Переменный ток и постоянный отличие: «Чем переменный ток отличается от постоянного?» – Яндекс.Кью

Содержание

Отличие переменного тока от постоянного: преобразование, разница, принцип действия

Детей учат, что пальцы в розетку совать нельзя! А почему? Потому что будет плохо. С более подробным объяснением часто бывают проблемы: какое-то там напряжение, ток, что-то куда-то течет. Чтобы вы в будущем могли сами объяснить своим детям, что к чему, мы сейчас объясним вам. Эта статья про переменный и постоянный токи, их отличия, применение и историю электричества вообще. Науку нужно делать интересной, и мы скромно пытаемся этим заниматься по мере сил.

Например: какой ток у нас в розетках?  Переменный, конечно! Напряжением 220 Вольт и частотой 50 Герц. А сеть, по которой передается ток — трехфазная. Кстати, если при словах «фаза» и «ноль» вы впадаете в ступор, почитайте что это такое, и день будет прожит вдвойне не зря! Но не будем забегать вперед. Обо всем по порядку.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин

«электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали — остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

 

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Постоянный ток

Сначала напомним, что ток – это движение заряженных частиц.

Постоянный ток – это ток, который течет в одном направлении.

Типичный источник постоянного тока – гальванический элемент. Проще говоря, батарейка или аккумулятор. Один из древнейших артефактов, связанных с электричеством – багдадская батарейка, которой 2000 лет. Предполагают, что она давала ток напряжением 2-4 Вольта.

 

Где используется постоянный ток:

  • в питании большинства бытовых приборов;
  • в батарейках и аккумуляторах для автономного питания приборов;
  • для питания электроники автомобилей;
  • на кораблях и подводных лодках;
  • в общественном транспорте (троллейбусах, трамваях).

Проще всего представить постоянный ток наглядно, на графике. Вот как он выглядит:

Постоянный ток

Бытовые приборы работают на постоянном токе, но в розетки сети в квартире приходит переменный ток. Практически везде постоянный ток получается путем выпрямления переменного.

Переменный ток

Переменный ток – это ток, который меняет величину и направление. Причем меняет в равные промежутки времени.

Переменный ток используется в промышленности и электроснабжении. Именно его получают на станциях и отправляют к потребителям. Уже на месте преобразование переменного электрического тока в постоянный происходит с помощью инверторов.

Переменный ток — alternating current (AC). Постоянный ток — direct current (DC). Аббревиатуру AC/DC можно увидеть на трансформаторных будках, где происходит преобразование. А еще это название одной отличной австралийской рок-группы.

А вот и наглядное изображение переменного тока.

Переменный ток

Переменный ток течет в цепи в двух направлениях: туда и обратно. Одно из них считается

положительным, а второе — отрицательным.

Так как величина тока меняется не только по направлению, но и по величине, не думайте, что в вашей розетке постоянно 220 Вольт. 220 — это действующее значение напряжения, которое бывает 50 раз в секунду. Кстати, в Америке используется другой стандарт переменного тока в сети: 110 Вольт и 60 Герц.

Война токов

Активное использование постоянного тока началось в конце 19 века. Тогда Эдисон довел до ума лампочку (1890) и основал первые в Нью-Йорке электростанции, которые производили постоянный ток напряжением 110 Вольт.

Использование постоянного тока было связано с существенными потерями при его передаче на большие расстояния. Переменный ток нельзя было использовать из-за того, что не было соответствующих счетчиков и моторов, работавших на переменном токе. Так же был затруднен процесс преобразования постоянного тока в переменный. При этом переменный ток можно было без потерь передавать на большие расстояния.

В то время в Америку из Сербии приехал Никола Тесла, который устроился на работу в компанию к Эдисону. Тесла изобрел электродвигатель переменного тока, понял все выгоды и предложил Эдисону его использование.

Тесла и Эдисон

Эдисон не послушал Теслу и к тому же не выплатил ему зарплату. Так и началось знаменитое противостояние изобретателей — война токов.

Она длилась более ста лет и закончилась в 2007 году. Тогда Нью-Йорк полностью перешел на электроснабжение переменным током.

Почему переменный ток опаснее постоянного

В войне токов, чтобы не потерпеть убытки и финансовый крах от внедрения и использования идей Теслы, Эдисон публично демонстрировал, как переменный ток убивает животных. Случай, когда какой-то американский гражданин погиб от удара переменным током, был очень подробно и широко освещен в прессе.

 

Для человека переменный ток в общем случае действительно опаснее постоянного. Хотя всегда нужно учитывать величину тока, его частоту, напряжение, сопротивление человека, которого бьет током. Рассмотрим эти нюансы:

  1. Переменный ток частотой 50 Герц в три-четыре раза опаснее для жизни, чем постоянный ток. Если частота тока более 1000 Герц, то он считается менее опасным.
  2. При напряжениях около 400-600 Вольт переменный и постоянный токи считаются одинаково опасными. При напряжении более 600 Вольт более опасен постоянный ток.
  3. Переменный ток в силу своей природы и частоты сильнее возбуждает нервы, стимулируя мышцы и сердце. Именно поэтому он несет большую опасность для жизни.

С каким бы током вы не работали, соблюдайте осторожность и будьте бдительны! Берегите себя и свои нервы, а также помните: сделать это эффективно поможет профессиональный студенческий сервис с лучшими экспертами.

Отличие постоянного и переменного тока, преобразование тока

Электрическим током называют направленное, упорядоченное движение заряженных частиц.

Постоянный ток имеет устойчивые свойства и направление движения заряженных частиц, которые не изменяются со временем. Он используется многими электрическими устройствами в домах, а также в автомобилях. От постоянного тока работают современные компьютеры, ноутбуки, телевизоры и многие другие устройства. Для преобразования переменного тока в постоянный используются специальные блоки питания и трансформаторы напряжения.

Все электрические устройства и электрические инструменты, работающие от батарей и аккумуляторов считаются потребителями постоянного тока, так как батарея – это источник постоянного тока, который может быть преобразован в переменный с помощью инверторов.

Разница переменного тока от постоянного

Переменным называют электрический ток, который может изменяться по направлению движения заряженных частиц и величине с течением времени. Важнейшими параметрами переменного тока считаются его частота и напряжение. В современных электрических сетях на разных объектах используется именно переменный ток, имеющий определенное напряжение и частоту. В России в бытовых электросетях ток имеет напряжение 220 В и частоту равную 50 Гц. Частота электрического переменного тока – это число изменений направления движения заряженных частиц за 1 секунду, то есть, при частоте в 50 Гц он меняет направление 50 раз в секунду. Таким образом, отличие переменного тока от постоянного заключается в том, что в переменном заряженные частицы могут менять направление движения.

Источниками переменного тока на объектах различного назначения являются розетки. К розеткам мы подключаем различные бытовые приборы, получающие необходимое напряжение. Переменный ток используется в электрических сетях потому, что величина напряжения может быть преобразована до необходимых значений с помощью трансформаторного оборудования с минимальными потерями. Другими словами, его гораздо проще и дешевле транспортировать от источников электроснабжения до конечных потребителей.

Передача переменного тока потребителям

Путь переменного тока начинается с электростанций, на которых устанавливаются мощнейшие электрические генераторы, из которых выходит электрический ток с напряжением на уровне 220-330 кВ. Через электрические кабели ток идет к трансформаторным подстанциям, устанавливаемым в непосредственной близости от объектов электрического потребления – домов, квартир, предприятий и других сооружений.

Подстанции получают электрический ток с напряжением около 10 кВ и преобразуют его в трехфазное напряжение 380 В. В некоторых случаях на питание объектов идет ток с напряжением 380 В, этого требуют мощные бытовые и производственные приборы, но чаще всего в месте ввода электричества в дом или квартиру, напряжение снижается до привычных нам 220 В.

Преобразование переменного тока в постоянный

Мы уже разобрались с тем, что в розетках бытовых электрических систем находится переменный ток, однако многие современные потребители электричества нуждаются в постоянном. Преобразование переменного тока в постоянный осуществляется с помощью специальных выпрямителей. Весь процесс преобразования включает в себя три этапа:

  1. Подключение диодного моста с 4-мя диодами необходимой мощности. Такой мост может «срезать» верхние значения синусоид переменного тока или делать движение заряженных частиц однонаправленным.
  2. Подключение сглаживающего фильтра или специального конденсатора на выход с диодного моста. Фильтр способен исправить провалы между пиками синусоид переменного тока. Подключение конденсатора серьезно уменьшает пульсации и может довести их до минимальных значений.
  3. Подключение стабилизаторов напряжения для снижения пульсаций.

Преобразование тока может осуществляться в обоих направлениях, то есть, из постоянного тоже можно сделать переменный. Но этот процесс значительно сложнее и осуществляется он за счет использования специальных инверторов, которые отличаются высокой стоимостью.

Чем отличается переменный ток от постоянного

Хотя электрические приборы мы каждый день используем в повседневной жизни, не каждый может ответить, чем отличается переменный ток от постоянного, несмотря на то, что об этом рассказывается в рамках школьной программы. Поэтому имеет смысл напомнить основные догматы.

Обобщенные определения

Физический процесс, при котором заряженные частицы движутся упорядоченно (направленно), называется электротоком. Его принято разделять на переменный и постоянный. У первого направление и величина остаются неизменными, а у второго эти характеристики меняются по определенной закономерности.

Приведенные определения сильно упрощены, хотя и объясняют разницу между постоянным и переменным электротоком. Для лучшего понимания, в чем заключается это различие, необходимо привести графическое изображение каждого из них, а также объяснить, как образуется переменная электродвижущая сила в источнике. Для этого обратимся к электротехнике, точнее ее теоретическим основам.

Источники ЭДС

Источники электротока любого рода бывают двух видов:

  • первичные, с их помощью происходит генерация электроэнергии путем превращения механической, солнечной, тепловой, химической или другой энергии в электрическую;
  • вторичные, они не генерируют электроэнергию, а преобразуют ее, например, из переменной в постоянную или наоборот.

Единственным первичным источником переменного электротока является генератор, упрощенная схема такого устройства показана на рисунке.

Упрощенное изображение конструкции генератора

Обозначения:

  • 1 – направление вращения;
  • 2 – магнит с полюсами S и N;
  • 3 – магнитное поле;
  • 4 – проволочная рамка;
  • 5 – ЭДС;
  • 6 – кольцевые контакты;
  • 7 – токосъемники.

Принцип работы

Механическая энергия преобразуется изображенным на рисунке генератором в электрическую следующим образом:

за счет такого явления, как электромагнитная индукция, при вращении рамки «4», помещенной в магнитное поле «3» (возникающее между различными полюсами магнита «2»), в ней образуется ЭДС «5». Напряжение в сеть  подается через токосъемники «7» с кольцевых контактов «6», к которым подключена рамка «4».

Видео: постоянный и переменный ток — отличия

Что касается величины ЭДС, то она зависит от скорости пересечения силовых линий «3» рамкой «4». Из-за особенностей электромагнитного поля минимальная скорость пересечения, а значит и самое низкое значение электродвижущей силы будет в момент, когда рамка находится в вертикальном положении, соответственно, максимальное — в горизонтальном.

Учитывая изложенное выше, в процессе равномерного вращения индуктируется ЭДС, характеристики величины и направления которого изменяются с определенным периодом.

Графические изображения

Благодаря применению графического метода, можно получить наглядное представление динамических изменений различных величин. Ниже приведен график изменения напряжения с течением времени для гальванического элемента 3336Л (4,5 В).

Горизонтальная ось отображает время, вертикальная – напряжение

Как видим, график представляет собой прямую линию, то есть напряжение источника остается неизменным.

Теперь приведем график динамики изменения напряжения в течение одного цикла (полного оборота рамки) работы генератора,.

Горизонтальная ось отображает угол поворота в градусах, вертикальная — величину ЭДС (напряжение)

Для наглядности покажем начальное положение рамки в генераторе, соответствующее начальной точке отчета на графике (0°)

Начальное положение рамки

Обозначения:

  • 1 – полюса магнита S и N;
  • 2 – рамка;
  • 3 – направление вращения рамки;
  • 4 – магнитное поле.

Теперь посмотрим, как будет изменяться ЭДС в процессе одного цикла вращения рамки. В начальном положении ЭДС будет нулевым. В процессе вращения эта величина начнет плавно возрастать, достигнув максимума в момент, когда рамка будет под углом 90°. Дальнейшее вращение рамки приведет к снижению ЭДС, достигнув минимума в момент поворота на 180°.

Продолжая процесс, можно увидеть, как электродвижущая сила меняет направление. Характер изменений поменявшей направление ЭДС будет таким же. То есть она начнет плавно возрастать, достигнув пика в точке, соответствующей повороту на 270°, после чего будет снижаться, пока рамка не завершит полный цикл вращения (360°).

Если график продолжить на несколько циклов вращения, мы увидим характерную для переменного электротока синусоиду. Ее период будет соответствовать одному обороту рамки, а амплитуда – максимальной величине ЭДС (прямой и обратной).

Теперь перейдем к еще одной важной характеристике переменного электротока – частоте. Для ее обозначения принята латинская буква «f», а единица ее измерения – герц (Гц). Этот параметр отображает количество полных циклов (периодов) изменения ЭДС в течение одной секунды.

Определяется частота по формуле:  . Параметр «Т» отображает время одного полного цикла (периода), измеряется в секундах. Соответственно, зная частоту, несложно определить время периода. Например, в быту используется электроток с частотой 50 Гц, следовательно, время его периода будет две сотых секунды (1/50=0,02).

Трехфазные генераторы

Заметим, что наиболее экономически выгодным способом получения переменного электротока будет использование трехфазного генератора. Упрощенная схема его конструкции показана на рисунке.

Устройство трехфазного генератора

Как видим, в генераторе используются три катушки, размещенные со смещением 120°, соединенные между собой треугольником (на практике такое соединение обмоток генератора не применяется в виду низкого КПД). При прохождении одного из полюсов магнита мимо катушки, в ней индуктируется ЭДС.

Графическое изображение сгенерированного трехфазного электротока

Чем обосновано разнообразие электротоков

У многих может возникнуть вполне обоснованный вопрос – зачем использовать такое разнообразие электротоков, если можно выбрать один и сделать его стандартным? Все дело в том, что не каждый вид электротока подходит для решения той или иной задачи.

В качестве примера приведем условия, при которых использовать постоянное напряжение будет не только не выгодно, ни и иногда невозможно:

  • задача передачи напряжения на расстояния проще реализовывается для переменного напряжения;
  • преобразовать постоянный электроток для разнородных электроцепей, у которых неопределенный уровень потребления, практически невозможно;
  • поддерживать необходимый уровень напряжения в цепях постоянного электротока значительно сложнее и дороже, чем переменного;
  • двигатели для переменного напряжения конструктивно проще и дешевле, чем для постоянного. В данном пункте необходимо заметить, что у таких двигателей (асинхронных) высокий уровень пускового тока, что не позволяет их использовать для решения определенных задач.

Теперь приведем примеры задач, где более целесообразно использовать постоянное напряжение:

  • чтобы изменить скорость вращения асинхронных двигателей требуется, изменить частоту питающей электросети, что требует сложного оборудования. Для двигателей, работающих от постоянного электротока, достаточно изменить напряжение питания. Именно поэтому в электротранспорте устанавливают именно их;
  • питание электронных схем, гальванического оборудования и многих других устройств также осуществляется постоянным электротоком;
  • постоянное напряжение значительно безопаснее для человека, чем переменное.

Исходя из перечисленных выше примеров, возникает необходимость в использовании различных видов напряжения.

Переменный ток и постоянный ток: отличие

В чём разница переменного и постоянного тока

Общее понятие электрического тока можно выразить как движение различных заряженных частиц (электронов, ионов) в некотором направлении. А его величину охарактеризовать числом заряженных частиц, которые прошли через проводник за определенный промежуток времени.

Если величина заряженных частиц в 1 кулон проходит через определенное сечение проводника за время в 1 секунду, тогда можно говорить о силе тока в 1 ампер протекающего через проводник. Таким образом определяется количество ампер или сила тока. Это общее понятие тока. А теперь рассмотрим понятие переменного и постоянного тока и их различие.

Постоянный электрический ток по определению – это ток, который течёт только в одном направлением и не меняет его со временем. Переменный ток характерен тем, что меняет свое направление и величину со временем. Если графически постоянный ток отображается как прямая линия, то переменный ток течет по проводнику по закону синуса и графически отображается как синусоида.

Графическое изображение постоянного тока

Так как переменный ток меняется по закону синусоиды, то он имеет такие параметры как период полного цикла, время которого обозначается буквой Т. Частота переменного тока обратна периоду полного цикла. Частота переменного тока выражается числом полных периодов в определенный промежуток времени (1 сек).

Графическое изображение переменного тока

Таких периодов в нашей электросети переменного тока равно 50, что соответствует частоте 50 Гц. F = 1/Т, где период для 50 Гц равен 0,02 сек. F =1/0,02 = 50 Гц. Обозначается переменный ток английскими буквами AC и знаком «~». Постоянный ток имеет обозначение DC и значок «-». Кроме того переменный ток может быть однофазным или многофазным. В основном используется трехфазная сеть.

Почему в сети переменное напряжение, а не постоянное

Переменный ток имеет много преимуществ перед постоянным током. Низкие потери при передаче переменного тока в линиях электропередач (ЛЭП) по сравнению с постоянным током. Генераторы переменного тока простые и дешевые. При передаче на большие расстояния по ЛЭП высокое напряжение достигает 330 тысяч вольт с минимальным током.

Чем меньше ток в ЛЭП, тем меньше потерь. Передача постоянного тока на большие расстояния понесет немалые потери. Также высоковольтные генераторы переменного тока значительно проще и дешевле. Из переменного напряжения легко получить более низкое напряжение через простые трансформаторы.

Также, значительно дешевле получить постоянное напряжение из переменного, чем наоборот, использовать дорогие преобразователи постоянного напряжения в переменное. Такие преобразователи имеют низкий КПД и большие потери. По пути передачи переменного тока используют двойное преобразование.

Сначала с генератора получает 220 – 330 Кв, и передают на большие расстояния до трансформаторов, которые понижают высокое напряжение до 10 Кв и далее идут подстанции которые понижают высокое напряжение до 380 В. С этих подстанций электроэнергия расходится по потребителям и поступает в дома и на электрощиты многоквартирного дома.

Три фазы трехфазного тока сдвинутые на 120 градусов

Для однофазного напряжения характерна одна синусоида, а для трехфазного три синусоиды, смещенные на 120 градусов относительно друг друга. Трехфазная сеть также имеет свои преимущества перед однофазными сетями. Это меньше габариты трансформаторов, электродвигатели также конструктивно меньших размеров.

Имеется возможность изменить направление вращения ротора асинхронного электродвигателя. В трехфазной сети можно получить 2 напряжения – это 380 В и 220 В, которые используются для изменения мощности двигателя и регулировки температуры нагревательных элементов. Используя трехфазное напряжение в освещении можно устранить мерцание люминесцентных ламп, для чего их подключают к разным фазам.

Постоянный ток используется в электронике и во всех бытовых приборах, так как он легко преобразуется из переменного за счёт его деления на трансформаторе до нужной величины и дальнейшего выправления. Источником постоянного тока являются аккумуляторы, батареи, генераторы постоянного тока, светодиодные панели. Как видно различие в переменном и постоянном токе немалое. Теперь мы узнали – Почему в нашей розетки течет переменный ток, а не постоянный?

Принцип работы, отличия постоянного от переменного электрического тока

Электрический ток— это направленное или упорядоченное движение заряженных частиц: электронов в металлах, в электролитах — ионов, а в газах — электронов и ионов. Электрический ток может быть как постоянным, так и переменным.

Определение постоянного электрического тока, его источники

Постоянный ток ( DC, по-английски Direct Current) — это электрический ток, у которого  свойства и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Постоянный ток используется в автомобилях и в домах, в многочисленных электронных приборах: ноутбуки, компьютеры, телевизоры и т. д. Перемеренный электрический ток  из розетки преобразуется в постоянный при помощи блока питания или трансформатора напряжения с выпрямителем.

Любой электроинструмент, устройство или прибор, работающие от батареек так же являются потребителями постоянного тока , потому что батарея или аккумулятор- это исключительно источники постоянного тока, который при необходимости преобразуется  в переменный с использованием специальных преобразователей (инверторов).

Принцип работы переменного тока

Переменный ток  (AC по-английски Alternating Current)- это электрический ток, который изменяется по величине и направлению с течением времени. На электроприборах условно обозначается отрезком синусоиды « ~ ».
Иногда после синусоиды могут указываться характеристики переменного тока — частота, напряжение, число фаз.

Переменный ток может быть как одно- , так и  трёхфазным, для которого мгновенные значения тока и напряжения меняются по гармоническому закону.

Основные характеристики переменного тока — действующее значение напряжения и частота.

Обратите внимание, как на левом графике для однофазного тока меняется направление и величина напряжения с переходом в ноль за период времени Т, а на втором графике для трехфазного тока существует смещение трех синусоид на одну третью периода. На правом графике 1 фаза обозначена буквой «а», а вторая буквой «б». Хорошо известно, что в домашней розетке 220 Вольт. Но мало кто знает, что это действующие значение переменного напряжения, но амплитудное или максимальное значение будет больше на корень из двух, т.е будет равно 311 Вольт.

Таким образом, если у постоянного тока величина напряжения и направление не изменяются в течении времени, то у переменного тока- напряжение постоянно меняется по величине и направлению (график ниже нуля это обратное направление).

И так мы подошли к понятию частота— это отношение числа полных циклов  (периодов) к единице времени периодически меняющегося  электрического тока. Измеряется в Герцах. У нас и в Европе частота равна 50 Герцам, в США- 60 Гц.

Что означает частота 50 Герц? Она означает, что у нас переменный ток меняет свое направление на противоположное и обратно (отрезок Т- на графике) 50 раз за секунду!

Источниками переменного тока являются все розетки в доме и все то, что подключено напрямую проводами или кабелями  к электрощиту. У многих возникает вопрос: а почему  в розетке не постоянный ток? Ответ прост. В сетях переменного тока легко и с минимальными потерями преобразовывается величина напряжения до необходимого уровня при помощи трансформатора в любых объемах. Напряжение необходимо увеличивать для возможности передачи электроэнергии на большие расстояния с наименьшими потерями в промышленных масштабах.  С электростанции, где стоят мощные электрогенераторы, выходит напряжение величиной 330 000-220 000 Вольт, далее возле нашего дома на трансформаторной подстанции оно преобразуется с величины 10 000 Вольт в трехфазное напряжение 380 Вольт, которое и приходит в многоквартирный дом, а к нам в квартиру приходит однофазное напряжение, т. к. между фазой и нулем или землей напряжение равняется 220 В, а между разноименными фазами в электрощите 380 Вольт.

И еще одним из важных достоинств переменного напряжения является то, что асинхронные электродвигатели переменного тока конструктивно проще и работают значительно надежнее, чем двигатели постоянного тока.

Как переменный ток сделать постоянным

Для потребителей, работающих на постоянном токе- переменный преобразуется при помощи  выпрямителей.

  1. Первоначальный этап преобразования— это подключение диодного моста, состоящего из 4 диодов достаточной мощности (на рисунке ниже), который срезает верхние границы переменных синусоид или делает ток однонаправленным.
  2. Второй этап— это подключение параллельно на выход с диодного мостика конденсатора или сглаживающего фильтра, который исправляет провалы между пиками синусоид. Обратите внимание, как выглядит синусоида после прохождения через диодный мост (на рисунке выделена зеленным цветом).

    И как уменьшаются пульсации (изменения напряжения) после подключения конденсатора- на рисунке выделено синим цветом.

  3. Далее при необходимости для уменьшения уровня пульсаций,  дополнительно могут применяются стабилизаторы тока или  напряжения.

Преобразователь постоянного тока в переменный

Если с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор — это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.

Инвертор технически сложное устройство, поэтому и цены на него не маленькие. Стоимость зависит напрямую от выходной максимальной мощности переменного тока.

Как правило, преобразование постоянного тока требуется в редких случаях. Например, для подключения от бортовой электросети автомобиля домашних электроприборов, инструмента и т. п. в походе, на даче и т. д.

Что такое фаза, ноль, заземление читайте в следующей нашей статье.

Разница между переменным и постоянным напряжением. Переменный ток и постоянный ток: отличие

Электричество – это тип энергии, передаваемый движением электронов через проводящий материал. Например, металлы представляют собой материалы с высокой электропроводностью и позволяют легко перемещать электроны. Внутри проводящего материала электроны могут двигаться в одном или нескольких направлениях.

Понятие о постоянном и переменном токе

Что такое постоянный ток, определяется из характера движения электрозарядов. Аналогично можно установить, что такое переменный ток.

  1. Когда поток электрозарядов задан в одном направлении, он считается постоянным током;
  2. Когда электронный поток меняет направление и интенсивность во времени, он называется переменным током. Причем изменения идут циклически, по синусоидальному закону.

Большинство современных электросетей используют переменный электрический ток, производящийся на электростанциях соответствующими генераторами.

Постоянный ток (DC) генерируется батареями, топливными элементами и фотоэлектрическими модулями. Существуют и генераторы постоянного тока . Другое его получение – преобразование из однофазного и трехфазного переменного тока (АС) с помощью выпрямительных устройств.

В обратном случае АС может быть получен из DC, используя инверторы, хотя технология здесь несколько сложнее.

История

В природе электричество встречается относительно редко: оно генерируется только несколькими животными и существует в некоторых природных явлениях. В поисках искусственной генерации потока электронов ученые поняли, что можно заставить электроны проходить через металлическую проволоку или другой проводящий материал, но только в одном направлении, так как они отталкиваются от одного полюса и притягиваются к другому. Так родились батареи и генераторы постоянного тока. Изобретение приписывается, в основном, Томасу Эдисону.

В конце 19-го века другой известный ученый, Никола Тесла, разрабатывал способы получения переменного тока. Основными причинами работ в этой области явились обнаруженные недостатки постоянного тока при передаче электроэнергии на большие дистанции. Оказалось, что для переменного тока гораздо проще повысить напряжение передающих линий, тем самым уменьшив потери и получив возможность транспортировки больших объемов электрической энергии, а эффективно повысить напряжение на линиях с постоянным током в те времена было неосуществимо.

Для получения переменного тока Тесла использовал вращающееся магнитное поле. Если МП изменяет направленность, направление электронного потока также варьируется, и генерируется переменный ток.

Изменение направления в электронном потоке осуществляется очень быстро, много раз в секунду. Измерения частоты производятся в герцах (равных циклам в секунду). Таким образом, переменный ток частоты 50 Гц можно представить, как выполнение 50 циклов в секунду. В каждом цикле электроны изменяют направление и возвращаются к первоначальному, поэтому поток электронов изменяет направленность 100 раз в секунду.

Сравнительные характеристики постоянного и переменного токов

Разница между двумя видами токов заключена в их природе и вытекающих из этого свойствах.

Отличие постоянного тока от переменного:

  1. При переменном токе изменяется направленность и интенсивность электронного потока, при постоянном – она неизменна;
  2. Частота постоянного тока не может существовать. Это понятие применимо только для переменного тока;
  3. Полюсы (плюс и минус) всегда одинаковы в электроцепи постоянного тока. В электроцепи переменного тока положительные и отрицательные полюса меняются с периодическими интервалами;
  4. При передаче переменного тока напряжение легко преобразуется и транспортируется с приемлемым уровнем потерь.

Изменение полярности подключения DC может привести к необратимому повреждению устройств. Чтобы этого избежать, на оборудовании обычно ставятся обозначения полюсов. Аналогично контакты отличаются традиционным использованием металлической пружины для отрицательного полюса и пластины – для положительного. В устройствах с перезаряжаемыми батареями трансформатор-выпрямитель имеет выход, так что соединение выполняется только одним способом, что предотвращает инверсию полярности.

В крупномасштабных установках, например, на телефонных станциях и другом телекоммуникационном оборудовании, где имеется централизованное распределение постоянного тока, используются специальные соединительные и защитные элементы,

Постоянный и переменный ток имеют свои достоинства и недостатки, отражающиеся на области их применения. По преимуществу широта использования переменного тока объясняется легкостью его преобразования.

Различия при транспортировке

Когда ток течет, часть энергии электронов преобразуется в тепло, благодаря активному сопротивлению проводов. Электрические нагреватели тоже основаны на этом эффекте. В конце линии меньше энергии передается потребителю. Рассеиваемые мощности называются потерями. Для уменьшения потерь применяется повышение напряжения при транспортировке. Эти физические зависимости применимы и к постоянному, и к переменному току, однако при реализации схем передачи возникают различия.

Достоинства и недостатки переменного тока

При начале строительства передающих электросетей использование трансформаторов было единственной возможностью получать высокие напряжения и затем снижать их до нужного уровня при распределении к потребителям. Такая технология называлась трансформаторной, и до сих пор структура транспортировки электроэнергии не изменилась. Почти повсеместно используется переменный ток, который представляет собой трехфазные системы.

Позже стали конструироваться и линии постоянного тока, которые последние годы используются все шире. Возросший интерес к их применению объясняется существенными недостатками систем переменного тока: в длинных линиях потери электроэнергии значительны. Причинами их являются наличие емкостного и индуктивного сопротивлений.

  1. При быстрой смене направления потока электронов наблюдается похожий на перезарядку конденсаторов эффект. Возникают дополнительные емкостные токи. Особенно это сказывается на наземных и подводных кабелях, изолирующий слой которых обладает высоким конденсаторным эффектом;
  2. Индуктивное сопротивление линий появляется потому, что электрические токи генерируют магнитные поля, меняющиеся с частотой тока. Появляются индуктивные токи.

Важно! Оба вида реактивных сопротивлений возрастают с увеличением протяженности линий.

Достоинства переменного тока:

  • легкая трансформация напряжения;
  • возможность комбинирования различных систем передачи;
  • возможность использования общесистемной частоты.

Недостатки переменного тока:

  • необходимость компенсации реактивной мощности при транспортировке на значительные расстояния;
  • сравнительно высокие потери.

Достоинства и недостатки постоянного тока

В первую очередь, чем отличается переменный ток от постоянного, – это присутствием источников потерь на реактивную энергию. Однако постоянный электрический ток предполагает потери на нагрев. Точное их определение зависит от технологии и уровня напряжения. Для высоких напряжений – около 3% на 1000 км.

Другим источником потерь в системах электропередачи на постоянном токе служат подстанции для преобразования переменного тока в постоянный, и наоборот. Суммарные потери намного ниже, чем для переменного тока, но существенными являются материальные затраты на строительство этих подстанций.

Важно! Для повышения рентабельности линий электропередачи на постоянном токе применяются ЛЭП большой длины.

Техническое развитие в последнее время получила передача электроэнергии на постоянном токе, благодаря разработке новых электронных компонентов для создания высоких уровней напряжения постоянного тока – высокопроизводительных тиристоров или биполярных транзисторов.

Интересно. Сегодня возможны системы передачи постоянного тока с напряжением до 800 кВ и пропускной способностью до 8000 мВт на расстояние более 2000 км.

Преимущества высоковольтных ЛЭП постоянного тока:

  • возможность передачи мощности по подводным, наземным и подземным кабельным линиям на большие расстояния;
  • нет потерь из-за реактивной мощности;
  • лучшее использование изоляции кабелей.

Недостатки высоковольтных ЛЭП постоянного тока:

  • недостаточно быстрая коммутация существующих каналов постоянного тока;
  • мало стандартизированной электротехники;
  • не развиты распределительные сети передачи электроэнергии, транспортировка ведется от пункта до пункта.

Другие варианты применения постоянного и переменного тока

  1. DC идеально подходит для зарядки аккумуляторов и батарей элементов. Им нужно такое питание, потому что зарядная мощность всегда должна идти в одном направлении. Соответственно, устройства, работающие от аккумуляторов, также нуждаются в DC, например, фонарик или ноутбук;
  2. Телевидение, радио, компьютерная техника используют DC;
  3. Используемые в промышленности и в быту электродвигатели работают как на АС, так и на DC. То же относится к плитам, утюгам, чайникам и лампам накаливания;
  4. DC нужен для установок электролиза, где важно наличие неизменных полюсов. Только иногда полярность соблюдать не обязательно, в частности при электролизе газов. Тогда может применяться переменный электроток;
  5. Около половины мировых контактных сетей железнодорожного транспорта используют DC. В начале развития электрифицированных железных дорог были попытки применения трехфазных двигателей, но создание контактной сети для них столкнулось с проблемами. На DC работает городской электротранспорт: трамваи, троллейбусы, метро. Другой способ устройства железнодорожных контактных сетей – применение одной фазы переменного тока;

Электрическим током называют направленное, упорядоченное движение заряженных частиц.

Постоянный ток имеет устойчивые свойства и направление движения заряженных частиц, которые не изменяются со временем. Он используется многими электрическими устройствами в домах, а также в автомобилях. От постоянного тока работают современные компьютеры, ноутбуки, телевизоры и многие другие устройства. Для преобразования переменного тока в постоянный используются специальные блоки питания и трансформаторы напряжения .

Все электрические устройства и электрические инструменты, работающие от батарей и аккумуляторов считаются потребителями постоянного тока, так как батарея – это источник постоянного тока, который может быть преобразован в переменный с помощью инверторов.

Разница переменного тока от постоянного

Переменным называют электрический ток, который может изменяться по направлению движения заряженных частиц и величине с течением времени. Важнейшими параметрами переменного тока считаются его частота и напряжение. В современных электрических сетях на разных объектах используется именно переменный ток, имеющий определенное напряжение и частоту. В России в бытовых электросетях ток имеет напряжение 220 В и частоту равную 50 Гц. Частота электрического переменного тока – это число изменений направления движения заряженных частиц за 1 секунду, то есть, при частоте в 50 Гц он меняет направление 50 раз в секунду. Таким образом, отличие переменного тока от постоянного заключается в том, что в переменном заряженные частицы могут менять направление движения.

Источниками переменного тока на объектах различного назначения являются розетки . К розеткам мы подключаем различные бытовые приборы, получающие необходимое напряжение. Переменный ток используется в электрических сетях потому, что величина напряжения может быть преобразована до необходимых значений с помощью трансформаторного оборудования с минимальными потерями. Другими словами, его гораздо проще и дешевле транспортировать от источников электроснабжения до конечных потребителей.

Передача переменного тока потребителям

Путь переменного тока начинается с электростанций, на которых устанавливаются мощнейшие электрические генераторы, из которых выходит электрический ток с напряжением на уровне 220-330 кВ. Через электрические кабели ток идет к трансформаторным подстанциям, устанавливаемым в непосредственной близости от объектов электрического потребления – домов, квартир, предприятий и других сооружений.

Подстанции получают электрический ток с напряжением около 10 кВ и преобразуют его в трехфазное напряжение 380 В. В некоторых случаях на питание объектов идет ток с напряжением 380 В, этого требуют мощные бытовые и производственные приборы, но чаще всего в месте ввода электричества в дом или квартиру, напряжение снижается до привычных нам 220 В.

Преобразование переменного тока в постоянный

Мы уже разобрались с тем, что в розетках бытовых электрических систем находится переменный ток, однако многие современные потребители электричества нуждаются в постоянном. Преобразование переменного тока в постоянный осуществляется с помощью специальных выпрямителей. Весь процесс преобразования включает в себя три этапа:

  1. Подключение диодного моста с 4-мя диодами необходимой мощности. Такой мост может «срезать» верхние значения синусоид переменного тока или делать движение заряженных частиц однонаправленным.
  2. Подключение сглаживающего фильтра или специального конденсатора на выход с диодного моста. Фильтр способен исправить провалы между пиками синусоид переменного тока. Подключение конденсатора серьезно уменьшает пульсации и может довести их до минимальных значений.
  3. Подключение стабилизаторов напряжения для снижения пульсаций.

Преобразование тока может осуществляться в обоих направлениях, то есть, из постоянного тоже можно сделать переменный. Но этот процесс значительно сложнее и осуществляется он за счет использования специальных инверторов, которые отличаются высокой стоимостью.

Ток – это движение электронов в определенном направлении. Оно нужно, чтобы в наших устройствах тоже двигались электроны. Откуда берется ток в розетке?

Электростанция преобразует кинетическую энергию электронов в электрическую. То есть, гидроэлектростанция использует проточную воду для вращения турбины. Пропеллер турбины вращает клубок меди между двух магнитов. Магниты заставляют электроны в меди двигаться, из-за этого начинают двигаться электроны в проводах, которые присоединены к клубку меди — получается ток.

Генератор — как насос для воды, а провод — как шланг. Генератор-насос качает электроны-воду через провода-шланги.

Переменный ток — это тот ток, который у нас в розетке. Он называется переменным, потому что направление движения электронов постоянно меняется. У переменного тока из розеток бывает разная частота и электрическое напряжение. Что это значит? В российских розетках частота 50 герц и напряжение 220 вольт. Получается, что за секунду поток электронов 50 раз меняет направление движения электронов и заряд с положительного на отрицательный. Смену направлений можно заметить в флуоресцентных лампах, когда их включаешь. Пока электроны разгоняются, она несколько раз мигает — это и есть смена направлений движения. А 220 вольт — это максимально возможный «напор», с которым движутся электроны в этой сети.

В переменном токе постоянно меняется заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Если бы напряжение было 100% постоянно, то понадобился бы провод огромного диаметра, а с меняющимся зарядом провода могут быть тоньше. Это удобно. По небольшому проводу электростанция может отправить миллионы вольт, потом трансформатор для отдельного дома забирает, например 10000 вольт, и в каждую розетку выдает по 220.

Постоянный ток — это ток, который у вас в телефонном аккумуляторе или батарейках. Он называется постоянным, потому что направление движения электронов не меняется. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в аккумуляторах.

Лишь немногие способны реально осознать, что переменный и постоянный ток чем-то отличаются. Не говоря уже о том, чтобы назвать конкретные различия. Цель данной статьи — объяснить основные характеристики этих физических величин в терминах, понятных людям без багажа технических знаний, а также предоставить некоторые базовые понятия, касающиеся данного вопроса.

Сложности визуализации

Большинству людей не составляет труда разобраться с такими понятиями, как «давление», «количество» и «поток», поскольку в своей повседневной жизни они постоянно сталкиваются с ними. Например, легко понять, что увеличение потока при поливе цветов увеличит количество воды, выходящей из поливочного шланга, в то время как увеличение давления воды заставит ее двигаться быстрее и с большей силой.

Электрические термины, такие как «напряжение» и «ток», обычно трудно понять, поскольку нельзя увидеть или почувствовать электричество, движущееся по кабелям и электрическим контурам. Даже начинающему электрику чрезвычайно сложно визуализировать происходящее на молекулярном уровне или даже четко понять, что собой представляет, например, электрон. Эта частица находятся вне пределов сенсорных возможностей человека, ее невозможно увидеть и к ней нельзя прикоснуться, за исключением случаев, когда определенное количество их не пройдет через тело человека. Только тогда пострадавший определенно ощутит их и испытывает то, что обычно называют электрическим шоком.

Тем не менее, открытые кабели и провода большинству людей кажутся совершенно безвредными только потому, что они не могут увидеть электронов, только и ждущих того, чтобы пойти по пути наименьшего сопротивления, которым обычно является земля.

Аналогия

Понятно, почему большинство людей не могут визуализировать то, что происходит внутри обычных проводников и кабелей. Попытка объяснить, что что-то движется через металл, идет вразрез со здравым смыслом. На самом базовом уровне электричество не так сильно отличается от воды, поэтому его основные понятия довольно легко освоить, если сравнить электрическую цепь с водопроводной системой. Основное различие между водой и электричеством заключается в том, что первая заполняет что-либо, если ей удастся вырваться из трубы, в то время как второе для передвижения электронов нуждается в проводнике. Визуализируя систему труб, большинству легче понять специальную терминологию.

Напряжение как давление

Напряжение очень похоже на давление электронов и указывает, как быстро и с какой силой они движутся через проводник. Эти физические величины эквивалентны во многих отношениях, включая их отношение к прочности трубопровода-кабеля. Подобно тому, как слишком большое давление разрывает трубу, слишком высокое напряжение разрушает экранирование проводника или пробивает его.

Ток как поток

Ток представляет собой расход электронов, указывающий на то, какое их количество движется по кабелю. Чем он выше, тем больше электронов проходит через проводник. Подобно тому, как большое количество воды требует более толстых труб, большие токи требуют более толстых кабелей.

Использование модели водяного контура позволяет объяснить и множество других терминов. Например, силовые генераторы можно представить как водяные насосы, а электрическую нагрузку — как водяную мельницу, для вращения которой требуется поток и давление воды. Даже электронные диоды можно рассматривать как водяные клапаны, которые позволяют воде течь только в одну сторону.

Постоянный ток

Какая разница между постоянным и переменным током, становится ясно уже из названия. Первый представляет собой движение электронов в одном направлении. Очень просто визуализировать его с использованием модели водяного контура. Достаточно представить, что вода течет по трубе в одном направлении. Обычными устройствами, создающими постоянный ток, являются солнечные элементы, батареи и динамо-машины. Практически любое устройство можно спроектировать так, чтобы оно питалось от такого источника. Это почти исключительная прерогатива низковольтной и портативной электроники.

Постоянный ток довольно прост, и подчиняется закону Ома: U = I × R. измеряется в ваттах и ​​равна: P = U × I.

Из-за простых уравнений и поведения постоянный ток относительно легко осмыслить. Первые системы передачи электроэнергии, разработанные Томасом Эдисоном еще в XIX веке, использовали только его. Однако вскоре разница в переменном токе и постоянном стала очевидной. Передача последнего на значительные расстояния сопровождалась большими потерями, поэтому через несколько десятилетий он был заменен более выгодной (тогда) системой, разработанной Николой Теслой.

Несмотря на то что коммерческие силовые сети всей планеты в настоящее время используют переменный ток, ирония заключается в том, что развитие технологии сделало передачу постоянного тока высокого напряжения на очень больших расстояниях и при экстремальных нагрузках более эффективной. Что, например, используется при соединении отдельных систем, таких как целые страны или даже континенты. В этом заключается еще одна разница в переменном токе и постоянном. Однако первый по-прежнему используется в низковольтных коммерческих сетях.

Постоянный и переменный ток: разница в производстве и использовании

Если переменный ток намного проще производить с помощью генератора, используя кинетическую энергию, то батареи могут создавать только постоянный. Поэтому последний доминирует в схемах питания низковольтных устройств и электроники. Аккумуляторы могут заряжаться только от постоянного тока, поэтому переменный ток сети выпрямляется, когда аккумулятор является основной частью системы.

Широко распространенным примером может служить любое транспортное средство — мотоцикл, автомобиль и грузовик. Генератор, устанавливаемый на них, создает переменный ток, который мгновенно преобразуется в постоянный с помощью выпрямителя, поскольку в системе электроснабжения присутствует аккумулятор, и большинству электроники для работы требуется постоянное напряжение. Солнечные элементы и топливные ячейки также производят только постоянный ток, который затем при необходимости можно преобразовать в переменный с помощью устройства, называемого инвертором.

Направление движения

Это еще один пример разницы постоянного тока и переменного тока. Как следует из названия, последний представляет собой поток электронов, который постоянно меняет свое направление. С конца XIX века почти во всех бытовых и промышленных электрических всего мира используется синусоидальный переменный ток, поскольку его легче получить и гораздо дешевле распределять, за исключением очень немногих случаев передачи на большие расстояния, когда потери мощности вынуждают использовать новейшие высоковольтные системы постоянного тока.

У переменного тока есть еще одно большое преимущество: он позволяет возвращать энергию из точки потребления обратно в сеть. Это очень выгодно в зданиях и сооружениях, которые производят больше энергии, чем потребляют, что вполне возможно при использовании альтернативных источников, таких как солнечные батареи и Тот факт, что переменный ток позволяет обеспечить двунаправленный поток энергии, является основной причиной популярности и доступности альтернативных источников питания.

Частота

Когда дело доходит до технического уровня, к сожалению, объяснить, как работает переменный ток, становится сложно, поскольку модель водяного контура к нему не совсем подходит. Однако можно визуализировать систему, в которой вода быстро меняет направление потока, хотя не понятно, как она при этом будет делать что-то полезное. Переменный ток и напряжение постоянно меняют свое направление. Скорость изменения зависит от частоты (измеряемой в герцах) и для бытовых электрических сетей обычно составляет 50 Гц. Это означает, что напряжение и ток меняют свое направление 50 раз в секунду. Вычислить активную составляющую в синусоидальных системах довольно просто. Достаточно разделить их пиковое значение на √2.

Когда переменный ток меняет направление 50 раз в секунду, это означает, что лампы накаливания включаются и выключаются 50 раз в секунду. Человеческий глаз не может это заметить, и мозг просто верит, что освещение работает постоянно. В этом заключается еще одна разница в переменном токе и постоянном.

Векторная математика

Ток и напряжение не только постоянно меняются — их фазы не совпадают (они несинхронизированные). Подавляющее большинство силовых нагрузок переменного тока вызывает разность фаз. Это означает, что даже для самых простых вычислений нужно применять векторную математику. При работе с векторами невозможно просто складывать, вычитать или выполнять любые другие операции скалярной математики. При постоянном токе, если по одному кабелю в некоторую точку поступает 5A, а по другому — 2A, то результат равен 7A. В случае переменного это не так, потому что итог будет зависеть от направления векторов.

Коэффициент мощности

Активная мощность нагрузки с питанием от сети переменного тока может быть рассчитана с помощью простой формулы P = U × I × cos (φ), где φ — угол между напряжением и током, cos (φ) также называется коэффициентом мощности. Это то, чем отличаются постоянный и переменный ток: у первого cos (φ) всегда равен 1. Активная мощность необходима (и оплачивается) бытовыми и промышленными потребителями, но она не равна комплексной, проходящей через проводники (кабели) к нагрузке, которая может быть рассчитана по формуле S = U × I и измеряется в вольт-амперах (ВА).

Разница между постоянным и переменным током в расчетах очевидна — они становятся более сложными. Даже для выполнения самых простых вычислений требуется, по крайней мере, посредственное знание векторной математики.

Сварочные аппараты

Разница между постоянным и переменным током проявляется и при сварке. Полярность дуги оказывает большое влияние на ее качество. Электрод-позитивная сварка проникает глубже, чем электрод-негативная, но последняя ускоряет наплавление металла. При постоянном токе полярность всегда постоянная. При переменном она меняется 100 раз в секунду (при 50 Гц). Сварка при постоянном предпочтительнее, так как она производится более ровно. Разница в сварке переменным и постоянным током заключается в том, что в первом случае движение электронов на долю секунды прерывается, что приводит к пульсации, неустойчивости и пропаданию дуги. Этот вид сварки используется редко, например, для устранения блуждания дуги в случае электродов большого диаметра.

Постоянный и переменный то к

В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный. Чем отличается переменный ток от постоянного? Характеристики постоянного тока.

Постоянный ток

Direct Current или DC так по-английски обозначают электрический ток который на протяжении любого отрезка времени не меняет направление движения и всегда движется от плюса к минусу. На схеме обозначается как плюс (+) и минус (-), на корпусе прибора, работающего от постоянного тока наносят обозначение в виде одной (-) или (=) полос. Важная особенность постоянного электрического тока — это возможность его аккумулирования, т.е. накопления в аккумуляторах или получения его за счет химической реакции в батарейках. Множество современных переносных электрических устройств, работают, используя накопленный электрический заряд постоянного тока, который находится в аккумуляторах или батарейках этих самых устройств.

Переменный ток

(Alternating Current) или АС английская аббревиатура обозначающая ток, который меняет на временном отрезке свое направление и величину. На электрических схемах и корпусах электрических аппаратов, работающих от переменного тока, символ переменного тока обозначают как отрезок синусоиды «~». Если говорить о переменном токе простыми словами , то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное. На рисунке обратное направление — это область графика ниже нуля.

Теперь давай разберемся, что такое частота. Частота это — период времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц) . В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние. Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду — это и есть, частота переменного тока. Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.


Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.

Преобразование переменного тока в постоянный

Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель” . Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.


что такое диод и как работает диодный мост , ты можешь узнать в моих следующих статьях.

чем отличаются и что это такое, обозначение на схемах

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Что такое электрический ток и напряжение

 

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров.  Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам.  В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

 

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями. Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Школа инженерии Массачусетского технологического института | »В чем разница между переменным и постоянным током?

В чем разница между переменным и постоянным током?

Один выглядит как прямая линия, другой — волна; вместе они питают ваш ноутбук…

Элизабет Эрли

Переменный ток (AC) и постоянный ток (DC) примечательны тем, что вдохновили имя легендарной металлической группы, но они также оказались в самом центре современного мира, каким мы его знаем. Переменный и постоянный ток — это разные типы напряжения или тока, используемые для проведения и передачи электрической энергии. Быстро — подумайте о пяти вещах, которые вы делаете или касаетесь в течение дня, которые никоим образом не связаны с электричеством, не были произведены с использованием электричества и не связаны с внутренним использованием электричества вашим собственным телом … Хорошая попытка, но никоим образом, вы не могу этого сделать. (Или отправьте нам список, если считаете, что можете; мы проверим его.)

Электрический ток — это поток заряженных частиц или, в частности, в случае переменного и постоянного тока, поток электронов. По словам Карла К. Берггрена, профессора электротехники Массачусетского технологического института, фундаментальное различие между переменным и постоянным током — это направление потока.Постоянный ток постоянен и движется в одном направлении. «Простой способ визуализировать разницу состоит в том, что на графике постоянный ток выглядит как плоская линия, тогда как поток переменного тока на графике образует синусоиду или волнообразный узор», — говорит Берггрен. «Это связано с тем, что переменный ток изменяется с течением времени в виде колебательного повторения — восходящая кривая указывает на ток, текущий в положительном направлении, а нисходящая кривая означает альтернативный цикл, в котором ток движется в отрицательном направлении. Это то, что дало AC название.”

Оставив на время в стороне линии и графики, Берггрен предлагает еще один способ различать переменный и постоянный ток, взглянув на то, как они работают в устройствах, которые мы используем. Например, лампа рядом с кроватью работает от переменного тока. Это потому, что источник тока пришел издалека, а волнообразное движение тока делает его эффективным путешественником. Если вы любите читать фонариком, значит, вы являетесь потребителем постоянного тока. Типичная батарея имеет отрицательную и положительную клеммы, и электрический заряд (это те электроны) перемещается в одном направлении от одного к другому с постоянной скоростью (прямая линия на графике).

Интересно, что если вы читаете это на ноутбуке, вы фактически используете оба вида тока. Вилка в форме сопла, которая входит в ваш компьютер, подает постоянный ток на аккумулятор компьютера, но он получает этот заряд от вилки переменного тока, которая входит в стену. Неуклюжий маленький блок между розеткой и компьютером — это адаптер питания, который преобразует переменный ток в постоянный.

Берггрен объясняет, что переменный ток стал популярным в конце 19 века из-за его способности эффективно распределять мощность при низких напряжениях.Первоначально питание проводится при очень высоких напряжениях. Чтобы снизить эти высокие напряжения до низких, необходимых для питания, скажем, бытовой лампочки, необходимо преобразовать ток. Трансформатор, который в основном представляет собой две петли проводов, понижает переменный ток с сотен тысяч вольт до распределения разумных напряжений (до сотен) для питания большей части повседневной электроники. Возможность преобразовывать напряжение из переменного тока означала, что стало возможно более эффективно передавать энергию по стране.

По словам Берггрена, существует забавная история соперничества между AC и DC. В конце 19 века между Эдисоном и Вестингаузом шла гигантская война из-за переменного и постоянного тока. У Эдисона были патенты, которые заставили его вложить средства в широкое использование постоянного тока. Он намеревался убедить мир в том, что постоянный ток лучше всего подходит для передачи и распределения энергии. Он прибегал к сумасшедшим демонстрациям, таким как убийство крупных животных с помощью переменного тока, пытаясь доказать его ужасную опасность. Какое-то время он добивался успеха, и большинство муниципалитетов использовали местные электростанции с источником постоянного тока.Однако передача электроэнергии менее населенным сельским общинам по всей стране с помощью постоянного тока оказалась очень неэффективной, поэтому Westinghouse в конечном итоге выиграла, и переменный ток стал доминирующим источником энергии.

Спасибо 10-летнему Грэму из Провиденса, Род-Айленд, за этот вопрос.

Опубликовано: 17 сентября, 2013

Зависимость переменного тока от постоянного

Большинство рассмотренных до сих пор примеров, особенно те, которые используют батареи, имеют источники постоянного напряжения.Как только ток установлен, он также становится постоянным. Постоянный ток (DC) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (AC) — это поток электрического заряда, который периодически меняет направление. Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока.Примеры включают коммерческую и бытовую энергетику, которая удовлетворяет многие наши потребности. На рисунке 1 показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока. Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.

Рис. 1. (a) Напряжение и ток постоянного тока постоянны во времени после установления тока. (б) График зависимости напряжения и тока от времени для сети переменного тока 60 Гц. Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления.Частоты и пиковое напряжение источников переменного тока сильно различаются.

Рис. 2. Разность потенциалов V между клеммами источника переменного напряжения колеблется, как показано. Математическое выражение для V дается как [латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex].

На рисунке 2 показана схема простой схемы с источником переменного напряжения. Напряжение между клеммами колеблется, как показано на рисунке: переменное напряжение определяется как

.

[латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex],

, где В — напряжение в момент времени t , В 0 — пиковое напряжение, а f — частота в герцах.Для этой простой цепи сопротивления I = V / R , поэтому переменного тока равно

.

[латекс] I = {I} _ {0} \ sin 2 \ pi {ft} \\ [/ latex],

, где I — ток в момент времени t , а I 0 = V 0 / R — пиковый ток. В этом примере считается, что напряжение и ток находятся в фазе, как показано на Рисунке 1 (b).

Ток в резисторе меняется взад и вперед, как управляющее напряжение, поскольку I = V / R .Например, если резистор представляет собой люминесцентную лампочку, она становится ярче и тускнеет 120 раз в секунду, когда ток постоянно проходит через ноль. Мерцание с частотой 120 Гц слишком быстро для ваших глаз, но если вы помашите рукой вперед и назад между лицом и флуоресцентным светом, вы увидите стробоскопический эффект, свидетельствующий о переменном токе. Тот факт, что световой поток колеблется, означает, что мощность колеблется. Подаваемая мощность P = IV . Используя приведенные выше выражения для I и V , мы видим, что зависимость мощности от времени составляет [латекс] P = {I} _ {0} {V} _ {0} {\ text {sin}} ^ { 2} \ text {2} \ pi {ft} \\ [/ latex], как показано на рисунке 3.

Установление соединений: домашний эксперимент — AC / DC Lights

Помашите рукой между лицом и люминесцентной лампочкой. Вы наблюдаете то же самое с фарами на своей машине? Объясните, что вы наблюдаете. Предупреждение: Не смотрите прямо на очень яркий свет .

Рис. 3. Мощность переменного тока как функция времени. Поскольку напряжение и ток здесь синфазны, их произведение неотрицательно и колеблется от нуля до I 0 В 0 .Средняя мощность (1/2) I 0 V 0 .

Чаще всего нас интересует средняя мощность, а не ее колебания — например, у лампочки 60 Вт в настольной лампе средняя потребляемая мощность 60 Вт. Как показано на рисунке 3, средняя мощность P средн. составляет

[латекс] {P} _ {\ text {ave}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex].

Это очевидно из графика, поскольку области выше и ниже линии (1/2) I 0 V 0 равны, но это также можно доказать с помощью тригонометрических тождеств.Точно так же мы определяем средний или среднеквадратичный ток I среднеквадратичного значения и среднее значение или действующее напряжение В среднеквадратичное значение , соответственно

[латекс] {I} _ {\ text {rms}} = \ frac {{I} _ {0}} {\ sqrt {2}} \\ [/ latex]

и

[латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex].

, где среднеквадратичное значение означает среднеквадратичное значение, особый вид среднего. Как правило, для получения среднеквадратичного значения конкретная величина возводится в квадрат, определяется ее среднее (или среднее) значение и извлекается квадратный корень.Это полезно для переменного тока, так как среднее значение равно нулю. Сейчас,

P среднеквадратичное = I среднеквадратичное значение V среднеквадратичное значение ,

, что дает

[латекс] {P} _ {\ text {ave}} = \ frac {{I} _ {0}} {\ sqrt {2}} \ cdot \ frac {{V} _ {0}} {\ sqrt {2}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex],

, как указано выше. Стандартной практикой является указание I среднеквадратичного значения , V среднеквадратичного значения и P , среднего значения , а не пиковых значений.Например, напряжение в большинстве домашних хозяйств составляет 120 В переменного тока, что означает, что В среднеквадратичного значения составляет 120 В. Обычный автоматический выключатель на 10 А прервет длительный I среднеквадратичное значение , превышающее 10 А. Ваш 1,0-кВт микроволновая печь потребляет P средн. = 1,0 кВт и т. д. Вы можете рассматривать эти среднеквадратичные и средние значения как эквивалентные значения постоянного тока для простой резистивной цепи. Подводя итог, при работе с переменным током закон Ома и уравнения для мощности полностью аналогичны таковым для постоянного тока, но для переменного тока используются среднеквадратические и средние значения.{2} R \\ [/ латекс].

Пример 1. Пиковое напряжение и мощность для переменного тока

(a) Каково значение пикового напряжения для сети 120 В переменного тока? (b) Какова пиковая потребляемая мощность лампочки переменного тока мощностью 60,0 Вт?

Стратегия

Нам говорят, что В среднеквадратичное значение составляет 120 В, а P среднеквадратичное значение составляет 60,0 Вт. Мы можем использовать [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex], чтобы найти пиковое напряжение, и мы можем манипулировать определением мощности, чтобы найти пиковую мощность из заданной средней мощности.

Решение для (a)

Решение уравнения [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex] для пикового напряжения В 0 и замена известного значения на V rms дает

[латекс] {V} _ {0} = \ sqrt {2} {V} _ {\ text {rms}} = 1,414 (120 \ text {V}) = 170 \ text {V} \\ [/ latex ]

Обсуждение для (а)

Это означает, что напряжение переменного тока изменяется от 170 В до –170 В и обратно 60 раз в секунду.Эквивалентное постоянное напряжение составляет 120 В.

Решение для (b)

Пиковая мощность равна пиковому току, умноженному на пиковое напряжение. Таким образом,

[латекс] {P} _ {0} = {I} _ {0} {V} _ {0} = \ text {2} \ left (\ frac {1} {2} {I} _ {0} {V} _ {0} \ right) = \ text {2} {P} _ {\ text {ave}} \\ [/ latex].

Мы знаем, что средняя мощность 60,0 Вт, поэтому

P 0 = 2 (60,0 Вт) = 120 Вт.

Обсуждение

Таким образом, мощность меняется от нуля до 120 Вт сто двадцать раз в секунду (дважды за каждый цикл), а средняя мощность составляет 60 Вт.

Зависимость переменного тока (AC) от постоянного (DC)

Пораженный громом!

Откуда австралийская рок-группа AC / DC получила свое название? Да ведь переменный ток и постоянный ток, конечно же! И переменный, и постоянный ток описывают типы протекания тока в цепи. В постоянного тока (DC) электрический заряд (ток) течет только в одном направлении. Электрический заряд в переменного тока (AC), с другой стороны, периодически меняет направление.Напряжение в цепях переменного тока также периодически меняется на противоположное, потому что ток меняет направление.

Большая часть создаваемой вами цифровой электроники будет использовать постоянный ток. Однако важно понимать некоторые концепции переменного тока. Большинство домов подключены к сети переменного тока, поэтому, если вы планируете подключить проект музыкальной шкатулки Tardis к розетке, вам нужно будет преобразовать переменный ток в постоянный. Переменный ток также обладает некоторыми полезными свойствами, такими как способность преобразовывать уровни напряжения с помощью одного компонента (трансформатора), поэтому переменный ток был выбран в качестве основного средства передачи электроэнергии на большие расстояния.

Что вы узнаете

  • История создания переменного и постоянного тока
  • Различные способы генерации переменного и постоянного тока
  • Некоторые примеры приложений переменного и постоянного тока

Рекомендуемая литература

и nbsp

и nbsp

Переменный ток (AC)

Переменный ток описывает поток заряда, который периодически меняет направление. В результате уровень напряжения также меняется на противоположный вместе с током.AC используется для подачи электроэнергии в дома, офисные здания и т. Д.

Генерация переменного тока

переменного тока может производиться с использованием устройства, называемого генератором переменного тока. Это устройство представляет собой особый тип электрического генератора, предназначенный для выработки переменного тока.

Проволочная петля скручена внутри магнитного поля, которое индуцирует ток по проводу. Вращение провода может происходить с помощью любого количества средств: ветряной турбины, паровой турбины, проточной воды и так далее. Поскольку провод вращается и периодически меняет магнитную полярность, напряжение и ток на проводе чередуются.Вот короткая анимация, показывающая этот принцип:


(Видео предоставлено: Хуррам Танвир)

Генератор переменного тока можно сравнить с нашей предыдущей аналогией с водой:

Чтобы генерировать переменный ток в наборе водопроводных труб, мы соединяем механический кривошип с поршнем, который перемещает воду в трубах вперед и назад (наш «переменный» ток). Обратите внимание, что защемленный участок трубы по-прежнему оказывает сопротивление потоку воды независимо от направления потока.

Формы сигналов

AC может быть разных форм, если напряжение и ток чередуются. Если мы подключим осциллограф к цепи переменного тока и построим график ее напряжения с течением времени, мы можем увидеть несколько различных форм сигналов. Наиболее распространенным типом переменного тока является синусоида. Переменный ток в большинстве домов и офисов имеет колеблющееся напряжение, которое создает синусоидальную волну.

Другие распространенные формы переменного тока включают прямоугольную волну и треугольную волну:

Прямоугольные волны часто используются в цифровой и переключающей электронике для проверки их работы.

Треугольные волны используются при синтезе звука и используются для тестирования линейной электроники, такой как усилители.

Описание синусоидальной волны

Мы часто хотим описать форму волны переменного тока в математических терминах. В этом примере мы будем использовать обычную синусоиду. Синусоидальная волна состоит из трех частей: амплитуда, частота и фаза .

Рассматривая только напряжение, мы можем описать синусоидальную волну как математическую функцию:

V (t) — это наше напряжение как функция времени, что означает, что наше напряжение изменяется с изменением времени.Уравнение справа от знака равенства описывает, как напряжение изменяется во времени.

V P — амплитуда . Это описывает максимальное напряжение, которое наша синусоида может достигать в любом направлении, что означает, что наше напряжение может быть + V P вольт, -V P вольт или где-то посередине.

Функция sin () указывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавные колебания около 0 В.

— это константа, которая преобразует частоту из циклов (в герцах) в угловую частоту (радиан в секунду).

f описывает частоту синусоидальной волны. Это дается в виде герц или единиц в секунду . Частота показывает, сколько раз определенная форма волны (в данном случае один цикл нашей синусоидальной волны — подъем и спад) происходит в течение одной секунды.

t — наша независимая переменная: время (измеряется в секундах).По мере того, как меняется время, наша форма волны меняется.

φ описывает фазу синусоидальной волны. Фаза — это мера того, насколько сдвинута форма сигнала во времени. Часто это число от 0 до 360, которое измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны сдвинута на 360 °, она снова становится такой же, как если бы она была сдвинута на 0 °. Для простоты мы предполагаем, что в остальной части этого руководства фаза равна 0 °.

Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах в наши дома подается питание переменного тока с размахом 170 В (амплитуда) и 60 Гц (частота). Мы можем подставить эти числа в нашу формулу, чтобы получить уравнение (помните, что мы предполагаем, что наша фаза равна 0):

Мы можем использовать наш удобный графический калькулятор, чтобы построить график этого уравнения. Если графического калькулятора нет, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos (обратите внимание, что вам может потребоваться использовать «y» вместо «v» в уравнении, чтобы увидеть график).

Обратите внимание, что, как мы и предсказывали, напряжение периодически повышается до 170 В и понижается до -170 В. Кроме того, каждую секунду происходит 60 циклов синусоидальной волны. Если бы мы измеряли напряжение в розетках с помощью осциллографа, мы бы увидели именно это ( ПРЕДУПРЕЖДЕНИЕ: не пытайтесь измерять напряжение в розетке с помощью осциллографа! Это может привести к повреждению оборудования).

ПРИМЕЧАНИЕ: Возможно, вы слышали, что напряжение переменного тока в США составляет 120 В. Это тоже правильно.Как? Говоря об переменном токе (поскольку напряжение постоянно меняется), часто проще использовать среднее или среднее значение. Для этого мы используем метод под названием «Среднеквадратичный корень». (RMS). Часто бывает полезно использовать среднеквадратичное значение для переменного тока, когда вы хотите рассчитать электрическую мощность. Несмотря на то, что в нашем примере у нас было напряжение от -170 В до 170 В, среднеквадратичное значение составляет 120 В RMS.

Приложения

В розетках дома и в офисе почти всегда есть кондиционер. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно просто.При высоких напряжениях (более 110 кВ) при передаче электроэнергии теряется меньше энергии. Более высокие напряжения означают более низкие токи, а более низкие токи означают меньшее тепловыделение в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов.

AC также может приводить в действие электродвигатели. Двигатели и генераторы — это одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую (если вал двигателя вращается, на выводах генерируется напряжение!).Это полезно для многих крупных бытовых приборов, таких как посудомоечные машины, холодильники и т. Д., Которые работают от сети переменного тока.

Постоянный ток (DC)

Постоянный ток немного легче понять, чем переменный. Вместо того, чтобы колебаться вперед и назад, постоянный ток обеспечивает постоянное напряжение или ток.

Создание постоянного тока

постоянного тока можно создать несколькими способами:

  • Генератор переменного тока, оснащенный устройством, называемым «коммутатор», может производить постоянный ток
  • Использование устройства, называемого «выпрямитель», которое преобразует переменный ток в постоянный ток
  • Батареи обеспечивают постоянный ток, который образуется в результате химической реакции внутри батареи

Используя нашу аналогию с водой снова, DC подобен резервуару с водой со шлангом на конце.

Бак может выталкивать воду только в одном направлении: из шланга. Как и в случае с нашей батареей постоянного тока, когда резервуар опустеет, вода больше не течет по трубам.

Описание DC

DC определяется как «однонаправленный» ток; ток течет только в одном направлении. Напряжение и ток могут изменяться с течением времени до тех пор, пока направление потока не меняется. Для упрощения предположим, что напряжение является постоянным. Например, мы предполагаем, что батарея AA обеспечивает 1.5 В, что математически можно описать как:

Если мы построим график с течением времени, мы увидим постоянное напряжение:

Что это значит? Это означает, что мы можем рассчитывать на то, что большинство источников постоянного тока обеспечат постоянное напряжение во времени. В действительности батарея будет медленно терять заряд, а это означает, что напряжение будет падать по мере использования батареи. В большинстве случаев мы можем предположить, что напряжение постоянно.

Приложения

Почти все проекты электроники и запчасти, выставленные на продажу на SparkFun, работают на DC.Все, что работает от батареи, подключается к стене с помощью адаптера переменного тока или использует USB-кабель для питания, зависит от постоянного тока. Примеры электроники постоянного тока включают:

  • Мобильные телефоны
  • D&D Dice Gauntlet на основе LilyPad
  • Телевизоры с плоским экраном (переменный ток переходит в телевизор, который преобразуется в постоянный ток)
  • Фонари
  • Гибридные и электромобили

Битва течений

Почти каждый дом или офис подключен к сети переменного тока.Однако это решение не было мгновенным. В конце 1880-х годов различные изобретения в Соединенных Штатах и ​​Европе привели к полномасштабной битве между распределением переменного и постоянного тока.

В 1886 году электрическая компания Ganz Works, расположенная в Будапеште, электрифицировала весь Рим с помощью переменного тока. Томас Эдисон, с другой стороны, построил 121 электростанцию ​​постоянного тока в Соединенных Штатах к 1887 году. Поворотный момент в битве наступил, когда Джордж Вестингауз, известный промышленник из Питтсбурга, приобрел патенты Николы Теслы на двигатели переменного тока и трансмиссию в следующем году. .

переменного тока в сравнении с постоянным током

Томас Эдисон (Изображение любезно предоставлено biography.com)

В конце 1800-х годов постоянный ток было нелегко преобразовать в высокое напряжение. В результате Эдисон предложил систему небольших местных электростанций, которые питали бы отдельные кварталы или участки города. Электроэнергия распределялась по трем проводам от электростанции: +110 вольт, 0 вольт и -110 вольт. Освещение и двигатели могут быть подключены между розеткой + 110 В или 110 В и 0 В (нейтраль). При напряжении 110 В допускается некоторое падение напряжения между установкой и нагрузкой (дома, в офисе и т. Д.).).

Несмотря на то, что падение напряжения на линиях электропередачи было учтено, электростанции необходимо было располагать в пределах 1 мили от конечного пользователя. Это ограничение сделало распределение электроэнергии в сельской местности чрезвычайно трудным, если не невозможным.

Используя патенты Tesla, компания Westinghouse работала над усовершенствованием системы распределения переменного тока. Трансформаторы предоставили недорогой метод повышения напряжения переменного тока до нескольких тысяч вольт и его снижения до приемлемого уровня. При более высоких напряжениях та же мощность могла передаваться при гораздо меньшем токе, что означало меньшие потери мощности из-за сопротивления проводов.В результате крупные электростанции могут быть расположены за много миль и обслуживать большее количество людей и зданий.

Кампания Эдисона по поиску мазков

В течение следующих нескольких лет Эдисон провел кампанию по категорическому противодействию использованию AC в Соединенных Штатах, которая включала лоббирование законодательных собраний штатов и распространение дезинформации о AC. Эдисон также приказал нескольким техникам публично казнить животных переменным током, пытаясь показать, что переменный ток более опасен, чем постоянный ток. Пытаясь показать эти опасности, Гарольд П.Браун и Артур Кеннелли, сотрудники Edison, разработали первый электрический стул для штата Нью-Йорк с использованием переменного тока.

Возвышение AC

В 1891 году Международная электротехническая выставка проходила во Франкфурте, Германия, и показала первую передачу трехфазного переменного тока на большие расстояния, которая питала фары и двигатели на выставке. Присутствовали несколько представителей того, что впоследствии станет General Electric, и впоследствии они были впечатлены дисплеем. В следующем году была создана компания General Electric, которая начала инвестировать в технологии переменного тока.

Электростанция Эдварда Дина Адамса в Ниагарском водопаде, 1896 г. (Изображение любезно предоставлено teslasociety.com)

Westinghouse выиграл контракт в 1893 году на строительство плотины гидроэлектростанции, чтобы использовать энергию Ниагарского водопада и передавать переменный ток в Буффало, штат Нью-Йорк. Проект был завершен 16 ноября 1896 года, и электроэнергия переменного тока начала снабжать электроэнергией промышленные предприятия в Буффало. Эта веха ознаменовала упадок DC в США. В то время как Европа примет стандарт переменного тока 220–240 В при 50 Гц, стандартом в Северной Америке станет 120 В при 60 Гц.

Высоковольтный постоянный ток (HVDC)

Швейцарский инженер Рене Тюри в 1880-х годах использовал серию двигателей-генераторов для создания высоковольтной системы постоянного тока, которую можно было использовать для передачи постоянного тока на большие расстояния. Однако из-за высокой стоимости и обслуживания систем Thury, HVDC никогда не применялся в течение почти столетия.

С изобретением полупроводниковой электроники в 1970-х годах стало возможным экономичное преобразование между переменным и постоянным током. Для генерации постоянного тока высокого напряжения (иногда до 800 кВ) может использоваться специальное оборудование.Некоторые страны Европы начали использовать линии HVDC для электрического соединения различных стран.

В линиях

HVDC потери меньше, чем в аналогичных линиях переменного тока на очень больших расстояниях. Кроме того, HVDC позволяет подключать различные системы переменного тока (например, 50 Гц и 60 Гц). Несмотря на свои преимущества, системы HVDC более дороги и менее надежны, чем обычные системы переменного тока.

В конце концов, Эдисон, Тесла и Вестингауз могут осуществить свои желания. Переменный ток и постоянный ток могут сосуществовать, и каждый из них служит определенной цели.

Ресурсы и дальнейшее развитие

Теперь вы должны хорошо понимать разницу между переменным и постоянным током. Переменный ток легче преобразовывать между уровнями напряжения, что делает передачу высокого напряжения более возможной. Напротив, постоянный ток присутствует почти во всей электронике. Вы должны знать, что они не очень хорошо сочетаются, и вам нужно будет преобразовать переменный ток в постоянный, если вы хотите подключить большую часть электроники к розетке. С таким пониманием вы должны быть готовы заняться некоторыми более сложными схемами и концепциями, даже если они содержат переменный ток.

Взгляните на следующие учебные пособия, когда будете готовы глубже погрузиться в мир электроники:

и nbsp

AC и DC (переменный ток и постоянный ток) — разница и сравнение

Электроэнергия течет двумя путями: переменным током (AC) или постоянным током (DC) . Электричество или «ток» — это не что иное, как движение электронов по проводнику, например по проводу.Разница между переменным и постоянным током заключается в направлении потока электронов. В постоянном токе электроны стабильно движутся в одном направлении, или «вперед». В переменном токе электроны постоянно меняют направление, иногда идя «вперед», а затем «назад».

Переменный ток — лучший способ передавать электричество на большие расстояния.

Таблица сравнения

Таблица сравнения переменного и постоянного тока
Переменный ток Постоянный ток
Количество энергии, которое может быть перенесено Безопасно для передачи на большие расстояния по городу и может обеспечить большую мощность. Напряжение постоянного тока не может перемещаться очень далеко, пока не начнет терять энергию.
Причина направления потока электронов Вращающийся магнит вдоль провода. Постоянный магнетизм вдоль провода.
Частота Частота переменного тока составляет 50 Гц или 60 Гц в зависимости от страны. Частота постоянного тока равна нулю.
Направление Он меняет направление на противоположное при движении по контуру. Он течет в контуре в одном направлении.
Ток Это ток, величина которого меняется со временем Это ток постоянной величины.
Поток электронов Электроны меняют направление движения — вперед и назад. Электроны равномерно движутся в одном направлении или «вперед».
Получено от Генератор переменного тока и сеть. Элемент или батарея.
Пассивные параметры Импеданс. Только сопротивление
Коэффициент мощности Входит между 0 и 1. это всегда 1.
Типы Синусоидальный, трапециевидный, треугольный, квадратный. Чистый и пульсирующий.
Переменный и постоянный ток. По горизонтальной оси отложено время, а по вертикальной оси — напряжение.

Истоки переменного и постоянного тока

Магнитное поле около провода заставляет электроны течь в одном направлении вдоль провода, потому что они отталкиваются отрицательной стороной магнита и притягиваются к положительной стороне.Так родилась мощность постоянного тока от батареи, в первую очередь благодаря работе Томаса Эдисона.

Генераторы переменного тока

постепенно заменили систему батарей постоянного тока Эдисона, потому что переменный ток безопаснее передавать на большие расстояния по городу и может обеспечить большую мощность. Вместо постоянного приложения магнетизма к проводу ученый Никола Тесла использовал вращающийся магнит. Когда магнит был ориентирован в одном направлении, электроны текли к положительному положению, но когда ориентация магнита менялась, электроны также вращались.

Видео сравнения переменного и постоянного тока

Применение трансформаторов переменного тока

Еще одно различие между переменным и постоянным током заключается в количестве энергии, которое он может переносить. Каждая батарея предназначена для выработки только одного напряжения, и это напряжение постоянного тока не может перемещаться очень далеко, пока не начнет терять энергию. Но напряжение переменного тока от генератора на электростанции может быть увеличено или уменьшено с помощью другого механизма, называемого трансформатором .Трансформаторы располагаются на электрическом столбе на улице, а не на электростанции. Они изменяют очень высокое напряжение на более низкое, подходящее для вашей бытовой техники, такой как лампы и холодильники.

Хранение и преобразование из переменного тока в постоянный и наоборот

AC может даже быть изменен на постоянный ток с помощью адаптера, который вы можете использовать для питания батареи вашего ноутбука. DC можно «подтолкнуть» вверх или вниз, только это немного сложнее. Инверторы изменяют постоянный ток на переменный. Например, для вашего автомобиля инвертор изменит 12 вольт постоянного тока на 120 вольт переменного тока, чтобы запустить небольшое устройство.Хотя постоянный ток можно хранить в батареях, вы не можете хранить переменный ток.

Список литературы

Поделитесь этим сравнением:

Если вы дочитали до этого места, подписывайтесь на нас:

«Переменный ток против постоянного (переменный ток против постоянного)». Diffen.com. Diffen LLC, н.д. Интернет. 12 июня 2021 г. <>

Разница между переменным током (AC) и постоянным током (DC)

В проводящих материалах есть свободные электроны, которые перемещаются от одного атома к другому, когда к ним прикладывается разность потенциалов.Этот поток электронов в замкнутой цепи называется током. В зависимости от направления движения электронов в замкнутой цепи электрический ток в основном подразделяется на два типа: переменный ток и постоянный ток.

Одно из основных различий между переменным и постоянным током состоит в том, что в переменном токе полярность и величина тока меняются через равные промежутки времени, тогда как в постоянном токе они остаются постоянными.Некоторые различия поясняются ниже в форме сравнительной таблицы с учетом различных факторов;

Содержание: переменный ток (AC) против постоянного тока (DC)

  1. Сравнительная таблица
  2. Определение
  3. Ключевые отличия
  4. Запомните

Сравнительная таблица

Basis Переменный ток Постоянный ток
Определение Направление тока периодически меняется на противоположное. Направление тока остается прежним.
Причины потока электронов Вращение катушки в однородном магнитном поле или вращение однородного магнитного поля внутри неподвижной катушки Постоянное магнитное поле поперек провода
Частота 50 или 60 Гц Ноль
Направление потока электронов. Двунаправленный Однонаправленный
Коэффициент мощности Входит от 0 до 1 Всегда 1
Полярность Имеет полярность (+, -) Не имеет полярности
Получено из Генераторы переменного тока Генераторы, батареи, солнечные элементы и т. Д.
Тип нагрузки Их нагрузка резистивная, индуктивная или емкостная. Их нагрузка обычно резистивная.
Графическое представление Оно представлено нерегулярными волнами, такими как треугольная волна, квадратная волна, квадратная волна, синусоида. Представлен прямой линией.
Передача Может передаваться на большие расстояния с некоторыми потерями. Его можно передавать на очень большие расстояния с незначительными потерями.
Трансформируемый Легко преобразовать в постоянный ток Легко преобразовать в переменный ток
Подстанция Для генерации и передачи требуется несколько подстанций Для генерации и передачи требуется больше подстанций
Пассивный параметр Импеданс Сопротивление
Harazdous Опасно Очень опасно
Приложение Заводы, промышленность и для бытовых целей. Гальваника, электролиз, электронное оборудование и т. Д.

Определение переменного тока

Ток, который периодически меняет свое направление, такой вид тока называется переменным током. Их величина и полярность также меняются со временем. В таких типах тока свободные электроны (электрический заряд) движутся как в прямом, так и в обратном направлении.

Частота (количество циклов, завершенных за одну секунду) переменного тока от 50 до 60 Гц, зависит от страны.Переменный ток легко преобразуется из высокого значения в низкое и наоборот с помощью трансформатора. Таким образом, он в основном используется для передачи и распределения.

Определение постоянного тока

Когда электрический заряд внутри проводника течет в одном направлении, такой тип тока называется постоянным током. Величина постоянного тока всегда остается постоянной, а частота тока равна нулю. Он используется в сотовых телефонах, электромобилях, сварке, электронном оборудовании и т. Д.

Графическое представление переменного тока показано на рисунке ниже.


Ключевые различия между переменным током и постоянным током

  1. Ток, который периодически меняет свое направление, такой вид тока называется переменным током. Постоянный ток однонаправлен или течет только в одном направлении.
  2. Заряды в переменном токе протекают либо путем вращения катушки в магнитном поле, либо путем вращения магнитного поля внутри неподвижной катушки.При постоянном токе заряды текут, поддерживая постоянный магнетизм вдоль провода.
  3. Частота переменного тока составляет от 50 до 60 Гц в зависимости от стандарта страны, тогда как частота постоянного тока всегда остается нулевой.
  4. Коэффициент мощности переменного тока находится в пределах от нуля до единицы, тогда как коэффициент мощности постоянного тока всегда остается равным единице.
  5. Генератор переменного тока вырабатывает ток генератора. Постоянный ток вырабатывается генератором, батареей и элементами.
  6. Нагрузка переменного тока бывает емкостной, индуктивной или резистивной. Нагрузка постоянного тока всегда носит резистивный характер.
  7. Переменный ток может быть графически представлен с помощью различной формы волны неправильной формы, такой как треугольная волна, прямоугольная волна, периодическая волна, пилообразная волна, синусоида и т. Д. Постоянный ток графически представлен прямой линией.
  8. Переменный ток передается на большие расстояния с некоторыми потерями, тогда как постоянный ток передается на очень большие расстояния с незначительными потерями.
  9. Переменный ток преобразуется в постоянный с помощью выпрямителя, а постоянный ток преобразуется в переменный ток с помощью инвертора.
  10. Немногие подстанции требуют производства и передачи переменного тока. Для передачи постоянного тока требуются дополнительные подстанции.
  11. Переменный ток используется в промышленности, на фабриках и в быту. Постоянный ток в основном используется в электронном оборудовании, импульсном освещении, гибридных транспортных средствах, гальванике, электролизе, для возбуждения обмотки возбуждения ротора и т. Д.

Запомните

Постоянный ток опаснее переменного. При переменном токе величина тока становится высокой и низкой через равные промежутки времени, а при постоянном токе величина остается неизменной. Когда человеческое тело подвергается электрошоку, переменный ток входит в тело и выходит из него через равные промежутки времени, тогда как постоянный ток воздействует на тело непрерывно.

AC vs.DC — Разница между переменным постоянным током

переменного и постоянного тока. Как они работают?

1. Переменный ток

Переменный ток (AC) — это электрический ток, который меняет свое направление в цепи с течением времени . Ваш дом работает от сети переменного тока. Короче говоря, мы используем переменный ток в наших домах, потому что он лучше всего проходит на большие расстояния (например, от электростанции) и его легко преобразовать с высокого напряжения на более низкое.

Напряжение переменного тока имеет переменную форму синусоидальной волны, которая периодически меняет свое значение (амплитуду) во времени.

Электроэнергия переменного тока вырабатывается специальным генератором, называемым генератором переменного тока, который преобразует механическую энергию в электрическую в виде переменного тока. Эти устройства имеют ротор (внутренняя металлическая ось, состоящая из медных катушек), который соединен с вращающейся турбиной (такой как ветряная турбина, пар или вода) для создания изменяющегося электромагнитного поля, которое индуцирует ток на выходе машины. Когда ротор вращается вокруг своей оси на 360 механических градусов, электромагнитное поле изменяется, и выходное напряжение также изменяется на 360 электрических градусов.Это обеспечивает переменную и синусоидальную форму переменного тока (синусоидальную волну).

2. Постоянный ток

Постоянный ток (DC) — это электрический ток, который течет в одном направлении и имеет стабильное напряжение в цепи . Примерами устройств, использующих постоянный ток, могут быть фонарики с батарейным питанием или ваш автомобиль. Ваши солнечные панели тоже постоянного тока. Однако, как упоминалось выше, в наших домах используется переменный ток (AC). Таким образом, чтобы использовать мощность постоянного тока в доме, она должна проходить через устройство, называемое инвертором , для изменения мощности с постоянного на переменный ток. Напряжение постоянного тока не изменяется во времени, вместо этого оно имеет постоянное значение.

Основное различие между постоянным и переменным током заключается в переменной форме сигнала переменного тока.

Важны и другие отличия. Например, для транспортировки электроэнергии переменного тока по линиям передачи необходимо также производить активную мощность (потребляемую потребителями) и реактивную мощность (необходимую для создания магнитных полей по линиям передачи). С другой стороны, постоянный ток вырабатывает только активную мощность и не требует передачи реактивной мощности.Однако мощность переменного тока дешевле передавать, чем мощность постоянного тока, что является одной из причин, по которой переменный ток в конечном итоге правит миром (кроме случаев, когда вы рассматриваете передачу сверхвысокого напряжения).

Посмотрите это видео, чтобы подробнее узнать о различиях между переменным и постоянным током / напряжением.

Война токов

Еще в 19 веке Томас Эдисон (владелец Edison Electric) и Никола Тесла (спонсируемый Westinghouse) вели войну, чтобы установить тип тока, который будет править миром.Эдисон был сторонником DC (постоянного тока), в то время как Тесла был сторонником переменного тока (AC). Решающую битву за контроль над электроэнергетической отраслью решил победитель крупнейшего в мире контракта на электростанцию ​​в 1893 году — проект Niagara Falls Power Project в Соединенных Штатах. Кто бы ни выиграл контракт (Edison Electric или Westinghouse), он будет доминировать в сфере производства электроэнергии во всем мире.

Местом битвы была Всемирная выставка, проведенная в том же году в Чикаго, организаторы которой хотели, чтобы ее осветили электричеством, а не свечами.Организаторы пригласили Edison Electric (использующий постоянный ток) и Westinghouse (использующий переменный ток) принять участие в торгах по контракту. Когда предложения были получены, Westinghouse попросила четверть того, что требовала Edison Electric для освещения ярмарки, и поэтому Westinghouse выиграла контракт на освещение этого мероприятия. Это событие резко изменило баланс в пользу Westinghouse, которая затем выиграла контракт на снабжение Энергетического проекта Ниагарского водопада энергией переменного тока. Электростанция питала всю западную часть Соединенных Штатов и продемонстрировала, что мощность переменного тока безопасна и что она будет ведущим электрическим током в ближайшие годы.

Это истинная причина, по которой ваш дом питается от сети переменного тока.

DC возвращается

Энергия постоянного тока

снова в бизнесе благодаря солнечным батареям. Солнечные модули вырабатывают электроэнергию на постоянном токе, но концепция и технология полностью отличаются от генераторов переменного тока. Однако, поскольку Westinghouse выиграла войну токов, мир теперь работает на переменном токе, и поэтому мощность постоянного тока, генерируемая панелями, должна быть преобразована в переменный ток. Именно здесь вступает в действие центральное ядро ​​солнечной системы — инвертор.Это устройство действует как преобразователь постоянного тока в переменный, который использует сигнал постоянного напряжения, генерируемый модулями, для создания переменного напряжения.

Мы изучили историю и различия между питанием переменного и постоянного тока, и, что наиболее важно, теперь вы знаете, что все, что было до инвертора (модули, фотоэлектрические кабели, блоки объединения постоянного тока, батареи), работает на постоянном токе, и все, что идет после инвертора. инвертор работает в сети переменного тока (нагрузки) . Здесь важно упомянуть, что, когда вы решите очистить свои солнечные панели, вы всегда должны помнить о выключении системы, отключая выключатель нагрузки постоянного тока в коробке сумматора постоянного тока, потому что постоянный ток может быть столь же опасен, как и переменный ток.

Для получения дополнительной информации посетите Как работает солнечная энергия!

В чем разница между переменным и постоянным током

Что такое переменный ток (AC)?

AC или переменный ток относится к шкале напряжения или тока, размер и направление которой регулярно и периодически меняются с течением времени.

Диаграмма формы сигнала переменного тока показана на рисунке ниже :

Что такое постоянный ток (DC)?

Постоянный ток, называемый постоянным током ,, также известный как «постоянный ток».Величина и направление постоянного тока остаются неизменными. Общие источники питания постоянного тока включают батареи, свинцово-кислотные батареи и сухие батареи.

Форма сигнала постоянного тока показана на рисунке ниже:

Несколько основных понятий о текущем :

Возьмем для примера синусоидальный переменный ток:

  • Пик: Максимальное значение синусоидального переменного тока в цикле, обозначаемое как Vpk.
  • среднее значение: Форма волны синусоидального переменного тока симметрична, поэтому среднее значение синусоидального переменного тока за цикл равно 0.Такое среднее значение не может описать характеристики переменного тока. Поэтому мы часто вычисляем абсолютное среднее значение переменного тока, формула выглядит следующим образом:
  • Мгновенное значение: Его также можно выразить как:
    ω — угловая частота переменного тока, ϕ — начальный фазовый угол переменного тока.
  • Допустимое значение: Действующее значение переменного тока обычно определяется тепловым эффектом тока, и формула имеет следующий вид:

Обратите внимание, что следующие сигналы также относятся к переменному току, и все они могут быть преобразованы в синусоидальные волны с помощью преобразования Фурье.

Поскольку величина и направление постоянного тока постоянны, пиковое значение, мгновенное значение, эффективное значение и среднее значение постоянного тока равны константе.

В чем разница между переменным и постоянным током?

Теперь мы используем мощность 12 В постоянного тока и мощность 12 В переменного тока для анализа разницы между мощностью постоянного и переменного тока с точки зрения потерь, использования, измерения и безопасности.

Loss
DC: Постоянный ток больше подходит для передачи на большие расстояния и большой емкости.Поэтому передача HVDC стала горячей темой.
AC: Цепь переменного тока имеет параметры индуктивности, поэтому при передаче на большие расстояния потери велики.

Используйте
стабильность напряжения постоянного тока, без большого шума, он подходит для использования электронных продуктов. (например, телевизоры, радиокомпьютеры и т. д.)
Электропитание переменного тока для прохождения через выпрямитель / импульсный источник питания в источник постоянного тока может использоваться для электронных продуктов.

Измерьте разницу между 12 В переменного тока и постоянного тока:
A) с помощью цифрового универсального измерения, соответственно, при измерении файла напряжения 20 В переменного тока и 20 В постоянного тока результаты будут разными.
B) простой метод измерения: с помощью стилуса (нестандартной ручки) на проводе крайней плоти, 12 В переменного тока все равно будет отображаться, а 12 В постоянного тока — нет.

Безопасность
12 В постоянного тока безопаснее, чем 12 В переменного тока. Сопротивление тела уменьшилось, когда 12 В переменного тока все еще может привести к смерти, 12 В постоянного тока не будет в 100%. Однако степень опасности поражения электрическим током для человеческого тела в основном зависит от силы тока, проходящего через человеческое тело, и продолжительности времени подачи энергии.

Пиковое значение
В соответствии со схемой напряжения мгновенное пиковое напряжение постоянного и переменного тока 12 В переменного тока не одно и то же, мгновенное пиковое напряжение (прямое напряжение 12 В) ≡ 12 В, мгновенное пиковое напряжение:

О схеме выпрямителя и инвертора

Выпрямитель: Преобразование переменного тока в постоянный называется выпрямителем.Принципиальная схема однофазного мостового выпрямителя представлена ​​ниже. VT1 и VT4 — это набор переключателей. VT2 и VT3 — еще один набор переключателей. Два набора переключателей включаются поочередно для получения постоянного тока.

Цепь инвертора: Преобразование постоянного тока в переменный называется схемой инвертора. Принципиальная схема однофазного мостового инвертора показана ниже. S1 и S2 — один набор цепей; S3 и S4 — еще один набор схем. В простых случаях для резистивной нагрузки поочередно включаются два набора переключателей, чтобы получить переменный ток на обоих концах нагрузки.

Примечания: Чтобы получить хорошие формы сигналов для схем выпрямителя и инвертора, в реальных условиях следует использовать фильтры.

Seeed Fusion является пионером в области мгновенных онлайн-предложений по производству и сборке печатных плат. Если вы обнаружите необходимость превратить свои схемы в настоящие профессионально сделанные печатные платы, Seeed Fusion предложит вам быстрые и доступные прототипы или высокоуровневые разработки для массового производства. Получите мгновенное предложение онлайн.

Следите за нами и ставьте лайки:

Продолжить чтение

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *