Правильно выбрать конденсатор для микросхемы определенного назначения помогает маркировка, нанесенная на корпус. Но у конденсаторов она сложная и разнообразная, поэтому определить характеристики этих элементов затруднительно, особенно если они имеют незначительную площадь поверхности. Параметры, указываемые в обозначении: код производителя, номинальное напряжение, емкость, допустимое отклонение от номинала, температурный коэффициент емкости (ТКЕ). Физические величины, используемые в маркировке емкости керамических конденсаторовДля определения величины емкости в международной системе единиц (СИ) используется Фарад (Ф, F). Для стандартной электрической схемы это слишком большая величина, поэтому в маркировке бытовых конденсаторов используются более мелкие единицы. Таблица единиц емкости, применяемых для бытовых керамических конденсаторов
Редко применяется внемаркировочная единица миллифарад – 1 мФ (10-3Ф). Численные и численно-буквенные коды в маркировках конденсаторовОбозначение наносится на корпус элемента. Первым обычно указывается номинальное напряжение в вольтах, за числами могут следовать буквы: В, V, VDC или VDCW. На корпуса небольшой площади значение номинального напряжения наносят в закодированном виде. Если указание на допустимую величину напряжения в цепи отсутствует, это означает, что конденсатор можно использовать только в низковольтных схемах. На корпусе должны быть знаки «+» и «-», указывающие на полярность подсоединения элемента в цепи. Несоблюдение указанной полярности может привести к полному выходу детали из строя. Таблица для расшифровки буквенных кодов величины номинального напряжения керамических конденсаторов
Вторая позиция – знак фирмы-производителя или температурный коэффициент емкости (ТКЕ), который может отсутствовать. ТКЕ обычно обозначается буквенным кодом. Таблица буквенных кодов ТКЕ для маркировки керамических конденсаторов с ненормируемым ТКЕ
Третья позиция – номинальная емкость, которая может указываться несколькими способами. Способы маркировки емкости конденсатораНа деталях советского производства, чаще всего имеющих довольно большую площадь поверхности, наносились числовые значения емкости, ее единица измерения и номинальное напряжение в вольтах. Например, 23 пФ, то есть 23 пикофарада. Расшифровка маркировки обозначений современных керамических конденсаторов отечественного и зарубежного производства – мероприятие более сложное. Возможны следующие варианты. Три цифрыЕсли в маркировке присутствуют три цифры, то первые две обозначают величину емкости, последняя – множитель нуля. Если последняя цифра находится в диапазоне 0-6, то к числу, состоящему из первых двух цифр, добавляют нули в указанном количестве. Если последняя цифра – 8, то число из первых двух цифр умножают на 0,01, если 9, то – на 0,1. После определения числового значения емкости необходимо установить единицу измерения. Емкость мелких деталей обычно измеряется в пикофарадах. После числового значения может стоять буква, указывающая на единицу измерения: p – пикофарад, µ – микрофарад, n – нанофарад.
Пример 353p = 35 х 10 Четырьмя цифрамиЭтот вариант похож на описанный выше. Только значащая часть содержит три цифры, а четвертая – это показатель степени для 10. Единица измерения – обычно пикофарады. Буквенно-цифровая маркировкаПри таком способе обозначения емкости буква указывает на место, где должна находиться запятая. Буква R применяется для маркировки емкости в микрофарадах. Если перед буквой R стоит 0, то единица измерения – пикофарад. Например, 0R4 = 4 пФ, R47 = 0,45 мкФ. Функции десятичной точки может выполнять буква, указывающая на единицу измерения. Например, емкость, равная 0,43 мкФ, на конденсаторах импортного производства обозначается как m43 или µ43. В русском варианте в качестве десятичной точки применяют буквы «п» – пикофарады, «н» – нанофарады, «м» – микрофарады. В некоторых случаях на корпус конденсаторов наносятся допуски для номинального значения емкости. На деталях большой площади они указаны числами, обозначающими процент допуска. На маленькие конденсаторы допуски обычно нанесены в закодированном виде. Таблица буквенного кодирования допусков
Маркировка SMD конденсаторовГабариты деталей, предназначенных для поверхностного монтажа, очень скромные, поэтому обозначение содержит минимум информации, нанесенной максимально лаконично. Значение напряжения наносится буквенным кодом в соответствии с таблицей, представленной выше. Другие элементы маркировки:
Например, КT3 – конденсатор от известного производителя Kemet номинальной емкостью 5,1х103 пФ = 5,1 нФ. Таблица кодирования мантиссы
Цветовая маркировка керамических конденсаторовЦветовая маркировка часто используется для конденсаторов с малой площадью поверхности. Цветные полосы наносятся сверху вниз или слева направо. Номинальная емкость обычно указывается 3-5 цветными полосками, две первые из них обозначают определенную цифру. Черный – 0, коричневый – 1, красный – 2, оранжевый – 3, желтый – 4, зеленый – 5, голубой – 6, фиолетовый – 7, серый – 8, белый – 9. Число, которое составляется из цифр, закодированных в двух первых полосках, умножается на множитель, зашифрованный в третьей полоске. Оранжевая полоса означает 103, желтый – 104, зеленый – 105. В маркировке может присутствовать четвертая полоса, цвет которой соответствует допустимым отклонениям от номинальной емкости. Белый цвет означает, что допустимы отклонения 10 % в обе стороны, а черный – 20 % в обе стороны. Пятая полоска характеризует номинал напряжения. Красный – 250 В, желтый – 400 В. Была ли статья полезна?Да Нет Оцените статью Что вам не понравилось? Анатолий Мельник Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент. |
Стандартные значения конденсаторов
pF | pF | pF | nF | nF | nF | µF | µF | µF | µF | µF |
---|---|---|---|---|---|---|---|---|---|---|
1.0 | 10 | 100 | 1.0 | 10 | 100 | 1.0 | 10 | 100 | 1000 | 10000 |
1.1 | 11 | 110 | 1.1 | |||||||
1.2 | 12 | 120 | 1.2 | |||||||
1.3 | 13 | 130 | 13 | |||||||
1.5 | 15 | 150 | 1.5 | 15 | 150 | 1.5 | 15 | 150 | 1500 | |
1.6 | 16 | 160 | 1.6 | |||||||
1.8 | 18 | 180 | 1.8 | |||||||
2.0 | 20 | 200 | 2.0 | |||||||
2.2 | 22 | 220 | 2.2 | 22 | 220 | 2.2 | 22 | 220 | 2200 | |
2.4 | 24 | 240 | 2.4 | |||||||
2.7 | 27 | 270 | 2.7 | |||||||
3.0 | 30 | 300 | 3.0 | |||||||
3.3 | 33 | 330 | 3.3 | 33 | 330 | 3.3 | 33 | 330 | 3300 | |
3.6 | 36 | 360 | 3.6 | |||||||
3.9 | 39 | 390 | 3.9 | |||||||
4.3 | 43 | 430 | 43 | |||||||
4.7 | 47 | 470 | 4.7 | 47 | 470 | 4.7 | 47 | 470 | 4700 | |
5.1 | 51 | 510 | 5.1 | |||||||
5.6 | 56 | 560 | 5.6 | |||||||
6.2 | 62 | 620 | 6.2 | |||||||
6.8 | 68 | 680 | 6.8 | 68 | 680 | 6.8 | 68 | 680 | 6800 | |
7.5 | 75 | 750 | 7.5 | |||||||
8.2 | 82 | 820 | 8.2 | |||||||
9.1 | 91 | 910 | 9.1 |
Рабочее Напряжения Конденсаторов (DC)
Керамический | Электролит-й | Тантал | Майларовый(полиэстер) | Майларовый(металлическая пленка) |
---|---|---|---|---|
10V | 10V | |||
16V | 16V | 16V | ||
20V | ||||
25V | 25V | 25V | ||
35V | 35V | |||
50V | 50V | 50V | 50V | |
63V | ||||
100V | 100V | 100V | ||
160V | ||||
200V | ||||
250V | 250V | |||
350V | ||||
400V | 400V | |||
450V | ||||
600V | ||||
630V | ||||
1000V |
Класс ОВОС 2 Маркировочный код
(EIA Class 2 Marking code)
Минимум температура | Максимум температура | ЕмкостьЗаменить разрешается | |||||
---|---|---|---|---|---|---|---|
X | -55 ∞C | 4 | +65 ∞C | A | ±1.0% | ||
Y | -30 ∞C | 5 | +85 ∞C | B | ±1.5% | ||
Z | -10 ∞C | 6 | +105 ∞C | C | ±2.2% | ||
7 | +125 ∞C | D | ±3.3% | ||||
8 | +150 ∞C | E | ±4.7% | ||||
9 | +200 ∞C | F | ±7.5% | ||||
P | ±10% | ||||||
R | ±15% | ||||||
S | ±22% | ||||||
T | +22%/-33% | ||||||
U | +22%/-56% | ||||||
V | +22%/-82% |
<<< Справочник
Предыдущая запись
Таблица резисторов стандартных значений
Следующая запись
Маркировка конденсаторов (Коды)
Вам также могут понравиться
емкость, номинал, обозначение SDM конденсаторов
Схемотехника является современной и довольно сложной наукой с высоким порогом вхождения по уровню квалификации. Кто-то пытается освоить её самостоятельно, но, как правило, дело не заходит далее сборки простых электронных схем и ремонта бытовой техники. Для успешной самостоятельной сборки плат претенденты на звание радиолюбителя должны обладать базовыми знаниями в области физики, а также уметь правильно определять номинал того или иного электронного компонента.
Если площадь конденсатора или резистора позволяет, то на таких элементах практически всегда наносятся основные характеристики изделия, в противном случае у начинающего проектировщика и сборщика устройств могут возникнуть непреодолимые трудности. В этой статье будет рассказано о том, как узнать емкость конденсатора SMD, а также о способах определения других параметров такого вида изделий.
Что собой представляют SMD конденсаторыЧто такое SMD конденсаторы и для чего они нужны
Многие электронные компоненты имеют значительный размер и крепятся на плате с помощью проволочных ответвлений или широких ножек, как у микросхем. Для надежной фиксации контактные элементы таких деталей устанавливаются в специально сделанные отверстия, в которых они обволакиваются расплавленным припоем для обеспечения качественного электрического контакта.
Стандартный монтаж радиодеталейЕсли рассеиваемая мощность резисторов или номинал конденсаторов слишком мал, то нет необходимости делать такое изделие слишком объемным. Установка элементов этого типа методом сверления платы вынудило бы разработчиков электронных схем выделять неоправданно большую площадь печатной схемы для их установки. Логичным решением этой проблемы является использование SMD компонентов.
SMD технология (Surface Mounted Device) — метод установки электронных деталей без сверления платы. Такой компонент просто припаивается с одной стороны поверхности, тем самым позволяя экономить значительную площадь, не снижая ее прочность наличием большого количества микроотверстий.
Обратите внимание! Методом поверхностного монтажа могут быть установлены не только конденсаторы, но и резисторы, транзисторы и микросхемы.
Применение SMD компонентов позволяет максимально оптимизировать расположение деталей на плате. Благодаря использованию этой технологии схемы сложных устройств можно изготовить относительно малых размеров, что особенно актуально при проектировании мобильных изделий.
Виды SMD конденсаторов
Разбираться в видах конденсаторов, монтирующихся методом поверхностного закрепления, необходимо каждому радиолюбителю. Такие изделия могут отличаться не только по емкости, но и по напряжению, поэтому игнорирование условий использования деталей может привести к тому, что они выйдут из строя.
Электролитические компоненты
Электролитические SMD конденсаторы не отличаются принципиально от стандартных изделий. Такие электронные компоненты наиболее часто представляют собой бочонки, в которых под алюминиевым корпусом располагается скрученный в цилиндр тонкий металл, а между ним твердый или жидкий электролит.
Электролитические SMD конденсаторыОсновное отличие такой детали от стандартного электролитического элемента заключается в том, что его контакты закреплены на плоской диэлектрической подложке. Такие изделия очень надежны в эксплуатации, особенно удобны в том случае, когда необходимо установить новое изделие при минимальных временных затратах. Кроме этого, во время пайки изделие не перегревается, что очень важно для электролитических конденсаторов.
Керамические компоненты
В керамических элементах в качестве диэлектрика применяется фарфор либо аналогичные неорганические материалы. Основное достоинство таких изделий заключается в устойчивости к высоким температурам и возможности производства изделий крайне малых размеров.
Важно! SMD конденсаторы керамического типа также устанавливаются методом пайки на печатную плату.
Визуально такой элемент, как правило, напоминает небольшой кирпичик, к которому с торцов припаиваются контактные площадки.
Керамические SMD конденсаторыВ отличие от радиодеталей стандартных размеров SMD элементы небольшого размера вначале приклеивают к плате, а уже потом припаивают выводы. На производстве керамические изделия этого типа устанавливаются специальными автоматами.
Маркировка танталовых SMD конденсаторов
Танталовые SMD конденсаторы устойчивы к повышенным механическим нагрузкам. Такие изделия также могут быть изготовлены в виде небольшого параллелепипеда, к которому с боковых сторон припаиваются контактные выводы. Тантал представляет собой очень прочный металл, обладающий высокими показателями пластичности. Фольга из этого материала может иметь толщину в сотые доли миллиметра.
К сведению! Благодаря наличию определенных физических свойств на основе тантала удается изготовить радиодетали высочайшей точности.
Танталовые конденсаторыТанталовые конденсаторы, как правило, имеют небольшие размеры корпуса, поэтому нанести полную маркировку на изделия, выполненные в корпусе типоразмера «А», не всегда представляется возможным. Зная особенности обозначения радиодеталей этого типа, можно легко определить номинал изделия. Максимально допустимое напряжение в вольтах для танталовых изделий обозначается латинскими буквами:
- G — 4;
- J — 6,3;
- A — 10;
- C — 16;
- D — 20;
- E — 25;
- V — 35;
- T — 50.
Обратите внимание! Емкость изделий указывается в микрофарадах после буквы «μ», а положительный контакт — жирной линией.
Обозначение SMD конденсаторов
Чтобы установить номинал SMD конденсатора, потребуется тщательно изучить его маркировку. На больших по размеру элементах, как правило, наносится основная информация не только о его номинале, но и указывается логотип производителя.
При выяснении параметров маленьких кирпичиков придется потратить определенное количество времени, ведь даже при наличии на их корпусе необходимых сведений увидеть символы на их поверхности невооруженным глазом вряд ли получится.
Важно! В зависимости от типа конденсатора обозначения его параметров также могут существенно отличаться, что необходимо учитывать в работе.
Маркировка керамических SMD конденсаторов
Небольшие керамические конденсаторы SMD маркируются буквенно-цифровым кодом, состоящим из 3 символов. Первый указывает на минимальное значение рабочей температуры, например:
- Z — от 10 °С;
- Y — от −30 °С;
- X — от 55 °С.
Второй символ указывает на верхний предел нагрева радиодетали:
- 2 — до 45 °С;
- 4 — до 65 °С;
- 5 — до 85 °С;
- 6 — до 105 °С;
- 7 — до 125 °С;
- 8 — до 150 °С;
- 9 — до 200 °С.
Третий символ указывает на точность электронного компонента:
- A — до ± 1,0 %;
- B — до ± 1,5 %;
- C — до ± 2,2 %;
- D — до ± 3,3 %;
- E — до ± 4,7 %;
- F — до ± 7,5 %;
- P — до ± 10 %;
- R — до ± 15 %;
- S — до ± 22 %;
- T — до ± 33 %;
- U — до ± 56 %;
- V — до ± 82 %.
Ёмкость небольших керамических SMD конденсаторов указывается в пикофарадах. Чтобы сэкономить площадь небольшого радиоэлемента, основное число мантисса закодировано в букве латинского алфавита. В таблице, указанной ниже, приведен полный список подобных обозначений.
Таблица с закодированными символамиПосле цифры указывается множитель, например, обозначение на керамическом конденсаторе Х3 означает, что конденсатор имеет емкость 7,5 * 10 ^ 3 Pf.
Обратите внимание! Перед кодом, обозначающим емкость керамического SMD конденсатора, может стоять латинская буква, которая указывает на бренд производителя электронного компонента.
Если площадь керамического конденсатора этого типа достаточно велика, то на ней может быть отображен тип диэлектрика. С этой целью применяются:
- NP0. Диэлектрическая проницаемость такого элемента находится на крайне низком уровне. Основное достоинство компонентов этого типа заключается в хорошей устойчивости к резким температурным перепадам. Недостаток элементов, в которых используется диэлектрик этого типа — высокая цена;
- X7R. Среднего качества диэлектрик. Изделия, в которых используется изолятор этого типа, не обладают отличными характеристиками по устойчивости к пробою, но в среднем температурном диапазоне они способны проработать значительно дольше многих, более дорогих элементов;
- Z5U. Диэлектрик с высокими значениями электрической проницаемости, но обратной стороной этого показателя является слишком большая емкостная погрешность;
- Y5V. Изолирующий материал обладает примерно такими же характеристиками, как и Z5U. По стоимости этот диэлектрик является самым дешевым, поэтому электрические компоненты, изготовленные на его основе, реализуется по самым низким ценам.
Учитывая все выше изложенное, можно быть уверенным в том, что если SMD конденсатор не подгорел или не изменил цвет поверхности по другим причинам, то всегда можно определить его номинал по нанесенной на его корпусе маркировке.
Маркировка электролитических SMD конденсаторов
Электролитические конденсаторы этого типа, как правило, имеют относительно большие размеры, поэтому многие параметры таких элементов указываются без шифрования. То есть максимальное значение напряжения будет указано цифрой и буквой «V», а емкость — mF.
Маркировка электролитических SMD конденсаторовВ некоторых случаях номинал SMD конденсатора электролитического типа также может быть закодирован. Как правило, для этой цели используется 4 символа (одна буква и 3 цифры). Первый символ — это напряжение в вольтах:
- e 2,5;
- G 4;
- J 6,3;
- A 10;
- C 16;
- D 20;
- E 25;
- V 35;
- H 50.
Обратите внимание! В трех следующих цифрах закодирована информация о емкости конденсатора (2 цифры + множитель).
Таким образом даже на очень небольших по размеру электролитических SMD конденсаторах может быть нанесена маркировка с информацией об основных параметрах изделия.
Как определить емкость, номинал и напряжение SMD конденсаторов
Выше была изложена подробная информация о том, как правильно определять номинал SMD конденсаторов по маркировке. Основная сложность при выполнении такой операции заключается в том, что символы могут быть настолько малы, что их невозможно идентифицировать невооруженным глазом. В такой ситуации рекомендуется использовать лупу либо любой другой увеличительный прибор с подходящей кратностью, а также установить качественное освещение в месте проведения подобных исследований.
Лупа для радиолюбителяОбратите внимание! Иногда на поверхности радиоэлемента не читаются либо полностью отсутствуют обозначения, поэтому каждому радиолюбителю следует знать, как определить емкость электролитического конденсатора без маркировки. Для выполнения такой работы не обойтись без специального измерительного прибора.
Как определить емкость SMD конденсатора без маркировки с помощью прибораДля получения корректных показателей перед началом измерения емкости конденсатора радиоэлемент необходимо полностью разрядить.
Предельное напряжение измеряется на конденсаторе, который устанавливается в электронную схему, где данный элемент может быть безопасно подключен к электрическому напряжению. После отключения источника тока проводят измерение напряжения на контактах радиодетали. Полученное значение в вольтах следует умножить на 1,5 для получения точного значения этого параметра.
Напряжение можно измерить дешевым мультиметромКонденсаторы SMD являются очень удобными при самостоятельной сборке различных схем, а при автоматическом монтаже благодаря им удается добиться максимальной компактности расположения радиодеталей. Зная принципы расшифровки обозначения таких элементов, можно без каких-либо затруднений проектировать и собирать даже сложные устройства в домашних условиях.
Маркировка SMD конденсаторов (керамических — Avislab
Маркировка Керамических SMD конденсаторов
Керамические конденсаторы SMD ввиду их малых габаритов иногда маркируются кодом, состоящим из одного или двух символов и цифры. Первый символ, если он есть — код зготовителя (напр. K для Kemet, и т.д.), второй символ — мантисса и цифра показатель степени (множитель) емкости в pF. Например S3 — 4. 7nF (4.7 x 10^3 Pf) конденсатор от неизвестного изготовителя, в то время как KA2 100 pF (1.0 x 10^2 PF) конденсатор от фирмы Kemet.Letter | Mantissa | Letter | Mantissa | Letter | Mantissa | Letter | Mantissa |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
Конденсаторы изготавливаются с различными типами диэлектриков: NP0, X7R, Z5U и Y5V …. Диэлектрик NP0(COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильностью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовленные с применением этого диэлектрика наиболее дорогостоящие. Диэлектрик X7R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность. Диэлектрики Z5U и Y5V имеют очень высокую диэлектрическую проницаемость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющих значительный разброс параметров. SMD конденсаторы с диэлектриками X7R и Z5U используются в цепях общего назначения.
| В общем случае керамические конденсаторы на основе диэлектрика с высокой проницаемостью обозначаются согласно EIA тремя символами, первые два из которых указывают на нижнюю и верхнюю границы рабочего диапазона температур, а третий — допустимое изменение емкости в этом диапазоне. Расшифровка символов кода приведена в таблице. Примеры: Z5U — конденсатор с точностью +22, -56% в диапазоне температур от +10 до +85°C.X7R — конденсатор с точностью ±15% в диапазоне температур от -55 до +125°C. |
Маркировка Электролитических SMD конденсаторов
Электролитические конденсаторы SMD часто маркируются их емкостью и рабочим напряжением, например 10 6V — 10 µ F 6V. Иногда этот код используется вместо обычного, который состоит из символа и 3 цифр. Символ указывает рабочее напряжение, а 3 цифры (2 цифры и множитель) дают емкость в pF.Срез или полоса указывает положительный вывод.
Символ | Напряжение |
e | 2.5 |
G | 4 |
J | 6.3 |
A | 10 |
C | 16 |
D | 20 |
E | 25 |
V | 35 |
H | 50 |
475 = 47 x 10^5pF = 4.7 x 10^6pF = 4. 7mF
Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами как PANASONIC, HITACHI и др. Различают три основных способа кодирования.
A. Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
В. Код содержит четыре знака (буквы и цифры), обозначающие номинальную емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — емкость в пикофарадах (пф), а последняя цифра — количество нулей.
Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пФ, третья — количество нулей; б) емкость указывают в микрофарадах, знак р выполняет функцию десятичной запятой.
Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
С. Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или 8 пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
О маркировке алюминиевых электролитических SMD конденсаторов для поверхностного монтажа в корпусах типа «боченок» читайте в отдельной статье: «Маркировка алюминиевых электролитических SMD конденсаторов для поверхностного монтажа»
Маркировка Танталовых SMD конденсаторов
Маркировка танталовых конденсаторов размеров A и B состоит из буквенного кода номинального напряжения в соответствии со следующей таблицей:Буква | G | J | A | C | D | E | V | T |
Напряжение, В | 4 | 6.3 | 10 | 16 | 20 | 25 | 35 | 50 |
Емкость и рабочее напряжение танталовых SMD-конденсаторов размеров C, D, E обозначаются их прямой записью, например 47 6V — 47uF 6V.
см. также:
Характеристики конденсаторов ⋆ diodov.net
Ранее мы уже рассмотрели принцип работы и маркировку многих типов конденсаторов. Однако настоящий электронщик должен знать следующие характеристики конденсаторов: допустимое напряжение, классы точности, температурный коэффициент емкости и тангенс угла потерь. Понимание указанных характеристик позволяет сделать выбор и применить лучший из имеющихся накопителей, что благоприятно скажется в целом на работе электронного устройства.
Основные характеристики конденсаторов
Допустимое напряжение является очень важным параметром любого конденсатора и его нельзя превышать, иначе произойдет пробой диэлектрика и накопитель придет в непригодность. На корпусе указывается всегда величина максимального допустимого напряжения. Поэтому начинающих радиолюбителей такое обозначение вводит в заблуждения, поскольку в розетке напряжение 230 В, то казалось бы, что напряжения накопителя 300 В вполне достаточно. Однако это не так. Так как 230 В – это действующее напряжение, а диэлектрик может пробиться от мгновенного амплитудного значения, которое в 1,41 раза больше действующего и равно 230×1,41 = 324 В плюс допуск отклонения 10 % от номинального значения в сторону увеличения, нормированный ГОСТом, и того получим 324×0,1+324 = 356 В. Поэтому допустимое напряжение должно быть не ниже 360 В.
Стандартные значения емкости конденсаторов
Если взять любой радиоэлектронный прибор, например, резистор, диод, транзистор, стабилитрон и снять его характеристики либо измерить параметры высокоточным измерительным прибором, то они будут иметь некоторые отклонения от заявленных номинальных значений. Такое отклонение от указанных параметров вызвано технологическим процессом и нормируется производителем. Дело в том, что на изготовление любого устройства или его отдельного компонента влияет много факторов, которые невозможно учесть и скомпенсировать. Даже лист бумаги, формата А4, имеет некоторые отклонения от заданных размеров, но тем не менее это никак не сказывается на их применении.
Аналогично обстоят дела и с емкостью. Если измерить ее в нескольких накопителей одинакового номинала, то можно заметить небольшую разницу. Эта разница строго нормирована и называется допустимым отклонением емкости от номинального значения. Она измеряется в процентах, значения которых соответствуют классам точности.
В зависимости от класса точности и допустимого отклонения производятся стандартные значения емкости, то есть стандартные номиналы конденсаторов. Емкость в приведенной ниже таблице исчисляется пикофарадоми. Любое значение из таблицы может быть умножено на 0,1 или 1 или 10 и т.д.
Температурный коэффициент емкости
Протекание электрического тока через любой радиоэлектронный элемент вызывает его нагрев, ввиду неизбежного наличия сопротивления. Чем больше ток и выше сопротивление, тем интенсивнее нагревается прибор. Такое явление в большинстве случаев является вредным и может привести к изменению параметров схемы, а соответственно и нарушить режим работы всего устройства. Поэтому нагрев радиоэлектронных элементов всегда учитывается при проектировании изделия. Характеристики конденсаторов также склонны изменятся с изменением температуры и с этим обязательно нужно считаться. Для этого введен температурный коэффициент емкости, сокращенно ТКЕ.
ТКЕ показывает, насколько отклоняется емкость конденсатора от номинального значения с ростом температуры. Номинальное значение емкости накопителя приводится для температуры окружающей среды +20 С.
Рост температуры может вызвать как рост емкости, так и ее уменьшение. В зависимости от этого различают конденсаторы с положительным и отрицательным температурным коэффициентом емкости.
Следует знать, чем меньше значение ТКЕ, тем более стабильными характеристиками обладает конденсатор. Особое внимание уделяют ТКЕ разработчик измерительного оборудования высокого класса точности, где критичны значительные отклонения характеристик любого радиоэлектронного элемента.
Тангенс угла потерь
Потери, неизбежно возникающие при работе конденсатора, главным образом определяются свойствами диэлектрика, расположенного между обкладками накопителя, и характеризуются тангенсом угла потерь tg δ. Производители стремятся снизить значение угла tg δ и за счет этого улучшить характеристики конденсаторов. Поэтому наибольшее применение получила специальная керамика, обладающая минимальным тангенсом угла потерь. Обратной величиной тангенса угла потерь конденсатора является добротность, равная QC=1/tgδ. Конденсаторы высокого качества обладают добротностью свыше тысячи единиц.