Трансформатор повышает напряжение – Повышающие трансформаторные преобразователи напряжения большой мощности

Как повысить напряжение с трансформатора

Вам понадобится

  • — отвертка;
  • — молоток;
  • — мультиметр;
  • — намоточный станок со счетчиком;
  • — обмоточный провод;
  • — паяльник, припой и нейтральный флюс;
  • — мегомметр

Инструкция

Убедитесь, что трансформатор является разборным. Если его сердечник собран склейкой лаком, или, тем более, сваркой, а также если прибор герметизирован любым способом, то для перемотки он непригоден.

У некоторых трансформаторов имеется несколько вторичных обмоток. Соединяя их последовательно, можно получать различные напряжения. Если некоторые из таких обмоток не задействованы, включив их последовательно с уже использующимися, можно повысить выходное напряжение, не прибегая к разборке трансформатора.Все перепайки выполняйте при отключенном питании. Если снимаемое напряжение после переделки не увеличилось, а уменьшилось, значит, дополнительная обмотка подключена в неправильной фазировке. Поменяйте местами ее выводы.

Убедившись в том, что трансформатор имеет разборную конструкцию, можно приступить к его разборке. Сняв крепление сердечника, разберите его легкими ударами молотка, запоминая расположение пластин.Освободив катушку от сердечника, намотайте на нее измерительную обмотку, имеющую несколько десятков витков. Изолируйте ее, выводы вытащите наружу, после чего соберите трансформатор.

Подключите к измерительной обмотке мультиметр, работающий в режиме измерения переменного напряжения, подайте на первичную обмотку трансформатора номинальное напряжение питания. Разделив число витков измерительной обмотки на измеренное напряжение, вы получите число витков на вольт.

Рассчитайте число витков новой вторичной обмотки, которую необходимо включить последовательно с имеющейся, по следующей формуле:Nдоп=(U2-U1)*(Nизм/Uизм), где:
Nдоп — искомое число витков дополнительной обмотки;
U2 — напряжение, которое необходимо получить;
U1 — напряжение имеющейся вторичной обмотки;
Nизм — число витков измерительной обмотки;
Uизм — напряжение, снятое с измерительной обмотки.Снова разберите трансформатор, смотайте измерительную обмотку и вместо нее намотайте дополнительную. Используйте провод того же сечения, что и у имеющейся вторичной обмотки, при этом, следите, чтобы диаметр катушки не увеличился слишком сильно, иначе сердечник будет невозможно надеть. Если соблюсти это требование не получается, от переделки трансформатора придется отказаться.

Изолируйте дополнительную обмотку, соберите трансформатор, после чего включите новую обмотку последовательно с вторичной. Обеспечьте ее правильную фазировку способом, описанным выше.

После переделки трансформатора ни в коем случае не снимайте с него мощность, превышающую ту, на которую он был рассчитан изначально. Рассчитать эту мощность можно, умножив снимаемое напряжение на потребляемый ток.

С помощью мегомметра убедитесь, что утечка между первичной и вторичной обмотками, а также между каждой из них и сердечником отсутствует даже после длительного прогрева при номинальной снимаемой мощности. Удостоверьтесь, что в ходе испытания не появляются запах гари, дым.

www.kakprosto.ru

регулирование напряжения трансформатора | Советы электрика

02 Июнь 2012 Энергетика

Приветствую вас, читатель моего сайта ceshka.ru! 

В этой статье я хочу рассказать вам как регулируется напряжение у силового трансформатора 110/10 кВ- под нагрузкой.

Для тех кто вообще не в теме объясняю о чем вообще идет речь.

Электроэнегрия от электростанции (АЭС, ТЭЦ, ГРЭС и т.п.) передается по опорам воздушных линий на многие сотни километров к подстанции (я буду вести речь о подстанции 110 000 Вольт), где установлены понижающие трансформаторы – очень большие и очень мощные. 

Эти трансформаторы понижают напряжение (в моем примере до 10 000 Вольт) и передают электроэнергию дальше, но уже на более короткое расстояние- в пределах 10-40км до следующего понижающего трансформатора, который преобразует уже высокое напряжение 10 кВ в низкое трехфазное напряжение 400 Вольт, которое и идет по проводам к нам в дома.

Так вот, к трансформатору 110/10 кВ, установленному на подстанции, присоединяется очень много нагрузки- это может быть целый сельский район или часть большого города.

Нагрузка в течении дня и в течении времен года постоянно меняется и очень сильно.

Например в зимний период многие сельские жители обогреваются электрокотлами, поэтому потребляемый ток гораздо больше чем летом.

Или есть утренние и вечерние часы максимума нагрузок когда люди просыпаются или наоборот приходят с работы, включают электроприборы- потребление электроэнергии сильно возрастает. В течении дня нагрузка снижается и иногда даже в разы меньше чем утром или вечером.

Что происходит с понижающим трансформатором при увеличении нагрузки

А ничего с ним не происходит))) Как понижал он напряжение- так и продолжает понижать- так уж он устроен.

На первичную обмотку (обмотка высокого напряжения) подается 110 000 Вольт, а со вторичной (обмотка низкого напряжения) снимается 10 000 Вольт.

Это идеальный вариант, когда напряжение на первичной обмотке стабильное и не меняется, а нагрузка вторичной обмотки или очень мала или ее совсем нет (трансформатор работает в режиме холостого хода).

На самом деле это совсем не так.

В действительности высокое напряжение на первичной нагрузке постоянно меняется в небольших пределах- 110-117кВ

А так как коэффициент трансформации

у трансформатора величина неизменная, то получается что и на вторичной обмотке 10 кВ напряжение тоже колеблется так сказать “в ногу” с первичным напряжением.

А вслед за этим колебания напряжения передаются следующим понижающим трансформаторам 10/0,4 кВ…

И так эти колебания дойдут и до наших квартир и напряжение колебалось бы пропорционально с высоким напряжением 110 кВ.

И было бы у нас в розетках то 180 Вольт, то 250 и бесперестанно бы оно изменялось в течении суток. Думаю что никому не понравится когда свет в доме постоянно меняет яркость, как в том анекдоте- то потухнет, то погаснет, то совсем не загорит)))

Почему изменяется напряжение 

А изменяется напряжение от нагрузки, от того, какая мощность подключена к трансформатору.

Кто дружит с физикой тот знает- чем больше мощность, тем больше ток. В свою очередь увеличение значения электрического тока приводит к тому, что увеличивается падение напряжения в проводниках электрического тока.

Это  обмотки трансформатора,  провода воздушной линии электропередачи, силовые кабеля и т.п.- на них происходит основное падение напряжения.

Что это такое падение напряжения

Говоря упрощенно и что бы было понятнее- это энегрия(причем активная!)  выделяемая в виде тепла.

Приведу пример. Для каждого сечения провода есть максимальный допустимый ток. Если к медному проводу сечением 2,5 кв. мм  подключить однофазный электротел мощностью 9 кВт с потребляемым током 9000:220=41 ампер, то провод очень сильно будет греться.

Материал, из которого изготовлен провод- медь оказывает активное сопротивление электрическому току.

По закону Ома- электрический ток прямо пропорционален изменениям напряжения, поэтому при подключении электрокотла на этом участке провода увеличивается и напряжение и происходит нагрев провода.

Не понятно? Давайте еще подробнее. Допустим сопротивление провода0 1 Ом. Ток как уже определили- 41 ампер.

Тогда на проводе напряжение составит U=R*I= 41 Вольт

Это и есть падение напряжения на проводе. При этом будет выделяться мощность в виде тепла P=U*I=41*41=1681 Ватт

А это целый электрообогреватель мощностью 1,7 кВт!!!

Конечно такая рассеиваемая мощность в проводе приводит к перегреву и плавлению изоляции. Именно поэтому для каждого сечения ток ограничен.

В данном случае для 2,5 кв.мм допустимый ток 25-27 ампер.

Из всего вышесказанного следует:

При увеличении нагрузки- увеличивается ток и увеличивается падение напряжения и  потери энергии в проводах

Другими словами- часть напряжения и энергии до наших розеток просто не доходит, а выделяется в воздух в виде тепла…

А сейчас самое важное!

Что бы компенсировать такие неизбежные потери энергии, на вторичной обмотке силового трансформатора повышают напряжение.

То есть повышают напряжение выше 10 000 Вольт- до 11, а то и больше киловольт. Тогда даже и если часть энергии “теряется” в проводах, у нас в квартирах и домах напряжение находится в пределах нормы- около 220 Вольт.

Как регулируется напряжение

Как можно изменять вторичное напряжение на понижающем трансформаторе? Можно изменять напряжение, подводимое к первичной обмотке- тогда на вторичной оно будет изменяться прямо пропорционально.

Но этот вариант не подходит, так как у трансформаторов, подключенных к сети 110 кВ разная загруженность- у одних может быть 100% нагруженность, у других- 20-50% и т.д.

И при этом способе напряжение на выходе будет меняться одновременно на всех- и там где надо и там где не надо…

А трансформаторов подключено не просто много- а очень много!

Поэтому применяют другой способ.

Напряжение регулируется изменением коэффициента трансформации самого трансформатора

Изменяется количество витков первичной обмотки трансформатора.

А почему именно в первичной?

В принципе можно было бы изменять и на вторичной обмотке- коэффициенту без разницы, он все равно будет изменяться, так как будет меняться соотношение витков первичной к вторичной обмотками.

Однако изменяют именно на высокой стороне- где выше напряжение. Почему?

Все очень просто. Где выше напряжение- там меньше величина электрического тока.

А так как регулировка напряжения происходит под нагрузкой- то есть трансформатор

не отключают, то при изменении витков обмотки- при коммутации- появляется электрическая дуга в месте переключения контактов.

А чем больше ток— тем больше дуга, а эту дугу надо обязательно гасить…

Кстати значения тока между первичной и вторичной обмотками различается очень значительно. Например на вторичной нагрузке ток в 300 ампер вполне допустим, а для первичной максимальный ток является 25-30 ампер.

Думаю не надо объяснять что переключать контакты при токе в 300 ампер гораздо сложнее чем при 30, согласитесь)))

А где находятся эти контакты? В баке трансформатора сделаны отводы от первичной обмотки для изменения коэффициента трансформации и выведены в отдельный отсек, где и происходит переключение с помощью специального механизма.

Снаружи на баке трансформатора прикреплен привод этого механизма, называется он

Привод РПН

РПН расшифровывается как Регулирование Под Нагрузкой. В приводе расположен электродвигатель и элементы автоматики РПН- пускатели, конечные выключатели, автоматический выключатель, клемник с контрольными кабелями и т.д.

Электродвигатель с помощью вала вращает механизм переключения. Вся работа привода РПН  контролируется автоматикой РПН.

Именно благодаря применению автоматики не требуется ручное управление- она сама следит за изменениями напряжения и при необходимости меняет коэффициент трансформации, поэтому при любой нагрузке трансформатора на выходе вторичной обмотки- необходимое напряжение.

А у нас в доме- в розетке- 220)))

Автоматикой РПН управляют специальные электронные блоки:

В них выставляются необходимые параметры работы- напряжение, выдержка времени, порог нечувствительности и т.д. В релейной защите это называется уставки.

И электронный блок уже сам определяет когда изменить напряжение, через какое время и в каких пределах, все это делается автоматически.

Так же возможно и ручное переключение РПН- непосредственно из привода около трансформатора или дистанционно- с панели управления из диспетчерского пункта.

Для этого есть специальные переключатели и ключи управления. Оперативный персонал подстанции может отключить автоматику и вручную регулировать напряжение на выходе трансформатора.

Это требуется например когда автоматика РПН выведена в ремонт или при проведении оперативных переключений, но это уже как говорится- совсем другая история)))

Специально по этой теме я снял видео непосредственно с подстанции 110/10 кВ и предлагаю вам “вживую” посмотреть как регулируется напряжение на трансформаторе под нагрузкой!

Итак, смотрим видео:

 

Узнайте первым о новых материалах сайта!

Просто заполни форму:

Теги: регулировка напряжения

ceshka.ru

Как трансформатор повышает и как понижает напряжение? В чём суть его работы? объясните..

переменный электрический ток ток в обмотке генерирует магнитное поле, которое через сердечник передается во вторую обмотку. там происходит обратный процесс. Если во второй обмотке витков меньше, то и сгенерированное напряжение меньше, правда и ток больше, и наоборот

<a rel=»nofollow» href=»https://ru.wikipedia.org/wiki/Трансформатор» target=»_blank»>https://ru.wikipedia.org/wiki/Трансформатор</a>

принцип простой: получает 380, отдает 220, на остальные — гудит

Простите, Вы смеетесь? Разъяснить суть работы трансформатора в одном ответе — увы, невозможно.

Старый анекдот: Мой папа — трансформатор. Получает 380 зарплаты, в семью отдает 220, на оставшиеся гудит.

Суть в коэффициенте трансформации в отношении витков первичной и вторичной обмоток.

Разделительный не повышает и не понижает… Мой папа трансформатор, получает 380,а домой приносит 220…

Жаль нет дочки дома, я бы попросил её объяснить. В отличие от вас, она физику не скурила и поняла суть работы трансформатора. А что мешает вам понять?

Суть его работы в законе Фарадея )) Больше витков — больше напряжение.

Когда провод свернут в кольцо, он создает электромагнитное поле классической конфигурации, с двумя полюсами. Этому полю предоставлен магнитопровод — массивное железо, тоже замкнутое в кольцо. Благодаря этому, поле не рассеивается в пространстве вокруг провода, а циркулирует только в этом магнитопроводе. Если по проводу пустить переменный ток, то и поле будет создаваться тоже переменное. Этот эффект обратим — поэтому в любом проводе, оказавшемся в таком поле, ТОЖЕ появляется переменный ток. Сила эффекта напрямую зависит от вложенной энергии. Чем более сильный ток пустишь по первому проводу, тем интенсивнее получится поле, и тем более сильный ток появится во втором проводе. Замкнутый магнитопровод очень эффективен, он практически СОВСЕМ не выпускает поле за свои пределы, и энергия не теряется попусту. Поэтому напряжение, появляющееся во втором кольцевом проводе, в точности равно напряжению, приложенному к первому проводу. Если второй провод уложить в ДВА витка, то получится, что один и тот же провод ДВАЖДЫ участвует в процессе — и напряжение в нем наведется вдвое более высокое. Эта пропорция работает и при большом количестве витков. Если обе обмотки трансформатора содержат одинаковое количество витков (100, 1000, 1млн.), то напряжение на выходе всегда окажется равно напряжению на входе. Если количество витков не равно, то напряжение на выходе окажется пропорционально выше или ниже входного. Причина все та же — сила магнитного поля зависит от того, сколько раз входной провод обернулся вокруг магнитопровода, а напряжение на выходе — от того, сколько раз обернулся вокруг магнитопровода второй провод.

магнитное поле переходит в электрическое с потерями там пластинки такие в сердечнике ш и u формы и вокруг них проволка обмотанна по одной обмотке ток подается по другой снимается но КПД естественно не 100%

Если лень мешает учёбе, бросай к чертовой матери эту учёбу.

touch.otvet.mail.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о