Как подключить частотный преобразователь к электродвигателю — основные этапы
Частотный преобразователь — это высокотехнологичный прибор с широкими возможностями. Подключение частотного преобразователя помогает автоматизировать различные производственные процессы, получить существенную экономию электроэнергии и заметно продлить ресурс оборудования.
Микропроцессорная база и встроенные компьютерные технологии делают прибор очень гибким по функционалу. Выбор комбинаций огромен, но для начала частотный преобразователь необходимо правильно подключить и настроить.
Установка частотника
Ошибки при подключении двигателя через частотный преобразователь способны значительно снизить срок его жизни и даже вывести электропривод из строя при первом же запуске. Важным этапом ввода в эксплуатацию является выбор предполагаемого места установки преобразователя. Необходимо учитывать комплекс условий, в числе которых:
- Возможности питающей линии.
- Диапазон рабочих температур.
- Влажность.
- Вибрации.
- Наличие агрессивных сред (какой класс защиты IP требуется).
Частотник можно монтировать вдали от электродвигателя. Но есть нюансы с длиной кабеля. Чтобы избежать появления эффекта отраженной волны, перенапряжения и коронного заряда, длину питающего кабеля следует ограничить. При периоде ШИМ от 0,3 мс — не более 45 м, при ШИМ 0,1 мс — не более 16 м.
Если двигатель специально предназначен для работы совместно с преобразователем, то длина кабеля может быть любой. Например, двигатели, сертифицированные по стандарту NEMA Standart MG-1. Двигатель для ПЧ должен быть оснащен изоляцией класса F или выше, а также иметь фазовую изоляцию. Также, чтобы избежать нежелательных явлений при большой длине кабеля, можно установить сглаживающие реакторы и фильтры сразу после ПЧ и непосредственно перед электродвигателем.
Сетевые технологии для управления
Настройка частотника и программирование режимов работы осуществляется непосредственно с панели управления, выносного пульта или, что наиболее удобно, с помощью компьютера. Операционное место может находиться за многие километры от ПЧ, для этого необходимо воспользоваться сетевыми технологиями.
Для совместной работы электродвигателя и системы автоматического управления используются различные протоколы передачи данных. Наибольшее распространение получил протокол связи Modbus с интерфейсом RS-485. Передача управляющего сигнала в линиях RS-485 осуществляется по проводу. Даже если сразу не требуется включать частотник в систему удаленного управления, на перспективу такой вариант подключения следует предусмотреть и заранее запланировать место, где удобнее проложить магистраль и подключиться к сети.
ПЧ — органы управления
Преобразователи «Веспер» оборудованы панелью с информационным ЖК-дисплеем и набором для управления и проведения пусконаладки. В зависимости от модели ПЧ, дисплеи могут отличаться количеством строчек. На дисплей прибора можно выводить данные о текущем состоянии параметров.
Для большего удобства и реализации более сложных систем управления через аналоговые и дискретные (релейные, транзисторные) выходы можно подключить выносной ДУ-пульт. А через линию интерфейсной связи — ПК (ноутбук или стационарный).
Ноутбук можно использовать в режиме осциллографа — для наблюдения за изменениями параметральных величин в реальном времени. В таком случае также необходимо заранее подготовить место с изолированной поверхностью и предусмотреть возможность работы ноутбука от батареи.
Настройка перед запуском
Частотные преобразователи — сложные компьютеризированные устройства со множеством функций и настроек. Чтобы облегчить и ускорить ввод прибора в эксплуатацию, на заводе уже проведены базовые настройки. При этом многие параметры «по умолчанию» могут быть оптимальными для решения поставленных задач.
В дополнение к базовым настройкам, преобразователи «Веспер» поддерживают функцию автонастройки — идентификационный пуск. В этом режиме ПЧ до запуска двигателя или уже у работающего двигателя автоматически определяет параметры обмоток.
Перед запуском также необходимо проверить и задать стартовый набор параметров:
- Характеристики управляемого двигателя — напряжение, мощность, рабочий диапазон частоты вращения (эти параметры можно посмотреть в технической документации или на шильдике двигателя).
- Канал задания — указать, из какого источника ПЧ следует брать задания (панель управления, дискретные/аналоговые выходы, удаленный интерфейс).
- Канал управления — указать, откуда будут поступать управляющие команды (запуск/остановка). В качестве управляющего канала можно выбрать: панель управления, дискретные/аналоговые выходы, удаленный интерфейс.
- Схема преобразования — если нет опыта, эту настройку лучше не менять, оставить по умолчанию.
Строго следуя инструкции и обладая базовыми знаниями, можно самостоятельно разобраться с тем, как подключить частотный преобразователь к электродвигателю. Но если нет желания или времени во все вникать — поручите это высококвалифицированным сотрудникам «Веспер». Они проведут пусконаладочные работы быстро и профессионально.
Видео
Вступительный фильм о типовых примерах применения преобразователей частоты Веспер. В видеоролике показаны преимущества использования частотно-регулируемого электропривода по отношению к другим типам приводов. Коротко представлена продукция нашей компании и география ее использования.
Подключение и настройка частотного преобразователя
Частотный преобразователь используется для изменения частоты напряжения, питающего трехфазный двигатель. Кроме того, частотник позволяет подключить трехфазный электрический двигатель к однофазной сети без потерь мощности. В случае, когда для этих целей применяются конденсаторы, последнее невыполнимо.
Подключение частотника предполагает размещение перед ним автоматического выключателя, работающего с током, равным номинальному (или ближайшему большему в ряду номинальных токов автоматов) потребляемому току двигателя. Если ПЧ адаптирован на работу от трехфазной сети, необходимо задействовать трехфазный автомат, имеющий общий рычаг. Такой подход позволяет в случае короткого замыкания одной из фаз оперативно обесточить и все остальные фазы. Характеристики тока срабатывания должны полностью соответствовать току одной фазы электрического двигателя. Если же частотник предназначен для однофазного питания, имеет смысл применить одинарный автомат, рассчитанный на утроенный ток одной фазы. В любом случае, установка частотника не должна осуществляется путем включения автоматов в разрыв нулевого или заземляющего провода. Здесь подключение выполняется только напрямую.
Далее настройка преобразователя частоты предусматривает присоединение его фазных проводов к соответствующим контактам электрического двигателя. Перед этим необходимо соединить в электродвигателе обмотки по схеме «треугольник» или «звезда». Конкретный тип соединения определяется характером напряжения, вырабатываемого непосредственно преобразователем частоты.
Как правило, на корпусе двигателя приведены два значения напряжения. В ситуации, когда вырабатываемому частотником напряжению соответствует меньшее из указанных, необходимо применить схему «треугольник». В противном случае обмотки соединяются по принципу «звезды».
Пульт управления, входящий в комплект поставки частотного преобразователя, располагают в удобном месте. Подключить его необходимо согласно схеме, приведенной в инструкции к ПЧ. Далее рукоятка устанавливается в нулевое положение и выполняется включение автомата. При этом на пульте загорается световой индикатор. Для работы преобразователя необходимо нажать кнопку «RUN» (запрограммировано по умолчанию). Затем необходимо немного повернуть рукоятку, чтобы электродвигатель начал постепенное вращение. В случае, если двигатель вращается в противоположную сторону, нажимается кнопка реверса. Далее следует настроить рукояткой необходимую частоту вращения. Важно учесть, что на пультах многих частотников отображается не частота вращения электрического двигателя (об/мин), а частота питающего электродвигатель напряжения, выраженная в герцах.
Схема подключения частотного преобразователя
Если у Вас остались вопросы по подключению и настройке преобразователей, обращайтесь за помощью к нашим техническим специалистам. Также предлагаем ознакомиться с каталогом частотных преобразователей Siemens и Prostar.
Другие полезные материалы:
Как правильно подобрать электродвигатель
Редуктор от «А» до «Я»
Как выбрать мотор-редуктор
Общие сведения об устройствах плавного пуска
Схема подключения частотного преобразователя: звезда — треугольник
Перейти в каталог продукции: Частотные преобразователи
Для управления трехфазным асинхронным двигателем применяются частотные преобразователи (инверторы), рассчитанные на однофазное или трехфазное входное напряжение. Инверторы обеспечивают возможность мягкого запуска двигателя и регулировки частоты оборотов, защиту от перегрузок. Кроме этого, частотник позволяет подключать трехфазные двигатели к однофазным сетям без потерь мощности. Преобразователи частоты трансформируют напряжение электросети частотой 50 Гц в импульсное с частотой от 0 Гц до 1 кГц.
Внимание: представленная схема является общей. При подключении используйте схему из инструкции по эксплуатации!
Однофазные преобразователи частоты рассчитаны на входное напряжение 1 фаза 220 В и на выходе формируют трехфазное напряжение 220 В заданной частоты. Иными словами, однофазный инвертор обеспечивает трехфазное питание асинхронного двигателя от бытовых электросетей. При использовании однофазных частотных преобразователей, в клеммной коробке двигателя, клеммы подключают по схеме «треугольник» (Δ). При подключении трехфазного асинхронного двигателя к однофазной сети 220 В, при использовании конденсаторной схемы, неизбежна большая потеря мощности. В то время как, при пользовании однофазного частотного преобразователя, подключаемого в двигателю по схеме «треугольник» (Δ), потерь мощности не происходит.
Более совершенные трехфазные преобразователи частоты работают от промышленных трехфазных сетей с напряжением 380 В, 50 Гц. Частота напряжения на выходе – от 0 Гц до 1кГц. Трехфазные инверторы подключают по схеме «звезда» (Y).
Трехфазный частотный преобразователь подключают асинхронному двигателю по схеме звезда:
Однофазный частотный преобразователь подключают асинхронному двигателю по схеме треугольник:
Для ограничения пускового тока и снижения пускового момента при пуске асинхронного двигателя мощностью более 5 кВт может применяться метод переключения «звезда-треугольник». В момент пуска напряжение на статор подключается по схеме «звезда», как только двигатель разгонится до номинальной скорости, производится переключение питания на схему «треугольник». Пусковой ток при переключении втрое меньше, чем при прямом пуске двигателя от сети. Этот метод пуска оптимально подходит для механизма с большой маховой массой, если нагрузка набрасывается после разгона.
Способ пуска переключением «звезда-треугольник» можно использовать только для двигателей, имеющих возможность подключения по обеим схемам. При пуске наблюдается уменьшение пускового момента на треть от номинального. Если переключение произойдет до того, как двигатель разгонится, ток увеличится до значений, соответствующих току прямого пуска.
При пуске переключением «звезда-треугольник» неизбежны резкие скачки токов, в отличие от плавного нарастания при прямом пуске. В момент переключения на «треугольник» на двигатель не подается напряжение и скорость вращения может резко снизится. Для восстановления частоты оборотов требуется увеличение тока.
Перейти в каталог продукции: Частотные преобразователи
Подключение частотного преобразователя к электродвигателю (схема)
Преобразователь частоты переменного тока уже много лет применяются при строительстве электромеханических приборов и агрегатов. Они позволяют модулировать частоту для того, чтобы регулировать скорость вращения вола электрического двигателя.
Частотники позволили подключать трёхфазный электрический двигатель к однофазной сети питания, при этом, не теряя мощности. При старинном типе подключения, через емкий конденсатор, большая часть мощности двигателя терялась, КПД существенно снижалось, обмотки электрического двигателя сильно перегревались.
Всех этих проблем удалось избежать, применением частотного преобразователя. При этом очень важно соблюдать правильное подключение частотного преобразователя к электрическому двигателю.
Некоторые особенности подключения любого частотника в связку с электрическим двигателем.
Во-первых
Из соображений безопасности эксплуатации прибора, при подключении частотника (или любого иного прибора) к сети питания, обязательно нужно устанавливать защитный автомат. Автомат устанавливается перед частотником.
При этом если частотный преобразователь подключается в сеть с трёхфазным напряжением, то установить необходимо автомат тоже трёхфазный, но с общим рычагом отключения.
Это позволит отключить питание от всех фаз одновременно, если хотя бы на одной фазе будет короткое замыкание или сильная перегрузка.
Если преобразователь частоты подключается в сеть с однофазным напряжением, то соответственно применяется автомат однофазный. Но при этом, в расчет берётся ток одной фазы, умноженный на три.
При подключении трёхфазного автомата, его рабочий ток определяется током одной фазы.
Однозначно запрещено устанавливать защитный автомат в разрыв нулевого кабеля, как при однофазном подключении, так и при трёхфазном. Такое подключение только внешне выглядит идентичным (ошибочно понимать, что цепь одна и не важно, где её разрывать).
На самом деле, в случае разрыва фазовых кабелей, при срабатывании автомата, питание полностью отключается и на цепях прибора не будет фаз вовсе. Это безопасно. А при срабатывании автомата с разорванным нулём, работа прибора прекратиться. Но при этом, обмотки двигателя и цепи частотника останутся под напряжением, что является нарушением правил техники безопасности и опасно для человека.
Также, не при каких условиях не разрывается заземляющий кабель. Как и нулевой, они должны быть подключены к соответствующим шинам напрямую.
Во вторых
Следует подключить фазовые выходы частотного преобразователя к контактам электрического двигателя. При этом обмотки электрического двигателя следует подключить по принципу «треугольник» или «звезда». Тип выбирается исходя из напряжения, которое вырабатывает частотник. Как правило, к каждому инвертеру приложена инструкция, в которой подробно расписано, как соединяются обмотки двигателя для подключения конкретного частотника. Схема подключения частотного преобразователя к 3-х фазному двигателю также должна быть приведена в инструкции.
Обычно на корпусах двигателей приведены оба значения напряжения. Если частотник соответствует меньшему, то обмотки соединяются по принципу треугольника. В других случаях по принципу звезды. Схема подключения частотного преобразователя также должна быть приведена в паспорте частотника. Там же обычно приводятся и рекомендации по подключению.
В третьих
Практически к каждому преобразователю частоты в комплекте прилагается выносной пульт управления. Несмотря на то, что на самом корпусе частотника уже есть интерфейс для ввода данных управления и программирования, наличие выносного пульта управления является очень удобной опцией.
Пульт монтируется в месте, где удобнее всего с ним работать. В некоторых случаях, когда преобразователь частоты несколько уступает в пылевой защите и защите от влаги, сам частотник может быть установлен вдали от двигателя, а пульт управления рядом, для того, чтобы не бегать к шкафу управления и не регулировать обороты там.
Всё зависит от конкретных обстоятельств и требований производства.
Первый пуск и настройка преобразователя частоты
После подключения к преобразователю частоты пульта управления, следует рукоятку скорости вращения вала двигателя перевести в наименьшее положение. После этого нужно включить автомат, тем самым подать питание на частотник. Как правило, после включения питания должны загореться световые индикаторы на частотнике и, при наличии светодиодной панели, на ней должны отобразиться стартовые значения.
Принцип подключения цепей управления частотного преобразователя не является универсальным. Нужно соблюдать указания, указанные в инструкции к конкретному частотнику.
Для первого запуска двигателя потребуется нажать кратковременно клавишу пуска на частотнике. Как правило, эта кнопка запрограммирована на пуск двигателя по умолчанию на фабрике.
После пуска, вал двигателя должен начать медленно вращаться. Возможно, двигатель будет вращаться в противоположную сторону, отличную. От необходимой. Проблему можно решить программированием частотника на реверсное движение вала. Все современные модели преобразователей частоты поддерживают эту функцию. Можно воспользоваться и примитивным подключением фаз в другом порядке фаз. Хотя это долго и не рентабельно по затрате времени и сил электромонтёра.
Дальнейшая настройка предполагает выставления нужного значения оборотов двигателя. Нередко на частотника отображается не частота вращения вала двигателя, а частота питающего двигатель напряжения, выраженная в герцах. Тогда потребуется воспользоваться таблицей, для определения соответствующего значения частоты напряжения частоте вращения вала двигателя.
При монтаже и обслуживании, а также замене преобразователя частоты важно соблюдать ряд рекомендаций.
- Любое касание рукой или иной частью тела токоведущего элемента может отнять здоровье или жизнь. Это важно помнить при любой работе со шкафом управления. При работе со шкафом управления следует отключить входящее питание и убедиться что именно фазы отключены.
- Важно помнить, что некоторое напряжение может ещё оставаться в цепи, даже при угасании световых индикаторов. Посему, при работе с агрегатами до 7 кВт, после отключения питания рекомендуется прождать минут пять не меньше. А при работе с приборами более 7 кВт, прождать нужно не менее 15 минут после отключения фаз. Это даст возможность разрядиться всем имеющимся в цепи конденсаторам.
- Каждый преобразователь частоты должен иметь надёжное заземление. Заземление проверяется согласно правилам профилактических работ.
- Строго запрещено использовать в качестве заземления нулевой кабель. Заземление монтируется отдельным кабелем отдельно от нулевой шины. Даже при наличии и нулевой шины и шины заземления, при соответствии их нормам электромонтажа, соединять их запрещено.
- Важно помнить, что клавиша отключения частотника не является гарантией обесточивания цепей. Эта клавиша всего лишь останавливает двигатель, при этом ряд цепей может оставаться под напряжением.
Подключение частотного преобразователя к электродвигателю осуществляется с применением кабелей, сечение которых соответствует тем характеристикам, которые указаны в паспорте частотника. Нарушение норм в меньшую сторону недопустимо. В большую сторону, может быть не целесообразно.
Прежде чем как подключить частотный преобразователь к электродвигателю, важно убедиться в соответствии условий, при которых будет работать преобразователь частоты. Фактически, условия должны соответствовать рекомендациям, приведённым в инструкции.
В каждом конкретном случае, подключение частотника может сопровождаться рядом обязательных условий. Чтобы узнать, как подключить частотник к 3 фазному двигателю схемы, которого есть в наличии. Сначала изучаются схемы. Если в них всё понятно, подключение выполняется при строго следовании инструкции. Если что-то не понятно, не следует выдумывать самостоятельно и полагаться на свою интуицию. Нужно связаться с поставщиком или производителем, для получения соответствующих указаний.
[wpfmb type=’warning’ theme=2]Лучше дождаться помощи специалиста, чем потом ремонтировать сломанную технику. Случай-то не будет гарантийным.[/wpfmb]
Частотный преобразователь.Как подключить трёхфазный электродвигатель от 220В.
Watch this video on YouTube
Подключение и настройка частотного преобразователя по всем правилам.
Решили продлить жизнь электродвигателя, но не знаете, как установить частотный преобразователь для трехфазного двигателя? Далее мы подробно разберемся в этом вопросе
Все более популярными становятся частотники в ситуациях, когда нужно запитать трехфазный двигатель. Это не крупные предприятия, а обычные домохозяйства с автономной системой водоснабжения или отопления. К тому же благодаря частотным преобразователям можно подключить электродвигатель с трехфазным питанием к однофазной сети, при этом, не теряя мощности движка.
Устанавливая частотный преобразователь для трехфазного двигателя, нужно соблюсти следующие требования:Отсутствие попадания прямых солнечных лучей.
Отсутствие вблизи легковоспламеняющихся жидкостей.
Отсутствие капель масла, пыли, металлической стружки.
Хорошая вентиляция.
Температура воздуха от -10 градусов до +45 °.
Не допускать попадание воды, влажность менее 90%.
Рядом с частотным преобразователем не должно быть деревянных конструкций и легковоспламеняющихся материалов.
Монтаж преобразователя должен осуществляться на твердой устойчивой поверхности.
НЕ устанавливать частотный преобразователь в зоне действия электромагнитных помех.
Устанавливать частотный преобразователь вертикально, для осуществления простоты движения охлажденного воздуха без отсутствия преград на его пути.
Во время работы, любой привод нагревается, в зависимости от мощности этот нагрев будет больше или меньше. Чтобы частотник нормально работал, нужно оставить минимум 10 см свободного пространства со всех сторон от него. Это позволит свободно циркулировать воздуху и наш частотный преобразователь не перегреется. Устанавливая ПЧ в шкафу, следите, чтобы поток воздуха от вентилятора проходил как можно ближе к частотнику.
От установки к электрическим соединениям.При монтаже в первую очередь подключают провод заземления. Сечение заземляющих кабелей должно соответствовать сечению кабелям питающей сети. Каждый провод заземляется отдельно.
Используйте экранированные кабели. Создайте защиту кабелей управления от электромагнитных помех.
Убедитесь в правильности подсоединения входных ( клеммы L 1, L 2, L3 для трехфазной и L, N для однофазной сети) и выходных силовых кабелей ( клеммы U, V ,W ).
Подключение к клемме РЕ преобразователя частоты выполняется проводом заземления.
Проконтролируйте, чтобы при команде «вперед» двигатель вращался вперед. Если двигатель вращается в обратную сторону необходимо поменять две любые шины между собой или откорректировать значение отвечающих за это функциональных параметров.
Не подключайте к выходным цепям фазосдвигающий конденсатор. Это может нарушить работу оборудования или привести к повреждению частотного преобразователя.
Не подключайте шины силового питания к выходным клеммам U, V, W. Это вызовет выход из строя частотного преобразователя.
Не допускается подключение к выходным цепям частотного преобразователя электромагнитный выключатель или магнитный контактор. При подключении нагрузки к частотному преобразователю в процессе его работы, скачок тока нагрузки вызовет срабатывание схемы защиты частотного преобразователя.
Пульт управления включается в состав частного преобразователя, устанавливается в удобном месте . Подключается пульт согласно схемы , которая находится в инструкции преобразователя.
Подключение частотного преобразователя. Как подключить частотный преобразователь
Частотные преобразователи служат для корректировки частоты напряжения, питающего электродвигатель трехфазного типа. Благодаря такой особенности, подконтрольное оборудование становится более эффективным, устойчивым к различным сбоям, экономичным и надежным. Именно по этой причине представленные устройства пользуются огромной популярностью как среди различных предприятий, так и среди домашних пользователей. Преобразователи рассчитаны как на однофазное, так и на трехфазное напряжение входного типа.
Преобразователь частоты обеспечивает плавный пуск и остановку работы электропривода, защиту от перегрузок и корректировку оборотов ротора. Подключить частотный преобразователь можно по одной из следующих схем:
- звезда;
- треугольник.
Обратите внимание, что каждая из приведенных выше схем является обобщенной. Идеальным вариантом будет использование советов специалиста и методики, приведенной в инструкции к приобретенному оборудованию. Таким образом, вы обезопасите себя от преждевременного выхода из строя не только преобразователя, но и всей подконтрольной системы.
Представленная схема служит для подключения трехфазного частотного преобразователя. В подавляющем большинстве случаев — это промышленное оборудование, работающее от электросети 380 Вольт. Сфера применения исходит из названия: производственные предприятия различного уровня, заводские цеха и тому подобное.
Если произвести подключение трехфазного преобразователя частоты к сети бытового уровня (220 Вольт), то будет наблюдаться существенная потеря мощности, что вредит не только производительности системы, но и ее жизнеспособности в целом. Именно по этой причине к такой сети лучше подключать однофазный частотный преобразователь по схеме «треугольник».
Далее следует обратить внимание на мощность электродвигателя. Если представленный параметр у него превышает 5 кВт, то стоит применить совмещенную схему «звезда-треугольник». Однако делать это стоит лишь в том случае, когда привод имеет возможность такого подключения. В момент запуска привода работает схема «звезда», а как только двигатель наберет нужные обороты, произойдет переключение на «треугольник». Монтажом и настройкой частотных преобразователей должен заниматься квалифицированный специалист.
Почему преобразователи частоты лучше покупать в «ОВК Комплект»
Интернет-магазин «ОВК Комплект» занимается не только поставкой качественного электрооборудования, но и его дальнейшим сопровождением. Эти услуги также касаются и различной электроприводной техники, а частности частотные преобразователи. Специалисты магазина напрямую сотрудничают с именитыми производителями представленных изделий. Это позволяет вести выгодную для потребителей ценовую политику.
В штат сотрудников магазина входят опытные мастера, которые предоставят вам следующий набор услуг:
- гарантийное и после гарантийное обслуживание;
- монтаж и настройка электрооборудования;
- оперативная замена вышедших из строя деталей;
- ремонт и сопровождение.
Выбор подходящего частотного преобразователя – дело довольно сложное. По этой причине у нас работает линия консультаций. Вы можете задавать вопросы в режиме online и получить исчерпывающую информацию. Вместе с менеджером вы подберете для себя надежный преобразователь частоты, который в полной мере удовлетворит ваши потребности.
Оборудование полностью сертифицированное и соответствует всем мировым критериям качества, надежности и долговечности. Пользуясь такими изделиями, вы обеспечите эффективное, долговечное и надежное функционирование любого электропривода.
Как подключить частотный преобразователь к электродвигателю?
a:2:{s:4:»TEXT»;s:8124:»Подключение частотного преобразователя к электродвигателюПодключение частотника осуществляется с использованием автоматического выключателя, который работает с током, номинальным току, потребляемому двигателем. Если двигатель рассчитан на питание от трехфазной сети (где напряжение составляет 380В), то следует устанавливать трехфазный автомат с общим рычагом. Это позволит, при коротком замыкании одной из фаз, быстро обесточить остальные фазы. При этом характеристики тока должны соответствовать показателям тока одной фазы двигателя.
Если преобразователь частоты рассчитан на однофазный ток (где напряжение составляет 220В), то лучше использовать одинарный автомат, рассчитанный на утроенный ток одной фазы.
В любом случае, подключение http://www.techtrends.ru/catalogs/common/privodnaya_tehnika/preobrazovateli_chastoty/»>частотного преобразователя к электродвигателю, следует выполнять только напрямую. Не допускается подключение через разрыв нулевого или заземляющего проводов.
Фазные провода преобразователя частоты присоединяются к соответствующим контактам электродвигателя. Перед этим производится соединение обмотки электродвигателя по одной из схем — «звезда» или «треугольник». При этом выбор типа соединения основан на характере напряжения, вырабатываемого частотным преобразователем.
Тип соединения «треугольник» следует выбирать, если вырабатываемое напряжение соответствует меньшему значению напряжения, указанному на корпусе двигателя. Если напряжение соответствует большему показателю напряжения, указанному на корпусе электродвигателя, то обмотки соединяются по типу «звезда».
В комплект с частотным преобразователем входит пульт управления, который должен устанавливаться в удобном для оператора месте. Его подключение следует производить, строго соблюдая инструкцию, которая прилагается к частотному преобразователю. При монтаже необходимо установить рукоятку в нулевое положение и выполнить включение автомата. После того, как на пульте управления загорится индикатор, необходимо нажать на кнопку «RAN» (запрограммировано по умолчанию). После этого, следует повернуть рукоятку на некоторый угол отклонения, чтобы двигатель начал постепенно вращаться. Если двигатель начал вращение в противоположную сторону, необходимо включить реверс, нажав на соответствующую кнопку.
Далее осуществляется наладка положения рукоятки в соответствии с необходимой частотой вращения двигателя. При этом следует помнить, что на некоторых моделях частотных преобразователей указана не частота вращения электродвигателя, которая выражается в количестве оборотов в минуту, а частота питающего переменного тока, выраженная в герцах.
Несмотря на то, что принцип работы, подключения и настройки частотных преобразователей практически одинаковы, сегодня производители предлагают различные виды моделей, которые могут отличаться.
Для того чтобы безошибочно произвести подключение частотного преобразователя к электродвигателю, необходимо подробно ознакомиться с прилагаемой к частотнику документацией, изучить инструкцию, поскольку каждая модель может иметь особые рекомендации от производителя, которые необходимо учитывать при подключении частотника к двигателю.
Схема подключения, которая может быть указана в руководстве по подключению преобразователей частоты, поможет осуществить монтаж частотника безошибочно.
Самыми распространенными и востребованными на сегодняшний день являются частотные преобразователи, рассчитанные на диапазон напряжения от 220В до 380В.
При установке частотного преобразователя, следует помнить, что преобразователь частоты нельзя постоянно перегружать. Некоторый запас выходной мощности позволит обеспечить бесперебойную работу частотника и обеспечит более длительный срок его эксплуатации.
Подключение частотного преобразователя к электродвигателю, следует производить, строго соблюдая приложенные инструкции.
Вы всегда можете приобрести промышленные частотные преобразователи Omron, Yaskawa, Schneider Electric по привлекательным ценам в нашем https://techtrends.ru/catalog/preobrazovateli-chastoty/» target=»_blank»>интернет-магазине. Мы работаем напрямую с производителями оборудования, поэтому гарантируем высокое качество, оперативную доставку, сервисную поддержку и доступные цены.
Мы также являемся сертифицированным сервисным центром по преобразователям частоты компании Omron.
«;s:4:»TYPE»;s:4:»HTML»;}
Что такое преобразователь частоты? Как это работает?
Работа с переменной частотой в виде генератора переменного тока существует с момента появления асинхронного двигателя. Измените скорость вращения генератора, и вы измените его выходную частоту. До появления высокоскоростных транзисторов это был один из немногих вариантов, доступных для изменения скорости двигателя, однако изменения частоты были ограничены, поскольку снижение скорости генератора приводило к снижению выходной частоты, но не напряжения. Мы увидим, почему это важно, чуть позже.В нашей отрасли насосы с регулируемой скоростью в прошлом были намного сложнее, чем сегодня. Один из более простых методов заключался в использовании многополюсного двигателя, намотанного таким образом, чтобы переключатель (или переключатели) мог изменять количество полюсов статора, которые были активными в любой момент времени. Скорость вращения можно было изменять вручную или с помощью датчика, подключенного к переключателям. Этот метод до сих пор используется во многих насосных системах с переменным расходом. Примеры включают циркуляционные насосы горячей и охлажденной воды, насосы для бассейнов, а также вентиляторы и насосы градирни.В некоторых отечественных бустерных насосах использовались гидравлические приводы или системы ременного привода с переменным приводом (своего рода автоматическая трансмиссия) для изменения скорости насоса на основе обратной связи от напорного мембранного клапана. И несколько других были еще более сложными.Судя по обручам, через которые нам приходилось преодолевать в прошлом, становится довольно очевидно, почему появление современного преобразователя частоты произвело революцию (еще один каламбур) в среде насосов с регулируемой скоростью. Все, что вам нужно сделать сегодня, — это установить относительно простой электронный блок (который часто заменяет более сложное пусковое оборудование) на месте применения и внезапно вы можете вручную или автоматически изменить скорость насоса по своему желанию.
Итак, давайте взглянем на компоненты преобразователя частоты и посмотрим, как они на самом деле работают вместе, чтобы изменять частоту и, следовательно, скорость двигателя. Думаю, вы удивитесь простоте этого процесса. Все, что для этого потребовалось, — это созревание твердотельного устройства, известного как транзистор.
Преобразователь частоты Компоненты
Выпрямитель
Поскольку трудно изменить частоту синусоидальной волны переменного тока в режиме переменного тока, первая задача преобразователя частоты — преобразовать волну в постоянный ток.Как вы увидите немного позже, относительно легко управлять постоянным током, чтобы он выглядел как переменный ток. Первым компонентом всех преобразователей частоты является устройство, известное как выпрямитель или преобразователь, оно показано слева на рисунке ниже.
Схема выпрямителя преобразует переменный ток в постоянный и делает это почти так же, как в зарядном устройстве для аккумуляторов или в аппарате для дуговой сварки. Он использует диодный мост для ограничения распространения синусоидальной волны переменного тока только в одном направлении. В результате получается полностью выпрямленная форма волны переменного тока, которая интерпретируется цепью постоянного тока как естественная форма волны постоянного тока.Трехфазные преобразователи частоты принимают три отдельные входные фазы переменного тока и преобразуют их в один выход постоянного тока. Большинство трехфазных преобразователей частоты также могут принимать однофазное питание (230 В или 460 В), но, поскольку есть только две входящие ветви, мощность преобразователя частоты (HP) должна быть снижена, поскольку производимый постоянный ток уменьшается пропорционально. С другой стороны, настоящие однофазные преобразователи частоты (те, которые управляют однофазными двигателями) используют однофазный вход и вырабатывают выход постоянного тока, который пропорционален входу.
Есть две причины, по которым трехфазные двигатели более популярны, чем их однофазные счетчики, когда речь идет о работе с регулируемой скоростью. Во-первых, они предлагают гораздо более широкий диапазон мощности. Но не менее важна их способность начать вращение самостоятельно. С другой стороны, однофазный двигатель часто требует некоторого вмешательства извне, чтобы начать вращение. В этом случае мы ограничимся рассмотрением трехфазных двигателей, используемых в трехфазных преобразователях частоты.
Шина постоянного тока
Второй компонент, известный как шина постоянного тока (показан в центре рисунка), не виден и не во всех преобразователях частоты, потому что он не вносит прямого вклада в работу с переменной частотой.Но он всегда будет там в виде высококачественных преобразователей частоты общего назначения (производимых специализированными производителями преобразователей частоты). Не вдаваясь в подробности, шина постоянного тока использует конденсаторы и катушку индуктивности для фильтрации «пульсаций» переменного напряжения от преобразованного постоянного тока до того, как оно попадет в секцию инвертора. Он также может включать фильтры, препятствующие гармоническим искажениям, которые могут возвращаться в источник питания, питающий преобразователь частоты. Преобразователи частоты более старых версий и некоторые преобразователи частоты для конкретных насосов требуют отдельных сетевых фильтров для выполнения этой задачи.
Инвертор
Справа от рисунка — «внутренности» преобразователя частоты. Инвертор использует три набора высокоскоростных переключающих транзисторов для создания «импульсов» постоянного тока, которые имитируют все три фазы синусоидальной волны переменного тока. Эти импульсы определяют не только напряжение волны, но и ее частоту. Термин инвертор или инверсия означает «реверсирование» и просто относится к движению вверх и вниз генерируемой формы волны. В современном преобразователе частоты преобразователь частоты использует метод, известный как «широтно-импульсная модуляция» (ШИМ) для регулирования напряжения и частоты.Мы рассмотрим это более подробно, когда рассмотрим выход инвертора.
Еще один термин, с которым вы, вероятно, столкнулись при чтении литературы или рекламы по преобразователям частоты, — это «IGBT». IGBT относится к «биполярному транзистору с изолированным затвором», который является переключающим (или импульсным) компонентом инвертора. Транзистор (который заменил лампу) выполняет две функции в нашем электронном мире. Он может действовать как усилитель и увеличивать сигнал, как в радио или стереосистеме, или он может действовать как переключатель и просто включать и выключать сигнал.IGBT — это просто современная версия, которая обеспечивает более высокие скорости переключения (3000 — 16000 Гц) и пониженное тепловыделение. Более высокая скорость переключения приводит к повышению точности имитации волн переменного тока и снижению слышимого шума двигателя. Уменьшение выделяемого тепла означает меньшие радиаторы и, следовательно, меньшую площадь основания преобразователя частоты.
Выход инвертора
На рисунке справа показана форма сигнала, генерируемого инвертором преобразователя частоты ШИМ, в сравнении с формой синусоидального сигнала истинного переменного тока.Выход инвертора состоит из серии прямоугольных импульсов с фиксированной высотой и регулируемой шириной. В этом конкретном случае есть три набора импульсов — широкий набор в середине и узкий набор в начале и конце как положительной, так и отрицательной частей цикла переменного тока. Сумма площадей импульсов равна эффективному напряжению истинной волны переменного тока (мы обсудим эффективное напряжение через несколько минут). Если бы вы отрезали части импульсов выше (или ниже) истинной волны переменного тока и использовали их для заполнения пустых пространств под кривой, вы бы обнаружили, что они почти идеально совпадают.Таким образом, преобразователь частоты регулирует напряжение, подаваемое на двигатель.
Сумма ширины импульсов и пустых промежутков между ними определяет частоту волны (отсюда ШИМ или широтно-импульсная модуляция), воспринимаемой двигателем. Если бы импульс был непрерывным (то есть без пробелов), частота все равно была бы правильной, но напряжение было бы намного больше, чем у истинной синусоидальной волны переменного тока. В зависимости от желаемого напряжения и частоты преобразователь частоты будет изменять высоту и ширину импульса, а также ширину пустых промежутков между ними.Хотя внутренние компоненты, обеспечивающие это, относительно сложны, результат элегантно прост!
Теперь некоторые из вас, вероятно, задаются вопросом, как этот «поддельный» переменный ток (на самом деле постоянный ток) может управлять асинхронным двигателем переменного тока. В конце концов, разве не требуется переменный ток, чтобы «вызвать» ток и соответствующее ему магнитное поле в роторе двигателя? Что ж, переменный ток вызывает индукцию естественным образом, потому что он постоянно меняет направление. DC, с другой стороны, этого не делает, потому что обычно он неподвижен после активации цепи.Но постоянный ток может индуцировать ток, если его включать и выключать. Для тех из вас, кто достаточно взрослый, чтобы помнить, что автомобильные системы зажигания (до появления твердотельного зажигания) имели набор точек в распределителе. Назначение точек было «импульсное» питание от батареи в катушку (трансформатор). Это вызвало заряд в катушке, который затем увеличил напряжение до уровня, при котором свечи зажигания могли загореться. Широкие импульсы постоянного тока, показанные на предыдущем рисунке, на самом деле состоят из сотен отдельных импульсов, и именно это включение и выключение выхода инвертора позволяет возникать индукции через постоянный ток.
Эффективное напряжение
Мощность переменного тока — довольно сложная величина, и неудивительно, что Эдисон почти выиграл битву за то, чтобы сделать постоянный ток стандартом в США. К счастью, для нас все сложности были объяснены, и все, что нам нужно сделать, это следовать правилам, изложенным до нас.
Одним из атрибутов, которые делают переменный ток сложным, является то, что он непрерывно изменяет напряжение, переходя от нуля к некоторому максимальному положительному напряжению, затем обратно к нулю, затем к некоторому максимальному отрицательному напряжению и затем снова обратно к нулю.Как определить действительное напряжение, приложенное к цепи? На рисунке слева изображена синусоида 60 Гц, 120 В. Обратите внимание, однако, что его пиковое напряжение составляет 170 В. Как мы можем назвать это волной 120 В, если ее фактическое напряжение составляет 170 В? В течение одного цикла он начинается с 0 В и повышается до 170 В, затем снова падает до 0. Он продолжает падать до –170, а затем снова повышается до 0. Оказывается, площадь зеленого прямоугольника, верхняя граница которого находится на уровне 120 В, равна сумме площадей под положительной и отрицательной частями кривой.Может ли тогда 120 В быть средним? Что ж, если бы вы усреднили все значения напряжения в каждой точке цикла, результат был бы примерно 108 В, так что это не должно быть ответом. Почему же тогда значение, измеренное VOM, составляет 120 В? Это связано с тем, что мы называем «эффективным напряжением».
Если бы вы измерили тепло, выделяемое постоянным током, протекающим через сопротивление, вы бы обнаружили, что оно больше, чем выделяемое эквивалентным переменным током. Это связано с тем, что переменный ток не поддерживает постоянное значение на протяжении всего цикла.Если вы проделали это в лаборатории в контролируемых условиях и обнаружили, что определенный постоянный ток вызывает повышение температуры на 100 градусов, его эквивалент по переменному току приведет к увеличению на 70,7 градуса или всего 70,7% от значения постоянного тока. Следовательно, эффективное значение переменного тока составляет 70,7% от постоянного. Также оказывается, что действующее значение переменного напряжения равно квадратному корню из суммы квадратов напряжения на первой половине кривой. Если пиковое напряжение равно 1, и вы должны были измерить каждое из отдельных напряжений от 0 до 180 градусов, эффективное напряжение будет равно 0.707 пикового напряжения. 0,707 пикового напряжения 170, показанного на рисунке, равно 120 В. Это эффективное напряжение также известно как среднеквадратическое или среднеквадратичное напряжение. Отсюда следует, что пиковое напряжение всегда будет в 1,414 пикового значения от эффективного напряжения. Ток 230 В переменного тока имеет пиковое напряжение 325 В, а 460 — пиковое напряжение 650 В. Эффект пикового напряжения мы увидим немного позже.
Что ж, я, вероятно, говорил об этом дольше, чем необходимо, но я хотел, чтобы вы получили представление об эффективном напряжении, чтобы вы поняли иллюстрацию ниже.В дополнение к изменению частоты преобразователь частоты также должен изменять напряжение, даже если напряжение не имеет ничего общего со скоростью, с которой работает двигатель переменного тока.
На рисунке показаны две синусоидальные волны 460 В переменного тока. Красный — это кривая 60 Гц, а синий — 50 Гц. Оба имеют пиковое напряжение 650 В, но 50 Гц намного шире. Вы можете легко увидеть, что область под первой половиной (0–10 мс) кривой 50 Гц больше, чем площадь первой половины (0–8,3 мс) кривой 60 Гц.И, поскольку площадь под кривой пропорциональна эффективному напряжению, его эффективное напряжение выше. Это увеличение эффективного напряжения становится еще более значительным при уменьшении частоты. Если позволить двигателю 460 В работать при этих более высоких напряжениях, его срок службы может значительно сократиться. Следовательно, преобразователь частоты должен постоянно изменять «пиковое» напряжение относительно частоты, чтобы поддерживать постоянное эффективное напряжение. Чем ниже рабочая частота, тем ниже пиковое напряжение и наоборот.По этой причине двигатели 50 Гц, используемые в Европе и некоторых частях Канады, рассчитаны на напряжение 380 В. Видите ли, я говорил вам, что кондиционер может быть немного сложным!
Теперь вы должны иметь довольно хорошее представление о работе преобразователя частоты и о том, как он управляет скоростью двигателя. Большинство преобразователей частоты предлагают пользователю возможность устанавливать скорость двигателя вручную с помощью многопозиционного переключателя или клавиатуры или использовать датчики (давления, расхода, температуры, уровня и т. Д.) Для автоматизации процесса.
Поиск и устранение неисправностей преобразователя частоты
Сервисный отдел производителя преобразователя частоты часто видит следующий сценарий: разочарованный пользователь звонит с тем, что он считает неисправным оборудованием.Когда техник начинает искать информацию, разочарование пользователя выливается в край, часто с восклицанием типа «что за мусор!» Когда сервисный техник задает уместные вопросы, раздраженный пользователь сообщает подробности о преобразователе частоты, который постоянно отключается при неисправности, пока пользователь не окажется в конце своей веревки, не зная, что ему делать. Современные преобразователи представляют собой чудо техники и часто могут немного отпугнуть тех, кто не знаком с силовой электроникой.Имея это в виду, давайте рассмотрим факторы, которые могут способствовать неправильной работе преобразователя частоты, при условии, что преобразователь частоты по-прежнему правильно вращает двигатель.
При поиске и устранении неисправностей преобразователей частоты начните с тщательного визуального осмотра; очистите преобразователь частоты от грязи, пыли и коррозии; проверить все соединения проводки на герметичность; проверьте линейные напряжения и ток, поступающие в преобразователь частоты; и проверьте выход преобразователя частоты на напряжение и ток.
Если исключить внутренние проблемы с преобразователем частоты, что еще может привести к его плохой работе?
Помните, что преобразователь частоты — это чувствительное электронное устройство. В отличие от оборудования, которое проходит через линию, оно не предназначено для обеспечения максимальной мощности нагрузки до тех пор, пока двигатель или система не сломаются. Преобразователь частоты будет реагировать на колебания состояния системы и в конечном итоге отключится при индикации неисправности, в зависимости от того, какая часть системы неисправна.
Итак, как можно диагностировать этот тип проблемы преобразователя частоты?
Лучший способ начать поиск проблем в системе — это использовать общесистемный подход. Это звучит немного упрощенно, но давайте посмотрим на подход. При диагностике аварийного отключения в системе преобразователя частоты начните с обзора базового профилактического обслуживания. Составление хорошего расписания PM очень важно. Это следующие шаги:
1. Проверьте систему с помощью хорошего визуального осмотра .Ищите проточную или капающую воду, высокую влажность, чрезмерно высокие температуры, чрезмерную грязь или загрязняющий мусор, а также коррозионные агенты, расположенные рядом с оборудованием или под ним.
Вот хорошее практическое правило: если вы не разместите телевизор рядом с преобразователем частоты из-за физических условий, преобразователь частоты может иметь проблемы. Если преобразователь частоты не имеет герметичного корпуса для работы в суровых условиях окружающей среды, необходимо позаботиться о защите преобразователя частоты в сборе.
2. Очистите преобразователь частоты от грязи, пыли и коррозии . В зависимости от окружающей среды могут возникнуть серьезные проблемы с загрязнителями. Преобразователь частоты должен быть относительно чистым. Не допускайте скопления значительного количества грязи на радиаторе преобразователя частоты. Это может помешать достаточному охлаждению полупроводников преобразователя частоты и может повредить охлаждающие вентиляторы и вызвать проблемы с перегревом.
3. Проверить герметичность всех соединений проводов .Плохие соединения в проводке преобразователя частоты с входящей мощностью и двигателем являются основной причиной отказа преобразователя частоты. Поскольку преобразователь частоты работает изо дня в день, постоянный цикл повышения температуры и последующего охлаждения со временем может привести к ослаблению соединений.
В зависимости от производителя устройства используемый провод может быть многожильным для обеспечения гибкости. Этот тип проволоки может быть трудно удерживать плотно. Плохие соединения могут способствовать отключению по перегрузке по току, разрушению IGBT, выходу из строя входных выпрямителей и прожиганию клемм на контакторах и переключателях.
4. Проверьте линейные напряжения и токи, поступающие в преобразователь частоты . Эти напряжения должны быть сбалансированы в пределах пяти процентов. Несбалансированное линейное напряжение может вызвать серьезные проблемы. Затем проверьте ток, поступающий на вход преобразователя частоты.
Уровни тока могут немного отличаться от фазы к фазе, не вызывая особого беспокойства, но есть возможность обнаружить одну линию полностью мертвой. Помните, что большинство преобразователей частоты сегодня все еще могут запускать двигатель при отсутствии одной фазы входящей мощности.
5. Проверьте выход преобразователя частоты на напряжение и ток . Преобразователь частоты выдает сигнал, поступающий на двигатель. На большинстве преобразователей частоты напряжение от секции инвертора должно быть сбалансировано с точностью до пары вольт, а ток также должен быть сбалансирован. Большие колебания приводят к сильной тряске двигателя и могут вызвать проблемы с двигателем.
Это основные первые шаги к определению проблемы с любым преобразователем частоты.Этот процесс должен выполняться периодически. Если следовать этим процедурам, можно устранить большинство проблем, и преобразователь частоты должен безотказно работать в течение многих лет.
Современные преобразователи частоты удивительно надежны. С развитием полупроводниковой технологии и повышением производительности шинных конденсаторов многие проблемы, которые ранее беспокоили производителей преобразователей частоты, практически исчезли. Все основные производители преобразователей частоты создают относительно прочные и надежные преобразователи частоты.Минимум внутренних сбоев. Проблемы за пределами преобразователя частоты теперь способствуют большому количеству отказов преобразователя частоты и являются основной причиной ложных отключений.
Так как же искать источник проблемы? Подумайте о своей системе преобразователя частоты как о группе областей, работающих в гармонии. Если в системе возникла проблема, разделите систему на части, чтобы определить, с чего начать. Основные направления:
- Система ввода
- Защита параллельной цепи
- Входной контактор от центра управления двигателем (если используется)
- Проводка от центра управления двигателем или ответвительной цепи
- Вход в преобразователь частоты (размыкающий выключатель или контактор)
- Входной мост
- Сам преобразователь частоты
- Мотор
- Перегрузка двигателя (если используется)
- Электропроводка и кабелепровод двигателя
- Выключатель двигателя (если используется)
- Электропроводка к мотору
- Сам мотор
- Перегрузка двигателя (если используется)
При работе с такими неисправностями очень полезна временная шкала. Задокументируйте время суток, когда происходят поездки, а затем попытайтесь определить закономерность. Возможно, установка выезжает каждый день около 10:00 утра. Возможно, устройство отключается при пониженном напряжении, когда погода становится выше 100 ° F.Если можно установить схему этих походов, то можно будет разработать план нападения. Помните, что преобразователь частоты реагирует на внешние проблемы отключением.
Многие другие проблемы могут вызвать реакцию входа преобразователя частоты. Если вы подозреваете, что проблема связана с входным питанием, может быть полезно поручить компании по проверке качества электроэнергии установить оборудование для мониторинга и диагностировать проблемы с линией. Низкое качество электроэнергии часто приводит к ненужным отключениям преобразователя частоты из-за неисправности.
Переходя к задней части преобразователя частоты, мы можем изучить некоторые проблемы, связанные с двигателем, которые являются источником многих нерешенных аварийных отключений. Если подозреваются проблемы с двигателем или соединительным проводом, лучше всего применить мегомметр к системе двигателя.
В этой области существует много путаницы. Попробуйте начать процесс с проводов, идущих от преобразователя частоты. Я предлагаю использовать мегомметр на 1000 В (мегомметр), если он есть, но подойдет мегомметр на 500 В.Не используйте мегомметр на выходе преобразователя частоты! Megger разрушит IGBT, если используется на них, особенно электронный Megger. Скачки напряжения превысят пиковое обратное напряжение IGBT и приведут к их ухудшению. В конечном итоге это приведет к выходу из строя транзистора.
Причина, по которой следует начинать с проводки от преобразователя частоты, состоит в том, чтобы разделить и завоевать систему. Слишком часто двигатель отключается от распределительной коробки только для того, чтобы обнаружить, что двигатель в порядке, и что проблема на самом деле началась с проводки к двигателю.Начнем с провода и мотора. Если обнаружено замыкание на землю, проблема обнаружится с помощью простого процесса устранения.
Примером может служить ситуация, когда обнаруживается, что вывод T1 идет на землю. Начиная с провода, следующим шагом будет переход к разъединителю двигателя (если он установлен) и отключение двигателя. Если проблема исчезнет, значит, проблема в проводе. Если проблема не исчезнет, переходите к мотору. Снимите крепления с двигателя и снимите его. Если проблема исчезнет, значит, проблема в проводах.Если проблема в двигателе, вы все равно должны удалить крепления, чтобы заменить двигатель.
При выполнении этого теста помните, что большая часть проводов не рассчитана на погружение в воду. Затопленный кабелепровод сломается, и ток начнет течь на землю. Это состояние часто начинается с перегрузки по току до того, как преобразователь частоты начнет отключаться от замыкания на землю.
Таким образом, может возникнуть ситуация, в которой вы уже испытали замыкание на землю, но не можете обнаружить замыкание на землю в системе.Это может быть связано с влажностью в системе двигателя, что можно решить путем перепрограммирования преобразователя частоты для осушения двигателя путем пропускания постоянного тока через систему во время покоя двигателя. У большинства крупных производителей качественных преобразователей частоты есть программа, позволяющая «просушить» двигатель с помощью точки программы. Для получения этой информации обратитесь к руководству пользователя.
Как видите, многие области за пределами преобразователя частоты могут вызывать нежелательные реакции преобразователя частоты.Тщательное обследование этих областей устранит серьезные проблемы и обеспечит долгую и безотказную жизнь вашей системе.
Основы преобразователя частоты
Для достижения высокой эффективности, отличной управляемости и энергосбережения в приложениях, связанных с промышленными асинхронными двигателями, необходимо использовать системы регулируемых преобразователей частоты. Система преобразователя частоты в настоящее время представляет собой двигатель переменного тока, питаемый от статического преобразователя частоты. Современный преобразователь частоты отлично подходит для двигателей переменного тока и прост в установке.Однако одна важная проблема связана с несинусоидальным выходным напряжением. Этот фактор вызвал массу нежелательных проблем. Повышенные потери в асинхронном двигателе, шум и вибрация, пагубное воздействие на систему индукционной изоляции и выход из строя подшипников являются примерами проблем систем, связанных с преобразователями частоты. Повышенные индукционные потери означают снижение выходной мощности индукции для предотвращения перегрева. Лабораторные измерения показывают, что повышение температуры может быть на 40% выше при использовании преобразователя частоты по сравнению с обычными источниками питания.Постоянные исследования и совершенствование преобразователей частоты помогли решить многие из этих проблем. К сожалению, кажется, что решение одной проблемы акцентировало внимание на другой. Снижение потерь в индукции и преобразователе частоты ведет к увеличению вредного воздействия на изоляцию. Производители индукционных устройств, конечно, знают об этом. На рынке начинают появляться новые индукционные конструкции (инверторно-резистивные двигатели). Лучшая изоляция обмотки статора и другие конструктивные улучшения гарантируют, что асинхронные двигатели будут лучше адаптированы для применений с преобразователями частоты. Введение
Одной из наиболее серьезных проблем асинхронного двигателя была сложность его адаптации к регулировке скорости. Синхронная скорость двигателя переменного тока определяется следующим уравнением.
n s = 120 * f / pn с = синхронная скорость
f = частота электросети
p = номер полюса
Единственный способ отрегулировать скорость для данного количества полюсов — это изменить частоту.
Основной принцип
Теоретически основная идея проста, процесс преобразования стабильной частоты линии электропередачи в переменную частоту в основном выполняется в два этапа:
- Источник переменного тока преобразуется в постоянное напряжение.
- Постоянное напряжение преобразуется в переменное напряжение желаемой частоты.
Различные типы преобразователей частоты
Инвертор источника напряжения PWM (VSI)
ШИМ (широтно-импульсная модуляция) широко применяется в промышленности преобразователей частоты. Они доступны от нескольких сотен ватт до мегаватт.
ШИМ-преобразователь не обязательно должен точно соответствовать нагрузке, ему нужно только убедиться, что нагрузка не потребляет ток, превышающий номинальный ток ШИМ-преобразователя. Вполне возможно запустить индукцию 20 кВт с преобразователем PWM на 100 кВт. Это большое преимущество, которое упрощает работу приложения.
В настоящее время преобразователь частоты ШИМ использует биполярный транслятор с изолированным затвором (IGBT). Современные преобразователи частоты с ШИМ работают очень хорошо и не сильно отстают от конструкций, использующих синусоидальный источник питания — по крайней мере, не в диапазоне мощностей до 100 кВт или около того.
Инвертор источника тока (CSI)
Инвертор источника тока представляет собой грубую и довольно простую конструкцию по сравнению с ШИМ. Он использует простые тиристоры или тиристоры в цепях питания, что делает его намного дешевле. Кроме того, он очень надежен. Конструкция обеспечивает защиту от короткого замыкания благодаря большим индукторам в звене постоянного тока. Он крупнее ШИМ.
Раньше инвертор источника тока был лучшим выбором для больших нагрузок. Недостатком инвертора источника тока является необходимость согласования с нагрузкой.Преобразователь частоты должен быть рассчитан на используемый асинхронный двигатель. Фактически, сама индукция является частью перевернутой цепи.
Инвертор источника тока подает на асинхронный двигатель ток прямоугольной формы. На низких скоростях индукция создает зубцовый момент. Этот тип преобразователя частоты будет создавать больше шума на источнике питания по сравнению с преобразователем PWM. Нужна фильтрация.
Сильные переходные процессы выходного напряжения являются дополнительным недостатком инвертора источника тока.В худших случаях переходные процессы могут почти в два раза превышать номинальное напряжение. Также существует риск преждевременного износа изоляции обмотки при использовании этого преобразователя частоты. Этот эффект наиболее серьезен, когда нагрузка не соответствует преобразователю частоты должным образом. Это может произойти при работе с частичной нагрузкой. Такой преобразователь частоты все больше теряет свою популярность.
Векторное управление потоком (FVC)
Управление вектором магнитного потока — это более сложный тип преобразователя частоты, который используется в приложениях, требующих экстремального управления.Например, на бумажных фабриках необходимо очень точно контролировать скорость и силу растяжения.
Преобразователь частоты FVC всегда имеет какой-то контур обратной связи. Такой тип преобразователя частоты обычно не представляет особого интереса для насосов. Это дорого, и его преимуществами нельзя воспользоваться.
Влияние на двигатель
Индукция лучше всего работает при питании от источника чистого синусоидального напряжения. Чаще всего это происходит при подключении к надежному источнику питания от электросети.
Когда индукция подключена к преобразователю частоты, на него будет подаваться несинусоидальное напряжение — больше похожее на напряжение с прерванным квадратом. Если мы подаем 3-фазную индукцию с симметричным 3-фазным квадратичным напряжением, все гармоники, кратные трем, а также четные числа будут исключены из-за симметрии. Но остались цифры 5, 7 и 11, 13 и 17, 19 и 23, 25 и так далее. Для каждой пары гармоник меньшее число вращается в обратном направлении, а большее число — в прямом.
Скорость асинхронного двигателя определяется основным числом, или числом 1, из-за его сильного доминирования. Что теперь происходит с гармониками?
С точки зрения гармоник кажется, что индукция заблокировала ротор, что означает, что скольжение для гармоник составляет приблизительно 1. Это не дает никакой полезной работы. В результате в основном возникают потери в роторе и дополнительный нагрев. В частности, в нашем приложении это серьезный исход. Однако с помощью современных технологий можно устранить большую часть гармоник в индукционном токе, тем самым уменьшив дополнительные потери.
Преобразователь частоты до
Самые ранние преобразователи частоты часто использовали простое прямоугольное напряжение для питания асинхронного двигателя. Они вызвали проблемы с нагревом, и индукция работала с типичным шумом, вызванным пульсацией крутящего момента. Намного лучшая производительность была достигнута, если просто исключить пятый и седьмой. Это было сделано за счет дополнительного переключения сигнала напряжения.
Преобразователь частоты сегодня
В наши дни эта техника стала более сложной, и большинство недостатков остались в прошлом.Разработка мощных полупроводниковых приборов и микропроцессора позволила адаптировать схему переключения таким образом, чтобы исключить большинство вредных гармоник.
Для преобразователей частоты среднего диапазона мощности (до нескольких десятков кВт) доступны частоты переключения до 20 кГц. Индукционный ток с этим типом преобразователя частоты будет почти синусоидальным.
При высокой частоте коммутации индукционные потери остаются низкими, но потери в преобразователе частоты увеличиваются.Общие потери увеличиваются при чрезмерно высоких частотах переключения.
Некоторые основы теории двигателя
Производство крутящего момента в асинхронном двигателе может быть выражено как
T = V * τ * B [Нм]V = Активный объем ротора [м 3 ]
τ = ток на метр окружности отверстия статора
B = Плотность потока в воздушном зазоре
B = пропорционально (E / ω) = E / (2 * π * f)ω = угловая частота напряжения статора
E = индуцированное напряжение статора
Для достижения наилучших характеристик на различных скоростях становится необходимым поддерживать соответствующий уровень намагничивания для индукции для каждой скорости.
Диапазон различных характеристик крутящего момента показан на следующем рисунке. Для нагрузки с постоянным крутящим моментом соотношение V / F должно быть постоянным. Для нагрузки с квадратичным крутящим моментом постоянное отношение V / F приведет к чрезмерно высокой намагниченности при более низкой скорости. Это приведет к излишне высоким потерям в стали и потерям сопротивления (I 2 R).
Лучше использовать квадратное отношение V / F. Таким образом, потери в стали и потери I 2 R снижаются до уровня, более приемлемого для фактического момента нагрузки.
Если мы посмотрим на рисунок, мы обнаружим, что напряжение достигло своего максимума и не может быть увеличено выше базовой частоты 50 Гц. Диапазон выше базовой частоты называется диапазоном ослабления поля. Следствием этого является невозможность поддерживать необходимый крутящий момент без увеличения тока. Это приведет к проблемам с нагревом того же типа, что и при нормальном пониженном напряжении от синусоидальной электросети. Скорее всего, будет превышен номинальный ток преобразователя частоты.
Работа в диапазоне ослабления поля
Иногда возникает соблазн запустить насос на частотах выше частоты промышленной сети, чтобы достичь рабочей точки, которая в противном случае была бы невозможна. Это требует дополнительной осознанности. Мощность на валу насоса будет увеличиваться в кубе скорости. Превышение скорости на 10% потребует на 33% больше выходной мощности. Грубо говоря, можно ожидать, что повышение температуры увеличится примерно на 75%.
Тем не менее, есть предел тому, что мы можем выжать из индукции при превышении скорости.Максимальный крутящий момент индукции будет падать как функция 1 / F в диапазоне ослабления поля.
Очевидно, что индукция пропадет, если преобразователь частоты не сможет поддерживать ее с напряжением, которое соответствует необходимому крутящему моменту.
Снижение номинальных характеристик
Во многих случаях индукция работает на максимальной мощности от синусоидальной электросети, и любой дополнительный нагрев недопустим. Если такая индукция питается от какого-либо преобразователя частоты, то, скорее всего, она должна работать с меньшей выходной мощностью, чтобы избежать перегрева.
Нет ничего необычного в том, что преобразователь частоты для больших насосов мощностью более 300 кВт добавляет дополнительные индукционные потери в размере 25–30%. В верхнем диапазоне мощностей только некоторые преобразователи частоты имеют высокую частоту переключения: от 500 до 1000 Гц обычно для преобразователей частоты предыдущего поколения.
Для компенсации дополнительных потерь необходимо уменьшить выходную мощность. Мы рекомендуем общее снижение номинальных характеристик на 10–15% для больших насосов.
Поскольку преобразователь частоты загрязняет питающую сеть гармониками, энергокомпания иногда предписывает входной фильтр.Этот фильтр снижает доступное напряжение обычно на 5–10%. Следовательно, индукция будет работать при 90–95% номинального напряжения. Следствие — дополнительный обогрев. Может потребоваться снижение номинальных характеристик.
Пример
Предположим, что выходная мощность фактического двигателя насоса составляет 300 кВт при 50 Гц, а повышение температуры составляет 80 ° C при использовании синусоидальной электросети. Дополнительные потери в 30% приведут к нагреву на 30%. Консервативное предположение состоит в том, что повышение температуры зависит от квадрата мощности на валу.
Чтобы температура не превышала 80 ° C, необходимо уменьшить мощность на валу до
P пониженный = √ (1 / 1,3) * 300 = 263 кВтУменьшение может быть достигнуто либо за счет уменьшения диаметра рабочего колеса, либо за счет снижения скорости.
Преобразователь частоты Потери
Когда определяется общий КПД системы преобразователя частоты, необходимо учитывать внутренние потери преобразователей частоты. Эти потери преобразователя частоты непостоянны, и их нелегко определить.Они состоят из постоянной части и части, зависящей от нагрузки.
Постоянные потери:
Потери на охлаждение (вентилятор охлаждения) — потери в электронных схемах и так далее.
Потери, зависящие от нагрузки:
Коммутационные потери и свинцовые потери в силовых полупроводниках.
На следующем рисунке показан КПД преобразователя частоты как функция частоты при кубической нагрузке для блоков мощностью 45, 90 и 260 кВт. Кривые характерны для преобразователей частоты в диапазоне мощностей 50–300 кВт; с частотой коммутации около 3 кГц и с IGBT второго поколения.
Влияние на изоляцию двигателя
Выходные напряжения современных преобразователей частоты имеют очень короткое время нарастания напряжения.
dU / dT = 5000 В / мкс — обычное значение.Такой крутой скачок напряжения вызовет чрезмерное напряжение в изоляционных материалах индукционной обмотки. При малом времени нарастания напряжение в обмотке статора распределяется неравномерно. При синусоидальном источнике питания напряжение между витками индукционной обмотки обычно равномерно распределяется.С другой стороны, с преобразователем частоты до 80% напряжения будет падать на первом и втором витках. Поскольку изоляция между проводами является слабым местом, это может быть опасным для индукции. Короткое время нарастания также вызывает отражение напряжения в индукционном кабеле. В худшем случае это явление удвоит напряжение на индукционных выводах. Индукция, подаваемая от преобразователя частоты на 690 вольт, может подвергаться воздействию напряжения до 1900 вольт между фазами.
Амплитуда напряжения зависит от длины индукционного кабеля и времени нарастания. При очень коротком времени нарастания полное отражение происходит в кабеле длиной от 10 до 20 метров.
Для обеспечения работы и длительного срока службы двигателя абсолютно необходимо, чтобы обмотка была адаптирована для использования с преобразователем частоты. Индукторы для напряжений выше 500 вольт должны иметь усиленную изоляцию. Обмотка статора должна быть пропитана смолой, обеспечивающей изоляцию без пузырьков или полостей.Тлеющие разряды часто начинаются вокруг полостей. Это явление в конечном итоге приведет к разрушению изоляции.
Есть способы защитить двигатель. Помимо усиленной системы изоляции, может потребоваться установка фильтра между преобразователем частоты и индукцией. Такие фильтры можно приобрести у большинства известных поставщиков преобразователей частоты.
Фильтр обычно замедляет время нарастания напряжения от
dU / dT = 5000 В / мкс до 500-600 В / мксВыход из строя подшипника
Поломка вращающегося оборудования часто может быть связана с выходом из строя подшипников.Помимо чрезмерного нагрева, недостаточной смазки или усталости металла, электрический ток через подшипники может быть причиной многих загадочных поломок подшипников, особенно при больших индукциях. Это явление обычно вызвано несимметрией в магнитной цепи, которая индуцирует небольшое напряжение в структуре статора, или током нулевой последовательности. Если потенциал между конструкцией статора и валом становится достаточно высоким, через подшипник будет происходить разряд.Небольшие электрические разряды между телами качения и дорожкой качения подшипника в конечном итоге могут повредить подшипник.
Использование преобразователей частоты увеличивает вероятность отказа подшипников такого типа. Технология переключения современного преобразователя частоты вызывает ток нулевой последовательности, который при определенных обстоятельствах проходит через подшипники.
Самый простой способ решить эту проблему — поставить преграду для тока. Обычный метод заключается в использовании подшипника с изолирующим покрытием на наружном кольце.
Выводы
Использование преобразователя частоты не означает беспроблемного использования. Множество вопросов, на которые необходимо обратить внимание при проектировании. Будет ли необходимо, например, ограничивать доступную мощность на валу для предотвращения чрезмерного нагрева? Во избежание этой проблемы может потребоваться работа с более низкой выходной мощностью.
Будет ли изоляция асинхронного двигателя сопротивляться воздействию инвертора? Нужна ли фильтрация? Современные эффективные инверторы оказывают пагубное влияние на изоляцию из-за высокой частоты коммутации и короткого времени нарастания напряжения.
Какую максимальную длину кабеля можно использовать без полного отражения напряжения? Амплитуда напряжения зависит как от длины кабеля, так и от времени нарастания. При очень коротком времени нарастания полное отражение будет происходить в кабелях длиной от 10 до 20 метров.
Можно ли использовать изолированные подшипники, чтобы предотвратить попадание тока нулевой последовательности в подшипники?
Только когда мы решим все эти вопросы, мы сможем принимать правильные решения относительно использования преобразователя частоты.
Зачем двигателю переменного тока преобразователь частоты?
Что такое преобразователь частоты?
Проще говоря, преобразователь частоты — это устройство преобразования энергии. Преобразователь частоты преобразует базовую синусоидальную мощность с фиксированной частотой и фиксированным напряжением (сетевое питание) в выходной сигнал переменной частоты и переменного напряжения, используемый для управления скоростью асинхронных двигателей.
Зачем нужен преобразователь частоты?
Основная функция преобразователя частоты в водной среде — экономия энергии.За счет управления скоростью насоса вместо регулирования потока с помощью дроссельных клапанов можно значительно сэкономить энергию. Например, снижение скорости на 20% может дать экономию энергии на 50%. Ниже описывается снижение скорости и соответствующая экономия энергии. Помимо экономии энергии, значительно увеличивается срок службы крыльчатки, подшипников и уплотнений.
Преобразователи частоты
Преобразователи частоты, доступные во многих различных типах, предлагают оптимальный метод согласования производительности насоса и вентилятора с требованиями системы.Чаще всего используется преобразователь частоты. Он преобразует стандартную мощность предприятия (220 В или 380 В, 50 Гц) в регулируемое напряжение и частоту для питания двигателя переменного тока. Частота, применяемая к двигателю переменного тока, определяет скорость двигателя. Двигатели переменного тока обычно представляют собой такие же стандартные двигатели, которые могут быть подключены к сети переменного тока. За счет включения байпасных пускателей работа может поддерживаться даже в случае выхода инвертора из строя. Преобразователи частоты
также обладают дополнительным преимуществом — увеличенным сроком службы подшипников и уплотнений насоса. Поддерживая в насосе только давление, необходимое для удовлетворения требований системы, насос не подвергается воздействию более высоких давлений, чем необходимо.Следовательно, компоненты служат дольше.
Те же преимущества, но в меньшей степени, применимы и к вентиляторам, работающим от преобразователей частоты.
Для достижения оптимального КПД и надежности многие специалисты по спецификациям получают от производителей подробную информацию об эффективности преобразователя частоты, требуемом техническом обслуживании, диагностических возможностях преобразователя частоты и общих рабочих характеристиках. Затем они проводят подробный анализ, чтобы определить, какая система даст наилучшую окупаемость инвестиций.
Дополнительные преимущества преобразователей частоты
Помимо экономии энергии и лучшего управления технологическим процессом преобразователи частоты могут обеспечить и другие преимущества:
- Преобразователь частоты может использоваться для управления технологической температурой, давлением или расходом без использования отдельного контроллера. Соответствующие датчики и электроника используются для сопряжения управляемого оборудования с преобразователем частоты.
- Затраты на техническое обслуживание могут быть снижены, поскольку более низкие рабочие скорости приводят к увеличению срока службы подшипников и двигателей.
- Устранение дроссельных клапанов и заслонок также устраняет необходимость обслуживания этих устройств и всех связанных с ними элементов управления.
- Устройство плавного пуска для двигателя больше не требуется.
- Контролируемая скорость нарастания в жидкостной системе может устранить проблемы гидравлического удара.
- Способность преобразователя частоты ограничивать крутящий момент до уровня, выбранного пользователем, может защитить приводимое оборудование, которое не может выдерживать чрезмерный крутящий момент.
Анализировать систему в целом
Поскольку процесс преобразования входящей мощности с одной частоты на другую приведет к некоторым потерям, экономия энергии всегда должна происходить за счет оптимизации производительности всей системы. Первым шагом в определении потенциала энергосбережения системы является тщательный анализ работы всей системы. Для обеспечения экономии энергии требуется детальное знание работы оборудования и требований к технологическим процессам. Кроме того, следует учитывать тип преобразователя частоты, предлагаемые функции и общую пригодность для применения.
Внутренняя конфигурация преобразователя частоты
Преобразователи частоты содержат три основных секции:
- Схема выпрямителя — состоит из диодов, тиристоров или биполярных транзисторов с изолированным затвором. Эти устройства преобразуют мощность сети переменного тока в постоянный ток.
- Шина постоянного тока — состоит из конденсаторов, которые фильтруют и накапливают заряд постоянного тока.
- Инвертор — состоит из высоковольтных мощных транзисторов, которые преобразуют мощность постоянного тока в выход переменного тока с переменной частотой и напряжением, подаваемый на нагрузку.
Преобразователи частоты также содержат мощный микропроцессор, который управляет схемой инвертора для создания почти чистого синусоидального напряжения переменной частоты, подаваемого на нагрузку. Микропроцессор также управляет конфигурациями ввода / вывода, настройками преобразователя частоты, состояниями неисправности и протоколами связи.
Поиск и устранение неисправностей преобразователя частоты
Преобразователи частоты могут быть мощным инструментом в поддержании процессов за счет использования диагностики для решения проблем с производительностью преобразователя частоты и устранения неисправностей связанных процессов.Понимание того, как преобразователь частоты взаимодействует с технологическим процессом, может помочь вам улучшить общее производство и качество продукции (рис. 1).Преобразователи частоты не безупречны; иногда их нужно отремонтировать или заменить. Преобразователь частоты часто является первым индикатором изменения технологического процесса или проблемы применения.
Многие преобразователи частоты обмениваются данными с помощью ЖК-дисплея или светодиодного дисплея, а также посредством индикации разомкнутой блокировки или неисправности. В большинстве случаев преобразователь частоты взаимодействует с органами управления оператора, сигналами управления технологическим процессом и ПЛК.Проблема с взаимодействием между преобразователем частоты и этими внешними элементами управления может показаться проблемой преобразователя частоты, хотя на самом деле проблема связана с технологическим процессом. Обсуждение симптомов технологического процесса и преобразователя частоты с операторами оборудования часто может помочь определить проблемную область.
Если внешнее управление работает правильно, используйте преобразователь частоты для систематического выявления проблем. Если индикатор состояния дисплея не работает, проверьте входящую мощность переменного тока.Если индикатор состояния по-прежнему не отображается после проверки или восстановления питания переменного тока, проверьте питание управления и при необходимости восстановите его.
Если преобразователь частоты работает успешно, но внезапно не запускается, или если преобразователь частоты запускается, но не работает должным образом, проверьте, указывает ли дисплей состояния диагностики неисправность. В руководстве по эксплуатации преобразователя частоты должно быть описание неисправностей и действия по устранению неисправностей. Используйте диагностику или управление с клавиатуры для контроля таких переменных, как входное напряжение, шина постоянного тока, несущая частота, выходная частота, напряжение, ток, входы / выходы и состояние управления.Эти параметры отображаются на наиболее распространенных преобразователях частоты. Состояние ввода / вывода использует биты для отслеживания требуемых условий запуска, чтобы убедиться, что они включены, и для определения того, что может препятствовать запуску. Состояние управления указывает на источник задания скорости и может использоваться для проверки поступающих сигналов скорости или направления.
Высокая неисправность шины
Высокая шина — распространенная неисправность, вызванная внешними факторами. Мгновенный скачок напряжения в сети переменного тока или «ремонтная нагрузка», создаваемая инерцией машины, может вызвать отказ шины высокого уровня.Нагрузка продолжает вращаться быстрее, чем заданная скорость двигателя. Когда возникает такая ситуация, преобразователь частоты защищает себя, отключаясь при повреждении шины высокого уровня и отключая биполярные транзисторы с изолированным затвором (IGBT).
Если указывается неисправность шины высокого уровня, убедитесь, что источник питания переменного тока согласован, а время замедления настроено в соответствии с мощностью нагрузки. Если процесс требует быстрого замедления, можно добавить динамическое торможение или схему управления рекуперативной мощностью.
Ошибка перегрузки по току
Другая распространенная неисправность — это перегрузка по току. При поиске и устранении неисправностей, связанных с перегрузкой по току, сначала проверьте все силовые соединения, чтобы убедиться, что они правильно подключены. Плохие соединения или оборванные провода часто являются виновниками возникновения проблем с перегрузкой по току и управлением. Слабые силовые соединения вызывают условия перенапряжения и перегрузки по току, перегорают предохранители и повреждение преобразователя частоты. Плохая проводка управления вызывает неустойчивую работу преобразователя частоты, что приводит к непредсказуемым колебаниям скорости или невозможности управления преобразователем частоты.
Используйте функцию автонастройки, если она есть в преобразователе частоты. Функция автонастройки на многих преобразователях частоты позволяет преобразователю частоты идентифицировать подключенный двигатель, что позволяет использовать информацию о роторе в алгоритмах процессора для более точного управления током. Преобразователь частоты также может компенсировать магнитный ток, что позволяет лучше контролировать ток, создающий крутящий момент. Как избыточное, так и недостаточное флюсование двигатель может вызвать проблемы.
Второй шаг — проверить механическую нагрузку на изношенные или сломанные детали или чрезмерное трение.При необходимости отремонтируйте или замените компоненты.
Наконец, проверьте входное напряжение и скорость разгона. Если входящее напряжение слишком низкое или скорость ускорения слишком высокая, возможна ошибка из-за перегрузки по току. Уменьшите скорость ускорения или стабилизируйте поступающее напряжение, чтобы исправить эту неисправность.
Большой ток пусковой нагрузки
Высокие значения тока / нагрузки могут указывать на механическое заедание или необъяснимые изменения скорости процесса или нагрузки. Требования к мощности для многих насосов и вентиляторов увеличиваются пропорционально кубу скорости вращения (S3).Работа с нагрузкой всего на несколько оборотов в минуту быстрее может привести к перегрузке преобразователя частоты.
Перед запуском необходимо проверить компоненты, чтобы избежать перегрузки. Конвейеры, оставленные загруженными в нерабочее время, перед запуском следует разгрузить. Следует избегать засорения насосов, удаляя твердые частицы, которые осели, когда насос не использовался. Избегайте образования льда или влаги, которые могут образоваться на грузе. Влажный материал тяжелее сухого и может создавать большую нагрузку на конвейер, вызывая перегрузку двигателя и преобразователя частоты.
Одним из способов снижения высокой пусковой нагрузки является использование преобразователя частоты с увеличенной скоростью ускорения. Эта функция запускает загрузку медленно и плавно, а не рывком. Этот тип запуска проще для механических компонентов и требует меньших затрат на линию, потому что преобразователь частоты потребляет только 100% MDASSML 150% нагрузки.
Неустойчивая работа
Если преобразователь частоты работает нестабильно, но неисправность не отображается, причиной могут быть внешние факторы или неисправен сам преобразователь частоты.Понимание причин неисправностей преобразователя частоты поможет вам определить основную причину проблемы. Часто игнорируемые первопричины обычно связаны с нестабильностью процесса, вынуждающим преобразователь частоты работать в суровых условиях.
Осмотрите преобразователь частоты на предмет перегоревших или перегретых компонентов, ища признаки изменения цвета или трещин. Обгоревшие или треснувшие компоненты мешают нормальной работе преобразователя частоты. Замените неисправные компоненты и проверьте преобразователь частоты, прежде чем возвращать его в работу.
Качество электроэнергии — еще одна электрическая проблема, которая может повлиять на преобразователь частоты. Изменения в коммунальном оборудовании или неожиданные скачки напряжения из-за грозы или перегрузки системы могут повлиять на работу преобразователя частоты.
Неисправность загрязнения
Загрязнение — это предотвратимая причина отказа преобразователя частоты. Проверьте преобразователь частоты на предмет загрязнения пылью, влагой или другими частицами в воздухе, которые могут быть электропроводными.Следы или следы дуги на компонентах или следах на печатной плате указывают на отсутствие загрязнения. Если загрязнение является чрезмерным, преобразователь частоты должен быть изолирован от источника загрязнения путем изменения окружающей среды или обеспечения соответствующего кожуха, соответствующего требованиям NEMA. Если имеется значительное загрязнение воздуха пылью, влагой или коррозионными парами, преобразователь частоты должен находиться как минимум в корпусе NEMA-12.
Внутренние вентиляторы охлаждения и радиаторы компонентов преобразователя частоты также следует проверить на предмет загрязнения.Заблокированные вентиляторы вынуждают преобразователь частоты работать за пределами заданной температуры, что может вызвать преждевременный выход из строя в результате недостаточного охлаждения. Проверьте вентилятор на наличие смазки и других загрязнений, которые могут вызвать выход из строя подшипников и других частей вентилятора. Как внутренние, так и внешние части преобразователя частоты, включая вентиляторы, нагнетатели, фильтры и ребра радиатора, следует очищать ежемесячно, чтобы снизить риск выхода из строя из-за загрязнений.
Температурный сбой
Окружающая среда, в которой должен работать преобразователь частоты, должна находиться в указанных пределах температуры.Измерьте температуру внутри и снаружи корпуса, чтобы убедиться, что она находится в пределах характеристик окружающей среды, определенных производителем. Несоблюдение требуемых температурных характеристик может привести к преждевременному отказу преобразователя частоты, поскольку для правильной работы многих силовых компонентов требуется надлежащее охлаждение.
Если температура окружающей среды слишком высока, необходимо добавить дополнительное охлаждение в корпус или преобразователь частоты следует переместить в место, где температура окружающей среды находится в пределах спецификации.Низкие температуры окружающей среды также могут вызвать проблемы. Может образоваться конденсат и вызвать отказ компонента или преобразователя частоты.
Прочие неисправности
Многие неисправности вызваны неправильным использованием преобразователя частоты. Изменения процесса, такие как изменения нагрузки или скорости; проблемы с питанием, такие как переключение мощности коммунальным предприятием; или изменения в условиях окружающей среды не очевидны сразу, но могут стать основной причиной отказа преобразователя частоты.Оцените последовательность и состояние процесса, пытаясь определить причину сбоя.
Если преобразователь частоты не работает после выполнения вышеупомянутых проверок, обратитесь к производителю. Большинство поставщиков преобразователей частоты имеют высококвалифицированный персонал технической поддержки, который может оказать помощь, необходимую для диагностики проблемы. Персонал службы технической поддержки может помочь вам выбрать запасные части или новый преобразователь частоты, если потребуется замена.
Как интеллектуальные устройства, встроенные в производственный процесс, преобразователи частоты могут дать представление о применении и характеристиках оборудования. Предоставляя обслуживающему персоналу информацию, необходимую для понимания и интерпретации проблемы, проблемы с преобразователем частоты, а иногда и технологические или эксплуатационные проблемы, могут быть быстро выявлены, чтобы можно было возобновить работу установки и повысить производительность.
Разговор с механизаторами
В разговоре с оператором станка часто можно определить проблемную область.Полезные вопросы:
- Что происходило с машиной в момент поломки?
- В машине заклинило?
- Сработали ли другие устройства одновременно с преобразователем частоты?
- Произошло ли отключение электричества из-за грозы или отключения электроэнергии?
- Вокруг преобразователя частоты шла такая конструкция, как сварка?
- Что происходило с утилитой?
- Есть ли на заводе конденсаторы для коррекции коэффициента мощности? Если да, то когда они меняются?
- Наблюдала ли утилита какие-либо нарушения?
Когда процесс требует, чтобы преобразователь частоты и двигатель быстро замедляли скорость, двигатель фактически может работать как генератор.Энергия, накопленная в двигателе в виде механического вращения, должна куда-то уходить. Для компенсации этой энергии используется схема динамического торможения.
Схема динамического торможения — это переключатель, который контролирует шину постоянного тока и включается, когда уровень шины превышает определенное заданное значение. Энергия подается на резисторы и расходуется на тепло, пока уровень в шине не упадет ниже заданного значения.
Рекуперативный источник питания работает как инвертор в обратном направлении, что позволяет синхронизировать пусковые цепи IGBT с входящей линией переменного тока.Использование рекуперативного источника питания позволяет схеме, которая является отдельной от преобразователя частоты и внешней по отношению к нему, отправлять избыточную энергию от двигателя через шину постоянного тока обратно к источнику питания.
Преобразователь частоты — определение, настройка и типы
Преобразователь частоты — это электронное устройство, которое позволяет преобразовывать электрическую переменную «ток». В этом случае преобразователь частоты преобразует переменный ток определенной (фиксированной) частоты в напряжение с переменной амплитудой и частотой.Короче говоря, это приводит к преобразованию напряжения. Преобразователи частоты могут приводить в действие самое различное оборудование, такое как: трехфазные двигатели, насосы и кондиционеры. В трехфазных двигателях скорость и крутящий момент двигателя переменного тока можно регулировать путем изменения частоты. Этот контроль не ограничивает производительность трехфазного двигателя, он просто повышает его эффективность. Такие двигатели часто используются в промышленных условиях и особенно распространены в области приводной техники.
Техническая установка преобразователя частоты
Электронный преобразователь частоты состоит из выпрямителя, который подает так называемый «промежуточный постоянный ток», и инвертора, который воздействует на него.Это позволяет преобразовывать подаваемый ток в заданное напряжение.
Конструкции / типы
a) Преобразователь частоты Volt-Herz
Это технически самый простой тип преобразователя частоты. В этом случае регулировка напряжения и частоты подчиняется линейной зависимости. Если для управления двигателем используется преобразователь частоты Volt-Herz, существуют определенные зависимости. Нагрузка на двигатель напрямую влияет на результирующую полезную скорость. Если диапазон изменения скорости невелик или отсутствует прямая пусковая нагрузка, для управления двигателем можно использовать преобразователь частоты Volt-Herz.
б) преобразователь частоты с векторным управлением
Преобразователь частоты с векторным управлением не управляет двигателем переменного тока, используя соотношение напряжение / частота, а изменяя входную частоту и напряжение двигателя. Преимущество этого метода — оптимальное управление крутящим моментом. Преобразователи частоты с векторным управлением обладают и другими преимуществами. Например, трехфазные двигатели могут выполнять прямой пуск на высокой скорости, а регулировка скорости может более точно контролироваться.
Особенности
Преобразователи частоты, обеспечивающие реальное параметрическое управление, имеют КПД более 95%.Многие производители разрабатывают высококачественные электронные преобразователи частоты и адаптируют их общие функции к конкретным приложениям. С помощью светодиодных индикаторов, панелей управления и программируемых преобразователей частоты можно эффективно контролировать многие параметры и функции, такие как изменение скорости пуска и останова. Путем стандартизации отдельных модулей преобразователи частоты могут быть интегрированы в существующие системы SPS в виде модульных строительных блоков или также доступны через последовательные интерфейсы или дополнительные аналоговые выходы.Таким образом, установка и электромонтаж выполняются быстрее благодаря модульному подходу и связанным с ним улучшениям конструкции.
«НазадПреобразователи частоты — FCX Systems
Что такое преобразователь частоты?
Что касается электроэнергии, то частота — это количество циклов в секунду, которое повторяет переменный ток. Преобразователь частоты изменяет количество циклов в секунду (герц).На рисунке ниже выходная частота в 6 раз больше входящей частоты. Это не имеет ничего общего с напряжением или силой тока. Меняется только частота. И наоборот, более высокая частота может быть преобразована в более низкую частоту.
Как работает преобразователь частоты?
Изначально преобразователи частоты были механическими.Двигатель или мотор должен быть подключен к шкиву или зубчатой передаче, чтобы приводить генератор быстрее или медленнее, чем двигатель. Поскольку частота пропорциональна скорости генератора, она будет увеличиваться или уменьшаться за счет шкива или передаточного числа. У этого были ограничения по скорости, доступным передаточным числам и стабильности. Если двигатель или линия питания колебались, выходная частота генератора колебалась. Эффективность мощности, проходящей через двигатель и генератор, часто была низкой.
Сегодня преобразование частоты осуществляется электронным способом.Любой тип источника питания можно изменить на постоянный ток (DC). У постоянного тока нет частоты, он ведет себя как батарея. Затем этот постоянный ток можно подавать крошечными срезами для создания любой желаемой частоты.
Этот твердотельный преобразователь частоты отличается высокой эффективностью, стабилизирован кварцевым кристаллом и работает независимо от колебаний входной мощности.
Он требует минимального обслуживания, смазки или механического износа.
Применение твердотельных преобразователей частоты
Преобразователи частоты
Поскольку скорость двигателя пропорциональна частоте, изменение частоты приведет к изменению скорости.Это ценно во многих приложениях, таких как печатные и конвейерные системы. В системах кондиционирования воздуха важна экономика. Снижение скорости вентилятора на 2 снижает выходное давление вентилятора на 4. (Закон квадратов) В то же время потребляемая мощность уменьшается на 9. (Закон куба) Снижение скорости вместо закрытия заслонки для уменьшения потока приводит к значительной экономии энергии. .
Преобразователи частоты с фиксированной частотой
Хотя переменная скорость имеет много применений, часто требуется фиксированная частота, отличная от служебной.Электросеть многих стран работает на частоте 60 Гц, в то время как другие страны работают на частоте 50 Гц. В связи с глобальной экономикой производители, производящие продукцию для зарубежных рынков, должны испытывать свою продукцию с частотой мощности зарубежной страны. Преобразователь частоты позволяет фабрике в стране 60 Гц тестировать продукты от источника питания 50 Гц или наоборот. Системы возобновляемой энергии, такие как солнечная или ветровая, нуждаются в преобразователях частоты для преобразования энергии в частоту электросети, чтобы мощность могла использоваться потребителями.Частота — важный фактор при проектировании силового оборудования. Одно из соотношений заключается в том, что более высокая частота требует меньше железа в двигателях и трансформаторах. Это означает, что работа на частотах выше 60 или 50 Гц может снизить размер и вес оборудования. Это особенно важно для оборудования, которое часто используется в полете или транспортировке. Это используется в авиационных и военных системах, поскольку они рассчитаны на работу на частоте 400 Гц.