Ламп накаливания – Лампа накаливания — Википедия

Содержание

устройство, принцип работы, виды и технические характеристики

Лампа накаливания – первый электрический осветительный прибор, играющий важную роль в жизнедеятельности человека. Именно она позволяет людям заниматься своими делами независимо от времени суток.

По сравнению с остальными источниками света такое устройство характеризуется простотой конструкции. Световой поток излучается вольфрамовой нитью, расположенной внутри стеклянной колбы, полость которой заполнена глубоким вакуумом. В дальнейшем для увеличения долговечности вместо вакуума в колбу стали закачивать специальные газы — так появились галогеновые лампы. Вольфрам — термостойкий материал с большой температурой плавления. Это очень важно, поскольку для того, чтобы человек увидел свечение, нить должна сильно нагреться за счет проходящего через нее тока.

к содержанию ↑

История создания

Интересно, что в первых лампах использовался не вольфрам, а ряд других материалов, включая бумагу, графит и бамбук. Поэтому, несмотря на то, что все лавры за изобретение и усовершенствование лампы накаливания принадлежат Эдисону и Лодыгину, приписывать все заслуги только им — неправильно.

Писать о неудачах отдельных ученых не станем, но приведем основные направления, к которым прилагали усилия мужи того времени:

  1. Поиски лучшего материала для нити накаливания. Нужно было найти такой материал, который одновременно был устойчив к возгоранию и характеризовался высоким сопротивлением. Первая нить была создана из волокон бамбука, которые покрывались тончайшим слоем графита. Бамбук выступал в качестве изолятора, графит — токопроводящей среды. Поскольку слой был малым, то существенно возрастало сопротивление (что и требовалось). Все бы хорошо, но древесная основа угля приводила к быстрому воспламенению.
  2. Далее исследователи задумались над тем, как создать условия строжайшего вакуума, ведь кислород — важный элемент для процесса горения.
  3. После этого нужно было создать разъемные и контактные компоненты электрической цепи. Задача усложнялась из-за использования слоя графита, характеризующегося высоким сопротивлением, поэтому ученым пришлось использовать драгоценные металлы — платину и серебро. Так повышалась проводимость тока, но стоимость изделия была чересчур высока.
  4. Примечательно, что резьба цоколя Эдисона используется и по сей день — маркировка E27. Первые способы создания контакта включали пайку, но при таком раскладе сегодня говорить о быстро заменяемых лампочках было бы сложно. А при сильном нагреве подобные соединения быстро бы распадались.

В наше время популярность подобных ламп падает в геометрической прогрессии. В 2003 году в России была увеличена амплитуда питающего напряжения на 5 %, к сегодняшнему дню этот параметр составляет уже 10 %. Это привело к сокращению срока эксплуатации лампы накаливания в 4 раза. С другой стороны, если вернуть напряжение на эквивалентное значение вниз, то существенно сократится отдача светового потока — до 40 %.

Вспомните учебный курс — еще в школе преподаватель физики ставил опыты, демонстрируя, как увеличивается свечение лампы при повышении силы тока, подающегося на вольфрамовую нить. Чем выше сила тока, тем сильнее выброс излучения и больше тепла.

к содержанию ↑

Принцип действия

Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.

Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр — несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.

Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.

к содержанию ↑

Строение

Обычная лампа состоит из следующих конструктивных элементов:

  • колба;
  • вакуум или инертный газ, закачиваемый внутрь нее;
  • нить накала;
  • электроды — выводы тока;
  • крючки, необходимые для удерживания нити накала;
  • ножка;
  • предохранитель;
  • цоколь, состоящий из корпуса, изолятора и контакта на донышке.

Помимо стандартных исполнений из проводника, стеклянного сосуда и выводов, существуют лампы специального назначения. В них вместо цоколя используются другие держатели или добавляется дополнительная колба.

Предохранитель обычно изготавливается из сплава феррита и никеля и помещается в разрыв на одном из выводов тока. Зачастую он расположен в ножке. Его основное предназначение — защита колбы от разрушения в случае обрыва нити. Связано это с тем, что в случае ее обрыва образуется электрическая дуга, приводящая к плавлению остатков проводника, которые попадают на стеклянную колбу. Из-за высокой температура она может взорваться и вызвать возгорание. Впрочем, долгие годы доказали низкую эффективность предохранителей, поэтому они стали эксплуатироваться реже.

к содержанию ↑

Колба

Стеклянный сосуд используется для защиты нити накаливания от окисления и разрушения. Габаритные размеры колбы подбирают в зависимости от скорости осаждения материала, из которого производится проводник.

Газовая среда

Если раньше вакуумом заполнялись все без исключения лампы накаливания, то сегодня такой подход применяют лишь для маломощных источников света. Более мощные устройства заполняются инертным газом. Молярная масса газа влияет на излучение тепла нитью накаливания.

В колбу галогенных ламп закачиваются галогены. Вещество, которым покрыта нить накала, начинает испаряться и взаимодействовать с расположенными внутри сосуда галогенами. В результате реакции образуются соединения, которые повторно разлагаются и вещество вновь возвращается на поверхность нити. Благодаря этому появилась возможность повысить температуру проводника, увеличив коэффициент полезного действия и срок эксплуатации изделия. Также такой подход позволил сделать колбы более компактными. Недостаток конструкции связан с изначально малым сопротивлением проводника при подаче электрического тока.

к содержанию ↑

Нить накала

По форме нить накаливания может быть разной — выбор в пользу той или иной связан со спецификой лампочки. Зачастую в них применяют нить с круглым сечением, закрученную в спираль, гораздо реже — ленточные проводники.

Современная лампа накаливания работает от нити из вольфрама или осмиево-вольфрамового сплава. Вместо обычных спиралей могут закручиваться биспирали и триспирали, что стало возможным за счет повторного закручивания. Последнее приводит к уменьшению теплового излучения и повышению КПД.

к содержанию ↑

Технические характеристики

Интересно наблюдать за зависимостью световой энергии и мощности лампы. Изменения не линейны — до 75 Вт световая отдача увеличивается, при превышении — снижается.

Одно из преимуществ таких источников света – равномерное освещение, поскольку практически во всех направлениях свет излучается с одинаковой силой.

Еще одно достоинство связано с пульсированием света, которое при определенных значениях приводит к значительной утомляемости глаз. Нормальным значением считают коэффициент пульсации, не превышающий 10 %. Для ламп накаливания параметр максимум достигает 4 %. Самый худший показатель — у изделий мощностью 40 Вт.

Среди всех доступных электрических осветительных приборов лампы накаливания нагреваются сильнее. Большая часть тока преобразуется в тепловую энергию, поэтому прибор больше похож на обогреватель, чем на источник света. Световая отдача находится в диапазоне от 5 до 15 %. По этой причине в законодательстве прописаны определенные нормы, запрещающие, к примеру, использовать лампы накаливания более 100 Вт.

Обычно для освещения одной комнаты достаточно лампы на 60 Вт, которая характеризуется небольшим нагревом.

При рассмотрении спектра излучения и сравнении его с естественным освещением можно сделать два важных замечания: световой поток таких ламп содержит меньше синего и больше красного света. Тем не менее, результат считается приемлемым и не приводит к утомлению, как в случае с источниками дневного света.

к содержанию ↑

Эксплуатационные параметры

При эксплуатации ламп накаливания важно учитывать условия их использования. Их можно применять в помещениях и на открытом воздухе при температуре не менее –60 и не более +50 град. Цельсия. При этом влажность воздуха не должна превышать 98 % (+20 град. Цельсия). Устройства могут работать в одной цепи с диммерами, предназначенными для регулирования световой отдачи за счет изменения интенсивности света. Это дешевые изделия, которые могут быть самостоятельно заменены даже неквалифицированным человеком.

к содержанию ↑

Виды

Существует несколько критериев для классификации ламп накаливания, которые будут рассмотрены ниже.

В зависимости от эффективности освещения лампы накаливания бывают (от худших к лучшим):

  • вакуумные;
  • аргоновые или азот-аргоновые;
  • криптоновые;
  • ксеноновые или галогенные с установленным отражателем инфракрасного излучения внутрь лампы, что увеличивает КПД;
  • с покрытием, предназначенным для преобразования инфракрасного излучения в видимый спектр.

Намного больше разновидностей ламп накаливания, связанных с функциональным назначением и конструктивными особенностями:

  1. Общее назначение — в 70-х гг. прошлого столетия они назывались «нормально-осветительными лампами». Самая распространенная и многочисленная категория — изделия, применяемые для общего и декоративного освещения. С 2008 года выпуск таких источников света существенно сократился, что было связано с принятием многочисленных законов.
  2. Декоративное назначение. Колбы таких изделий выполняются в форме изящных фигур. Чаще всего встречаются свечеобразные стеклянные сосуды с диаметром до 35 мм и сферические (45 мм).
  3. Местное назначение. По конструкции идентичны первой категории, но питаются от уменьшенного напряжения — 12/24/36/48 В. Обычно применяются в переносных светильниках и приборах, освещающих верстаки, станки и т. п.
  4. Иллюминационные с окрашенными колбами. Зачастую мощность изделий не превышает 25 Вт, а для окрашивания внутренняя полость покрывается слоем неорганического пигмента. Гораздо реже можно встретить источники света, наружная часть которых окрашивается цветным лаком. В таком случае пигмент очень быстро выцветает и осыпается.

  1. Зеркальные. Колба выполнена в специальной форме, которая покрыта отражающим слоем (к примеру, методом распыления алюминия). Данные изделия используются для перераспределения светового потока и повышения эффективности освещения.
  2. Сигнальные. Их устанавливают в светосигнальные изделия, предназначенные для отображения какой-либо информации. Характеризуются низкой мощностью и рассчитаны на продолжительную эксплуатацию. На сегодняшний день практически бесполезны из-за доступности светодиодов.
  3. Транспортные. Еще одна обширная категория ламп, используемых в транспортных средствах. Характеризуются высокой прочностью, устойчивостью к вибрациям. В них применяют специальные цоколи, гарантирующие прочное крепление и возможность быстрой замены в стесненных условиях. Могут питаться от 6 В.
  4. Прожекторные. Высокомощные источники света до 10 кВт, характеризующиеся высокой световой отдачей. Спираль укладывается компактно, чтобы обеспечить лучшую фокусировку.
  5. Лампы, применяемые в оптических приборах, — к примеру, кинопроекционная или медицинская техника.

к содержанию ↑

Специальные лампы

Также существуют более специфические разновидности ламп накаливания:

  1. Коммутаторные — подкатегория сигнальных ламп, применяемых в коммутаторных панелях и выполняющих функции индикаторов. Это узкие, продолговатые и малогабаритные изделия, имеющие параллельные контакты гладкого типа. За счет этого могут помещаться в кнопки. Маркируются как «КМ 6-50». Первое число указывает на вольтаж, второе — ампераж (мА).
  2. Перекальная, или фотолампа. Данные изделия используются в фототехнике для нормированного форсированного режима. Характеризуется высокими световой отдачей и цветовой температурой, но малым сроком эксплуатации. Мощность советских ламп достигала 500 Вт. В большинстве случаев колба матируется. Сегодня практически не используются.
  3. Проекционные. Применялись в диапроекторах. Высокая яркость.

Двухнитевая лампа бывает нескольких разновидностей:

  1. Для автомобилей. Одна нить используется для ближнего, другая — для дальнего света. Если рассматривать лампы для задних фонарей, то нити могут использоваться для стоп-сигнала и габаритного огня соответственно. Дополнительный экран может отсекать лучи, которые в лампе ближнего света могут слепить водителей встречных автомобилей.
  2. Для самолетов. В посадочной фаре одна нить может использоваться для малого света, другая — для большого, но требует внешнего охлаждения и непродолжительной эксплуатации.
  3. Для железнодорожных светофоров. Две нити необходимы для повышения надежности — если перегорит одна, то будет светиться другая.

Продолжим рассматривать специальные лампы накаливания:

  1. Лампа-фара — сложная конструкция для подвижных объектов. Используется в автомобильной и авиационной технике.
  2. Малоинерционная. Содержат тонкую нить накаливания. Применялась в звукозаписывающих системах оптического типа и в некоторых видах фототелеграфа. В наше время используется редко, поскольку есть более современные и улучшенные источники света.
  3. Нагревательная. Применяется в качестве источника тепла в лазерных принтерах и копирах. Лампа имеет цилиндрическую форму, закрепляется во вращающемся металлическом валу, к которому прикладывается бумага с тонером. Вал передает тепло, что приводит к расплыванию тонера.

к содержанию ↑

КПД

Электрический ток в лампах накаливания преобразуется не только в видимый для глаза свет. Одна часть идет на излучение, другая трансформируется в тепло, третья — на инфракрасный свет, который не фиксируется зрительными органами. Если температура проводника составляет 3350 К, то КПД лампы накаливания составит 15 %. Обычная лампа на 60 Вт с температурой 2700 К характеризуется минимальным КПД — 5 %.

Коэффициент полезного действия усиливается степенью нагрева проводника. Но чем выше будет нагрев нити, тем меньше срок эксплуатации. К примеру, при температуре 2700 К лампочка просветит 1000 часов, 3400 К — в разы меньше. Если повысить напряжение питания на 20 %, то свечение усилится в два раза. Это нерационально, поскольку срок эксплуатации сократится на 95 %.

к содержанию ↑

Плюсы и минусы

С одной стороны, лампы накаливания являются самыми доступными источниками света, с другой – характеризуются массой недостатков.

Преимущества:

  • низкая стоимость;
  • нет необходимости в применении дополнительных приспособлений;
  • простота использования;
  • комфортная цветовая температура;
  • устойчивость к повышенной влажности.

Недостатки:

  • недолговечность — 700–1000 часов при соблюдении всех правил и рекомендаций по эксплуатации;
  • слабая световая отдача — КПД от 5 до 15 %;
  • хрупкая стеклянная колба;
  • возможность взрыва при перегреве;
  • высокая пожарная опасность;
  • перепады напряжения существенно сокращают срок эксплуатации.


к содержанию ↑

Как увеличить срок службы

Существует несколько причин, по которым может уменьшиться срок эксплуатации данных изделий:

  • перепады напряжения;
  • механические вибрации;
  • высокая температура окружающей среды;
  • разрыв соединения в проводке.

Вот несколько рекомендаций по продлению срока службы ламп накаливания:

  1. Выберите изделия, которые подходят для диапазона напряжения сети.
  2. Перемещение осуществляйте строго в выключенном состоянии, поскольку из-за малейших вибраций изделие выйдет из строя.
  3. Если лампы продолжают перегорать в одном и том же патроне, то его нужно заменить или починить.
  4. При эксплуатации на лестничной площадке в электрическую цепь добавьте диод или включите параллельно две лампы одной мощности.
  5. На разрыв цепи питания можно добавить устройство для плавного включения.

Технологии не стоят на месте, постоянно развиваются, поэтому сегодня на смену традиционным лампам накаливания пришли более экономичные и долговечные светодиодные, люминесцентные и энергосберегающие источники света. Главными причинами выпуска ламп накаливания остается наличие менее развитых с технологической точки зрения стран, а также хорошо налаженное производство.

Приобретать такие изделия сегодня можно в нескольких случаях — они хорошо вписываются в дизайн дома или квартиры, либо вам нравится мягкий и комфортный спектр их излучения. Технологически — это давно устаревшие изделия.

Лампа накаливания: устройство, принцип работы, виды и технические характеристики

220.guru

виды, характеристики, устройство лампы, строение, принцип работы

ЛН полюбились многим людям за счет легкости в использовании. Они имеют различные цветовые режимы, как холодные оттенки, так и теплые. В этой статье говорится о том, что такое лампа накаливания, где чаще применяется и из чего состоит.

Достоинства и недостатки

В настоящее время существует множество осветительных приборов. Большинство из них производятся в последние несколько лет с использованием высоких технологий, но классическая ЛН всё равно имеет множество плюсов или совокупность параметров, которые будут более подходящими при правильном использовании:

  • достаточно низкая цена;
  • устойчивость к различным температурам;
  • моментальное зажигание;
  • не мерцают;
  • имеют разные режима света.

Как выглядит классическая ЛН

Но, к сожалению, лампы накаливания имеют свои минусы:

  • основной недостаток — это достаточно пониженный КПД. У лампочек в 100 Вт КПД будет примерно 17 %, у изделий 60 Вт эта цифра будет всего лишь 5 %. Одним из методов увеличения КПД будет поднятие температуры накала, но в таком случае срок службы заметно снизится;

Спираль для лампы накаливания

  • малый срок службы;
  • повышенная температура поверхности сосуда, которая может быть у 100Вт лампочки до 250°С. Это повышает риск возникновения возгораний или взрыва ламп;
  • чувствительность к окружающей среде;
  • применение термостойкой арматуры.

Ниже подробно описаны виды и характеристики ламп накаливания.

Характеристики

Одним из основных параметров лампочек с телом накала будет мощность, указываемая в ваттах. Назначение ламп различное, поэтому диапазон выбора большой — от 0,1 Вт «светильник» до 23 тыс. Вт прожекторов для аэродромов.

В быту применяют слабомощные лампочки, обычно от 15 Вт до 200 Вт, а на производстве используют лампы мощностью до 2000 Вт.

Качество светового луча и уровень рассеивания регулируются материалом производства сосуда.

Автомобильная лампочка

Наибольшая светопередача присуща для изделий с прозрачным стеклом, потому что они не поглощают свет. Матовая поверхность лампы поглощает 5% световых лучей, а белая — 15%.

Размер лампочек накаливания может быть от 60 мм до 130 мм. Зависит от сферы применения.

Принцип работы

Во время прохождения электрическим током через спираль, она быстро раскаливается до высоких температур почти до 2500 градусов. Это происходит из-за того, что спираль обладает высоким сопротивлением току и на прохождение его уходит большое количество энергии.

Тепло нагревает металл (вольфрам), и начинается свечение лампы. Поскольку внутри лампы нет кислорода, то вольфрам не окисляется.

Таблица температуры цвета

КПД лампы накаливания 100 Вт старого образца, где роль тела накала играл стержень из угля, был намного меньше, чем у последних моделей. Это объясняется дополнительными расходами на конвекцию. Спиральные тела накала обладают более пониженным процентом таких потерь.

Температура лампы накаливания

Температура ламп накаливания может быть до 3200 градусов по Цельсию.

Обратите внимание! Температура, при которой вольфрам начинает плавиться, будет 3500 градусов. Стандартная температура ЛН не может привести в действие этот процесс. В случае, вольфрам начинает плавиться, то лампочка может взорваться, поэтому необходимо следить за этим.

Виды ламп

Лампы накаливания подразделяются на несколько видов:

Декоративные модели лампочек

  • вакуумные;
  • аргоновые либо азотно-аргоновые;
  • криптоновые;
  • галогенные с подключенным отражателем инфракрасного света внутри лампочки, что повышает КПД;
  • с покрытием, необходимым для преобразования инфракрасного света в видимый спектр.

Общего, местного предназначения

Характеристики ЛН общего предназначения прописаны в ГОСТе 2239-79. Эти лампочки используются для подключения в светильники основного освещения бытовых и общественных мест, а также уличного пространства.

Основное напряжение может быть 127 и 220 В. Ассортимент изделий делится на группы в зависимости от типов тела накала (спираль либо биспираль) и среды (вакуумные, газовые).

Правильное хранение изделия

Форма сосуда, метод установки, марка изделия и вид цоколя подбираются из соображений стоимости, практичности технологи, минимум на 100 часов работы. Нужно подчеркнуть, что в последние годы эффективность таких ламп оценивается по множеству характеристик.

ЛН местного предназначения, выпускается под ГОСТом 1182-78, напряжение не должно быть выше 36 В, а для производственных помещений, где есть легкогорючие вещества — 12 В. Мощность лампочек местного назначения ограничена и будет 15, 25, 40 и 60 Вт. Время службы каждой лампы накаливания должен быть не меньше 75% средней продолжительности свечения.

Для уличного освещения берутся более мощные лампы, чтобы не приходилось каждый месяц-два менять их. Так как это достаточно трудоемкий процесс.

Иллюминационные лампы на 15 Вт

Декоративные

Декоративные лампочки могут быть различных форм, круглые, овальные, спиральные и так далее. Источником излучения будет вольфрамовая нить. С помощью него в помещении получается уютный и теплый свет. В основном на фабрике производят дизайнерские изделия под классический цоколь Е27, но бывают модели под цоколь Е22 и Е40.
Напряжение необходимое для корректной работы составляет 220 В. Срок использования декоративных изделий с вольфрамовой нитью может быть в диапазоне 2000-3400 часов, но не больше. Температура освещения характеризуется параметром 2700 К.

Такие изделия часто используют для украшения помещений, лестничных пролетов или новогодних елок. Большие торговые центры используют декоративные лампочки подвешенные к высокими потолкам. Выглядит это поистине красиво и в то же время уютно. Они будут гармонично сочетать со стилем Лофт в доме или квартире.

Иллюминационные

Эти лампы накаливания производятся с цветным внутренним слоем колбы и необходимы для новогодних гирлянд или подсветки лестниц, магазинов и витрин. Имеет большой спектр цветности, присутствуют холодные, белые, дневные и ночные оттенки. Достаточно высокий срок службы до 25000 часов, при правильной эксплуатации. Основным минусом будет тяжелая установка. Чем ближе конец срока изделия, тем слабее оно будет работать. Свет начнет плохо рассеиваться.

Передние огни самолета

Сигнальные

Сигнальные лампочки в основном используются в разной промышленности. Простота устройства и большой модельный ряд помогают выбрать изделия для работы в разных сферах производства. Лампы можно монтировать на станки, пульт управления, на специальный транспорт и так далее. Очень часто используются в машиностроении, деревообработке или металлургии.

Внимание! Можно подключить одну лампочку для выполнения нескольких операций, либо применять одновременно 2-3 изделия различного предназначения. Исходя из сферы использования, выбирается цвет и форма лампы.

Современные лампы накаливания производятся специально для использования в промышленных целях, что дает рядом плюсов перед обычными лампами световой сигнализации:

Лампа зеркальная r65

  • разнообразные цветовые режимы, дающие более информативную сигнализацию;
  • множество выборов плафонов;
  • подходят под любую электросеть;
  • легкая установка на станки при помощи системы винтового подсоединения;
  • возможность заменять контакты;
  • применение светодиодных лампочек повышенной яркости для улучшения обзора на любых промышленных территориях;
  • удобный корпус с возможностью подбора нужного размера;
  • энергосбережение;
  • легкость в использовании.

Зеркальные

Изделие зеркального типа отличается от других ЛН редкой формой колбы, а также наличием покрытия с отражением света, которое похоже на тонкую фольгу.

Из чего состоит лампочка накаливания

Это покрытие распыляется на лампу для того, чтобы рассеять ее световое излучение в помещении, чтобы более правильно распределить его в пределах определенной точки, чтобы была возможность четко осветить определенное помещение.

Чтобы получить такую опция в обычной лампе, необходимо поставить позади нее большой отражатель света.

Зеркальные лампочки в основном подключают в светильники направленного излучения, используемые для точечного освещения магазинов, чтобы получилась подсветка необходимых зон. Также их используют для офисов, лестниц, памятников архитектуры.

Зеркальные лампы могут быть разноцветными и прозрачными, матовыми, либо с эффектом УФ лучей. Их производят все известные фабрики осветительных приборов.

Виды изделий

Транспортные

В качестве освещения для машин применяют транспортные лампы накаливания. В электрической цепи нить накала тела разогревается и на пике температуры начинается свечение. Энергия светового луча, воспринимаемого обычным глазом, будет небольшой. Основная масса энергии будет в виде тепла.

Транспортная лампа имеет в своем составе колбу, несколько нитей накала, цоколь и выводы.

Тела накала в двухнитевых изделиях могут работать по-разному. Двухнитевыми лампочками оснащены автомобильные фары, светильник в салоне.

Нить накала обязательно выдерживают повышенные температуры, а также достаточно маленькая. Поэтому ее производят из вольфрамовой проволоки среднего размера, завитой в вытянутую спираль.

 

Двухнитивые изделия

Спираль подсоединяется к электродам и в основном имеет форму прямой линии или дуги полукруга. Температура плавления вольфрама будет около 4000 градусов. Во время работы спираль греется до показателей 2500-2800 °С. С увеличением температуры вольфрама повышается яркость и световая эффективность лучей на ЛН. Но если показатели перевалили за 2500 °С вольфрам будет быстро испаряться и, оставаться на стенках стеклянного сосуда, из-за чего получается слой налета, который уменьшат качество освещения. Срок службы таких изделий обычно составляет от 4 месяцев до полугода. Зависит от производителя и качественности производственного сырья.

Двухнитевые

Такое изделие может быть трех видов:

Светофорные лампы

  • для машин. Одна нить применяется для ближнего света, вторая — для дальнего. Если говорить о лампах для задних сигналов, то нити могут применяться для стоп-сигнала и габаритного света такие же. Дополнительный экран будет убирать лучи, которые в сигнале ближнего света могут ослепить владельцев встречных машин;
  • для воздушного судна. В посадочной фаре первая нить применяется для малого освещения, вторая — для большого, но если вторая слишком долго работает, то может понадобиться охлаждение, иначе может произойти возгорание;
  • для светофоров нажелезной дороге. Обе нити нужны для увеличения надежности— если сгорит одна, то будет работать другая.

Виды колб

Строение лампы накаливания

Конструкция различных типов лампочек накаливания не особо различается, но можно подчеркнуть три общих компонента, нить накаливания, стеклянная колба и электрические вводы. Они различаются конструкцией кронштейнов тела накала, видом цоколей, иногда бывают без цоколей.

Чтобы колба не деформировалась при перегреве спирали в процессе работы, лампа накаливания обустроена ферроникелевым предохранителем, он в основном располагается в ножке. В месте разрыва спирали появляется электрическая дуга, из-за которой кусочки спирали плавятся, попадают на колбу, что может повести за собой ее порчу. С помощью предохранителей этот процесс можно избежать. Но в последние 5 лет они редко применяются, так как не очень эффективны.

Аргоновая лампочка

Конструкция лампы накаливания:

  • колба;
  • спираль накаливания;
  • электроды по двум сторонам тела;
  • крючки, на которых удерживается спираль;
  • ножка;
  • токовый ввод;
  • цоколь с изолятором;
  • контакт на конце цоколя.

Колба

Стеклянная колба дает защиту спирали от пагубного воздействия воздуха, при ее деформации тело накала окисляется и быстро взрывается. Состав колбы лампы различается, она может быть наполнена вакуумом или газовой средой. Первые лампы накаливания производили с вакуумной емкостью, однако их мощность была не высокая. Для заполнения современных изделий применяется азотно-аргоновое вещество или исключительно аргон. Некоторые типы лампочек могут наполнять криптоном или ксеноном. Теплопередача лампочки зависит от молярной массы наполнителя.

Определение ЛН

Газовая середа

Газовая среда в лампе должна быть инертная. Поскольку температура спирали достигает 2500 градусов, то она может реагировать на любой газ, но только не инертный. Поэтому для заполнения чаще всего используют аргон.

Если вдруг вода попадет на горячую или работающую лампу, то она может разорваться под действием газа.

Иногда лампы наполняют ксеноном, но это будет относительно дорого стоить.

Во многих лампах газовая среда будет функцией защиты. В других благодаря электрическому разряду получается красивое цветное излучение. Оттенок будет завесить от свойств инертного газа.

Тело накала

Виды тел накала могут быть различные и зависят от функционального предназначение лампочек.

Виды источников света

Самими популярными будет из проволоки овального поперечного сечения, но иногда бывают и ленточные тела накала (состоят из металлической ленты).

Как уже было сказано, первые тела накала производили из угля. В современных ЛН используются только тела накала, изготовленные из вольфрама, реже из осмиево-вольфрамового вещества.

Чтобы уменьшить размер нити накала, ее обычно делай в виде спирали, иногда ее подвергают повторной обработке, из чего получается биспираль. Коэффициент полезного действия таких изделий выше из-за понижения теплопотерь во время конвекции.

Электротехнические параметры

Световая отдача таких изделий достаточно невысокая. Она будет самой низкой среди популярных электрических лампочек и находится в интервале от 5 до 10 лм/Вт. Повышенная яркость тела накала в сочетании с его маленькими размерами позволяет применять изделия в прожекторах.

Классические цоколя

ЛН имеют обширный диапазон средних напряжений и мощностей. Этот тип изделий может функционировать в большом диапазоне окружающих температур, который ограничен только термоустойчивостью сырья, применяемого при ее производстве (-100…+350 градусов). Световое излучение ЛН корректируется трансформацией рабочего напряжения.

При данном минусе будет повышенная рабочая температура и число выделяемого при горении тепла. Поскольку температура лампочек высокая, то они становятся язвимы под действием воды или резкого передача градусов (из минус в плюс и наоборот).

В современном мире многие уже давно отказались от использования ламп накаливания. В развитых городах, всего 20% людей используют такие изделия. Все переходят на галогеновые светильники.

Во время включения лампочки, тело накала находится при нормальной температуре, то сопротивление изделия будет намного меньше рабочего сопротивления. Во время включения, проходит большое количество тока. По мере раскалывания нити её сопротивление повышается, а ток понижается.

Процесс изготовления на фабрике

В отличие от новейших изделий, более старые модели ламп накаливания с угольными спиралями при включении имели обратный процесс с увеличением тока. Возрастающая функция сопротивления тела накала разрешала применение лампы в роли примитивного электростабилизатора.

Цоколь

Тип цоколя с резьбой для классической лампы накаливания был разработан Джозефом Уилсоном Суоном. Размеры цоколей имели свои стандарты. У изделий обычного типа (для дома) был цоколь E14, E27.

Иногда бывают цоколи без резьбы (в этом случае лампочка держится с помощью трения), а также бесцокольные светильники, чаще используются в машинах. Редким будет размер Е40, он применяется для более мощных изделий от 500 ВТ.

Срок годности

Срок службы изделия зависит от его качества. ЛН нужно хранить в картонной коробке. Это нужно для того, чтобы случайно не разбить ее или чтобы она не дала незаметную трещину, которая испортит всю работу. Из-за такой трещины газ будет испаряться, в итоге после того, как лампочка будет вкручена в плафон, она поработает не больше 2-3 часов. Нужно соблюдать правила безопасности при вкручивании лампы в плафон. Нельзя допускать детей к этому процессу, а также желательно полностью выключать подачу электричества в помещении.

Обратите внимание! Использованные лампочки необходимо правильно утилизироваться, выкидывать вместе с пищевыми отходами их не разрешается. В каждом городе есть специальные баки, для таких отходов.

Если соблюдать все правила хранения и использования, то лампа прослужит максимально долго, без дефектов.

Винтажная лампа Эдисона

Устройство лампы накаливания

Основные детали, из которых состоит конструкция ЛН это-цоколь, сосуд, электроды, держатели для ниток накаливания, тело накаливания, контакты и изоляция. На рисунке 10 можно увидеть строение лампочки.

Перед покупкой лампы желательно получить консультацию специалиста. Не рекомендуется отдавать выбор неизвестному производителю, так как могут попасться бракованные изделия, которые не будут работать положенный срок, или вообще разорвутся под напряжением. Качественные производители всегда дают гарантию не менее 30 дней на лампы накаливания. Покупатель имеет полное право обмена изделия или возврата средств, если работа лампы была менее 10 часов или она перегорела моментально.

В заключении нужно отметить, что лампы накаливания уже давно перестали быть популярными среди людей. Однако необходимо подчеркнуть, что среди таких изделий есть огромный выбор, для машин, уличного освещения, самолетов и так далее. К сожалению, ЛН нельзя использовать вблизи изделий, изготовленных из дерева. Так как иногда бывает сильный нагрев и разрыв спирали, из-за чего может возникнуть чрезвычайная ситуация.

rusenergetics.ru

разновидности + маркировка и правила выбора

Несмотря на целый перечень недостатков, выявленных при сравнении с другими источниками искусственного света, лампы накаливания остаются востребованными и в бытовой сфере, и в промышленных отраслях.

Дешевые и простые в использовании приборы не хотят сдавать свои позиции, хотя на рынке появилось огромное количество более экономичных и «долгоиграющих» заменителей – например, ламп на светодиодах.

В чем же основной секрет их успеха и почему они все еще популярны? Эти вопросы рассмотрим в нашей статье, обратившись к техническим характеристикам обычных лампочек, их основным видам. Также рассмотрим преимущества и недостатки и приведем рекомендации по выбору традиционной лампочки.

Содержание статьи:

Устройство лампы с нитью накала

Еще до недавнего времени лампы накаливания (ЛН) использовались повсеместно и сейчас их все еще покупают – они могут работать как “во всю силу”, ярко освещая помещение, так и снижать яркость с помощью . Из-за распространенности традиционных лампочек среди населения с их конструкционными особенностями знакомы многие.

Причем часто приходилось «знакомиться» по причине выхода источника света из строя: перегорала вольфрамовая нить, лопалось стекло или колба вылетала из цоколя.

Некоторые производители использовали более надежные и проверенные материалы и относились к выпуску лампочек накаливания настолько ответственно, что их продукция работает уже на протяжении нескольких десятилетий. Но это скорее исключение, чем правило – сегодня никаких гарантий на продолжительный срок эксплуатации не дается.

Схематическое изображение лампы с указанием основных деталей. Конструкция источника искусственного освещения с момента изобретения почти не изменилась, совершенствовались только материалы и состав газа, наполняющего колбу

Главный действующий элемент – так называемое тело накала, закрепленное на держателях и присоединенное к электродам. В момент подключения электроэнергии через него проходит напряжение, вызывающее одновременно нагрев и свечение. Чтобы излучение стало видимым, температура нагрева должна достигнуть 570 °С.

Наиболее устойчивым к высокой температуре металлом признан вольфрам. Он начинает плавиться при нагреве до 3422 °С. Чтобы максимально увеличить площадь излучения, но сократить объем тела накала внутри стеклянной колбы, его скручивают в спираль.

Привычный комфортный свет желтого оттенка, который создает уют в доме и по визуальной оценке является «теплым», возникает при нагреве нити до 2830-2850 °С

Для защиты вольфрама от процесса окисления, характерного для металлов, из колбы откачивают воздух и заменяют его вакуумом или газом (криптоном, аргоном и пр.). Технология наполнения вакуумом устарела, для бытовых ламп чаще всего применяют смесь азота и аргона или криптон.

В результате тестирования была выявлена минимальная продолжительность горения лампы – 1 тысяча часов. Но, учитывая случайные причины, выводящие приборы из строя раньше времени, допускается, что нормативы распространяются лишь на 50% продукции из каждой партии. Время работы второй половины может быть больше или меньше – в зависимости от условий использования.

Виды и особенности применения ЛН

Качественные характеристики и маркировка вольфрамовых лампочек регламентирована ГОСТ Р 52712-2007. По типу наполнения колбы приборы ЛН делятся на вакуумные и газополные разновидности.

Первые служат меньше из-за неизбежного испарения вольфрамовой нити. Вдобавок вольфрамовые испарения оседают на стеклянной оболочке вакуумного источника, что ощутимо снижает прозрачность и способность стекла пропускать свет. Выпускают их с моноспиралью, в номенклатурном обозначении им присвоена литера В.

В газополных приборах минимизированы недостатки вакуумных лампочек. Газ сокращает процесс испарения и препятствует оседанию вольфрама на стенках колбы. Газополные моноспиральные виды обозначены буквой Г, а лампочки с дважды навитой спиралью, т.е. биспиральные, маркируются буквой Б. Если биспиральная разновидность имеет номенклатуру БК, значит, в ее наполнении был использован криптон.

В галогенных лампочках ГЛН к наполнителю стеклянной колбы добавляют бром или йод, благодаря которым испаряющиеся атомы вольфрама после испарения возвращаются снова на нить накала. Галогенки выпускают в двух форматах: в виде кварцевых трубок с длинной спиралью или в капсульном варианте с компактным рабочим элементом.

В государственных стандартах деление на группы происходит по сфере применения, однако затрагиваются и другие характеристики. Предположим, на одном уровне рассматриваются «ЛН электрические миниатюрные» (ЛН мн) и «ЛН инфракрасные зеркальные» (ЗК – приборы с концентрированным светораспределением, ЗД – со средним) – как видите, для обозначения категорий выбраны разные критерии.

Существуют группы, которые можно отнести к наиболее востребованным:

  • общего назначения;
  • для транспортных средств;
  • прожекторные;
  • миниатюрные и пр.

Рассмотрим сферы применения и особенности различных категорий, которые в некоторых случаях могут между собой пересекаться.

Галерея изображений

Фото из

Технические параметры приборов группы регламентируются ГОСТ 2239-79. Это самая большая категория, включающая устройства для бытового и промышленного использования, для внутреннего и уличного применения. Мощность – от 15Вт до 1000Вт. Бывают моноспиральные и биспиральные, вакуумные и газополные

Выпуск осветительных приборов ранее регулировался ГОСТ 1182-77. Мощность ламп ограничена, минимальный показатель – 15 Вт, максимальный – 60 Вт. По требованиям техники безопасности напряжение также ограничено и равняется 12 В в помещениях с особо опасными условиями, 36 В – в обычных помещениях

Категория включает в себя четыре подраздела, деление происходит по видам транспорта: судовые, автомобильные, самолетные, железнодорожные. Особенности каждого вида характеризуются механической прочностью, мощностью, напряжением в сети. Лампы-фары имеют особую конструкцию – вместо традиционного цоколя установлены контакты в виде винтов или ламелей

Особенностью источников света является расположение тала накала, позволяющее достигать максимальной яркости и определенной направленности. В эту группу входят прожекторы для киноаппаратуры, фонари для маяков и лампы для прожекторов общего применения. Часть ламп из категории входят в группу приборов для транспорта – например, прожекторы для ж/д составов

Большая группа приборов с ультратонкой вольфрамовой нитью, работающих под низким напряжением. Миниатюрные устройства востребованы в летательной технике, медицинском оборудовании, электронных изделиях. Часто применяются в качестве индикаторов. Штифтовые и резьбовые цоколи имеют нестандартные, маленькие габариты

Инфракрасные лампы с зеркальным напылением, сравнимые по сфере использования с фарами. Обладают увеличенным сроком службы – до 5 тыс. ч. Мощность – 40-1000Вт, напряжение – от 127 до 220 В. Колбы бывают прозрачными или красными, в зависимости от требуемого излучения. Различают два подвида ламп – концентрированного и широкого светораспределения

Галогенные лампы по всем параметрам превосходят обычные аналоги и насчитываю более 150 номенклатурных наименований. Служат примерно в 2 раза дольше обычных «лампочек Ильича», при одинаковых мощностях имеют большую светоотдачу и уменьшенные размеры. Применяются для использования на транспорте, в оборудовании и прожекторах, для общего освещения

В группу включены приборы, конструкции которых стандартизированы, но отличаются от традиционных исполнений. Это лампы для рудников, железнодорожных светофоров, телефонных коммутаторов. Один из подвидов – цилиндрические лампы, применяемые в различных сферах. Сюда же входят инфракрасные зеркальные приборы с алюминиевым отражателем и матовой наружной поверхностью

ЛОН – лампы общего назначения

Электролампы накаливания местного освещения

Лампы электрические для транспортных средств

Мощные лампы прожекторного типа

Сверхминиатюрные и миниатюрные источники искусственного света

Лампы-светильники направленного нагрева

Галогенки – усовершенствованные лампы накаливания

Категория ламп специального назначения

Описание  технических требований к каждой из перечисленных категорий можно найти в соответствующих разделах ГОСТ. Из-за особенностей конструкции и области применения маркировка устройств из различных групп отличается.

Лампу легче подобрать, если ориентироваться в условных обозначениях. Они отражают важные технические характеристики, возможную область использования, особенности конструкции и технологии изготовления.

Маркировка зарубежных производителей напоминает отечественную, но имеет свои особенности. Обычно она носится методом штамповки на цоколь и служит одним из способов отличия оригинального изделия от подделки

Вначале указаны буквы в количестве от 1 до 4, которые отражают характерные конструктивные особенности. Для более легкой расшифровки за основу взята первая буква основополагающего критерия, например, Г – газополная моноспиральная лампа, В – вакуумная моноспиральная, К – криптоновая и др.

Затем следует указание назначения:

  • Ж – железнодорожная;
  • А – автомобильная;
  • СМ – самолетная;
  • ПЖ – для прожекторов и др.

За буквам расположены цифры, обозначающие технические характеристики – напряжение (В) и мощность (ВТ). Маркировка ламп специального типа отличается: мощность не указана, зато можно определить ток, световой поток или силу света. Если в устройстве две спирали, то мощность для каждой из них указывается отдельно.

Последняя цифра может обозначать номер разработки, если конструкция модифицировалась.

Основные технические характеристики

Самым главным параметром источников света с телом накала является мощность, определяемая в ваттах. Назначение ламп разнообразное, поэтому диапазон велик – от 0,1 Вт индикаторных «светлячков» до 23 тыс. Вт прожекторов для маяков.

Компании General Electric и Osram выпускают мощные светильники для театральных и кинематографических постановок.

Прожекторные изделия отличаются не только значением мощности (до 24000Вт), но и световым потоком. Светодиодный прожектор способен выдать 400 000 люменов, тогда как специальная лампа накаливания – 800 000 люменов

В быту используют маломощные приборы, в основном, от 15 Вт до 150 Вт, а в промышленной сфере применяют лампы мощностью до 1500 Вт.

Качество светового потока и степень рассеивания регулируются материалом изготовления колбы. Максимальная светопередача характерна для ламп с прозрачным стеклом, тогда как два других типа поглощают часть света. Например, матовое стекло колбы крадет 3% светового потока, а белое – 20%.

Часто мощность бытовых ламп накаливания ограничена материалом светильников (абажуров, плафонов). Производители люстр и бра обычно указывают рекомендованные параметры – как правило, 40 Вт, реже 60 Вт.

Обычные электролампы сильно нагревают окружающие предметы в отличии, например, от светодиодных или маломощных галогенных, поэтому их нельзя использовать для монтажа в натяжные потолки

В 2011 году лампы накаливания официально признаны низко экономичными и пожароопасными, поэтому был принят закон о прекращении выпуска источников света 100 Вт. На очереди – закон о запрете устройств мощнее 50 Вт.

Однако пользователь ничего не теряет, так как на современном рынке огромное количество более производительных и экономичных и других аналогов.

Таблица, отражающая эффективность работы различных видов бытовых ламп. По указанным техническим характеристикам хорошо видно, как лампы накаливания проигрывают альтернативным вариантам по всем позициям

Сегодня многие отказываются от устаревшего вида ламп из-за большого потребления электроэнергии и короткого срока службы. Однако существуют категории людей, предпочитающие покупать дешевые и неэффективные источники – благодаря им производство лампочек накаливания продолжается.

Второй важный показатель, который обязательно нужно учитывать при покупке, – лампы накаливания, определяемый размером. У импортных и отечественных светодиодных ламп множество разновидностей цоколей, тогда как простые лампы ограничиваются тремя.

Если необходимо заменить лампочку в люстре или настольном светильнике, то обязательно обратите внимание на диаметр цоколя – Е14 или Е27. Приборы с цоколем Е40 в быту не применяют

Сейчас производителей обязывают упаковывать каждое изделие в отдельную коробочку, так что технические характеристики можно отыскать на ней. Обычно указывают мощность, класс энергоэффективности (низкий – Е), тип цоколя, прозрачность колбы, срок службы в часах.

Преимущества и недостатки ламп накаливания

Потребитель продолжает приобретать неэкономичные лампочки благодаря целому ряду плюсов, хотя некоторые из них весьма условны.

По отзывам, их выбирают из-за следующих качеств:

  • невысокая стоимость;
  • отсутствие пускорегулирующего оборудования;
  • моментальное зажигание после включения;
  • привычный «домашний» свет;
  • отсутствие вредных веществ;
  • нет реакции на низкую температуру и электромагнитные импульсы.

Однако мало кто оценивает качество светового потока или пульсацию, все же для большинства решающим оказывается первый фактор.

Но недостатки гораздо весомее, так как среди них сравнительно низкая световая отдача, ограниченный срок службы, небольшой диапазон цветовой температуры (только желтый свет), зависимость от перепадов напряжения в сети, пожароопасность.

Если включить лампу накаливания мощностью 40 Вт, спустя полчаса она нагревается до +145-148 °С и начинает нагревать окружающие предметы, что чревато случайным возгоранием

Сейчас существует возможность сравнить на практике работу ламп накаливания, газоразрядных и светодиодных аналогов. Каждый, кто заметил разницу в энергопотреблении, давно перешел на .

Рекомендации по выбору лампочки

При покупке лампочки ориентируются в первую очередь на величину цоколя и мощность. Эти два параметра легко определить по старому, перегоревшему источнику света.

Специально для любителей традиционных лампочек выпускаются филаментные устройства на светодиодах, похожие по форме, но выгодно отличающиеся своими характеристиками

Если вы выберете устройство меньшей мощности, то световой поток будет слабее, если большей, то рискуете целостностью плафонов – они могут деформироваться из-за высокой температуры нагрева.

Кроме технических характеристик стоит обратить внимание на качество изготовления лампы. Предпочтение стоит отдать изделиям с широким контактом цоколя, пропаянным токопроводом, стабильно закрепленной нитью накала.

Выводы и полезное видео по теме

Еще больше познавательной и интересной информации о производстве, использовании и недостатках ламп накаливания – в видеороликах, снятых специалистами и любителями.

Интересные факты о лампах накаливания:

Как происходит производство ЛН:

Сравнительный обзор ламп разных видов:

Популярно о выборе ламп для дома:

Потребитель сам вправе выбрать лампочку для использования в быту. Однако не стоит гнаться за дешевизной и обманчивой выгодой.

Учитывая, что освещением мы пользуемся постоянно, а лампочек в доме, как правило, более десятка, следует пересмотреть привычки. Многие пользователи давно уже перешли на более надежные, экономичные, безопасные светодиодные лампы.

Вы заметили в изложенном материале ошибки или неточности? Или хотите дополнить эту статью полезными рекомендациями? Напишите нам об этом, пожалуйста, в блоке комментариев.

Если вы предпочитаете использовать традиционные лампочки взамен более экономных энергосберегающих и хотите поделится своим мнением на их счет, пишите свою точку зрения о целесообразности использования обычных лампочек под этой статьей.

sovet-ingenera.com

Как сравнить светодиодную лампу и лампу накаливания / Habr

Какую светодиодную лампу мы имеем правом назвать лампой прямой замены лампы накаливания мощностью 60 Вт, 75 Вт, 100 Вт…?


Минимальное значение светового потока ламп накаливания бытового и аналогичного общего освещения типовых мощностей устанавливает «ГОСТ Р 52706-2007 Лампы накаливания вольфрамовые…». Ориентироваться в этом солидном документе помогут следующие ориентиры:

1) Тип цоколя: Е27. Или подробнее – Е27/27, что означает резьбовой цоколь Эдисона с максимальным диаметром резьбы 27 мм и полной длиной 27 мм.

2) Напряжение питания 230 В. В России с 2003 года номинальное напряжение в сети переменного тока в соответствии с ГОСТ 29322-92 составляет общеевропейские 230 В. В седьмом издании ПУЭ, издание которого завершилось в том же 2003-м году, исправление внести не успели, и многие до сих пор уверены, что «в розетках 220 В».


Лампы накаливания предназначены для работы в сети переменного тока 230В.

3) Световой поток – «H», то есть соответствующий биспиральным лампам. Иные не производятся. (Но так как моноспиральные лампы никто не отменял, если дело дойдет до суда, производитель будет защищаться, указывая на световые потоки моноспиральных ламп «N».)


Развитая поверхности биспирали: конвективный тепловой поток к стенкам колбы в пересчете на единицу светоизлучающей поверхности нити меньше – КПД больше.

4) Типовой световой поток определяется для лампы с прозрачной колбой. Молочное покрытие колбы, оправдывающее снижение светового потока на 20% от номинала в расчет не принимается. При нормальной эксплуатации попадание в поле зрения человека такого яркого объекта как нить накаливания или молочная колба должно быть исключено. Лампа накаливания с молочной колбой – некий компромисс при использовании в декоративных светильниках без светорассеивателя и защитного угла, и ее световой поток не может быть ориентиром.


Для ламп накаливания с молочной колбой допускается снижение светового потока на 20% от номинала, но это значение не может быть ориентиром для энергосберегающей лампы вне зависимости от типа колбы.

5) Снижение светового потока ламп накаливания во время эксплуатации при сравнении не учитывается, так как характерно для любых источников, в том числе светодиодных. В этом отношении непродолжительность времени жизни лампы накаливания является ее достоинством, так как вынуждает регулярно заменять источник света на новый с номинальным световым потоком.


Испаряющийся вольфрам оседает на стенках колбы и со временем снижает световой поток лампы, но короткий срок жизни лампы накаливания определяет частое обновление источника света, и восстановление светового потока осветительного прибора до номинального.

Итак: минимальные значения светового потока для ламп, соответствующих перечисленным требованиям из ГОСТ Р 52706-2007:

Из таблицы следует, что светодиодная лампа со световым потоком 600 лм не является эквивалентом лампы накаливания 60 Вт, а 1000 лм – не является эквивалентом лампы накаливания 100 Вт. Даже если производитель проводит сравнение с существующими только на бумаге моноспиральными лампами.

График заивисимости для всего диапазона 25…200 Вт:

И крупнее актуальный участок 60…100 Вт.

Если задаться вопросом – какой же лампе соответствует произвольный световой поток, либо воспользуемся приведенным выше графиком, либо посчитаем отношение светового потока к потребляемой мощности для ламп накаливания.

Видно, что с ростом мощности эффективность ламп накаливания растет, но в диапазоне 60-100 Вт, в котором находится большинство эксплуатируемых сегодня ламп накаливания и их аналогов, световая отдача незначительно отличается от среднего значения 12,5 лм/Вт. И для грубой оценки лампы с световым потоком, например, 860 лм можно провести несложные расчеты 860 лм / 12,5 лм/Вт=68,8 Вт и сказать что данная лампа является эквивалентом лампы накаливания мощностью ориентировочно 70 Вт. Но поскольку бытовой лампы такой мощности не существует, а до эквивалента 75 Вт лампа не дотягивает, корректно называть данную лампу эквивалентом лампы накаливания мощностью 60 Вт.

_______________

Лампа на заглавной иллюстрации с номинальным световым потоком 710 лм и мощностью 6 Вт куплена мной десять дней назад в киоске около проходной завода «Лисма» за 190р. А затем обсуждена на метрологической сессии III Светотехнического форума, где саранские специалисты подтвердили корректность заявленных характеристик ламп этой серии.

Лампа куплена после экскурсии по заводу, где нам показали производство ламп накаливания, объемы продаж которых в последнее время растут в связи с отказом населения от энергосберегающих (но не деньгосберегающих) КЛЛ. Очевидно, что в связи с быстрым падением цен на светодиодные лампы при их высокой надежности (я окончательно отказался от КЛЛ в пользу светодиодных около трех лет назад, и с тех пор в моем доме из полутора десятков светодиодных ламп не вышла из строя ни одна), спрос на лампы накаливания вскоре снова упадет. И поэтому Лисма в традиционный стеклянный корпус (себестоимостью 4р. 50 коп.) ставит миниатюрный драйвер и светодиодные «нити». Получается светодиодная лампа идентичная по внешнему виду, габаритам и массе лампе накаливания, на замену которой предназначена. И она действительно эквивалентна световому потоку лампы накаливания 60 Вт.

Пост написан, чтобы ответить на ваши вопросы, собрать комментарии и пожелания, и с учетом замечаний рецензентов быть опубликованным в №4 за 2015г журнала «Светотехника». До этого момента публикация данной информации в любом другом светотехническом издании «не является подлинной» ). После публикации вместо этих строчек появиться ссылка.

habr.com

кто придумал и создал первым в мире электрическую лампочку накаливания, история создания Лодыгиным и Эдисоном

Время на чтение: 3 минуты

АА

Споры о том, кто был истинным изобретателем лампы накаливания, ведутся по сей день. В основном, фигурируют два имени – Томас Эдисон и Александр Лодыгин. На самом же деле, великое открытие состоялось благодаря упорной работе многих ученых.

Кто первым в мире и когда придумал и изобрел?

С древних времен люди искали способы освещения в ночное время. Например, в Древнем Египте и Средиземноморье использовались аналоги керосиновой лампы. Для этого в особые глиняные сосуды вставлялся фитиль из хлопчатобумажной ткани и наливалось оливковое масло.

Жители побережья Каспийского моря использовали похожее устройство, только вместо масла в сосуд наливали нефть. В Средние века глиняные светильники сменили свечи из пчелиного воска и сала.

Но во все времена ученые и изобретатели искали возможность создать долговечный и безопасный осветительный прибор.

После того как человечество узнало об электричестве, исследования вышли на качественно новый уровень.

За изобретение первых электрических ламп, подходящих для коммерческого использования, мы должны благодарить трех ученых из разных стран. Независимо друг от друга они проводили свои эксперименты и в итоге добились результата, перевернувшего мир.

ВАЖНО! В 70-е годы XIX века было получено три патента на новейшие устройства – угольные лампы накаливания в вакуумных колбах.

В 1874 г. выдающийся ученый Александр Николаевич Лодыгин запатентовал свою лампу накаливания в России.

В 1878 г. Джозеф Уилсон Суон подал заявку на британский патент.

В 1879 г. американский патент получил изобретатель Томас Эдисон.

Именно Эдисон создал первую промышленную компанию по производству ламп накаливания. Большой заслугой стало то, что он сумел добиться длительной продолжительности работы – более 1200 часов – благодаря использованию карбонизированного бамбукового волокна.

В начале 80-х годов XIX века Эдисон и Суон организовали в Британии совместную компанию. Она так и называлась «Эдисон и Суон». В то время она стала самым крупным производителем электрических ламп.

В 90-е годы Александр Лодыгин переехал в Америку, где и предложил использовать вольфрамовую или молибденовую спираль. Это был очередной технологический прорыв. Лодыгин продал свой патент компании General Electric, которая начала производить электрические лампы с вольфрамовой нитью.

А уже в 1920 году один из работников компании Уильям Дэвид Кулидж рассказал миру, как можно производить вольфрамовую нить в промышленных масштабах. В том же году другой ученый из General Electric по имени Ирвинг Ленгмюр предложил наполнять колбу лампочки инертным газом.

Именно это значительно повысило период работы лампы накаливания, а также увеличило светоотдачу.

Этими устройствами человечество пользуется по сей день.

История создания электрической лампочки

Конечно, история создания лампы неотделима от развития такой науки, как электротехника. Она берет начало с открытия в XVIII веке электрического тока. Это открытие поспособствовало тому, что выдающиеся ученые со всего мира занялись изучением и развитием электротехники, которая к тому времени выделилась в самостоятельную науку.

  • XIX век стал веком глобальных открытий. В 1800 году был изобретен гальванический элемент – химический источник тока. Его еще называют вольтовым столбом в честь итальянского ученого Алессандро Вольта.
  • В следующем году в Санкт-Петербурге руководство Петербургской медико-химической Академии приобрело электрическую батарею. Это мощное устройство было куплено в кабинет профессора Василия Петрова. Состояла батарея из 420 пар гальванических элементов. Целый год профессор Петров проводил с ней эксперименты, пока в 1908 году не открыл знаменитую электрическую дугу. Она представляет собой разряд, возникающий между угольными стержнями-электродами, разведенными на определенное расстояние. Тогда же и было предложено использовать электрическую дугу как источник света.
  • Первым шагом к созданию современных ламп накаливания стало изобретение в 1809 году первой лампы с платиновой спиралью в основе. Сделал это англичанин Деларю.
  • Через несколько десятилетий, в 1854 году немецкий ученый Генрих Гебель создал похожее устройство. Главным отличием было то, что он использовал обугленную бамбуковую нить, помещенную в вакуумный сосуд. То есть, этот вариант был уже гораздо ближе к известной всем нам электрической лампе. Гебель продолжал совершенствовать свое изобретение еще пять лет, создав устройство, которое называют первой практической лампой. К сожалению, получить патент он не мог, т. к. был эмигрантом без денег и связей. Тем не менее, он использовал свое изобретение для освещения принадлежавшего ему магазина часов.
  • Что касается массового электрического освещения, то здесь несомненный вклад внес наш соотечественник, выдающийся ученый Павел Николаевич Яблочков. Свои эксперименты он начал в России, а затем продолжил в Париже после эмиграции. Именно он создал простую, недорогую и долговечную «электрическую свечу». В 1876 году ученый представил свое изобретение на выставке в Лондоне. В том же году лампы, созданные Яблочковым стали появляться сначала на самых посещаемых улицах Парижа, а затем распространились на весь мир.

НА ЗАМЕТКУ! Отличительной чертой «свечи Яблочкова» было то, что для нее не требовалось вакуума. Нить накала, изготовленная из каолина, не перегорала и не теряла своих свойств на открытом воздухе.

И, конечно, говоря об истории электротехники, нельзя не вспомнить ученых, перевернувших мир – Александре Лодыгине и Томасе Эдисоне. Именно они, проводя эксперименты независимо друг от друга, в 70-е годы XIX века создали электрическую лампу.

Александр Лодыгин – изобретатель из России

В 1872 году в Санкт-Петербурге Александр Николаевич Лодыгин приступил к опытам по электрическому освещению.

Его первые лампы представляли собой тонкую угольную палочку, зажатую между объемными стрежнями из меди. Все это находилось в закрытом стеклянном шаре.

Это было еще несовершенное устройство, тем не менее, они начали активно использоваться для освещения зданий и улиц Петербурга.

В 1875 году в товариществе с Коном была выпущена усовершенствованная электрическая лампа. В ней угольки заменялись автоматически, кроме того, они располагались в вакууме. Эта разработка принадлежит электротехнику Василию Федоровичу Дитрихсону.

В 1876 году другой исследователь, Булыгин также внес коррективы. В его разработке уголек выдвигался по мере сгорания.

В конце 70-х годов лампа накаливания, созданная Лодыгиным и запатентованная в России, Франции, Великобритании, Австрии и Бельгии, попала, наконец, и в США. Лейтенант Хотинский отправился к побережью Америки, чтобы принять корабли, построенные для Российского флота. Именно Хотинский посетил лабораторию и показал «лампу Лодыгина» и «свечу Яблочкова» американскому исследователю Томасу Эдисону.

Доподлинно неизвестно, как это повлияло на ход мыслей Эдисона, который и сам в то время работал над созданием искусственного освещения. Как бы то ни было, именно Эдисон довел конструкцию лампы накаливания до качественно нового уровня, а также популяризовал ее, организовав массовое производство. Это помогло значительно снизить стоимость, что позволяло покупать лампу даже беднякам.

Александр Лодыгин также не останавливался в своем рвении усовершенствовать лампу накаливания. После переезда в США, в 1890 году, Лодыгин получил еще один патент – на лампу с металлической нитью из тугоплавких металлов — осьмия, иридия, родия, молибдена и вольфрама. Это был настоящий прорыв в области электротехники. Изобретение имело оглушительный успех, и в 1906 году патерн на него был куплен компанией General Electric. К слову, компания эта принадлежала Томасу Эдисону.

Создание лампочки Эдисоном

Во всем мире принято считать, что электрическую лампочку изобрел ученый Томас Альва Эдисон.

На протяжении многих лет Эдисон ставил эксперименты в области электротехники. В течение почти двух лет он искал идеальный вариант для нити накаливания.

Исследователь провел эксперименты более чем с шестью тысячами углеродсодержащих материалов. Методично перебирая и исследуя разнообразные вещества, Эдисон пришел к выводу, что лучшим вариантом является японский бамбук, из которого создан футляр для веера.

В 1879 году появилась первая заметка в газете, гласящая об изобретении Томасом Эдисоном лампы накаливания с угольным стержнем. Названа она была «Эдисоновский свет». Такая лампа могла непрерывно гореть в течение сорока часов. В том же году Эдисон запатентовал свое изобретение.

Нельзя сказать, что Эдисон внес значительные изменения в лампу накаливания, созданную Лодыгиным.

Как выглядел вариант лампы Эдисона?

Это также была стеклянная колба, из которой был полностью выкачан воздух. Горел в ней так же угольный тонкий стержень. Но именно Эдисон создал условия для максимально комфортной работы ламп накаливания. Он изобрел такие вещи, как винтовой цоколь, патрон, счетчики энергии, а также выключатели и предохранители.

Более того, организовав собственное производство, он поставил на поток изготовление электрических лампочек и механизмов электрический системы. Несмотря на то что лампа накаливания была создана задолго до получения патента американским ученым, именно благодаря Эдисону электрическое освещение получило столь широкое распространение.

Патент Эдисона на лампу накаливания вскоре (еще до окончания срока действия) был призван недействительным.

Говоря о великом изобретении – лампе накаливания – нельзя называть только одно имя. Без сомнения, у нее было несколько выдающихся изобретателей, каждый из которых внес неоценимый вклад в развитие электротехники.

Рейтинг автора

Автор статьи

Доцент кафедры энергетики. Автор статей по осветительным приборам.

Написано статей

Предыдущая

Лампы накаливанияУстройство плавного включения — достоинства и схема работы

Следующая

Лампы накаливанияЯркая, но короткая жизнь ламп накаливания или почему обрывается нить

osvescheniepro.com

Первая лампа накаливания: история изобретения

 

Лампочка накаливая – предмет, знакомый всем. Электричество и искусственный свет уже давно стали для нас неотъемлемой частью действительности. Но мало кто задумывается, как появилась та самая первая и привычная нам лампа накаливания.

Наша статья расскажет вам, что собой представляет лампа накаливания, как она работает и как появилась в России и во всем мире.

Что собой представляет

Лампа накаливания — электрический вариант источника света, основная часть которого представляет собой тугоплавкий проводник, играющий роль тела накала. Проводник размещен в колбе из стекла, которая внутри бывает накаченной инертным газом или полностью лишенной воздуха. Пропуская через тугоплавкий тип проводника электрический ток, данная лампа может испускать световой поток.

Свечение лампы накаливания

Принцип функционирования базируется на том, что когда электрический ток течет по телу накала, данный элемент начинает накаливаться, нагревая вольфрамовую нить. Вследствие этого нить накала начинает испускать излучение электромагнитно-теплового типа (закон Планка). Для создания свечения температура накала должна составлять пару тысяч градусов. При снижении температуры спектр свечения будет становиться все более красным.
Все минусы, имеющиеся у лампы накаливания, кроются в температуре накала. Чем лучше нужен световой поток, тем большая температура потребуется. При этом вольфрамовая нить характеризуется пределом накала, при превышении которого этот источник света навсегда выходит из строя.
Обратите внимание! Температурный предел нагрева для ламп накаливания — 3410 °C.

Конструкционные особенности

Поскольку лампа накаливания считается самым первым источников света, то вполне закономерно, что ее конструкция должна быть достаточной простой. Особенно, если сравнивать с нынешними источниками света, которые ее постепенно вытесняют с рынка.
В лампе накаливания ведущими элементами считаются:

  • колба лампы;
  • тело накала;
  • токовводы.

Обратите внимание! Первая подобная лампа имела именно такое строение.

Конструкция лампы накаливания

На сегодняшний день разработано несколько вариантов ламп накаливания, но такое строение характерно для самых простых и самых первых моделей.
В стандартной лампочке накаливания, кроме вышеописанных элементов имеется предохранитель, который представляет собой звено. Оно состоит из ферроникелевого сплава. Его вваривают в разрыв одного из двух токовводов изделия. Звено размещается в ножке токоввода. Оно нужно для того, чтобы предупредить разрушение стеклянной колбы во время прорыва нити накала. Это связано с тем, что при прорыве вольфрамовой нити создается электрическая дуга. Она может оплавить остатки нити. А ее фрагменты могут повредить колбу из стекла и привести к возникновению возгорания.
Предохранитель же разрушает электрическую дугу. Такое ферроникелевое звено размещается в полости, где давление равняется атмосферному. В данной ситуации дуга гаснет.
Такое строение и принцип работы обеспечили лампе накаливания широкое распространение по миру, но из-за их высокого энергопотребления и непродолжительному сроку службы, она сегодня стали использоваться гораздо реже. Связано это с тем, что появились более современные и эффективные источники света.

История открытия

В создание лампы накаливания в том виде, в котором она известна на сегодняшний день, сделали свой вклад исследователи, как из России, так и из других стран мира.

Александр Лодыгин

До момента, когда изобретатель Александр Лодыгин из России начал трудиться над разработкой ламп накаливания, в ее истории нужно отметить некоторые важные события:

  • в 1809 году известный изобретатель Деларю из Англии создал свою первую лампу накаливания, оснащенную платиновой спиралью;
  • через почти 30 лет в 1938 году уже бельгийский изобретатель Жобар разработал угольную модель лампы накаливания;
  • изобретатель Генрих Гёбель из Германии в 1854 году уже представил первый вариант рабочего источника света.

Лампочка немецкого образца имела обугленную нить из бамбука, которая помещалась в вакуумированный сосуд. В течение пяти последующих лет Генрих Гёбель продолжал свои наработки и в конечном счете пришел к первому опытному варианту рабочей лампочки накаливания.

Первая практичная лампочка

Джозеф Уилсон Суон, знаменитый физик и химик из Англии, в 1860 году явил миру свои первые успехи в области разработки источника света и за свои результаты был вознагражден патентом. Но некоторые трудности, которые возникли с созданием вакуума, показали неэффективную и не долгосрочную работу лампы Суона.
В России, как уже отмечалось выше, исследованиями в области эффективных источников света занимался Александр Лодыгин. В России он смог добиться свечения в стеклянном сосуде угольного стержня, из которого предварительно был откачен воздух. В России история открытия лампочки накаливания началась в 1872 году. Именно в этом году Александру Лодыгины удались его эксперименты с угольным стержнем. Через два года он в России получает патент под номером 1619, который был выдан ему на нитевой вид лампы. Нить он заменил на стержень из угля, находившийся в вакуумной колбе.
Ровно через год В. Ф. Дидрихсон значительно улучшил вид лампы накаливания, созданную в России Лодыгином. Усовершенствование заключалось в замене угольного стержня на несколько волосков.

 

Обратите внимание! В ситуации, когда один из них перегорал, происходило автоматическое включение другого.

Джозеф Уилсон Суон, который продолжал свои попытки усовершенствовать уже имеющеюся модель источника света, получает патент на лампочки. Здесь в качестве нагревательного элемента выступало угольное волокно. Но здесь оно располагалось уже в разреженной атмосфере из кислорода. Такая атмосфера позволила получить очень яркий свет.

Вклад Томаса Эдисона

В 70-х года позапрошлого столетия в изобретательскую гонку по созданию работающей модели лампы накаливания включился изобретатель из Америки — Томас Эдисон.

Томас Эдисон

Он проводил исследования в вопросе применения в виде элемента накаливания нитей, произведенных из разнообразных материалов. Эдисон в 1879 году получает патент на лампочку, оснащенной платиновой нитью. Но через год он возвращается к уже проверенному угольному волокну и создает источник света со сроком эксплуатации в 40 часов.

Обратите внимание! Одновременно с работой по созданию эффективного источника света, Томас Эдисон создал поворотный тип бытового выключателя.

При том, что лампочки Эдисона работают всего лишь 40 часов, они начали активно вытеснять с рынка старый вариант газового освещения.

Результаты работ Александра Лодыгина

В то время, как на другом конце мира Томас Эдисон проводил свои эксперименты, в России аналогичными изысканиями продолжал заниматься Александр Лодыгин. Он в 90-х годах 19 века изобрел сразу несколько видов лампочек, нити которых были изготовлены из тугоплавких металлов.

Обратите внимание! Именно Лодыгин первым решился использовать вольфрамовую нить в качестве тела накаливания.

Лампочка Лодыгина

Кроме вольфрама он также предлагал использовать нити накаливания, изготовленные из молибдена, а также скручивать их в форме спирали. Такие свои нити Лодыгин размещал в колбах, из которых откачивался весь воздух. Вследствие таких действий нити предохранялись от кислородного окисления, что делало срок службы изделий значительно продолжительным.
Первый тип коммерческой лампочки, произведенный в Америке, содержала вольфрамовую нить и изготавливалась по патенту Лодыгина.
Также стоит отметить, что Лодыгиным были разработаны газонаполненные лампы, содержащие угольные нити и заполненные азотом.
Таким образом, авторство первой лампочки накаливания, отправленной в серийное производство, принадлежит именно российскому исследователю Александру Лодыгину.

Особенности работы лампочки Лодыгина

Для современных ламп накаливания, которые являются прямыми потомками модели Александра Лодыгина, характерны:

  • отменный световой поток;
  • отличная цветопередача;

Цветопередача лампы накаливания

  • низкий показатель конвекции и проводимости тепла;
  • температура накала нити — 3400 K;
  • при максимальном уровне показателя температуры накала коэффициент для полезного действия составляет 15 %.

Кроме этого данный тип источника света в ходе своей работы потребляет много электроэнергии, по сравнению с другими современными лампочками. Из-за конструкционных особенностей такие лампы могут работать примерно 1000 часов.
Но, несмотря на то, что по многим критериям оценки данная продукция уступает более совершенным современным источникам света, она, благодаря своей дешевизне, все еще остается актуальной.

Заключение

В создании эффективной лампы накаливания участвовали изобретатели из разных стран. Но только российский ученый Александр Лодыгин смог создать самый оптимальный вариант, которым мы, собственно, и продолжаем пользоваться по сегодняшний день.

 

1posvetu.ru

Строение лампы накаливания и применяемые в ней материалы

Дата публикации: .
Категория: Лампы.

Устройство и назначение основных частей ламп накаливания

Разбирая строение лампы накаливания (рисунок 1, а) мы обнаруживаем, что основной частью ее конструкции является тело накала 3, которое под действием электрического тока накаливается вплоть до появления оптического излучения. На этом собственно и основан принцип действия лампы. Крепление тела накала внутри лампы осуществляется при помощи электродов 6, обычно удерживающих его концы. Через электроды также осуществляется подвод электрического тока к телу накала, то есть они являются еще внутренними звеньями выводов. При недостаточной устойчивости тела накала, используют дополнительные держатели 4. Держатели посредством впайки устанавливают на стеклянном стержне 5, именуемым штабиком, который имеет утолщение на конце. Штабик сопряжен со сложной стеклянной деталью – ножкой. Ножка, она изображена на рисунке 1, б, состоит из электродов 6, тарелочки 9, и штенгеля 10, представляющего собой полую трубочку через которую откачивается воздух из колбы лампы. Общее соединение между собой промежуточных выводов 8, штабика, тарелочки и штенгеля образует лопатку 7. Соединение производится путем расплавления стеклянных деталей, в процессе чего проделывается откачное отверстие 14 соединяющее внутреннюю полость откачной трубки с внутренней полостью колбы лампы. Для подвода электрического тока к нити накала через электроды 6 применяют промежуточные 8 и внешние выводы 11, соединяемые между собой электросваркой.

Рисунок 1. Устройство электрической лампы накаливания (а) и ее ножки (б)

Для изоляции тела накала, а также других частей лампочки от внешней среды, применяется стеклянная колба 1. Воздух из внутренней полости колбы откачивается, а вместо него закачивается инертный газ или смесь газов 2, после чего конец штенгеля нагревается и запаивается.

Для подвода к лампе электрического тока и ее крепления в электрическом патроне лампа оборудуется цоколем 13, крепление которого к горлу колбы 1 осуществляется при помощи цоколевочной мастики. На соответствующие места цоколя припаивают выводы лампы 12.

От того как расположено тело накала и какой оно формы зависит светораспределение лампы. Но касается это только ламп с прозрачными колбами. Если представить, что нить накала представляет собой равнояркий цилиндр и спроецировать исходящий от нее свет на плоскость перпендикулярную наибольшей поверхности светящей нити или спирали, то на ней окажется максимальная сила света. Поэтому для создания нужных направлений сил света, в различных конструкциях ламп, нитям накала придают определенную форму. Примеры форм нитей накала приведены на рисунке 2. Прямая неспирализированная нить в современных лампах накаливания почти не применяется. Связано это с тем, что с увеличением диаметра тела накала уменьшаются потери тепла через газ наполняющий лампу.

Рисунок 2. Конструкция тела накала:
а – высоковольтной проекционной лампы; б – низковольтной проекционной лампы; в – обеспечивающая получение равнояркого диска

Большое количество тел накала подразделяют на две группы. Первая группа включает в себя тела накала, применяемые в лампах общего назначения, конструкция которых изначально задумывалась как источник излучения с равномерным распределением силы света. Целью конструирования таких ламп является получение максимальной световой отдачи, что достигается путем уменьшения числа держателей, через которые происходит охлаждение нити. Ко второй группе относят так называемые плоские тела накала, которые выполняют либо в виде параллельно расположенных спиралей (в мощных высоковольтных лампах), либо в виде плоских спиралей (в маломощных лампах низкого напряжения). Первая конструкция выполняется с большим числом молибденовых держателей, которые крепятся специальными керамическими мостиками. Длинная нить накала размещается в виде корзиночки, тем самым достигается большая габаритная яркость. В лампах накаливания, предназначенных для оптических систем, тела накала должны быть компактными. Для этого тело накала свертывают в дужку, двойную или тройную спираль. На рисунке 3 приведены кривые силы света, создаваемые телами накала различных конструкций.

Рисунок 3. Кривые силы света ламп накаливания с различными телами накала:
а – в плоскости, перпендикулярной оси лампы; б – в плоскости, проходящей через ось лампы; 1 – кольцевая спираль; 2 – прямая биспираль; 3 – спираль, расположенная по поверхности цилиндра

Требуемые кривые силы света ламп накаливания можно получить применением специальных колб с отражающими или рассеивающими покрытиями. Использование отражающих покрытий на колбе соответствующей формы позволяет иметь значительное разнообразие кривых силы света. Лампы с отражающими покрытиями называют зеркальными (рисунок 4). При необходимости обеспечить особо точное светораспределение в зеркальных лампах применяют колбы, изготовленные методом прессования. Такие лампы называются лампами-фарами. В некоторых конструкциях ламп накаливания имеются встроенные в колбы металлические отражатели.

Рисунок 4. Зеркальные лампы накаливания

Применяемые в лампах накаливания материалы

Металлы

Основным элементом ламп накаливания является тело накала. Для изготовления тела накала наиболее целесообразно применять металлы и другие материалы с электронной проводимостью. При этом пропусканием электрического тока тело будет накаливаться до требуемой температуры. Материал тела накала должен удовлетворять ряду требований: иметь высокую температуру плавления, пластичность, позволяющую тянуть проволоку различного диаметра, в том числе весьма малого, низкую скорость испарения при рабочих температурах, обуславливающую получение высокого срока службы, и тому подобных. В таблице 1 приведены температуры плавления тугоплавких металлов. Наиболее тугоплавким металлом является вольфрам, что наряду с высокой пластичностью и низкой скоростью испарения обеспечило его широкое использование в качестве тела накала ламп накаливания.

Таблица 1

Температура плавления металлов и их соединений

Металлы T, °С Карбиды и их смеси T, °С Нитриды T, °С Бориды T, °С
Вольфрам
Рений

Тантал
Осмий

Молибден
Ниобий

Иридий
Цирконий

Платина
3410
3180

3014
3050

2620
2470

2410
1825

1769
4TaC +
+ HiC

4TaC +
+ ZrC

HfC
TaC

ZrC
NbC

TiC
WC

W2C
MoC

VnC
ScC

SiC
3927

3927

3887
3877

3527
3427

3127
2867

2857
2687

2557
2377

2267

TaC +
+ TaN

HfN
TiC +

+ TiN
TaN

ZrN
TiN

BN
3373

3307
3227

3087
2977

2927
2727

HfB
ZrB

WB
3067
2987

2927

Скорость испарения вольфрама при температурах 2870 и 3270°С составляет 8,41×10-10 и 9,95×10-8 кг/(см²×с).

Из других материалов перспективным можно считать рений, температура плавления которого немного ниже, чем у вольфрама. Рений хорошо поддается механической обработке в нагретом состоянии, стоек к окислению, имеет меньшую скорость испарения, чем вольфрам. Имеются зарубежные публикации о получении ламп с вольфрамовой нитью с добавками рения, а также покрытия нити слоем рения. Из неметаллических соединений интерес представляет карбид тантала, скорость испарения которого на 20 – 30% ниже, чем у вольфрама. Препятствием к использованию карбидов, в частности карбида тантала, является их хрупкость.

В таблице 2 приведены основные физические свойства идеального тела накала, изготовленного из вольфрама.

Таблица 2

Основные физические свойства вольфрамовой нити

Температура, К Скорость испарения, кг/(м²×с) Удельное электрическое сопротивление, 10-6 Ом×см Яркость кд/м² Световая отдача, лм/Вт Цветовая температура, К
1000
1400

1800
2200

2600
3000

3400
5,32 × 10-35
2,51 × 10-23
8,81 × 10-17
1,24 × 10-12
8,41 × 10-10
9,95 × 10-8
3,47 × 10-6
24,93
37,19

50,05
63,48

77,49
92,04

107,02
0,0012
1,04

51,2
640

3640
13260

36000
0,0007
0,09

1,19
5,52

14,34
27,25

43,20
1005
1418

1823
2238

2660
3092

3522

Важным свойством вольфрама является возможность получения его сплавов. Детали из них сохраняют устойчивую форму при высокой температуре. При нагреве вольфрамовой проволоки, в процессе термической обработки тела накала и последующих нагревах происходит изменение ее внутренней структуры, называемое термической рекристаллизацией. В зависимости от характера рекристаллизации тело накала может иметь большую или меньшую формоустойчивость. Влияние на характер рекристаллизации оказывают примеси и присадки, добавляемые в вольфрам в процессе его изготовления.

Добавка к вольфраму окиси тория ThO2 замедляет процесс его рекристаллизации и обеспечивает мелкокристаллическую структуру. Такой вольфрам является прочным при механических сотрясениях, однако он сильно провисает и поэтому не пригоден для изготовления тел накала в виде спиралей. Вольфрам с повышенным содержанием окиси тория используется для изготовления катодов газоразрядных ламп из-за его высокой эмиссионной способности.

Для изготовления спиралей применяют вольфрам с присадкой оксида кремния SiO2 вместе со щелочными металлами – калием и натрием, а также вольфрам, содержащий, кроме указанных, присадку оксида алюминия Al2O3. Последний дает наилучшие результаты при изготовлении биспиралей.

Электроды большинства ламп накаливания выполняют из чистого никеля. Выбор обусловлен хорошими вакуумными свойствами этого металла, выделяющего сорбированные в нем газы, высокими токопроводящими свойствами и свариваемостью с вольфрамом и другими материалами. Ковкость никеля позволяет заменять сварку с вольфрамом обжатием, обеспечивающим хорошую электро- и теплопроводность. В вакуумных лампах накаливания вместо никеля используют медь.

Держатели изготавливают как правило, из молибденовой проволоки, сохраняющей упругость при высокой температуре. Это позволяет поддерживать тело накала в растянутом состоянии даже после его расширения в результате нагрева. Молибден имеет температуру плавления 2890 К и температурный коэффициент линейного расширения (ТКЛР), в интервале от 300 до 800 К равный 55 × 10-7 К-1. Из молибдена делают также вводы в тугоплавкие стекла.

Выводы ламп накаливания изготавливают из медной проволоки, которую приваривают торцевой сваркой к вводам. У ламп накаливания малой мощности отдельные выводы отсутствуют, их роль выполняют удлиненные вводы, изготовленные из платинита. Для припаивания выводов к цоколю применяют оловянно-свинцовый припой марки ПОС-40.

Стекла

Штабики, тарелочки, штенгели, колбы и другие стеклянные детали, применяемые в одной и той же лампе накаливания, изготовляют из силикатного стекла с одинаковым температурным коэффициентом линейного расширения, что необходимо для обеспечения герметичности мест сварки этих деталей. Значения температурного коэффициента линейного расширения ламповых стекол должны обеспечивать получение согласованных спаев с металлами, используемыми для изготовления вводов. Наибольшее распространение получило стекло марки СЛ96-1 со значением температурного коэффициента, равным 96 × 10-7 К-1. Это стекло может работать при температурах от 200 до 473 К.

Одним из важных параметров стекла является интервал температур, в пределах которого оно сохраняет свариваемость. Для обеспечения свариваемости некоторые детали изготовляют из стекла марки СЛ93-1, отличающегося от стекла марки СЛ96-1 химическим составом и более широким интервалом температур, в котором оно сохраняет свариваемость. Стекло марки СЛ93-1 отличается повышенным содержанием окиси свинца. При необходимости уменьшения размеров колб применяют более тугоплавкие стекла (например, марки СЛ40-1), температурный коэффициент которых составляет 40 × 10-7 К-1. Эти стекла могут работать при температурах от 200 до 523 К. Наиболее высокую рабочую температуру имеет кварцевое стекло марки СЛ5-1, лампы накаливания из которого могут работать при 1000 К и более в течение нескольких сотен часов (температурный коэффициент линейного расширения кварцевого стекла 5,4 × 10-7 К-1). Стекла перечисленных марок прозрачны для оптического излучения в интервале длинн волн от 300 нм до 2,5 – 3 мкм. Пропускание кварцевого стекла начинается от 220 нм.

Вводы

Вводы изготовляют из материала, который наряду с хорошей электропроводностью должен иметь тепловой коэффициент линейного расширения, обеспечивающий получение согласованных спаев с применяемыми для изготовления ламп накаливания стеклами. Согласованными называют спаи материалов, значения теплового коэффициента линейного расширения которых во всем интервале температур, то есть от минимальной до температуры отжига стекла, отличаются не более чем на 10 – 15%. При впае металла в стекло лучше, если тепловой коэффициент линейного расширения металла несколько ниже, чем у стекла. Тогда при остывании впая стекло обжимает металл. При отсутствии металла, обладающего требуемым значением теплового коэффициента линейного расширения, приходится изготовлять не согласованные впаи. В этом случае вакуумно-плотное соединение металла со стеклом во всем диапазоне температур, а также механическая прочность впая обеспечиваются специальной конструкцией.

Согласованный спай со стеклом марки СЛ96-1 получают при использовании платиновых вводов. Дороговизна этого металла привела к необходимости разработки заменителя, получившего название «платинит». Платинит представляет собой проволоку из железоникелевого сплава с температурным коэффициентом линейного расширения меньшим, чем у стекла. При наложении на такую проволоку слоя меди можно получить хорошо проводящую биметаллическую проволоку с большим температурным коэффициентом линейного расширения, зависящим от толщины слоя наложенного слоя меди и теплового коэффициента линейного расширения исходной проволоки. Очевидно, что такой способ согласования температурных коэффициентов линейного расширения позволяет осуществлять согласование в основном по диаметральному расширению, оставляя несогласованным температурный коэффициент продольного расширения. Для обеспечения лучшей вакуумной плотности спаев стекла марки СЛ96-1 с платинитом и усиления смачиваемости поверх слоя меди, окисленного по поверхности до закиси меди, проволока покрывается слоем буры (натриевая соль борной кислоты). Достаточно прочные впаи обеспечиваются при использовании платиновой проволоки диаметром до 0,8 мм.

Вакуумно-плотный впай в стекло СЛ40-1 получают при использовании молибденовой проволоки. Эта пара дает более согласованный впай, чем стекло марки СЛ96-1 с платинитом. Ограниченное применение этого впая связано с дороговизной исходных материалов.

Для получения вакуумно-плотных вводов в кварцевое стекло необходимы металлы с весьма малым тепловым коэффициентом линейного расширения, которых не существует. Поэтому необходимый результат получаю благодаря конструкции ввода. В качестве металла используют молибден, отличающийся хорошей смачиваемостью кварцевым стеклом. Для ламп накаливания в кварцевых колбах применяют простые фольговые вводы.

Газы

Наполнение ламп накаливания газом позволяет повысить рабочую температуру тела накала без уменьшения срока службы из-за снижения скорости распыления вольфрама в газовой среде по сравнению с распылением в вакууме. Скорость распыления снижается с ростом молекулярной массы и давления наполняющего газа. Давление наполняющих газов составляет около 8 × 104 Па. Какой газ для этого использовать?

Использование газовой среды приводит к появлению тепловых потерь из-за теплопроводности через газ и конвекции. Для снижения потерь выгодно заполнять лампы тяжелыми инертными газами или их смесями. К таким газам относятся получаемые из воздуха азот, аргон, криптон и ксенон. В таблице 3 приведены основные параметры инертных газов. Азот в чистом виде не применяют из-за больших потерь, связанных с его относительно высокой теплопроводностью.

Таблица 3

Основные параметры инертных газов

Газ Молекулярная масса Потенциал ионизации, В Теплопроводность, 10-2 Вт/(м×К)
Водород
Аргон

Криптон
Ксенон
28,01
39,94

83,70
131,30
15,80
15,69

13,94
12,08
2,38
1,62

0,80
0,50

Источник: Афанасьева Е. И., Скобелев В. М., «Источники света и пускорегулирующая аппаратура: Учебник для техникумов», 2-е издание переработанное – Москва: Энергоатомиздат, 1986 – 272с.

artillum.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о