Лампа накаливания это: Что такое лампа накаливания и в чём её отличие от энергосберегающей лампы? | Вечные вопросы | Вопрос-Ответ

Содержание

Что такое лампа накаливания и в чём её отличие от энергосберегающей лампы? | Вечные вопросы | Вопрос-Ответ

Запрет на продажу ламп накаливания мощностью от 75 Вт и более может быть снят. С такой инициативой выступает представитель фракции «Справедливая Россия» Андрей Крутов. Депутат считает, что прежде чем переходить на энергосберегающие технологии, следует провести ревизию состояния электросетей. Люминесцентные лампы, по словам Крутова, не позволяют сэкономить. Ведь большинство энергопотерь в России происходит не от ламп накаливания, а из-за общей изношенности инфраструктуры.

Продажа ламп накаливания была запрещена в 2009 году по инициативе Дмитрия Медведева, который на тот момент занимал пост президента РФ. Согласно приятому законопроекту, с 2011 года в России был введён полный запрет оборота источников света мощностью 100 Вт и более. Также планировалось с 2013 года ввести аналогичный запрет для ламп накаливания мощностью 75 Вт и более, а с 2014 года предполагалось полностью от них отказаться и перейти на энергосберегающие лампы.

Что такое лампа накаливания?

Лампа накаливания — источник света, который излучает световой поток в результате накала нити из металла (вольфрама).

Нить накала помещена в стеклянный сосуд, наполненный инертным газом (криптоном, азотом, аргоном). Принцип действия лампы накаливания основан на явлении нагрева проводника при прохождении через него электрического тока. Вольфрамовая нить накала при подключении к источнику тока раскаляется до высокой температуры, в результате чего излучает свет. Световой поток, излучаемый нитью накала, близок к естественному, дневному свету, поэтому не вызывает дискомфорта при длительном использовании.

Преимущества ламп накаливания:

  • относительно невысокая стоимость;
  • мгновенное зажигание при включении;
  • небольшие габаритные размеры;
  • широкий диапазон мощностей.

Недостатки ламп накаливания:

  • большая яркость самой лампы, что негативно воздействует на зрение при взгляде на лампу.

В чем отличие энергосберегающей лампы от лампочки накаливания?

Лампа накаливания Энергосберегающая лампа

Источник света, в котором преобразование электрической энергии в световую происходит в результате накаливания. До светящегося состояния в них нагревается металлический проводник (спираль из сплавов на основе вольфрама).

Электрическая лампа — это колба, которая наполнена парами ртути и аргона. На внутренние стенки лампы нанесён особый порошок (люминофор). При включении энергосберегающей лампочки пары ртути, находящиеся в лампе, создают ультрафиолетовое излучение, а оно, проходя через люминофор, находящийся на поверхностности лампы, преобразуется в свет.

Цена и срок службы

Низкая цена. Быстро перегорают, срок службы лампы накаливания — до 1000 часов. Причина выхода из строя лампы накаливания — перегорание нити накала.

Цена выше в 10–20 раз, чем у лампы накаливания, но она компенсируется долговечностью лампы — от 6 до 15 тысяч часов непрерывного горения.

Световая отдача

Низкий КПД (порядка 15 %). Остальные затраты энергии идут на нагрев. Температура разогретой нити достигает 2600–3000 ºС. Свет идёт только от вольфрамовой спирали.

Высокая световая отдача. Мощность соответствует пятикратной мощности лампы накаливания, то есть 12 Wt энергосберегающей соответствует 60 Wt обычной. Свет распределяется мягче и равномернее. Есть широкий выбор цвета свечения. Цвет зависит от количества нанесённого люминофора. Обычно на упаковке указывают следующие данные: 2700 К — тёплый белый свет, 4200 К — дневной свет, 6400 К — холодный белый свет.

Какую опасность представляют энергосберегающие лампы?

Энергосберегающие лампы содержат в своём составе в небольшом количестве ртуть, отравление малыми дозами паров которой может вызвать неврологические заболевания (меркуриализм, «ртутный тремор»). Выбрасывать люминесцентную просто в мусорный бак нельзя, о чём и предупреждает потребителя соответствующий значок на упаковке. Принимать такие лампы должны районные ДЭЗ и РЭУ. Однако на практике это работает далеко не везде.

  • Ультрафиолетовое излучение

При работе люминесцентных ламп небольшое количество ультрафиолетового излучения выходит наружу лампы через стеклянную колбу, что может быть потенциальной угрозой для людей с кожей, слишком чувствительной к этому излучению. Наиболее опасным является воздействие УФ-излучения на роговицу и сетчатку глаза. Поэтому энергосберегающие лампы не рекомендуется располагать ближе 3 метров от глаз.

  • Необычный цвет

Свет люминесцентной лампы отличается от света от лампы накаливания, и многие люди не могут к нему привыкнуть.

Почему хотят вернуть лампы накаливания?

По словам члена комитета Госдумы по энергетике Андрея Крутова, принятый депутатами закон о запрете ламп накаливания не встретил одобрения среди населения. «Мы получали множество обращений от граждан, для них стоимость новых энергоэффективных лампочек непомерно высока — ведь они зачастую в десять, а то и более раз дороже привычных ламп накаливания, при этом за прошедшие годы мы не заметили обещанной экономии на электропотреблении», — заявил Крутов.

По его словам, это неудивительно: эффект от энергосберегающих ламп полностью нивелируется устаревшим и энергонеэффективным промышленным оборудованием, линиями электропередач, в которых и происходит львиная доля потерь электроэнергии. «Получается, что за счёт населения мы пытались повысить энергоэффективность устаревшей инфраструктуры, которую в итоге никто менять не собирался», — утверждает парламентарий.

Кроме этого, за последние годы так и не были созданы пункты по сбору энергосберегающих ламп. Содержащие опасную для здоровья ртуть лампы просто выбрасываются с обычным мусором, что в результате наносит вред экологической обстановке.

Почему был введён запрет на продажу ламп накаливания?

В 2009 году Дмитрий Медведев предложил экономить энергозапасы и с этой целью озвучил предложение о запрете на продажу ламп накаливания и их замене на энергосберегающие лампы.

«Мы — действительно самая крупная энергетическая страна. Но это не значит, что мы должны жечь наши энергозапасы без всякого ума. Ещё много лет назад было сказано, что делать с отдельными энергетическими продуктами и почему нельзя топить нефтью. Но мы, к сожалению, продолжаем топить нефтью, в прямом и переносном смысле этого слова обогревая нашу планету», — такое заявление сделал в 2009 году Дмитрий Медведев на заседании президиума Государственного совета по вопросу повышения энергоэффективности российской экономики.

Лампы накаливания — история создания

Сегодня сложно встретить человека, который бы ничего не знал о лампах накаливания, даже несмотря на прогресс и на изобилие других видов осветительных приборов. «Лампы Ильича» — так в народе прозвали самые обыкновенные и популярные осветительные приборы, которые по сей день пользуются большим спросом у народа. Безусловно, современный рынок светотехники предлагает огромный ассортимент альтернативных ламп, но даже новые устройства не могут в некоторых параметрах превзойти лампы накаливания. 


История

Процесс возникновения и распространения лампочек накаливания был довольно долгим и запутанным, а вклад в изобретение вложил не один ученый-изобретатель. Принятая с течением времени история появления повествует о том, что возникновение «лампочек Ильича» произошло в 1872 году благодаря русскому ученому Александру Николаевичу Лодыгину. Именно он впервые провел ток сквозь стержень из угля, который размещался в вакууме колбы, сделанной из стекла. При этом происходила большая светоотдача из-за возрастания силы тока, превышение температур плавления с последующим угасанием лампочки. На основе данного опыта были определены подходящие для функционирования лампочек режимы, а 1873 году они впервые использовались на санкт-петербургских улицах.

Именно в этот же период времени к разработке лампочек приступил Томас Эдисон, который в дальнейшем получил на них патент. Именно после этого его стали называть «отцом» самых первых электрических ламп. Но нельзя точно утверждать, кто совершил данное открытие первым, поскольку прибор был изобретен одновременно в разных странах. Зато Александру Николаевичу Лодыгину с большой вероятностью принадлежит идея замены угольной нити на вольфрамовую, которая обладает высокой температурой плавления (3410 ⁰С). В этот же период времени Томас Эдисон внес свой вклад, создав резьбовую систему «патрон-цоколь», которая дожила до наших дней практические никак не изменившись. Именно буква E в маркировке современных цоколей говорит о том, что их изобретателем был американский ученый Эдисон (Е — Edison Screw). Самыми популярными типами цоколя в России и Европе являются Е27 и Е14, а в Америке используются другие, поскольку напряжение сетей различается. Спустя 20 лет еще один американский ученый воплотил в жизнь идею замены нити спиралью, благодаря чему уменьшились габариты лампочки, улучшилась работа и увеличилась световая отдача.


Устройство 

Лампа накаливания только на первых порах для непрофессионального человека может показаться простой и незамысловатой, но это не так. Данный осветительный прибор – это совокупность различных научных достижений в области светотехники. На сегодняшний день спираль накаливания может быть не только вольфрамовой. Сейчас материалом изготовления также служит осмий, а также осмиевые соединения. Кроме того, колба сегодня перестает быть вакуумной и заполняется различными инертными газами. Именно данное нововведение помогло избежать сильное атмосферное давление на лампу, значительно увеличив продолжительность ее работы. Ведь ток, проходя через спираль, провоцирует ее сильный нагрев (до 2900 ⁰С) и активное испарение вольфрама, с его последующим оседанием на стекле. Следовательно, колба со временем перестает быть прозрачной, уменьшается ее светоотдача, понижается срок службы нити.

Лампы накаливания отличаются слишком ярким светом желтого цвета, что вызывает дискомфорт. Именно поэтому производители выпускают не только с прозрачные лампочки, но и матовые. Такое стекло рассеивает свет, делая его мягким при небольшой потере интенсивности.


Правильный выбор лампочек накаливания

Несмотря на большую популярность данной лампочки, правильный ее выбор пока еще могут сделать не все. Нередко бывает, что после покупки прибор отработал пару суток и перегорел. Но бывает и такое, что лампочка может светить в течение нескольких лет. Все это зависит от того, насколько правильно вы выбираете осветительный прибор. При покупке необходимо обращать внимание на следующие аспекты: 

  • стекло не должно иметь никаких микровключений, поскольку именно их отсутствие обеспечивает надежность колбы. Качество материала легко проверяется несильными постукиваниями пальцем по колбе. Издаваемый звук должен отличаться приглушенностью;
  • металлический цоколь должен быть без любых повреждений. Нижний контакт может быть как широким (до 7 мм), так и узким (около 5 мм). Первый вариант наиболее приемлемый, поскольку обеспечивается наиболее плотный контакт. Но современные лампочки чаще всего производятся с наличием узкого контакта;
  • в зонах приклеивания не должны образовываться отверстия;
  • соединение внешнего токопровода и цоколя должно осуществлять обыкновенной пайкой. Также возможно применение точеной сварки;
  • в пайке главное – маленькие размеры и аккуратность, а также надежность крепления;
  • исключено провисание спирали (наличие провисания означает неоднократное использование лампы).

Кроме вышеперечисленных аспектов, необходимо уделить большое внимание обжиму спирали в области ее крепления к электродам. Если обжим был недостаточным, то срок службы прибора резко снижается. 

Обязательно следуйте вышеперечисленным рекомендациям при выборе лампы накаливания. Это поможет приобрести качественный прибор, который прослужит Вам долгое время.

Торговая сеть «Планета Электрика» рада предложить лампы накаливания, а также их прямую замену — светодиодные лампы. Торговые залы представлены во всех крупных городах Сибирского Федерального округа, например в Новосибирске, Барнауле, Омске. Список не весь — полный на этой странице.

Какие бывают лампы

Лампы накаливания

Обычные лампочки, которые всем нам знакомы, и их главное преимущество – приятный цвет света, который они излучают. Цвета объектов, как правило, выглядят точнее под лампой этого типа. Лампочки накаливания тратят много электричества, так как производят и много тепла.

Лампы накаливания производят 8-12 люменов света на 1 Вт потребленной энергии. Чем мощнее лампа накаливания тем больше люменов света она производит на единицу потребленной мощности. Например, одна 100 Вт лампа дает практически ровно столько же света (1360 Люменов), сколько и две 60 Вт лампы (1420 люменов).

Неудобство этих ламп состоит в том, что эти лампочки неэффективны по современным стандартам и имеют относительно короткий срок службы (около 1000 часов). Лампы накаливания доступны в разнообразных формах и размерах и имеют целый ряд различных цоколей.

Матовая или прозрачная?

    Основной принцип выбора между матовыми и прозрачными лампами следующий:
  • Если у светильника прозрачные плафоны, используйте прозрачные лампочки
  • Если у светильника матовые плафоны, используйте матовые лампочки
  • В детской комнате используйте матовые лампочки. Малыши любят смотреть на светильник, а эти лампы дают более комфортный для детского глаза свет
  • В хрустальных светильниках , светильниках с большим количеством подвесок, кристаллов и других преломляющих свет деталей используйте прозрачные лампочки, так как яркая открытая спираль прозрачной лампы накаливания дает необходимую игру света

 

Рефлекторные лампы

Рефлекторные лампы накаливания имеют посеребренную поверхность — это их единственное отличие от обычных ламп накаливания. Отражающая поверхность направляет свет в определенном направлении. Такие лампы обычно предназначены для светильников направленного света – спотов. Самые распространенные типы этих ламп R50, R63, PAR38.

 

Галогенные лампочки

Галогенные лампочки — лампочки с нитью накаливания, содержащие галогенный газ. Дают, как и лампы накаливания, очень привлекательный свет, который напоминает солнечный. Но они несколько эффективнее, чем лампы накаливания, так как производят на 20% больше света на потребляемую мощность и работают дольше, около 2000 часов.

Главным преимуществом галогенной лампы является ее маленький размер. Появление этой лампы позволило дизайнерам создать новые дизайны светильников и плафонов. Галогенная лампа типа GU10, с встроенным отражателем является самой распространенной лампой для встраиваемых светильников. И используется во многих светильниках направленного света (споты).

Появление мощных линейных галогенных ламп типа R7S, мощностью 300Вт, позволило создать класс торшеров, которые дают мягкое, приятное отраженное от потолка освещение, и освещают всю комнату. Основные типы галогенных ламп: G9, G4, R7S, GU10. Каждый тип выпускается в нескольких мощностях.

 

Люминесцентные лампы

Они же — энергосберегающие лампочки. Cодержат газ в трубке и не имеют нити. Они повсюду используются уже в течение многих лет и лучше известны как длинные белые трубы, которые обычно встречаются на потолках общественных заведений.

Новейшие технологии уменьшили размер и улучшили эффективность лампочек. Появились Компактные люминесцентные лампы, которые сейчас и называются в широком обиходе Энергосберегающие. Сейчас доступны множество различных форм и вариантов мощности лампочек.

Термин «Энергосберегающие» нужно относить и к другим типам ламп с низким энергопотреблением, таким как светодиодным.

Преимущества компактных люминесцентных ламп – низкое энергопотребление за счет выделения малого количества тепла — потребляют 20% энергии обычной лампочки, при таком же излучаемом световом потоке. Долгий срок службы, до 8000 часов.

Компактные люминесцентные лампы производят 50-60 люменов на Вт, в пять раз больше света на единицу потребленной мощности, чем лампы накаливания. Они идеальны для использования там, где свет должен быть включен в течение долгого времени. У многих ведущих производителей ламп доступны «теплые белые» лампы, с улучшенным цветом света. Цвет, цветовое впечатление, которые создает при работе люминесцентная лампа характеризуется параметром Цветовая температура. Единица измерения Кельвин.

    Для люминесцентных ламп цветовая температура разделена на такие основные категории:
  • Ниже 3300 К – белый, теплый свет
  • 3300-5000 К нейтральный свет
  • Свыше 5000 К «холодный» свет

Информация о цветовой температуре люминесцентных ламп размещается на их упаковке .

 

К минусам этого типа ламп нужно отнести их высокую стоимость и не такой приятный, как у ламп накаливания, свет. Также, практически со всеми энергосберегающими люминесцентными лампами нельзя использовать диммер (реостат мощности). Лишь несколько ведущих мировых производителей ламп, в частности Philips, имеют в ассортименте несколько артикулов люминесцентных ламп, которые могут работать с диммерами.

 

За счет малого выделения тепла, энергосберегающие лампы можно использовать (если они подходят по размеру к плафону) для увеличения количества света от светильников. Например, люстра, рассчитанная на 5 x 40 Вт ламп накаливания = 200 Вт. Хотим от нее больше света. Более мощные лампы накаливания использовать не можем, так как имеем ограничение по мощности лампы в патроне. (От более мощной лампы патрон может оплавиться). Но если в этой люстре использовать пять энергосберегающих ламп, каждая мощностью 20 Вт, то за счет того, что 20Вт энергосберегающая лампа дает света как 100Вт лампа накаливания, такая люстра будет давать света как люстра с 5*100Вт накаливания.

 

На популярной волне движения к снижению энергопотребления, современные производители уделяют сейчас большое внимание разработке и производству серий светильников, предназначенных специально к работе с энергосберегающими лампами и продающихся в комплекте сразу с такими лампами.

 

Светодиодные лампочки

 

Светодиодные лампы изготавливаются на базе светодиода.
Светодиод, это полупроводник, который преобразовывает электрический ток в свет. Основой светодиода является полупроводниковый кристалл. При прохождении электрического тока через этот кристалл возникает световое излучение. Цвет излучения может быть различным– зависит от состава кристалла. В светодиодах для бытового освещения используется полупроводниковый кристалл из нитрида галлия, этот кристалл дает синий цвет. Для получения белого света на кристалл наносится люминофор. Люминофор — сложная химическая субстанция, которая возбуждается светом кристалла и дает собственное излучение желтого света. При этом люминофор поглощает только часть света от полупроводникового кристалла, а часть пропускает. В результате смешения синего света от нитрида галлия, прошедшего через люминофор, и желтого света от люминофора, получается белый свет.

 

Светодиодные источники света имеют огромные преимущества перед всеми другими лампами:

  • Экономичность. Светодиоды преобразуют в световое излучение до 80% полученной электроэнергии. Световая отдача лучших современных светодиодов достигла 160 люмен на ватт мощности. Это почти в два раза больше, чем у энергосберегающих люминесцентных ламп и почти в двадцать раз больше, чем у лампочек накаливания.
  • Долгий срок службы — 50 тысяч часов и более. Это обеспечит работу светодиодной лампы порядка 20 лет без замены, при ее использовании 8 часов в сутки.
  • Высокая механическая прочность – в отличие от всех ламп, изготавливающихся из стекла, светодиод устойчив к внешним воздействиям.
  • Количество включений/выключений не оказывает никакого влияния на срок службы светодиода.
  • Малоразмерность, компактность – в отличие от обычных ламп, которым конструктивно необходима колба – светодиод представляет собой просто небольшую пластину. Малоразмерность светодиода открывает возможности по созданию новых типов светильников. Возможно, что расширяющееся применение светодиодов в бытовом освещении может изменить сам подход ко всем формам и видам светильников. Сейчас же, большая часть светодиодов для бытового освещения помещается внутрь ламп с привычными формами и со стандартным цоколем.

Распространение светодиодных ламп сдерживается только, пока еще, высокой ценой. Но цены на светодиоды снижаются каждый год и в ближайшем будущем, как предсказывают многие, все освещение в быту будет создаваться с помощью светодиодов.

виды, характеристики, устройство лампы, строение, принцип работы

ЛН полюбились многим людям за счет легкости в использовании. Они имеют различные цветовые режимы, как холодные оттенки, так и теплые. В этой статье говорится о том, что такое лампа накаливания, где чаще применяется и из чего состоит.

Достоинства и недостатки

В настоящее время существует множество осветительных приборов. Большинство из них производятся в последние несколько лет с использованием высоких технологий, но классическая ЛН всё равно имеет множество плюсов или совокупность параметров, которые будут более подходящими при правильном использовании:

  • достаточно низкая цена;
  • устойчивость к различным температурам;
  • моментальное зажигание;
  • не мерцают;
  • имеют разные режима света.
Как выглядит классическая ЛН

Но, к сожалению, лампы накаливания имеют свои минусы:

  • основной недостаток — это достаточно пониженный КПД. У лампочек в 100 Вт КПД будет примерно 17 %, у изделий 60 Вт эта цифра будет всего лишь 5 %. Одним из методов увеличения КПД будет поднятие температуры накала, но в таком случае срок службы заметно снизится;
Спираль для лампы накаливания
  • малый срок службы;
  • повышенная температура поверхности сосуда, которая может быть у 100Вт лампочки до 250°С. Это повышает риск возникновения возгораний или взрыва ламп;
  • чувствительность к окружающей среде;
  • применение термостойкой арматуры.

Ниже подробно описаны виды и характеристики ламп накаливания.

Характеристики

Одним из основных параметров лампочек с телом накала будет мощность, указываемая в ваттах. Назначение ламп различное, поэтому диапазон выбора большой — от 0,1 Вт «светильник» до 23 тыс. Вт прожекторов для аэродромов.

В быту применяют слабомощные лампочки, обычно от 15 Вт до 200 Вт, а на производстве используют лампы мощностью до 2000 Вт.

Качество светового луча и уровень рассеивания регулируются материалом производства сосуда.

Автомобильная лампочка

Наибольшая светопередача присуща для изделий с прозрачным стеклом, потому что они не поглощают свет. Матовая поверхность лампы поглощает 5% световых лучей, а белая — 15%.

Размер лампочек накаливания может быть от 60 мм до 130 мм. Зависит от сферы применения.

Принцип работы

Во время прохождения электрическим током через спираль, она быстро раскаливается до высоких температур почти до 2500 градусов. Это происходит из-за того, что спираль обладает высоким сопротивлением току и на прохождение его уходит большое количество энергии.

Тепло нагревает металл (вольфрам), и начинается свечение лампы. Поскольку внутри лампы нет кислорода, то вольфрам не окисляется.

Таблица температуры цвета

КПД лампы накаливания 100 Вт старого образца, где роль тела накала играл стержень из угля, был намного меньше, чем у последних моделей. Это объясняется дополнительными расходами на конвекцию. Спиральные тела накала обладают более пониженным процентом таких потерь.

Температура лампы накаливания

Температура ламп накаливания может быть до 3200 градусов по Цельсию.

Обратите внимание! Температура, при которой вольфрам начинает плавиться, будет 3500 градусов. Стандартная температура ЛН не может привести в действие этот процесс. В случае, вольфрам начинает плавиться, то лампочка может взорваться, поэтому необходимо следить за этим.

Виды ламп

Лампы накаливания подразделяются на несколько видов:

Декоративные модели лампочек
  • вакуумные;
  • аргоновые либо азотно-аргоновые;
  • криптоновые;
  • галогенные с подключенным отражателем инфракрасного света внутри лампочки, что повышает КПД;
  • с покрытием, необходимым для преобразования инфракрасного света в видимый спектр.

Общего, местного предназначения

Характеристики ЛН общего предназначения прописаны в ГОСТе 2239-79. Эти лампочки используются для подключения в светильники основного освещения бытовых и общественных мест, а также уличного пространства.

Основное напряжение может быть 127 и 220 В. Ассортимент изделий делится на группы в зависимости от типов тела накала (спираль либо биспираль) и среды (вакуумные, газовые).

Правильное хранение изделия

Форма сосуда, метод установки, марка изделия и вид цоколя подбираются из соображений стоимости, практичности технологи, минимум на 100 часов работы. Нужно подчеркнуть, что в последние годы эффективность таких ламп оценивается по множеству характеристик.

ЛН местного предназначения, выпускается под ГОСТом 1182-78, напряжение не должно быть выше 36 В, а для производственных помещений, где есть легкогорючие вещества — 12 В. Мощность лампочек местного назначения ограничена и будет 15, 25, 40 и 60 Вт. Время службы каждой лампы накаливания должен быть не меньше 75% средней продолжительности свечения.

Для уличного освещения берутся более мощные лампы, чтобы не приходилось каждый месяц-два менять их. Так как это достаточно трудоемкий процесс.

Иллюминационные лампы на 15 Вт

Декоративные

Декоративные лампочки могут быть различных форм, круглые, овальные, спиральные и так далее. Источником излучения будет вольфрамовая нить. С помощью него в помещении получается уютный и теплый свет. В основном на фабрике производят дизайнерские изделия под классический цоколь Е27, но бывают модели под цоколь Е22 и Е40.
Напряжение необходимое для корректной работы составляет 220 В. Срок использования декоративных изделий с вольфрамовой нитью может быть в диапазоне 2000-3400 часов, но не больше. Температура освещения характеризуется параметром 2700 К.

Такие изделия часто используют для украшения помещений, лестничных пролетов или новогодних елок. Большие торговые центры используют декоративные лампочки подвешенные к высокими потолкам. Выглядит это поистине красиво и в то же время уютно. Они будут гармонично сочетать со стилем Лофт в доме или квартире.

Иллюминационные

Эти лампы накаливания производятся с цветным внутренним слоем колбы и необходимы для новогодних гирлянд или подсветки лестниц, магазинов и витрин. Имеет большой спектр цветности, присутствуют холодные, белые, дневные и ночные оттенки. Достаточно высокий срок службы до 25000 часов, при правильной эксплуатации. Основным минусом будет тяжелая установка. Чем ближе конец срока изделия, тем слабее оно будет работать. Свет начнет плохо рассеиваться.

Передние огни самолета

Сигнальные

Сигнальные лампочки в основном используются в разной промышленности. Простота устройства и большой модельный ряд помогают выбрать изделия для работы в разных сферах производства. Лампы можно монтировать на станки, пульт управления, на специальный транспорт и так далее. Очень часто используются в машиностроении, деревообработке или металлургии.

Внимание! Можно подключить одну лампочку для выполнения нескольких операций, либо применять одновременно 2-3 изделия различного предназначения. Исходя из сферы использования, выбирается цвет и форма лампы.

Современные лампы накаливания производятся специально для использования в промышленных целях, что дает рядом плюсов перед обычными лампами световой сигнализации:

Лампа зеркальная r65
  • разнообразные цветовые режимы, дающие более информативную сигнализацию;
  • множество выборов плафонов;
  • подходят под любую электросеть;
  • легкая установка на станки при помощи системы винтового подсоединения;
  • возможность заменять контакты;
  • применение светодиодных лампочек повышенной яркости для улучшения обзора на любых промышленных территориях;
  • удобный корпус с возможностью подбора нужного размера;
  • энергосбережение;
  • легкость в использовании.

Зеркальные

Изделие зеркального типа отличается от других ЛН редкой формой колбы, а также наличием покрытия с отражением света, которое похоже на тонкую фольгу.

Из чего состоит лампочка накаливания

Это покрытие распыляется на лампу для того, чтобы рассеять ее световое излучение в помещении, чтобы более правильно распределить его в пределах определенной точки, чтобы была возможность четко осветить определенное помещение.

Чтобы получить такую опция в обычной лампе, необходимо поставить позади нее большой отражатель света.

Зеркальные лампочки в основном подключают в светильники направленного излучения, используемые для точечного освещения магазинов, чтобы получилась подсветка необходимых зон. Также их используют для офисов, лестниц, памятников архитектуры.

Зеркальные лампы могут быть разноцветными и прозрачными, матовыми, либо с эффектом УФ лучей. Их производят все известные фабрики осветительных приборов.

Виды изделий

Транспортные

В качестве освещения для машин применяют транспортные лампы накаливания. В электрической цепи нить накала тела разогревается и на пике температуры начинается свечение. Энергия светового луча, воспринимаемого обычным глазом, будет небольшой. Основная масса энергии будет в виде тепла.

Транспортная лампа имеет в своем составе колбу, несколько нитей накала, цоколь и выводы.

Тела накала в двухнитевых изделиях могут работать по-разному. Двухнитевыми лампочками оснащены автомобильные фары, светильник в салоне.

Нить накала обязательно выдерживают повышенные температуры, а также достаточно маленькая. Поэтому ее производят из вольфрамовой проволоки среднего размера, завитой в вытянутую спираль.

 

Двухнитивые изделия

Спираль подсоединяется к электродам и в основном имеет форму прямой линии или дуги полукруга. Температура плавления вольфрама будет около 4000 градусов. Во время работы спираль греется до показателей 2500-2800 °С. С увеличением температуры вольфрама повышается яркость и световая эффективность лучей на ЛН. Но если показатели перевалили за 2500 °С вольфрам будет быстро испаряться и, оставаться на стенках стеклянного сосуда, из-за чего получается слой налета, который уменьшат качество освещения. Срок службы таких изделий обычно составляет от 4 месяцев до полугода. Зависит от производителя и качественности производственного сырья.

Двухнитевые

Такое изделие может быть трех видов:

Светофорные лампы
  • для машин. Одна нить применяется для ближнего света, вторая — для дальнего. Если говорить о лампах для задних сигналов, то нити могут применяться для стоп-сигнала и габаритного света такие же. Дополнительный экран будет убирать лучи, которые в сигнале ближнего света могут ослепить владельцев встречных машин;
  • для воздушного судна. В посадочной фаре первая нить применяется для малого освещения, вторая — для большого, но если вторая слишком долго работает, то может понадобиться охлаждение, иначе может произойти возгорание;
  • для светофоров нажелезной дороге. Обе нити нужны для увеличения надежности— если сгорит одна, то будет работать другая.
Виды колб

Строение лампы накаливания

Конструкция различных типов лампочек накаливания не особо различается, но можно подчеркнуть три общих компонента, нить накаливания, стеклянная колба и электрические вводы. Они различаются конструкцией кронштейнов тела накала, видом цоколей, иногда бывают без цоколей.

Чтобы колба не деформировалась при перегреве спирали в процессе работы, лампа накаливания обустроена ферроникелевым предохранителем, он в основном располагается в ножке. В месте разрыва спирали появляется электрическая дуга, из-за которой кусочки спирали плавятся, попадают на колбу, что может повести за собой ее порчу. С помощью предохранителей этот процесс можно избежать. Но в последние 5 лет они редко применяются, так как не очень эффективны.

Аргоновая лампочка

Конструкция лампы накаливания:

  • колба;
  • спираль накаливания;
  • электроды по двум сторонам тела;
  • крючки, на которых удерживается спираль;
  • ножка;
  • токовый ввод;
  • цоколь с изолятором;
  • контакт на конце цоколя.

Колба

Стеклянная колба дает защиту спирали от пагубного воздействия воздуха, при ее деформации тело накала окисляется и быстро взрывается. Состав колбы лампы различается, она может быть наполнена вакуумом или газовой средой. Первые лампы накаливания производили с вакуумной емкостью, однако их мощность была не высокая. Для заполнения современных изделий применяется азотно-аргоновое вещество или исключительно аргон. Некоторые типы лампочек могут наполнять криптоном или ксеноном. Теплопередача лампочки зависит от молярной массы наполнителя.

Определение ЛН

Газовая середа

Газовая среда в лампе должна быть инертная. Поскольку температура спирали достигает 2500 градусов, то она может реагировать на любой газ, но только не инертный. Поэтому для заполнения чаще всего используют аргон.

Если вдруг вода попадет на горячую или работающую лампу, то она может разорваться под действием газа.

Иногда лампы наполняют ксеноном, но это будет относительно дорого стоить.

Во многих лампах газовая среда будет функцией защиты. В других благодаря электрическому разряду получается красивое цветное излучение. Оттенок будет завесить от свойств инертного газа.

Тело накала

Виды тел накала могут быть различные и зависят от функционального предназначение лампочек.

Виды источников света

Самими популярными будет из проволоки овального поперечного сечения, но иногда бывают и ленточные тела накала (состоят из металлической ленты).

Как уже было сказано, первые тела накала производили из угля. В современных ЛН используются только тела накала, изготовленные из вольфрама, реже из осмиево-вольфрамового вещества.

Чтобы уменьшить размер нити накала, ее обычно делай в виде спирали, иногда ее подвергают повторной обработке, из чего получается биспираль. Коэффициент полезного действия таких изделий выше из-за понижения теплопотерь во время конвекции.

Электротехнические параметры

Световая отдача таких изделий достаточно невысокая. Она будет самой низкой среди популярных электрических лампочек и находится в интервале от 5 до 10 лм/Вт. Повышенная яркость тела накала в сочетании с его маленькими размерами позволяет применять изделия в прожекторах.

Классические цоколя

ЛН имеют обширный диапазон средних напряжений и мощностей. Этот тип изделий может функционировать в большом диапазоне окружающих температур, который ограничен только термоустойчивостью сырья, применяемого при ее производстве (-100…+350 градусов). Световое излучение ЛН корректируется трансформацией рабочего напряжения.

При данном минусе будет повышенная рабочая температура и число выделяемого при горении тепла. Поскольку температура лампочек высокая, то они становятся язвимы под действием воды или резкого передача градусов (из минус в плюс и наоборот).

В современном мире многие уже давно отказались от использования ламп накаливания. В развитых городах, всего 20% людей используют такие изделия. Все переходят на галогеновые светильники.

Во время включения лампочки, тело накала находится при нормальной температуре, то сопротивление изделия будет намного меньше рабочего сопротивления. Во время включения, проходит большое количество тока. По мере раскалывания нити её сопротивление повышается, а ток понижается.

Процесс изготовления на фабрике

В отличие от новейших изделий, более старые модели ламп накаливания с угольными спиралями при включении имели обратный процесс с увеличением тока. Возрастающая функция сопротивления тела накала разрешала применение лампы в роли примитивного электростабилизатора.

Цоколь

Тип цоколя с резьбой для классической лампы накаливания был разработан Джозефом Уилсоном Суоном. Размеры цоколей имели свои стандарты. У изделий обычного типа (для дома) был цоколь E14, E27.

Иногда бывают цоколи без резьбы (в этом случае лампочка держится с помощью трения), а также бесцокольные светильники, чаще используются в машинах. Редким будет размер Е40, он применяется для более мощных изделий от 500 ВТ.

Срок годности

Срок службы изделия зависит от его качества. ЛН нужно хранить в картонной коробке. Это нужно для того, чтобы случайно не разбить ее или чтобы она не дала незаметную трещину, которая испортит всю работу. Из-за такой трещины газ будет испаряться, в итоге после того, как лампочка будет вкручена в плафон, она поработает не больше 2-3 часов. Нужно соблюдать правила безопасности при вкручивании лампы в плафон. Нельзя допускать детей к этому процессу, а также желательно полностью выключать подачу электричества в помещении.

Обратите внимание! Использованные лампочки необходимо правильно утилизироваться, выкидывать вместе с пищевыми отходами их не разрешается. В каждом городе есть специальные баки, для таких отходов.

Если соблюдать все правила хранения и использования, то лампа прослужит максимально долго, без дефектов.

Винтажная лампа Эдисона

Устройство лампы накаливания

Основные детали, из которых состоит конструкция ЛН это-цоколь, сосуд, электроды, держатели для ниток накаливания, тело накаливания, контакты и изоляция. На рисунке 10 можно увидеть строение лампочки.

Перед покупкой лампы желательно получить консультацию специалиста. Не рекомендуется отдавать выбор неизвестному производителю, так как могут попасться бракованные изделия, которые не будут работать положенный срок, или вообще разорвутся под напряжением. Качественные производители всегда дают гарантию не менее 30 дней на лампы накаливания. Покупатель имеет полное право обмена изделия или возврата средств, если работа лампы была менее 10 часов или она перегорела моментально.

В заключении нужно отметить, что лампы накаливания уже давно перестали быть популярными среди людей. Однако необходимо подчеркнуть, что среди таких изделий есть огромный выбор, для машин, уличного освещения, самолетов и так далее. К сожалению, ЛН нельзя использовать вблизи изделий, изготовленных из дерева. Так как иногда бывает сильный нагрев и разрыв спирали, из-за чего может возникнуть чрезвычайная ситуация.

устройство, принцип работы, виды и технические характеристики

Лампа накаливания – первый электрический осветительный прибор, играющий важную роль в жизнедеятельности человека. Именно она позволяет людям заниматься своими делами независимо от времени суток.

По сравнению с остальными источниками света такое устройство характеризуется простотой конструкции. Световой поток излучается вольфрамовой нитью, расположенной внутри стеклянной колбы, полость которой заполнена глубоким вакуумом. В дальнейшем для увеличения долговечности вместо вакуума в колбу стали закачивать специальные газы — так появились галогеновые лампы. Вольфрам — термостойкий материал с большой температурой плавления. Это очень важно, поскольку для того, чтобы человек увидел свечение, нить должна сильно нагреться за счет проходящего через нее тока.

История создания

Интересно, что в первых лампах использовался не вольфрам, а ряд других материалов, включая бумагу, графит и бамбук. Поэтому, несмотря на то, что все лавры за изобретение и усовершенствование лампы накаливания принадлежат Эдисону и Лодыгину, приписывать все заслуги только им — неправильно.

Писать о неудачах отдельных ученых не станем, но приведем основные направления, к которым прилагали усилия мужи того времени:

  1. Поиски лучшего материала для нити накаливания. Нужно было найти такой материал, который одновременно был устойчив к возгоранию и характеризовался высоким сопротивлением. Первая нить была создана из волокон бамбука, которые покрывались тончайшим слоем графита. Бамбук выступал в качестве изолятора, графит — токопроводящей среды. Поскольку слой был малым, то существенно возрастало сопротивление (что и требовалось). Все бы хорошо, но древесная основа угля приводила к быстрому воспламенению.
  2. Далее исследователи задумались над тем, как создать условия строжайшего вакуума, ведь кислород — важный элемент для процесса горения.
  3. После этого нужно было создать разъемные и контактные компоненты электрической цепи. Задача усложнялась из-за использования слоя графита, характеризующегося высоким сопротивлением, поэтому ученым пришлось использовать драгоценные металлы — платину и серебро. Так повышалась проводимость тока, но стоимость изделия была чересчур высока.
  4. Примечательно, что резьба цоколя Эдисона используется и по сей день — маркировка E27. Первые способы создания контакта включали пайку, но при таком раскладе сегодня говорить о быстро заменяемых лампочках было бы сложно. А при сильном нагреве подобные соединения быстро бы распадались.

В наше время популярность подобных ламп падает в геометрической прогрессии. В 2003 году в России была увеличена амплитуда питающего напряжения на 5 %, к сегодняшнему дню этот параметр составляет уже 10 %. Это привело к сокращению срока эксплуатации лампы накаливания в 4 раза. С другой стороны, если вернуть напряжение на эквивалентное значение вниз, то существенно сократится отдача светового потока — до 40 %.

Вспомните учебный курс — еще в школе преподаватель физики ставил опыты, демонстрируя, как увеличивается свечение лампы при повышении силы тока, подающегося на вольфрамовую нить. Чем выше сила тока, тем сильнее выброс излучения и больше тепла.

Принцип действия

Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.

Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр — несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.

Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.

Строение

Обычная лампа состоит из следующих конструктивных элементов:

  • колба;
  • вакуум или инертный газ, закачиваемый внутрь нее;
  • нить накала;
  • электроды — выводы тока;
  • крючки, необходимые для удерживания нити накала;
  • ножка;
  • предохранитель;
  • цоколь, состоящий из корпуса, изолятора и контакта на донышке.

Помимо стандартных исполнений из проводника, стеклянного сосуда и выводов, существуют лампы специального назначения. В них вместо цоколя используются другие держатели или добавляется дополнительная колба.

Предохранитель обычно изготавливается из сплава феррита и никеля и помещается в разрыв на одном из выводов тока. Зачастую он расположен в ножке. Его основное предназначение — защита колбы от разрушения в случае обрыва нити. Связано это с тем, что в случае ее обрыва образуется электрическая дуга, приводящая к плавлению остатков проводника, которые попадают на стеклянную колбу. Из-за высокой температура она может взорваться и вызвать возгорание. Впрочем, долгие годы доказали низкую эффективность предохранителей, поэтому они стали эксплуатироваться реже.

Колба

Стеклянный сосуд используется для защиты нити накаливания от окисления и разрушения. Габаритные размеры колбы подбирают в зависимости от скорости осаждения материала, из которого производится проводник.

Газовая среда

Если раньше вакуумом заполнялись все без исключения лампы накаливания, то сегодня такой подход применяют лишь для маломощных источников света. Более мощные устройства заполняются инертным газом. Молярная масса газа влияет на излучение тепла нитью накаливания.

В колбу галогенных ламп закачиваются галогены. Вещество, которым покрыта нить накала, начинает испаряться и взаимодействовать с расположенными внутри сосуда галогенами. В результате реакции образуются соединения, которые повторно разлагаются и вещество вновь возвращается на поверхность нити. Благодаря этому появилась возможность повысить температуру проводника, увеличив коэффициент полезного действия и срок эксплуатации изделия. Также такой подход позволил сделать колбы более компактными. Недостаток конструкции связан с изначально малым сопротивлением проводника при подаче электрического тока.

Нить накала

По форме нить накаливания может быть разной — выбор в пользу той или иной связан со спецификой лампочки. Зачастую в них применяют нить с круглым сечением, закрученную в спираль, гораздо реже — ленточные проводники.

Современная лампа накаливания работает от нити из вольфрама или осмиево-вольфрамового сплава. Вместо обычных спиралей могут закручиваться биспирали и триспирали, что стало возможным за счет повторного закручивания. Последнее приводит к уменьшению теплового излучения и повышению КПД.

Технические характеристики

Интересно наблюдать за зависимостью световой энергии и мощности лампы. Изменения не линейны — до 75 Вт световая отдача увеличивается, при превышении — снижается.

Одно из преимуществ таких источников света – равномерное освещение, поскольку практически во всех направлениях свет излучается с одинаковой силой.

Еще одно достоинство связано с пульсированием света, которое при определенных значениях приводит к значительной утомляемости глаз. Нормальным значением считают коэффициент пульсации, не превышающий 10 %. Для ламп накаливания параметр максимум достигает 4 %. Самый худший показатель — у изделий мощностью 40 Вт.

Среди всех доступных электрических осветительных приборов лампы накаливания нагреваются сильнее. Большая часть тока преобразуется в тепловую энергию, поэтому прибор больше похож на обогреватель, чем на источник света. Световая отдача находится в диапазоне от 5 до 15 %. По этой причине в законодательстве прописаны определенные нормы, запрещающие, к примеру, использовать лампы накаливания более 100 Вт.

Обычно для освещения одной комнаты достаточно лампы на 60 Вт, которая характеризуется небольшим нагревом.

При рассмотрении спектра излучения и сравнении его с естественным освещением можно сделать два важных замечания: световой поток таких ламп содержит меньше синего и больше красного света. Тем не менее, результат считается приемлемым и не приводит к утомлению, как в случае с источниками дневного света.

Эксплуатационные параметры

При эксплуатации ламп накаливания важно учитывать условия их использования. Их можно применять в помещениях и на открытом воздухе при температуре не менее –60 и не более +50 град. Цельсия. При этом влажность воздуха не должна превышать 98 % (+20 град. Цельсия). Устройства могут работать в одной цепи с диммерами, предназначенными для регулирования световой отдачи за счет изменения интенсивности света. Это дешевые изделия, которые могут быть самостоятельно заменены даже неквалифицированным человеком.

Виды

Существует несколько критериев для классификации ламп накаливания, которые будут рассмотрены ниже.

В зависимости от эффективности освещения лампы накаливания бывают (от худших к лучшим):

  • вакуумные;
  • аргоновые или азот-аргоновые;
  • криптоновые;
  • ксеноновые или галогенные с установленным отражателем инфракрасного излучения внутрь лампы, что увеличивает КПД;
  • с покрытием, предназначенным для преобразования инфракрасного излучения в видимый спектр.

Намного больше разновидностей ламп накаливания, связанных с функциональным назначением и конструктивными особенностями:

  1. Общее назначение — в 70-х гг. прошлого столетия они назывались «нормально-осветительными лампами». Самая распространенная и многочисленная категория — изделия, применяемые для общего и декоративного освещения. С 2008 года выпуск таких источников света существенно сократился, что было связано с принятием многочисленных законов.
  2. Декоративное назначение. Колбы таких изделий выполняются в форме изящных фигур. Чаще всего встречаются свечеобразные стеклянные сосуды с диаметром до 35 мм и сферические (45 мм).
  3. Местное назначение. По конструкции идентичны первой категории, но питаются от уменьшенного напряжения — 12/24/36/48 В. Обычно применяются в переносных светильниках и приборах, освещающих верстаки, станки и т. п.
  4. Иллюминационные с окрашенными колбами. Зачастую мощность изделий не превышает 25 Вт, а для окрашивания внутренняя полость покрывается слоем неорганического пигмента. Гораздо реже можно встретить источники света, наружная часть которых окрашивается цветным лаком. В таком случае пигмент очень быстро выцветает и осыпается.
  1. Зеркальные. Колба выполнена в специальной форме, которая покрыта отражающим слоем (к примеру, методом распыления алюминия). Данные изделия используются для перераспределения светового потока и повышения эффективности освещения.
  2. Сигнальные. Их устанавливают в светосигнальные изделия, предназначенные для отображения какой-либо информации. Характеризуются низкой мощностью и рассчитаны на продолжительную эксплуатацию. На сегодняшний день практически бесполезны из-за доступности светодиодов.
  3. Транспортные. Еще одна обширная категория ламп, используемых в транспортных средствах. Характеризуются высокой прочностью, устойчивостью к вибрациям. В них применяют специальные цоколи, гарантирующие прочное крепление и возможность быстрой замены в стесненных условиях. Могут питаться от 6 В.
  4. Прожекторные. Высокомощные источники света до 10 кВт, характеризующиеся высокой световой отдачей. Спираль укладывается компактно, чтобы обеспечить лучшую фокусировку.
  5. Лампы, применяемые в оптических приборах, — к примеру, кинопроекционная или медицинская техника.

Специальные лампы

Также существуют более специфические разновидности ламп накаливания:

  1. Коммутаторные — подкатегория сигнальных ламп, применяемых в коммутаторных панелях и выполняющих функции индикаторов. Это узкие, продолговатые и малогабаритные изделия, имеющие параллельные контакты гладкого типа. За счет этого могут помещаться в кнопки. Маркируются как «КМ 6-50». Первое число указывает на вольтаж, второе — ампераж (мА).
  2. Перекальная, или фотолампа. Данные изделия используются в фототехнике для нормированного форсированного режима. Характеризуется высокими световой отдачей и цветовой температурой, но малым сроком эксплуатации. Мощность советских ламп достигала 500 Вт. В большинстве случаев колба матируется. Сегодня практически не используются.
  3. Проекционные. Применялись в диапроекторах. Высокая яркость.

Двухнитевая лампа бывает нескольких разновидностей:

  1. Для автомобилей. Одна нить используется для ближнего, другая — для дальнего света. Если рассматривать лампы для задних фонарей, то нити могут использоваться для стоп-сигнала и габаритного огня соответственно. Дополнительный экран может отсекать лучи, которые в лампе ближнего света могут слепить водителей встречных автомобилей.
  2. Для самолетов. В посадочной фаре одна нить может использоваться для малого света, другая — для большого, но требует внешнего охлаждения и непродолжительной эксплуатации.
  3. Для железнодорожных светофоров. Две нити необходимы для повышения надежности — если перегорит одна, то будет светиться другая.

Продолжим рассматривать специальные лампы накаливания:

  1. Лампа-фара — сложная конструкция для подвижных объектов. Используется в автомобильной и авиационной технике.
  2. Малоинерционная. Содержат тонкую нить накаливания. Применялась в звукозаписывающих системах оптического типа и в некоторых видах фототелеграфа. В наше время используется редко, поскольку есть более современные и улучшенные источники света.
  3. Нагревательная. Применяется в качестве источника тепла в лазерных принтерах и копирах. Лампа имеет цилиндрическую форму, закрепляется во вращающемся металлическом валу, к которому прикладывается бумага с тонером. Вал передает тепло, что приводит к расплыванию тонера.

КПД

Электрический ток в лампах накаливания преобразуется не только в видимый для глаза свет. Одна часть идет на излучение, другая трансформируется в тепло, третья — на инфракрасный свет, который не фиксируется зрительными органами. Если температура проводника составляет 3350 К, то КПД лампы накаливания составит 15 %. Обычная лампа на 60 Вт с температурой 2700 К характеризуется минимальным КПД — 5 %.

Коэффициент полезного действия усиливается степенью нагрева проводника. Но чем выше будет нагрев нити, тем меньше срок эксплуатации. К примеру, при температуре 2700 К лампочка просветит 1000 часов, 3400 К — в разы меньше. Если повысить напряжение питания на 20 %, то свечение усилится в два раза. Это нерационально, поскольку срок эксплуатации сократится на 95 %.

Плюсы и минусы

С одной стороны, лампы накаливания являются самыми доступными источниками света, с другой – характеризуются массой недостатков.

Преимущества:

  • низкая стоимость;
  • нет необходимости в применении дополнительных приспособлений;
  • простота использования;
  • комфортная цветовая температура;
  • устойчивость к повышенной влажности.

Недостатки:

  • недолговечность — 700–1000 часов при соблюдении всех правил и рекомендаций по эксплуатации;
  • слабая световая отдача — КПД от 5 до 15 %;
  • хрупкая стеклянная колба;
  • возможность взрыва при перегреве;
  • высокая пожарная опасность;
  • перепады напряжения существенно сокращают срок эксплуатации.

Как увеличить срок службы

Существует несколько причин, по которым может уменьшиться срок эксплуатации данных изделий:

  • перепады напряжения;
  • механические вибрации;
  • высокая температура окружающей среды;
  • разрыв соединения в проводке.

Вот несколько рекомендаций по продлению срока службы ламп накаливания:

  1. Выберите изделия, которые подходят для диапазона напряжения сети.
  2. Перемещение осуществляйте строго в выключенном состоянии, поскольку из-за малейших вибраций изделие выйдет из строя.
  3. Если лампы продолжают перегорать в одном и том же патроне, то его нужно заменить или починить.
  4. При эксплуатации на лестничной площадке в электрическую цепь добавьте диод или включите параллельно две лампы одной мощности.
  5. На разрыв цепи питания можно добавить устройство для плавного включения.

Технологии не стоят на месте, постоянно развиваются, поэтому сегодня на смену традиционным лампам накаливания пришли более экономичные и долговечные светодиодные, люминесцентные и энергосберегающие источники света. Главными причинами выпуска ламп накаливания остается наличие менее развитых с технологической точки зрения стран, а также хорошо налаженное производство.

Приобретать такие изделия сегодня можно в нескольких случаях — они хорошо вписываются в дизайн дома или квартиры, либо вам нравится мягкий и комфортный спектр их излучения. Технологически — это давно устаревшие изделия.

Виды и отличия электрических ламп

Одной из главных характеристик, по которым происходит подбор, является мощность. Ее показатель напрямую влияет на расход электроэнергии. Очень важно использовать в светильниках лампы не выше той мощности, которая указана в сопроводительных документах. Например, ограничение max 40W означает, что вы можете ставить в патрон лампы мощностью до 40 ватт включительно. Ставить более мощные, чем указано, лампы нельзя, т.к. это может привести к короткому замыканию и оплавлению плафона. В лампах разного типа мощность будет неодинаковой. Энергосберегающая лампа мощностью 5W по свечению будет соответствовать лампе накаливания на 60W.

Светоотдача показывает яркость – сколько люмен света дает лампа на 1W мощности. Энергосберегающие лампы являются более экономичными благодаря тому, что этот показатель у них выше в несколько раз, чем у привычных ламп накаливания. Это позволяет ставить в светильник менее мощную лампу, которая сможет светить не хуже ее аналогов на 40W или 60W, экономя электроэнергию.

Излучаемый лампой свет бывает теплым, холодным или нейтральным. Теплый свет – тот, к которому мы привыкли, его дает лампа накаливания. Он может искажать цвет абажура или плафона, отчего тот станет выглядеть иначе, нежели в выключенном виде. Поэтому, если этот критерий важен, рекомендуется подбирать лампы с нейтральным светом, которые помогут предотвратить искажение цветопередачи.

Лампа накаливания. Это наиболее известный и узнаваемый вид электрических ламп, который можно встретить практически в любом доме и по сей день. Во внешнюю стеклянную колбу, из которой предварительно откачан воздух и закачан какой-либо химически инертный газ, вставлено тело накала, начинающее ярко светиться при прохождении через него электрического тока. В качестве тела накала чаще всего используется спираль из вольфрама, известного своей тугоплавкостью, или угольная нить. Откачка воздуха из колбы необходима для того, чтобы исключить окисление тела накала при контакте с ним. Срок службы лампы накаливания составляет около 1000 часов.

Лампы накаливания различаются по внешнему виду и форме. Стекло колбы может быть прозрачного или матового цвета для более мягкого рассеивания света. Помимо стандартной, так называемой грушевидной формы, лампы могут быть и в виде свечи, что хорошо смотрится в декоративном освещении. Отдельной модификацией этой модели является «свеча на ветру» с изогнутой стеклянной верхней частью, напоминающей колеблющееся пламя свечи. Зеркальные лампы излучают направленный свет, который поможет эффектно подсветить арт-объекты и торговые залы. В зависимости от формы колбы лучи света могут распределяться направленно или достаточно широко.

Первая лампа накаливания: история изобретения

 

Лампочка накаливая – предмет, знакомый всем. Электричество и искусственный свет уже давно стали для нас неотъемлемой частью действительности. Но мало кто задумывается, как появилась та самая первая и привычная нам лампа накаливания.

Наша статья расскажет вам, что собой представляет лампа накаливания, как она работает и как появилась в России и во всем мире.

Что собой представляет

Лампа накаливания — электрический вариант источника света, основная часть которого представляет собой тугоплавкий проводник, играющий роль тела накала. Проводник размещен в колбе из стекла, которая внутри бывает накаченной инертным газом или полностью лишенной воздуха. Пропуская через тугоплавкий тип проводника электрический ток, данная лампа может испускать световой поток.

Свечение лампы накаливания

Принцип функционирования базируется на том, что когда электрический ток течет по телу накала, данный элемент начинает накаливаться, нагревая вольфрамовую нить. Вследствие этого нить накала начинает испускать излучение электромагнитно-теплового типа (закон Планка). Для создания свечения температура накала должна составлять пару тысяч градусов. При снижении температуры спектр свечения будет становиться все более красным.
Все минусы, имеющиеся у лампы накаливания, кроются в температуре накала. Чем лучше нужен световой поток, тем большая температура потребуется. При этом вольфрамовая нить характеризуется пределом накала, при превышении которого этот источник света навсегда выходит из строя.
Обратите внимание! Температурный предел нагрева для ламп накаливания — 3410 °C.

Конструкционные особенности

Поскольку лампа накаливания считается самым первым источников света, то вполне закономерно, что ее конструкция должна быть достаточной простой. Особенно, если сравнивать с нынешними источниками света, которые ее постепенно вытесняют с рынка.
В лампе накаливания ведущими элементами считаются:

  • колба лампы;
  • тело накала;
  • токовводы.

Обратите внимание! Первая подобная лампа имела именно такое строение.

Конструкция лампы накаливания

На сегодняшний день разработано несколько вариантов ламп накаливания, но такое строение характерно для самых простых и самых первых моделей.
В стандартной лампочке накаливания, кроме вышеописанных элементов имеется предохранитель, который представляет собой звено. Оно состоит из ферроникелевого сплава. Его вваривают в разрыв одного из двух токовводов изделия. Звено размещается в ножке токоввода. Оно нужно для того, чтобы предупредить разрушение стеклянной колбы во время прорыва нити накала. Это связано с тем, что при прорыве вольфрамовой нити создается электрическая дуга. Она может оплавить остатки нити. А ее фрагменты могут повредить колбу из стекла и привести к возникновению возгорания.
Предохранитель же разрушает электрическую дугу. Такое ферроникелевое звено размещается в полости, где давление равняется атмосферному. В данной ситуации дуга гаснет.
Такое строение и принцип работы обеспечили лампе накаливания широкое распространение по миру, но из-за их высокого энергопотребления и непродолжительному сроку службы, она сегодня стали использоваться гораздо реже. Связано это с тем, что появились более современные и эффективные источники света.

История открытия

В создание лампы накаливания в том виде, в котором она известна на сегодняшний день, сделали свой вклад исследователи, как из России, так и из других стран мира.

Александр Лодыгин

До момента, когда изобретатель Александр Лодыгин из России начал трудиться над разработкой ламп накаливания, в ее истории нужно отметить некоторые важные события:

  • в 1809 году известный изобретатель Деларю из Англии создал свою первую лампу накаливания, оснащенную платиновой спиралью;
  • через почти 30 лет в 1938 году уже бельгийский изобретатель Жобар разработал угольную модель лампы накаливания;
  • изобретатель Генрих Гёбель из Германии в 1854 году уже представил первый вариант рабочего источника света.

Лампочка немецкого образца имела обугленную нить из бамбука, которая помещалась в вакуумированный сосуд. В течение пяти последующих лет Генрих Гёбель продолжал свои наработки и в конечном счете пришел к первому опытному варианту рабочей лампочки накаливания.

Первая практичная лампочка

Джозеф Уилсон Суон, знаменитый физик и химик из Англии, в 1860 году явил миру свои первые успехи в области разработки источника света и за свои результаты был вознагражден патентом. Но некоторые трудности, которые возникли с созданием вакуума, показали неэффективную и не долгосрочную работу лампы Суона.
В России, как уже отмечалось выше, исследованиями в области эффективных источников света занимался Александр Лодыгин. В России он смог добиться свечения в стеклянном сосуде угольного стержня, из которого предварительно был откачен воздух. В России история открытия лампочки накаливания началась в 1872 году. Именно в этом году Александру Лодыгины удались его эксперименты с угольным стержнем. Через два года он в России получает патент под номером 1619, который был выдан ему на нитевой вид лампы. Нить он заменил на стержень из угля, находившийся в вакуумной колбе.
Ровно через год В. Ф. Дидрихсон значительно улучшил вид лампы накаливания, созданную в России Лодыгином. Усовершенствование заключалось в замене угольного стержня на несколько волосков.

 

Обратите внимание! В ситуации, когда один из них перегорал, происходило автоматическое включение другого.

Джозеф Уилсон Суон, который продолжал свои попытки усовершенствовать уже имеющеюся модель источника света, получает патент на лампочки. Здесь в качестве нагревательного элемента выступало угольное волокно. Но здесь оно располагалось уже в разреженной атмосфере из кислорода. Такая атмосфера позволила получить очень яркий свет.

Вклад Томаса Эдисона

В 70-х года позапрошлого столетия в изобретательскую гонку по созданию работающей модели лампы накаливания включился изобретатель из Америки — Томас Эдисон.

Томас Эдисон

Он проводил исследования в вопросе применения в виде элемента накаливания нитей, произведенных из разнообразных материалов. Эдисон в 1879 году получает патент на лампочку, оснащенной платиновой нитью. Но через год он возвращается к уже проверенному угольному волокну и создает источник света со сроком эксплуатации в 40 часов.

Обратите внимание! Одновременно с работой по созданию эффективного источника света, Томас Эдисон создал поворотный тип бытового выключателя.

При том, что лампочки Эдисона работают всего лишь 40 часов, они начали активно вытеснять с рынка старый вариант газового освещения.

Результаты работ Александра Лодыгина

В то время, как на другом конце мира Томас Эдисон проводил свои эксперименты, в России аналогичными изысканиями продолжал заниматься Александр Лодыгин. Он в 90-х годах 19 века изобрел сразу несколько видов лампочек, нити которых были изготовлены из тугоплавких металлов.

Обратите внимание! Именно Лодыгин первым решился использовать вольфрамовую нить в качестве тела накаливания.

Лампочка Лодыгина

Кроме вольфрама он также предлагал использовать нити накаливания, изготовленные из молибдена, а также скручивать их в форме спирали. Такие свои нити Лодыгин размещал в колбах, из которых откачивался весь воздух. Вследствие таких действий нити предохранялись от кислородного окисления, что делало срок службы изделий значительно продолжительным.
Первый тип коммерческой лампочки, произведенный в Америке, содержала вольфрамовую нить и изготавливалась по патенту Лодыгина.
Также стоит отметить, что Лодыгиным были разработаны газонаполненные лампы, содержащие угольные нити и заполненные азотом.
Таким образом, авторство первой лампочки накаливания, отправленной в серийное производство, принадлежит именно российскому исследователю Александру Лодыгину.

Особенности работы лампочки Лодыгина

Для современных ламп накаливания, которые являются прямыми потомками модели Александра Лодыгина, характерны:

  • отменный световой поток;
  • отличная цветопередача;

Цветопередача лампы накаливания

  • низкий показатель конвекции и проводимости тепла;
  • температура накала нити — 3400 K;
  • при максимальном уровне показателя температуры накала коэффициент для полезного действия составляет 15 %.

Кроме этого данный тип источника света в ходе своей работы потребляет много электроэнергии, по сравнению с другими современными лампочками. Из-за конструкционных особенностей такие лампы могут работать примерно 1000 часов.
Но, несмотря на то, что по многим критериям оценки данная продукция уступает более совершенным современным источникам света, она, благодаря своей дешевизне, все еще остается актуальной.

Заключение

В создании эффективной лампы накаливания участвовали изобретатели из разных стран. Но только российский ученый Александр Лодыгин смог создать самый оптимальный вариант, которым мы, собственно, и продолжаем пользоваться по сегодняшний день.

 

Разница между люминесцентными и светодиодными лампами накаливания

Лампы накаливания

При окончательном выборе наружного освещения или подвесного светильника важно определить, какой тип лампы вы хотите использовать. Лампа накаливания излучает свет, когда электрический ток нагревает проволоку из вольфрамовой нити так, что она светится или накаляется. Пока лампа продолжает работать, вольфрам медленно испаряется из-за тепла. Когда нить накала теряет достаточно вольфрама (или ломается от удара), лампа выходит из строя.Лампы накаливания легко приглушаются. Лампы с одинаковым цоколем часто могут использоваться как взаимозаменяемые в одном и том же светильнике (если позволяют размер и мощность). В состав лампы накаливания входит:

• Стеклянный конверт
• Нить из вольфрамовой проволоки в плотной спирали
• Поддерживающие провода для удержания нити
• Подводящие провода для подачи тока на нить
• Выхлопная труба для удаления воздуха из оболочки и заполнения это с газом
• Основание для удержания других частей, установки лампы и электрического контакта

Лампы накаливания можно разделить на обычные или галогенные в зависимости от наполняющего газа и давления в лампе, которые влияют на эффективность, срок службы и цвет.Напряжение в сети или низкое напряжение в зависимости от электрического тока, питающего лампу. Оба типа доступны как обычные, так и галогенные. Неотражающие или отражающие, в зависимости от того, излучает ли лампа свет во всех направлениях или направляет свет в пучок. Большинство неотражающих ламп — это лампы обычного типа, большинство современных ламп с отражателями — галогенные. Эффективность ламп накаливания невысока, что является серьезным недостатком с точки зрения более высоких эксплуатационных расходов и большего количества тепла в комнате.

Флуоресцентный

Лампы Fluorescnet излучают свет, когда электрическая дуга возбуждает газ в трубке.Ртуть в газе испускает ультрафиолетовое излучение, заставляя люминофорное покрытие лампы светиться или флуоресцировать. Светящиеся люминофоры создают свет белого цвета. Люминесцентным лампам для работы требуется балласт, а также специальные патроны для ламп.

Основные компоненты люминесцентной лампы:
• Стеклянная трубка (прямая, U-образная или круглая)
• Заполняющий газ, например аргон
• Металлические контактные штыри на внешнем конце трубки, обеспечивающие электрический ток. соединение
• Катоды на каждом конце внутренней части трубки, которые генерируют электрическую дугу
• Когда катоды больше не могут запускать дугу, лампа больше не будет работать
• Кристаллы ртути, которые испаряются по мере прохождения электрической дуги и испускают УФ-излучение
• Лучшие люминесцентные лампы отлично справляются с цветопередачей, поэтому выбор правильной люминесцентной лампы имеет решающее значение.

Люминесцентные лампы доступны в гораздо более широком диапазоне цветов, чем лампы накаливания, от теплых, почти ламп накаливания, до ледяных белых тонов, похожих на дневной свет. Флуоресцентные лампы — это очень энергоэффективный источник света, который имеет низкие эксплуатационные расходы и мало нагревает комнату. Флуоресцентные лампы особенно эффективны при высоком уровне общего и рабочего освещения. Они потребляют от 1/5 до 1/3 электроэнергии от лампы накаливания с сопоставимым световым потоком и служат до 20 раз дольше.Компактные типы используются в небольших, триммерных светильниках, таких как встраиваемые светильники, настенные бра, светильники, расположенные близко к потолку, и трековые светильники. Ввинчивающиеся типы могут использоваться вместо ламп накаливания в патронах для стандартных ламп. Если в ваших светильниках используется система затемнения, поищите люминесцентные лампы с надписью «регулируемая яркость».

Светодиод

Светоизлучающие диоды (СИД) излучают свет, когда напряжение подается на отрицательно заряженные полупроводники, заставляя электроны объединяться и создавать единицу света (фотон).Проще говоря, светодиод — это химический чип, заключенный в пластиковую капсулу. Поскольку они маленькие, несколько светодиодов иногда объединяются в одну лампочку. Светодиодное освещение в целом является более эффективным и долговечным, чем любой другой тип источника света, и оно разрабатывается для все большего и большего числа применений. Light Bulbs Etc предлагает широкий ассортимент светодиодной продукции: светодиодные лампы, светодиодные ленточные светильники, светодиодные светильники под шкафами, светодиодные декоративные и наружные светильники, светодиодные ландшафтные светильники, а также огромное количество встраиваемых и переоборудованных светодиодных элементов.

Многие светодиодные продукты рассчитаны на срок службы до 50 000 часов. Невероятная долговечность означает, что вы никогда больше не сможете поменять другой свет.

Что такое 50 000 часов? Это в 50 раз больше срока службы обычной лампы накаливания и в 5 раз больше срока службы средней компактной люминесцентной лампы (КЛЛ). Фактически, если вы запускаете светодиод на 6 часов в день каждый день, он прослужит почти 23 года. Это пять президентских выборов, время ремонта дома и простор для целого поколения.У всех нас есть по крайней мере одна труднодоступная лампочка, и для ее замены нужна лестница или столб. Для домовладельца срок службы в пятьдесят раз дольше, чем у ламп накаливания, означает на 50 меньше шансов упасть с лестницы. Для владельца бизнеса это означает значительно меньшие затраты на обслуживание и рабочую силу. Производство и использование светодиодов требует значительно меньше энергии, чем лампы накаливания или КЛЛ. Благодаря светодиодным осветительным приборам вы выбросите меньше ламп и перестанете беспокоиться о содержании в них ртути. Светодиодные осветительные приборы не содержат ртути и других токсичных материалов, что является очевидным преимуществом для окружающей среды.

* Информация предоставлена ​​Американской ассоциацией освещения и Cree LED Lighting

Что такое лампа накаливания?

Лампа накаливания или источник света — это любое устройство, использующее электричество для нагрева нити или провода до тех пор, пока он не станет достаточно горячим, чтобы светиться белым. Если бы это было сделано на открытом воздухе, в присутствии кислорода, металлическая нить накала бы сгорела до того, как стала бы настолько горячей.

Лампы накаливания работают, потому что нагретая нить накала находится внутри стеклянной оболочки или шара, который откачивается и либо остается в вакууме, либо заполнен инертным газом.Провод не может гореть в вакууме, и он не может гореть, если единственный газ внутри колбы инертен и не реагирует с ним.

Подсказка

Светодиодные лампы

быстро становятся стандартом, заменяя лампы накаливания во многих домах и других местах.

Кто изобрел лампочку накаливания?

Два более ранних изобретателя, Генри Вудворд и Мэтью Эванс, изобрели лампочку накаливания, патент на которую был куплен Томасом Эдисоном. К 1879 году Эдисон перешел на угольную нить накаливания и бескислородный кожух и создал лампу, которая прослужила сорок часов.С тех пор лампа накаливания прошла долгий путь.

Почему перегорают лампы накаливания?

Происходит то, что проволочная нить медленно испаряется. В обычной лампе накаливания эти молекулы просто теряются. Они оседают на внутренней стороне стеклянной оболочки, поэтому старая лампа накаливания будет выглядеть более желтой и тусклой, чем новая идентичная в остальном. Это также означает, что нить накала сжимается, поскольку теряет молекулы. В какой-то момент он становится настолько тонким, что больше не может проводить ток, перегревается и ломается.Вот когда мы говорим, что лампочка «перегорела», и заменяем ее.

Почему я все еще не могу их купить?

Они неэффективны. Чтобы продлить срок службы стандартных ламп накаливания, производители делают их менее горячими, чем оптимальная температура для излучения чистого белого света. В результате лампы накаливания излучают много энергии в инфракрасной части спектра. Это, конечно, не приносит нам пользы для зрения и в значительной степени является пустой тратой энергии — если только мы не хотим тепла, которое они излучают.

Были ли они запрещены?

Одним словом, нет. Лампы накаливания не запрещены. Произошло то, что все лампочки теперь должны соответствовать минимальному стандарту эффективности, который был принят в Законе об энергетической независимости и безопасности 2007 года. Большинство стандартных ламп накаливания не могут соответствовать этим стандартам, но те, которые соответствовали, все еще могут соответствовать изготовлены и проданы. Тем не менее, многие лампы накаливания не подпадали под действие стандартов. Примерами могут служить трехходовые лампы, лампы грубого обращения и лампы для бытовых приборов.

Тем временем производители работают над выпуском альтернативных лампочек, которые соответствуют стандартам, излучают хороший, приятный свет и не стоят три состояния. Замена стандартной лампы мощностью 60 Вт, которая была одним из первых затронутых типов ламп, прошла долгий путь к соответствию этим стандартам.

Что такое лампы накаливания и как они работают?

Изобретение, известное как лампа накаливания, вошло в обиход более 120 лет назад, и хотя в то время это была революционная технология, и с тех пор она пользовалась массовым потреблением, в настоящее время она потребляется все меньше и меньше по мере того, как технология освещения эволюционировали к более эффективным решениям, таким как светодиодные и люминесцентные лампы.Некоторые страны уже полностью запретили производство и распространение ламп накаливания, в то время как некоторые страны постепенно добиваются этого.

Тем не менее, без ламп накаливания были бы невозможны для многих величайших современных достижений , и он действительно значительно изменил наше восприятие света, а также внес в нашу повседневную жизнь совершенно новую эстетику и функциональность. Из-за низкой цены продукта (однако это не связано с энергоэффективностью) многие потребители по-прежнему выбирают лампы накаливания, и в ближайшие несколько лет они не будут полностью вытеснены с рынка.

История лампы накаливания

Хотя Томас Эдисон, несомненно, заслужил звание «отец лампы накаливания» , не следует забывать, что потребовались усилия и исследования многих других блестящих ученых до Эдисона, и каждый из них внес свой вклад в какой-то элемент, который позже сформировалась целая идея лампы накаливания. Так что было бы неправильно говорить, что это была идея только Томаса Эдисона.

Первые шаги были сделаны еще в начале 19 века, когда английский химик Хамфри Дэви изобрел первый электрический свет.Его изобретение включало дуговую лампу, которая соединяла батарею и угольную полосу, каждая из которых находилась с обеих сторон лампы.

В течение следующей половины столетия многие ученые в Европе, США и России проводили различные эксперименты, комбинируя платиновую или иридиевую проволоку с углеродными стержнями. Некоторые попытки были вполне успешными, но ни одна из них не могла работать в течение длительного времени. В 1874 году канадские изобретатели Генри Вудворд и Мэтью Эванс запатентовали свою версию лампы накаливания.Он был сделан из углеродных стержней, помещенных в стеклянный цилиндр, наполненный азотом. После безуспешных попыток коммерциализации лампы в 1879 году канадцы решили продать права на патент Томасу Эдисону.

Постепенно Эдисон и его команда работали над улучшениями, пока не получили лампочку, которая могла прослужить достаточно долго. Они обнаружили, что лампа , в которой используется обугленная бамбуковая нить, может прослужить до 1200 часов или даже больше, тогда как лампы Вудворда и Эванса прослужили всего 40 часов.С тех пор технологическая революция в освещении была неизбежна. Продукт получил коммерческое распространение, и лампы накаливания были внедрены в уличное освещение, домашние хозяйства, фабрики и т. Д.

Как работают лампы накаливания

Принцип и технология лампы накаливания не сильно изменились с тех пор, как прототип Эдисона был отправлен производителям и продан в массовых количествах: внутри стеклянной колбы помещена проволочная нить; Как только электричество проходит через вольфрамовую нить, она светится и излучает свет.Но, как известно, лампы накаливания довольно быстро нагреваются. Фактически, большая часть энергии (90%), производимой лампой накаливания, идет на выработку тепла (вольфрам нагревается до температуры более 2000 ° C) , и только менее 10% энергии идет на производство свет, который нам нужен. Срок службы лампы также не слишком велик, так как обычных ламп накаливания обычно служат только до 1000 часов . Следовательно, в настоящее время она стала наименее эффективной из лампочек, и ее постепенно вытесняют с рынка и заменяют более совершенными световыми технологиями (светодиодные и люминесцентные лампы) .

Использование ламп накаливания

Лампа накаливания светится

Как уже упоминалось, использование ламп накаливания постепенно сокращается практически во всех сферах применения, но все еще есть много людей, которым просто нравится придерживаться старых добрых ламп, которые они знали всю свою жизнь. Для ламп накаливания не требуется никакого внешнего регулирующего оборудования, они работают как на переменном, так и на постоянном токе.

Кроме того, лампы накаливания можно подключать к различным приборам управления e.грамм. таймеры, фотодатчики и диммеры. Вот почему лампы накаливания используются как внутри помещений, так и на открытом воздухе для домашнего и коммерческого освещения. Наиболее распространенные способы использования ламп накаливания:

  • Фары автомобильные
  • Настольные лампы
  • Фонари
  • Светильники декоративно-рекламные

Однако из-за того, что производится гораздо более эффективные лампы, одна за другой многие страны постепенно прекращают производство ламп накаливания.Например, с 1 января 2014 года лампы накаливания мощностью 40 и 60 Вт с вольфрамовой нитью больше нельзя производить в США, поскольку они просто не соответствуют федеральным стандартам энергоэффективности. Однако потребуется некоторое время, чтобы старые запасы лампочек были полностью распроданы. и, следовательно, люди могут свободно покупать и использовать лампы накаливания, пока они еще есть в наличии.

Преимущества ламп накаливания

  • Очень часто встречается .Хотя существует множество альтернатив старым лампам накаливания, нет сомнений в том, что многие люди просто привыкли к этой очень простой и дешевой лампе . В регионах, где может быть не так просто купить лампы нового поколения, лампы накаливания по-прежнему отлично справляются с обеспечением освещения как для внутреннего, так и для наружного применения.
  • Работает мгновенно . По сравнению с некоторыми типами ламп (например, натриевые лампы) , лампа накаливания достигает максимальной яркости мгновенно и без каких-либо значительных задержек.
  • Низкие производственные затраты . Если вы посмотрите на краткосрочную перспективу, это кажется хорошим преимуществом. По сравнению с другими типами ламп, лампы накаливания на дешевле в производстве и на дешевле. Однако имейте в виду, что по сравнению со светодиодными или люминесцентными лампами они будут стоить вам больше в долгосрочной перспективе из-за большого расхода электроэнергии . Кроме того, технология светодиодных фонарей постоянно совершенствуется, что снижает затраты, а вместе с ними и рыночную стоимость ламп, создавая очень конкурентоспособную альтернативу лампам накаливания.

Недостатки ламп накаливания

  • Низкий КПД . В процессе освещения вольфрамовой нитью выделяется больше тепла, чем света. Это означает, что КПД лампы очень низок , поскольку 90% энергии просто тратится на выработку тепла, которое на самом деле никому не нужно. Для сравнения, люминесцентным и светодиодным лампам требуется меньшая мощность, чтобы производить такое же и даже большее количество света.
  • Потребляет много энергии .Хорошо известно, что лампы накаливания потребляют много энергии по сравнению с альтернативными лампами . Если вы пытаетесь заботиться об окружающей среде, от лампы накаливания, безусловно, стоит отказаться, поскольку, используя лампы накаливания по всему дому, вы производите заметный углеродный след, равный количеству потраченной впустую энергии.
  • Короткий срок службы . Как упоминалось ранее, в долгосрочной перспективе лампа накаливания — худший вариант. Срок службы лампы очень короткий, а это значит, что вам придется покупать несколько лампочек в течение года. Срок службы лампы накаливания обычно составляет от 700 до 1000 часов, тогда как срок службы светодиодных ламп, например, может достигать более 25000 часов.
  • Отсутствие цветовой гаммы у растений . Лампы накаливания излучают немного больше света на красной стороне светового спектра, но поскольку растениям нужен свет как с красной, так и с синей стороны спектра, лампы накаливания просто не справляются со своей задачей, когда дело доходит до освещения растений.

История лампочки

Более 150 лет назад изобретатели начали работу над яркой идеей, которая оказала огромное влияние на то, как мы используем энергию в наших домах и офисах.Это изобретение изменило способ проектирования зданий, увеличило продолжительность среднего рабочего дня и дало толчок развитию новых предприятий. Это также привело к новым прорывам в области энергетики — от электростанций и линий электропередач до бытовой техники и электродвигателей.

Как и все великие изобретения, лампочку нельзя приписать одному изобретателю. Это была серия небольших улучшений идей предыдущих изобретателей, которые привели к созданию лампочек, которые мы используем сегодня в наших домах.

Лампы накаливания освещают путь

Задолго до того, как Томас Эдисон запатентовал — сначала в 1879 году, а затем годом позже, в 1880 году — и начал коммерциализацию своей лампы накаливания, британские изобретатели продемонстрировали, что электрический свет возможен с дуговыми лампами.В 1835 году был продемонстрирован первый постоянный электрический свет, и в течение следующих 40 лет ученые всего мира работали над лампой накаливания, возясь с нитью накала (часть лампы, излучающей свет при нагревании электрическим током) и лампой накаливания. атмосферу колбы (независимо от того, откачивается ли воздух из колбы или она заполнена инертным газом, чтобы предотвратить окисление и выгорание нити накала). Эти первые лампы имели чрезвычайно короткий срок службы, были слишком дороги в производстве или потребляли слишком много энергии.

Когда Эдисон и его исследователи из Menlo Park вышли на сцену освещения, они сосредоточились на улучшении нити накала — сначала тестировали углерод, затем платину, а затем, наконец, вернулись к углеродной нити. К октябрю 1879 года команда Эдисона изготовила лампочку с обугленной нитью из хлопковой нити без покрытия, которая могла работать 14,5 часов. Они продолжали экспериментировать с нитью накала, пока не остановились на ней, сделанной из бамбука, что дало лампам Эдисона срок службы до 1200 часов — эта нить накала стала стандартом для ламп Эдисона на следующие 10 лет.Эдисон также внес другие улучшения в лампочку, в том числе создал более совершенный вакуумный насос для полного удаления воздуха из лампы и разработал винт Эдисона (который сейчас является стандартным патроном для лампочек).

(Историческая сноска: нельзя говорить об истории лампочки, не упомянув Уильяма Сойера и Албона Мэна, получивших патент США на лампу накаливания, и Джозефа Свана, который запатентовал свою лампочку в Англии. дебаты о том, нарушали ли патенты Эдисона на лампочки патенты этих других изобретателей.В конце концов, американская осветительная компания Эдисона объединилась с Thomson-Houston Electric Company — компанией, производящей лампы накаливания по патенту Сойера-Мэна — и образовала General Electric, а английская осветительная компания Эдисона объединилась с компанией Джозефа Свона и образовала Ediswan в Англии.)

Что делает вклад Эдисона в электрическое освещение настолько выдающимся, так это то, что он не остановился на улучшении лампочки — он разработал целый ряд изобретений, которые сделали использование лампочек практичным.Эдисон смоделировал свою технологию освещения на основе существующей системы газового освещения. В 1882 году на виадуке Холборн в Лондоне он продемонстрировал, что электричество можно распределять от расположенного в центре генератора через серию проводов и трубок (также называемых трубопроводами). Одновременно он сосредоточился на улучшении выработки электроэнергии, разработав первую коммерческую энергосистему под названием Pearl Street Station в нижнем Манхэттене. А чтобы отслеживать, сколько электроэнергии потребляет каждый покупатель, Эдисон разработал первый электросчетчик.

Пока Эдисон работал над всей системой освещения, другие изобретатели продолжали делать небольшие успехи, улучшая процесс производства нити накала и эффективность лампы. Следующее большое изменение в лампах накаливания произошло с изобретением вольфрамовой нити накаливания европейскими изобретателями в 1904 году. Эти новые лампы накаливания прослужили дольше и имели более яркий свет по сравнению с лампами с углеродной нитью. В 1913 году Ирвинг Ленгмюр выяснил, что размещение инертного газа, такого как азот, внутри колбы удваивает ее эффективность.В течение следующих 40 лет ученые продолжали вносить улучшения, которые снизили стоимость и повысили эффективность лампы накаливания. Но к 1950-м годам исследователи еще только выяснили, как преобразовать около 10 процентов энергии, используемой лампой накаливания, в свет, и начали фокусировать свою энергию на других осветительных решениях.

Дефицит энергии ведет к флуоресцентным прорывам

В XIX веке два немца — стеклодув Генрих Гайсслер и врач Юлиус Плюкер — обнаружили, что они могут производить свет, удаляя почти весь воздух из длинной стеклянной трубки и пропуская электрический ток. ток через нее, изобретение, которое стало известно как трубка Гейслера.Эти газоразрядные лампы не пользовались популярностью до начала 20 века, когда исследователи начали искать способ повышения эффективности освещения. Газоразрядные лампы стали основой многих технологий освещения, включая неоновые лампы, натриевые лампы низкого давления (тип, используемый в наружном освещении, таком как уличные фонари) и люминесцентные лампы.

И Томас Эдисон, и Никола Тесла экспериментировали с люминесцентными лампами в 1890-х годах, но ни один из них никогда не производил их в коммерческих целях.Вместо этого именно прорыв Питера Купера Хьюитта в начале 1900-х годов стал одним из предшественников люминесцентной лампы. Хьюитт создал сине-зеленый свет, пропустив электрический ток через пары ртути и включив балласт (устройство, подключенное к лампочке, которое регулирует ток через трубку). Хотя лампы Cooper Hewitt были более эффективными, чем лампы накаливания, они практически не находили подходящего применения из-за цвета света.

К концу 1920-х — началу 1930-х годов европейские исследователи проводили эксперименты с неоновыми трубками, покрытыми люминофором (материалом, который поглощает ультрафиолетовый свет и преобразует невидимый свет в полезный белый свет).Эти открытия послужили толчком к осуществлению программ исследований люминесцентных ламп в США, и к середине и концу 1930-х годов американские осветительные компании демонстрировали люминесцентные лампы для ВМС США и на Всемирной выставке 1939 года в Нью-Йорке. Эти фонари прослужили дольше и были примерно в три раза эффективнее, чем лампы накаливания. Потребность в энергоэффективном освещении американских военных заводов привела к быстрому внедрению люминесцентных ламп, и к 1951 году в США больше света производили линейные люминесцентные лампы.

Еще одна нехватка энергии — нефтяной кризис 1973 года — заставила инженеров по освещению разработать люминесцентные лампы, которые можно было бы использовать в жилых помещениях. В 1974 году исследователи из Сильвании начали исследовать, как можно миниатюризировать балласт и вставить его в лампу. Хотя они разработали патент на свою лампочку, они не могли найти способ ее производства. Два года спустя, в 1976 году, Эдвард Хаммер из General Electric придумал, как изгибать люминесцентную лампу в форме спирали, создав первую компактную люминесцентную лампу (КЛЛ).Как и Sylvania, General Electric отложила этот дизайн, потому что новое оборудование, необходимое для массового производства этих фонарей, было слишком дорогим.

Первые компактные люминесцентные лампы появились на рынке в середине 1980-х годов по розничным ценам от 25 до 35 долларов, но цены могли сильно различаться в зависимости от региона из-за различных рекламных акций, проводимых коммунальными предприятиями. Потребители указали на высокую цену как на препятствие номер один при покупке КЛЛ. Были и другие проблемы — многие КЛЛ 1990 года были большими и громоздкими, они плохо вписывались в светильники, имели низкую светоотдачу и непостоянные характеристики.С 1990-х годов улучшение характеристик КЛЛ, цены, эффективности (они потребляют примерно на 75 процентов меньше энергии, чем лампы накаливания) и срока службы (они служат примерно в 10 раз дольше) сделали их жизнеспособным вариантом как для арендаторов, так и для домовладельцев. Спустя почти 30 лет после того, как КЛЛ были впервые представлены на рынке, КЛЛ ENERGY STAR® стоит всего 1,74 доллара за лампу при покупке в упаковке по четыре штуки.

Светодиоды: будущее уже здесь

Одна из самых быстро развивающихся технологий освещения сегодня — это светодиоды (или LED).Тип твердотельного освещения, светодиоды используют полупроводник для преобразования электричества в свет, часто имеют небольшую площадь (менее 1 квадратного миллиметра) и излучают свет в определенном направлении, что снижает потребность в отражателях и рассеивателях, которые могут улавливать свет.

Это также самые эффективные фонари на рынке. Эффективность лампочки также называется световой эффективностью. Это мера излучаемого света (люмены), деленная на потребляемую мощность (ватты). Лампа, которая на 100 процентов эффективна при преобразовании энергии в свет, будет иметь эффективность 683 лм / Вт.Чтобы поместить это в контекст, лампа накаливания мощностью от 60 до 100 Вт имеет эффективность 15 лм / Вт, эквивалентная CFL имеет эффективность 73 лм / Вт, а текущие сменные лампы на основе светодиодов на рынке варьируются от 70 до 120 лм / Вт со средней эффективностью 85 лм / Вт.

В 1962 году, работая в General Electric, Ник Холоняк-младший изобрел первый светодиод видимого спектра в виде красных диодов. Затем были изобретены бледно-желтые и зеленые диоды. Поскольку компании продолжали совершенствовать красные диоды и их производство, они начали появляться в

История ламп накаливания

2.История и разработки

история лампы накаливания сосредоточена на развитии типов нитей, поэтому организуем по нитям.

Платина и иридиевые нити: 1802-1880-е

Хамфри Дэви создал первую лампу накаливания, пропустив ток через платиновую полоску. Это вызвало свечение, а не длились долго, но положили начало развитию ламп накаливания.В течение следующих 70 лет экспериментаторы продолжали использовать платину. и иридий. Frederick de Moleyns использовал платиновую нить в вакуумированной стеклянной трубке для изготовления лампочки. Это было только мягко удачно из-за почернения лампочки, которая блокировала свет выход. Горение материала нити и почернение на верхняя сторона лампы была постоянной неприятной проблемой для первых изобретателей ламп.Платиновый материал также был дорогим.

Ранний изобретатели знали, что создание вакуума в лампочке поможет уменьшить почернение и продление срока службы ламп, проблема заключалась в способах улучшения создать вакуум пришлось развить. Генрих Гайсслер был одним из первых физиков, чтобы разработать хороший насос и систему. Еще, Первым изобретателям лампочек 1802–1879 гг. не хватало достаточно хорошей системы.Как это обычно бывает с изобретением, многие знают ответ, но другие для продвижения вперед необходимы технологические разработки.

Чернение лампы накаливания, видео:


карбонизированный Нити и бумага: 1860-е — 1883

Джозеф Свон и Томас Эдисон независимо друг от друга успеха, сделав лампочку, которая прослужит разумное количество часы.

Свон использовал карбонизированную бумагу для создания своих ранних нитей.

Эдисон впервые использовал карбонизированную швейную нить в качестве нити, ему удалось чтобы попасть внутрь вакуума. Так появилась его первая практическая лампочка. До 1880 года он использовал карбонизированные швейные нитки. Затем он использовал бумагу. бристольский картон. (Копировальная бумага) Этот шаг продлил срок службы лампы. до 600 часов.

Почему Эдисон торжествовал: Джозеф Свон работал над лампами накаливания идея с 1850 года.Лебедь не удалось, потому что он использовал только частичный вакуум в его лампочке. Он также использовал обугленную бумажную нить. Эдисон придумал, как создать чистый вакуум в своих лампах. Он сделал это, нагревая лампочку одновременно с накачиванием из воздуха. Он использовал Sprengle насос.

Спренгл Насос слева использовался Своном и Эдисоном для перекачивания воздуха. от первых лампочек.Подробнее о помпе нажав на Статья в Scientific American выше.

Выше: Посмотрите нашу коллекцию лампочек в Эдисоне Технический центр на дисплее.


Bamboo приносит большие улучшения: 1883 год: гласит история, что Эдисон использовал вентилятор в жаркий день, он на раскладывающемся восточном веере раскатали прекрасный бамбук. Он карбонизированный его и протестировали как нить накала. Он отправляет помощников в Японию, чтобы найдите тип бамбука, который использовался в этом веере. Они нашли это и импортированные волокна.

первые бамбуковые нити имели квадратную форму, потому что они были разрезаны из более крупных частей с помощью определенного процесса.Он гальванизировал бамбук непосредственно к проводу в проводах, чтобы избежать высокой стоимости платиновые зажимы. Позже он использовал угольную пасту, чтобы приклеить бамбук. к проводу в проводах.

Наши видео о ранних лампах Эдисона с целлюлозными и бамбуковыми волокнами:

Целлюлоза Нити накала: 1881-1904

Сэр Джозеф Свон разработал целлюлозную нить в 1881 году, однако Эдисон продолжал использовать бамбуковые нити до создания General Electric в 1892 году.Целлюлозные волокна были заменены на Лампы Уиллиса Уитни GEM накаливания.

Видео о Mazda Bulb:

The перейти к металлическим нитям: Эра тантала


Танталовые нити:
1902 — 1911

тантал была первой металлической нитью на рынке.Как вольфрам он имеет очень высокую температуру плавления, поэтому его можно нагревать до накаливания, не разрушая себя, как большинство металлов. Тантал намного превосходил все другие волокна. что он стал королем с 1902 по 1909 год. После 1909 года спеченный действительно стали набирать популярность вольфрамовые лампы. Прибытие пластичного вольфрама окончательно положил конец господству тантала.

Вернер фон Болтон (грузин проживает в Германии) обнаружил, что использование тантала для нить, позволяющая снизить потребление энергии и увеличить яркость. Siemens и Halske Company производили эти луковицы. Танталовая нить стала успешной и стала серьезная угроза продажам General Electric. Это стимулировало GE инвестирует больше в недавно созданную исследовательскую лабораторию попытаться придумать лучшую лампу.

Осталось: Зажженная танталовая лампа на выставке Siemens Forum в Мюнхене, Германия

Ниже: Крючки для удержания нити

Осталось: Лампа WOTAN , изготовленная из вытянутого вольфрама
WOTAN была торговая марка, принадлежащая Siemens & Halske

ДРАГОЦЕННЫЙ КАМЕНЬ Металлизированные нити лампы: 1904-1907

Willis Уитни из GE Schenectady разрабатывает способ запекания угля. нить накала при 3000 C для создания нити, которая ведет себя как металл.Это повышает эффективность на 25%. Эта нить использовалась в знаменитых Mazda лампы , которые производили очень яркие свет.

спеченный Вольфрамовые нити: 1904-1911

В 1904 г. Александром Жюстом и Францем разработан спеченный вольфрам. Ханаман (Австрия). Вольфрам увеличивает КПД ламп на 100 % и используется GE в 1907 году после покупки прав на него.
* Вольфрамовые и молибденовые нити использовались А.Н. Лодыгин (Россия) в «Всемирной выставке» 1900 года в Париже

Дуктильный Вольфрамовые нити: 1908 — сегодня

Уильям Д. Кулидж работал с вольфрамом, который, как оказалось, быть лучшим материалом для долговечной лампочки по сравнению с любым другим материал на сегодняшний день. Предыдущие спеченные вольфрамовые нити были эффективный, но хрупкий и непрактичный.Кулидж понял как нагреть вольфрам и вытягивать его через нагретые плашки уменьшения диаметр. Результатом его работы стала работоспособная, гибкая (пластичная) проволока, которая была высокопрочной и из нее делалась отличная нить. Новый материал использовался в лампах в 1911 году и используется до сих пор. Cегодня. См. Наш раздел изобретателей ниже для получения дополнительных сведений о лампах накаливания.

The будущее ламп накаливания:

The Лампа накаливания находится в среднем домохозяйстве более 120 лет .В последнее десятилетие крупная инициатива по развитию более эффективные лампочки заменили большую часть лампочек в мире с компактными люминесцентными лампами. Было значительное сопротивление запретить лампы накаливания

Как работает лампа накаливания

Легко принять лампочки, которые освещают наши дома, как должное. Но задумывались ли вы когда-нибудь, «Как работает лампа накаливания?»

Лампы накаливания используются со времен Томаса Эдисона.Хотя в настоящее время от них отказываются в пользу более эффективных осветительных решений, таких как светодиоды, КЛЛ и галогены, все еще есть много людей, которые предпочитают лампы накаливания из-за их теплого, солнечного света.

Как работает лампа накаливания

По своей сути, лампа накаливания — это просто контролируемое горение, излучающее свет почти так же, как свеча или камин. Конечно, это еще не все, но, по сути, происходит следующее:

  1. В лампочку течет электрический ток
  2. Электричество нагревает металлическую «проволочную» часть (нить) внутри лампы, которая проводит электричество
  3. Нить накала становится настолько горячей, что начинает светиться красным или белым светом

Как эти лампочки продолжают светиться

Так что вам может быть интересно, как лампа накаливания работает так долго? Как нити накала могут гореть в течение 8000 — 12000 часов без перегрева или плавления лампы?

Если бы сама колба была заполнена кислородом, процесс сгорания вызвал бы быстрый перегрев лампы.Однако на самом деле лампы накаливания заполнены такими газами, как азот или аргон. Короче говоря, эти газы затрудняют горение нити, замедляя процесс и сохраняя энергию в долгосрочной перспективе.

Проблема с лампами накаливания заключается в том, что примерно 95 процентов энергии, используемой для поддержания работы света, тратится в виде тепла. Светодиоды становятся все более популярным вариантом, потому что они обходят тепловую фазу, напрямую превращая электрический ток в свет. Вот почему светодиоды намного более энергоэффективны, не говоря уже о более прохладном на ощупь.

Магазин ламп накаливания сегодня

Теперь, когда вы знаете, как работает лампа накаливания, почему бы не запастись ими? Хотя правительственные постановления постепенно отменяют использование ламп накаливания, розничным торговцам по-прежнему разрешается продавать свои существующие запасы. Atlanta Light Bulbs предлагает широкий выбор ламп накаливания, в том числе старинные и цветные лампочки.

Если вам нужна дополнительная информация о том, как работает лампа накаливания, позвоните нашим штатным специалистам по освещению по телефону 1-888-988-2852, отправьте электронное письмо [электронная почта защищена], заполните нашу контактную форму или нажмите кнопка живого чата ниже.Осветите свою жизнь теплым сиянием ламп накаливания!

Кто изобрел лампочку?

Хотя Томасу Эдисону обычно приписывают изобретение лампочки, знаменитый американский изобретатель был не единственным, кто внес свой вклад в развитие этой революционной технологии. Многие другие известные деятели также запомнились работой с электрическими батареями, лампами и созданием первых ламп накаливания.

Ранние исследования и разработки

История лампочки началась задолго до того, как Эдисон запатентовал первую коммерчески успешную лампочку в 1879 году.В 1800 году итальянский изобретатель Алессандро Вольта разработал первый практический метод производства электроэнергии — гальваническую батарею. Сделанная из чередующихся дисков из цинка и меди, перемежаемых слоями картона, пропитанного соленой водой, куча проводила электричество, когда медный провод был подключен с обоих концов. Светящийся медный провод Вольты, на самом деле предшественник современных батарей, также считается одним из самых ранних проявлений освещения лампами накаливания.

Вскоре после того, как Вольта представил свое открытие постоянного источника электричества Королевскому обществу в Лондоне, Хэмфри Дэви, английский химик и изобретатель, создал первую в мире электрическую лампу, соединив гальванические батареи с угольными электродами.Изобретение Дэви 1802 года было известно как электрическая дуговая лампа, названная в честь яркой дуги света, излучаемой между двумя угольными стержнями.

Хотя дуговая лампа Дэви, безусловно, была улучшением автономных свай Volta, она все же не была очень практичным источником освещения. Эта примитивная лампа быстро перегорела и была слишком яркой для использования дома или на работе. Но принципы, лежащие в основе дугового света Дэви, использовались на протяжении 1800-х годов при разработке многих других электрических ламп и лампочек.

В 1840 году британский ученый Уоррен де ла Рю разработал электрическую лампочку с эффективным дизайном, в которой вместо меди использовалась спиральная платиновая нить накала, но высокая стоимость платины помешала лампочке получить коммерческий успех. А в 1848 году англичанин Уильям Стейт увеличил срок службы обычных дуговых ламп, разработав часовой механизм, который регулировал движение быстро разрушающихся угольных стержней ламп. Но стоимость батарей, используемых для питания ламп Стэйта, сдерживала коммерческие предприятия изобретателя.

Джозеф Свон против Томаса Эдисона

В 1850 году английский химик Джозеф Суон занялся проблемой экономической эффективности предыдущих изобретателей и к 1860 году разработал лампочку, в которой вместо платиновых нитей использовались углеродные бумажные волокна. Свон получил патент в Соединенном Королевстве в 1878 году, а в феврале 1879 года он продемонстрировал рабочую лампу на лекции в Ньюкасле, Англия, по данным Смитсоновского института. Как и в более ранних версиях лампочки, нити Свана были помещены в вакуумную трубку, чтобы свести к минимуму воздействие кислорода и продлить срок их службы.К сожалению для Свана, вакуумные насосы его времени не были эффективными, как сейчас, и, хотя его прототип хорошо работал для демонстрации, на практике он был непрактичным.

Эдисон понял, что проблема конструкции Свана была в нити накала. Тонкая нить накала с высоким электрическим сопротивлением сделает лампу практичной, потому что ей потребуется небольшой ток, чтобы она светилась. Он продемонстрировал свою лампочку в декабре 1879 года. Свон включил усовершенствование в свои лампочки и основал компанию по производству электрического освещения в Англии.Эдисон подал в суд за нарушение патентных прав, но патент Суона был сильной претензией, по крайней мере, в Соединенном Королевстве, и два изобретателя в конечном итоге объединили усилия и сформировали Edison-Swan United, которая стала одним из крупнейших в мире производителей лампочек, согласно данным Музей неестественной тайны.

Лебедь был не единственным конкурентом, с которым Эдисон столкнулся. В 1874 году канадские изобретатели Генри Вудворд и Мэтью Эванс подали патент на электрическую лампу с угольными стержнями разного размера, помещенными между электродами в стеклянном цилиндре, заполненном азотом.Пара безуспешно пыталась коммерциализировать свои лампы, но в конце концов продала свой патент Эдисону в 1879 году.

За успехом лампочки Эдисона последовало создание в 1880 году компании Edison Electric Illuminating Company в Нью-Йорке. финансовые взносы JP Morgan и других богатых инвесторов того времени. Компания построила первые электростанции, питающие электрическую систему, и недавно запатентованные лампы. Первая генерирующая станция была открыта в сентябре 1882 года на Перл-стрит в нижнем Манхэттене.

По данным Министерства энергетики США, другие изобретатели, такие как Уильям Сойер и Албон Ман, присоединились к слиянию своей компании с компанией Эдисона и образовали General Electric.

Первая практичная лампа накаливания

По данным Министерства энергетики, Эдисон преуспел и превзошел своих конкурентов в разработке практичной и недорогой лампочки. Эдисон и его команда исследователей в лаборатории Эдисона в Менло-Парке, штат Нью-Джерси, протестировали более 3000 дизайнов лампочек в период с 1878 по 1880 годы.В ноябре 1879 года Эдисон подал патент на электрическую лампу с углеродной нитью. В патенте перечислено несколько материалов, которые могут быть использованы для нити, включая хлопок, лен и дерево. Следующий год Эдисон потратил на поиск идеальной нити для своей новой лампы, тестируя более 6000 растений, чтобы определить, какой материал будет гореть дольше всего.

Через несколько месяцев после выдачи патента 1879 года Эдисон и его команда обнаружили, что обугленная бамбуковая нить может гореть более 1200 часов.Бамбук использовался для изготовления нитей в лампах Эдисона, пока его не начали заменять более долговечными материалами в 1880-х и начале 1900-х годов. [По теме: Какая лампа горит дольше всего?]

В 1882 году Льюис Ховард Латимер, один из исследователей Эдисона, запатентовал более эффективный способ производства углеродных волокон. А в 1903 году Уиллис Р. Уитни изобрел обработку этих нитей, которая позволила им ярко гореть, не затемняя внутреннюю часть их стеклянных колб.

Вольфрамовые нити

Уильям Дэвид Кулидж, американский физик из General Electric, в 1910 году усовершенствовал метод производства вольфрамовых нитей.Вольфрам, который имеет самую высокую температуру плавления среди всех химических элементов, был известен Эдисону как превосходный материал для нити накала электрических ламп, но в конце 19 века не было оборудования, необходимого для производства сверхтонкой вольфрамовой проволоки. Вольфрам по-прежнему является основным материалом, используемым в нити накаливания ламп накаливания.

Светодиодные фонари

Светоизлучающие диоды (светодиоды) теперь считаются будущим освещения из-за более низкого энергопотребления, меньшего ежемесячного ценника и более длительного срока службы по сравнению с традиционными лампами накаливания.

Ник Холоняк, американский ученый из General Electric, случайно изобрел красный светодиод, пытаясь создать лазер в начале 1960-х годов. Как и в случае с другими изобретателями, принцип, согласно которому некоторые полупроводники светятся при приложении электрического тока, был известен с начала 1900-х годов, но Холоняк был первым, кто запатентовал его для использования в качестве осветительной арматуры.

По данным Министерства энергетики, в течение нескольких лет к смеси были добавлены желтые и зеленые светодиоды, которые использовались в нескольких приложениях, включая световые индикаторы, дисплеи калькуляторов и светофоры.Синий светодиод был создан в начале 1990-х годов Исаму Акасаки, Хироши Амано и Сюдзи Накамура, группой японских и американских ученых, за что они получили Нобелевскую премию по физике 2014 года. Синий светодиод позволил ученым создавать белые светодиодные лампы, покрывая диоды люминофором.

Сегодня выбор освещения расширился, и люди могут выбирать различные типы лампочек, в том числе компактные люминесцентные (КЛЛ) лампы, работающие за счет нагрева газа, который производит ультрафиолетовое излучение, и светодиодные лампы.

Несколько осветительных компаний раздвигают границы возможностей лампочек, в том числе Phillips и Stack. Phillips — одна из нескольких компаний, которые создали беспроводные лампочки, которыми можно управлять через приложение для смартфона. В Phillips Hue используется светодиодная технология, которую можно быстро включить, выключить или затемнить одним щелчком на экране смартфона, а также можно запрограммировать. Высококачественные лампочки Hue можно даже настроить на широкий диапазон цветов (всего около шестнадцати миллионов) и синхронизировать их с музыкой, фильмами и видеоиграми.

Stack, начатый инженерами Tesla и NASA, разработал интеллектуальную лампочку с использованием светодиодной технологии с широким набором функций. Он может автоматически определять окружающее освещение и регулировать его по мере необходимости, он выключается и включается с помощью датчика движения, когда кто-то входит в комнату, может использоваться в качестве предупреждения о пробуждении и даже настраивает цвет в течение дня в соответствии с естественными циркадными циклами человека и узоры естественного света.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *