного или гальванического источника питания.
- E- Символ батареи, состоящей из нескольких элементов питания.
Линии связи
Базовые элементы электрических соединителей представлены ниже.
Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)
Описание обозначений:
- А – Общее отображение, принятое для различных видов электрических связей.
- В – Токоведущая или заземляющая шина.
- С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
- D – Символ заземления.
- E – Электрическая связь с корпусом прибора.
- F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
- G – Пересечение с отсутствием соединения.
- H – Соединение в месте пересечения.
- I – Ответвления.
Обозначения электромеханических приборов и контактных соединений
Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.
УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)
Описание обозначений:
- А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
- В – УГО воспринимающей части электротепловой защиты.
- С – отображение катушки устройства с механической блокировкой.
- D – контакты коммутационных приборов:
- Замыкающие.
- Размыкающие.
- Переключающие.
- Е – Символ для обозначения ручных выключателей (кнопок).
- F – Групповой выключатель (рубильник).
УГО электромашин
Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.
Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)
Описание обозначений:
- A – трехфазные ЭМ:
- Асинхронные (ротор короткозамкнутый).
- Тоже, что и пункт 1, только в двухскоростном исполнении.
- Асинхронные ЭМ с фазным исполнением ротора.
- Синхронные двигатели и генераторы.
- B – Коллекторные, с питанием от постоянного тока:
- ЭМ с возбуждением на постоянном магните.
- ЭМ с катушкой возбуждения.
Обозначение электродвигателей на схемах
УГО трансформаторов и дросселей
С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.
Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)
Описание обозначений:
- А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
- В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
- С – Отображение двухкатушечного трансформатора.
- D – Устройство с тремя катушками.
- Е – Символ автотрансформатора.
- F – Графическое отображение ТТ (трансформатора тока).
Обозначение измерительных приборов и радиодеталей
Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.
Примеры условных графических обозначений электронных компонентов и измерительных приборов
Описание обозначений:
- Счетчик электроэнергии.
- Изображение амперметра.
- Прибор для измерения напряжения сети.
- Термодатчик.
- Резистор с постоянным номиналом.
- Переменный резистор.
- Конденсатор (общее обозначение).
- Электролитическая емкость.
- Обозначение диода.
- Светодиод.
- Изображение диодной оптопары.
- УГО транзистора (в данном случае npn).
- Обозначение предохранителя.
УГО осветительных приборов
Рассмотрим, как на принципиальной схеме отображаются электрические лампы.
Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)
Описание обозначений:
- А – Общее изображение ламп накаливания (ЛН).
- В – ЛН в качестве сигнализатора.
- С – Типовое обозначение газоразрядных ламп.
- D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)
Обозначение элементов в монтажной схеме электропроводки
Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.
Пример изображения на монтажных схемах розеток скрытой установки
Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.
Обозначение выключатели скрытой установки Обозначение розеток и выключателей
Буквенные обозначения
В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.
Буквенные обозначения основных элементов
К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.
Чтение чертежей по электрике требует определенных знаний, которые можно почерпнуть из нормативных документов. Своеобразным «языком» чтения являются условные обозначения в электрических схемах – система знаков и символов, преимущественно графических и буквенных. Кроме них иногда цифрами проставляются номиналы.
Сгласитесь, понимание стандартных обозначений просто необходимо для любого домашнего мастера. Эти знания помогут прочесть электросхему, самостоятельно составить план разводки в квартире или в частном доме. Предлагаем разобраться во всех тонкостях написания проектной документации.
В статье описаны основные виды электрических схем, а также приведена подробная расшифровка базовых изображений, символов, значков и буквенно-цифровых маркеров, используемых при составлении чертежей по устройству электросети.
Какие виды электросхем могут пригодиться?
Рассмотрим проектную информацию с точки зрения электромонтажника-любителя, желающего своими руками поменять проводку в доме или составить чертеж подключения дачи к электрокоммуникациям.
Сначала нужно понять, какие знания будут полезными, а какие не понадобятся. Первый шаг – это знакомство с видами электрических схем.
Вся информация о видах схем изложена в новой редакции ГОСТ 2.702-2011, которая носит название «ЕСКД. Правила выполнения электрических схем».
Это дубликат более раннего документа – ГОСТ 2.701-2008, в котором как раз подробно говорится о классификации схем. Всего выделяют 10 видов, но на практике может потребоваться только одна – электрическая.
Кроме видовой классификации, существует и типовая, которая подразделяет все чертежные документы на структурные, общие и пр., всего 8 пунктов.
Домашнему мастеру будут интересны 3 типа схем: функциональная, принципиальная, монтажная.
Тип #1 – функциональная схема
Функциональная схема не содержит детализации, в ней указываются основные блоки и узлы. Она дает общее представление о работе системы. Для устройства электроснабжения частного дома не всегда есть смысл составлять такие чертежи, так как они обычно типовые.
А вот при описании сложного электронного устройства или для оснащения электрикой цеха, студии или пункта управления они могут пригодиться.
Тип #2 – принципиальная схема
Принципиальная схема, в отличие от функциональной – это набор условных обозначений, без знания которых сложно разобраться в устройстве сети в целом. На чертеже указываются все устройства и связи между ними.
Если нужно отразить только силовые линии, достаточно начертить линейную схему, а для изображения всех видов цепей с приборами контроля и управления понадобится полная.
Тип #3 – монтажная схема
Монтажная схема – документ, которым удобно пользоваться при установке сетей. По ней можно узнать, какие устройства следует подключать, где именно и как далеко друг от друга они находятся.
Указано расположение таких элементов, как выключатели и розетки, светильники, автоматы защиты. Прямо в схеме можно расставить номиналы и длину цепей.
Требования по всем видам схематической документации изложены в ГОСТ 2.702-2011, именно им и следует в дальнейшем руководствоваться при составлении собственных проектов.
Здесь же можно найти в полном объеме ссылки на другие полезные документы, в которых размещены таблицы графических и буквенных обозначений различных элементов, использующихся на электрических схемах, а также правила их использования.
Графические изображения в электросхемах
Чертеж электросети представляет собой набор графических элементов, которые в совокупности образуют неразрывную систему. На практике это комплект устройств, соединенных проводами.
Большая часть обозначений – графические. Буквы и цифры применяются для символьного обозначения отдельных элементов, их номиналов и расстояний между объектами.
Основные базовые изображения
Электрические цепи ведут к устройствам и установкам, которые оборудованы контактами, способными разорвать или соединить эти цепи.
Самый простой пример – обыкновенный выключатель. Все контакты делятся на замыкающие, размыкающие и переключающие – именно они и отображаются в схемах.
Перечисленные графические изображения являются обязательными при составлении принципиальных схем и обычно понятны даже начинающему электрику.
Символика однолинейных схем
Для сборки электрощитов также используют чертежи. Обычно они представляют собой однолинейную схему с обозначением УЗО, автоматических выключателей, контакторов и другого защитного оборудования.
Некоторые графические символы похожи между собой, поэтому при составлении схемы требуется особое внимание. Например, контактор и рубильник обозначаются одинаково, разница – в небольшом элементе на неподвижном контакте.
Специальными символами обозначаются катушки реле – во всех изображениях за основу взят прямоугольник.
Для запоминания значков часто используют ассоциации или буквенно-графические подсказки. Например, мотор-привод изображается кружком, внутри которого находится буква «М».
При составлении схемы следует учитывать, что для обозначения некоторых символов также важно количество.
Например, если нужно указать 4-контактный клеммник, то следует начертить четыре перечеркнутых кружочка в ряд, а не один. Парные галочки при изображении розеток – это количество проводов.
Как изображаются шины и провода?
Для обозначений шин, кабелей и проводов используется линейная графика – практически все символы состоят из прямых линий.
Соединения проводников указываются точками. Если в месте соединения двух линий никакой пометки нет, то это простое пересечение.
Провода бывают разные по виду, назначению, нагрузке, способу прокладки. Все это также можно отобразить схематически.
Дополнительные характеристики облегчают подбор материалов и монтаж электросети. В дальнейшем благодаря указанным на схеме характеристикам можно судить о потенциальных возможностях уже установленной электросистемы.
Розетки и выключатели на схемах
Обозначение выключателей разбито на несколько групп – по степени защиты, способу установки (скрытой или открытой). Отдельно вынесены переключатели на два направления. 2- и 3-клавишные выключатели обозначаются по-разному.
Для некоторых устройств управления источниками света обозначений нет – например, для кнопочных устройств и диммеров.
Сейчас для экономии электроэнергии в больших помещениях часто устанавливают проходные переключатели, которыми управляют с 2 или 3 точек. Для них также можно найти соответствующие значки.
Розетки, как и выключатели, поделены на группы по степени защиты. Внутри групп устройства делятся по количеству полюсов, наличию защиты. Для обозначения блоков используются буквенно-цифровые подписи, указывающие на количество и назначение установок в одном блоке.
При запоминании обозначений различных электрических элементов на схемах следует каждое условно изображенное устройство соотносить с реальным изделием.
Например, популярные виды розеток выглядят следующим образом:
На деле же электромонтажные устройства выглядят так:
Выключатели и розетки – одни из самых «востребованных» элементов в схемах для домашнего применения, поэтому их следует запомнить в первую очередь. Подробнее об обозначении таких устройств на чертежах и схемах читайте в этой статье.
Обозначение источников света
Для различных видов ламп и светильников также предусмотрены отдельные символы. Удобно то, что для светодиодных и люминесцентных лампочек есть специальные значки.
Стандартные изображения разного рода светильников часто применяют для составления монтажных схем.
Если использовать одинаковые значки, придется включать дополнительные уточнения, а с типовыми символами можно нарисовать схему намного быстрее.
Элементы для составления принципиальных электросхем
Базовые символы для принципиальных схем отличаются мало, но кроме них есть еще специальные значки для обозначения всевозможных радиоэлементов: тиристоров, резисторов, диодов и пр.
Существуют отдельные обозначения для радиоустройств, но при проектировании домашней электросети они обычно не требуются.
Буквенные обозначения на электросхемах
Чтобы дать более полную информацию об устройстве, его подписывают сокращенным буквенным обозначением. Количество букв – 2 или 3. Иногда буквенное обозначение превращается в буквенно-цифровое, если рядом поставить порядковый номер устройства.
Наряду с международными есть и российские стандарты. Они перечислены в ГОСТ 7624-55, но этот документ признан недействующим.
В статье приведена информация не обо всех условных обозначениях. Полные материалы о графических символах можно отыскать в ГОСТ 2.709-89, 2.721-74, 2.755-87.
Выводы и полезное видео по теме
От рисунка – до принципиальной электрической схемы:
Пример чтения схем электроустройств (часть 1):
Продолжение, а точнее, часть 2 о тонкостях чтения схем электроустройств (часть 2):
Подробно о самостоятельном составлении схем:
Владение информацией по чтению и составлению электросхем может пригодиться и для монтажных работ по благоустройству жилья, и для ремонта электроприборов. Ни к чему придумывать собственную символику, когда есть профессиональная система условных обозначений, выучить которую не так уж и сложно.
Есть, что дополнить, или возникли вопросы по составлению и прочтению электрических схем? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом разработки чертежей. Форма для связи находится в нижнем блоке.
Было дело – занимался электромонтажом, в основном, по осветительным сетям. Монтажная схема дает представление о количестве розеток, выключателей, светильников и прочего и их примерном расположении. Но способ их соединения, то есть, варианты устройства разводки в распределительных коробках – это уже знания электромонтажника. А высота закладки провода и установки приборов зависит от применяемого ГОСТа.
Добрый день, Владимир.
Чтобы не дезориентировать читателей статьи, вынужден несколько подкорректировать вашу трактовку монтажной схемы.
Прежде всего, монтажная схема задает способ подключение потребителей электроэнергии к распределительному щитку.
Среди «популярных» для многоквартирных домов – схема, предусматривающая проброску питающей магистрали через все комнаты квартиры с последующим обустройством распределительных коробок, от которых запитываются светильники, розетки, прочие.
Кардинально отличается и практически не применяется схема электроснабжения «звездой» – от распредщита через автоматы подключаются отдельные токоприемники.
Следующий вариант – смешанная схема: все потребители делятся на категории и от щита их запитывают отдельными защищенными линиями, от которых через распредкоробки идут ответвления.
Могут быть и другие варианты, предлагаемые заказчику проекта подрядчиком-разработчиком схемы электроснабжения. То есть, творчество электромонтажника – это ваша фантазия.
Для того чтобы правильно прочитать и понять, что означает та или иная схема или чертеж, связанные с электричеством, необходимо знать, как расшифровываются изображенные на них значки и символы. Большое количество информации содержат буквенные обозначения элементов в электрических схемах, определяемые различными нормативными документами. Все они отображаются латинскими символами в виде одной или двух букв.
Однобуквенная символика элементов
Буквенные коды, соответствующие отдельным видам элементов, наиболее широко применяющихся в электрических схемах, объединяются в группы, обозначаемые одним символом. Буквенные обозначения соответствуют ГОСТу 2.710-81. Например, буква «А» относится к группе «Устройства», состоящей из лазеров, усилителей, приборов телеуправления и других.
Точно так же расшифровывается группа, обозначаемых символом «В». Она состоит из устройств, преобразующих неэлектрические величины в электрические, куда не входят генераторы и источники питания. Эта группа дополняется аналоговыми или многоразрядными преобразователями, а также датчиками для указаний или измерений. Сами компоненты, входящие в группу, представлены микрофонами, громкоговорителями, звукоснимателями, детекторами ионизирующих излучений, термоэлектрическими чувствительными элементами и т.д.
Все буквенные обозначения, соответствующие наиболее распространенным элементам, для удобства пользования объединены в специальную таблицу:
Первый буквенный символ, обязательный для отражения в маркировке
Группа основных видов элементов и приборов
Элементы, входящие в состав группы (наиболее характерные примеры)
A
Лазеры, мазеры, приборы телеуправления, усилители.
B
Аппаратура для преобразования неэлектрических величин в электрические (без генераторов и источников питания), аналоговые и многозарядные преобразователи, датчики для указаний или измерений
Микрофоны, громкоговорители, звукосниматели, детекторы ионизирующих излучений, чувствительные термоэлектрические элементы.
C
D
Микросборки, интегральные схемы
Интегральные схемы цифровые и аналоговые, устройства памяти и задержки, логические элементы.
E
Различные виды осветительных устройств и нагревательных элементов.
F
Обозначение предохранителя на схеме, разрядников, защитных устройств
Плавкие предохранители, разрядники, дискретные элементы защиты по току и напряжению.
G
Источники питания, генераторы, кварцевые осцилляторы
Аккумуляторные батареи, источники питания на электрохимической м электротермической основе.
H
Устройства для сигналов и индикации
Индикаторы, приборы световой и звуковой сигнализации
K
Контакторы, реле, пускатели
Реле напряжения и тока, реле времени, электротепловые реле, магнитные пускатели, контакторы.
L
Дроссели, катушки индуктивности
Дроссели в люминесцентном освещении.
M
Двигатели постоянного и переменного тока.
P
Измерительные приборы и оборудование
Счетчики, часы, показывающие, регистрирующие и измерительные приборы.
Q
Выключатели и разъединители в силовых цепях
Силовые автоматические выключатели, короткозамыкатели, разъединители.
R
Варисторы, переменные резисторы, терморезисторы, потенциометры.
S
Коммутационные устройства в цепях сигнализации, управления, измерительных приборах
Различные типы выключателей и переключателей, а также выключатели, срабатывающие действием различных факторов.
T
Стабилизаторы, трансформаторы напряжения и тока.
U
Различные типы преобразователей и устройства связи
Выпрямители, модуляторы, демодуляторы, дискриминаторы, преобразователи частоты, инверторы.
V
Полупроводниковые и электровакуумные приборы
Диоды, тиристоры, транзисторы, стабилитроны, электронные лампы.
W
Антенны, линии и элементы, работающие на сверхвысоких частотах.
Антенны, волноводы, диполи.
X
Гнезда, токосъемники, штыри, разборные соединения.
Y
Механические устройства с электромагнитным приводом
Тормоза патроны, электромагнитные муфты.
Z
Оконечные устройства, ограничители, фильтры
Кварцевые фильтры, линии моделирования.
Буквенные обозначения из двух символов
Для более точной расшифровки и обозначении элементов на электрических схемах используются двухбуквенные, а в некоторых случаях и многобуквенные обозначения. Маркировка выполняется не только символом общего кода элемента, но и дополнительными буквами, более полно раскрывающими характеристики каждого элемента. С целю упорядочения подобной символики также создана таблица в соответствии с ГОСТом 2.710-81:
Первый буквенный символ, обязательный для отражения в маркировке
Группа основных видов элементов и приборов
Элементы, входящие в состав группы (наиболее характерные примеры)
Символы двухбуквенного кода
A
Устройства общего назначения
B
Различные виды аналоговых или многозарядных преобразователей, указательные или измерительные датчики, устройства, преобразующие неэлектрические величины в электрические, за исключением генераторов и источников питания
BA
BB
Детекторы ионизирующих элементы
BD
BE
BF
BC
BK
BL
BM
BP
BQ
Датчики частоты вращения – тахогенераторы
BR
BS
BV
C
D
Интегральные схемы, микросборки
Схемы интегральные аналоговые
DA
Схемы интегральные, цифровые, логические элементы
DD
Устройства хранения информации
DS
DT
E
EK
EL
ET
F
Защитные устройства, предохранители, разрядники
Дискретные элементы токовой защиты мгновенного действия
FA
Дискретные элементы токовой защиты инерционного действия
FP
FU
Дискретные элементы защиты по напряжению, разрядники
FV
G
Генераторы и другие источники питания
GB
H
Индикаторные и сигнальные элементы
Приборы звуковой сигнализации
HA
HG
Приборы световой сигнализации
HL
K
Контакторы, пускатели, реле
KA
KH
KK
Контакторы, магнитные пускатели
KM
KT
KV
L
Дроссели, катушки индуктивности
Дроссели люминесцентных светильников
LL
M
P
Измерительные приборы и оборудование (недопустимо использование маркировки РЕ)
PA
PC
PF
Счетчики активной энергии
PI
Счетчики реактивной энергии
PK
PR
PS
Измерители времени действия, часы
PT
PV
PW
Q
Выключатели и разъединители в силовых цепях
QF
QK
QS
R
RK
RP
RS
RU
S
Коммутационные устройства в цепях измерения, управления и сигнализации
Выключатели и переключатели
SA
SB
SF
Выключатели, срабатывающие под действием различных факторов:
SL
SP
– от положения (путевые)
SQ
– от частоты вращения
SR
SK
T
TA
TS
TV
U
Устройства связи, преобразователи неэлектрических величин в электрические
UB
UR
UI
Выпрямители, генераторы частоты, инверторы, преобразователи частоты
UZ
V
Приборы полупроводниковые и электровакуумные
VD
VL
VT
VS
W
Антенны, линии и элементы СВЧ
WE
WK
WS
WT
WU
WA
X
Скользящие контакты, токосъемники
XA
XP
XS
XT
XW
Y
Механические устройства с электромагнитным приводом
YA
Тормоза с электромагнитными приводами
YB
Муфты с электромагнитными приводами
YC
Электромагнитные патроны или плиты
YH
Z
Ограничители, устройства оконечные, фильтры
ZL
ZQ
Кроме того, в ГОСТе 2.710-81 определены специальные символы для обозначения каждого элемента.
Условные графические обозначения электронных компонентов в схемах
Условное обозначение диммера на чертежах
Чтобы понять, что конкретно нарисовано на схеме или чертеже, необходимо знать расшифровку тех значков, которые на ней есть. Это распознавание еще называют чтением чертежей. А чтоб облегчить это занятие почти все элементы имеют свои условные значки. Почти, потому что стандарты давно не обновлялись и некоторые элементы рисуют каждый как может. Но, в большинстве своем, условные обозначения в электрических схемах есть в нормативны документах.
Условные обозначения в электрических схемах: лампы,трансформаторы, измерительные приборы, основная элементная база
Нормативная база
Разновидностей электрических схем насчитывается около десятка, количество различных элементов, которые могут там встречаться, исчисляется десятками если не сотнями. Чтобы облегчить распознавание этих элементов, введены единые условные обозначения в электрических схемах. Все правила прописаны в ГОСТах. Этих нормативов немало, но основная информация есть в следующих стандартах:
Нормативные документы, в которых прописаны графические обозначения элементной базы электрических схем
Изучение ГОСТов дело полезное, но требующее времени, которое не у всех есть в достаточном количестве. Потому в статье приведем условные обозначения в электрических схемах — основную элементную базу для создания чертежей и схем электропроводки, принципиальных схем устройств.
Обозначение электрических элементов на схемах
Некоторые специалисты внимательно посмотрев на схему, могут сказать что это и как оно работает. Некоторые даже могут сразу выдать возможные проблемы, которые могут возникнуть при эксплуатации. Все просто — они хороша знают схемотехнику и элементную базу, а также хорошо ориентируются в условных обозначениях элементов схем. Такой навык нарабатывается годами, а, для «чайников», важно запомнить для начала наиболее распространенные.
Обозначение светодиода, стабилитрона, транзистора (разного типа)
Электрические щиты, шкафы, коробки
На схемах электроснабжения дома или квартиры обязательно будет присутствовать обозначение электрического щитка или шкафа. В квартирах, в основном устанавливается там оконечное устройство, так как проводка дальше не идет. В домах могут запроектировать установку разветвительного электрошкафа — если из него будет идти трасса на освещение других построек, находящихся на некотором расстоянии от дома — бани, летней кухни, гостевого дома. Эти другие обозначения есть на следующей картинке.
Обозначение электрических элементов на схемах: шкафы, щитки, пульты
Если говорить об изображениях «начинки» электрических щитков, она тоже стандартизована. Есть условные обозначения УЗО, автоматических выключателей, кнопок, трансформаторов тока и напряжения и некоторых других элементов. Они приведены следующей таблице (в таблице две страницы, листайте нажав на слово «Следующая»)
Элементная база для схем электропроводки
При составлении или чтении схемы пригодятся также обозначения проводов, клемм, заземления, нуля и т.д. Это то, что просто необходимо начинающему электрику или для того чтобы понять, что же изображено на чертеже и в какой последовательности соединены ее элементы.
Пример использования приведенных выше графических изображений есть на следующей схеме. Благодаря буквенным обозначениям все и без графики понятно, но дублирование информации в схемах никогда лишним не было.
Пример схемы электропитания и графическое изображение проводов на ней
Изображение розеток
На схеме электропроводки должны быть отмечены места установки розеток и выключателей. Типов розеток много — на 220 В, на 380 в, скрытого и открытого типа установки, с разным количеством «посадочных» мест, влагозащищенные и т.д. Приводить обозначение каждой — слишком длинно и ни к чему. Важно запомнить как изображаются основные группы, а количество групп контактов определяется по штрихам.
Обозначение розеток на чертежах
Розетки для однофазной сети 220 В обозначаются на схемах в виде полукруга с одним или несколькими торчащими вверх отрезками. Количество отрезков — количество розеток на одном корпусе (на фото ниже иллюстрация). Если в розетку можно включить только одну вилку — вверх рисуют один отрезок, если два — два, и т.д.
Условные обозначения розеток в электрических схемах
Если посмотрите на изображения внимательно, обратите внимание, что условное изображение, которое находится справа, не имеет горизонтальной черты, которая отделяет две части значка. Эта черта указывает на то, что розетка скрытого монтажа, то есть под нее необходимо в стене сделать отверстие, установить подрозетник и т.д. Вариант справа — для открытого монтажа. На стену крепится токонепроводящая подложка, на нее сама розетка.
Также обратите внимание, что нижняя часть левого схематического изображения перечеркнута вертикальной линией. Так обозначают наличие защитного контакта, к которому подводится заземление. Установка розеток с заземлением обязательна при включении сложной бытовой техники типа стиральной или посудомоечной машины, духовки и т.д.
Обозначение трехфазной розетки на чертежах
Ни с чем не перепутаешь условное обозначение трехфазной розетки (на 380 В). Количество торчащих вверх отрезков равно количеству проводников, которые к данному устройству подключаются — три фазы, ноль и земля. Итого пять.
Бывает, что нижняя часть изображения закрашена черным (темным). Это обозначает что розетка влагозащищенная. Такие ставят на улице, в помещениях с повышенной влажностью (бани, бассейны и т.д.).
Отображение выключателей
Схематическое обозначение выключателей выглядит как небольшого размера кружок с одним или несколькими Г- или Т- образными ответвлениями. Отводы в виде буквы «Г» обозначают выключатель открытого монтажа, с виде буквы «Т» — скрытого монтажа. Количество отводов отображает количество клавиш на этом устройстве.
Условные графические обозначения выключателей на электрических схемах
Кроме обычных могут стоять проходные выключатели — для возможности включения/выключения одного источника света из нескольких точек. К такой же небольшой окружности с противоположных сторон пририсовывают две буквы «Г». Так обозначается одноклавишный проходной переключатель.
Как выглядит схематичное изображение проходных выключателей
В отличие от обычных выключателей, в этих при использовании двухклавишных моделей добавляется еще одна планка, параллельная верхней.
Лампы и светильники
Свои обозначения имеют лампы. Причем отличаются лампы дневного света (люминесцентные) и лампы накаливания. На схемах отображается даже форма и размеры светильников. В данном случае надо только запомнить как выглядит на схеме каждый из типов ламп.
Изображение светильников на схемах и чертежах
Радиоэлементы
При прочтении принципиальных схем устройств, необходимо знать условные обозначения диодов, резисторов, и других подобных элементов.
Условные обозначения радиоэлементов в чертежах
Знание условных графических элементов поможет вам прочесть практически любую схему — какого-нибудь устройства или электропроводки. Номиналы требуемых деталей иногда проставляются рядом с изображением, но в больших многоэлементных схемах они прописываются в отдельной таблице. В ней стоят буквенные обозначения элементов схемы и номиналы.
Буквенные обозначения
Кроме того, что элементы на схемах имеют условные графические названия, они имеют буквенные обозначения, причем тоже стандартизованные (ГОСТ 7624-55).
Название элемента электрической схемы | Буквенное обозначение | |
---|---|---|
1 | Выключатель, контролер, переключатель | В |
2 | Электрогенератор | Г |
3 | Диод | Д |
4 | Выпрямитель | Вп |
5 | Звуковая сигнализация (звонок, сирена) | Зв |
6 | Кнопка | Кн |
7 | Лампа накаливания | Л |
8 | Электрический двигатель | М |
9 | Предохранитель | Пр |
10 | Контактор, магнитный пускатель | К |
11 | Реле | Р |
12 | Трансформатор (автотрансформатор) | Тр |
13 | Штепсельный разъем | Ш |
14 | Электромагнит | Эм |
15 | Резистор | R |
16 | Конденсатор | С |
17 | Катушка индуктивности | L |
18 | Кнопка управления | Ку |
19 | Конечный выключатель | Кв |
20 | Дроссель | Др |
21 | Телефон | Т |
22 | Микрофон | Мк |
23 | Громкоговоритель | Гр |
24 | Батарея (гальванический элемент) | Б |
25 | Главный двигатель | Дг |
26 | Двигатель насоса охлаждения | До |
Обратите внимание, что в большинстве случаев используются русские буквы, но резистор, конденсатор и катушка индуктивности обозначаются латинскими буквами.
Есть одна тонкость в обозначении реле. Они бывают разного типа, соответственно маркируются:
- реле тока — РТ;
- мощности — РМ;
- напряжения — РН;
- времени — РВ;
- сопротивления — РС;
- указательное — РУ;
- промежуточное — РП;
- газовое — РГ;
- с выдержкой времени — РТВ.
В основном, это только наиболее условные обозначения в электрических схемах. Но большую часть чертежей и планов вы теперь сможете понять. Если потребуется знать изображения более редких элементов, изучайте ГОСТы.
Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.
Неправильно, но наглядно и условные обозначения в электрических схемах не нужны
На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.
Виды схем в электрике
Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:
- Функциональные, на которых отображаются основные узлы устройства, без детализации. Внешне выглядит как набор прямоугольников с проложенными между ними связями. Дает общее представление о функционировании объекта.
На функциональной схеме указаны блоки и связи между ними
Принципиальная схема детализирует устройство
На монтажной отображается местоположение и прохождение кабелей/линий связи
Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.
Базовые изображения и функциональные признаки
Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.
Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.
Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.
Функции подвижных контактов
Основные функции могут выполнять только неподвижные контакты.
Функции неподвижных контактов
Условные обозначения однолинейных схем
Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.
Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.
Обозначения элементов на однолинейной схеме
Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.
Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.
Условные обозначения катушек контакторов и реле разных типов (импульсная, фотореле, реле времени)
В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.
Условные обозначения разъемного (вилка-штепсель) и разборного (клеммная колодка) соединения), измерительных приборов
Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.
Изображение шин и проводов
В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).
Обозначение линий связи, шин и их соединений/ответвлений/пересечений
Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.
Как обозначаются провода, кабели, количество жил и способы их прокладки
На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.
Как изображают выключатели, переключатели, розетки
На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.
Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.
Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.
Условные обозначения выключателей на чертежах и схемах
Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).
В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.
Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)
Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.
Светильники на схемах
В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.
Изображение ламп (накаливания, светодиодных, галогенных) и светильников (потолочных, встроенных, навесных) на схемах
В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.
Элементы принципиальных электрических схем
Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.
Обозначение электрических элементов на схемах устройств
Изображение радиоэлементов на схемах
Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.
Буквенные условные обозначения в электрических схемах
Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.
Буквенные обозначения элементов на схемах: основные и дополнительные
В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.
Если для обычного человека восприятие информации происходит при чтении слов и букв, то для слесарей и монтажников их заменяют буквенные, цифровые или графические обозначения. Сложность в том, что пока электрик закончит обучение, устроится на работу, научится чему-то на практике, как появляются новые СНиПы и ГОСТы, согласно которым вносятся коррективы. Поэтому не стоит пытаться выучить всю документацию и сразу же. Достаточно почерпнуть базовые познания, а по ходу трудовых будней добавлять актуальные данные.
Введение
Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.
Условные обозначения можно считать особым криптографическим кодом, поясняющим работу и принцип действия конкретной схемы. В Японии, США и Европе значки существенно отличаются от отечественной маркировки, что необходимо учитывать.
Виды и типы электрических схем
Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».
- Объединенные.
- Расположенные.
- Общие.
- Подключения.
- Монтажные соединений.
- Полные принципиальные.
- Функциональные.
- Структурные.
Среди существующих 10 видов, указанных в данном документе, выделяют:
- Комбинированные.
- Деления.
- Энергетические.
- Оптические.
- Вакуумные.
- Кинематические.
- Газовые.
- Пневматические.
- Гидравлические.
- Электрические.
Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.
Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.
В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:
«Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».
После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.
Следует заметить, что чаще в домашней практике используются всего три типа электросхем:
- Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т.п.
- Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
- Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.
Графические обозначения в электрических схемах
- 2.755-87 – графические условные обозначения контактных и коммутационных соединений.
- 2.721-74 – графические условные обозначения деталей и узлов общего применения.
- 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.
В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.
На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.
ВАЖНО: Для обозначения коммутационного оборудования существует:
4 базовых изображения УГО
УГО | Наименование |
Замыкающий | |
Размыкающий | |
Переключающий | |
Переключающий с наличием нейтрального положения |
9 функциональных признаков УГО
ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.
Основные УГО для однолинейных схем электрощитов
УГО | Наименование |
Тепловое реле | |
Контакт контактора | |
Рубильник – выключатель нагрузки | |
Автомат – автоматический выключатель | |
Предохранитель | |
Дифференциальный автоматический выключатель | |
УЗО | |
Трансформатор напряжения | |
Трансформатор тока | |
Рубильник (выключатель нагрузки) с предохранителем | |
Автомат для защиты двигателя (со встроенным тепловым реле) | |
Частотный преобразователь | |
Электросчетчик | |
Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления | |
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления | |
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления | |
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления | |
Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании | |
Замыкающий контакт с замедленным действием, который срабатывает только при возврате | |
Замыкающий контакт с замедленным действием, который инициируется только при срабатывании | |
Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании | |
Замыкающий контакт с замедленным действием, который срабатывает только при возврате | |
Замыкающий контакт с замедленным действием, который включается только при срабатывании | |
Катушка временного реле | |
Катушка фотореле | |
Катушка реле импульсного | |
Общее обозначение катушки реле или катушки контактора | |
Лампочка индикационная (световая), осветительная | |
Мотор-привод | |
Клемма (разборное соединение) | |
Варистор, ОПН (ограничитель перенапряжения) | |
Разрядник | |
Розетка (разъемное соединение): |
Обозначение измерительных электроприборов для характеристики параметров цепи
УГО | Наименование |
PF | Частотомер |
PW | Ваттметр |
PV | Вольтметр |
PA | Амперметр |
ГОСТ 2.271-74 приняты следующие обозначения в электрощитах для шин и проводов:
Буквенные обозначения в электрических схемах
Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:
Наименование | Обозначение |
Выключатель автоматический в силовой цепи | QF |
Выключатель автоматический в управляющей цепи | SF |
Выключатель автоматический с дифференциальной защитой или дифавтомат | QFD |
Рубильник или выключатель нагрузки | QS |
УЗО (устройство защитного отключения) | QSD |
Контактор | KM |
Реле тепловое | F, KK |
Временное реле | KT |
Реле напряжения | KV |
Импульсное реле | KI |
Фотореле | KL |
ОПН, разрядник | FV |
Предохранитель плавкий | FU |
Трансформатор напряжения | TV |
Трансформатор тока | TA |
Частотный преобразователь | UZ |
Амперметр | PA |
Ваттметр | PW |
Частотомер | PF |
Вольтметр | PV |
Счетчик энергии активной | PI |
Счетчик энергии реактивной | PK |
Элемент нагревания | EK |
Фотоэлемент | BL |
Осветительная лампа | EL |
Лампочка или прибор индикации световой | HL |
Разъем штепсельный или розетка | XS |
Переключатель или выключатель в управляющих цепях | SA |
Кнопочный выключатель в управляющих цепях | SB |
Клеммы | XT |
Изображение электрооборудования на планах
Несмотря на то, что ГОСТ 2.702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.
Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.
Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.
Условные графические изображения электрооборудования, электротехнических устройств и электроприемников
Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2.302 в масштабе чертежа по фактическим габаритам.
Условные графические обозначения линий проводок и токопроводов
Условные графические изображения шин и шинопроводов
ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.
Условные графические изображения коробок, шкафов, щитов и пультов
Условные графические обозначения выключателей, переключателей
На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.
Условные графические обозначения штепсельных розеток
Условные графические обозначения светильников и прожекторов
Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.
Условные графические обозначения аппаратов контроля и управления
Заключение
Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.
Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.
Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.
Что такое диммер и как он работает, типовий димер
Виды и типы электрических схем
Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».
Исходя из этого норматива, все схемы разделены на 8 типов:
- Объединенные.
- Расположенные.
- Общие.
- Подключения.
- Монтажные соединений.
- Полные принципиальные.
- Функциональные.
- Структурные.
Среди существующих 10 видов, указанных в данном документе, выделяют:
- Комбинированные.
- Деления.
- Энергетические.
- Оптические.
- Вакуумные.
- Кинематические.
- Газовые.
- Пневматические.
- Гидравлические.
- Электрические.
Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.
Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.
В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:
«Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».
После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.
Следует заметить, что чаще в домашней практике используются всего три типа электросхем:
- Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т.п.
- Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
- Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.
Графические обозначения в электрических схемах
Документация, в которой указываются правила и способы графического обозначения элементов схемы, представлена тремя ГОСТами:
- 2.755-87 – графические условные обозначения контактных и коммутационных соединений.
- 2.721-74 – графические условные обозначения деталей и узлов общего применения.
- 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.
В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.
На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.
ВАЖНО: Для обозначения коммутационного оборудования существует:
4 базовых изображения УГО
УГО | Наименование |
Замыкающий | |
Размыкающий | |
Переключающий | |
Переключающий с наличием нейтрального положения |
9 функциональных признаков УГО
УГО | Наименование |
Дугогашение | |
Без самовозврата | |
С самовозвратом | |
Концевой или путевой выключатель | |
С автоматическим срабатыванием | |
Выключатель-разъединитель | |
Разъединитель | |
Выключатель | |
Контактор |
ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.
Основные УГО для однолинейных схем электрощитов
УГО | Наименование |
Тепловое реле | |
Контакт контактора | |
Рубильник – выключатель нагрузки | |
Автомат – автоматический выключатель | |
Предохранитель | |
Дифференциальный автоматический выключатель | |
УЗО | |
Трансформатор напряжения | |
Трансформатор тока | |
Рубильник (выключатель нагрузки) с предохранителем | |
Автомат для защиты двигателя (со встроенным тепловым реле) | |
Частотный преобразователь | |
Электросчетчик | |
Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления | |
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления | |
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления | |
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления | |
Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании | |
Замыкающий контакт с замедленным действием, который срабатывает только при возврате | |
Замыкающий контакт с замедленным действием, который инициируется только при срабатывании | |
Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании | |
Замыкающий контакт с замедленным действием, который срабатывает только при возврате | |
Замыкающий контакт с замедленным действием, который включается только при срабатывании | |
Катушка временного реле | |
Катушка фотореле | |
Катушка реле импульсного | |
Общее обозначение катушки реле или катушки контактора | |
Лампочка индикационная (световая), осветительная | |
Мотор-привод | |
Клемма (разборное соединение) | |
Варистор, ОПН (ограничитель перенапряжения) | |
Разрядник | |
Розетка (разъемное соединение): | |
Нагревательный элемент |
Буквенные обозначения в электрических схемах
Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:
Наименование | Обозначение |
Выключатель автоматический в силовой цепи | QF |
Выключатель автоматический в управляющей цепи | SF |
Выключатель автоматический с дифференциальной защитой или дифавтомат | QFD |
Рубильник или выключатель нагрузки | QS |
УЗО (устройство защитного отключения) | QSD |
Контактор | KM |
Реле тепловое | F, KK |
Временное реле | KT |
Реле напряжения | KV |
Импульсное реле | KI |
Фотореле | KL |
ОПН, разрядник | FV |
Предохранитель плавкий | FU |
Трансформатор напряжения | TV |
Трансформатор тока | TA |
Частотный преобразователь | UZ |
Амперметр | PA |
Ваттметр | PW |
Частотомер | PF |
Вольтметр | PV |
Счетчик энергии активной | PI |
Счетчик энергии реактивной | PK |
Элемент нагревания | EK |
Фотоэлемент | BL |
Осветительная лампа | EL |
Лампочка или прибор индикации световой | HL |
Разъем штепсельный или розетка | XS |
Переключатель или выключатель в управляющих цепях | SA |
Кнопочный выключатель в управляющих цепях | SB |
Клеммы | XT |
Изображение электрооборудования на планах
Несмотря на то, что ГОСТ 2.702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.
Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.
Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.
Условные графические изображения электрооборудования, электротехнических устройств и электроприемников
Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2.302 в масштабе чертежа по фактическим габаритам.
Условные графические обозначения линий проводок и токопроводов
Условные графические изображения шин и шинопроводов
ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.
Условные графические изображения коробок, шкафов, щитов и пультов
Условные графические обозначения выключателей, переключателей
На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.
Условные графические обозначения светильников и прожекторов
Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.
Условные графические обозначения аппаратов контроля и управления
Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.
Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.
Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.
Все варианты схем подключения диммера или светорегулятора освещения
Диммеры или светорегуляторы служат для плавной регулировки уровня яркости искусственного освещения, так же они обладают практически все возможностью включения/выключения. В этой статье Мы поговорим о моделях и схемах их подключения, подходящих только для светильников и люстр с галогенными или лампами накаливания.
Внимание! Диммеры обычной конструкции не способны регулировать светодиодные или люминесцентные энергосберегающие лампы. Не вздумайте их установить, потому что все чего Вы добьетесь- это сокращение в десятки раз срока службы этих видов ламп. Но при желании, используя специальные энергосберегающие лампы и диммеры Вы сможете добиться регулировки их яркости. Подробнее об этом читайте в нашей следующей статье.
Сегодня продается очень много различных моделей светорегуляторов для ламп накаливания и галогенных. Некоторые из них обладают дополнительными возможностями по управлению освещением:
- С функцией задания программы времени включения, выключения и т. д.
- Подключение и управление при помощи системы «умный дом».
- Плавное отключение ламп.
- Дистанционное управление при помощи пульта.
- Управление голосом, хлопком и т. п.
Рекомендую перед покупкой определится- какие функции нужны именно Вам, за лишнее- не стоит переплачивать.
И особенно необходимо перед началом электромонтажных работ определится, как и из каких мест Вы хотите в вашем помещении управлять освещением. Исходя из этого уже необходимо будет проложить затем электрические кабели для осуществления Вами задуманной схемы.
Схемы подключения диммера.
Далее Мы рассмотрим всевозможные схемы организации управления освещением в комнате вашего дома или квартиры. Начиная с самых простейших и заканчивая сложными, позволяющие регулировать и управлять включением галогенных или ламп накаливания из разных мест вашего помещения.
В принципе все это осуществить своими руками будет под силу практически любому мужчине. Главное необходимо всегда отключить напряжение с того участка электропроводки дома или квартиры, где Вы будите работать. И убедится в отсутствие фазы при помощи индикаторной отвертки.
Принципиальная схема подключения диммера.
Начнем с самой распространенной и простой схемы, состоящей из одного диммера и одной или нескольких ламп, подключенных к нему последовательно. Только помните, что диммер ставится только в разрыв фазного провода (обозначается L), а не нулевого (N).
Для подключения необходимо электрический провод, приходящий с распределительной коробки подключить на клемму «L со стрелочкой вверх», а второй провод на- обозначение «~ со стрелочкой под наклоном».
Это самая простая схема, которая при необходимости позволяет быстро заменить обыкновенный выключатель на диммер.
Схема № 2 светорегулятор с выключателем.
Нередко применяется немного более сложная, но очень удобная схема с обыкновенным выключателем, который подключается в разрыв фазного провода перед диммером.
Часто данный тип применяется в спальных комнатах. Очень удобно, когда выключатель установлен возле двери, а светорегулятор возле кровати. Что позволяет не вставая с кровати- регулировать яркость и включать- выключать искусственный свет. А при выходе из комнаты Вы сможете выключить освещение и включить его обратно при возвращении с тем же уровнем яркости, что и был установлен.
Схема № 3 с двумя диммерами.
При необходимости Вы сможете легко установить и подключить в двух разных местах комнаты светорегуляторы, которые будут управлять одним светильником или люстрой.
Для осуществления данного способа- необходимо что бы в одну распределительную коробку приходило по три провода от каждого места установки.
Схема подключения проста первые и вторые контакты обоих светорегуляторов соответственно соединяются перемычками. А далее на один третий контакт приходит фаза, а со второго диммера с третьего контакта уходит на светильник.
Я рассказывал согласно обозначений на схеме вверху расположенной, если у Вас обозначения будут отличаться, тогда делайте все принципиально аналогично.
Схема № 4 с двумя проходными выключателями.
Применяется редко, как правило в проходных комнатах и длинных коридорах. Схема позволяет выключать и включать свет с разных сторон помещения.
Уровень яркости позволяет установить диммер, но если Вы его поставите в выключенное положение, то на коммутацию проходными выключателями лампы реагировать не будут.
Рекомендую прочитать нашу статью: Схема подключения проходных выключателей.
Что нужно знать о диммерах каждому:
- Многие ошибочно полагают, что диммеры позволяют экономить электроэнергию. На самом минимальном уровне ярости экономия составляет не более 15 процентов. Остальное рассеивается светорегулятором.
- Диммеры из-за возможности перегрева не должны эксплуатироваться при температурах окружающей среды выше 27 градусов.
- Минимальная подключенная нагрузка должна быть не менее 40 Ватт. В противном случае значительно сокращается срок службы.
- Применяйте диммеры только по назначению и для регулирования типов устройств, указанных в техническом паспорте.
3 схемы подключения диммера — монтаж от А до Я с выключателем проходным и без, с клавишами, к светодиодной ленте.
После того, как вы определились с маркой и типом диммера для регулировки освещения, его необходимо каким-то образом подключить.
Помимо простых моделей, где есть всего две клеммы вход-выход, не стоит забывать и о других нюансах. Поэтому давайте поэтапно рассмотрим от А до Я основные схемы подключения диммера в сеть освещения, с которыми вы можете столкнуться.
С одной стороны, такой регулятор можно включить для управления одним или несколькими светильниками как единичную электроточку. Не важно сенсорный это диммер или поворотно-нажимной.
А можно воспользоваться проходным светорегулятором и управлять светом из разных мест вашей квартиры или дома.
Но вообще, прежде чем подключать любой светильник в квартире, не мешало бы выяснить, поддается ли он вообще диммированию. Ведь с этим делом, в особенности у светодиодных ламп бывает много проблем.
Когда речь идет об обычных лампах накаливания или галогенках, тут ломать голову не приходится.
Схема подключения простого диммера
Если вам нужно заменить обычный выключатель света на диммер, то простейшая схема подключения выглядит следующим образом:
Или в более развернутом виде:
Схема №1Фактически все что от вас требуется — это пропустить через него фазу. То есть поставить в разрыв проводки, так же как и простой одноклавишный выключатель.
Исключением могут являться сенсорные диммеры с цифровым табло и дисплеем на лицевой панели. Например как Uniel и другие модели.
К таким светорегуляторам должны подводиться как фазный, так и нулевой проводники. У них 4 гнезда для ввода провода. Вход фаза-ноль и выход фаза-ноль.
Без нуля такой диммер работать не будет. Если у вас из монтажной коробки на стене торчит только два провода (такая картина наблюдается у 99% пользователей), придется тянуть еще и «чистый» ноль.
То же самое относится ко всякого рода универсальным диммерам, которые можно использовать в широких диапазонах и связывать их с другими модулями — датчиками освещения, движения и т.п.
Для маломощных светильников не поддающихся нормальной регулировке, также может применяться диммер с дополнительным выводом под нулевой провод. Это связано с тем, что при переходе синусоиды через нулевую отметку и малой мощности светильника, управляющий элемент не может определить когда ему закрываться.
Поэтому всегда хорошенько думайте, прежде чем приобретать новомодные и навороченные модели. Потенциально значок «N» на корпусе светорегулятора, должен вас отпугнуть от такой покупки.
Сможете ли вы их подключить без раскурочивания, штробления стен и сдирания обоев, большой вопрос.
К остальным простейшим экземплярам это не относится. Их вы самостоятельно можете установить вместо простого выключателя света.
Достаточно вытащить внутренности одноклавишника, а два проводка которые будут торчать из коробки завести на две клеммы диммера.
Если же у вас стоит двухклавишный выключатель, который запускает каждую половину люстры поочередно, то и здесь нет ничего сложного.
В этом случае в монтажной коробке будет три провода — одна приходящая фаза и два отходящих на светильник. Главное правильно их найти и не перепутать. В этом вам поможет подробная инструкция изложенная в отдельной статье.
Скручиваете эти два провода между собой и подключаете в клеммный зажим диммера, обозначенный как «диммированная нагрузка» или цифрами 1,2. В другую клемму заводите питающую фазу.
При этом особой разницы в полярности нет. Даже если вы и перепутаете зажимы, светильник все равно будет гореть и работать.
Желательно, чтобы на диммер приходила именно фаза, а не ноль. Во-первых, не ясно как будет вести себя при этом устройство, особенно начиненное электроникой. Во-вторых, не забывайте про правильное подключение проводов к патрону лампочки.
Согласно правилам безопасности, фаза не должна присутствовать на резьбовой части.
А еще опасайтесь диммеров с подсветкой.
Отдельные экземпляры со светодиодом в корпусе, именно «благодаря» этому диоду, могут даже в выкрученном до щелчка состоянии, давать на пустом патроне лампочки, напряжение выше 100В.
Приходится ставить дополнительное сопротивление или конденсаторы, дабы зашунтировать на себя напряжение и предотвратить неприятные мерцания.
Все вышесказанное относится в первую очередь к замене выключателя на диммер в уже обустроенной квартире. Давайте также рассмотрим пошаговый монтаж всей электропроводки связанной с данным видом работы.
Какие материалы вам могут понадобиться для монтажа? Если у вас нет готовой проводки и речь идет о капитальном ремонте в квартире, что называется с нуля, тогда закупайте:
- кабель двухжильный ВВГнг-Ls 2*1,5мм2
- кабель трехжильный ВВГнг-Ls 3*1,5мм2
Почему именно ВВГнг-Ls, а не какой-либо другой, можно узнать отсюда.
- диммируемый светильник или лампа
- зажимы Ваго или гильзы под опрессовку
Сначала от электрощитка протягиваете 3-х жильный кабель до той распредкоробки, где будет производиться коммутация всех концов электрики.
В щитке жилы кабеля подключаете к отдельному выключателю.
Дабы не перепутать фазу, ноль и заземление, жилы лучше подписать маркером L, N, Pe или запомнить и ориентироваться по расцветке.
Заземляющий проводник обязательно используется, если у вашей люстры или светильника металлический корпус. Когда материал пластик, то жилу Pe можно не подключать, но ее все равно желательно прокладывать.
Может вы в будущем замените марку светильника, либо при случайном повреждении фазы или ноля, эту самую жилу можно будет задействовать как резервную. Вы сэкономите себе кучу проводов, денег и нервов.
Далее от распаечной коробки опускаете кабель вниз к месту установки диммера. Здесь уже применяется марка кабеля из двух жил. Конечно при условии, что вы купили обычный диммер.
По данному кабелю будет передаваться только фаза. Одну жилу можете обозначить как L (питание), другую Lсвет (она будет уходить на светильник).
Два кабеля вы проложили, осталось дело за третьим, который будет идти по потолку непосредственно к люстре. Его также прокладываете от этой распаечной коробки. Число жил — три.
Концы кабеля с обоих сторон зачищаете и подписываете согласно расцветки: Lсвет — фаза, N-ноль, Pe-земля.
После всех этих манипуляций требуется правильно объединить жилы всех кабелей заведенных в распредкоробку. Для этого и рекомендовалось их подписать.
Чтобы ничего не перепутать, сначала объединяете нулевые жилы, далее концы заземления.
Они всегда уходят напрямую на лампочку, минуя всякие переключатели и регуляторы. После этого фазу, которая приходит от щитка, соединяете с жилой уходящей вниз на диммер.
У вас должно остаться всего два провода Lсвет, то есть те концы, которые непосредственно подают фазу от диммера на светильник.
Соединение в распредкоробке готово и она закрывается. Осталось подключить сам диммер и люстру.
Светорегулятор перед монтажом разбирается. Для этого сначала снимается поворотно-нажимная «голова», или клавиша.
А затем, открутив скрытую гайку или винтики отверткой, снимается пластиковый корпус.
Фазу L соединяете с соответствующим разъемом L. На вторую клемму, маркированную как диммируемая нагрузка, заводится жила Lсвет.
На данной клемме обычно указан значок в виде волнообразной линии или нарисовано условное обозначение лампочки.
После подключения концов, фиксируете корпус в монтажной коробке и устанавливаете декоративную рамку.
В самом конце, подключаете выведенные провода на потолке к люстре или другому светильнику.
Сделать это можно через изолированные гильзы, либо зажимы Wago.
Диммирование настольной лампы
Если вам нужно диммировать настольную лампу или лампу ночник, а не потолочный светильник, то всей этой сложной процедуры можно избежать.
Достаточно отсоединить и выкинуть заводской шнур питания и подключить на его место специальный диммер на шнуре.
В магазинах и на Али полно таки моделей. Продаются и отдельные коробочки без проводов.
Они понадобятся, если вы не захотите выбрасывать заводской шнур от настольной лампы.
Для тех, кто вообще не хочет лезть в такие дебри и заниматься переделкой схем подключения, продаются диммеры в розетку.
Втыкаете эту конструкцию в ближайшую розетку, а уже через нее подключаете вилку настольной лампы. И все прекрасно регулируется.
Схема подключения проходного диммера
Данный диммер используется в одной связке с проходными выключателями. Проходная схема широко применяется в спальне.
Выключатель ставят на входе в комнату, а диммер монтируют возле кровати. Зашел — включил свет, лег в постель — отрегулировал нужную яркость или создал полумрак для просмотра ТВ. Перед сном, не вставая с кровати выключил.
На корпусах проходных диммеров обычно нарисованы стрелочки, направленные в разные стороны.
Всего там может быть 4 клеммы. Клемма «Х» расположенная справа, обычно никак не задействована в схеме и может быть использована как дополнительный зажим. Ничего на нее подключать не нужно.
Если вам попался такой диммер, но вы вовсе не хотите его применять как проходной, тогда фазу питания следует заводить в разъем со стрелкой направленной внутрь.
На обычном диммере с двумя стрелками смотрящими во внутрь, можете выбирать любой контакт. На работоспособности устройства это не скажется.
Для монтажа проходного диммера потребуются те же самые материалы, только кабель должен быть обязательно 3-х жильным. Этапы работ практически повторяются.
1 Монтаж кабеля от эл.щитка до распредкоробки. 2 Прокладка трехжильного кабеля от коробки до места установки диммера.Концы подписывайте как:
- Lсвет — фаза уходящая на светильник
- L1 и L2 — связь с проходным выключателем
Используется трехжильный кабель с маркировкой — L, L1, L2.
4Монтаж кабеля до самого светильника.В итоге в одной распаечной коробке у вас окажется сразу 12 жил. Запутаться в них очень легко, поэтому никогда не ленитесь подписывать провода.
Соединение начинайте с нулевых и жил заземления. Их перепутать трудно.
Далее разбиваете по своим группам (по 2 провода) оставшиеся жилы, и соединяете их между собой.
В конце концов у вас должна получиться следующая схема или цепочка:
- фаза пришла в распредкоробку
- ушла с нее на проходной выключатель+вернулась обратно
- ушла на проходной димммер
- вернулась обратно и поступила на светильник через Lсвет
При этом питание диммера и выключателя связаны между собой через проводники L1 и L2. За счет чего, люстра будет управляться из двух мест.
Проверяете правильность собранной схемы и производите подключение самого диммера.
Жилы от проходного выключателя L1 и L2 заводите в клеммы 1 и 2 (или в зажимы со стрелочками). На корпусе ищите значок объединяющий их.
На зажим «диммируемая нагрузка» подключаете фазу Lсвет, уходящую на светильник.
Фиксируете светорегулятор в монтажной коробке и ставите накладную рамку. Осталось подключить проходной выключатель.
Ищите на нем общую клемму и подаете на нее фазу, приходящую с распредкоробки.
Два оставшихся конца L1 и L2 подсоединяете в любой последовательности.
После проверки работоспособности схемы, монтируете переключатель в стену и производите отделочные работы.
Если вдруг свет не загорелся, не забывайте, что подобные механизмы имеют встроенные предохранители. Зачастую даже два (один запасной).
Проверьте мультиметром их целостность и при необходимости замените.
Кстати, вместо второго проходного выключателя, никто не запрещает вам использовать второй диммер. Схема соединения такой сборки:
Удовольствие конечно не дешевое, но иногда себя оправдывает.
Схема подключения и управления диммером из любой точки
Если хотите что-то подешевле, обратите внимание на диммеры с тремя контактами. Они также могут работать наподобие проходных, но не требуют наличия специальных выключателей. Например отдельные модели у Legrand или Schneider.
Третий контакт у них служит для подключения нефиксированных кнопок, наподобие звонка. Нажали один раз — дали команду на включение диммера. Удержали подольше — началось диммирование.
Электрическая схема подключения здесь выглядит следующим образом.
3Подключение светодиодной ленты
Через специальные диммеры можно подключать не только лампочки освещения, но и светодиодную ленту или низковольтные Led светильники.
При подключении диммируемых светодиодных ламп с выносным питанием, имейте в виду, что диммер ставится перед драйвером, а не после него.
А вот на Led лентах, в схеме подключения он идет после блока питания на 12-36В.
Модульные диммеры
Помимо комнатных моделей, есть и модульные экземпляры. Они монтируются на дин рейку в электрощиток.
Через них можно управлять освещением в подъезде, лестничной клетке или на улице.
С ними в комплекте идет выносная кнопка или выключатель в виде клавиши. Ее нажатием и удерживанием, происходит регулировка яркости.
На такой диммер уже заводится фаза-ноль, а управляющая кнопка подключается отдельным проводом от него же. Схемы здесь выглядят вот так:
На модульном диммере Hager EVN, порядок подключения следующий. На контакты L и N подается соответственно фаза и ноль.
Выход на лампочку снимается с контакта №4.
Через контакт №3 подается сигнал управления от подключенных клавиш.
А если вы вообще не хотите никаких диммеров и выключателей на стене, но в то же время желаете иметь возможность регулировки яркости освещения? И в этом случае есть выход.
Воспользуйтесь диммером, устанавливаемым непосредственно в монтажную коробку.
Управляется он как с кнопок, так и с пульта.
Заказать себе такой можно здесь. Пульт на него отсюда. А хороший видеообзор на данный девайс посмотреть ниже.
Источники — https://cable.ru, Кабель.РФ
Как подключить диммер в качестве выключателя к бра
Если вы хотите сделать ваш дом более комфортным и практичным, стоит задуматься о приобретении диммера. С его помощью вы сможете настраивать освещение так, как вам хочется. Особенно актуально подключение диммера к настенным бра, ведь довольно часто их используют вместо ночника. О функции, особенностях и способе подключения диммера к бра мы и расскажем в этой статье.
Что такое диммер?
Диммер – это специальный прибор, с помощью которого можно регулировать яркость освещения, а, следовательно, и количество электроэнергии, которая потребляется. Благодаря нему обеспечивается плавность включения и выключения света.
В настоящее время в магазинах предлагается множество таких приборов: они могут быть разного размера, формы, цвета и мощности, а также отличаться способом подключения.
Важно!
Диммеры используются преимущественно с обычными лампочками накаливания. Светодиодные лампы могут использоваться со специальным диммером для светодиодных ламп. Также существуют диммируемые LED лампы (помечены соответствующей маркировкой) – их можно использовать с обычным диммером. Энергосберегающие лампы в большинстве случаев не диммируются (на диммируемых есть специальная маркировка).
Выбор диммера
Для начала диммер следует выбрать, и выбрать правильно, с учетом того, что он будет подключен к бра.
На что важно обратить внимание:
Мощность Диммер для бра следует подбирать с учетом того, что его мощность должна быть выше общей мощности подключенных к нему светильников примерно в полтора раза. Например, если вы планируете подключить два бра, и мощность каждого из них 100 Вт, то их общая мощность будет, соответственно, 200 Вт. В этом случае мощность диммера должна быть не менее 400 Вт, а еще лучше — 500 Вт.Важно!
Диммер, который работает на пределе своей мощности, способен послужить причиной возгорания. Мощность устройства должна быть со значительным запасом.
Тип управления диммером Сегодня существуют различные виды диммеров. Среди них стандартные поворотные, современные сенсорные, клавишные и модели с пультом управления. Они отличаются по стоимости и способу регулировки мощности. Если вы будете подключать сенсорный, то его необходимо заземлять или занулять.
Подключение диммера
Как подключить диммер с выключателем к настенному бра? Очень просто, и сделать это можно самостоятельно без особых сложностей и независимо от типа подключения.
Что понадобится?
- Диммер
- Индикаторная отвертка
Когда устройство приобретено, а все инструменты находятся под рукой, можно приступать к установке.
Прежде всего вы должны произвести демонтаж старого выключателя. После демонтажа можно подключать диммер для бра на место старого выключателя.
Важно!
Не забудьте перед началом работ выключить электропитание в квартире или доме.
Непосредственно перед установкой устройства, следует определить, по какому именно проводу подается электропитание (это будет фазный провод). В этом вам поможет обычная индикаторная отвертка. Определение фазы важно потому, что подключение диммера, в отличие от обыкновенного выключателя, проводится по специальной схеме.
Фазный провод следует подсоединять к клемме, которая обозначена литерой «L» со стрелкой вверх. Второй провод подключается к клемме с обозначением «~ со стрелкой под наклоном».
- Установите диммер в уже имеющийся подрозетник или поставьте новый.
- Закрепите все декоративные накладки и поворотное колесико.
Таким образом, установив диммер для включения бра, вы не только экономите электроэнергию самым простым и эффективным способом, вы также экономите средства и обеспечиваете для себя комфорт, поскольку пользоваться диммером очень удобно. Это плавный, легкий, простой в использовании выключатель, который сделает любой дом более комфортным и современным!
Мощность обозначение в физике буквой. Какие бывают условные обозначения в электрических схемах
При проведении электротехнических работ каждый человек, так или иначе, сталкивается с условными обозначениями, которые есть в любой электрической схеме. Эти схемы очень разнообразны, с различными функциями, однако, все графические условные обозначения приведены к единым формам и во всех схемах соответствуют одним и тем же элементам.
Основные условные обозначения в электрических схемах ГОСТ, отображены в таблицах
В настоящее время в электротехнике и радиоэлектронике применяются не только отечественные элементы, но и продукция, производимая иностранными фирмами. Импортные электрорадиоэлементы составляют огромный ассортимент. Они, в обязательном порядке, отображаются на всех чертежах в виде условных обозначений. На них определяются не только значения основных электрических параметров, но и полный их перечень, входящих в то или иное устройство, а также, взаимосвязь между ними.
Чтобы прочитать и понять содержание электрической схемы
Нужно хорошо изучить все элементы, входящие в ее состав и принцип действия устройства в целом. Обычно, вся информация находится либо в справочниках, либо в прилагаемой к схеме спецификации. Позиционные обозначения характеризуют взаимосвязь элементов, входящих в комплект устройства, с их обозначениями на схеме. Для того, чтобы обозначить графически тот или иной электрорадиоэлемент, применяют стандартную геометрическую символику, где каждое изделие изображается отдельно, или в совокупности с другими. От сочетания символов между собой во многом зависит значение каждого отдельного образа.
На каждой схеме отображаются
Соединения между отдельными элементами и проводниками. В таких случаях немаловажное значение имеет стандартное обозначение одинаковых комплектующих деталей и элементов. Для этого и существуют позиционные обозначения, где типы элементов, особенности их конструкции и цифровые значения отображаются в буквенном выражении. Элементы, применяемые в общем порядке, обозначаются на чертежах, как квалификационные, характеризующие ток и напряжение, способы регулирования, виды соединений, формы импульсов, электронную связь и другие.
ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ
Единая система конструкторской документации
ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В ЭЛЕКТРИЧЕСКИХ СХЕМАХ
УСТРОЙСТВА
КОММУТАЦИОННЫЕ
И КОНТАКТНЫЕ СОЕДИНЕНИЯ
ГОСТ 2.755-87
(CT СЭВ 5720-86)
ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ
Москва 1998
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Единая система конструкторской документации ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ УСТРОЙСТВА КОММУТАЦИОННЫЕ Unified system for design documentation. Graphic designations in diagrams. Commutational devices and contact connections | ГОСТ (CT СЭВ 5720-86) |
Дата введения 01.01.88
Настоящий стандарт распространяется на схемы, выполняемые вручную или автоматизированным способом, изделий всех отраслей промышленности и строительства и устанавливает условные графические обозначения коммутационных устройств, контактов и их элементов. Настоящий стандарт не устанавливает условные графические обозначения на схемах железнодорожной сигнализации, централизации и блокировки. Условные графические обозначения механических связей, приводов и приспособлений — по ГОСТ 2.721. Условные графические обозначения воспринимающих частей электромеханических устройств — по ГОСТ 2.756. Размеры отдельных условных графических обозначений и соотношение их элементов приведены в приложении. 1. Общие правила построения обозначений контактов. 1.1. Коммутационные устройства на схемах должны быть изображены в положении, принятом за начальное, при котором пусковая система контактов обесточена. 1.2. Контакты коммутационных устройств состоят из подвижных и неподвижных контакт-деталей. 1.3. Для изображения основных (базовых) функциональных признаков коммутационных устройств применяют условные графические обозначения контактов, которые допускается выполнять в зеркальном изображении: 1) замыкающих 2) размыкающих 3) переключающих 4) переключающих с нейтральным центральным положением 1.4. Для пояснения принципа работы коммутационных устройств при необходимости на их контакт-деталях изображают квалифицирующие символы, приведенные в табл. 1.
Таблица 1
Наименование | Обозначение |
1. Функция контактора | |
2. Функция выключателя | |
3. Функция разъединителя | |
4. Функция выключателя-разъединителя | |
5. Автоматическое срабатывание | |
6. Функция путевого или концевого выключателя | |
7. Самовозврат | |
8. Отсутствие самовозврата | |
9. Дугогашение | |
Примечание. Обозначения, приведенные в пп. 1 — 4, 7 — 9 настоящей таблицы, помещают на неподвижных контакт-деталях, а обозначения в пп. 5 и 6 — на подвижных контакт-деталях. |
Таблица 2
Наименование | Обозначение |
1. Контакт коммутационного устройства: | |
1) переключающий без размыкания цепи (мостовой) | |
2) с двойным замыканием | |
3) с двойным размыканием | |
2. Контакт импульсный замыкающий: | |
1) при срабатывании | |
2) при возврате | |
3. Контакт импульсный размыкающий: | |
1) при срабатывании | |
2) при возврате | |
3) при срабатывании и возврате | |
4. Контакт в контактной группе, срабатывающий раньше по отношению к другим контактам группы: | |
1) замыкающий | |
2) размыкающий | |
5. Контакт в контактной группе, срабатывающий позже по отношению к другим контактам группы: | |
1) замыкающий | |
2) размыкающий | |
6. Контакт без самовозврата: | |
1) замыкающий | |
2) размыкающий | |
7. Контакт с самовозвратом: | |
1) замыкающий | |
2) размыкающий | |
8. Контакт переключающий с нейтральным центральным положением, с самовозвратом из левого положения и без возврата из правого положения | |
9. Контакт контактора: | |
1) замыкающий | |
2) размыкающий | |
3) замыкающий дугогасительный | |
4) размыкающий дугогасительный | |
5) замыкающий с автоматическим срабатыванием | |
10. Контакт выключателя | |
11. Контакт разъединителя | |
12. Контакт выключателя-разъединителя | |
13. Контакт концевого выключателя: | |
1) замыкающий | |
2) размыкающий | |
14. Контакт, чувствительный к температуре (термоконтакт): | |
1) замыкающий | |
2) размыкающий | |
15. Контакт замыкающий с замедлением, действующим: | |
1) при срабатывании | |
2) при возврате | |
3) при срабатывании и возврате | |
16. Контакт размыкающий с замедлением, действующим: | |
1) при срабатывании | |
2) при возврате | |
3) при срабатывании и возврате | |
Примечание к пп. 15 и 16. Замедление происходит при движении в направлении от дуги к ее центру. |
Таблица 3
Наименование | Обозначение | |
1. Контакт замыкающий выключателя: | ||
1) однополюсный | ||
Однолинейное | Многолинейное | |
2) трехполюсный | ||
2. Контакт замыкающий выключателя трехполюсного с автоматическим срабатыванием максимального тока | ||
3. Контакт замыкающий нажимного кнопочного выключателя без самовозврата, с размыканием и возвратом элемента управления: | ||
1) автоматически | ||
2) посредством вторичного нажатия кнопки | ||
3) посредством вытягивания кнопки | ||
4) посредством отдельного привода (пример нажатия кнопки-сброс) | ||
4. Разъединитель трехполюсный | ||
5. Выключатель-разъединитель трехполюсный | ||
6. Выключатель ручной | ||
7. Выключатель электромагнитный (реле) | ||
8. Выключатель концевой с двумя отдельными цепями | ||
9. Выключатель термический саморегулирующий Примечание. Следует делать различие в изображении контакта и контакта термореле, изображаемого следующим образом | ||
10. Выключатель инерционный | ||
11. Переключатель ртутный трехконечный |
Таблица 4
Наименование | Обозначение |
1. Переключатель однополюсный многопозиционный (пример шестипозиционного) | |
Примечание. Позиции переключателя, в которых отсутствуют коммутируемые цепи, или позиции, соединенные между собой, обозначают короткими штрихами (пример шестипозиционного переключателя, не коммутирующего электрическую цепь в первой позиции и коммутирующего одну и ту же цепь в четвертой и шестой позициях) | |
2. Переключатель однополюсный, шестипозиционный с безобрывным переключателем | |
3. Переключатель однополюсный, многопозиционный с подвижным контактом, замыкающим три соседние цепи в каждой позиции | |
4. Переключатель однополюсный, многопозиционный с подвижным контактом, замыкающим три цепи, исключая одну промежуточную | |
5. Переключатель однополюсный, многопозиционный с подвижным контактом, который в каждой последующей позиции подключает параллельную цепь к цепям, замкнутым в предыдущей позиции | |
6. Переключатель однополюсный, шестипозиционный с подвижным контактом, не размыкающим цепь при переходе его из третьей в четвертую позицию | |
7. Переключатель двухполюсный, четырехпозиционный | |
8. Переключатель двухполюсный шестипозиционный, в котором третий контакт верхнего полюса срабатывает раньше, а пятый контакт — позже, чем соответствующие контакты нижнего полюса | |
9. Переключатель многопозиционный независимых цепей (пример шести цепей) | |
Примечания к пп. 1 — 9: | |
1. При необходимости указания ограничения движения привода переключателя применяют диаграмму положения, например: | |
1) привод обеспечивает переход подвижного контакта переключателя от позиции 1 к позиции 4 и обратно | |
2) привод обеспечивает переход подвижного контакта от позиции 1 к позиции 4 и далее в позицию 1; обратное движение возможно только от позиции 3 к позиции 1 | |
2. Диаграмму положения связывают с подвижным контактом переключателя линией механической связи | |
10. Переключатель со сложной коммутацией изображают на схеме одним из следующих способов: 1) общее обозначение (пример обозначения восемнадцатипозиционного роторного переключателя с шестью зажимами, обозначенными от А до F) | |
2) обозначение, составленное согласно конструкции | |
11. Переключатель двухполюсный, трехпозиционный с нейтральным положением | |
12. Переключатель двухполюсный, трехпозиционный с самовозвратом в нейтральное положение |
Таблица 5
Наименование | Обозначение |
1. Контакт контактного соединения: | |
1) разъемного соединения: | |
— штырь | |
— гнездо | |
2) разборного соединения | |
3) неразборного соединения | |
2. Контакт скользящий: | |
1) по линейной токопроводящей поверхности | |
2) по нескольким линейным токопроводящим поверхностям | |
3) по кольцевой токопроводящей поверхности | |
4) по нескольким кольцевым токопроводящим поверхностям Примечание. При выполнении схем с помощью ЭВМ допускается применять штриховку вместо зачернения |
Таблица 6
Наименование | Обозначение |
1. Соединение контактное разъемное | |
2. Соединение контактное разъемное четырехпроводное | |
3. Штырь четырехпроводного контактного разъемного соединения | |
4. Гнездо четырехпроводного контактного разъемного соединения | |
Примечание. В пп. 2 — 4 цифры внутри прямоугольников обозначают номера контактов | |
5. Соединение контактное разъемное коаксиальное | |
6. Перемычки контактные | |
Примечание. Вид связи см. табл. 5 , п. 1. | |
7. Колодка зажимов Примечание. Для указания видов контактных соединений допускается применять следующие обозначения: | |
1) колодки с разборными контактами | |
2) колодки с разборными и неразборными контактами | |
8. Перемычка коммутационная: | |
1) на размыкание | |
2) с выведенным штырем | |
3) с выведенным гнездом | |
4) на переключение | |
9. Соединение с защитным контактом |
Таблица 7
Наименование | Обозначение |
1. Щетка искателя с размыканием цепи при переключении | |
2. Щетка искателя без размыкания цепи при переключении | |
3. Контакт (выход) поля искателя | |
4. Группа контактов (выходов) поля искателя | |
5. Поле искателя контактное | |
6. Поле искателя контактное с исходным положением Примечание. Обозначение исходного положения применяют при необходимости | |
7. Поле искателя контактное с изображением контактов (выходов) | |
8. Поле искателя с изображением групп контактов (выходов) |
Таблица 8
Наименование | Обозначение |
1. Искатель с одним движением без возврата щеток в исходное положение | |
2) без размыкания цепи при переключении | |
9. Искатель с изображением групп контактов (выходов) (пример искателя с возвратом щеток в исходное положение) | |
10. Искатель шаговый с указанием количества шагов вынужденного и свободного искания (пример 10 шагов вынужденного и 20 шагов свободного искания) | |
11. Искатель с двумя движениями с возвратом в исходное положение и с указанием декад и подсоединения к определенной (шестой) декаде | |
12. Искатель с двумя движениями, с возвратом в исходное положение и многократным соединением контактных полей несколькими искателями (пример, двумя) Примечание. Если возникает необходимость указать, что искатель установлен в нужное положение с помощью маркировочного потенциала, поданного на соответствующий контакт контактного поля, следует использовать обозначение (пример, положение 7) | |
4. Вертикаль многократного координатного соединителя с m выходами | |
5. Соединитель координатный многократный с n вертикалями и с m выходами в каждой вертикали Примечание. Допускается упрощенное обозначение: n — число вертикали, m — число выходов в каждой вертикали |
ПРИЛОЖЕНИЕ
Справочное
Размеры (в модульной сетке) основных условных графических обозначений приведены в табл. 10.
Таблица 10
Наименование | Обозначение | |
1. Контакт коммутационного устройства |
ИНФОРМАЦИОННЫЕ ДАННЫЕ
1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом СССР по стандартам РАЗРАБОТЧИКИ П.А. Шалаев, С.С. Борушек, С.Л. Таллер, Ю.Н. Ачкасов 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 27.10.87 № 4033 3. Стандарт полностью соответствует СТ СЭВ 5720-86 4. ВЗАМЕН ГОСТ 2.738-68 (кроме подпункта 7 табл. 1) и ГОСТ 2.755-74 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ 6. ПЕРЕИЗДАНИЕ. Октябрь 1997 г.Чтобы понять, что конкретно нарисовано на схеме или чертеже, необходимо знать расшифровку тех значков, которые на ней есть. Это распознавание еще называют чтением чертежей. А чтоб облегчить это занятие почти все элементы имеют свои условные значки. Почти, потому что стандарты давно не обновлялись и некоторые элементы рисуют каждый как может. Но, в большинстве своем, условные обозначения в электрических схемах есть в нормативны документах.
Условные обозначения в электрических схемах: лампы,трансформаторы, измерительные приборы, основная элементная база
Нормативная база
Разновидностей электрических схем насчитывается около десятка, количество различных элементов, которые могут там встречаться, исчисляется десятками если не сотнями. Чтобы облегчить распознавание этих элементов, введены единые условные обозначения в электрических схемах. Все правила прописаны в ГОСТах. Этих нормативов немало, но основная информация есть в следующих стандартах:
Изучение ГОСТов дело полезное, но требующее времени, которое не у всех есть в достаточном количестве. Потому в статье приведем условные обозначения в электрических схемах — основную элементную базу для создания чертежей и схем электропроводки, принципиальных схем устройств.
Некоторые специалисты внимательно посмотрев на схему, могут сказать что это и как оно работает. Некоторые даже могут сразу выдать возможные проблемы, которые могут возникнуть при эксплуатации. Все просто — они хороша знают схемотехнику и элементную базу, а также хорошо ориентируются в условных обозначениях элементов схем. Такой навык нарабатывается годами, а, для «чайников», важно запомнить для начала наиболее распространенные.
Электрические щиты, шкафы, коробки
На схемах электроснабжения дома или квартиры обязательно будет присутствовать обозначение или шкафа. В квартирах, в основном устанавливается там оконечное устройство, так как проводка дальше не идет. В домах могут запроектировать установку разветвительного электрошкафа — если из него будет идти трасса на освещение других построек, находящихся на некотором расстоянии от дома — бани, гостевого дома. Эти другие обозначения есть на следующей картинке.
Если говорить об изображениях «начинки» электрических щитков, она тоже стандартизована. Есть условные обозначения УЗО, автоматических выключателей, кнопок, трансформаторов тока и напряжения и некоторых других элементов. Они приведены следующей таблице (в таблице две страницы, листайте нажав на слово «Следующая»)
Элементная база для схем электропроводки
При составлении или чтении схемы пригодятся также обозначения проводов, клемм, заземления, нуля и т.д. Это то, что просто необходимо начинающему электрику или для того чтобы понять, что же изображено на чертеже и в какой последовательности соединены ее элементы.
Пример использования приведенных выше графических изображений есть на следующей схеме. Благодаря буквенным обозначениям все и без графики понятно, но дублирование информации в схемах никогда лишним не было.
Изображение розеток
На схеме электропроводки должны быть отмечены места установки розеток и выключателей. Типов розеток много — на 220 В, на 380 в, скрытого и открытого типа установки, с разным количеством «посадочных» мест, влагозащищенные и т.д. Приводить обозначение каждой — слишком длинно и ни к чему. Важно запомнить как изображаются основные группы, а количество групп контактов определяется по штрихам.
Обозначение розеток на чертежах
Розетки для однофазной сети 220 В обозначаются на схемах в виде полукруга с одним или несколькими торчащими вверх отрезками. Количество отрезков — количество розеток на одном корпусе (на фото ниже иллюстрация). Если в розетку можно включить только одну вилку — вверх рисуют один отрезок, если два — два, и т.д.
Если посмотрите на изображения внимательно, обратите внимание, что условное изображение, которое находится справа, не имеет горизонтальной черты, которая отделяет две части значка. Эта черта указывает на то, что розетка скрытого монтажа, то есть под нее необходимо в стене сделать отверстие, установить подрозетник и т.д. Вариант справа — для открытого монтажа. На стену крепится токонепроводящая подложка, на нее сама розетка.
Также обратите внимание, что нижняя часть левого схематического изображения перечеркнута вертикальной линией. Так обозначают наличие защитного контакта, к которому подводится заземление. Установка розеток с заземлением обязательна при включении сложной бытовой техники типа стиральной или , духовки и т.д.
Ни с чем не перепутаешь условное обозначение трехфазной розетки (на 380 В). Количество торчащих вверх отрезков равно количеству проводников, которые к данному устройству подключаются — три фазы, ноль и земля. Итого пять.
Бывает, что нижняя часть изображения закрашена черным (темным). Это обозначает что розетка влагозащищенная. Такие ставят на улице, в помещениях с повышенной влажностью (бани, бассейны и т.д.).
Отображение выключателей
Схематическое обозначение выключателей выглядит как небольшого размера кружок с одним или несколькими Г- или Т- образными ответвлениями. Отводы в виде буквы «Г» обозначают выключатель открытого монтажа, с виде буквы «Т» — скрытого монтажа. Количество отводов отображает количество клавиш на этом устройстве.
Кроме обычных могут стоять — для возможности включения/выключения одного источника света из нескольких точек. К такой же небольшой окружности с противоположных сторон пририсовывают две буквы «Г». Так обозначается одноклавишный проходной переключатель.
В отличие от обычных выключателей, в этих при использовании двухклавишных моделей добавляется еще одна планка, параллельная верхней.
Лампы и светильники
Свои обозначения имеют лампы. Причем отличаются лампы дневного света (люминесцентные) и лампы накаливания. На схемах отображается даже форма и размеры светильников. В данном случае надо только запомнить как выглядит на схеме каждый из типов ламп.
Радиоэлементы
При прочтении принципиальных схем устройств, необходимо знать условные обозначения диодов, резисторов, и других подобных элементов.
Знание условных графических элементов поможет вам прочесть практически любую схему — какого-нибудь устройства или электропроводки. Номиналы требуемых деталей иногда проставляются рядом с изображением, но в больших многоэлементных схемах они прописываются в отдельной таблице. В ней стоят буквенные обозначения элементов схемы и номиналы.
Буквенные обозначения
Кроме того, что элементы на схемах имеют условные графические названия, они имеют буквенные обозначения, причем тоже стандартизованные (ГОСТ 7624-55).
Название элемента электрической схемы | Буквенное обозначение | |
---|---|---|
1 | Выключатель, контролер, переключатель | В |
2 | Электрогенератор | Г |
3 | Диод | Д |
4 | Выпрямитель | Вп |
5 | Звуковая сигнализация (звонок, сирена) | Зв |
6 | Кнопка | Кн |
7 | Лампа накаливания | Л |
8 | Электрический двигатель | М |
9 | Предохранитель | Пр |
10 | Контактор, магнитный пускатель | К |
11 | Реле | Р |
12 | Трансформатор (автотрансформатор) | Тр |
13 | Штепсельный разъем | Ш |
14 | Электромагнит | Эм |
15 | Резистор | R |
16 | Конденсатор | С |
17 | Катушка индуктивности | L |
18 | Кнопка управления | Ку |
19 | Конечный выключатель | Кв |
20 | Дроссель | Др |
21 | Телефон | Т |
22 | Микрофон | Мк |
23 | Громкоговоритель | Гр |
24 | Батарея (гальванический элемент) | Б |
25 | Главный двигатель | Дг |
26 | Двигатель насоса охлаждения | До |
Обратите внимание, что в большинстве случаев используются русские буквы, но резистор, конденсатор и катушка индуктивности обозначаются латинскими буквами.
Есть одна тонкость в обозначении реле. Они бывают разного типа, соответственно маркируются:
- реле тока — РТ;
- мощности — РМ;
- напряжения — РН;
- времени — РВ;
- сопротивления — РС;
- указательное — РУ;
- промежуточное — РП;
- газовое — РГ;
- с выдержкой времени — РТВ.
В основном, это только наиболее условные обозначения в электрических схемах. Но большую часть чертежей и планов вы теперь сможете понять. Если потребуется знать изображения более редких элементов, изучайте ГОСТы.
Электрическая схема представляет собой особый язык который при помощи специальных обозначений описывает работу и содержание электрического устройства или целой системы взаимосвязанных электрических блоков.
Условные обозначения на электрических схемах получаются из простых геометрических примитивов: квадрат, треугольник, окружность, прямоугольник. А также из пунктирных линий,сплошных линий разной толщины, точек и др. Их сочетание при помощи специальной системы, которая описана в стандартах позволяет осуществить обозначение любых электрических приборов, устройств, электрических машин, электрических связей, виды способы соединения обмоток, способы регулирования и т.п.
На электрических схемах дополнительно используют специальные знаки, которые поясняют особенность работы элемента схемы. Так, например есть три типа контактов:
- замыкающий;
- размыкающий;
- переключающий
Обозначение определенное в стандарте отражает только основную функцию контакта, это размыкание и замыкание электрической цепи. Для того чтобы указать дополнительных функций контакта в стандартах для этих целей приняли специальные символы и знаки которые наносятся на подвижные части контакта.
Такие знаки позволяют отличать к примеру контакты по функциональному назначению.
Некоторые элементы имеют не одно а несколько вариантов обозначения на схемах. К примеру существует несколько отличных вариантов обозначения переключающих,выключающих устройств и обмоток трансформаторов. Примять можно разные обозначения в зависимости от конкретного случая.
Если устройство или элемент не определены в стандарте то его нужно обозначать исходя из его принципа действия основываясь на обозначении аналогичных и схожих устройствах с соблюдением основных принципах обозначения принятых в стандарте.
Про условные обозначения в электрических схемах было немного сказано ранее. Ниже представлены обозначения силовых частей и ссылки на стандарты обозначения.
Обозначения на электрических схемах. ГОСТ
Буквенно-цифровые обозначения на электрических схемах. Скачать ГОСТ 2.710-81
Условные обозначения размеров. Скачать ГОСТ 2747-68
Изображения условные графические.
В этой статье рассмотрим условные обозначения в электрических схемах: какие бываю, где найти расшифровку, если в проекте она не указана, как правильно должен быть обозначен и подписан тот или иной элемент на схеме.
Но начнем немного издалека…
Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.
Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.
Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?
«Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»
Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».
Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.
В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.
Виды и типы электрических схем
Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению».
В соответствии с этим ГОСТ, схемы разделяются на 10 видов:
- Схема электрическая
- Схема гидравлическая
- Схема пневматическая
- Схема газовая
- Схема кинематическая
- Схема вакуумная
- Схема оптическая
- Схема энергетическая
- Схема деления
- Схема комбинированная
Виды схем подразделяются на восемь типов:
- Схема структурная
- Схема функциональная
- Схема принципиальная (полная)
- Схема соединений (монтажная)
- Схема подключения
- Схема общая
- Схема расположения
- Схема объединенная
Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.
ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.
ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.
Графические обозначения в электрических схемах
В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:
- ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
- ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
- ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».
Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.
Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.
Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).
Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:
с использованием девяти функциональных признаков:
Наименование | Изображение |
1. Функция контактора | |
2. Функция выключателя | |
3. Функция разъединителя | |
4. Функция выключателя-разъединителя | |
5. Автоматическое срабатывание | |
6. Функция путевого или концевого выключателя | |
7. Самовозврат | |
8. Отсутствие самовозврата | |
9. Дугогашение | |
Примечание: Обозначения, приведенные в пп. 1 — 4, 7 — 9, помещают на неподвижных контактах, а обозначения в пп. 5 и 6 — на подвижных контактах. |
Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:
Наименование | Изображение |
Автоматический выключатель (автомат) | |
Контакт контактора | |
Тепловое реле | |
УЗО | |
Дифференциальный автомат | |
Предохранитель | |
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле) | |
Выключатель нагрузки с предохранителем (рубильник с предохранителем) | |
Трансформатор тока | |
Трансформатор напряжения | |
Счетчик электрической энергии | |
Частотный преобразователь | |
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления автоматически | |
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки | |
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вытягивания кнопки | |
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс) | |
Контакт замыкающий с замедлением, действующим при срабатывании | |
Контакт замыкающий с замедлением, действующим при возврате | |
Контакт размыкающий с замедлением, действующим при срабатывании | |
Контакт размыкающий с замедлением, действующим при возврате | |
Контакт замыкающий с замедлением, действующим при срабатывании и возврате | |
Катушка контактора, общее обозначение катушки реле | |
Катушка импульсного реле | |
Катушка фотореле | |
Катушка реле времени | |
Мотор-привод | |
Лампа осветительная, световая индикация (лампочка) | |
Нагревательный элемент | |
Разъемное соединение (розетка): гнездо штырь | |
Разрядник | |
Ограничитель перенапряжения (ОПН), варистор | |
Разборное соединение (клемма) | |
Амперметр | |
Вольтметр | |
Ваттметр | |
Частотометр |
Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.
Наименование | Изображение |
Линия электрической связи, провода, кабели, шины, линия групповой связи | |
Защитный проводник (PE) допускается изображать штрихпунктирной линией | |
Графическое разветвление (слияние) линий групповой связи | |
Пересечение линий электрической связи, линий групповой связи электрически не соединенных проводов, кабелей, шин, электрически не соединенных | |
Линия электрической связи с одним ответвлением | |
Линия электрической связи с двумя ответвлениями | |
Шина (если необходимо графически отделить от изображения линии электрической связи) | |
Ответвление шины | |
Шины, графически пересекающиеся и электрически не соединенные | |
Отводы (отпайки) от шины |
Буквенные обозначения в электрических схемах
Буквенные обозначения определены ГОСТ 2.710-81 «ЕСКД. Обозначения буквенно-цифровые в электрических схемах».
Обозначения дифавтоматов и УЗО в этом ГОСТ отсутствует. На различных сайтах и форумах в интернете долго обсуждали как же правильно обозначать УЗО и дифавтомат. ГОСТ 2.710-81 в п.2.2.12. допускает использование многобуквенных кодов (а не только одно- и двухбуквенных), поэтому до введения нормативного обозначения я для себя принял трехбуквенное обозначение УЗО и дифавтомата. К двухбуквенному обозначению рубильника я добавил букву D и получил обозначение УЗО. Аналогично поступил с дифавтоматом.
Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено.
Обозначения основных элементов, используемых в однолинейных схемах электрических щитов:
Наименование | Обозначение |
Автоматический выключатель в силовых цепях | QF |
Автоматический выключатель в цепях управления | SF |
Автоматический выключатель с дифференциальной защитой (дифавтомат) | QFD |
Выключатель нагрузки (рубильник) | QS |
Устройство защитного отключения (УЗО) | QSD |
Контактор | KM |
Тепловое реле | F, KK |
Реле времени | KT |
Реле напряжения | KV |
Фотореле | KL |
Импульсное реле | KI |
Разрядник, ОПН | FV |
Плавкий предохранитель | FU |
Трансформатор тока | TA |
Трансформатор напряжения | TV |
Частотный преобразователь | UZ |
Амперметр | PA |
Вольтметр | PV |
Ваттметр | PW |
Частотометр | PF |
Счетчик активной энергии | PI |
Счетчик реактивной энергии | PK |
Фотоэлемент | BL |
Нагревательный элемент | EK |
Лампа осветительная | EL |
Прибор световой индикации (лампочка) | HL |
Штепсельный разъем (розетка) | XS |
Выключатель или переключатель в цепях управления | SA |
Выключатель кнопочный в цепях управления | SB |
Клеммы | XT |
Изображение электрооборудования на планах
Хотя ГОСТ 2.701-2008 и ГОСТ 2.702-2011 предусматривают вид электрической схемы «схема расположения» , при проектировании зданий и сооружений следует руководствоваться ГОСТ 21.210-2014 «СПДС. Изображения условные графические электрооборудования и проводок на планах». Данный ГОСТ устанавливает условные обозначения электропроводок, прокладок шин, шинопроводов, кабельных линий, электрического оборудования (трансформаторов, электрических щитов, розеток, выключателей, светильников) на планах прокладки электрических сетей.
Эти условные обозначения применяются при выполнении чертежей электроснабжения, силового электрооборудования, электрического освещения и других чертежей. Также данные обозначения используются для изображении потребителей в однолинейных принципиальных схемах электрических щитов.
Условные графические изображения электрооборудования, электротехнических устройств и электроприемников
Наименование | Изображение |
Устройство электротехническое. Общее изображение | |
Устройство электрическое, в т.ч. с двигателем | |
Устройство с генератором | |
Двигатель-генератор | |
Комплектное трансформаторное устройство с одним трансформатором | |
Комплектное трансформаторное устройство с несколькими трансформаторами | |
Установка комплектная конденсаторная | |
Установка комплектная преобразовательная | |
Батарея аккумуляторная | |
Устройство электронагревательное. Общее обозначение |
Условные графические обозначения линий проводок и токопроводов
Наименование | Изображение |
Линия проводки с указанием сведений (о роде тока, напряжения, материале, способе прокладки, отметки и пр.) | |
Линия проводки с указанием количества проводников (количество проводников указывают засечками; при количестве проводников более трех, вместо засечек используют цифры) | |
К сожалению, AutoCAD в базовой поставке не содержит все необходимые типы линий.
Проектировщики решают эту проблему по-разному:
- большинство выполняет отрисовку проводки обычной линией, а потом дополняет обозначениями кружков, квадратиков и пр.;
- продвинутые пользователи AutoCAD создают собственные типы линий.
Я — сторонник второго способа, т.к. он гораздо удобнее. Если вы используете специальный тип линии, то при её перемещении все «дополнительные» обозначения также перемещаются, ведь они часть линии.
Создать собственный тип линии в AutoCAD достаточно просто. Вы потратите некоторое время на освоение этого навыка, зато сэкономите потом массу времени при проектировании.
Изображение вертикальной прокладки удобнее всего сделать при помощи блоков AutoCAD, а лучше при помощи динамических блоков.
Условные графические изображения шин и шинопроводов
Наименование | Изображение |
Примечание. Изображение места крепления шинопровода должно соответствовать его проектному положению |
Отрисовку шин и шинопроводов в AutoCAD удобно выполнять при помощи полилинии и/или динамических блоков.
Условные графические изображения коробок, шкафов, щитов и пультов
Наименование | Изображение |
Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков.
Условные графические обозначения выключателей, переключателей
ГОСТ 21.210-2014 не предусматривает условных изображения для светорегуляторов (диммеров) и отдельного изображения для кнопочных выключателей, поэтому я ввёл для них собственные обозначения в соответствии с п.4.7.
Наименование | Изображение |
Выключатель для открытой установки со степенью защиты от IP20 до IP23 | |
однополюсный | |
однополюсный сдвоенный | |
однополюсный строенный | |
двухполюсный | |
трехполюсный | |
Выключатель для скрытой установки со степенью защиты от IP20 до IP23 | |
однополюсный | |
однополюсный сдвоенный | |
однополюсный строенный | |
двухполюсный | |
Выключатель для открытой установки со степенью защиты не ниже IP44 | |
однополюсный | |
двухполюсный | |
трехполюсный | |
Переключатель на два направления без нулевого положения со степенью защиты от IP20 до IP23 | |
открытой установки | |
скрытой установки | |
Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов выключателей.
Условные графические обозначения штепсельных розеток
Наименование | Изображение |
Штепсельная розетка открытой установки со степенью защиты от IP20 до IP23 | |
двухполюсная | |
двухполюсная сдвоенная | |
Штепсельная розетка скрытой установки со степенью защиты от IP20 до IP23 | |
двухполюсная | |
двухполюсная сдвоенная | |
двухполюсная с защитным контактом | |
двухполюсная сдвоенная с защитным контактом | |
трехполюсная с защитным контактом | |
блок из нескольких компьютерных розеток (цифра указывает число розеток в блоке) | |
блок из нескольких бытовых розеток (цифра указывает число розеток в блоке) | |
Штепсельная розетка со степенью защиты не ниже IP44 | |
двухполюсная | |
двухполюсная сдвоенная | |
двухполюсная с защитным контактом | |
двухполюсная сдвоенная с защитным контактом | |
трехполюсная с защитным контактом | |
блок из нескольких компьютерных розеток (цифра указывает число розеток в блоке) | |
блок из нескольких бытовых розеток (цифра указывает число розеток в блоке) |
Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов розеток.
Как обозначить выключатель света на архитектурном плане этажа | Home Guides
Архитектурные чертежи используют стандартизированный набор символов для представления всех структурных и электрических элементов в комнате. Эти символы похожи на профессиональный кодекс, который может прочитать каждый в строительной индустрии. Если вы составляете свои собственные чертежи для нового дома или реконструируете, знание кода может помочь вам эффективно и действенно общаться с вашими подрядчиками. Символ выключателя света немного меняется в зависимости от функций электрической схемы, поэтому точно определите, что вы хотите, прежде чем приступить к составлению плана этажа.
Измерьте расстояние от ближайшего угла комнаты до места, где вы планируете поставить выключатель. Затем преобразуйте это расстояние в масштаб чертежа. Например, если вы хотите, чтобы переключатель находился в 4 футах от угла, а на чертеже для представления каждого фута используется 1/4 дюйма, умножьте 4 на 1/4, чтобы получить 1. Затем отмерьте 1 дюйм от угла на чертеже, чтобы найти место. что соответствует 4 футам в комнату.
Нарисуйте букву «S» на той стороне, где вы хотите установить переключатель. Проведите горизонтальную линию через букву «S.«Символ должен выглядеть как знак доллара, повернутый на 90 градусов вправо. Это базовая метка, указывающая на выключатель света.
Добавьте маленькую цифру« 3 »в верхний правый угол символа, как если бы вы его строили в кубе. для обозначения трехпозиционного переключателя.Если у вас есть два разных переключателя света, которые управляют одним и тем же осветительным прибором, например, переключатель у передней двери и другой у задней двери, оба управляющих верхним светом комнаты, эти два переключателя называются трехступенчатыми. Также нарисуйте второй трехпозиционный переключатель на чертеже, чтобы замкнуть цепь.
Добавьте маленькую цифру «4» в верхний правый угол символа, как если бы вы возводили его в четвертую степень, чтобы обозначить четырехпозиционный переключатель. Когда у вас есть три разных переключателя, управляющих одним прибором, они называются четырехпозиционными переключателями. Нарисуйте все три переключателя на чертеже.
Напечатайте цифру «2» в верхнем правом углу символа, чтобы указать двухполюсный переключатель. Двухполюсные переключатели одновременно направляют две отдельные цепи. Если вы не уверены, нужны ли вам двухполюсные переключатели, поговорите со своим электриком.
Напишите буквы «DM» в правом верхнем углу символа, если в выключателе есть диммер. Если это двухполюсный, трехпозиционный или четырехпозиционный переключатель, сначала напишите номер, а затем добавьте буквы рядом с ним.
Ссылки
Ресурсы
Советы
- Если вы строите новый дом и у вас еще нет стены для измерения, поговорите со своим подрядчиком о том, где будут стоять стойки. Электрические приспособления, такие как переключатели, обычно прикрепляются к стойкам, поэтому расположите переключатели соответственно на своем чертеже.
Писатель Биография
Стефани Митчелл — профессиональный писатель, автор веб-сайтов и статей для агентов по недвижимости, коучей самопомощи и директоров по кастингу. Митчелл также регулярно редактирует веб-сайты, деловую переписку, резюме и полные рукописи. В 2007 году она окончила Сиракузский университет со степенью бакалавра изящных искусств в музыкальном театре.
Символы электрических схем
Ниже приведен рисунок, на котором показаны наиболее часто используемые символы электрических схем жилых домов.
Другие символы жилых домов см. На нашей странице с символами чертежей.
Чтение электрических чертежей
Наиболее часто используемые символы электрических схем, включая розетки, выключатели, фонари и другие специальные символы, такие как дверные звонки и датчики дыма, показаны на рисунке ниже.
Примечание: Пояснения к обычным бытовым электроприборам, таким как трехпозиционные переключатели и переключаемые дуплексные розетки, приведены под рисунком.
Примечания:
Двойная розетка: Стандартная розетка с двумя розетками для вилок.
Двойная розетка с раздельной вилкой: Обычно используется на кухнях или в любом другом месте, где нагрузка на данную розетку будет высокой. Две розетки дуплексной розетки находятся на отдельных автоматических выключателях на электрическом щите. Это снижает вероятность того, что два прибора, подключенные к одной розетке, отключат автоматический выключатель.
Переключаемая дуплексная розетка: Эту розетку можно включать и выключать с помощью переключателя. Часто используется для ламп.
Тумблер: Общий выключатель света.
3-позиционный переключатель: Немного сбивает с толку, но это означает, что в доме есть два переключателя для управления одним и тем же элементом (обычно это свет или группа огней). Например, у вас может быть два входа в гостиную и выключатель на обоих входах, чтобы включить свет в гостиной. Чтобы эта электрическая цепь работала, вам нужно использовать трехпозиционные переключатели на обоих входах в гостиную. Термин 3-позиционный фактически описывает внутреннюю работу физического переключателя, который отличается от стандартного тумблера.
4-позиционный переключатель: То же, что и трехпозиционный переключатель выше, но здесь три переключателя обычно управляют светом или группой огней. Если у вас было три входа в комнату, вам может понадобиться выключатель света на каждом входе. Для этой схемы вам нужно будет купить один четырехпозиционный переключатель и два трехпозиционных переключателя.
Двухполюсный выключатель: Обычно используется для переключения розеток и приборов в цепях с напряжением 240 В.
Никакая часть этого веб-сайта не может быть воспроизведена или скопирована без письменного разрешения.Нелегальные копии в Интернете будут обнаружены Copyscape.
|
Символы освещения
Мэг Эскотт
Очень важно убедиться, что символы освещения на ваших чертежах отражают то, что вы хотите в плане освещения. Также очень важно, чтобы освещение совпадало с электрическими розетками на вашем электрическом плане.Ниже на странице есть контрольный список. Если вы ищете идеи освещения для своего дома, есть страница о дизайне домашнего освещения.
Доступен бесплатный PDF-файл со всеми символами, используемыми в Помощнике по планированию дома. Идите вперед и зарегистрируйтесь ниже, чтобы получить копию на свой адрес электронной почты.
Эта страница является частью серии символов чертежей.
Вас также может заинтересовать страница с условными обозначениями на плане этажа.
Получите бесплатный PDF-файл с символами чертежей, который включает в себя все символы чертежей в одном файле.
Символы освещения для светильников, пожалуй, наименее стандартизированы в архитектурных офисах. За последние несколько лет произошло так много изменений, как светодиодные светильники и галогены были добавлены к лампам накаливания. Символы для переключателей очень стандартизированы.
Не забудьте проверить ключ из ваших чертежей.
Символы на чертежах — Светильники
Совет для мобильных браузеров — эти символы лучше всего просматривать на телефоне в альбомной ориентации.
Подвесной светильник | Светильник направленный вниз — встраиваемый | Направленный светильник направленного света — встраиваемый * | Настенный светильник |
Водонепроницаемый потолочный светильник * | Мини-прожектор | Подсветка под шкаф | Светильник для мытья полов |
Верхний и нижний светильник настенный | Подсветка для пола | Трек | Символ люминесцентного света |
* Для направленных светильников вниз стрелка указывает направление луча.
* В некоторых местах в ванных комнатах и снаружи требуется водонепроницаемое освещение.
Чертежи — переключатели
Символ однополюсного переключателя | Символ двухполюсного переключателя | Символ трехходового переключателя | Символ четырехпозиционного переключателя |
Символ переключателя яркости | Обозначение выключателя контрольного света | Символ водонепроницаемого переключателя |
Давайте просто объясним названия некоторых из этих переключателей…
Однополюсный выключатель — это наиболее распространенный тип выключателя. Это позволяет включать и выключать свет из одного места.
Двухполюсный выключатель — это то же самое, что и однополюсный выключатель, в том, что он включает и выключает свет из одного места, но имеет два «горячих» провода, поэтому он может выдерживать напряжение 220 В.
Трехпозиционный переключатель — это не очень интуитивно понятно, но трехпозиционный переключатель позволяет включать и выключать свет из двух мест. Так что никаких призов за выяснение того, что их нужно использовать парами.Это действительно полезно для верха и низа лестницы.
Четырехпозиционный переключатель — используется между двумя трехпозиционными переключателями для управления светом из трех мест.
Выключатель контрольной лампы — Выключатель с небольшой лампочкой, указывающей на то, что цепь включена.
Контрольный список световых символов на чертежах
- Убедитесь, что указан правильный тип осветительной арматуры.
- Убедитесь, что все правильные приспособления находятся в правильных цепях с правильными переключателями.Например, вам может понадобиться выключатель для центрального светильника в каждом конце комнаты и отдельный выключатель для цепи, в которой есть выходы для ламп. Правильно ли указан трехпозиционный переключатель для центрального приспособления.
- Убедитесь, что переключатели находятся в разумном месте — как в помещении, так и по высоте на стене.
- Убедитесь, что диммерные переключатели указаны там, где вы хотите.
- Убедитесь, что конструкция панели переключателей или расположение отдельных переключателей, если они сгруппированы в одном месте, указаны правильно.
- Убедитесь, что есть розетки (в стене или полу) для любых настольных или торшеров, которые вы запланировали.
Другие символы плана дома для вас …
ВОПРОС 5 Более горячие звезды главной последовательности тусклее, чем
Расшифрованный текст изображения: ВОПРОС 5 Более горячие звезды главной последовательности тусклее, чем холодные. Наименее массивные из существующих звезд. Ярче самых крутых. Самые большие звезды, которые существуют. ВОПРОС 6 В течение своей жизни звезды__ на диаграмме ЧСС O остаются в одном и том же месте, меняют свое положение ВОПРОС 7 Все звезды в главной последовательности находятся на одном и том же этапе своей жизни.O рождаются одновременно. o иметь одинаковую абсолютную величину. O имеют одинаковую температуру. ВОПРОС 8 Сравните значения светимости со значениями абсолютной звездной величины: звезда с большим значением абсолютной величины __, чем звезда с меньшим значением. тусклее ярче (ярче) ВОПРОС 9 Звезды с другим обозначением спектрального класса имеют разную температуру поверхности. химический состав галактического происхождения. кажущаяся величина. ВОПРОС 10 Абсолютная звездная величина, то есть вертикальная ось диаграммы HR на наших страницах данных, — это еще один термин, обозначающий светимость звезды, но в других единицах.Чтобы узнать яркость звезды, вы должны знать, что из следующего, помимо ее видимой яркости. O возраст расстояние размер O температура Обозреватель диаграмм Герцшпрунга-Рассела сбросить справку о сравнении размеров Диаграмма ЧСС 106 100 Ren 1000 Rè. Светимость (LO) 1010,1 R 10-14 0,01 Ro 10-2- звезда солнце 10-30,001 R Свойства курсора температура: 5800 K — 10-4 40000 20000 2300 10000 5000 Температура (K) Светимость: 1,0 Lo- Варианты шкалы по оси x : температура y радиус = 1,0 5800 / с800) 1,00 R показать главную последовательность показать классы яркости-шкалу оси: светимость показать изорадиусные линии показывают полосу нестабильности • эти значения для звезды в позиции красного курсора x, показанного на диаграмме HR • панель сравнения размеров выше показывает относительный размер и цвет такой звезды по сравнению с нашим Солнцем. Звезды на графике нет звезд ближайшие звезды O как ближайшие, так и самые яркие звезды самые яркие звезды перекрываются СУПЕРГИАНТЫ ГЛАВНЫЕ ГИГАНТЫ ПОСЛЕДОВАТЕЛЬНОСТЬ светимости (солнечные единицы) WHITE DWARFS Ram 0.1 мес. DK Can A FG KM 10.000 .000 температура поверхности (Кельвин 3000
Предыдущий вопрос Следующий вопросэлектрические — Как мне преобразовать трехпозиционные переключатели в диммеры?
Надеюсь, вы дадите мне несколько советов о том, где я ошибаюсь при подключении моих новых диммерных переключателей, которые я использую для замены пары трехпозиционных переключателей. Я все подключил, нажал на выключатель, и ничего не произошло. Ни шума, ни света, ни изменений, когда я нажимаю любой переключатель.
Вот несколько общих фактов:
Дом 2009 года постройки
Замена двух стандартных переключателей в трехпозиционной цепи на диммерные переключатели
Выключатели управления четырьмя лампами накаливания, лампами накаливания 60Вт
Вот руководства для основных и дополнительных диммерных переключателей, которые я купил для замены своих стандартных переключателей:
Коммутатор №1 (первичный) — GE 12724 (ссылка удалена)
Переключатель №2 (вспомогательный) — GE 12723 (ссылка удалена)
Вот схема подключения, показывающая, как должны быть установлены переключатели:
Щелкните, чтобы увеличить
Вот альбом изображений, показывающий проводку двух моих розеток и двух переключателей, которые я использую:
Нажмите, чтобы увеличить
А вот описание цифр / букв в этом альбоме:
Выход №1
Жгут проводов нейтрали (?), К которому привязана перемычка (один белый, один бежевый — изначально закрыты гайкой)
Перемычка в комплекте с диммерным переключателем
Дорожный провод к розетке №2 (белый — вытащен из штатного выключателя)
Линейный провод к коробке выключателя (черный — вытащен из оригинального выключателя, проверено на 120 В с помощью мультиметра)
Заземление (неизолированная медь — изначально в комплекте и покрыта гайкой)
Неизвестно — три черных провода, неиспользованные
Неизвестно — один черный и один бежевый провод, неиспользованный
Дорожный провод к розетке №2 (красный — вынут из штатного выключателя)
Выход №2
Дорожный провод к розетке №1 (белый — вытащен из штатного выключателя)
Нагрузочный провод к осветительной арматуре (черный — вытащен из оригинального выключателя)
Заземление (неизолированная медь — изначально в комплекте и покрыта гайкой)
Перемычка в комплекте с диммерным переключателем
Жгут проводов нейтрали (?), К которому привязана перемычка (один белый, два черных — изначально закрыты гайкой)
Дорожный провод к розетке №1 (красный — вынут из штатного выключателя)
Наконец, вот описание того, как я подключал его, когда он не работал:
Выход №1 (Настройка)
А> 8
В> 2
С> 5
D> 3
E> 4
Выход №2 (Настройка)
X> 16
Y> 14
Z> 13
11> 12
Если я могу прояснить что-либо из вышеперечисленного или мне нужно предоставить дополнительную информацию, пожалуйста, дайте мне знать.Мы будем очень признательны за любой вклад, который вы можете предоставить в отношении того, что мне следует проверить или изменить.
Вот исходная конфигурация коммутатора с использованием номеров из моего исходного сообщения:
Переключатель №1 (горячий)
3 Путешественник №1 (белый провод) — латунный зажим
4 Общий (черный провод, 120 В) — черный зажим
8 Путешественник №2 (красный провод) — латунный зажим
Переключатель №2 (нагрузка)
11 Traveler # 1 (белый провод) — латунный зажим
12 Общий (черный провод) — черный зажим
16 Путешественник №2 (красный провод) — латунный зажим
Учебное пособие по физике: схемы серии
Как упоминалось в предыдущем разделе Урока 4, два или более электрических устройства в цепи могут быть соединены последовательным или параллельным соединением.Когда все устройства соединены последовательным соединением, схема называется последовательной схемой . В последовательной цепи каждое устройство подключается таким образом, что существует только один путь, по которому заряд может проходить через внешнюю цепь. Каждый заряд, проходящий через контур внешней цепи, будет последовательно проходить через каждый резистор.
Краткое сравнение и контраст между последовательными и параллельными цепями было сделано в предыдущем разделе Урока 4.В этом разделе подчеркивалось, что добавление дополнительных резисторов к последовательной цепи приводит к довольно ожидаемому результату — увеличению общего сопротивления. Поскольку в цепи есть только один путь, каждый заряд встречает сопротивление каждого устройства; поэтому добавление большего количества устройств приводит к увеличению общего сопротивления. Это увеличенное сопротивление служит для уменьшения скорости протекания заряда (также известной как ток).
Эквивалентное сопротивление и токЗаряды проходят через внешнюю цепь со скоростью, которая везде одинакова.В одном месте ток не больше, чем в другом. Фактическое количество тока обратно пропорционально общему сопротивлению. Существует четкая взаимосвязь между сопротивлением отдельных резисторов и общим сопротивлением набора резисторов. Что касается батареи, которая нагнетает заряд, наличие двух последовательно соединенных резисторов сопротивлением 6 Ом было бы эквивалентно наличию в цепи одного резистора сопротивлением 12 Ом. Наличие трех последовательно соединенных резисторов сопротивлением 6 Ом было бы эквивалентно наличию в цепи одного резистора сопротивлением 18 Ом.И наличие четырех последовательно соединенных резисторов 6 Ом было бы эквивалентно наличию в цепи одного резистора 24 Ом.
Это концепция эквивалентного сопротивления. Эквивалентное сопротивление схемы — это величина сопротивления, которая потребуется одному резистору, чтобы сравняться с общим эффектом от набора резисторов, присутствующих в схеме. Для последовательных цепей математическая формула для вычисления эквивалентного сопротивления (R экв ) составляет
. R экв = R 1 + R 2 + R 3 +…, где R 1 , R 2 и R 3 — значения сопротивления отдельных резисторов, соединенных последовательно.
Создавайте, решайте и проверяйте свои собственные проблемы с помощью виджета Equivalent Resistance ниже. Создайте себе проблему с любым количеством резисторов и любыми номиналами. Решать проблему; затем нажмите кнопку «Отправить», чтобы проверить свой ответ.Ток в последовательной цепи везде одинаковый.Заряд НЕ накапливается и не начинает накапливаться в любом заданном месте, так что ток в одном месте больше, чем в других местах. Заряд НЕ расходуется резисторами, поэтому в одном месте его меньше по сравнению с другим. Можно представить, что заряды движутся вместе по проводам электрической цепи и везде движутся с одинаковой скоростью. Ток — скорость, с которой течет заряд — везде одинаков. То же самое на первом резисторе, как на последнем резисторе, как в батарее.Математически можно написать
I аккумулятор = I 1 = I 2 = I 3 = …, где I 1 , I 2 и I 3 — значения тока в отдельных местах резистора.
Эти значения тока легко вычислить, если известно напряжение батареи и известны отдельные значения сопротивления. Используя значения отдельных резисторов и приведенное выше уравнение, можно рассчитать эквивалентное сопротивление.А используя закон Ома (ΔV = I • R), ток в батарее и, следовательно, через каждый резистор можно определить, найдя соотношение напряжения батареи и эквивалентного сопротивления.
I аккумулятор = I 1 = I 2 = I 3 = ΔV аккумулятор / R экв Разность электрических потенциалов и падения напряженияКак обсуждалось в Уроке 1, электрохимический элемент схемы подает энергию на заряд, чтобы перемещать его через элемент и устанавливать разность электрических потенциалов на двух концах внешней цепи.Элемент с напряжением 1,5 В создает разность электрических потенциалов во внешней цепи 1,5 В. Это означает, что электрический потенциал на положительной клемме на 1,5 В больше, чем на отрицательной клемме. Когда заряд движется по внешней цепи, он теряет 1,5 вольт электрического потенциала. Эта потеря электрического потенциала называется падением напряжения . Это происходит, когда электрическая энергия заряда преобразуется в другие формы энергии (тепловую, световую, механическую и т. Д.).) внутри резисторов или нагрузок. Если электрическая цепь, питаемая от элемента на 1,5 В, оснащена более чем одним резистором, то совокупная потеря электрического потенциала составляет 1,5 В. Для каждого резистора существует падение напряжения, но сумма этих падений составляет 1,5 В — то же самое, что и номинальное напряжение источника питания. Математически это понятие может быть выражено следующим уравнением:
ΔV аккумулятор = ΔV 1 + ΔV 2 + ΔV 3 +…Чтобы проиллюстрировать этот математический принцип в действии, рассмотрим две схемы, показанные ниже на диаграммах A и B. Предположим, вас попросили определить два неизвестных значения разности электрических потенциалов между лампочками в каждой цепи. Чтобы определить их значения, вам нужно будет использовать приведенное выше уравнение. Батарея обозначается обычным схематическим символом, а рядом с ней указывается ее напряжение. Определите падение напряжения для двух лампочек, а затем нажмите кнопку «Проверить ответы», чтобы убедиться, что вы правы.
Ранее в Уроке 1 обсуждалось использование диаграммы электрических потенциалов. Диаграмма электрического потенциала — это концептуальный инструмент для представления разности электрических потенциалов между несколькими точками электрической цепи. Рассмотрим приведенную ниже принципиальную схему и соответствующую диаграмму электрических потенциалов.
Схема, показанная на схеме выше, питается от источника энергии 12 В.В цепи последовательно соединены три резистора, каждый из которых имеет собственное падение напряжения. Отрицательный знак разности электрических потенциалов просто означает потерю электрического потенциала при прохождении через резистор. Обычный ток направляется через внешнюю цепь от положительной клеммы к отрицательной. Поскольку схематический символ источника напряжения использует длинную полосу для обозначения положительного вывода, точка A на схеме находится на положительном выводе или выводе с высоким потенциалом.В точке A электрический потенциал 12 вольт, а в точке H (отрицательный вывод) — 0 вольт. Проходя через батарею, заряд приобретает электрический потенциал 12 вольт. А при прохождении через внешнюю цепь заряд теряет 12 вольт электрического потенциала, как показано на диаграмме электрических потенциалов, показанной справа от принципиальной схемы. Эти 12 вольт электрического потенциала теряются в три этапа, каждый из которых соответствует прохождению через резистор. При прохождении через соединительные провода между резисторами происходит небольшая потеря электрического потенциала из-за того, что провод оказывает относительно небольшое сопротивление потоку заряда.Поскольку точки A и B разделены проводом, они имеют практически одинаковый электрический потенциал 12 В. Когда заряд проходит через свой первый резистор, он теряет 3 В электрического потенциала и падает до 9 В в точке C. точка D отделена от точки C простым проводом, она имеет практически тот же электрический потенциал 9 В, что и C. Когда заряд проходит через второй резистор, он теряет 7 В электрического потенциала и падает до 2 В в точке E. Поскольку точка F отделена от точки E простым проводом, она имеет практически тот же электрический потенциал 2 В, что и E.Наконец, когда заряд проходит через свой последний резистор, он теряет 2 В электрического потенциала и падает до 0 В в точке G. В точках G и H в заряде заканчивается энергия, и ему требуется повышение энергии, чтобы пройти через внешний резистор. цепь снова. Прирост энергии обеспечивается аккумулятором по мере того, как заряд перемещается с H на A.
В Уроке 3 закон Ома (ΔV = I • R) был введен как уравнение, которое связывает падение напряжения на резисторе с сопротивлением резистора и током на резисторе.Уравнение закона Ома можно использовать для любого отдельного резистора в последовательной цепи. При объединении закона Ома с некоторыми принципами, уже обсужденными на этой странице, возникает большая идея.
В последовательных цепях наибольшее падение напряжения имеет резистор с наибольшим сопротивлением.
Поскольку в последовательной цепи ток везде одинаковый, значение I ΔV = I • R одинаково на каждом из резисторов последовательной цепи. Таким образом, падение напряжения (ΔV) будет изменяться с изменением сопротивления.Где бы сопротивление ни было наибольшим, падение напряжения будет наибольшим у этого резистора. Уравнение закона Ома можно использовать не только для прогнозирования того, что на резисторе в последовательной цепи будет наблюдаться наибольшее падение напряжения, но и для расчета фактических значений падения напряжения.
Δ V 1 = I • R 1 | Δ V 2 = I • R 2 | Δ V 3 = I • R 3 |
Приведенные выше принципы и формулы могут быть использованы для анализа последовательной цепи и определения значений тока и разности электрических потенциалов на каждом из резисторов в последовательной цепи.Их использование будет продемонстрировано математическим анализом схемы, показанной ниже. Цель состоит в том, чтобы использовать формулы для определения эквивалентного сопротивления цепи (R eq ), тока в батарее (I — ), а также падений напряжения и тока для каждого из трех резисторов.
Анализ начинается с использования значений сопротивления отдельных резисторов для определения эквивалентного сопротивления цепи.
R экв = R 1 + R 2 + R 3 = 17 Ом + 12 Ом + 11 Ом = 40 ОмТеперь, когда известно эквивалентное сопротивление, ток в батарее можно определить с помощью уравнения закона Ома.При использовании уравнения закона Ома (ΔV = I • R) для определения тока в цепи важно использовать напряжение батареи для ΔV и эквивалентное сопротивление для R. Расчет показан здесь:
I tot = ΔV аккумулятор / R eq = (60 В) / (40 Ом) = 1,5 АЗначение тока 1,5 А — это ток в месте расположения батареи. В последовательной цепи без точек разветвления ток везде одинаковый.Ток в месте расположения батареи такой же, как ток в каждом месте расположения резистора. Впоследствии 1,5 ампер — это значение I 1 , I 2 и I 3 .
I аккумулятор = I 1 = I 2 = I 3 = 1,5 АОсталось определить три значения — падение напряжения на каждом отдельном резисторе. Закон Ома снова используется для определения падений напряжения для каждого резистора — это просто произведение тока на каждом резисторе (вычисленное выше как 1.5 ампер) и сопротивление каждого резистора (указано в постановке задачи). Расчеты показаны ниже.
ΔV 1 = I 1 • R 1 ΔV 1 = (1,5 A) • (17 Ом) ΔV 1 = 25,5 В | ΔV 2 = I 2 • R 2 ΔV 2 = (1,5 A) • (12 Ом) ΔV 2 = 18 В | ΔV 3 = I 3 • R 3 ΔV 3 = (1.5 А) • (11 Ом) ΔV 3 = 16,5 В |
В качестве проверки точности выполненных математических расчетов целесообразно проверить, удовлетворяют ли вычисленные значения принципу, согласно которому сумма падений напряжения для каждого отдельного резистора равна номинальному напряжению батареи. Другими словами, ΔV батареи = ΔV 1 + ΔV 2 + ΔV 3 ?
Является ли ΔV батареи = ΔV 1 + ΔV 2 + ΔV 3 ?Это 60 В = 25.5 В + 18 В + 16,5 В?
60 В = 60 В?
Да !!
Математический анализ этой последовательной схемы включал смесь концепций и уравнений. Как это часто бывает в физике, отделение понятий от уравнений при принятии решения физической проблемы является опасным актом. Здесь необходимо учитывать концепции, согласно которым ток везде одинаков и что напряжение батареи эквивалентно сумме падений напряжения на каждом резисторе, чтобы завершить математический анализ.В следующей части Урока 4 параллельные цепи будут проанализированы с использованием закона Ома и концепций параллельных цепей. Мы увидим, что подход сочетания концепций с уравнениями будет не менее важен для этого анализа.
Мы хотели бы предложить … Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействовать — это именно то, что вы делаете, когда используете одно из интерактивных материалов The Physics Classroom.Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока. Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Вы можете легко перетащить источники напряжения, резисторы и провода на рабочее место, а также расположить и подключить их так, как захотите. Вольтметры и амперметры позволяют измерять падение тока и напряжения. Нажатие на резистор или источник напряжения позволяет изменять сопротивление или входное напряжение.Это просто. Это весело. И это безопасно (если вы не используете его в ванне).
1. Используйте свое понимание эквивалентного сопротивления, чтобы заполнить следующие утверждения:
а. Два резистора сопротивлением 3 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное сопротивлению одного резистора _____ Ом.
г. Три резистора сопротивлением 3 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное сопротивлению одного резистора _____ Ом.
г. Три резистора 5 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное одному резистору _____ Ом.
г. Три резистора с сопротивлением 2 Ом, 4 Ом и 6 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.
e. Три резистора с сопротивлением 5 Ом, 6 Ом и 7 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.
ф. Три резистора с сопротивлением 12 Ом, 3 Ом и 21 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.
2. По мере увеличения количества резисторов в последовательной цепи общее сопротивление __________ (увеличивается, уменьшается, остается прежним) и ток в цепи __________ (увеличивается, уменьшается, остается прежним).
3. Рассмотрим следующие две схемы последовательных цепей. На каждой диаграмме используйте стрелки, чтобы указать направление обычного тока. Затем сравните напряжение и ток в обозначенных точках для каждой диаграммы.
4. Три одинаковые лампочки подключены к D-ячейке, как показано справа.Какое из следующих утверждений верно?
а. Все три лампочки будут иметь одинаковую яркость.г. Лампа между X и Y будет самой яркой.
г. Лампа между Y и Z будет самой яркой.
г. Лампочка между Z и батареей будет самой яркой.
5. Три одинаковые лампочки подключены к батарее, как показано справа.Какие настройки можно было бы внести в схему, чтобы увеличить ток, измеряемый в точке X? Перечислите все подходящие варианты.
а. Увеличьте сопротивление одной из лампочек.г. Увеличьте сопротивление двух лампочек.
г. Уменьшите сопротивление двух лампочек.
г. Увеличьте напряжение аккумулятора.
e. Уменьшите напряжение аккумулятора.
ф. Удалите одну из луковиц.
6. Три одинаковые лампочки подключены к батарее, как показано справа. W, X, Y и Z обозначают места на трассе. Какое из следующих утверждений верно?
а. Разница потенциалов между X и Y больше, чем между Y и Z.г. Разница потенциалов между X и Y больше, чем между Y и W.
г. Разность потенциалов между Y и Z больше, чем между Y и W.
г. Разница потенциалов между X и Z больше, чем между Z и W.
e. Разность потенциалов между X и W больше, чем на батарее.
ф. Разница потенциалов между X и Y больше, чем между Z и W.
7.Сравните схему X и Y ниже. Каждый питается от 12-вольтовой батареи. Падение напряжения на резисторе 12 Ом в цепи Y равно ____ падению напряжения на единственном резисторе в цепи X.
а. меньше чемг. больше
г. то же, что
8. Аккумулятор на 12 В, резистор на 12 Ом и лампочка подключаются, как показано на схеме X ниже.Резистор на 6 Ом добавлен к резистору на 12 Ом и лампочке, чтобы создать цепь Y, как показано.