Закон Ома. Формула Закона Ома
Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.
Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.
Георг Симон ОмЗакон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.
Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.
где
I – сила тока в проводнике, единица измерения силы тока — ампер [А];
U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];
R – электрическое сопротивление проводника, единица измерения электрического сопротивления — ом [Ом].
Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза
И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.
Рассмотрим простейший случай применения закона Ома. Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:
Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.
Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.
Где и когда можно применять закон Ома?
Нужна помощь в написании работы?
Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).
Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.
Значение Закона Ома
Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении.
Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.
Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.
Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:
Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.
Закон Ома | Физика
В предыдущих параграфах были рассмотрены три величины, характеризующие протекание электрического тока в цепи,— сила тока I, напряжение U и сопротивление R. Между этими величинами существует определенная связь. Закон, выражающий эту связь, был установлен в 1827 г. немецким ученым Г. Омом и поэтому носит его имя.
Выделим в произвольной электрической цепи участок, обладающий сопротивлением R и находящийся под напряжением U (рис. 37). Согласно закону Ома:
Сила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению.
Математически закон Ома записывается в виде следующей формулы:
I = U/R (14.1)
Закон Ома позволяет установить, что будет происходить с силой тока на участке цепи при изменении его сопротивления или напряжения.
1. При неизменном сопротивлении сила тока прямо пропорциональна напряжению: чем больше напряжение U на концах участка цепи, тем больше сила тока I на этом участке. Увеличив (или уменьшив) напряжение в несколько раз, мы во столько же раз увеличим (или уменьшим) силу тока.
Проиллюстрируем эту закономерность на опыте. Соберем электрическую цепь из источника тока, лампы, амперметра и ключа (рис. 38, а). В качестве источника тока будем использовать устройство, позволяющее регулировать выходное напряжение от 4 до 12 В. Измеряя силу тока в цепи при разных напряжениях, можно убедиться в том, что она действительно пропорциональна напряжению.
2. При неизменном напряжении сила тока обратно пропорциональна сопротивлению: чем больше сопротивление R участка цепи, тем меньше сила тока I в нем.
Для проверки этой закономерности заменим в используемой цепи лампу на магазин сопротивлений (рис. 38, б). Измеряя силу тока при разных сопротивлениях, мы увидим, что сила тока I и сопротивление R действительно находятся в обратно пропорциональной зависимости.
При уменьшении сопротивления сила тока возрастает. Если сила тока превысит допустимое для данной цепи значение, включенные в нее приборы могут выйти из строя; провода при этом могут раскалиться и стать причиной пожара. Именно такая ситуация возникает при коротком замыкании. Так называют соединение двух точек электрической цепи, находящихся под некоторым напряжением, коротким проводником, обладающим очень малым сопротивлением.
Короткое замыкание может возникнуть при соприкосновении оголенных проводов, при небрежном ремонте проводки под током, при большом скоплении пыли на монтажных платах и даже при случайном попадании какого-нибудь насекомого внутрь прибора.
На законе Ома основан экспериментальный способ определения сопротивления. Из формулы (14.1) следует, что
R = U/I (14.2)
Поэтому для нахождения сопротивления R участка цепи надо измерить на нем напряжение U, затем силу тока I, после чего разделить первую из этих величин на вторую. Соответствующая этому схема цепи изображена на рисунке 39.
Если, наоборот, известны сопротивление R и сила тока I на участке цепи, то закон Ома позволяет рассчитать напряжение U на его концах. Из формулы (14.1) получаем
U = IR (14.3)
Чтобы найти напряжение U на концах участка цепи, надо силу тока I на этом участке умножить на его сопротивление R.
Опубликовав книгу, в которой излагался открытый им закон «Теоретические исследования электрических цепей», Георг Ом написал, что «рекомендует ее добрым людям с теплым чувством отца, не ослепленного обезьяньей любовью к детям, но довольствующегося указанием на открытый взгляд, с которым его дитя смотрит на злой мир». Мир действительно оказался для него злым, и уже через год после выхода его книги в одном из журналов появилась статья, в которой работы Ома были подвергнуты уничтожающей критике. «Тот, кто благоговейными глазами взирает на вселенную,— говорилось в статье,— должен отвернуться от этой книги, являющейся плодом неисправимых заблуждений, преследующих единственную цель — умалить величие природы».
Злобные и безосновательные нападки на Ома не прошли бесследно. Теорию Ома не приняли. И вместо продолжения научных исследований он должен был тратить время и энергию на полемику со своими оппонентами. В одном из своих писем Ом написал: «Рождение «Электрических цепей» принесло мне невыразимые страдания, и я готов проклясть час их зарождения».
Но это были временные трудности. Постепенно, сначала в России, а затем и в других странах, теория Ома получила полное признание. Закон Ома внес такую ясность в правила расчета токов и напряжений в электрических цепях, что американский ученый Дж. Генри, узнав об открытиях Ома, не удержался от восклицания: «Когда я первый раз прочел теорию Ома, то она мне показалась молнией, вдруг осветившей комнату, погруженную во мрак».
??? 1. Сформулируйте закон Ома. 2. Как изменится сила тока на участке цепи, если при неизменном сопротивлении увеличить напряжение на его концах? 3. Как изменится сила тока, если при неизменном напряжении увеличить сопротивление участка цепи? 4. Как с помощью вольтметра и амперметра можно измерить сопротивление проводника? 5. По какой формуле находится напряжение, если известны сила тока и сопротивление данного участка? 6. Что называют коротким замыканием? Почему при этом увеличивается сила тока? 7. Объясните причину короткого замыкания в ситуациях, изображенных на рисунке 40.
ЗАКОН ОМА — это… Что такое ЗАКОН ОМА?
ЗАКОН ОМА — один из основных законов электрического тока, согласно которому сила постоянного электрического тока / на участке электрической цепи прямо пропорциональна приложенному напряжению U и обратно пропорциональна электрическому сопротивлению R данного… … Большая политехническая энциклопедия
закон Ома — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Ohm s law … Справочник технического переводчика
Закон Ома — Классическая электродинамика … Википедия
закон Ома — Ohmo dėsnis statusas T sritis automatika atitikmenys: angl. Ohm s law vok. Ohmsches Gesetz, n rus. закон Ома, m pranc. loi d Ohm, f ryšiai: sinonimas – Omo dėsnis … Automatikos terminų žodynas
закон Ома — Omo dėsnis statusas T sritis fizika atitikmenys: angl. Ohm’s law vok. Ohmsches Gesetz, n rus. закон Ома, m pranc. loi d’Ohm, f … Fizikos terminų žodynas
закон Ома для магнитной цепи — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Rowland law … Справочник технического переводчика
Закон Ома для полной цепи — Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм Электростатика Закон Кулона … Википедия
закон Ома в акустике — akustinis Omo dėsnis statusas T sritis fizika atitikmenys: angl. Ohm’s law of acoustics vok. akustisches Ohmsches Gesetz, n rus. закон Ома в акустике, m pranc. loi d’Ohm de l’acoustique, f … Fizikos terminų žodynas
Акустический закон Ома — Феномен, заключающийся в том, что аудиальная система человека выполняет (в весьма приблизительном виде) анализ Фурье, разделяя сложную звуковую волну на составляющие ее компоненты. Функционально это означает, что в определенных пределах человек… … Психология ощущений: глоссарий
обобщённый закон Ома — Соотношение, устанавливающее тензорную связь между вектором плотности электрического тока и системой обобщённых сил, вызывающих его протекание … Политехнический терминологический толковый словарь
Закон Ома для участка цепи
Скажу сразу, что закон Ома – основной закон электротехники и применяется для расчета таких величин, как: ток, напряжение и сопротивление в цепи.
Рассмотрим электрическую цепь, приведенную на рисунке 1.
Рисунок 1. Простейшая цепь, поясняющея закон Ома.
Мы знаем, что электрический ток, то есть поток электронов, возникает в цепи между двумя точками (на рисунке А и Б) с разными потенциалами. Тогда следует считать, что чем больше разность потенциалов, тем большее количество электронов переместятся из точки с низким потенциалом (Б) в точку с высоким потенциалом (А). Количественно ток выражается суммой зарядов прошедших через заданную точку и увеличение разности потенциалов, то есть приложенного напряжения к резистору R, приведет к увеличению тока через резистор.
С другой стороны сопротивление резистора противодействует электрическому току. Тогда следует сказать, что чем больше сопротивление резистора, тем меньше будет средняя скорость электронов в цепи, а это ведет к уменьшению тока через резистор.
Совокупность двух этих зависимостей (тока от напряжения и сопротивления) известна как закон Ома для участка цепи и записывается в следующем виде:
I=U/R
Это выражение читается следующим образом: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
Следует знать что:
I – величина тока, протекающего через участок цепи;
U – величина приложенного напряжения к участку цепи;
R – величина сопротивления рассматриваемого участка цепи.
При помощи закона Ома для участка цепи можно вычислить приложенное напряжение к участку цепи (рисунок 1), либо напряжение на входных зажимах цепи (рисунок 2).
Рисунок 2. Последовательная цепь, поясняющая расчет напряжения на зажимах цепи.
В этом случае формула (1) примет следующий вид:
U = I *R
Но при этом необходимо знать ток и сопротивление участка цепи.
Третий вариант закона Ома для участка цепи, позволяющий рассчитать сопротивление участка цепи по известным значениям тока и напряжения имеет следующий вид:
R =U/I
Как запомнить закон Ома: маленькая хитрость!
Для того, что бы быстро переводить соотношение, которое называется закон Ома, не путаться, когда необходимо делить, а когда умножать входящие в формулу закона Ома величины, поступайте следующим образом. Напишите на листе бумаги величины, которые входят в закон Ома, так как показано на рисунке 3.
Рисунок 3. Как запомнить закон Ома.
Теперь закройте пальцем, ту величину, которую необходимо найти. Тогда относительное расположение оставшихся незакрытыми величин подскажет, какое действие необходимо совершить для вычисления неизвестной величины.
Подробнее можно узнать в мультимедийном учебнике по основам электротехники и электроники.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
3. И снова Закон Ома! | 3. Электробезопасность | Часть1
3. И снова Закон Ома!
И снова Закон Ома!
Довольно часто нам приходится слышать такие фразы, как «Ударило током» или «Убило током», и ни какого упоминания о напряжении. Исходя из этого, у вас может сложиться впечатление, что для человека опасен ток, а не напряжение. Какой-то элемент истины здесь имеет место быть. Однако, если напряжение не представляет никакой опасности, то зачем пишутся предупреждающие таблички примерно такого содержания: «ОСТОРОЖНО — ВЫСОКОЕ НАПРЯЖЕНИЕ!»?
По большому счету принцип «опасности тока» верен. Электрический ток вызывает ожоги тканей тела, блокирует мышцы и останавливает сердце, но он не может возникнуть сам по себе. Чтобы создать поток электронов через тело человека, к нему нужно приложить напряжение. При выполнении расчетов мы так же должны учесть сопротивление, которое тело человека оказывает электрическому току.
Если с помощью Закона Ома мы выразим силу тока через известные значения напряжения и сопротивления, то получим следующее уравнение:
Сила тока, проходящего через тело человека прямопропорциональна величине напряжения, приложенного к двум его точкам, и обратнопропрорциональна сопротивлению между этими точками. Очевидно, чем больше величина напряжения, создающего поток электронов, тем легче эти электроны будут проходить через конкретную величину сопротивления. Следовательно, высокое напряжение опасно для жизни, потому что оно создает большой ток, который может травмировать или убить человека. И наоборот, чем большее сопротивление оказывает тело электрическому току, тем медленнее будут течь через него электроны при заданной величине напряжения. Проще говоря, опасность того или иного напряжения зависит от величины сопротивления, оказываемого телом человека потоку электронов.
Сопротивление тела не является фиксированной величиной. Оно изменяется от человека к человеку, и время от времени. На измерении электрического сопротивления между пальцами рук и ног основывается метод определения процентного содержания жира в организме. Разные проценты содержания жира обеспечивают разные сопротивления, и это только одна из величин, влияющая на электрическое сопротивление тела человека. Чтобы метод работал точно, человек за несколько часов до теста должен регулировать потребление жидкости, а это говорит о том, что гидратация является еще одним фактором, влияющим на сопротивление человеческого тела.
Сопротивление так же зависит от того, между какими частями тела мы его будем измерять: между руками, между ногами, между рукой и ногой и т.д. Необходимо учесть и тот фактор, что прекрасными проводниками электричества являются пот, богатый солями и минералами, а также кровь, с ее высоким содержанием проводящих химических элементов. Таким образом, контакт между проводом и потными руками или руками с кровоточащей раной будет обладать гораздо меньшим сопротивлением, чем контакт между проводом и руками с сухой, чистой кожей.
Измеряя сопротивление своего тела чувствительным измерительным прибором, путем сжимания его щупов пальцами рук, я получил значение 1 миллион Ом (1 МОм). При этом прибор показывает меньшее сопротивление, когда я плотно сжимаю щупы, и большее сопротивление — когда я ослабляю пальцы. Руки мои при этом чисты и сухи. Если бы я работал во влажной и грязной производственной среде, то сопротивление между моими руками было бы намного меньше, представляя большую угрозу поражения электрическим током.
Итак, какая же величина тока опасна для человека?. Ответ на этот вопрос зависит от нескольких факторов. Значительное влияние на то, как электрический ток воздействует на человека, оказывает химический состав его тела. Некоторые люди очень чувствительны к току, и поэтому испытывают непроизвольное сокращение мышц даже от разряда статического электричества, который другие люди могут и не почувствовать. Несмотря на эти различия, посредством тестов были выведены примерные значения тока (очень небольшие), которые могут оказать вредное воздействие на организм человека. Все значения в таблице даны в миллиамперах (миллиампер равен 1/1000 ампера):
«Гц» является сокращенным обозначением единицы измерения Герц, которая служит мерой скорости чередования направлений переменного тока. Эта мера иначе известна как частота. Так, заголовок «60 Гц АС» одного из столбцов таблицы означает что все значения этого столбца относятся к переменному току, который чередуется с частотой 60 циклов в секунду (1 цикл равен периоду времени, в течении которого поток электронов сначала движется в одном направлении, а потом в другом). Последняя колонка, с надписью «10 кГц АС», относится к переменному току, который совершает десять тысяч циклов в секунду.
Следует иметь ввиду, что все вышеприведенные цифры являются приблизительными, поскольку реакция на ток людей с разным химическим составом тела будет различной. Существует предположение, что достаточно пропустить переменный ток величиной в 17 миллиампер через грудь человека, чтобы при определенных условиях вызвать у него аритмию сердца. Большинство данных таблицы, касающихся аритмии сердца, взяты из опытов над животными. И это естественно, ведь никто не будет проводить такие эксперименты на людях, в связи с чем имеющиеся данные весьма приблизительны. Если вас интересует вопрос, почему женщины более восприимчивы к электрическому току чем мужчины, то здесь мы вам не поможем — для нас это тоже загадка.
Теперь давайте предположим, что я взялся сухими и чистыми руками за контакты источника напряжения переменного тока частотой 60 Гц. Какое напряжение должно быть у этого источника, чтобы создать ток величиной 20 миллиампер (при таком токе я не смогу самостоятельно отпустить контакты источника)? Ответ на этот вопрос можно найти в Законе Ома (U = IR):
U = IR
U = (20 мA)(1 МОм)
U = 20,000 вольт, или 20 кВ
Имейте в виду, что это сценарий «лучшего случая» с точки зрения электробезопасности (чистая, сухая кожа), а полученная величина напряжения, с огромной долей вероятности, вызовет оцепенение человека. Гораздо меньшее напряжение потребуется для вызова болевых ощущений. Следует учесть так же и тот момент, что физиологические эффекты воздействия различных токов на разных людей могут значительно отличаться, поэтому наши расчеты являются только приблизительной оценкой действительности.
Если я смочу пальцы своих рук водой, имитируя пот, то сопротивление моего тела между руками составит всего 17000 Ом (17 кОм). Обратите внимание, что в нашем случае с тонкими металлическими щупами измерительного прибора контактирует по одному пальцу каждой руки. Повторно вычислив напряжение, необходимое для получения тока величиной 20 мА, мы получим следующее значение:
U = IR
U = (20 мA)(17 kОм)
U = 340 вольт
В этом случае достаточно напряжения 340 вольт, чтобы создать ток 20 миллиампер через тело человека. Однако, смертельный удар током можно получить и от меньшего напряжения если увеличить площадь контакта, уменьшив тем самым его сопротивление. Примером такого контакта служит кольцо на пальце (золото обернутое вокруг пальца создает превосходный контакт для поражения электрическим током) или большой металлический предмет, такой как труба или ручка инструмента. Сопротивление организма при этом понизится до 1000 Ом (10 кОм), что создаст реальную угрозу поражения низкими значениями напряжения:
U = IR
U = (20 мA)(1 kОм)
U = 20 вольт
Таким образом, чтобы создать ток величиной 20 мА и вызвать оцепенение человека, достаточно напряжения 20 вольт. Ранее мы упомянули предположение, что сила тока 17 мА, пропущенная через грудь человека, при определенных условиях может вызвать аритмию сердца. Так вот, если сопротивление между руками человека будет равно 1 кОм, то для создания этого опасного условия потребуется всего 17 вольт:
U = IR
U = (17 мA)(1 kОм)
U = 17 вольт
В этих расчетах мы показали вам «наихудший» сценарий для напряжения переменного тока частотой 60 Гц и отличной проводимости человеческого тела. Данный пример дает наглядную картину опасности даже небольших значений напряжения.
Понизить сопротивление человеческого тела до 1000 Ом можно не только путем воздействия рассмотренных выше экстремальных факторов (например плотным контактом золотого кольца с пальцем). Оно может уменьшиться при длительном воздействии напряжения (например, когда человек под действием тока не может разжать руку, и только крепче сжимает проводник). Одновременно с уменьшением сопротивления увеличивается сила тока при фиксированном напряжении.
Ниже приведены примерные значения сопротивлений точек контакта человека с различными предметами в различных условиях:
-
Контакт пальца с проводом: от 40 000 Ом до 1 000 000 Ом (сухой палец), от 4 000 Ом до 15 000 Ом (влажный палец).
-
Контакт руки с проводом: от 15 000 Ом до 50 000 Ом (сухая рука), от 3 000 Ом до 5 000 Ом (влажная рука).
-
Контакт руки с металлическими плоскогубцами: от 5 000 Ом до 10 000 Ом (сухая рука), от 1 000 Ом до 3 000 Ом (влажная рука).
-
Контакт с ладонью: от 3 000 Ом до 8 000 Ом (сухая ладонь), от 1 000 Ом до 2 000 Ом (влажная ладонь).
-
Контакт (обхват) одной руки с 1,5-дюймовой металлической трубой: от 1 000 Ом до 3 000 Ом (сухая рука), от 500 Ом до 1 500 Ом (влажная рука).
-
Контакт (обхват) двух рук с 1,5-дюймовой металлической трубой: от 500 Ом до 1 500 Ом (сухие руки), от 250 Ом до 750 Ом (влажные руки).
-
Контакт руки, погруженной в проводящую жидкость, с этой жидкостью: от 200 Ом до 500 Ом.
-
Контакт ноги, погруженной в проводящую жидкость, с этой жидкостью: от 100 Ом до 300 Ом.
Обратите внимание на значения сопротивлений в двух случаях с 1,5-дюймовой металлической трубой. Если трубу обхватить двумя руками, то сопротивление будет ровно в два раза меньше, чем при обхвате этой же трубы одной рукой.
Две руки, сжимающие металлическую трубу, увеличивают площадь контакта в два раза по сравнению с одной рукой. Это очень важное обстоятельство: электрическое сопротивление между любыми контактирующими объектами уменьшается с увеличением площади контакта при прочих равных условиях. В этом случае электроны текут из трубы в тело (или наоборот) по двум параллельным маршрутам.
Как вы увидите позже, общее сопротивление параллельной цепи всегда меньше (или равно) любого из сопротивлений этой цепи.
В промышленности пороговым значением опасного напряжения считается, как правило, напряжение величиной 30 вольт. Осторожный человек должен рассматривать любое напряжение, превышающее это значение, как опасное. Работая с электричеством он должен содержать свои руки чистыми и сухими, а так же снять все металлические украшения, которые представляют опасность и при более низких значениях напряжения. Такие украшения, выступая в качестве контактов между двумя точками цепи, способны провести достаточный ток, чтобы сжечь кожу.
Опасными могут быть и напряжения менее 30 вольт, если они достаточны чтобы вызвать неприятные ощущения, в результате которых человек может совершить резкое движение и вступить в контакт с другим, более высоким напряжением или иным источником повышенной опасности. Автор статьи вспоминает, как однажды он ремонтировал свой автомобиль в жаркий летний день. По причине теплой погоды он был в шортах, и работая с аккумуляторной батареей прислонился оголенной частью ног к хромированному бамперу машины. Когда он коснулся металлическим ключом положительного контакта 12-вольтовой батареи, то почувствовал покалывание в точке контакта ноги с бампером. Таким образом, надежный контакт с металлом и потная кожа позволили почувствовать удар током от электрического потенциала значением всего-лишь 12 вольт.
К счастью, в этом случае ничего плохого не случилось. Но, если бы двигатель автомобиля был запущен, и воздействие тока почувствовала рука а не нога, то автор, возможно, рефлексивно дернул бы ее в сторону вращающегося вентилятора или уронил бы ключ на клеммы аккумулятора (вызвав тем самым короткое замыкание и сноп искр). Этот пример иллюстрирует еще один важный урок электробезопасности — электрический ток может послужить косвенной причиной травмирования.
Очень важное значение имеет путь, по которому ток течет через тело человека. Благодаря тому, что электрический ток оказывает влияние на все мышцы организма находящиеся на его пути, в том числе и на такие жизненно-важные, как сердце и легкие, наиболее опасным будет такой ток, который проходит через грудь человека. Это сценарий возможен в том случае, если человек соприкоснется с источником напряжения двумя руками.
В целях недопущения такого сценария, при работе со схемой (находящейся под напряжением) желательно использовать только одну руку, засунув вторую при этом в карман (чтобы случайно ничего ей не тронуть). Конечно, безопаснее было бы работать с обесточенной схемой, но на практике это не всегда возможно. Если схема находится под напряжением, то работать с ней предпочтительнее правой рукой. А почему правой, спросите вы. Во-первых, если человек правша (каких большинство), то ему удобнее будет работать именно этой рукой, а во-вторых — сердце расположено в левой части грудной клетки.
Лучшей защитой от удара электрическим током является сопротивление, которое может быть добавлено к телу при помощи изолированных инструментов, перчаток, сапог и других приспособлений. Как вы уже знаете, ток в цепи равен напряжению деленному на общее сопротивление потоку электронов. Наибольший эффект сопротивления будут иметь при расположении их таким образом, чтобы создать только один путь для потока электронов (подробнее на этом мы остановимся в последующих статьях):
Ниже представлена эквивалентная схема человека, экипированного перчатками и сапогами:
В этом случае суммарное (общее) сопротивление сапог, тела и перчаток потоку электронов будет больше, чем сопротивление каждого из компонентов по отдельности.
Безопасность является одной из причин, по которой электрические провода покрываются пластмассовой или резиновой изоляцией, которая значительно увеличивает сопротивление между проводником и прикоснувшемуся к нему человеком. Однако покрывать изоляцией высоковольтные провода линий электропередач слишком дорого, поэтому безопасность в этом случае достигается путем подвешивания их на столбы высоко над землей.
Краткий обзор:
-
Электрический ток оказывает вредное воздействие на организм человека. Чем больше напряжение, тем больший и опасный ток оно производит. Уменьшить силу тока может сопротивление. Высокое сопротивление является хорошей защитой от удара электрическим током.
-
Напряжение величиной выше 30 вольт способно создать опасный ток.
-
Не нужно надевать металлические украшения при работе с электрическими схемами. Кольца, ремешки часов, ожерелья, браслеты и другие подобные вещи обеспечивают отличный электрический контакт с телом человека и способны провести достаточный ток, чтобы вызвать ожог кожи даже при низких напряжениях.
-
Опасность несет и такое низкое напряжение, которое непосредственно не может поразить человека. Его может быть достаточно, чтобы человек отдернул руку и вступил в контакт с другим, находящимся вблизи источником опасности.
-
В целях предотвращения прохождения опасного тока через грудь человека, работать с запитанной схемой необходимо одной рукой (по возможности — правой).
Закон Ома в электронных сигаретах
Закон Ома в электронных сигаретах
Вспоминаем школьный курс физики
Каждый вейпер должен понимать основные физические процессы, которые происходят в электронном испарителе при подаче напряжения. Не только ради безопасности, но и для того, чтобы эффективно использовать возможности устройства. Работа любого электронного испарителя строится на принципах закона Ома.
Закон Ома был открыт в 1826 году немецким физиком Георгом Омом. Открытие Ома впервые дало возможность количественно оценить явления электрического тока. Это открытие имело огромное значение для науки. Рассмотрим, как закон Ома применяется к электронным сигаретам.
Закон Ома — это физический закон, определяющий связь электрического напряжения с силой тока и сопротивлением проводника. Выглядит он следующим образом:
U = I x R,
где U — напряжение (измеряется в вольтах), I — сила тока (в амперах), R —сопротивление элементов цепи (изменяется в Омах).
Сила тока отражает скорость движения электрического заряда по проводнику (в нашем случае — спирали) и зависит от напряжения и сопротивления.
Напряжение аккумулятора — разность потенциалов между контактами батареи. Оно характеризует силу, с которой ток пойдет через спираль. Чем больше напряжение батареи, тем быстрее она отдает ток, тем быстрее нагреется спираль. Напряжение изменяется в зависимости от степени заряженности аккумулятора. В аккумуляторах 18650 напряжение находится в пределах от 4.2 В (заряженный) до 3.2 В (разряженный).
Сопротивление — это свойство спирали препятствовать прохождению электрического тока. Проще говоря, по спирали с низким сопротивлением тока пройдет больше, соответственно и нагреваться она будет быстрее и сильнее.
Для получения большого количества вкусного пара нам необходимо нагреть спираль, которая будет испарять жидкость. Важно, чтобы большой объем жидкости мог нагреваться и испаряться быстро — но не слишком быстро. Иначе в какой-то момент с хлопка испарится вся жидкость, а новая не успеет пропитать фитиль, и он подгорит.
Сама схема работы испарителя довольна проста. Электронный испаритель, используя напряжение батареи (U), проводит ток (I) через спираль, преодолевая сопротивление (R), вследствие чего происходит нагрев спирали. Спираль, нагреваясь, испаряет жидкость, превращая ее в пар.
Сопротивление зависит от материала спирали, ее диаметра и длины. Спираль может быть выполнена из таких материалов, как фехраль (кантал), нихром, никель, титан, нержавеющая сталь.
Фехраль (FeCrAl), или кантал — это сплав железа, хрома и алюминия. Нихром (nichrome) — общее название группы сплавов, которые состоят из никеля и хрома. Проволоки из фехрали и нихрома обладают высоким удельным электрическим сопротивлением при минимальном температурном коэффициенте, то есть нагреваются довольно быстро, почти не меняя своего сопротивления. Благодаря этому кантал и нихром широко применяются в качестве материала для спиралей. Диаметр используемой проволоки варьируется от 0.2 до 1 миллиметра.
Мы уже говорили, что по спирали с низким сопротивлением пройдет больше тока, поэтому нагреется она сильнее. Очевидно, что чем меньше диаметр используемой проволоки, тем выше сопротивление, и наоборот, чем диаметр проволоки больше, тем сопротивление ниже. Также на сопротивление спирали влияет и общая длина проводника, в нашем случае это количество витков спирали. Чем больше витков, тем сопротивление выше, и наоборот.
Каждый вейпер должен понимать процессы, которые происходят в электронном испарителе. Это обеспечит не только безопасность, но и получение максимального удовольствия от парения.
Закон Ома ? для участка цепи, формула. Закон Ома ? в дифференциальной форме для полной цепи и её участка
Автор Даниил Леонидович На чтение 5 мин. Просмотров 6.6k. Опубликовано Обновлено
Физический закон ома получен путём экспериментов. 3 формулировки ома — одни из основополагающих в физике, устанавливающие связь между электротоком, сопротивлением и энергонапряжением. Год открытия – 1826. Впервые все 3 физических закона ома сформулировал физик-экспериментатор немецкого происхождения Георг Ом, с фамилией которого связано их определение.
Мнемоническая схема
Согласно мнемосхеме, чтобы высчитать электросопротивление по закону ома для участка цепи постоянного тока, необходимо комплексное напряжение на участке цепи разделить на силу тока для полной цепи. Однако, с физико-математической точки зрения, формулу ома для участка цепи для вычисления только по первому закону ома принято считать неполной.
Альтернативный способ вычислить токовое сопротивление по закону ома кратко подразумевает умножение электросопротивления материи, из которой выполнен проводник, на длину с последующим делением на площадь пересекающегося сечения.
Для выполнения вычислений сформулируйте по закону ома для участка цепи уравнение, исходя из имеющихся числовых данных:
Применение на линии электропередач
В процессе доставки на линию электропередач потери энергии должны быть минимизированы. Причиной энергетических потерь является нагрев провода, во время которого энергия электротока превращается в теплоэнергию.
Чтобы дать определение по закону ома потерянной мощности, необходимо показатель электрической мощности во второй степени умножить на внутреннее сопротивление источника напряжения и разделить на ЭДС в квадрате.
Из этого следует, что рост потери энергомощности осуществляется пропорционально протяжённости линии электропередач и квадрату электродвижущей силы.
Поскольку электродвижущую силу ограничивает прочность обмотки генератора, то повышение энергонапряжения возможно после того, как из генератора выйдет электроток, на участке входа линии.
Переменный ток легче всего распределяется по линии через трансформатор. Однако, поскольку следствием повышения энергонапряжения является потеря коронирования, а надёжность изоляции обеспечивается с трудом, напряжение на участке цепи протяжённой линии электропередач не превышает миллиона вольт.
Внимание!
Поведение линии электропередач в пространстве подобно антенне, ввиду чего берётся во внимание потеря на излучение.
Отображение в дифференциальной форме
На подсчёт сопротивления влияет тип материи, по которой протекает электроток, а также геометрические габариты проводника.
Дифференциальная форма формулировки Ома, записывающаяся достаточно кратко, отображает электропроводящие характеристики изотропных материалов и заключается в умножении удельной проводимости на вектор напряжённости электрополя с целью вычисления вектора плотности энерготока.
Для выполнения требуемых вычислений, уравнение сформулируйте по закону ома:
Интересно!
Если исходить из научных данных, следует сделать вывод о законе ома в дифференциальной форме об отсутствии зависимого соотношения геометрических габаритов.
При использовании анизотропеновых электроэлементов нередко встречается несовпадение вектора плотности токового энергонапряжения. Данное суждение справедливо для закона ома в интегральной и дифференциальной формах.
Переменный ток
Величины являются комплексными, если речь идёт о синусоидальных формах энерготока с циклической частотой, в цепях которых присутствуют активная ёмкость с индуктивностью.
В перечень комплексных величин входят:
- разность между потенциалами;
- сила тока;
- комплексное электросопротивление;
- модуль импеданса;
- разность индуктивного и ёмкостного сопротивлений;
- омическое электросопротивление;
- фаза импеданса.
Если несинусоидальный энерготок допустимо измерить временными показателями, закон ома для неполной электрической цепи может быть представлен в виде сложенных синусоидальных Фурье-компонентов. В линейной цепи составные элементы фурье-разложения являются независимо функционирующими. В нелинейных цепях образуются гармоники и множество колебаний. Таким образом, можно сделать вывод о невозможности выполнения правила Ома для нелинейной электроцепи.
Внимание!
Гармоника – это колебание, частота которого кратна частоте напряжения.
Как трактуется правило Ома
Так как обобщённая формула ома не считается основополагающей, правило применяется для описания разновидностей проводников в условиях приближения незначительной частоты, плотности тока и напряжения электрополя. Следует отметить, что в ряде случаев как первый закон, так и второй закон, применяемый для полной цепи, не соблюдаются.
Существует теория Друде, для выражения которой используются следующие величины:
- удельная электропроводимость;
- концентрированное размещение электронов;
- показатель элементарного заряда;
- время затихания по импульсам;
- эффективная масса электрона.
Внимание!
Все формулы Ома – первый, второй физический закон ома и третий распространяются на омические компоненты.
Перечень условий, при которых становится невозможным соблюдения правила Ома:
- высокие частоты с чрезмерно большой скоростью изменения электротока;
- пониженная температура сверхпроводимого вещества;
- перегрев проводника проходящим электротоком;
- в ситуации пробоя, возникшего в результате подсоединения к проводниковому элементу высокого напряжения;
- в вакуумной или газонаполненной электролампе;
- для гетерогенного полупроводникового прибора;
- при образовании пространственного диэлектрического заряда в контакте металлического диэлектрика.
Интерпретация
Определяющаяся действием приложенного напряжения мощностная сила тока является пропорциональной показателю его напряжения. К примеру, при двойном увеличении приложенного напряжения, интенсивность постоянного тока также удваивается.
Интересно!
Наиболее часто правило Ома применяется для металла и керамики.
Методы запоминания формулы
Чтобы легче запомнить формулу расчёта напряжения на участке цепи, следует выписать на бумажном листе все величины, из которых она состоит, в которую также входит сопротивление и сила тока. Искомую величину закрыть пальцем, вследствие чего соотношение оставшихся величин будет отображать действие, которое необходимо совершить для её вычисления.
Ниже будет представлено видео с подробным объяснением всех правил и формул, относящихся к рассматриваемой теме.
Закон Ома – один из самых несложных для понимания, который входит в программу школьных учебников физики начального уровня. Пользуясь графическим приёмом расчёта величин – при необходимости или для самопроверки, можно получить безошибочные результаты вычислений.
ЗаконОма, мощность и энергия
Закон Ома, закон Джоуля и понимание мощности и энергии являются одними из самых фундаментальных и важных основ для понимания электричества и электроники.
Энергия — это способность объекта выполнять работу. Даже деревянный брусок на вашем столе обладает энергией. Он обладает кинетической энергией, поскольку он может работать при падении, и обладает химической энергией, поскольку он может выполнять работу по нагреванию, если вы подожжете его. Энергия выражается в Джоулях.Когда вы позволяете энергии выполнять работу, такую как высвобождение химической энергии, хранящейся в батарее, в резистор, эта работа выражается как мощность.
Мощность — это скорость выполнения работы. Один ватт, затрачиваемый за одну секунду, равен одному джоуля. Так, например, автомобилю требуется больше мощности для движения со скоростью 100 км / ч по сравнению с 50 км / ч. Если вы потратили электроэнергию в течение определенного периода времени или приобрели электричество с предоплатой для использования или у вас есть заряженная батарея определенного размера, у вас есть ватт-часы. Скажем, вы поместили 1000 Вт / ч в свой счетчик электроэнергии с предоплатой, вы можете использовать его, запустив нагреватель мощностью 1 кВт в течение 1 часа или лампу мощностью 100 Вт в течение 10 часов.Используется одинаковое количество энергии, но с разной скоростью, потому что тысяча (1000) ватт равна одному (1) кВт.
С другой стороны, Джоуль — это единица энергии, используемая Международным стандартом единиц (СИ). Он определяется как количество работы, совершаемой над телом силой в один Ньютон, которая перемещает тело на расстояние в один метр.
Закон Ома
с разрешения www.eade.uk.comЭтот мультфильм прекрасно резюмирует закон Ома. Здесь у нас есть Mr.Вольт пытается протолкнуть мистера Ампа через проводник, но мистер Ом изо всех сил старается ограничить мистера Ампа. Проявив немного воображения, вы можете увидеть, что чем сильнее (больше давления) мистер Вольт оказывает, тем больше проходит мистер Амп. С другой стороны, чем больше мистер Ом тянет за веревку (сопротивляется), тем меньше проходит мистер Амп. Эти трое живут в идеальном равновесии и пропорции друг другу. Правило, которое удерживает их в равновесии, — это закон Ома.
Говоря более формально, мы можем использовать треугольник выше.Выучите это наизусть, так как это простой способ запомнить все формулы. Просто укажите пальцем на единицу, которую вы хотите найти, и оставшиеся две — это то, с чем вы будете рассчитывать. Например, если вы хотите найти V, закройте V пальцем, и у вас останется I * R. Это означает, что V = I * R. Точно так же, если вы хотите найти I, прикройте I пальцем, и у вас останется V / R. Это означает, что I = V / R.
Обратите внимание, что мы используем I для Amp, а не A, потому что A повсеместно используется для обозначения площади.
Например, если у меня батарея на 9 В и я подключаю к ней резистор 1 кОм, сколько тока будет проходить через нее?
Допустим, у меня батарея на 9 В, и я хочу зажечь светодиод. Вы не можете просто подключить батарею к светодиоду, так как он потребляет столько тока, сколько может обеспечить батарея, и перегорает. Нам нужно ограничить ток светодиода до безопасного значения. Во-первых, мне нужно знать, какое напряжение нужно светодиоду, а во-вторых, какой ток я допускаю в светодиод — обычно 20 мА.Напряжение, которое подает светодиод, довольно постоянное и зависит от цвета. Красный светодиод обычно составляет 2,3 В.
Итак, теперь у нас есть 9 В на одном конце и 2,3 В на другом конце R1, что означает, что нам нужно избавиться от 9–2,3 = 6,7 В. Это напряжение, которое мы увидим, если измерим на двух концах резистора R1, а ток через него составит 20 мА. Учитывая, что R = V / I = 6,7 / 20 * 10 -3 = 335 Ом. Это означает, что подойдет резистор 330 Ом.
Допустим, мы не знали ничего из вышеперечисленного, и мы просто взяли резистор 1 кОм и подключили его последовательно со светодиодом, затем мы взяли наш надежный мультиметр и измерили напряжение на светодиоде и обнаружили, что оно равно 2.7В. Это означает, что напряжение на резисторе должно быть 9-2,7 = 6,3 В. Итак, какой ток течет через светодиод? Снова используя формулу I = V / R, находим 6,3 / 1000 = 6,3 мА.
Теперь предположим, что у вас был очень длинный удлинитель, и вы включили обогреватель или большой прожектор, и вы знали, что ток в проводе составляет 15 А, а сопротивление провода — 1 Ом. Сколько напряжения вы потеряете по проводу? Используя формулу V = I * R, мы обнаруживаем, что вы теряете 15 * 1 = 15 В, что довольно много.
Закон мощности и Джоуля
Мощность — это термин, используемый для описания скорости выполнения работы или работы с течением времени. Это означает, что глобус мощностью 100 Вт работает намного горячее, чем глобус мощностью 1 Вт, и мы можем ощущать работу, выполняемую с помощью выделяемого тепла. Мощность напрямую связана с силой Ома по закону Джоуля, который гласит, что тепло, выделяемое в сопротивлении, пропорционально квадрату тока, протекающего через него в течение заданного времени.
Мы можем выразить это как P = V * I, и поскольку V = I * R, мы получаем P = I * I * R или P = I 2 R.
Аналогично P = V 2 / R. Как и закон Ома, это можно представить в виде треугольника:
Все эти термины являются именами людей, поэтому мы всегда используем заглавные буквы. Эти единицы могут быть очень большими и выражаться в кВ или МОм или очень маленькими, например мВ или мкА. Обратите внимание, что единицей измерения является мА, а не МА.
Энергия
Энергия определяется как «» свойство, которое должно быть передано объекту для выполнения работы или обогрева объекта.Энергия — это сохраняемая величина; закон сохранения энергии гласит, что энергия может быть преобразована в форму, но не может быть создана или уничтожена. Единицей энергии в системе СИ является джоуль, который представляет собой энергию, передаваемую объекту в результате перемещения его на расстояние в один метр против силы в один ньютон ». А 1 Вт — это 1 Джоуль, потраченный за 1 секунду.
Другими словами, мощность — это скорость, с которой мы превращаем электрическую энергию в какой-то другой вид энергии, обычно тепло, но также может быть движение, как в двигателе.Когда вы разговариваете по мобильному телефону, вы преобразуете химическую энергию аккумулятора в электромагнитную энергию для передачи голоса. Но изрядная часть энергии всегда преобразуется в тепло из-за дефектов в усилителе передатчика и других схемах.
Возвращаясь к нашему предыдущему примеру удлинительного шнура, допустим, мы не могли измерить ток в удлинительном проводе, но мы знали, что мощность нагревателя составляет 2 кВт, а это нагреватель 230 В. Теперь мы знаем, что P = V * I, поэтому я должен быть P / V, и поэтому 2000/230 = 8.7А. Если бы мы могли измерить напряжение в конце, скажем, 200 В. Тогда мы узнаем, что сопротивление кабеля будет V / I = (230–200) / 8,7 = 3,4 Ом.
Energy также сообщает нам о скорости выполнения работы. Если я куплю аккумулятор, который говорит о 200 мА / ч, он говорит мне, что я могу потреблять от него 200 мА в течение 1 часа или 20 мА в течение 19 часов. В моем доме у меня есть предоплата за электроэнергию, которую я покупаю в киловатт-часах. Если бы моя плита потребляла 4 кВт, а я купил 40 кВт-ч, я мог бы печь печенье в течение 10 часов.
Хотя эти законы и расчеты могут показаться скучными, помните, что они жизненно важны для понимания и использования их в мире электроники.
Закон
Ома
Закон Ома гласит, что
«ток через проводник между двумя точками прямо пропорционален разности потенциалов или напряжению между двумя точками, и обратно пропорционален сопротивлению между ними».
Закон Ома может быть выражен как
I = U / R (1)
где
I = ток (ампер, А)
U = электрический потенциал (вольт, В)
R = сопротивление (Ом, Ом )
Пример — закон Ома
Батарея 12 В обеспечивает питание до сопротивления 18 Ом .Ток в электрической цепи можно рассчитать как
I = (12 вольт) / (18 Ом)
= 0,67 ампер
Эквивалентные выражения закона Ома
Закон Ома (1) также можно выразить как
U = RI (2)
или
R = U / I (3)
Загрузите и распечатайте диаграмму закона Ома!
Пример — сопротивление электрической цепи
Ток силой 1 ампер протекает через электрическую цепь 230 В, .На приведенной выше диаграмме это означает сопротивление
R ≈ 220 Ом
Его можно также рассчитать по закону Ома
R = (230 В) / (1 А)
= 230 Ом
Пример — Закон Ома и кратные и подмножители
Токи, напряжения и сопротивления в электрических цепях часто могут быть очень маленькими или очень большими, поэтому часто используются кратные и подкратные.
Требуемое напряжение, подаваемое на 3.Резистор 3 кОм для создания тока 20 мА можно рассчитать как
U = (3,3 кОм) (1000 Ом / кОм) (20 мА) (10 -3 А / мА)
= 66 В
Номограмма электрического сопротивления
Загрузите и распечатайте номограмму зависимости электрического сопротивления от вольт и ампер!
Значения по умолчанию на номограмме выше указывают 230 вольт , сопротивление 24 Ом и ток 10 ампер .
Мощность
Электрическая мощность может быть выражена как
P = UI
= RI 2
= U 2 / R (4)
где
P = электрическая мощность (Вт, Вт)
Пример — потребляемая мощность
Мощность, потребляемая в указанной выше электрической цепи 12 В , может быть рассчитана как
P = (12 вольт) 2 / ( 18 Ом)
= 8 Вт
Пример — мощность и электрическое сопротивление
Электрическая лампочка 100 Вт подключена к источнику питания 230 В, .Текущий ток можно рассчитать путем преобразования (4) в
I = P / U
= (100 Вт) / (230 В)
= 0,43 ампера
Сопротивление может быть вычислено путем реорганизации (4) в
R = U 2 / P
= (230 В) 2 / (100 Вт)
= 529 Ом
Номограмма электрической мощности
Эта номограмма может использоваться для оценки зависимости мощности отнапряжение и ампер.
Скачайте и распечатайте номограмму зависимости электрической мощности от вольт и ампер!
Значения по умолчанию на номограмме выше: 240 В, , сопротивление 10 А, и мощность 2,4 кВт, для постоянного или однофазного переменного тока и 4 кВт, для трехфазного переменного тока.
Законы Ома и Ватта | SpazzTech
Что такое закон Ома и закон Ватта ?:
Закон Ома определяет одно из самых фундаментальных соотношений в электронике.Это соотношение между напряжением, током и сопротивлением. Закон Ватта определяет еще одно из самых фундаментальных соотношений в электронике. Это соотношение между мощностью и величинами, определенное законом Ома. Мы не сможем углубиться в электронику, пока эти концепции не будут поняты.
Вольт:
Единицей измерения параметра напряжения является вольт. Символ, который используется для обозначения вольт, — это буква «V».В зависимости от ситуации используются как верхний, так и нижний регистры. Символом параметра напряжения также является буква «V». Если бы электрическая цепь представляла собой садовый шланг, напряжение было бы аналогично давлению в шланге. Единица V равна количеству энергии в Джоулях, необходимой для перемещения одного кулона электронов между двумя точками. Напряжение иногда называют «потенциалом», потому что оно может перемещать эти электроны.
Ампер или Ампер:
Единицей измерения параметра тока является ампер.Ампер часто сокращается до ампер. Символ, используемый для обозначения усилителя, — это буква «А». В зависимости от ситуации используются как верхний, так и нижний регистр. Символ, используемый для представления параметра тока, — это буква «I». Если бы электрическая цепь представляла собой садовый шланг, ток был бы подобен скорости потока воды в шланге. Единица A равна количеству кулонов, проходящих через контур за одну секунду.
Ом:
Единицей измерения параметра сопротивления является ом.Для обозначения сопротивления используется символ Ω. Символ, используемый для обозначения параметра сопротивления, — это буква «R». Если бы электрическая цепь была садовым шлангом, сопротивление было бы любым клапаном или другим ограничением в шланге. Единица Ω равна сопротивлению, которое существует, когда 1 А протекает между двумя точками с напряжением 1 В между этими двумя точками. Это составляет основу форм закона Ома, приведенных в следующем разделе.
Формы закона Ома:
Мощность:
Единицей измерения мощности в электронике чаще всего является ватт.Символ, используемый для обозначения ватта, — это заглавная буква «W». По сути, мощность — это скорость выполнения работы. Фактически, один ватт равен одному джоулю в секунду. Из определений, данных для вольт и ампер, данных выше, мы можем сказать, что один ватт также равен одному вольту, умноженному на один ампер, потому что вольт — это мера джоулей на кулон, а ампер — мера кулонов в секунду. Кулоны сокращаются, и у нас остаются джоули в секунду.
Формы закона Ватта:
Комбинированная взаимосвязь закона Ома и закона Ватта Настенная диаграмма:
Объединив закон Ома и закон Ватта, нам нужно знать только две величины, чтобы определить две другие.Эти величины представляют собой напряжение (В) в вольтах, ток (I) в амперах, сопротивление (R) в омах и мощность (P) в ваттах. Все отношения между этими количествами приведены в таблице ниже.
© Copyright 2014-2017 SpazzTech LLC. Все права защищены
ОМИТОВЫЙ РЕЗИСТОР C300KR10E, 10%; СОПРОТИВЛЕНИЕ: 0,1 Ом; АССОРТИМЕНТ ПРОДУКЦИИ: СЕРИЯ 280; НОМИНАЛЬНАЯ МОЩНОСТЬ: 300 Вт; ДОПУСК СОПРОТИВЛЕНИЯ: ¦ 10%; УРОВЕНЬ НАПРЯЖЕНИЯ:-; ТИП РЕЗИСТОРНОГО ЭЛЕМЕНТА: ПРОВОДНОЙ; КОЭФФИЦИЕНТ ТЕМПЕРАТУРЫ:: одиночные резисторы: Amazon.com: Industrial & Scientific
- Убедитесь, что это подходит введя номер вашей модели.
- 0,1 Ом
- 10%; СОПРОТИВЛЕНИЕ: 0,1 Ом; АССОРТИМЕНТ ПРОДУКЦИИ: СЕРИЯ 280; НОМИНАЛЬНАЯ МОЩНОСТЬ: 300 Вт; ДОПУСК СОПРОТИВЛЕНИЯ: ¦ 10%; УРОВЕНЬ НАПРЯЖЕНИЯ:-; ТИП РЕЗИСТОРНОГО ЭЛЕМЕНТА: ПРОВОДНОЙ; КОЭФФИЦИЕНТ ТЕМПЕРАТУРЫ: ¦ 400PPM / ¦C СООТВЕТСТВИЕ ROHS: ДА
- 300 Вт
- ВЛАСТЬ
- РЕЗИСТОР
Характеристики этого продукта
Фирменное наименование | Омит |
---|---|
Ean | 0061068798315 |
Вес изделия | 3.00 фунтов |
Материал | резистор |
Номер модели | C300KR10E |
Кол-во позиций | 1 |
Номер детали | C300KR10E |
Соответствие спецификации | Rohs |
Код UNSPSC | 31160000 |
UPC | 061068798315 |
Закон Ома и Закон Ватта — Базовое управление двигателем
В этом разделе дается краткое описание двух наиболее фундаментальных электрических соотношений: закон Ома , который описывает протекание тока, и закон Ватта , который описывает, как рассеивается мощность.
Нажмите кнопку воспроизведения на следующем аудиоплеере, чтобы слушать, как вы читаете этот раздел.
Комбинируя элементы напряжения , тока и сопротивления , Джордж Ом разработал следующую формулу:
[латекс] I = \ frac {E} {R} [/ латекс]
Где
- E = Напряжение в вольтах
- I = ток в амперах
- R = Сопротивление в Ом
Это называется законом Ома.
Допустим, у нас есть цепь с потенциалом 1 вольт, током 1 ампер и сопротивлением 1 Ом.Используя закон Ома, мы можем сказать:
[латекс] 1A = \ frac {1V} {1 \ text {ohm}} [/ латекс]
Допустим, это резервуар с широким шлангом. Количество воды в баке определяется как 1 вольт, а «узость» (сопротивление потоку) шланга определяется как 1 Ом. Используя закон Ома, это дает нам ток (ток) в 1 ампер.
Используя эту аналогию, давайте теперь посмотрим на резервуар с узким шлангом. Поскольку шланг более узкий, его сопротивление потоку выше. Определим это сопротивление как 2 Ом.Количество воды в резервуаре такое же, как и в другом резервуаре, поэтому, используя закон Ома, наше уравнение для резервуара с узким шлангом будет:
[латекс]? = \ Frac {1V} {2 \ text {ohms}} [/ латекс]
а какой ток? Поскольку сопротивление больше, а напряжение такое же, это дает нам значение тока 0,5 А:
[латекс] 0,5A = \ frac {1V} {2 \ text {ohms}} [/ латекс]
Electric мощность — это скорость передачи энергии. Он измеряется в джоулях в секунду (Дж / с).Один джоуль работы, выполняемой каждую секунду, означает, что мощность рассеивается со скоростью, равной одному ватт (Вт) .
Учитывая несколько известных нам основных терминов, связанных с электричеством, как мы можем рассчитать мощность в цепи?
Итак, у нас есть стандартное измерение, включающее электродвижущую силу, также известную как вольт (E) .
Ток, еще один из наших любимых терминов по электричеству, измеряет поток заряда с течением времени в единицах ампер (А) , что равно 1 кулону в секунду (Кл / с).Соедините их вместе, и что мы получим? Власть!
Чтобы рассчитать мощность любого конкретного компонента в цепи, умножьте падение напряжения на нем на ток, протекающий через него.
Например, если ток течет со скоростью 10 ампер, а напряжение составляет 10 вольт, тогда схема рассеивает мощность со скоростью 100 Вт.
Номинальная мощность на резисторе с нулевым сопротивлением
Хотя это может быть правдой, что дистрибьюторы не хотят проверять каждую деталь в отдельности, в этом случае нет ничего плохого в том, что резистор 0 Ом имеет указанную номинальную мощность 125 мВт.
Как указано в ответе @ BumsikKim, таблица данных для серии на самом деле указывает этот рейтинг — страница продукта дистрибьютора — , правильно представляет спецификации производителя.
Со страницы 5 у нас есть следующая запись в таблице:
Обратите внимание, что для всей серии типоразмера RC0805 указано номинальное значение 0,125 Вт (1/8 Вт). Сюда входят резисторы 0 Ом из этой серии.
Однако есть еще одна критически важная спецификация — Jumper Criteria .В этом столбце указан номинальный ток для перемычки 0805 (т. Е. Резистора 0 Ом). Из таблицы видно, что ваша перемычка рассчитана на 2 А с абсолютным максимумом 5 А (предположительно, короткий импульс).
Так почему же резистор с нулевым сопротивлением может иметь такие характеристики? Просто, это не резистор 0 Ом. Если производитель резистора, который вы используете, тайно не сделал сверхпроводник при комнатной температуре, перемычка на самом деле остается резистором, только очень маленьким. В соответствии с таблицей данных это значение составляет ~ 50 мОм или меньше.2 \ times0.05 = 0,2 Вт $$
Таким образом, в худшем случае сопротивление 50 мОм и номинальный ток 2 А будут рассеивать больше, чем номинальное значение 125 мВт.
Все еще считаете рейтинг глупым?
В конструкции источника питания, которую я имел удовольствие испытать импульсным перенапряжением, разработчик добавил резистор 0805 0 Ом последовательно с входом 24 В постоянного тока, как раз перед диодом TVS. Во время теста мы зарядили конденсатор 10 мФ до 200 В, а затем подключили конденсатор ко входу блока питания.
Естественно TVS стал проводить, и резистор 0 Ом буквально превратился в фейерверк …
Закон и мощностьОма | Научное обозрение [видео]
Привет, ребята, добро пожаловать в это видео по поводу закона и силы Ома. Электричество имеет три основных параметра: напряжение, ток и сопротивление. Закон
Ома представляет собой взаимосвязь между тремя параметрами.
Давайте определим три основных параметра.
Электрическое напряжение — это разница в электрической потенциальной энергии между двумя точками на единицу электрического заряда.Он измеряется в вольтах, которые равны джоуля энергии на кулон заряда.
Электрический ток — это поток электрического заряда. Он измеряется в амперах или амперах, что равняется потоку заряда в один кулон в секунду.
Электрическое сопротивление — это мера того, насколько сложно пропустить электрический ток через проводник.