Коллекторный двигатель переменного тока 220в схема подключения: ПОДКЛЮЧЕНИЕ КОЛЛЕКТОРНОГО ЭЛЕКТРОДВИГАТЕЛЯ

Содержание

ПОДКЛЮЧЕНИЕ КОЛЛЕКТОРНОГО ЭЛЕКТРОДВИГАТЕЛЯ

   Возникла необходимость подключить универсальный коллекторный электродвигатель. На первый взгляд никаких проблем нет. Двигатель рабочий, ранее стоял в соответствующем устройстве и выполнял предназначенную ему функцию, то есть уже был подключён.  Но дело в том, что использовать его решил в совершенно ином по своим функциям устройстве. Изменились условия, возможности эксплуатации и требования, как к его работе, так и к сроку службы. Ведь механизм, в котором предполагалось вновь задействовать электродвигатель, должен будет быть собран именно под него. Что делать с существующей обвязкой? Можно и главное нужно ли в ней, что-то менять? В данном конкретном случае это электродвигатель от электробритвы.

   Имеющаяся обвязка состоит из конденсаторов и дросселей предназначенных  выполнять исключительно функции помехоподавляющего фильтра.

   Непосредственно на работу двигателя они ни как не влияют. Известно, что универсальный коллекторный электродвигатель одинаково хорошо работает и на постоянном, и на переменном токе. Соответственно, не мудрствуя лукаво, при имеющимся сопротивлении секций обмоток статора (более 800 Ом) плюс  сопротивление якоря (360 Ом), подключение можно сделать по такой схеме:

   Что и было успешно опробовано.

   Однако на постоянном токе чуточку лучше. Во первых  КПД двигателя при переменном токе меньше, во вторых меньше срок службы щёток, коллектора и всей машины. Схема подключения будет такой.

   Был опробован и этот вариант схемы.

   Искрение щёток коллектора стало заметно меньше. Совсем уж решил на этом и остановиться, но тут посоветовали, что при питании  данного электродвигателя постоянным током следует добавить, после диодного моста, конденсатор.

   Ёмкость конденсатора первоначально посчитал по, показавшейся подходящей для данного случая, формуле. При подключении конденсатора с расчетной ёмкостью в 200 mkf движок взревел как небольшая электродрель, что заставило уменьшать ёмкость. Формулой для расчета, не оправдавшей себя, «делиться» смысла не вижу.

   Остановился на конденсаторе 33mkf х 250V и диодном мосте из диодов 1N4007 (как более компактном). Работой электродвигателя доволен.

Видео работы электромотора

   Ничего необычного, но действительно лучше увидеть, чем услышать (в данном случае прочитать) как он там «гудит», как он там «искрит». Желаю удачных экспериментов, Babay.

Как подключить коллекторный электродвигатель

15.01.2017

Предлагаем посмотреть видео о подключении электродвигателя к сети 220В

Многие задаются вопросом как проверить двигатель от стиральной машины перед покупкой, как правильно подключить его и использовать с платой регулировки оборотов без потери мощности. Все очень просто…

Для проверки двигателя нам понадобиться:

  • сетевой провод (желательно с клеммами для удобства),
  • перемычка,
  • мультиметр.

На что следует обратить внимание при проверке двигателя?

1. Состояние коллекторно-щеточного узла,
2. Работу таходатчика.

Для начала мы разберемся с подключением двигателя и его проводами. Нам необходимо найти его обмотку, щетки и таходатчик. Для этого мы ставим мультиметр в режим «прозвонки» и поочередно начинаем перебирать провода.

Бывают двигатели с 6, 8 и 9-ю контактами. Для начала нам нужно определить какие контакты нам необходимы.

Двигатель с 6 контактами (3 пары)

Если двигатель открытого типа, то его провода найти легко. Осталось найти еще 2 пары контактов. Это не имеет принципиального значения что из них обмотка, а что щетки. Но для ясности можно один щуп мультиметра прикоснуть к одной из клеммы любой пары контактов, а второй щуп прикоснуть к коллектору двигателя. Если при этом мы видим замыкание цепи, значит эта пара клемм относится к щеткам, а оставшаяся пара будет являться обмоткой двигателя. 

Теперь подключим провода. Для начала подключаем нашу перемычку. Для этого мы берем один конец щеток и один контакт от обмотки и соединяем их перемычкой. На оставшиеся контакты щеток и обмотки мы прикрепляем сетевой провод. Все, двигатель подключен и его можно подключать в сеть.

Двигатель с 8 и 9-ю контактами

Откуда же так много проводов?
Одна пара — это «термопара». Как правило ее провода имеют контрастную расцветку — черного или белого цвета. Для нашего подключения эти провода не понадобятся.
Остается еще один неизвестный провод — это так называемая «средняя точка обмотки». На каких то двигателях она есть, а на каких то нет. Проще говоря обмотка этих двигателей разделена на две части. Но какую же часть этой обмотки выбрать нам?
Для этого мы берем мультиметр и ставим его в режим «измерения сопротивления» и находим обмотку с меньшим сопротивлением. За счет этого в цепи будет проходить больше тока, а следовательно двигатель будет вращаться быстрее и мощнее.
Выбираем обмотку с меньшим сопротивлением и подключаем все точно так же, как в случае с тремя парами контактов.

Если двигатель закрытого типа и мы не можем найти провода таходатчика, то его клеммы можно найти с помощью мультиметра в режиме «прозвонки». 
Прозвонка его клемм отличается от прозвонки всех остальных клемм. Клеммы таходатчика либо не пищат совсем, а показывают только сопротивление. Либо их звук отличается от стандартного.

Поменять направления двигателя

Чтобы поменять направление двигателя, нам нужно поменять положение перемычки подсоединив ее конец к другому концу обмотки либо щетки.

На что стоит обратить внимание при покупке двигателя

Первое, что мы проверяем — это состояние коллекторно щеточного узла. Для этого нам необходимо включить двигатель в сеть и посмотреть как сильно искрят щетки. Если щетки искрят сильно (как показано на видео), то коллектор данного двигателя не исправен и приобретать его мы не советуем.

Второе, — нам нужно проверить таходатчик. Для этого мы вновь берем мультиметр и ставим его в режим «переменного напряжения» и замеряем выходное напряжения на клеммах таходатчика при включенном двигателе. Оно должно быть от 20 до 70 вольт. Это значит, что таходатчик исправен.

После проверки двигателя, его можно подключить к плате регулировки оборотов с поддержанием мощности и регулировать обороты в широком диапазоне — от 200 до 15000 об/мин. При подаче нагрузки на вал двигателя он не будет просаживать обороты за счет обратной связи — таходатчика. А если Вам нужно менять направление вращения двигателя, можно поставить кнопку реверса как мы можем видеть на видео.

Теперь это устройство можно использовать везде где необходима вращающаяся механическая энергия с регулировкой оборотов без потери мощности. Это могут быть различные медогонки, пилы, гриндеры, сверлильные станки, гончарные круги, токарные станки, дровоколы, точила, зернодробилки и многое другое.

 

Please enable JavaScript to view the comments powered by Disqus.

Схемы подключения двигателя стиральной машины


Стиральные машины, со временем, выходят из строя или морально устаревают. Как правило,
основой любой стиралки есть ее электродвигатель, который может найти свое применение и
после разборки стиралки на запчасти.

Мощность таких двигателей, как правило не меньше 200 Вт, а порой и куда больше, скорость
оборотов вала может доходить и до 11 000 оборотов в минуту что вполне может подойти для использование такого двигателя в хозяйственных или мелких промышленных нуждах.

Вот лишь несколько идей удачного применения электродвигателя от стиралки:

  • Точильный («наждачный») станок для заточки ножей и мелкого домашнего и садового инструмента.Двигатель устанавливают на прочном основание, а на вал закрепляют точильный камень или наждачный круг.
  • Вибростол для производства декоративной плитки, тротуарной плитки или других бетонных изделий где необходимо уплотнение раствора и удаление от туда воздушных пузырей. А возможно вы занимаетесь производством силиконовых форм, для этого также нужен вибростол.
  • Вибратор для усадки бетона. Самодельные конструкции которых полно в интернете, вполне могут быть реализованы с применением небольшого двигателя от стиральной машинки.
  • Бетономешалка. Вполне подойдет такой двигатель и для небольшой бетономешалки. После небольшой переделки, можно использовать и штатный бак от стиральной машинки.
  • Ручной строительный миксер. С помощью такого миксера можно замешивать штукатурные смеси, плиточный клей, бетон.
  • Газонокосилка. Отличный вариант по мощности и габаритам для газонокосилки на колесах. Подойдет любая готовая платформа на 4-х колесах с закрепленным в центре двигателем с прямым приводом на «ножы» которые будут находится снизу. Высоту газона можно регулировать посадкой, например, поднимая или опуская колеса на шарнирах по отношению к основной платформе.
  • Мельница для измельчения травы и сена или зерна. Особенно актуально для фермеров и людей занимающихся разведением домашней птицы и другой живности. Также можно делать заготовки корма на зиму.

Вариантов применения электромотора может быть очень много, суть процесса заключается в возможности вращать на высоких оборотах разные механизмы и приспособления. Но какой бы механизм сконструировать вы б не собирались, все равно вам нужно будит правильно
подключить двигатель от стиральной машинки.

Виды двигателей


В стиральных машинках разных поколений и стран производства, могут быть и разные типы
электродвигателей. Как правило это один из трех вариантов:

Асинхронный.
В основном это все трехфазные двигатели, могут быть и двухфазными но это большая редкость.

Такие двигатели просты в своей конструкции и обслуживанию, в основном все сводится к смазке подшипников. Недостатком есть большой вес и габариты при небольшом КПД.
Такие двигатели стоят в старинных, маломощных и недорогих моделях стиральных машин.

Коллекторный.
Двигатели которые пришли на смену большим и тяжелым асинхронным устройствам.
Такой двигатель может работать как от переменного так и от постоянного тока, на практике  он будет вращаться даже от автомобильного аккумулятора на 12 вольт.
Двигатель может вращаться в нужную нам сторону, для этого нужно всего лишь сменить полярность подключения щеток к обмоткам статора.
Высокая скорость вращения, плавное изменение оборотов изменением прилагаемого напряжения, небольшие размеры и большой пусковой момент — вот лишь небольшая часть преимуществ такого типа двигателей.
К недостаткам можно отнести износ коллекторного барабана и щеток и повышенный нагрев при не столь продолжительной работе. Также необходима более частая профилактика, например чистка коллектора и замена щеток.

Инверторный (бесколлекторный)
Инновационный тип двигателей с прямым приводом и небольшими габаритами при довольно не малой мощности и высоком КПД.
В конструкции двигателя все так же присутствует статор и ротор, однако количество соединительных элементов сведено к минимуму. Отсутствие элементов подверженных быстрому износу, а так же низкий уровень шума.

Такие двигателя стоят в последних моделях стиральных машин и их производство требует сравнительно больше затрат и усилий что конечно же влияет на цену.

Схемы подключения

Тип двигателя с пусковой обмоткой (старые/дешевые стиралки)


Для начала нужен тестер или мультиметр. Нужно найти две соответствующие друг другу пары выводов.
Щупами тестера, в режиме прозвонки или сопротивления, нужно отыскать два провода которые между собой прозваниваются, остальные два провода автоматически будут парой второй обмотки.

Дальше следует выяснить, где у нас пусковая, а где – рабочая обмотки. Нужно замерить их сопротивление:

более высокое сопротивление укажет на пусковую обмотку (ПО), которая создает начальный крутящий момент. Более низкое сопротивление укажет нам на обмотку возбуждения (ОВ) или другими словами — рабочую обмотку, создающую магнитное поле вращения.

Вместо контактора «SB» может стоять неполярный конденсатор малой емкости (около 2-4 мкФ)
Как это обустроено в самой стиралке для удобства.

 Если же двигатель будет запускаться без нагрузки, то есть, не будит на его валу шкива с нагрузкой в момент запуска, то такой двигатель может запускаться и сам, без конденсатора и кратковременной «запитки» пусковой обмотки.

Если двигатель сильно перегревается или греется даже без нагрузки непродолжительное время, то причин может быть несколько. Возможно изношены подшипники или уменьшился зазор между статором и ротором в следствие чего они задевают друг друга. Но чаще всего причиной может быть высокая емкость конденсатора, проверить несложно — дайте поработать двигателю с отключенным пусковым конденсатором и сразу все станет ясно. При необходимости емкость конденсатора лучше уменьшить до минимума при котором он справляется с запуском электродвигателя.

В кнопке контакт «SB» строго должен быть не фиксируемым, можно попросту воспользоваться кнопкой от дверного звонка, в противном случае пусковая обмотка может сгореть.

В момент запуска кнопку «SB» зажимают до момента раскрутки вала на полную (1-2 сек.), дальше кнопка отпускается и напряжение на пусковую обмотку не подается. Если необходим реверс — нужно сменить контакты обмотки.

Иногда в такого двигателя может быть не четыре, а три провода на выходе, в таком случае  две обмотки уже соединены в средней точке между собой, как показано в схеме.
В любом случае разбирая старую стиралку, можно присмотреться как там был подключен в ней ее двигатель.

Когда возникает необходимость реализовать реверс или сменить направления вращения двигателя с пусковой обмоткой, можно подключить по следующей схеме:

Интересный момент. Если в двигателе не использовать (не задействовать) пусковую обмотку, то направление вращения может быть всевозможным (в любую из сторон) и зависить, например, от того в какую сторону провернуть вал в тот момент когда подключается напряжение.

Коллекторный тип двигателя (современные, стиралки автомат с вертикальной загрузкой)


Как правило это коллекторные двигатели без пусковой обмотки, которые не нуждаются и в пусковом конденсаторе, такие двигатели работают и от постоянного тока и от переменного.

Такой двигатель может иметь около 5 — 8 выводов на клемном устройстве, но для работы двигателя вне стиральной машинки, они нам не понадобятся. В первую очередь нужно исключить ненужные контакты тахометра. Сопротивления обмоток тахометра составляет примерно 60 — 70 Ом.

Также могут быть выведены и выводы термозащиты, которые встречаются редко, но они нам так же не понадобятся, это как правило нормально замкнутый или разомкнутый контакт с «нулевым» сопротивлением.

Дальше подключаем напряжение к одному из выводов обмотки. Второй ее вывод соединяют с
первой щеткой. Вторая щетка подключается к оставшемуся 220-вольтовому проводу. Двигатель должен заработать и вращаться в одну сторону.


Чтобы изменить направление движения двигателя, подключение щеток следует поменять местами: теперь первая будет включена в сеть, а вторая соединена с выходом обмотки.

Такой двигатель можно проверить автомобильным аккумулятором на 12 вольт, не боясь при этом «спалить» его из за того что неправильно подключили, спокойно можно и
«поэкспериментировать» и с реверсом и посмотреть как двигатель работает на малых оборотах от низкого напряжения.

Подключая к напряжению 220 вольт, имейте в виду что двигатель резко запустится с рывком,
поэтому лучше его закрепить неподвижно чтоб он не повредил и не замкнул провода.

О том как подключить трехфазные асинхронные двигатели к обычной бытовой сети 220 вольт, довольно подробно можно узнать в статье — «Подключение трехфазного двигателя»

Регулятор оборотов


Если возникает необходимость регулирования количества оборотов, можно воспользоваться
бытовым регулятором освещения (диммером).Но для этой цели нужно подбирать такой диммер который по мощности будет с запасом больше мощности двигателя, или же потребуется доработка, можно из той же стиральной машинки извлечь симистор с радиатором и впаять его на место маломощной детали в конструкции регулятора освещения. Но здесь уже нужно иметь навыки работы с электроникой.

Если же вам удастся найти специальны диммер для подобных электродвигателей то это будет
самым простым решением. Как правило их можно подыскать в точках продажа систем вентиляции и используются они для регулировки оборотов двигателей приточных и вытяжных систем вентиляции.

Коллекторный двигатель постоянного тока 220в

Коллекторные электродвигатели довольно распространены в быту и на производстве. Они используются для привода различных механизмов, электроинструмента, в автомобилях. Отчасти популярность обусловлена простой регулировкой оборотов ротора, но есть и некоторые ограничения их применения и конечно же недостатки. Давайте разберемся что такое коллекторный двигатель постоянного тока (КДПТ), какие бывают разновидности данного вида электродвигателей и где они используются.

Определение и устройство

В справочниках и энциклопедиях приводят, такое определение:

«Коллекторным называется электродвигатель, у которого датчиком положения вала и переключателем обмоток является одно и то же устройство – коллектор. Такие двигатели могут работать либо только на постоянном токе, либо и на постоянном, и на переменном.»

Коллекторный электродвигатель, как и любой другой, состоит из ротора и статора. В этом случае ротор – является якорем. Напомним, что якорем называется та часть электрической машины, которая потребляет основной ток, и в которой индуцируется электродвижущая сила.

Для чего нужен и как устроен коллектор? Коллектор расположен на валу (роторе), и представляет собой набор продольно расположенных пластин, изолированных от вала и друг от друга. Их называют ламелями. К ламелям подключаются отводы секций обмоток якоря (устройство якорной обмотки КДПТ вы видите на группе рисунков ниже), а точнее к каждой из них подключен конец предыдущей и начало следующей секции обмотки.

Ток к обмоткам подаётся через щетки. Щётки образуют скользящий контакт и во время вращения вала соприкасаются то с одной, то с другой ламелью. Таким образом происходит переключение обмоток якоря, для этого и нужен коллектор.

Щеточный узел состоит из кронштейна с щеткодержателями, непосредственно в них и устанавливаются графитовые или металлографитовые щетки. Для обеспечения хорошего контакта щетки прижимаются к коллектору пружинами.

На статоре устанавливаются постоянные магниты или электромагниты (обмотка возбуждения), которые создают магнитное поле статора. В литературе по электрическим машинам вместо слова «статор» чаще используют термины «магнитная система» или «индуктор». На рисунке ниже изображена конструкция ДПТ в разных проекциях. Теперь же давайте разберемся как работает коллекторный двигатель постоянного тока!

Принцип действия

Когда ток протекает через обмотку якоря, возникает магнитное поле, направление которого можно определить с помощью правила буравчика. Постоянное магнитное поле статора взаимодействует с полем якоря, и он начинает вращаться благодаря тому, что одноименные полюса отталкиваются, притягиваясь к разноимённым. Что отлично иллюстрирует рисунок ниже.

При переходе щеток на другие ламели ток начинает протекать в обратную сторону (если рассматривать приведенный выше пример), магнитные полюса меняются местами и процесс повторяется.

В современных коллекторных машинах не используется двухполюсная конструкция из-за неравномерности вращения, в момент переключения направления тока силы, действующие на якорь, будут минимальны. А если включить двигатель, вал которого остановился в этом «переходном» положении — он может и не начать вращаться совсем. Поэтому на коллекторе современного двигателя постоянного тока расположено значительно больше полюсов и секций обмоток, уложенных в пазах шихтованного сердечника, таким образом достигаются оптимальные плавность движения и момент на валу.

Принцип работы коллекторного двигателя простым языком для чайников раскрыт в следующем видеоролике, убедительно рекомендуем ознакомиться.

Виды КДПТ и схемы соединения обмоток

По способу возбуждения коллекторные двигатели постоянного тока различают двух типов:

  1. С постоянными магнитами (маломощные двигатели мощностью десятки и сотни Ватт).
  2. С электромагнитами (мощные машины, например, на грузоподъёмных механизмах и станках).

Различают такие типы КДПТ по способу соединения обмоток:

  • Последовательного возбуждения (в старой отечественной литературе и от старых электриков можно услышать название «Сериесные», от англ. Serial). Здесь обмотка возбуждения подключена последовательно с обмоткой якоря. Высокий пусковой момент – преимущество такой схемы, а её недостаток – падение частоты вращения с увеличением нагрузки на валу (мягкая механическая характеристика), и то что двигатель идёт вразнос (неконтролируемый рост оборотов с последующим повреждением опорных подшипников и якоря) если работают на холостом ходу или с нагрузкой на валу в меньше 20-30% от номинальной.
  • Параллельного (также называют «шунтовые»). Соответственно обмотка возбуждения подключена параллельно обмотке якоря. На низких оборотах на валу высокий момент и стабилен в относительно широком диапазоне оборотов, а с увеличением оборотов он уменьшается. Преимущество — стабильные обороты в широком диапазоне нагрузки на валу (ограничивается его мощностью), а недостаток – при обрыве в цепи возбуждения может пойти вразнос.
  • Назависимого. Обмотки возбуждения и якоря питаются от разных источников. Такое решение позволяет точнее регулировать обороты вала. Особенности работы похожи на ДПТ с параллельным возбуждением.
  • Смешанного. Часть обмотки возбуждения подключена параллельно, а часть последовательно с якорем. Совмещают достоинства последовательного и параллельного типов.

Условное графическое обозначение на схеме вы видите ниже.

В иностранной и современной отечественной литературе, а также на схемах можно встретить и другое представление УГО для КДПТ, как было приведено на предыдущем рисунке в виде круга с двумя квадратами, где круг обозначает якорь, а два квадрата – щетки.

Схема подключения и реверс

Схема соединения обмоток статора и ротора определяется при изготовлении, и, в зависимости от того, где применяется конкретный двигатель, нужно выбирать соответствующее решение. В определенных режимах работы (тормозной режим, например) схемы включения обмоток могут изменяться или вводиться дополнительные элементы.

Включают маломощные коллекторные двигатели постоянного тока с помощью: полупроводниковых ключей (транзисторов), тумблеров или кнопок, специализированных микросхем-драйверов или с помощью маломощных реле. Крупные мощные машины подключаются к сети постоянного тока через двухполюсные контакторы.

Ниже вы видите реверсивную схему подключения двигателя постоянного тока к сети 220В. На практике, на производстве схема будет аналогичной, но диодного моста в ней не будет, поскольку все линии для подключения таких двигателей прокладываются от тяговых подстанций, где переменный ток выпрямляется.

Реверс осуществляется путем смены полярности на обмотке возбуждения или на якоре. Изменить полярность и там, и там нельзя, поскольку направление вращения вала не изменится, как это происходит с универсальными коллекторными двигателями при работе на переменном токе.

Для плавного пуска двигателя в цепь питания обмотки якоря или обмотки якоря и обмотки возбуждения (в зависимости от схемы их соединения) вводят регулировочное устройство, например, реостат, таким же образом регулируют и частоту вращения вала, но вместо реостата чаще используют набор постоянных резисторов, подключаемых с помощью набора контакторов.

В современных приложениях частота оборотов изменяется с помощью широтно-импульсной модуляции (ШИМ) и полупроводникового ключа, именно так это и сделано в аккумуляторном электроинструменте (шуруповёрт, например). КПД такого способа значительно выше.

Сфера применения

Коллекторные двигатели постоянного тока применяются повсеместно как в быту, так и в промышленных устройствах и механизмах, давайте кратко рассмотрим их область применения:

  • В автомобилях используют 12В и 24В коллекторные ДПТ для привода щеток стеклоочистителей (дворников), в стеклоподъёмниках, для запуска двигателя (стартер — это коллекторный двигатель постоянного тока последовательного или смешанного возбуждения) и приводах другого назначения.
  • В грузоподъёмных механизмах (краны, лифты и пр.) используются КДПТ, которые работают от сети постоянного тока с напряжением 220В или любым другим доступным напряжением.
  • В детских игрушках и радиоуправляемых моделях малой мощности используются КДПТ с трёхполюсным ротором и постоянными магнитами на статоре.
  • В ручном аккумуляторном электроинструменте — разнообразные дрели, болгарки, электроотвертки и т.д.

Отметим, что в современный дорогой электроинструмент устанавливают не коллекторные, а бесколлекторные электродвигатели.

Достоинства и недостатки

Разберем плюсы и минусы коллекторного двигателя постоянного тока. Преимущества:

  1. Соотношение размеров к мощности (массогабаритные показатели).
  2. Простота регулировки оборотов и реализации плавного пуска.
  3. Пусковой момент.

Недостатки у КДПТ следующие:

  1. Износ щеток. Высоконагруженные двигатели, которые регулярно эксплуатируются, требуют регулярного осмотра, замены щеток и обслуживания коллекторного узла.
  2. Коллектор изнашивается из-за трения щеток.
  3. Возможно искрение щеток, что ограничивает применение в опасных местах (тогда используют КДПТ взрывозащищенного исполнения).
  4. Из-за постоянного переключения обмоток этот тип двигателей постоянного тока вносит помехи и искажения в питающие цепи или электросеть, что приводит к сбоям и проблемам в работе других элементов схемы (особенно актуально для электронных схем).
  5. У ДПТ на постоянных магнитах магнитные силы со временем ослабевают (размагничиваются) и эффективность двигателя снижается.

Вот мы и рассмотрели, что такое коллекторный двигатель постоянного тока, как он устроен и какой у него принцип действия. Если остались вопросы, задавайте их в комментариях под статьей!

Преобразование электрического тока в механическое движение (вращение) осуществляется электромеханическим преобразователем энергии — электрической машиной. Принцип работы, которой, основан на явлениях электромагнитной индукции и силы Ампера, действующей на проводник с током, движущийся в магнитном поле.

Электрические машины делятся по видам преобразования энергии:

• Генератор — преобразует механическую энергию в электрическую и тепло;
• Электрический двигатель — преобразует электрическую энергию в механическую работу и тепло;
• Электромеханический преобразователь (трансформатор) — преобразуют электрическую энергию одного вида в электрическую энергию другого вида, отличающуюся по напряжению, частоте и другим параметрам;
• Электромагнитный тормоз — механическая и электрическая энергии преобразуются в тепло.

В большинстве случаев электрическая машина состоит из двух элементов рис. 1;
• Ротор (якорь) — вращающаяся часть, состоит из обмотки якоря и коллекторного узла;
• Статор — неподвижная часть, состоит из источника магнитного поля. Постоянный магнит или электромагнит.

Между ротором и статором присутствует воздушный зазор, который служит их разделителем.

Электрические машины делятся на:

КоллекторныеБесколлекторные
Постоянного токаСинхронные
УниверсальныеАсинхронные

Коллекторный двигатель постоянного тока

Коллекторный электродвигатель — электрическая машина, в которой датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Щеточно-коллекторный узел — обеспечивает электрическое соединение цепи ротора с цепями, расположенными в неподвижной части двигателя. Состоит из коллектора (набора контактов, расположенных на роторе) и щёток (скользящих контактов, расположенных вне ротора и прижатых к коллектору), рис. 2.

Обычно в маломощных моторах всего два полюса обмотки возбуждения (одна пара) и трехзубцовый якорь. Три зуба это минимум для запуска из любого положения, но чем больше зубцов тем более эффективно используется обмотка, меньше токи и более плавный момент, т.к сила является проекцией на угол, а активный участок обмотки проворачивается на меньший угол.

В коллекторном электродвигателе щёточно-коллекторный узел одновременно выполняет две функции:
• является датчиком углового положения ротора (датчик угла) со скользящими контактами;
• переключателем направления тока со скользящими контактами в обмотках ротора в зависимости от углового положения ротора.

Щеточно-коллекторный узел является сам ненадежным элементом электрических машин, поскольку скользящие контакты интенсивно изнашиваются от трения.

Электродвигатели характеризуют два основных параметра — это скорость вращения вала (ротора) и момент вращения, развиваемый на валу. В общем плане оба этих параметра зависят от напряжения, подаваемого на двигатель и тока в его обмотках.

Принцип работы коллекторного двигателя постоянного тока.

Прямоугольная рамка (ротор), свободно вращающаяся вокруг своей оси, помещена между постоянными магнитами. Если через рамку пропустить ток, то на обе ее стороны начнут действовать электродинамические силы. Действие этих сил, приводит рамку в движение. Рамка будет двигаться до тех пор, пока не достигнет положения, когда щетки попадут на диэлектрический зазор между пластинами коллектора. Рамка по инерции проскочит это положение, направление тока в рамке поменяется на противоположное, но силы действующие на рамку не поменяют своего направления, и она продолжит свое вращение в том-же направлении.

Разновидности коллекторных двигателей постоянного тока :

Малой мощности (единицы Ватт), рабочее напряжение 3-9 В:
• трёхполюсной ротор на подшипниках скольжения;
• коллекторный узел из двух щёток — медных пластин;
• двухполюсной статор из постоянных магнитов.

Более мощные (десятки Ватт), рабочее напряжение 12–24 В:
• многополюсный ротор на подшипниках качения;
• коллекторный узел из двух или четырёх графитовых щёток;
• четырёхполюсный статор из постоянных магнитов.

Высокой мощности (сотни Ватт):
• Четырех полюсный статор из электромагнитов.

Подключение обмотки статора

Обмотки статора могут подключаться несколькими способами:

1. Последовательно с ротором (так называемое последовательное возбуждение, см. рис. 4

Преимущество: большой максимальный момент;

Недостаток: большие обороты холостого хода, способные повредить двигатель.

2. Параллельно с ротором (параллельное возбуждение), см. рис. 5

Преимущество: большая стабильность оборотов при изменении нагрузки;

Недостаток: меньший максимальный момент.

3. Часть обмоток параллельно с ротором, часть последовательно (смешанное возбуждение), см. рис. 6.

До некоторой степени совмещает достоинства предыдущих типов.

4. Отдельным источником питания (независимое возбуждение), см. рис. 7.

Общие достоинства коллекторных двигателей постоянного тока — простота изготовления, эксплуатации и ремонта, достаточно большой ресурс.
К недостаткам можно отнести то, что эффективные конструкции (с большим КПД и малой массой) таких двигателей являются низкомоментыми и быстроходными (сотни и тысячи оборотов в минуту), поэтому для большинства приводов (кроме вентиляторов и насосов) необходимы редукторы.

Управление коллекторными двигателями постоянного тока.

Для работы двигателя достаточно подать на него напряжения питания постоянного тока. Проблемы начинают возникать, когда появляется необходимость в регулировке скорости вращения вала такого двигателя. Нужно учитывать, что при вращении на малых скоростях, крутящий момент на валу будет то же мал. Если требуются низкие скорости вращения, то применяются редуктора.

В коллекторных двигателях постоянного тока ярко выражен пусковой ток, который превышает номинальный в несколько раз (10-40 раз). Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров — напряжения питания и сопротивления якорной обмотки, (8).

Ioя — ток обмотки якоря;
U — напряжение питающей сети;
∑r — сопротивление обмоток якоря;

Как только двигатель начнет движение, то возникает противоЭДС — Епр. Обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость, формула 9.

Снижение пускового тока можно добится уменьшением напряжения питания или повышением сопротивления обмотки якоря. Для повышения сопротивления обмотки якоря применяется ввод дополнительного сопротивления Rд, формула (10).

Таким образом, можно добиться величины пускового тока, в нужном диапазоне, безопасном для двигателя. Добавочное сопротивление может быть как в виде реостата, так и в виде нескольких резисторов. Это нужно для того, чтобы в процессе запуска двигателя, менять сопротивление в якорной цепи.

Епр — противоэдс, зависит от конструкции двигателя, и оборотов, формула 11.

Ce — одна из конструктивных констант. Они зависят от конструкции двигателя, числа полюсов, количества витков, толщин зазоров между якорем и статором. Нам она не особо нужна, при желании ее можно вычислить экспериментально. Главное, что она константа и на форму кривых не влияет.
Ф — поток возбуждения. т.е. сила магнитного поля статора. В моторах, где она задается постоянным магнитом это тоже константа, а в двигателях с обмоткой возбуждения, этот параметр можно менять.
n — обороты якоря.

Зависимость момента M от тока и потока, формула 12.

См — конструктивная константа.

Вот тут стоит обратить внимание, что зависимость момента от тока совершенно прямая. Т.е. просто замеряя ток, при неизменном потоке возбуждения, мы можем совершенно точно узнать величину момента.

Импульсный способ управления.

Следующий метод управления, как более перспективный, основан на применении широтно-импульсной модуляции (ШИМ). Он, действительно, самый распространенный. К двигателю подводятся импульсы неизменного по амплитуде напряжения управления U у.ном, в результате чего его работа состоит из чередующихся периодов разгона и торможения, рис 14. Если эти периоды малы по сравнению с полным временем разгона и остановки ротора, то угловая скорость ротора не успевает к концу каждого периода достигать установившихся значений и установится некоторая средняя угловая скорость. Значение при неизменных моменте нагрузки и напряжении возбуждения однозначно определяется относительной продолжительностью импульсов ε

tи — длительность импульса;
Ти — период.

С увеличением относительной продолжительности импульсов угловая скорость ротора растет (ωср>ωср).В период паузы tп ротор обязательно должен тормозиться. Если это условие не будет выполняться, то угловая скорость ротора при любом значении ω будет непрерывно увеличиваться, пока не достигнет значения угловой скорости х.х., так как во время импульса угловая скорость будет возрастать, а во время паузы — оставаться практически неизменной.
С ростом частоты управляющих импульсов амплитуда колебаний скорости уменьшается; среднее значение угловой скорости остается при этом неизменным.

Колле́кторный электродви́гатель — электрическая машина, в которой датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Содержание

Разновидности [ править | править код ]

Коллекторный электродвигатель постоянного тока [ править | править код ]

Самые маленькие двигатели данного типа (единицы Ватт) содержат в корпусе:

  • трёхполюсной ротор на подшипниках скольжения;
  • коллекторный узел из 2-х щёток, контактируемые с 3-мя медными пластинами;
  • двухполюсной статор из постоянных магнитов.

Применяются, в основном, в детских игрушках, плейерах, фенах, электробритвах, аккумуляторных отвёртках и т.п. (рабочее напряжение 3-9 вольт).

Более мощные двигатели (десятки Ватт), как правило, имеют

  • многополюсный ротор на подшипниках качения;
  • коллекторный узел из четырёх графитовых щёток;
  • четырёхполюсный статор из постоянных магнитов.

Именно такой конструкции большинство электродвигателей в современных автомобилях (рабочее напряжение 12 или 24 Вольт): привод вентиляторов систем охлаждения и вентиляции, «дворников», насосов омывателей.

Способы возбуждения коллекторных двигателей [ править | править код ]

Двигатели мощностью в сотни Ватт, в отличие от предыдущих, содержат четырёхполюсный статор из электромагнитов. Свойства электродвигателей во многом объясняется способом, которым обмотки статора могут подключаться относительно якоря:

  • последовательно с якорем (так называемое последовательное возбуждение),
  • параллельно с якорем (параллельное возбуждение)
  • отдельным источником питания (независимое возбуждение)
  • часть обмоток параллельно с якорем , часть последовательно (смешанное возбуждение)

Электродвигатель постоянного тока с независимым возбуждением [ править | править код ]

В этом электродвигателе обмотка якоря подключена к основному источнику постоянного тока (сети постоянного тока, генератору или выпрямителю), а обмотка возбуждения — к вспомогательному источнику. В цепь обмотки возбуждения включен регулировочный реостат, а в цепь обмотки якоря — пусковой реостат. Регулировочный реостат служит для регулирования частоты вращения якоря двигателя, а пусковой — для ограничения тока в обмотке якоря при пуске. Характерной особенностью электродвигателя является то, что его ток возбуждения не зависит от тока в обмотке якоря (тока нагрузки). Поэтому можно приближенно считать, что и магнитный поток двигателя не зависит от нагрузки. Зависимости момента и частоты вращения от тока будут линейными: момент прямо пропорционален току нагрузки и линейно снижается с ростом частоты вращения. В цепь обмотки возбуждения никаких выключателей и предохранителей не устанавливают, так как при разрыве этой цепи резко уменьшается магнитный поток электродвигателя, и возникает аварийный режим. Если электродвигатель работает при холостом ходе или небольшой нагрузке на валу, то частота вращения резко возрастает (двигатель идет вразнос). При этом сильно увеличивается ток в обмотке якоря и может возникнуть круговой огонь. Во избежание этого защита должна отключить электродвигатель от источника питания. Резкое увеличение частоты вращения при обрыве цепи обмотки возбуждения объясняется тем, что в этом случае резко уменьшаются магнитный поток, э. д. с., и возрастает ток. А так как приложенное напряжение остается неизменным, то частота вращения будет увеличиваться до тех пор, пока э. д. с. не достигнет значения, приблизительно равного напряжению питания, что необходимо для равновесного состояния электрической цепи якоря. При нагрузке на валу, близкой к номинальной, электродвигатель в случае разрыва цепи возбуждения остановится, так как электромагнитный момент, который может развить двигатель при значительном уменьшении магнитного потока, уменьшается и станет меньше нагрузочного момента на валу. В этом случае так же резко увеличивается ток, обмотка может выйти из строя из-за перегрева.

Электродвигатель постоянного тока с параллельным возбуждением [ править | править код ]

Здесь обмотки возбуждения и якоря питаются от одного и того же источника электрической энергии с напряжением. В цепь обмотки возбуждения включен регулировочный реостат, а в цепь обмотки якоря — пусковой реостат. В рассматриваемом электродвигателе имеет место, по существу, раздельное питание цепей обмоток якоря и возбуждения, вследствие чего ток возбуждения не зависит от тока обмотки якоря. Поэтому электродвигатель с параллельным возбуждением будет иметь такие же характеристики, как и двигатель с независимым возбуждением. Однако двигатель с параллельным возбуждением работает нормально только при питании от источника постоянного тока с неизменным напряжением.

Электродвигатель постоянного тока с последовательным возбуждением [ править | править код ]

Обмотка возбуждения включена последовательно с якорем. Для ограничения тока при пуске в цепь обмотки якоря может быть включен пусковой реостат, а для регулирования частоты вращения параллельно обмотке возбуждения может быть включен регулировочный реостат. Характерной особенностью этого электродвигателя является то, что его ток возбуждения равен или пропорционален (при включении реостата) току обмотки якоря, поэтому магнитный поток зависит от нагрузки двигателя. При токе обмотки якоря, меньшем 0,8—0,9 номинального тока, магнитная система машины не насыщена, и можно считать, что магнитный поток изменяется прямо пропорционально току. Поэтому скоростная характеристика электродвигателя будет мягкая — с увеличением тока частота вращения будет резко уменьшаться. Уменьшение частоты вращения, происходит из-за увеличения падения напряжения во внутреннем сопротивлении цепи обмотки якоря, а также из-за увеличения магнитного потока. Электромагнитный момент при увеличении тока будет резко возрастать, так как в этом случае увеличивается и магнитный поток, поэтому при токе, меньшем 0,8-0,9 номинального, скоростная характеристика имеет форму гиперболы, а моментная — параболы.

Если ток больше номинального, зависимости момента и скорости вращения от тока линейны, так как в этом режиме магнитная цепь будет насыщена и магнитный поток при изменении тока меняться не будет.

Механическая характеристика рассматриваемого двигателя мягкая и имеет гиперболический характер. При малых нагрузках магнитный поток сильно уменьшается, частота вращения резко возрастает и может превысить максимально допустимое значение (двигатель идет вразнос). Поэтому такие двигатели нельзя применять для привода механизмов, работающих в режиме холостого хода и при небольшой нагрузке (различные станки, транспортеры и пр.).

Обычно минимально допустимая нагрузка для двигателей большой и средней мощности составляет 0,2 …. 0,25 номинальной. Чтобы предотвратить возможность работы двигателя без нагрузки, его соединяют с приводным механизмом жестко (зубчатой передачей или глухой муфтой), применение ременной передачи или фрикционной муфты недопустимо, т.к. при обрыве ремня двигатель может выйти из строя.

Несмотря на указанный недостаток, двигатели с последовательным возбуждением широко применяют, особенно там, где имеют место изменения нагрузочного момента в широких пределах и тяжелые условия пуска: во всех тяговых приводах (электровозы, тепловозы, электропоезда, электрокары, электропогрузчики и пр.), а также в приводах грузоподъемных механизмов (краны, лифты и пр.).

Объясняется это тем, что при мягкой характеристике увеличение нагрузочного момента приводит к меньшему возрастанию тока и потребляемой мощности, чем у двигателей с независимым и параллельным возбуждением, поэтому двигатели с последовательным возбуждением лучше переносят перегрузки. Кроме того, эти двигатели имеют больший пусковой момент, чем двигатели с параллельным и независимым возбуждением, так как при увеличении тока обмотки якоря при пуске соответственно увеличивается и магнитный поток.

Электродвигатель постоянного тока со смешанным возбуждением [ править | править код ]

В этом электродвигателе магнитный поток создается в результате совместного действия двух обмоток возбуждения — параллельной (или независимой) и последовательной.

Механическая характеристика электродвигателя со смешанным возбуждением располагается между характеристиками двигателей с параллельным и последовательным возбуждением. Достоинством двигателя постоянного тока со смешанным возбуждением является то, что он, обладая мягкой механической характеристикой, может работать при холостом ходе. В этом режиме частота вращения его якоря определяется магнитным потоком параллельной обмотки и имеет ограниченное значение (двигатель не идет вразнос) [1] .

Общие достоинства коллекторных двигателей постоянного тока — простота изготовления, эксплуатации и ремонта, достаточно большой ресурс.

К недостаткам можно отнести то, что эффективные конструкции (с большим КПД и малой массой) таких двигателей являются низкомоментыми и быстроходными (сотни и тысячи оборотов в минуту), поэтому для большинства приводов (кроме вентиляторов и насосов) необходимы редукторы. Это утверждение не вполне верно, но обоснованно. Электрическая машина, построенная на низкую скорость, вообще имеет заниженный КПД и связанные с ним проблемы охлаждения. Скорее всего проблема такова, что изящных решений для неё нет.

Универсальный коллекторный электродвигатель [ править | править код ]

Универсальный коллекторный электродвигатель (УКД) — разновидность коллекторной машины постоянного тока, которая может работать и на постоянном, и на переменном токе [2] . Получил большое распространение в ручном электроинструменте и в некоторых видах бытовой техники из-за малых размеров, малого веса, лёгкости регулирования оборотов, относительно низкой цены. Широко использовался на железных дорогах Европы и США как тяговый электродвигатель.

Особенности конструкции [ править | править код ]

Строго говоря, универсальный коллекторный электродвигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети. Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону. На самом деле там есть небольшой фазовый сдвиг, обуславливающий появление противонаправленного момента, но он невелик, симметрирование обмоток не только улучшает условия коммутации, но и уменьшает этот момент. (М. П. Костенко, «Электрические машины»). Для нужд железных дорог строились специальные подстанции переменного тока низкой частоты — 16 Гц в Европе, в США же частота 25 Гц была одной из стандартных (наряду с 60 Гц) до 50-х годов XX века. В 50-х годах XX века германо-французскому консорциуму производителей электрических машин удалось построить однофазную тяговую машину промышленной частоты (50 Гц). По данным М. П. Костенко «Электрические машины», электровоз с однофазными коллекторными машинами на 50 Гц испытывался в СССР, где получил восторженно-отрицательную оценку специалистов. [ источник не указан 2411 дней ] .

Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин. Подмножеством коллекторных машин переменного тока (КМПТ) являются машины «пульсирующего тока», полученного путём выпрямления тока однофазной цепи без сглаживания пульсаций (железная дорога).

Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3-5 от номинального (против 5-10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.

Сложной проблемой является вопрос коммутации мощной коллекторной машины переменного тока. В момент коммутации (прохождение секцией нейтрали) сцепленное с секцией якоря (ротора) магнитное поле меняет своё направление на противоположное, что вызывает генерацию в секции так называемой реактивной ЭДС. Так обстоит дело в случае с постоянным током. В КМПТ реактивная ЭДС также имеет место. Но так как якорь (ротор) находится в пульсирующем во времени магнитном поле статора, в коммутируемой секции дополнительно имеет место ещё и трансформаторная ЭДС. Её амплитуда будет максимальна в момент пуска машины, пропорционально снижаться по мере приближения к скорости синхронизма (в точке синхронизма она обратится в нуль) и далее по мере разгона машины вновь будет пропорционально возрастать. Проблема коммутации КМПТ может быть решена следующим образом:

  • Стремление при проектировании к одновитковой секции (уменьшение потока сцепления).
  • Увеличение активного сопротивления секции. Наиболее перспективными по данным М. П. Костенко являются резисторы в «петушках» коллекторых пластин, где они хорошо охлаждаются.
  • Активная подшлифовка коллектора щётками максимальной твёрдости (высокий износ) подгорающего коллектора из-за тяжелых условий коммутации; и максимально возможного сопротивления как средство гашения реактивной и трансформаторной ЭДС коммутируемой секции.
  • Использование добавочных полюсов с последовательными обмотками для компенсации реактивной ЭДС и параллельной — для компенсации трансформаторной ЭДС. Но так как величина трансформаторной ЭДС представляет собой функцию от угловой скорости (якоря) ротора и тока намагничивания машины, то такие обмотки нуждаются в системе подчинённого регулирования, не разработанной по сегодняшний день.
  • Применение питающих цепей низкой частоты. Популярные частоты 16 и 25 Гц.

Реверсирование УКД осуществляется переключением полярности включения обмоток только статора или только ротора.

Достоинства и недостатки [ править | править код ]

Сравнение приведено для случая подключения к бытовой однофазной электрической сети 220 вольт 50 Гц. и одинаковой мощности двигателей. Разница в механических характеристиках двигателей («мягкость-жёсткость», максимальный момент) может быть как достоинством, так и недостатком в зависимости от требований к приводу.

Сравнение с коллекторным двигателем постоянного тока [ править | править код ]
  • Прямое включение в сеть, без дополнительных компонентов (для двигателя постоянного тока требуется, как минимум, выпрямление).
  • Меньший пусковой (перегрузочный) ток (и момент), что предпочтительнее для бытовых устройств.
  • Проще управляющая схема (при её наличии) — тиристор (или симистор) и реостат. При выходе из строя электронного компонента двигатель (устройство) остаётся работоспособным, но включается сразу на полную мощность.
  • Меньший общий КПД из-за потерь на индуктивность и перемагничивание статора.
  • Меньший максимальный момент (может быть недостатком).
Сравнение с асинхронным двигателем [ править | править код ]
  • Быстроходность и отсутствие привязки к частоте сети.
  • Компактность (даже с учётом редуктора).
  • Больший пусковой момент.
  • Автоматическое пропорциональное снижение оборотов (практически до нуля) и увеличение момента при увеличении нагрузки (при неизменном напряжении питания) — «мягкая» характеристика.
  • Возможность плавного регулирования оборотов (момента) в очень широком диапазоне — от ноля до номинального значения — изменением питающего напряжения.
  • Нестабильность оборотов при изменении нагрузки (где это имеет значение).
  • Наличие щёточно-коллекторного узла и в связи с этим:
  • Относительно малая надёжность (срок службы: тяжёлые условия коммутации обуславливают использование максимально твердых щёток, что снижает ресурс).
  • Сильное искрение на коллекторе из-за коммутации переменного тока и связанные с этим радиопомехи.
  • Высокий уровень шума.
  • Относительно большое число деталей коллектора (и, соответственно, двигателя).

Следует отметить, что в современных бытовых устройствах ресурс электродвигателя (щёточно-коллекторного узла) сопоставим с ресурсом рабочих органов и механических передач.

Двигатели (УКД и асинхронный) одной и той же мощности, независимо от номинальной частоты асинхронного двигателя, имеют разную механическую характеристику:

  • УКД — «мягкая» характеристика, момент прямо, а обороты обратно пропорциональны нагрузке на валу (потребляемой мощности) — практически линейно — от режима холостого хода до режима полного торможения. Номинальный момент выбирается примерно в 3-5 раз меньшим максимального. Обороты холостого хода ограничиваются только потерями в двигателе и могут разрушить мощный двигатель при включении его без нагрузки.
  • Асинхронный двигатель — «вентиляторная» характеристика — двигатель поддерживает близкую к номинальной частоту вращения, резко (десятки процентов) увеличивая момент при незначительном повышении нагрузки на валу и снижении оборотов (единицы процентов). При значительном снижении оборотов (до точки критического момента) момент двигателя не только не растёт, а падает до нуля, что вызывает полную остановку. Обороты холостого хода постоянны и слегка превышают номинальные.
  • Однофазный асинхронный двигатель предлагает дополнительный «букет» проблем, связанных с запуском, так как в нормальных условиях пускового момента не развивает. Пульсирующее во времени магнитное поле однофазного статора математически разлагается на два противофазных поля, делающих невозможным пуск без различных ухищрений:
  • расщепление фазы
  • создающая искусственную фазу ёмкость
  • создающую искусственную фазу активное сопротивление

Вращающееся в противофазе поле теоретически снижает максимальный КПД однофазного асинхронного двигателя до 50-60 % из-за потерь в перенасыщенной магнитной системе и активных потерь в обмотках, которые нагружаются токами «противополя». Фактически, на одном валу «сидят» две электрические машины, одна из которых работает в двигательном режиме, а вторая — в режиме противовключения.

Механическая характеристика в первую очередь и обуславливает (разные) области применения данных типов двигателей.

Из-за малых оборотов, ограниченных частотой сети переменного тока, асинхронные двигатели той же мощности имеют значительно бо́льшие вес и размеры, чем УКД. Если асинхронный двигатель запитывается от преобразователя (инвертора) с высокой частотой, то вес и размеры обеих машин становятся соизмеримы. При этом остаётся жёсткость механической характеристики, добавляются потери на преобразование тока и, как следствие увеличения частоты, повышаются индуктивные и магнитные потери (снижается общий КПД).

Аналоги бесколлекторного узла [ править | править код ]

Ближайшим аналогом УКД по механической характеристике является бесколлекторный электродвигатель (вентильный электродвигатель, в котором электронным аналогом щёточно-коллекторного узла является инвертор с датчиком положения ротора (ДПР).

Электронным аналогом универсального коллекторного двигателя является система: выпрямитель (мост), синхронный электродвигатель с датчиком углового положения ротора (датчик угла) и инвертором (другими словами — вентильный электродвигатель с выпрямителем).

Однако из-за применения постоянных магнитов в роторе максимальный момент вентильного двигателя при тех же габаритах будет меньше.

Асинхронный двигатель схема подключения на 220

Для того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.

Принцип действия

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

Двухфазный синхронный электродвигатель

Расположим на статоре две обмотки под углом в 90 градусов, то есть взаимно перпендикулярно. Подадим в них синусоидальный переменный ток. Фазы токов сдвинем на 90 градусов. Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Суммарный вектор будет вращаться подобно часовой стрелке, делая один полный оборот за период частоты переменного тока.

У нас получился двухфазный синхронный электродвигатель. Откуда взять токи, сдвинутые по фазе для питания обмоток? Наверное, не всем известно, что вначале распределительные сети переменного тока были двухфазными. И лишь позднее, не без борьбы, уступили место трехфазным. Если бы не уступили, то наш двухфазный электромотор можно было подключить напрямую к двум фазам.

Но победили трехфазные сети, для которых были разработаны трехфазные электродвигатели. А двухфазные электромоторы нашли свое применение в однофазных сетях в виде конденсаторных двигателей.

Трехфазный синхронный двигатель

Современные распределительные сети переменного тока выполнены по трехфазной схеме.

  • По сети передаются сразу три синусоиды со сдвигом фаз на треть периода или на 120 градусов относительно друг друга.
  • Трехфазный двигатель отличается от двухфазного тем, что у него не две, а три обмотки на статоре, повернутых на 120 градусов.
  • Три катушки, подключенные к трем фазам, создают в сумме вращающееся магнитное поле, которое поворачивает ротор.

Трехфазный асинхронный двигатель

Ток в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.

  1. В момент старта ротор неподвижен, а поле статора вращается.
  2. Поле в контуре ротора меняется, наводя электрический ток.
  3. Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
  4. В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
  5. Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.

У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.

Однофазный асинхронный электродвигатель

Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.

На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.

Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.

Попутный вектор будет тянуть ротор за собой, встречный — тормозить.

Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.

Схема включения

Возможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.

В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.

При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.

Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.

Подсоединение к однофазной сети

Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.

Подключение на 220 вольт

В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Для получения сдвига фаз между обмотками включается рабочий конденсатор, поэтому двухфазные двигатели называют еще конденсаторными.

Емкость рабочего конденсатора рассчитывается по формулам для номинального рабочего режима. Но при отличии режима от номинального, например, при пуске баланс обмоток нарушается. Для обеспечения пускового режима на время старта и разгона параллельно рабочему подключается дополнительный пусковой конденсатор, который должен отключаться при выходе на номинальные обороты.

Как включить однофазный асинхронный двигатель

Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

Как подключить асинхронный двигатель, рассчитанный на 220 вольт? Такой вопрос может возникнуть, если электромотор, изначально установленный и работавший в одном из устройств бытовой техники планируется использовать “не по назначению”. Например, сделать самодельный заточной станок.

Так, бывает очень часто. Асинхронные однофазные двигатели способны надолго “пережить” срок эксплуатации тех устройств, в которые они были первоначально установлены.

Что делать, когда бытовая техника по тем или иным причинам вышла из строя? Выкидывать её вместе с вполне исправным мотором или сдавать его как лом на откуп местным барыгам? Ни тот ни другой вариант нормального человека, имеющего голову и руки, растущие из нужного места, не может устроить.

Можно и нужно дать такому электромотору “вторую жизнь”, а для этого нужно в том числе знать, как подключить асинхронный двигатель на 220 вольт.

Как подключить однофазный асинхронный двигатель

Об особенностях асинхронного электродвигателя и его отличиях от коллекторного электродвигателя подробно рассказывалось в предыдущей статье, но сейчас нас интересует практическое применение этих знаний и здесь неискушенного в электромеханике потребителя могут ждать самые неожиданные “засады”.

Возможные схемы подключения однофазного асинхронного электродвигателя

На самом деле, собственно подключение такого движка в любом случае несложно. Вот возможные варианты подключения:

  • Схема с четырьмя выводами. Каждая из катушек имеет два вывода. У рабочей обмотки сопротивление меньше.
  • Схема с тремя выводами. На самом деле, обмоток, как и в предыдущем случае две, только один из проводов каждой, соединен с проводом другой, т. е. обмотки соединены последовательно.

Обязательные условия для начала вращения однофазного асинхронного двигателя

Чтобы ротор начал крутится должны быть выполнены несколько условий:

  1. Для начала движения одной пары полюсов, недостаточно. Обязательно нужна ещё, хотя бы одна, статорная обмотка.
  2. Полюса должны быть пространственно смещены относительно друг друга на 90°. Действительно, это оптимальное положение для начала движения тяжело нагруженного вала, но вместе с тем по мере увеличения оборотов такое расположение катушек негативно сказываться на характеристиках электромотора.
  3. Полюса должны быть смещены не только пространственно, но и временно т. е. каждый из периодов переменного напряжения, протекающего в одной из катушек, должен отставать, от периода переменного напряжения, единовременно протекающего в другой.

Внимательный читатель увидит в этих требованиях явное противоречие. Как же так, ведь фаза всего одна?

С технической точки зрения электромеханики, этот “недостаток” легко устраним, но некоторое противоречие в вышеизложенном словоизлиянии, всё же есть. По сути, здесь правильнее говорить о двух фазах, хотя и полученных от одного источника.

Как заставить ротор однофазного электродвигателя вращаться

Стадия строганья с места одно из слабых мест, возникающих в процессе работы однофазного асинхронного двигателя. Теоретически, равные по величине, но направленные в противоположные стороны магнитные потоки разнозаряженных полюсов должны уравновешивать друг друга, поэтому хотя обмотка и будет находиться в возбужденном состоянии, вращения не будет.

Так, должно быть, повторяюсь, теоретически, на практике неоднократно приходится сталкиваться с тем что при подаче напряжения на рабочую обмотку двигатель без всякого внешнего воздействия начинал работать.

Зачем нужен рабочий конденсатор

Если двигатель работает на холостом ходу, то в общем то, без разницы, есть какая-то емкость в цепи рабочей катушки или нет, но всё меняется, если к валу ротора приложить нагрузку. Дополнительная ёмкость, до определенного момента, позволит компенсировать принудительную задержку смещения магнитного поля ротора, тем самым увеличив КПД электродвигателя.

При изготовлении самодельной конструкции на КПД электродвигателя в большинстве случаев просто не обращают внимание т. к. максимальная фиксированная нагрузка может быть разной, работа механизма не продолжительной, а затраты на увеличенное потребление электроэнергии не обременительны.

Зачем нужен пусковой конденсатор

Если вы внимательно читали предыдущую главу, то знаете ответ. Для временного сдвига фаз напряжения (тока), единовременно протекающего в двух катушках электродвигателя, но почему используют именно конденсатор, а не другой фазосдвигающий элемент, катушку индуктивности.

Электрический двигатель чаще всего запускается с нагрузкой на валу, иногда значительной. Форма магнитного поля создаваемое обмотками статора в этом случае искажается, приобретает форму эллипса, что приводит к снижению пускового момента. Избежать подобного проседания электротехнических характеристик электродвигателя в этот момент, проще всего с помощью конденсатора.

Параметры конденсаторов для запуска и работы асинхронного двигателя

Ёмкость конденсатора, включенного в цепь рабочей катушки, подбирается из расчёта 4 мкФ на каждые 100 Вт мощности. Ёмкость пускового конденсатора в 2–3 раза больше рабочего. Номинальное напряжение каждого конденсатора 350–600 В.

Информация на шильдике (информационной табличке на корпусе изделия), может быть не полной, но зато в некоторых случаях в ней есть данные о типе и параметрах рекомендуемого рабочего конденсатора.

Подключение однофазного асинхронного электродвигателя к сети

Особенность этого подключения заключается в том, что напряжение на рабочую катушку после включения двигателя в сеть должно подаваться постоянно, а на пусковую через фазосдвигающий конденсатор, только на кратковременное время (2–10 сек).

Сделать это несложного, например, с помощью двух тумблеров, один из которых имеет два фиксированных положения (рабочий), а другой без фиксации (пусковой).

На самом деле, всех этих манипуляций при запуске электродвигателя можно избежать, если использовать специально предназначенные для этих целей коммутирующие устройства.

Пусковая кнопка ПНВС

В этом механизме (ПНВС-10) не было бы ничего особенного, если бы не одна фишка. При нажатии кнопки “Пуск” замыкаются все три пары контактов. При отпускании кнопки, крайние пары остаются в замкнутом положении, а средняя пара возвращается в исходное, разомкнутое положение. После нажатия “Стоп” все контакты размыкаются.

На картинке ясно видно, что средняя пара контактов разомкнута, а две крайние пары замкнуты.

Остается подключить пусковую обмотку к крайним клеммам, а пусковую к средней и одной из крайних (общей) клеммам кнопки.

Вот так просто и если хотите, элегантно реализован весь порядок необходимых подключений.

Небольшая цена (120–190 руб), ещё одно из достоинств этого устройства. Некоторых пользователей смущают относительно большие габариты, но поскольку электромотор чаще всего используется в составе какого-то агрегата (станка), что само по себе подразумевает стационарное применение, то размеры блока кнопок, в этом случае, не помеха.

Подключение к сети однофазного двигателя с помощью магнитного пускателя

Поскольку питание, подаваемое на пусковую катушку через несколько секунд после нажатия кнопки “Пуск” нужно отключить, то понадобится два пускателя, а ещё блок, состоящий из двух кнопок, каждая из которых должна иметь две группы контактов с нормально-замкнутыми и нормально-разомкнутыми парами контактов.

Красным цветом обозначены силовые провода. Синим, провода управления.

Получается дороговато, каждый из пускателей с катушкой на 220 В, стоит 700–3000 руб, а ещё такой способ подключения никак не назовешь компактным и простым.

Все эти недостатки компенсируются возможностью коммутировать довольно большую нагрузку.

О подключении трёхфазных электродвигателей к однофазной сети

На мой взгляд, эта тема в наши дни потеряла свою актуальность. Раньше (период СССР), купить однофазный двигатель было проблематично или просто невозможно, а трёхфазники приобретались “по случаю”. Естественно, сразу же возникал вопрос об адаптации такого движка к однофазной сети. Сейчас таких случаев уже почти нет, а покупать дорогой трёхфазный электродвигатель с тем, чтобы подключать его к сети на 220 В. никто в здравом уме не будет.

Возможно, я ошибаюсь и у читателя есть своё мнение на этот счёт. Выскажите его в комментариях.

Сложно представить гараж или собственный дом, в котором имеется мастерская без установленных в них электроприборов. Учитывая довольно высокую стоимость, которых владельцы мастерской стараются изготовить их самостоятельно.

Это могут быть заточные станки или более сложные механизмы, использующие электродвигатели. В каждом гараже всегда можно найти двигатель от неисправной бытовой техники.

Электроснабжение гаражей осуществляется от сети напряжением 220 вольт. Двигатели от бытовой техники однофазные, а при изготовлении станка появляется необходимость в схеме подключения двигателя.

Подключение однофазного коллекторного и асинхронного моторов к сети 220 вольт

В бытовой технике используются коллекторные или асинхронные двигатели. Схема подключения однофазного двигателя при использовании таких электродвигателей будет разная. Для того чтобы выбрать правильную схему необходимо знать тип двигателя.

Это сделать очень просто, если сохранился шильдик. При его отсутствии следует посмотреть, имеются ли щетки. При их наличии электродвигатель коллекторный, если они отсутствуют — двигатель асинхронный.

Схема подсоединения коллекторного двигателя очень проста. Достаточно имеющиеся провода подключить к сети 220 вольт и мотор должен заработать.

Основным недостатком таких моторов большой шум в процессе работы. К достоинствам можно отнести легкость регулировки оборотов. Существует более сложная схема для подключения однофазного асинхронного двигателя.

Они бывают однофазные и трехфазные. Однофазные электродвигатели выпускают с пусковой обмоткой (бифилярные) и конденсаторные.

В момент пуска таких моторов пусковая обмотка замыкается, а после достижения необходимых оборотов отключается специальными устройствами. На практике такие электродвигатели включаются специальными кнопками, у которых средние контакты при нажатии замыкаются, а после отпускания кнопки размыкаются. Это так называемые кнопки ПНВС они специально сконструированы для работы с такими электродвигателями.

В конденсаторных имеется две обмотки, которые работают постоянно. Они смещены относительно друг друга на 90º , благодаря чему можно осуществить реверс.

Схема подключения асинхронного двигателя на 220в ненамного сложнее включения коллекторного. Отличие состоит в том, что к вспомогательной обмотке подсоединяется конденсатор. Его номинал рассчитывается по сложной формуле.

Но опираясь на эмпирические данные его, подбирают из расчета 70 Мкф на 1 Квт мощности, а рабочий конденсатор в 2–3 раза меньше, и соответственно имеет параметры 25–30 Мкф на 1 Квт.

Для того чтобы осуществить подключение однофазного двигателя необходимо подключить конденсатор к вспомогательной обмотке, схема несложная и ее может собрать любой человек.

Достаточно иметь необходимые комплектующие и не перепутать обмотки. Определить назначение обмоток можно с помощью тестера, измерив, сопротивление. Пусковая обмотка имеет в два раза большее сопротивление, чем рабочая.

Схемы включения однофазного электродвигателя

Для включения двигателя применяются три схемы подключения электродвигателей на напряжение 220 в. Для тяжелого пуска устройств, таких как бетономешалка, применяют схему с подсоединением пускового конденсатора с последующим его отключением. Существует более простая схема подключения однофазного двигателя с постоянным подключением конденсатора малой емкости к пусковой обмотке, она применяется наиболее часто.

При этом параллельно рабочему конденсатору во время пуска подключается дополнительный конденсатор.

Для того чтобы наиболее полно раскрыть возможности двигателя применяется схема с постоянно подсоединенным конденсатором к вспомогательной обмотке.

Это самая распространенная схема подключения, с помощью которой подключают любой однофазный асинхронный двигатель при изготовлении заточного станка. При использовании таких схем подсоединения следует знать, что двигатель не сможет развивать полную мощность.

Подключение трехфазных электродвигателей

Часто возникает необходимость в подсоединении асинхронного двигателя,предназначенного для подключения к трехфазной сети в однофазную. Схема подключения трехфазного мотора не сильно отличается от подсоединения однофазного.

Подключение к однофазной сети 220 вольт

Основное отличие состоит в конструкции самого двигателя. В нем имеются равнозначные обмотки, которые соединяются звездой или треугольником. Все зависит от рабочего напряжения.

Схема подключения трехфазного двигателя к однофазной сети включает в себя магнитный пускатель, кнопку включения — выключения и конденсатор. Емкость конденсатора рассчитывается по формуле.

Эта формула справедлива для соединения звездой. И позволяет подобрать рабочий конденсатор.

Вторая формула позволяет рассчитать номинальную емкость для работы с электродвигателем при соединении обмоток треугольником.

Номинал конденсатора можно рассчитать по упрощенной формуле:

Часто при запуске по такой схеме используют пусковой конденсатор, который включают параллельно с рабочим. И выбирается из условий:

Если необходимого номинала нет, то подбор конденсаторов возможен из имеющихся комплектующих при соединении их параллельно или последовательно.

При параллельном соединении емкость суммируется, т. е. увеличивается. А при последовательном соединении уменьшается. И будет меньше меньшего номинала. При подборе конденсаторов необходимо учитывать рабочее напряжение, которое должно быть выше сетевого в 1,5 раза.

При монтаже следует иметь в виду, что схема подключения 3х фазного двигателя предполагает включение конденсатора к третьей обмотке, что позволяет использовать моторы в однофазной сети 220 вольт.

Для того чтобы использовать механизм на полную мощность, следует подключить его к трехфазной сети.

Подключение к трехфазной сети

Для подключения 3 х фазного двигателя на напряжение 380 вольт схема представляет собой соединение обмоток звездой. Соединение треугольником применяется при наличии трехфазной сети на 220 вольт.

Схема подключения асинхронного двигателя к трехфазной сети имеет пускатель на три фазы, кнопку «пуск – стоп» и двигатель. Но в быту имеется однофазное подключение к гаражу или мастерской. Поэтому и возникает необходимость подключения 3х фазного двигателя через конденсаторы к сети 220 вольт, когда используется схема с применением фазосдвигающей цепочки.

Для сдвига фазы применяют конденсатор, который подключают к одной из фаз, а две другие подключают к электрической сети. Это стандартная схема подключения асинхронного двигателя, применяемая для подключения к однофазной сети. При изготовлении всевозможных станков возникает необходимость в реверсивном включении механизмов.

Реверсивная схема подключения при включении трехфазного двигателя к однофазной сети производится по следующей методике.

Достаточно переключить сетевой провод с одного контакта конденсатора на другой. В результате вал начнет вращаться в обратную сторону.

Сложнее осуществляется схема реверсивного подключения двигателя на 380 вольт, если имеется трехфазное соединение.

Для этого применяется принципиальная схема подключения электродвигателя с применением двух магнитных пускателей. С помощью одного из них производится переключение фаз на обмотках.

Второй имеет стандартное включение. При монтаже необходимо предусмотреть защиту от одновременного включения пускателей. В противном случае произойдет короткое замыкание.

Техника безопасности

При самостоятельном подключении электродвигателей следует соблюдать несложные правила. Не работать при подключенном напряжении.

Строго соблюдать правила техники безопасности. Во время работы применять средства индивидуальной защиты.

Нельзя допускать к работе с электричеством необученных людей и детей возрастом менее восемнадцать лет.

Следует помнить, что электричество не имеет запаха и нельзя определить на глаз его наличие на контактах. Обязательно, для определения напряжения использовать только разрешенные средства измерения.

Подключение двигателя постоянного тока к переменной сети. Принцип действия ДПТ. Электродвигатель постоянного тока с параллельным возбуждением

Возникла необходимость подключить универсальный коллекторный электродвигатель. На первый взгляд никаких проблем нет. Двигатель рабочий, ранее стоял в соответствующем устройстве и выполнял предназначенную ему функцию, то есть уже был подключён. Но дело в том, что использовать его решил в совершенно ином по своим функциям устройстве. Изменились условия, возможности эксплуатации и требования, как к его работе, так и к сроку службы. Ведь механизм, в котором предполагалось вновь задействовать электродвигатель, должен будет быть собран именно под него. Что делать с существующей обвязкой? Можно и главное нужно ли в ней, что-то менять? В данном конкретном случае это электродвигатель от электробритвы.

Имеющаяся обвязка состоит из конденсаторов и дросселей предназначенных выполнять исключительно функции помехоподавляющего фильтра.


Непосредственно на работу двигателя они ни как не влияют. Известно, что универсальный коллекторный электродвигатель одинаково хорошо работает и на постоянном, и на переменном токе. Соответственно, не мудрствуя лукаво, при имеющимся сопротивлении секций обмоток статора (более 800 Ом) плюс сопротивление якоря (360 Ом), подключение можно сделать по такой схеме:


Что и было успешно опробовано.


Однако на постоянном токе чуточку лучше. Во первых КПД двигателя при переменном токе меньше, во вторых меньше срок службы щёток, коллектора и всей машины. Схема подключения будет такой.


Был опробован и этот вариант схемы.


Искрение щёток коллектора стало заметно меньше. Совсем уж решил на этом и остановиться, но тут посоветовали, что при питании данного электродвигателя постоянным током следует добавить, после диодного моста, конденсатор.


Ёмкость конденсатора первоначально посчитал по, показавшейся подходящей для данного случая, формуле. При подключении конденсатора с расчетной ёмкостью в 200 mkf движок взревел как небольшая электродрель, что заставило уменьшать ёмкость. Формулой для расчета, не оправдавшей себя, «делиться» смысла не вижу.


Остановился на конденсаторе 33mkf х 250V и диодном мосте из диодов 1N4007 (как более компактном). Работой электродвигателя доволен.

Видео работы электромотора

Ничего необычного, но действительно лучше увидеть, чем услышать (в данном случае прочитать) как он там «гудит», как он там «искрит». Желаю удачных экспериментов, Babay.

В домашнем хозяйстве редко встретишь мотор, работающий на постоянном токе. Зато они всегда устанавливаются в детских игрушках, которые летают, ездят, шагают и т.д. Всегда они стоят в автомобилях: в различных приводах и вентиляторах. В электротранспорте чаще всего используют тоже их.

Другими словами, применяются двигатели постоянного тока там, где требуется достаточно широкий диапазон регулирования скорости и точность ее поддержания.

Электрическая мощность в моторе преобразуется в механическую, заставляющую его вращаться, а часть этой мощности расходуется на нагревание проводника. Конструкция двигателя электрического постоянного тока включает якорь и индуктор, которые разделяют воздушные зазоры. Индуктор, состоящий из добавочных и главных полюсов, и станины, предназначен для создания магнитного поля. Якорь, собранный из отдельных листов, обмотка рабочая и коллектор, благодаря которому постоянный ток подводится к рабочей обмотке, образуют магнитную систему. Коллектор – это насаженный на вал двигателя цилиндр, собранный из изолированных друг от друга медных пластин. К его выступам припаиваются концы обмотки якоря. Ток с коллектора снимается при помощи щеток, закрепленных в определенном положении в щеткодержателях, благодаря чему обеспечивается нужный прижим на поверхность коллектора. Щетки с корпусом двигателя соединяются с помощью траверса.

Щетки, в процессе работы, скользят по поверхности вращающегося коллектора, переходя от одной его пластины к другой. При этом, в параллельных секциях обмотки якоря происходит изменение тока (когда щетка накоротко замыкает виток). Процесс этот называют коммутацией.

Под влиянием своего магнитного поля, в замкнутой секции обмотки возникает ЭДС самоиндукции, вызывающая появление дополнительного тока, который на поверхности щеток распределяет неравномерно ток, что приводит к искрению.


Частота вращения – одна из важнейших его характеристик. Ее регулировать можно тремя способами: изменяя поток возбуждения, изменяя величину подводимого напряжения к двигателю, изменяя сопротивление в якорной цепи.

Два первых способа встречаются намного чаще третьего, ввиду его неэкономичности. Ток возбуждения регулируется при помощи любого устройства, у которого возможно изменять активное сопротивление (например, реостата). Регулирование при помощи изменения напряжения требует наличие источника постоянного тока: преобразователя или генератора. Такое регулирование применяют во всех промышленных электроприводах.

Торможение электрического двигателя постоянного тока

Для торможения электроприводов с ДПТ также есть три варианта: торможение противовключением, динамическое и рекуперативное. Первое происходит за счет изменения полярности тока в обмотке якоря и напряжения. Второе происходит благодаря замыканию накоротко (через резистор) обмотки якоря. Электрический двигатель при этом работает как генератор, преобразуя в электрическую, запасенную им механическую энергию, которая выделяется в виде тепла. Это торможение сопровождается мгновенной остановкой двигателя.

Последнее происходит, если электрический мотор, включенный в сеть, вращается со скоростью, которая выше скорости холостого хода. ЭДС обмотки двигателя в этом случае, превышает значение напряжении я в сети, что приводит к изменению на противоположное направление тока в обмотке мотора, т.е. двигатель отдает в сеть энергию, переходя в режим генератора. Одновременно возникает тормозной момент на валу.

Преимущества двигателей постоянного тока

Сравнивая их с асинхронными моторами, нужно отметить отличные пусковые качества, высокую (до 3000 об/мин) частоту вращения, а также хорошую регулировку. Из недостатков отметить можно? Сложность конструкции, низкую надежность, высокую стоимость и затраты на ремонт и обслуживание.

Принцип действия ДПТ

ДПТ, как и любой современный мотор, работает на основе «Правила левой руки», с которым все знакомы еще со школы и закона Фарадея. При подключении тока к нижней обмотке якоря в одном направлении, а к обмотке верхней – в другом, якорь начинает вращаться, а уложенные в его пазах проводники – выталкиваться магнитным полем статора или обмоток корпуса двигателя постоянного тока. Вправо выталкивается нижняя часть, а влево – верхняя. В результате якорь вращается до тех пор, пока его части не поменяются местами. Чтобы добиться непрерывного вращения, необходимо полярность обмотки якоря регулярно менять местами. Как раз этим и занимается коллектор, коммутирующий при вращении обмотки якоря. На коллектор от источника подается напряжение через пару прижимных щеток из графита.

Принципиальные схемы ДПТ

Двигатель переменного тока подключается просто, в отличие от ДПТ. Обычно у таких двигателей высокой и средней мощности имеются отдельные выводы в клеммной коробке (от обмотки и якоря). На якорь обычно подается полное напряжение, а на обмотку — ток, регулировать который можно реостатом или напряжением переменным. От величины тока, имеющегося на обмотке возбуждения, прямопропорционально зависят обороты двигателя переменного тока.

В зависимости от того, какая используется схема подключения электродвигателя постоянного тока, двигатель электрический может быть постоянного тока, разделяют на самовозбуждающиеся и с независимым возбуждением (от отдельного источника).

Схема для подключения двигателя с возбуждением параллельным

Она аналогична предыдущей, но не имеет отдельного источника питания.

Когда требуется большой пусковой ток, применяют двигатели с возбуждением последовательным: в городском электротранспорте (троллейбусах, трамваях, электровозах).

Токи обоих обмоток в этом случае одинаковы. Недостаток – требуется постоянная нагрузка на вал, поскольку при ее уменьшении на 25%, резко увеличивается частота вращения и происходит отказ двигателя.

Есть еще моторы, которые крайне редко используются — со смешанным возбуждением. Их схема представлена ниже.

Электродвигатель постоянного тока с параллельным возбуждением

Под понятием «возбуждение» понимают создание в электрических машинах магнитного поля, которое необходимо, чтобы заработал двигатель. Схем возбуждения несколько:

  • С независимым возбуждением (питание обмотки происходит от постороннего источника).
  • Электродвигатель постоянного тока с параллельным возбуждением (источник питания обмотки возбуждения и якоря включены параллельно) – шунтовые.
  • С последовательным возбуждением (обе обмотки включены последовательно) – сериесные.
  • Со смешанным возбуждением – компаундные.

Бесщеточные моторы

Но, двигатель со щетками, которые быстро изнашиваются и приводят к искрению, не может использоваться там, где необходима высокая надежность, поэтому среди электротранспорта (электровелосипедов, скутеров, мотоциклов и электромобилей) наибольшее применение нашли бесщеточные электродвигатели. Они отличаются высоким КПД, невысокой стоимостью, хорошей удельной емкостью, длительным сроком службы, малыми размерами, бесшумной работой.

Работа этого двигателя основывается на взаимодействии магнитных полей электромагнита и постоянного. Когда за окном 21 век, а вокруг полно мощных и недорогих проводников, логично заменить механический инвертор цифровым, добавить датчик положения ротора, решающий в какой момент на конкретную катушку необходимо подать напряжение, и получить бесщеточный электродвигатель постоянного тока. В качестве датчика чаще используется датчик Холла.

Поскольку в этом двигателе удалены щетки, он не нуждается в регулярном обслуживании. Управляется двигатель постоянного тока при помощи блока управления, позволяющего изменять частоту вращения вала мотора, стабилизировать на определенном уровне обороты (независимо от имеющейся на валу нагрузки).

Состоит блок управления из нескольких узлов:

  • Системы импульсно-фазового управления СИФУ.
  • Регулятора
  • Защиты.

Где купить электродвигатель

Многие компании с мировыми именами выпускают сегодня электродвигатель постоянного тока 220 В. Купить его можно в интернет — магазинах, менеджеры которых предоставят исчерпывающую онлайн информацию, касающуюся выбранной модели. Большой выбор моделей таких двигателей на сайте http://ru.aliexpress.com/w/wholesale-brushless-dc-motor.html , в каталоге которого можно ознакомиться со стоимостью моделей, их описанием и пр. Если даже в каталоге нет интересующего двигателя, можно заказать его доставку.

Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения коллекторного двигателя переменного тока, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.

Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.

  • Упрощенная схема подключения
  • Управление работой двигателя
  • Преимущества и недостатки
  • Типичные неисправности

Особенности конструкции и принцип действия

По сути, коллекторный двигатель переменного тока представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали. Обмотки возбуждения машины переменного тока подключаются последовательно для оптимизации работы в бытовой сети 220в.

Могут быть как одно-, так и трехфазными; благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.

В целом принцип работы коллекторного мотора переменного тока можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил. Направление движения рамки не меняется при изменении направления движения тока в ней.

Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.

Упрощенная схема подключения

Типовая схема подключения коллекторного электродвигателя переменного тока может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.


Направление вращения в этом случае можно изменить, только поменяв местами выхода обмоток на контактной планке. Включение двигателя «напрямую» выполняется только с подсоединенными выводами статора и ротора (через щеточно-коллекторный механизм). Вывод половины обмотки используется для включения второй скорости. Следует помнить, что при таком подключении мотор работает на полную мощность с момента включения, поэтому эксплуатировать его можно не более 15 секунд.

Управление работой двигателя

На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.


В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

  • электронная схема подает сигнал на затвор симистора;
  • затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя;
  • тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления;
  • в результате ротор вращается равномерно при любых нагрузках;
  • реверс электродвигателя осуществляется с помощью реле R1 и R


Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Преимущества и недостатки

К неоспоримым достоинствам таких машин следует отнести:

  • компактные габариты;
  • увеличенный пусковой момент; «универсальность» — работа на переменном и постоянном напряжении;
  • быстрота и независимость от частоты сети;
  • мягкая регулировка оборотов в большом диапазоне с помощью варьирования напряжения питания.
  • снижение долговечности механизма;
  • искрение между и коллектором и щетками;
  • повышенный уровень шумов;
  • большое количество элементов коллектора.

Типичные неисправности

Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.

Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.

Благодаря своим компактным размерам, коллекторный двигатель получил широкое распространение в конструкциях ручного электроинструмента. Он успешно применяется взамен конденсаторного однофазного асинхронного . Массовое применение коллекторных двигателей обусловлено их высокой мощностью, простотой в управлении и обслуживании. Независимо от внешних различий и типов креплений, все они имеют одинаковый принцип действия.

Устройство и принцип работы

Прежде всего, это однофазный электродвигатель, где осуществляется последовательное возбуждение обмоток. Для его работы может использоваться переменный или постоянный ток. По этой причине, коллекторный электродвигатель считается универсальным.

Большинство таких электродвигателей имеют в своей конструкции основные элементы в виде статора вместе с обмоткой возбуждения, а также ротора и двух щеток в качестве скользящего контакта. Большая роль во всей конструкции отводится тахогенератору. Его магнитный ротор закрепляется в торце роторного вала, а фиксация катушки осуществляется с помощью стопорного кольца или крышки.


Все конструктивные элементы электродвигателя объединены в общей конструкции. Их соединяют две алюминиевые крышки, непосредственно образующие корпус двигателя. Для вывода контактов, присутствующих во всех элементах используется клеммная колодка, позволяющая легко включать их в общую электрическую схему. Для работы ременной передачи на роторный вал запрессовывается шкив.

Подключение и управление

В основе работы данного вида двигателей лежат взаимодействующие поля, присутствующие в статоре и роторе, при прохождении через них электрического тока. Коллекторный двигатель имеет последовательную схему, по которой подключаются обмотки. Контактная колодка позволяет задействовать до десяти контактов, увеличивая количество вариантов подключения.


Простейшее подключение можно выполнить, зная лишь расположение выводов в статоре и щетках. При нормальном подключении устанавливаются средства электрической защиты и устройства, позволяющие ограничивать ток. Поэтому, прямое подключение от сети должно производиться не более чем на 15 секунд.

Управление коллекторным двигателем осуществляется с помощью специальной электронной схемы. В этой схеме всю силовую регулировку выполняет , подающий напряжение на двигатель в необходимом количестве и подключаемый последовательно с ним.

В бытовом электрооборудовании, где используются электродвигатели, как правило, устанавливаются электромашины с механической коммутацией. Такой тип двигателей называют коллекторными (далее КД). Предлагаем рассмотреть различные виды таких устройств, их принцип действия и конструктивные особенности. Мы также расскажем о достоинствах и недостатках каждого из них, приведем примеры сферы применения.

Под таким определением подразумевается электромашина, преобразовывающая электроэнергию в механическую, и наоборот. Конструкция устройства предполагает наличие хотя бы одной обмотки подсоединенной к коллектору (см. рис. 1).

Рисунок 1. Коллектор на роторе электродвигателя (отмечен красным)

В КД данный элемент конструкции используется для переключения обмоток и в качестве датчика, позволяющего определить положение якоря (ротора).

Виды КД

Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:

  1. Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
  2. Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.

Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:

  • независимыми;
  • параллельными;
  • последовательными;
  • смешанными.

Разобравшись с видами, рассмотрим каждый из них.

КД универсального типа

На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.


Обозначения:

  • А – механический коммутатор, его также называют коллектором, его функции были описаны выше.
  • В – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
  • С – Сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
  • D – Обмотки статора, данный узел относится к системе возбуждения (индуктору).
  • Е – Вал якоря.

У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.


Универсальный КД может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. В результате этого вращательный момент не изменяет своего направления.

Особенности и область применения универсальных КД

Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:

  • снижение КПД;
  • повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.

Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.

Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.

КД с индуктором на постоянных магнитах

Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.


Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.

Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.


К числу преимуществ можно отнести следующие качества:

  • высокий момент силы даже на низкой частоте оборотов;
  • динамичность управления;
  • низкая стоимость.

Основные недостатки:

  • малая мощность;
  • потеря магнитами своих свойств от перегрева или с течением времени.

Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.

Независимые и параллельные катушки возбуждения

Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).


Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения

Особенность такого подключения заключается в том, что питание U и U K должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.

Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.

Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.

Положительные черты:

Минусы:

  • стоимость выше, чем у устройств на постоянных магнитах;
  • недопустимость падения тока ниже порогового значения на катушке возбуждения, поскольку это приведет к поломке.

Последовательная катушка возбуждения

Схема такого КД представлена на рисунке ниже.


Поскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока. Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.

Указанная выше особенность проявляется в том, что КД данного типа непозволительно запускать при нагрузке на четверть меньше номинальной. Это может привести к тому, что ротор электромашины резко увеличит частоту вращения, то есть, двигатель пойдет «в разнос». Соответственно, такая особенность вносит ограничения на сферу применения, например, в механизмах с ременной передачей. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.

Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.

Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:

  • высокую стоимость в сравнении с аналогами на постоянных магнитах;
  • низкий уровень момента силы при высокой частоте оборотов;
  • поскольку обмотки статора и возбуждения подключены последовательно, возникают проблемы с управлением скоростью вращения;
  • работа без нагрузки приводит к поломке КД.

Смешанные катушки возбуждения

Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ротора.


Как правило, одна из катушек обладает большей намагничивающей силой, поэтому она считается, как основная, соответственно, вторая – дополнительная (вспомогательная). Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.

При встречном включении характеристики КД становятся близкими к соответствующим показателям электромашин с последовательным или параллельным возбуждением (в зависимости от того, какая из катушек является основной). То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки.

Согласованное включение приводит к тому, что характеристики КД будут соответствовать среднему значению показателями электромашин с параллельными и последовательными катушками возбуждения.

Единственный недостаток такой конструкции – самая высокая стоимость в сравнении с другими типами КД. Цена оправдывается благодаря следующими положительными качествами:

  • не устаревают магниты, за отсутствием таковых;
  • малая вероятность выхода из строя при нештатных режимах работы;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Как подключить однофазный электродвигатель к сети 220 В

Автор Alexey На чтение 6 мин. Просмотров 126 Опубликовано Обновлено

Очень часто бывает, что механика в стиральной машине, пылесосе, электродрели полностью выходит из строя, и выгодней будет купить новую бытовую технику, чем починить безнадёжно устаревшие домашние электроприборы.

Из кучи оставшихся от данных устройств запчастей, как правило, самым ценным элементом будет электро двигатель, которому можно найти достойное применение, подключив в сеть 220В.

В подобных электроприборах изредка встречается полноценный трёхфазный двигатель, и скорее всего там окажется однофазный коллекторный или асинхронный электродвигатель, у которого может оказаться изрядный запас прочности и ресурса подшипников для применения в качестве привода насоса, компрессора, вентилятора, точила, мини-станка, овощерезки, газонокосилки и т.д.

В данной статье будет рассказано о том, как подключить однофазный двигатель в сеть 220 В, в зависимости от его типа.

Принцип действия коллекторного двигателя

В коллекторном электродвигателе, встречающемся в стиральных машинах и электродрелях, имеются обмотки на статоре и роторе.

Коллекторный двигатель

Роторные обмотки намотаны в виде рамок и помещаются в специальных пазах, а их переключение происходит при помощи коллекторных выводов и контактов в виде графитовых щёток.

ротор коллекторного двигателя

Устройство ротора выполнено таким образом, чтобы в любой момент времени под напряжением находилась только одна рамка, магнитное поле которой перпендикулярно полю обмотки статора.

Электромагнитное взаимодействие полярных магнитных полюсов стремится повернуть ротор так, чтобы направленность его магнитного поля совпала с полем статора, подобно стрелке компаса.

Но, как только ротор поворачивается на определённый угол, контакты рамки выходят из соприкосновения со щётками, и включаются следующая обмотка, и процесс повторяется, создавая непрерывный момент вращения.

Подключение в сеть 220 В коллекторного двигателя

Схема коллекторного двигателя устроена таким образом, что направления токов в обмотке статора ротора и рамке ротора всегда совпадают, независимо от фазы переменного напряжения. Из-за совпадения направления токов, возникающие магнитные поля будут всегда перпендикулярными, что и будет вызывать момент вращения вала.

Поэтому очень важно установить перемычку на выводах двигателя, для последовательного соединения статорной и роторной обмоток. Поменяв местами выводы обмоток статора или ротора можно изменить направление вращения вала двигателя.

схема подключения

Для полноты картины нужно проследить путь тока – один из выводов от щётки коллектора подключается в сеть 220 В (допустим фаза, но это не имеет значения). Вывод другой щётки нужно подсоединить к одному выводу статора при помощи перемычки. Оставшийся вывод от статора подключается в сеть 220 В (ноль), замыкая цепь.

Принцип действия однофазного асинхронного электродвигателя

В отличие от коллекторного двигателя, в однофазном асинхронном электродвигателе с короткозамкнутым находящимся в состоянии покоя ротором,

устройство однофазного асинхронного двигателя

в котором индуцируются токи, создающие магнитное поле, взаимодействующее с электромагнитным полем катушки, векторы возникающих сил (М, -М) уравновешивают друг друга. Это означает, что при включении в сеть вал мотора вращаться не будет, и для его запуска нужен начальный вращательный момент S.

Можно рукой раскрутить вал и подать напряжение сети, тогда двигатель наберёт обороты. Многие так и делают, запуская точило, но такой способ совершенно неприемлем, если нужно раскрутить вращающиеся ножи овощерезки или газонокосилки.

Поскольку в трёхфазном электродвигателе момент вращения задан конструктивно при помощи расположения обмоток и смещения фаз трёхфазной сети, то в однофазном моторе для запуска применяют дополнительную пусковую обмотку, благодаря которой создаётся вращательный момент смещения ротора.

Схема подключения 1 однофазного двигателя

Смещения фазы тока дополнительной обмотки относительно синусоиды напряжения 220 В создаётся при помощи конденсатора.

Схема подключения 2 однофазного двигателя

Подключение в сеть асинхронного однофазного двигателя.

На корпусе однофазного асинхронного электродвигателя должна быть схема подключения, где указываются выводы основной и дополнительной обмотки, а также емкость конденсатора.

Выводы обмоток однофазного двигателя

Но, если схема где-то затерялась, то нужно определить рабочую и пусковую обмотку, измерив и сравнив сопротивления – у основной оно должно быть меньшим. Для этого нужно взять мультиметр, выставить диапазон для измерения в Омах, и поочерёдно измерить сопротивление между выводами.

Определение пусковой и рабочей обмотки однофазного электромотора

Поскольку часто данные обмотки имеют общий вывод, то его определяют опытным путём – сумма сопротивлений, измеренных от данного провода обмоток должна соответствовать суммарному сопротивлению подключённых последовательно обмоток.Если конструкция двигателя позволяет, то определить принадлежность выводов можно визуально – у проводов рабочей обмотки поперечное сечение (толщина) больше.

рабочая и пусковая обмотки однофазного мотора

Рабочая обмотка подключается к напряжению 220 В напрямую, а пусковая – последовательно с конденсатором. Если обмотки соединены внутри мотора, то такая схема не позволит изменять направление вращения. Если из мотора выходят четыре провода от двух обмоток, то направление вращения будет зависеть выбора выводов для их соединения в общий отвод.

Выбор вращения однофазного двигателя

Существуют электродвигатели с идентичными обмотками – их называют двухфазными.

Режимы однофазных двигателей

Поскольку однофазные и двухфазные двигатели для запуска требуют применения конденсатора, то такие электродвигатели называют конденсаторными. Существует несколько режимов работы конденсаторного двигателя:

  • С пусковым конденсатором и дополнительной обмоткой, которые подключаются только на время запуска. Емкость выбирается исходя из 70 мкФ на 1 кВт мощности двигателя;
  • С рабочим конденсатором, емкостью 23-35 мкФ и дополнительной обмоткой, подключённой всё время;
  • С рабочим и пусковым конденсатором, подключаемым параллельно рабочему.

Применяется в случаях с тяжёлым запуском двигателя. Емкость рабочего конденсатора в два-три раза меньше номинала пускового (70 мкФ/1 кВт).

Из-за сложности формул расчёта принято выбирать емкости, исходя из приведённых выше пропорций. В реальности, подключив электродвигатель, нужно проследить за его работой и нагревом. Если двигатель будет заметно нагреваться в режиме с рабочим конденсатором, то его емкость необходимо уменьшить. Подбирать конденсаторы нужно с рабочим напряжением не меньше 450 В.

Запуск двигателя с пусковым конденсатором осуществляется вручную с помощью кнопки управления,

или схемы с двумя контакторами, один из которых (пусковой) не имеет самоподхвата и удерживается током замкнутого кнопочного контакта или реле времени. Некоторые конденсаторные электродвигатели имеют центробежный контакт, используемый при запуске, размыкающийся при наборе оборотов.

Подключение трёхфазного двигателя в сеть 220 В

Подобным способом с применением конденсатора подключается трёхфазный двигатель по схеме «звезда» или «треугольник».

Расчёт емкости производится исходя из рабочего напряжения и тока,

или паспортной мощности мотора.

По аналогии с однофазным электродвигателем, в случае тяжёлого запуска трёхфазного двигателя, применяется пусковой конденсатор, емкость которого в два-три раза выше номинала рабочего.

Подключая трехфазный электродвигатель в сеть 220 В при помощи пускового конденсатора, нужно помнить, что при такой схеме подключения мотор не будет работать с полной отдачей и не разовьет максимальную мощность.


Для полноценной работы такого двигателя нужны три фазы, получить которые можно проведя сеть 380 В, или использовать сложную электронную схему, рассчитанную под конкретную мощность, генерирующую смещение фаз при помощи мощных силовых полупроводниковых ключей.

Имея много различных конденсаторов, но не находя нужного значения емкости, можно соединять их параллельно или последовательно.

Комбинируя данные способы подключения, можно приблизиться к требуемому номиналу емкости.

Видео подключения однофазного двигателя к сети 220В

Реверсивные однофазные асинхронные двигатели

Начиная с моей статьи о двигателях переменного тока, Меня часто спрашивают о том, как изменить асинхронный двигатель переменного тока. Раньше я подробно не рассказывал, как запускаются асинхронные двигатели. потому что это обширная тема сама по себе.

Ротор асинхронного двигателя представляет собой проницаемый железный сердечник. с залитой алюминиевой обмоткой короткого замыкания. Ты можешь видеть алюминий на обоих концах ротора. Алюминий также проходит через продольные отверстия в роторе для укорочения типа «беличья клетка» обмотка цепи.Линии едва видны под небольшим углом на роторе где проходят обмотки.

Обмотка короткого замыкания заставляет ротор сопротивляться быстрым изменениям магнитного поля. полей, поэтому, если он подвергается воздействию вращающегося магнитного поля, он будет пытаться следовать за ним. (подробнее об этом здесь)

В трехфазном двигателе три фазы на трех обмотках, естественно создают вращающееся магнитное поле. Но для однофазных двигателей переменного тока магнитное поле только чередуется вперед и назад. Нужны некоторые хитрости для создания вращающегося поля.


Реверс двигателя с расщепленной фазой

В этом двигателе с расщепленной фазой основная обмотка (метка ‘M’) подключается непосредственно к источнику переменного тока 60 Гц, а другая обмотка (метка ‘O’) подключена последовательно с конденсатор (С). Взаимодействие индуктивности двигателя обмотки и емкость конденсатора приводят к тому, что обмотка составляет около 90 градусы не совпадают по фазе с основной обмоткой.

Основная обмотка создает магнитное поле, чередующееся по вертикали, а другая обмотка создает магнитное поле, которое чередуется по горизонтали. но не в фазе, в сумме это вращающееся магнитное поле.Ротор пытается следовать за ним, заставляя его вращаться.

Реверс двигателя — это просто перестановка силового соединения. так что другая обмотка находится непосредственно на переменном токе. По сути, перемещение одна сторона силового соединения от (A) до (B), в результате чего обмотка (O) быть основной обмоткой, а обмотка (М) — фазосдвинутой.

На двигателях мощностью более 1/4 л.с. две обмотки обычно имеют разные числа оборотов, поэтому этот метод реверсирования может быть неприменим. Сначала убедитесь, что сопротивление двух обмоток одинаково.

Если обмотки не одинакового сопротивления, вы все равно можете его поменять местами. поменяв полярность одной из обмоток, при условии, что винты не связаны друг с другом внутри двигателя (например, более трех провода выходящие из обмоток).


Обмотки стартера на более мощных двигателях

Теперь, если мы заглянем внутрь более крупного двигателя, такого как этот двигатель мощностью 3/4 лошадиных сил, обмотки выглядят намного сложнее. Обмотки распределены по множеству пазов. в статоре двигателя (C).Таким образом, там меньше резкого перехода от одного полюса к другому. Этот делает магнитное поле более гладким, что делает его тише, более эффективный мотор.

Этот двигатель имеет толстую главную обмотку (M), а также обмотку стартера. из более тонкой проволоки (S). Основная обмотка создает горизонтальную магнитное поле, а обмотка стартера создает вертикальное.

Эта обмотка стартера включена последовательно с конденсатором (C) и центробежным переключатель (S). В этом моторе установлен пусковой конденсатор. внутри основного корпуса.Чаще пусковой конденсатор монтируется сверху корпуса под металлическим куполом.

Центробежный выключатель (S) установлен на задней панели. и активируется диском (P), который нажимает на выступ на переключатель (слева от буквы S на фото).

Сняв ротор и посмотрев на диск, можно увидеть два металлических выступа. Когда двигатель вращается, центробежная сила толкает их наружу, что в свою очередь тянет диск обратно. Это освободит пластиковый язычок на переключателе, вызывая размыкание переключателя и отключение обмотки стартера.Диск отодвигается достаточно далеко, чтобы больше не контактировать с язычком, сводящим к минимуму трение и износ. Это умный способ активировать переключатель на основе центробежной силы без необходимости переключается на вращение.

Расположение центробежного переключателя издает отчетливый «щелчок». когда он сбрасывается после выключения двигателя. Щелчок переключателя вовлечение, когда оно начинается, различить гораздо труднее.

Если обмотка стартера помогает запускать двигатель, это обязательно поможет. мотор тоже работает.Так почему бы просто не оставить стартер обмотка подключена? Ну а Вся штука с фазовым сдвигом не так элегантна. Размер конденсатора вы потребность очень сильно зависит от нагрузки двигателя. Для быстрого запуска мотора, вам нужна большая емкость, чем для эффективного непрерывного операция. Кроме того, конденсатор является электролитическим конденсатором и не является рассчитан на постоянную нагрузку. И потому что обмотка стартера только используется недолго, поэтому для экономии денег он сделан из более тонкой проволоки, потому что медь стоит дорого.

Некоторые двигатели используют большой конденсатор для запуска и конденсатор меньшего размера для непрерывной работы. Такие моторы часто имеют два внешних конденсатора (C), как видно на этой в моей настольной пиле. Эти двигатели называются двигателями с конденсаторным запуском и запуском конденсатора. Конденсаторные двигатели с конденсаторным запуском обычно имеют более одного Лошадиные силы. Это 1,75 лошадиных сил.

Двигатели можно удешевить, заменив их конденсатор на резистор. Хотя обычно отдельный резистор не добавляется.Вместо, обмотка стартера сделана из более тонкой (дешевой) медной проволоки, поэтому у него большее сопротивление в самой обмотке.

Это приводит к гораздо меньшему фазовый сдвиг, чем у конденсатора, но достаточный для запуска двигателя. Обмотки двигателя по существу образуют индуктор, а когда синусоидальная волна переменного тока (например, мощность переменного тока) подается на катушку индуктивности, ток отстает от напряжения на 90 градусов. И магнитное поле строго зависит от тока.

Для резистора ток синфазен с напряжением.Если бы у нас был большой последовательное сопротивление и малая индуктивность, падение напряжения и ток будет во многом определяться резистором. Итак, ток и магнитный поле будет в значительной степени синфазным с приложенным напряжением. С тока в основной обмотке, отставая на 90 градусов, мы имели бы Разница между ними 90 градусов, но обмотка стартера было бы крайне неэффективно.

На самом деле компромисс гораздо меньше. фазового сдвига и большей мощности. Этого достаточно, чтобы мотор заработал.Как бы то ни было, стартер на этих моторах довольно неэффективен, но он не имеет большого значения, когда двигатель работает. Однако лишний ток требуемый для стартера может сработать автоматический выключатель, поэтому этот метод обычно используется только для двигателей меньшего размера, от 1/4 до 1/2 л.с. В двигателях мощностью 3/4 или больше обычно используется пусковой конденсатор.

Если вы не знакомы с аналоговой электроникой, приведенное выше объяснение вероятно, неадекватен, и вы можете узнать больше об индукции моторы, если вы этого не понимаете.

В асинхронных двигателях изнашиваются только подшипники, выключатель стартера и конденсатор. Без конденсатора есть один меньше вещей потерпеть неудачу.

Совсем недавно я случайно зажал выключатель стартера на Мотор с резистивным запуском мощностью 1/4 л.с. от сушилки для белья (тот, что на этот вентилятор), и мотор отключился всего за 15 секунд. его схема тепловой защиты из-за перегрева обмотки стартера.


Реверс конденсаторного пускового двигателя

Так как же нам поменять местами конденсаторный пусковой двигатель? Как только началось, однофазная индукция мотор будет работать в любом направлении.Чтобы обратить это вспять, нам нужно изменить направление вращающегося магнитного поля, создаваемого основным и стартерные обмотки. И этого можно добиться, изменив положение полярность стартерной обмотки. По сути, нам нужно поменять местами соединения на обоих концах обмотки стартера. Иногда это только обмотка, Иногда обмотка, переключатель и конденсатор наоборот. Порядок выключателя и конденсатора не важно, если вы подключены последовательно.

Вы также можете перевернуть двигатель, перевернув основную обмотку. (тот же эффект).

Если бы вы поменяли местами основную и стартерную обмотки, как это делают с двигателем с расщепленной фазой двигатель также будет реверсировать. Тем не мение, он не будет работать на полную мощность и также может сгореть. В обмотка стартера не предназначена для продолжительной работы.

Наклейка на этом двигателе указывает: «ДВИГАТЕЛЬ НЕРЕВЕРСИРУЕТСЯ».

Если вы посмотрите на предыдущие фотографии этого мотора, вы увидите, что только три провода (красный, желтый и синий) выходят из обмоток.Один конец основной и пусковой обмоток соединен между собой. прямо на обмотках.

Чтобы перевернуть обмотку стартера, мне пришлось бы разорвать это соединение внутрь обмоток и вытащить другой конец стартера обмотка. Но я действительно не могу понять это из-за как это внутри мотора. Мне пришлось бы проделать дыру в ограждение, чтобы добраться даже до точки, где они связаны вместе. Это не то, чтобы этот двигатель нельзя было реверсировать, просто для экономии средств меры, они сделали его поворот более трудным, чем того стоит беда.

Но на реверсивных двигателях этикетка всегда указывает на то, что нужно поменять местами два провода, чтобы поменять местами.

Провода для реверса — это всегда провода, ведущие к обмотке стартера.

Если у вас двигатель, на котором отсутствует этикетка, обмотка стартера обычно имеет электрическое сопротивление примерно в три раза больше, чем основное обмотка и всегда включена последовательно с выключателем стартера и конденсатором (если есть). Если вы можете изолировать оба конца этой обмотки и поменять их местами, вы можете перевернуть мотор.Если, однако, есть только из обмоток выходят три провода, затем основная и пусковая обмотки один конец связан вместе, и двигатель не реверсивный.

Для 120-вольтного двигателя мощностью 1/2 л.с. основная обмотка обычно имеет около 1,5 Ом, а обмотка стартера около 4 Ом. Для 240 вольт 1/2 л.с. двигатели (только 240 вольт), вы должны ожидать около 6 Ом на основной обмотке и 16 Ом на обмотке стартера. Ожидайте, что сопротивление обмоток будет обратно пропорционально мощности.

У многих двигателей от обмоток отходят несколько дополнительных проводов. Часто к обмоткам прикрепляют термовыключатель, и этот выключатель может быть частично привязан к одной из обмоток. Также, если мотор можно переподключить на 120 и 240 вольт, основная обмотка будет состоять двух обмоток на 120 В, которые можно соединить последовательно или параллельно. Так что от обмоток может выходить довольно много проводов. Это может занять немного времени и поисков, чтобы понять это.

Для двигателей, которые могут быть подключены как на 120 В, так и на 240 В, стартер обмотка — обмотка на 120 вольт.Когда эти двигатели подключены к 240 вольт, основная обмотка используется как автотрансформатор, чтобы сделать 120 вольт для обмотки стартера. В противном случае переподключение мотора от 120 до 240 вольт было бы намного сложнее!

См. Также:


Вернуться на мой сайт деревообрабатывающий

KTNNKG 30-амперный переключатель Wi-Fi для садового освещения, насоса для бассейна и пылесборника, поддержка дистанционного управления, совместимость с приложением Ewelink, требуется нейтральный провод, 110 В 220 В переменного тока —

30a переключатель Wi-Fi

30a переключатель Wi-Fi

Примечание: 1.Этот переключатель можно использовать для небольшого водонагревателя, у которого есть провод под напряжением и нейтральный провод; Если у вашего водонагревателя есть 2 провода под напряжением по 115 В на каждый, использовать нельзя;

2. Интеллектуальный коммутатор должен работать с сетевым маршрутизатором или одиночной трансляцией 2,4 ГГц;

3.Этот релейный приемник на 30 ампер имеет частоту 433,92 МГц, его можно совместить с универсальным дистанционным передатчиком, который имеет ту же частоту. Таким образом, вы можете добавить больше пультов дистанционного управления.

Технические характеристики изделия: Напряжение: AC90V-250 В, 50/60 Гц; Нагрузка: 250 В / 30 А МАКС; Энергопотребление в режиме ожидания: <0.5 Вт; Рабочая среда: в помещении

Рабочая температура: -10 ℃ ~ 45 ℃; влажность: ≤80% относительной влажности; Поддержка: Wi-Fi 2,4 ГГц 802.11 b / g / n, 2G / 3G / 4G; Дальность беспроводной связи: 100 м / 328 футов; Материал: огнестойкий материал V0; Размер: 95 х 55 х 30 мм; Вес нетто: 88 г

Как установить режим работы: Jog-lock (мгновенный) / самоблокирующийся / блокирующий / ручной

* Если вы хотите сбросить рабочий режим, пожалуйста, нажмите кнопку сопряжения 8 раз, чтобы очистить код, световая вспышка и выключение, очистка кода успешно.

2. Как установить рабочий режим:

* Jog-lock (мгновенный): нажмите кнопку сопряжения 4 раза

* Самоблокировка: дважды нажмите кнопку сопряжения

* Блокировка: трижды нажмите кнопку сопряжения, затем нажмите кнопку A, затем кнопку B.

3.Как установить режим Wi-Fi

Нажмите и удерживайте кнопку сопряжения, мигает синий свет, ожидание обработки приложения, затем откройте приложение eWeLink, добавьте устройство, пожалуйста, следуйте инструкциям в руководстве.

Двигатели переменного тока

| Принцип работы | Ресурсы для инженеров

Универсальные моторы

Универсальный двигатель — это однофазный последовательный двигатель, который может работать как от переменного (ac), так и от постоянного (dc) тока, а характеристики одинаковы как для переменного, так и для постоянного тока.Обмотки возбуждения последовательных двигателей соединены последовательно с обмотками якоря

.
Основные принципы Universal Motors

Области электрического проектирования универсального двигателя: магнитная цепь, обмотки возбуждения и якоря, коммутатор и щетки, изоляция и система охлаждения.


Процесс коммутации универсальных двигателей

Тактико-технические характеристики универсальных двигателей

Двигатели с экранированными полюсами

Двигатель с экранированными полюсами — это однофазный асинхронный двигатель переменного тока.Вспомогательная обмотка, состоящая из медного кольца, называется затеняющей катушкой. Ток в этой катушке задерживает фазу магнитного потока в этой части полюса, чтобы обеспечить вращающееся магнитное поле. Направление вращения — от незатененной стороны к закрашенному кольцу.


Основные принципы двигателя с экранированными полюсами
  • Это устройство затеняющей катушки (кольца) смещает ось затененных полюсов от оси основных полюсов
  • Когда питание подается на статор, магнитный поток в основной части полюса индуцирует напряжение в затеняющей катушке, которая действует как вторичная обмотка трансформатора.
  • Так как ток во вторичной обмотке трансформатора не совпадает по фазе с током в первичной обмотке.
  • Ток в затеняющей катушке не в фазе с током в основной обмотке возбуждения.
  • Таким образом, поток затеняющего полюса не совпадает по фазе с потоком основного полюса.


Вращающееся поле двигателя с экранированными полюсами

Синхронные двигатели

Синхронные двигатели переменного тока — это электродвигатели с постоянной скоростью, которые работают синхронно с частотой сети.Скорость синхронного двигателя определяется количеством пар полюсов и всегда является отношением частоты сети.

  • Статор снабжен двумя простыми катушками, которые можно напрямую подключить к сети.
  • Ротор состоит из цилиндрического постоянного двухполюсного магнита, диаметрально намагниченного.


Основные принципы синхронных двигателей

Конструкция удаленного переключения пылесборника

Конструкция удаленного переключения пылесборника

Как удаленно переключить большой пылеуловитель

Дистанционное переключение пылесборника, кажется, является темой с расплывчатыми ответами и очень немногими недорогими решениями.В моем новом магазине деревянных изделий возникают серьезные проблемы с дизайном, включая возможность удаленного управления пылесборником, который находится этажом ниже моего магазина в гараже. После тщательного поиска доступного и эффективного решения я обратился к своему электрику за помощью и чрезвычайно элегантным решением.

Задача

Задача кажется довольно простой, но на самом деле она действительно ставила больше вопросов, чем решений. Как удаленно включать и выключать двигатель 220 В в комнате, которая находится не на удобном расстоянии от инструментов магазина?

Как я сказал ранее, пылеуловитель Delta 50-763 3HP для моего магазина находится в гараже, а магазин деревянных изделий расположен наверху в чердаке гаража.

Возможные решения

На рынке есть несколько продуктов, которые можно приобрести для дистанционного управления пылесборником. Некоторые из возможных решений включают:

Существуют также более продвинутые системы, которые можно установить в главный автоматический выключатель, которые будут определять потребление тока от вашего торгового оборудования и включать пылеулавливающую систему. К сожалению для меня, ни один из первых вариантов не работал в моем магазине из-за двигателя мощностью 3 л.с., а последняя система может быть довольно дорогой.

Простое, гибкое решение

Я очень расстроился, пытаясь найти решение, которое подойдет моему магазину. Поэтому я решил забрать свой мозг электрика и попросить у него совета. Я работал с ним достаточно долго, чтобы теперь у него, вероятно, было решение, и он не разочаровал!

После нескольких минут обсуждения электрик представил приведенную выше схему. Возможно, это выглядит довольно сложно, но на самом деле это довольно просто. Вот как это работает.

  • Питание от автоматического выключателя подается на выключатель на 30 А, 220 В, расположенный рядом с пылесборником (см. Фото ниже).
  • Затем питание подается на небольшую распределительную коробку, в которой находится контактор 220 В, рассчитанный на 30 ампер. Я расскажу об этом подробнее ниже.
  • Провода низкого напряжения (24 В) от заводских выключателей также входят в распределительную коробку и присоединяются к проводам низкого напряжения на контакторе. Схема на 24 В тоже очень проста. Он состоит из 3-проводной цепи, питаемой от трансформатора на 24 В, который проходит через 10 переключателей, включая два 3-позиционных переключателя на каждом конце цепи и 4-х позиционные переключатели между ними.Выключатели устанавливаются вокруг магазина рядом с каждым рабочим местом.
  • Электропитание от распределительной коробки затем подается в розетку с поворотным замком 220 В, которая подключается непосредственно к пылесборнику.

Части, которые я использовал

  • Контактор — Контактор является ключом к его настройке. Они обычно используются для включения и выключения большого оборудования, такого как блоки кондиционирования воздуха, поэтому бытовые электроприборы являются отличным ресурсом. Есть множество интернет-магазинов запчастей, которые также продают эти вещи.У Amazon больше нет того, что я купил, но на их сайте есть аналогичный, который будет работать так же хорошо. Для этого приложения мне понадобился двухполюсный контактор на 24 В на 30 А. Очевидно, ваше применение может отличаться в зависимости от размера двигателя вашего пылесборника.
  • Disconnect — Я также использовал выдвижной выключатель кондиционера на 30 ампер для отключения основного питания. Вы можете получить его по этой ссылке: Eaton Electical / Cutler-Hamm # DPF221RP 30A Вытяжной разъединитель
  • Трансформатор на 24 В — Я использовал трансформатор на 24 В с немного более высоким номинальным током, чем простые, которые вы можете купить для двери колокол.Это необходимо для предотвращения падения напряжения на всех коммутационных устройствах. Honeywell AT140A1042 Универсальный трансформатор 24 В 40 ВА

Важные примечания

Я не могу не подчеркнуть, что это проект, к которому вы действительно хотите привлечь электрика. Если вы не обратитесь к электрику, чтобы хотя бы проконсультироваться с вами, есть риск повредить пылесборник и даже получить серьезную травму. Также очень важно, чтобы вы следовали спецификациям производителя в отношении размера провода, размера автоматического выключателя и, наконец, электрических соединений.

Производительность и функциональность

Я полагаю, что одна из более причудливых систем, которая включает сбор пыли при включении инструмента, может быть довольно крутой. Но, если не считать этого подхода, я считаю, что это здорово. Я намеренно не хотел, чтобы система включалась и выключалась при открытии / закрытии взрывных ворот. Мне это казалось непрактичным, так как во многих случаях я мог не переходить с моей нынешней машины на другую, поэтому нет необходимости закрывать защитные ворота.Эта система работает безупречно, и я доволен ею на все 100%.

Общая стоимость материалов по этому проекту составила менее 300 долларов. Это включает контактор, трансформатор, разъединитель, переключатели и проводку. Этот подход также можно использовать для включения воздушного компрессора. Это довольно недорогая, простая технология, и уверенный в себе мастер-самоделка может выполнить несколько советов своего электрика.

Демонстрация видео

Посмотрите короткое видео, которое я создал, где я покажу вам, как это работает, и некоторые мысли по настройке этой системы удаленной коммутации.

Что такое контактные кольца и почему они используются в некоторых двигателях?

Контактные кольца, также называемые вращающимися электрическими соединениями, электрическими вертлюгами и коллекторными кольцами, представляют собой устройства, которые могут передавать мощность, электрические сигналы или данные между неподвижным компонентом и вращающимся компонентом. Конструкция контактного кольца будет зависеть от его применения — например, для передачи данных требуется контактное кольцо с более высокой пропускной способностью и лучшим подавлением EMI (электромагнитных помех), чем то, которое передает мощность, — но основными компонентами являются вращающееся кольцо и неподвижные щетки .

Полный узел контактного кольца включает торцевые крышки, подшипники и другие конструктивные элементы. Но основными компонентами контактного кольца являются кольцо и щетки.
Изображение предоставлено: Moog Inc.

Если вращение одного компонента включает фиксированное число оборотов, можно использовать катушки с достаточной длиной кабеля и скоростью вращения, чтобы обеспечить требуемые обороты, хотя в этом случае кабельное управление настройка может быть довольно сложной. Но если один компонент вращается непрерывно, использование кабелей для передачи сигналов между вращающимися и неподвижными компонентами во многих случаях нецелесообразно и не надежно.

Контактные кольца в электродвигателях переменного тока
Изображение предоставлено: brighthubengineering.com

В версии асинхронного двигателя переменного тока, называемой двигателем с фазным ротором, контактные кольца используются не для передачи энергии, а для создания сопротивления в обмотках ротора. В двигателе с фазным ротором используются три контактных кольца, обычно изготовленных из меди или медного сплава, которые установлены на валу двигателя (но изолированы от него). Каждое контактное кольцо подключено к одной из трех фаз обмоток ротора.Щетки с контактным кольцом, изготовленные из графита, подключены к резистивному устройству, например, реостату. Поскольку контактные кольца вращаются вместе с ротором, щетки поддерживают постоянный контакт с кольцами и передают сопротивление обмоткам ротора.

Контактные кольца на двигателе переменного тока с фазным ротором. Когда двигатель достигает рабочей скорости, щетки поднимаются с помощью пружин, а контактные кольца замыкаются накоротко через скользящую контактную планку.
Изображение предоставлено: Wikipedia

Добавление сопротивления к обмоткам ротора делает ток ротора более синфазным с током статора.(Напомним, что двигатели с фазным ротором представляют собой тип асинхронных двигателей, в которых электрические поля ротора и статора вращаются с разными скоростями) В результате создается более высокий крутящий момент при относительно низком токе. Контактные кольца используются только при запуске из-за их более низкой эффективности и падения крутящего момента при полной скорости вращения. Когда двигатель достигает своей рабочей скорости, контактные кольца замыкаются, и щетки теряют контакт, поэтому двигатель работает как стандартный асинхронный двигатель переменного тока (также известный как «беличья клетка»).

Контактные кольца в двигателе с фазным ротором образуют вторичный внешний контур. Добавление сопротивления в эту цепь позволяет двигателю создавать очень высокий крутящий момент при запуске, который необходим для перемещения нагрузок с высокой инерцией.
Контактное кольцо или коммутатор?

Возможно, вы заметили, что конструкция и функция контактного кольца очень похожи на работу коммутатора. Хотя между ними есть сходство, между контактными кольцами и коммутаторами есть существенные различия.Физически контактное кольцо представляет собой непрерывное кольцо, а коммутатор — сегментированный. Функционально контактные кольца обеспечивают непрерывную передачу энергии, сигналов или данных. В частности, в двигателях переменного тока они передают сопротивление обмоткам ротора.

Коммутаторы

, с другой стороны, используются в двигателях постоянного тока для изменения полярности тока в обмотках якоря. Концы каждой катушки якоря подсоединены к стержням коммутатора, разнесенным на 180 градусов. Во время вращения якоря щетки подают ток на противоположные сегменты коммутатора и, следовательно, на противоположные катушки якоря.


Контактные кольца используются практически в любом приложении, которое включает вращающееся основание или платформу, от промышленного оборудования, такого как индексные столы, намоточные устройства и автоматические сварочные аппараты, до ветряных турбин, медицинских машин для визуализации (КТ, МРТ) и даже аттракционов которые работают в стиле поворотного стола. Хотя традиционным применением контактных колец была передача энергии, они также могут передавать аналоговые и цифровые сигналы от таких устройств, как датчики температуры или тензодатчики, и даже данные через Ethernet или другие шинные сети.

Изображение предоставлено Rotary Systems Inc.

Преобразователь фазы

против VFD, что использовать?

Характеристики управления ЧРП

Приводы переменного тока

используются для улучшения процессов и качества в промышленных и коммерческих приложениях, таких как ускорение, поток, мониторинг, давление, скорость, температура, натяжение и крутящий момент. Эта простота управления делает более сложные приложения, такие как вертикальные фрезерные станки, сверлильные станки. , токарный станок, даже пила или воздушный компрессор идеально подходят для нашего выбора частотно-регулируемых приводов.

Нагрузки с фиксированной скоростью подвергают двигатель воздействию высокого пускового момента и скачков тока, которые до восьми раз превышают ток полной нагрузки. Вместо этого приводы переменного тока постепенно увеличивают скорость двигателя до рабочей, чтобы снизить механические и электрические нагрузки, снизить затраты на техническое обслуживание и ремонт и продлить срок службы двигателя и приводимого в действие оборудования.

Приводы

с регулируемой скоростью также могут запускать двигатель по специальным схемам, чтобы дополнительно минимизировать механические и электрические нагрузки. Большинство производителей частотно-регулируемых приводов производят приводы с входным напряжением 115 В, рассчитанные на 1 или 1.Номинальная мощность 5 л.с. и однофазное входное напряжение 208–240 В с заводской мощностью до 3 л.с. Если требуется более высокая мощность, номинал частотно-регулируемого привода можно уменьшить (увеличить), чтобы обеспечить однофазный вход и при этом обеспечить номинальную мощность в лошадиных силах. Для этого потребуется рейтинг FLA вашего двигателя, а иногда и S.F. (коэффициент использования) двигателя в зависимости от области применения.

Параметры установки

Что нужно для установки этих устройств? В таких ситуациях, как токарные станки, сверлильные станки и вертикальные фрезерные станки, идея состоит в том, чтобы подключить питание от блока выключателя к розетке или провести проводку от блока выключателя (используя) выключатель подходящего размера.

Затем вы подключаете частотно-регулируемый привод к входящей силовой линии, а также напрямую от частотно-регулируемого привода к двигателю на машине. Это означает отключение действующих пускателей двигателей из цепи. Любые установленные на машине переключатели, которые находятся на оборудовании, необходимо будет повторно подключить к клеммным колодкам на частотно-регулируемом приводе для отдельного управления внешним сигналом. Их нельзя оставлять на машине как есть и ожидать, что они будут работать.

Преимущества использования частотно-регулируемого привода

  • Регулятор скорости двигателя
  • Побочный продукт фазового преобразования
  • Прецизионный регулятор частоты
  • Двигатели с плавным пуском
  • Экономия энергии
  • HVAC, насосы, ЧПУ, деревообработка, конвейеры, смесители, подъемники, краны, лифты для повышения производительности.
  • Системы автоматизации зданий

Как реверсировать двигатели переменного тока

Вращение двигателя по существу создается за счет манипуляции с проводами и магнитными полями. Таким образом, вы часто можете реверсировать двигатели переменного тока, переключая соединения проводов. Это так же просто, как отсоединить и повторно обжать обозначенные провода. (Обратите внимание, что не все двигатели переменного тока имеют возможность реверсирования, но все двигатели переменного тока Groschopp могут).

Общие сведения о вращении двигателя переменного тока

Прежде чем мы обсудим, как реверсировать двигатель переменного тока, мы должны сначала понять, как вращается асинхронный двигатель.Для быстрого объяснения того, как работают двигатели переменного тока, ознакомьтесь с нашим видео с техническими советами.

В этом примере мы будем использовать двигатель переменного тока, который имеет две медные обмотки внутри статора — главную обмотку и стартерную / вспомогательную обмотку. Каждая обмотка состоит из пучка медных проводов, по которым проходят электрические токи и создаются магнитные поля. Обмотка стартера обычно состоит из провода меньшего размера, в результате чего пучок имеет меньшую магнитную прочность, чем основная обмотка. Возникающая в результате электромагнитная активность — это то, что отвечает за выработку энергии и за удержание ротора в движении.

Основная и вспомогательная обмотки расположены перпендикулярно друг другу, создавая как вертикальное, так и горизонтальное поле. Каждая обмотка борется за подтверждение своего собственного заряда — когда ротор выравнивается с одним магнитным полем, он затем тянется еще на 90 °, пытаясь выровняться со вторым.

Это то, что заставляет ротор вращаться после запуска. Это как старинный образ лошади и моркови — цель всегда недостижима, поэтому процесс продолжается. Когда сила одного поля почти достигает максимума, соседнее его догоняет.

Реверс двигателя переменного тока

Схемы подключения двигателя переменного тока

доступны для всех наших асинхронных двигателей, но мы объясним, как реверсировать двигатель в оставшейся части этого поста.

Чтобы изменить направление вращения двигателя переменного тока, необходимо изменить магнитные поля, чтобы вызвать движение в противоположном направлении.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *