Как сделать 12 вольтовый блок питания: Простой БП своими руками

Содержание

Напряжение с блока питания компьютера, как взять 12 вольт.

В современном мире существует множество различных устройств, требующих подключения к электросети. Для некоторых из них требуется определенный блок питания. Напряжение и сила тока играют важную роль в функционировании любого электроприбора. В сегодняшней статье я хочу рассказать о том, как взять напряжение с блока питания компьютера и каким образом можно получить 12 Вольт.

Что вы узнаете


Какое напряжение с блока питания компьютера можно получить

Вы, наверное, сами прекрасно понимаете, что системный блок ПК – это комплекс устройств позволяющих системе работать. Каждое из них требует подключения к электрической сети. Но вот для определенного оборудования оно может быть разным. Допустим, большинство вентиляторов работают от 5 Вольт при силе тока в 0.1 Ампер. Для других устройств требуются другие значения. Именно для обеспечения работы всех комплектующих имеется блок питания компьютера. Он преобразует напряжение и обеспечивает каждое изделие необходимым током. Если мы рассмотрим БП компьютера, то увидим, что в нем имеется огромное количество проводов и портов для подключения. Они имеют свои цвета, и это не просто так. На боковой или задней стенке корпуса блока питания имеется табличка, на которой указана вся необходимая информация.

Разбираемся с маркировкой

Взгляните на картинку. Там указано, что оранжевый провод (orange) имеет исходящее напряжение в +3.3V, желтый (yellow) — +12V, красный (red) — +5V и так далее. Кроме этого, есть пометка о силе тока. Черный провод в большинстве случаев является общим (минусом или «земля»). Исходя из полученной информации, можно понять, что получить нужное напряжение с блока питания, даже работающего, совсем не сложно.

Учитывайте, что блок питания запускается замыканием проводов GND (минус) и PWR SW. Работает до тех пор, пока данные цепи замкнуты! То есть, разъемы будут работать только тогда, когда блок питания подаст напряжение.

Для чего может понадобиться напряжение с блока питания компьютера

Вы спросите, а зачем вообще это нужно? Расскажу на своем опыте. Мне в руки попался монитор, работающий от 12 Вольт, однако кабеля подключения к электросети у меня не было. Имеющиеся блочки от других устройств не подходили по силе тока или по напряжению. Монитор нужно было проверить в течение дня, а отправиться на поиски нужного зарядного, не было ни времени, ни желания. Взяв 12 Вольт с желтого провода на молексе БК питания компьютера, мне удалось включить монитор. Оказалось, что это вполне удобно. Не нужно искать лишнюю розетку, а сам экран запускается вместе с системным блоком. Спустя год у меня все так и работает.

Существует еще целый ряд возможностей, которые дает напряжение с блока питания компьютера.

  • Многие мастера из БП ПК делают блок питания для шуруповерта и других электроинструментов.
  • Существует возможность переделать блок питания ПК под автомобильное зарядное для аккумуляторов.
  • Вы всегда можете зарядить любое устройство, выбрав нужное напряжение. Согласитесь, ведь часто бывает так, что оригинальные блоки выходят из строя в самый неподходящий момент.
  • Можно запитать диодную ленту или любой другой осветительный прибор, требующий небольшое напряжение.

Как взять 12 вольт с блока питания компьютера

Как вы уже поняли, взять напряжение с блока питания компьютера достаточно просто. Вам необходимо лишь подключить устройство к желтому проводу (плюс) и черному (минус). Только будьте внимательны и не перепутайте полярность, иначе ваше устройство, скорее всего, выйдет из строя. Опять же повторюсь, не забывайте о том, что блок питание подаст напряжение на провода только тогда, когда он будет запущен. Если вы работаете с демонтированным БП ПК, который изъят из корпуса, то необходимо запустить устройство путем замыкания проводов GND (минус) и PWR SW.

Если вы еще не знакомы со статьей моего коллеги «Варрам — робот для вашего питомца», то прочесть её можно нажав сюда.

Немного информации в помощь

Для того, чтобы вам было легче понять, какое напряжение с блока питания вы получите, я составил небольшую таблицу. Пользоваться ей нужно по такому принципу: положительное напряжение + ноль =итог.

Положительное Ноль Итог
+12V 0V +12V
+5V -5V +10V
+12V +3,3V +8,7V
+3,3V -5V +8,3V
+12V +5V +7V
+5V 0V +5V
+3,3V 0V +3,3V
+5V +3,3V +1,7V
0V 0V 0V

А вы знаете, что не пропустите ни один наш материал, если оформите подписку? Оформить подписку легко: достаточно лишь ввести свой email в форму под этой статьей и нажать на кнопку «Подписаться на рассылку». И вы всегда будете в курсе наших публикаций!

Надеюсь, сегодняшняя статья была понятна и полезна. Теперь вы знаете, как получить нужное напряжение с блока питания компьютера и каким образом взять 12 Вольт. Однако помните, что обращение с электроприборами требует соблюдения правил техники безопасности. В случае, если вы не уверены в своих знаниях, лучше попросить помощи у профессионала.

Автор статьи:

Надеюсь мои статьи будут вам полезны, ведь я стараюсь передать весь имеющийся опыт и знания. С радостью отвечу на все возникшие вопросы и могу дать дельный совет. Буду ждать ваших отзывов, мнений и предложений.

Где взять блок питания на 12 вольт

Как «запитать» автомагнитолу от компьютерного блока питания?

Главная тема уже озвучена в заголовке, поэтому перейдём сразу к делу. Итак, что нам понадобится? Во-первых, рабочая автомагнитола или автомобильный CD/MP3-ресивер. У меня на руках оказался автомобильный CD/MP3-ресивер Panasonic CQ-DFX883N.

Во-вторых, компьютерный блок питания формата AT или ATX. Сейчас полно компьютерного железа от старых ПК, в том числе и блоков питания.

Где его можно найти бесплатно или за минимальные деньги?

Вытащить из своего старого ПК, который пылится в чулане;

Купить за копейки на «барахолке» – такие 100% есть на любом радиорынке;

Починить и довести до ума неисправный компьютерный БП.

Для своей затеи я купил «бэушный» блок питания как раз на «барахолке».

Прежде чем подключать компьютерный БП к автомагнитоле – нужно его проверить и, если надо, довести до рабочего состояния. Об этом чуть позже, а пока о том, как подключить автомагнитолу к компьютерному БП.

Подключение автомагнитолы к компьютерному БП.

У компьютерного блока питания (БП) есть здоровый жгут с выходными разъёмами. Провода чёрного цвета – это минус или общий провод. По жёлтым подаётся напряжение +12V. Остальные провода нам будут не нужны – их использовать не будем. Так вот нам нужно от блока питания взять всего-навсего 12V. Для этого берём любой из разъёмов MOLEX или Floppy-разъём. Далее откусываем от него жёлтый провод (+12V) и чёрный провод – минусовой. Затем подключаем эти провода к питающим проводам автомагнитолы.

Стоит отметить, что выходной канал на +12V достаточно мощный и может «отдать» в нагрузку ток в 8-10 ампер (при мощности БП 200 – 300 Вт.), что, собственно, нам и нужно. Обычно, максимальный ток, потребляемый автомобильным CD/MP3-ресивером составляет 10-15 ампер. Но это максимум!

Кроме этого нужно провести лёгкую доработку, если у вас блок питания формата ATX. Об этом расскажу чуть позднее.

У автомагнитолы имеется 3 провода, к которым подключается питание (напряжение +12V) от штатной электросети автомобиля. Чёрный провод – это минус (по другому – общий провод, «земля», Ground). Жёлтый провод – это +12V (маркируется как Battery ). Это основные провода для подключения питания к автомагнитоле.

Но даже если подключить эти провода к аккумулятору или БП, автомагнитолу мы не включим – она будет в дежурном («спящем») режиме.

Поэтому ищем красный провод (маркируется ACC ) у автомагнитолы и скручиваем его вместе с жёлтым проводом +12V. Штатно красный провод подключается к замку зажигания авто.

Как только водитель замыкает ключом зажигания электрическую цепь, автомагнитола автоматически переходит из спящего режима в рабочий – включается подсветка дисплея автомагнитолы. При этом красный провод через замок зажигания закорачивается на плюс +12V. Мы же это делаем, принудительно соединяя жёлтый (+12V) и красный провод.

При этом автомагнитола будет включатся сразу же при подаче напряжения.

Отличие компьютерных блоков питания формата AT от ATX.

Компьютерные блоки формата AT не имеют дежурного блока питания +5 (Standby) и выходных напряжений 3,3V. Поэтому при включении такого блока на его выходах +12V, +5V, -12V, -5V напряжение появляется сразу.

У блоков питания формата ATX есть дежурный источник питания на +5VSB (Standby). Он работает всегда, пока блок питания подключен к сети 220V. Чтобы на выходных каналах появились напряжения +12V, -12V, +5V, -5V, +3,3V нужно на главном выходном разъёме замкнуть

зелёный и чёрный провод.

Если вы хотите, чтобы выходные напряжения появлялись сразу после включения БП, то можно установить перемычку между зелёным (Power ON) и чёрным проводом. При этом блок питания будет выходить из «спящего» режима сразу после подачи на него напряжения сети 220V.

Восстановление компьютерного блока питания.

Для начала пробуем включить блок питания. В большинстве случае бывшие в употреблении (б/у или «бэушные») блоки питания от ПК, как правило, рабочие, но имеют некоторые дефекты (отсутствие некоторых выходных напряжений, пониженное напряжение на одном из каналов +12, -12, +5, -5 вольт и т.п.). Даже если блок питания запустился – при этом начнёт крутить вентилятор – стоит вскрыть корпус блока питания, выгрести из него всю пыль, открутить печатную плату и осмотреть контакты на предмет непропая. Если нужно – исправить дефекты.

Перед проведением любых работ необходимо отключать блок питания от сети 220V. Также после этого не помешает принудительно разрядить высоковольтные электролитические конденсаторы входного выпрямителя (220-470 мкФ. * 250V). Сделать это можно подключив на несколько секунд резистор на 100-200 кОм параллельно контактам конденсатора. Естественно, держать пальцами резистор не стоит – иначе можно получить лёгкий удар током.

Эта операция необходима потому, что остаточный электрический заряд конденсаторов опасен (в рабочем режиме на них 200V!). При случайном касании выводов конденсаторов можно получить лёгкий электрический удар. Явление весьма неприятное.

Особое внимание стоит обратить на состояние электролитических конденсаторов выходных выпрямителей. Если они вздуты, имеют разрыв засечки, то их нужно заменить новыми.

Более подробно об устройстве компьютерных блоков питания формата AT рассказано здесь.

Чтобы блок питания выглядел более солидно можно покрасить его аэрозольной краской-спреем (продаётся в любом магазине автозапчастей).

Для проверки работы отдельных блоков бытовых приборов домашнему мастеру может понадобиться напряжение 12 вольт как постоянного, так и переменного тока. Подробно разберем оба случая, но вначале необходимо рассмотреть еще одну величину электроэнергии — мощность, которая характеризует способность устройства надежно совершить работу.

Если мощности источника будет недостаточно, то он не выполнит задачу. К примеру, блок питания компьютера и аккумулятор автомобиля выдают 12 вольт. Токи нагрузки у компьютера редко превышают значения 20 ампер, а стартерный ток аккумулятора автомобиля больше 200 А.

Автомобильный аккумулятор обладает большим резервом мощности для задач компьютера, а вот блок питания ПК при таком же напряжении 12 вольт абсолютно не пригоден для раскрутки стартера, он просто сгорит.

Способы получения постоянного напряжения

Из гальванических элементов (батареек)

Промышленность выпускает круглые батарейки различных габаритов (зависят от мощности) с напряжением 1,5 вольта. Если взять 8 штук, то из них при последовательном подключении как раз получится 12 вольт.

Соединять между собой выводы батареек надо поочередно «плюсом» предыдущей к «минусу» последующей. Напряжение 12 вольт будет между первым и последним выводами, а промежуточные значения, например, 3, 6 или 9 вольт можно замерить на двух, четырех, шести батарейках.

Емкости элементов не должны отличаться, иначе мощность схемы будет уменьшена ослабленной батарейкой. Для таких устройств желательно применять все элементы однотипной серии с общей датой изготовления. Ток нагрузки от всех 8 батареек, собранных последовательно, соответствует величине, указанной для одного элемента.

Если возникнет необходимость подключения такой батареи к нагрузке, в два раза превышающей номинальную величину источника, то потребуется создать еще одну подобную конструкцию и обе батареи подключить параллельно, соединив между собой их однополярные выводы: «+» к «+», а «-» к «-».

Из малогабаритных акккумуляторов

Никель-кадмиевые аккумуляторы выпускаются с напряжением 1,2 вольта. Чтобы получить от них 12 вольт понадобится 10 элементов соединять последовательно, как в рассмотренной перед этим схеме.

По такому же принципу собирают батарею из никель-металл-гидридных АКБ.

Аккумуляторная батарея используется для более длительной работы, чем из обычных гальванических элементов: АКБ можно подзаряжать и перезаряжать многократно при необходимости.

От блоков питания, работающих на переменном токе

Многие бытовые приборы имеют встроенную электронику, которая питается от выпрямленного напряжения, получаемого в результате преобразования 220 вольт. Блоки питания компьютера, ноутбука как раз выдают 12 вольт выпрямленного и стабилизированного напряжения.

Достаточно подключиться к соответствующим клеммам выходного разъема и запитать блок питания, чтобы получить от него 12 вольт.

Аналогичным образом можно воспользоваться блоками питания старых радиоприемников, магнитофонов и устаревших телевизоров.

Кроме того, можно самостоятельно собрать блок питания для постоянного тока, выбрав для него подходящую схему. Наиболее распространены трансформаторные устройства, преобразующие 220 вольт во вторичное напряжение, которое выпрямляется диодным мостом, сглаживается конденсатором и регулируется транзистором с помощью подстроечного резистора.

Схема простого зарядного устройства

Подобных схем можно найти много. В них удобно включать стабилизаторные устройства.

Способы получения переменного напряжения

Самым доступным методом считается применение понижающего трансформатора, который уже показан на предыдущей схеме. Промышленность уже давно выпускает такие устройства для различных целей.

Однако домашнему мастеру совсем не сложно сделать трансформатор для своих нужд из старых конструкций.

Для подключения трансформатора к сети 220 на первичную обмотку следует подавать питание через защиту, вполне можно обойтись проверенным предохранителем, хотя автоматический выключатель лучше подойдет для этих целей.

Вся схема вторичной нагрузки должна быть собрана заранее и проверена. Резерв мощности трансформатора около 30% позволит длительно его эксплуатировать без перегрева изоляции.

Технически возможно получить 12 вольт переменного тока от генератора, который приводится во вращение каким-либо двигателем или за счет преобразования постоянного тока инвертором. Однако эти способы более подходят для промышленных установок и отличаются сложной конструкцией. Поэтому в быту практически не используются.

В современном мире существует множество различных устройств, требующих подключения к электросети. Для некоторых из них требуется определенный блок питания. Напряжение и сила тока играют важную роль в функционировании любого электроприбора. В сегодняшней статье я хочу рассказать о том, как взять напряжение с блока питания компьютера и каким образом можно получить 12 Вольт.


Какое напряжение с блока питания компьютера можно получить

Вы, наверное, сами прекрасно понимаете, что системный блок ПК – это комплекс устройств позволяющих системе работать. Каждое из них требует подключения к электрической сети. Но вот для определенного оборудования оно может быть разным. Допустим, большинство вентиляторов работают от 5 Вольт при силе тока в 0.1 Ампер. Для других устройств требуются другие значения. Именно для обеспечения работы всех комплектующих имеется блок питания компьютера. Он преобразует напряжение и обеспечивает каждое изделие необходимым током. Если мы рассмотрим БП компьютера, то увидим, что в нем имеется огромное количество проводов и портов для подключения. Они имеют свои цвета, и это не просто так. На боковой или задней стенке корпуса блока питания имеется табличка, на которой указана вся необходимая информация.

Разбираемся с маркировкой

Взгляните на картинку. Там указано, что оранжевый провод (orange) имеет исходящее напряжение в +3.3V, желтый (yellow) — +12V, красный (red) — +5V и так далее. Кроме этого, есть пометка о силе тока. Черный провод в большинстве случаев является общим (минусом или «земля»). Исходя из полученной информации, можно понять, что получить нужное напряжение с блока питания, даже работающего, совсем не сложно.

Учитывайте, что блок питания запускается замыканием проводов GND (минус) и PWR SW. Работает до тех пор, пока данные цепи замкнуты! То есть, разъемы будут работать только тогда, когда блок питания подаст напряжение.

Для чего может понадобиться напряжение с блока питания компьютера

Вы спросите, а зачем вообще это нужно? Расскажу на своем опыте. Мне в руки попался монитор, работающий от 12 Вольт, однако кабеля подключения к электросети у меня не было. Имеющиеся блочки от других устройств не подходили по силе тока или по напряжению. Монитор нужно было проверить в течение дня, а отправиться на поиски нужного зарядного, не было ни времени, ни желания. Взяв 12 Вольт с желтого провода на молексе БК питания компьютера, мне удалось включить монитор. Оказалось, что это вполне удобно. Не нужно искать лишнюю розетку, а сам экран запускается вместе с системным блоком. Спустя год у меня все так и работает.

Существует еще целый ряд возможностей, которые дает напряжение с блока питания компьютера.

  • Многие мастера из БП ПК делают блок питания для шуруповерта и других электроинструментов.
  • Существует возможность переделать блок питания ПК под автомобильное зарядное для аккумуляторов.
  • Вы всегда можете зарядить любое устройство, выбрав нужное напряжение. Согласитесь, ведь часто бывает так, что оригинальные блоки выходят из строя в самый неподходящий момент.
  • Можно запитать диодную ленту или любой другой осветительный прибор, требующий небольшое напряжение.

Как взять 12 вольт с блока питания компьютера

Как вы уже поняли, взять напряжение с блока питания компьютера достаточно просто. Вам необходимо лишь подключить устройство к желтому проводу (плюс) и черному (минус). Только будьте внимательны и не перепутайте полярность, иначе ваше устройство, скорее всего, выйдет из строя. Опять же повторюсь, не забывайте о том, что блок питание подаст напряжение на провода только тогда, когда он будет запущен. Если вы работаете с демонтированным БП ПК, который изъят из корпуса, то необходимо запустить устройство путем замыкания проводов GND (минус) и PWR SW.

Если вы еще не знакомы со статьей моего коллеги «Варрам — робот для вашего питомца», то прочесть её можно нажав сюда.

Немного информации в помощь

Для того, чтобы вам было легче понять, какое напряжение с блока питания вы получите, я составил небольшую таблицу. Пользоваться ей нужно по такому принципу: положительное напряжение + ноль =итог.

Положительное Ноль Итог
+12V 0V +12V
+5V -5V +10V
+12V +3,3V +8,7V
+3,3V -5V +8,3V
+12V +5V +7V
+5V 0V +5V
+3,3V 0V +3,3V
+5V +3,3V +1,7V
0V 0V 0V

А вы знаете, что не пропустите ни один наш материал, если оформите подписку? Оформить подписку легко: достаточно лишь ввести свой email в форму под этой статьей и нажать на кнопку «Подписаться на рассылку». И вы всегда будете в курсе наших публикаций!

Надеюсь, сегодняшняя статья была понятна и полезна. Теперь вы знаете, как получить нужное напряжение с блока питания компьютера и каким образом взять 12 Вольт. Однако помните, что обращение с электроприборами требует соблюдения правил техники безопасности. В случае, если вы не уверены в своих знаниях, лучше попросить помощи у профессионала.

Переделка компьютерного блока питания — Блоки питания — Источники питания

Подробное описание.

Хороший лабораторный блок питания — это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.
Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.
Собирают такие блоки питания радиолюбители, как правило из компьютерных БП АТХ, которые везде доступны и дешевы.

В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.

Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.

Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.

Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания «Codegen» схема почти не отличается от этой.

Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.
Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.

Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия — даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.
Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя «дежурки», который нам понадобится для питания ШИМ контроллера и куллера.
Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 9-10 вольт (используется для дежурного питания ТЛ-ки).
Мы и будем использовать для постоянного питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители «дежурки» — синей линией, а всё остальное, что необходимо будет удалить — красным цветом.

Итак всё, что помечено красным цветом — выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора — резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.

Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.
На второй и третьей ноге ШИМа — оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа — обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.
Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.

После всех выполненных операций у нас должно получиться следующее.

Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.
На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.
Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.

Вид платы со стороны деталей.

Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;

В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь — при экспериментах с режимом стабилизации тока, на форуме pro-radio, участник форума DWD привёл такую цитату, приведу её полностью:

«Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.
Более 50мВ — нормально, а меньше — нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше — ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.

Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?
Схема прекрасно работает при опорном напряжении в 5мВ!
При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12…13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет…
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А.»

 

Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.

Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) — перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.

Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.

Можно конечно попробовать поступить и так, как написал выше DWD, то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.

Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской «цешки».
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.


Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы — с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора — увеличивает максимальный выходной ток БП.

Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.

Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима — в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.

Схема вновь установленных деталей.

Приведу немного пояснений по схеме;
— Самый верхний выпрямитель — это дежурка.
— Величины переменных резисторов показаны, как 3,3 и 10 кОм — стоят такие, какие нашлись.
— Величина резистора R1 указана 270 Ом — он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
— Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
— Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.

Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа — резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя — обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.

Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!

Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.

Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 50 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Вернее даже не желательно, а необходимо, для того, чтобы остался небольшой запас для регулировки ШИМ, то есть для стабилизации напряжения и тока.
Потом на место подстроечного резистора впаять постоянный.

Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (30-40 вольт например), то нужно будет вместо диодной — сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.

Схема выпрямителя с диодным мостом.

С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;

Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём — просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.

Перемотать трансформатор особого труда не составляет и как это сделать — рассмотрим ниже.

Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.

В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и «поварить» наш трансформатор 20-30 минут.

Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) — острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.

Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.

Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.

Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 — 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на «косу» и в том же направлении, что и начинали — мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.

Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.

В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).

Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором «I».
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.

Может случиться так, что при увеличении тока — лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.

Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.

Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала «Плавно», потом когда у него заканчивается предел, начинает регулироваться «Грубо».
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;


Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.

Удачи Вам в конструировании!

 

ATX12VO — питаемся по-новому / Блог компании Intel / Хабр

Даже в постоянно изменяющемся компьютерном мире есть островки спокойствия, куда редко ступает нога улучшателей. Эти компоненты ПК живут по многократно апробированному на практике принципу «работает — не трогай». Один из примеров такого взаимовыгодного долгожительства — форм-фактор АТХ и его компоненты. Однако даже самые удачные решения иногда подвергаются ревизии. В 2020 году Intel предлагает новый вариант блока питания для настольных ПК — ATX12VO.

Всем хорошо известный стандарт АТХ был разработан Intel в 1995 году; он регламентировал как механические параметры компьютерной системы, так и схему ее электропитания: набор напряжений, подаваемых с БП на материнскую плату и другие компоненты, геометрию и распиновку разъемов питания, а также принципы управления электрической цепью. Согласно текущему стандарту, блок питания поставляет на материнскую плату постоянные напряжения 3.3 В, ±5 В и ±12 В при помощи основного 24-пинового разъема. Питание на прочие устройства и компоненты компьютера также по большей части распределяется от БП.

Стандарт ATX12VO существенно изменяет электрическую схему компьютера. 12VO означает «12 V Only», сам блок питания при этом называется «Single Rail PSU», то есть «БП с одним выходным напряжением». Сущность идеи теперь наверняка понятна: на материнскую плату подается одно-единственное напряжение +12 В с использованием укороченного 10-пинового разъема. Дальнейшим преобразованием напряжения и раздачей питания низковольтным потребителям занимается сама плата. Разъемы питания распаиваются в удобных для этого местах, скажем, для накопителей — рядом с разъемами для data-кабелей.

Сила тока рассчитывается исходя из практического норматива в 6-8 А на пин. В том случае, если подаваемой на плату мощности не хватает для нормальной работы ПК (установлен мощный процессор либо иной потребитель, применяется разгон), блок питания может предоставить дополнительные 12 В линии питания, при этом применяется модульный принцип: провода подключаются к разъемам на задней стенке БП.

Новый стандарт электропитания имеет два основных преимущества:

  1. Существенно уменьшается количество электрических проводов и разъемов в корпусе компьютера. Больше нет необходимости использовать стяжки для организации гирлянд неиспользуемых колодок — внутри находятся только нужные силовые элементы. Дополнительно, маленький основной разъем экономит место на материнской плате.
  2. Питание через материнскую плату позволяет реализовать более тонкие режимы энергопотребления и энергосбережения, в частности, Alternative Sleep Mode (ASM). Десктоп, так же как и ноутбук, в XXI веке должен быть энергоэффективным.

Блоки питания нового стандарта появятся уже в этом году, первоначально в готовых моделях ОЕМ-производителей. Далее появится поддержка ATX12VO и на уровне продаваемых отдельно материнских плат. Подробный технический документ, описывающий новый стандарт, доступен на сайте Intel.

Блок питания 12 В из зарядного устройства для смартфона

Для радиолюбительских самоделок часто требуются источники питания с различными выходными характеристиками. Например, для сборки простой схемы автоматики освещения мне потребовался маломощный блок питания на 12 В. Покупать его оказалось накладно, стоимость готового источника превысила стоимость схемы автоматики. Самому сделать такой источник можно, и значительно дешевле имеющихся в продаже, но это уже при многократном повторении вносит рутину в творческий процесс. Поэтому, я нашёл относительно простой и достаточно дешёвый способ создать такой источник, это переделка готового зарядного устройства для смартфона.

Однажды у одного китайского продавца мне довелось приобрести десяток зарядных устройств для смартфонов с выходными характеристиками 5 В 1 А, что вполне удовлетворило мои потребности. Причём, эти ЗУ имеют стабилизацию выходного напряжения и в режиме холостого хода потребляют мало энергии, что не маловажно для создания устройств автоматики освещения и т.п. Всё, что мне осталось, поднять выходное напряжение до необходимого мне уровня, о чём и расскажу дальше.

Само ЗУ выглядит так:

 

Мне десяток таких малышек обошёлся по доллару за штучку.

Интересующие нас внутренности устройства можно посмотреть после аккуратного вскрытия:

   

Для Вас специально, и для личного архива, снял схему ЗУ, хотя для переделки в её подробности я даже не вникал.

Рисунок 1. Схема зарядного устройства для смартфона 5V 1A

Переделка поэтапно заключается в следующем:

  1. Аккуратно тонким эмалированным проводником делаем виток обмотки (можно несколько) и при включенном ЗУ под нагрузкой (подключаем заряжаемый гаджет) смотрим осциллографом амплитуду импульсов. Таким образом, определяем напряжение, создаваемое одним витком обмотки.
  2. Выпаиваем USB разъём.
  3. Снимаем тестовый виток и доматываем эмалированным проводником (подобным по толщине проводнику вторичной низковольтной обмотки) столько витков, сколько не хватает для получения требуемого выходного напряжения. Припаиваем намотанную обмотку последовательно вторичной заводской. Место спайки выбираем точку контакта с импульсным диодом Z1. Разрезаем дорожку между вторичкой и Z1. Припаиваем к контакту анода Z1 свободный конец домотанной вторички.
  4. Выпаиваем стабилитрон VD2, и вместо него впаиваем такой же, но на нужное напряжение, которое у нас и будет подаваться на выход.
  5. Выпаиваем конденсатор C4 и впаиваем аналогичную ёмкость на большее напряжение (на порядок выше выходного), например, для 12 В я выбрал конденсатор 100 мкФ 25 В.

В общем всё. Схема должна заработать без бубнов с танцами, если при переделке ничего не поломали.

У меня на трёх витках тестовой обмотки получился импульс, приближенный к прямоугольнику размахом 6 вольт, что даёт 2 вольта на виток. До 12 В мне не хватает 7 В или 3,5 витка. Мотаю 4 витка и далее по пунктам выше.

Конструкция получилась достаточно компактной, так что уместилась в родной корпус с небольшими переделками.

     

По факту у меня на выходе вышло 13,2 В. Возможно попался стабилитрон с такой характеристикой, а возможно я чего-то ещё не знаю про подобного рода переделки. В любом случае можно скорректировать напряжение другим стабилитроном, с меньшим напряжением стабилизации. Если такового не найдётся, не забывайте, что нужный стабилитрон можно получить при последовательном включении двух и более идентичных по току с разными напряжениями. Общее напряжение стабилизации будет суммой всех, входящих в цепочку.

И самое главное — О БЕЗОПАСНОСТИ! При работе с данной схемой во время теста с открытой платой нужно быть особо внимательным! На плате часть проводников находится под высоким сетевым напряжением, опасным для жизни! Не прикасайтесь к схеме ни чем ни к каким местам. Тестовая обмотка должна быть подключена к осциллографу до включения устройства в сеть!

Как сделать простой блок питания для паяльника на 24 вольта с регулировкой напряжения.

У электрических паяльников, что работают на низковольтном питании (12, 24, 36 вольт) имеется одно большое достоинство, а именно электробезопасность. Кроме этого, допустим 12 вольтовый электропаяльник можно питать от любой 12 вольтовой аккумуляторной батареи, что весьма кстати будет всем автомобилистам, когда нужно что-то припаять в своей машине. Для паяльных работ, что проводятся в стационарных условиях, более подходящим вариантом питания паяльника будет напряжение в 24 вольта. В этой статье Вы узнаете, как можно сделать простой регулируемый блок питания, имеющим цифровую индикацию выходного напряжения и силы тока. Этот БП может выдавать постоянное напряжение от 1,2 до 30 вольт, и силу тока до 1,5 ампера, что соответствует электрической мощности в 45 ватт. Данным блоком питания можно будет питать большинство низковольтных электрических паяльников, кроме того он может быть использован как обычных лабораторный БП.

Предлагаемый блок питания обойдется достаточно дешево по своей цене, при этом будет иметь все основные функции лабораторного, хорошего БП. Он регулируемый, имеет индикацию выходного тока и напряжения, защиту от КЗ и перегрева модуля стабилизации и регулировки напряжения, достаточно экономный, обладает хорошим КПД.

Итак, что нам понадобится для его сборки. Прежде всего это силовой трансформатор. Я взял старотипный понижающий трансформатор типа ТСА-50. Он в свое время (десятки лет тому назад) очень широко использовался в звуковой, усилительной аппаратуре (был источником питания). Приобрести его сейчас несложно (радиорынок, электронный магазин, по объявлению и т.д.). По стоимости он обойдется гораздо дешевле, чем новый трансформатор с такими же характеристиками. Трансформатор ТСА-50 имеет вторичную обмотку, которая как раз отлично подходит для наших нужд, а именно выход 25 вольт и ток до 1,5 ампер.

Как известно, трансформаторы работают на переменном напряжении. Чтобы получить из переменного тока постоянный нам еще понадобится так называемый выпрямитель, он же диодный мост с фильтрующим конденсатором. Мост и конденсатор можно купить, они обойдутся в копейки. Либо можно поискать в своем «загашнике», если есть старая, ненужная электроаппаратура, то скорее всего в питающем блоке можно найти эти элементы. Для нашего блока питания нужны диоды (4 штуки) или готовый мост, которые выдерживали силу тока до 3 ампер, ну и были рассчитаны на обратное напряжение не менее 50 вольт. Фильтрующий конденсатор должен быть электролитом, иметь емкость около 2200 микрофарад и быть рассчитан на напряжение не менее 35 вольт.

Итак, трансформатор, диодный мост и конденсатор – это простейший блок питания, что будет выдавать нам одно напряжение (около 32 вольт). Может возникнуть вопрос, а почему около 32 вольт, ведь у нашего трансформатора вторичная обмотка выдает только 25 вольт? Это происходит потому, что переменное напряжение после диодного моста с фильтрующим конденсатором увеличивается процентов так на 17 (примерно).

Теперь нам еще понадобится электронный модуль DC-DC преобразователя напряжения с функцией регулировки напряжения, имеющий защиту от КЗ и перегрева своих основных элементов. Данный модуль имеет название – LM2596 DC-DC. Это небольшая плата, собрана на базе микросхемы LM2596. На вход модуля можно подавать постоянное напряжение от 4 до 35 вольт, на выходе он выдает от 1,2 до 32 вольт. Максимальная сила тока этого преобразователя 3 ампера (при токе более 2 ампер нужно установить на микросхему охлаждающий радиатор). Купить этот модуль можно где угодно (радиорынок, объявления, магазин электронных компонентов, посылкой из Китая через сайт АлиЭкспресс и т.д.). Стоит он достаточно дешево (для своих функций).

Ну, и еще одни немаловажный и полезный модуль, что нам понадобится для сборки регулируемого блока питания для низковольтного паяльника 24 вольта, это цифровой измеритель – индикатор выходного тока и напряжения. Сейчас получили широкое применение цифровые модульные вольтметры и амперметры, которые измеряют напряжение до 100 вольт (постоянка) и силу тока до 10 ампер. Этот индикатор имеет небольшие, компактные размеры, трехразрядное табло. Могут питаться от напряжения 4-24 вольта. Достаточно точны в своих измерениях. Имеют подстроечные резисторы для коррекции показаний измеряемых величин. Стоит относительно дешево. Купить можно, также где угодно.

Вот общая схема сборки всех выше перечисленных частей блока питания:

P.S. В целом же данный блок питания может применяться как простенький лабораторный БП. Выходного тока в 1,5 ампера вполне хватит для питания большинства низковольтных устройств. Регуляция выходного напряжения плавная, что позволит подобрать любое нужное значение под любые конкретные задачи. Цифровая индикация позволит точно оценивать величину выходного напряжения и потребляемой силы тока, что весьма удобно в практическом смысле. Так что если Вам понравился этот БП, берите и собирайте его своими руками.

Блок питания. Как получить нестандартное напряжение Как из 12 вольт сделать 30 вольт

Нужно знать, как понизить напряжение в цепи, чтобы не повредить электрические приборы. Всем известно, что к домам подходит два провода — ноль и фаза. Это называется однофазной крайне редко используется в частном секторе и многоквартирных домах. Необходимости в ней просто нет, так как вся бытовая техника питается от сети переменного однофазного тока. Но вот в самой технике требуется делать преобразования — понижать переменное напряжение, преобразовывать его в постоянное, изменять амплитуду и прочие характеристики. Именно эти моменты и нужно рассмотреть.

Снижение напряжения с помощью трансформаторов

Самый простой способ — это использовать трансформатор пониженного напряжения, который совершает преобразования. Первичная обмотка содержит большее число витков, чем вторичная. Если есть необходимость снизить напряжение вдвое или втрое, вторичную обмотку можно и не использовать. Первичная обмотка трансформатора используется в качестве индуктивного делителя (если от нее имеются отводы). В бытовой технике используются трансформаторы, со вторичных обмоток которых снимается напряжение 5, 12 или 24 Вольта.

Это наиболее часто используемые значения в современной бытовой технике. 20-30 лет назад большая часть техники питалась напряжением в 9 Вольт. А ламповые телевизоры и усилители требовали наличия постоянного напряжения 150-250 В и переменного для нитей накала 6,3 (некоторые лампы питались от 12,6 В). Поэтому вторичная обмотка трансформаторов содержала такое же количество витков, как и первичная. В современной технике все чаще используются инверторные блоки питания (как на компьютерных БП), в их конструкцию входит трансформатор повышающего типа, он имеет очень маленькие габариты.

Делитель напряжения на индуктивностях

Индуктивность — это катушка, намотанная медным (как правило) проводом на металлическом или ферромагнитном сердечнике. Трансформатор — это один из видов индуктивности. Если от середины первичной обмотки сделать отвод, то между ним и крайними выводами будет равное напряжение. И оно будет равно половине напряжения питания. Но это в том случае, если сам трансформатор рассчитан на работу именно с таким питающим напряжением.

Но можно использовать несколько катушек (для примера можно взять две), соединить их последовательно и включить в сеть переменного тока. Зная значения индуктивностей, несложно произвести расчет падения на каждой из них:

  1. U(L1) = U1 * (L1 / (L1 + L2)).
  2. U(L2) = U1 * (L2 / (L1 + L2)).

В этих формулах L1 и L2 — индуктивности первой и второй катушек, U1 — напряжение питающей сети в Вольтах, U(L1) и U(L2) — падение напряжения на первой и второй индуктивностях соответственно. Схема такого делителя широко применяется в цепях измерительных устройств.

Делитель на конденсаторах

Очень популярная схема, используется для снижения значения питающей сети переменного тока. Применять ее в цепях постоянного тока нельзя, так как конденсатор, по теореме Кирхгофа, в цепи постоянного тока — это разрыв. Другими словами, ток по нему протекать не будет. Но зато при работе в цепи переменного тока конденсатор обладает реактивным сопротивлением, которое и способно погасить напряжение. Схема делителя похожа на ту, которая была описана выше, но вместо индуктивностей используются конденсаторы. Расчет производится по следующим формулам:

  1. Реактивное сопротивление конденсатора: Х(С) = 1 / (2 * 3,14 *f * C).
  2. Падение напряжения на С1: U(C1) = (C2 * U) / (C1 + C2).
  3. Падение напряжения на С2: U(C1) = (C1 * U) / (C1 + C2).

Здесь С1 и С2 — емкости конденсаторов, U — напряжение в питающей сети, f — частота тока.

Делитель на резисторах

Схема во многом похожа на предыдущие, но используются постоянные резисторы. Методика расчета такого делителя немного отличается от приведенных выше. Использоваться схема может как в цепях переменного, так и постоянного тока. Можно сказать, что она универсальная. С ее помощью можно собрать понижающий преобразователь напряжения. Расчет падения на каждом резисторе производится по следующим формулам:

  1. U(R1) = (R1 * U) / (R1 + R2).
  2. U(R2) = (R2 * U) / (R1 + R2).

Нужно отметить один нюанс: величина сопротивления нагрузки должна быть на 1-2 порядка меньше, чем у делительных резисторов. В противном случае точность расчета будет очень грубая.

Практическая схема блока питания: трансформатор

Для выбора питающего трансформатора вам потребуется знать несколько основных данных:

  1. Мощность потребителей, которые нужно подключать.
  2. Значение напряжения питающей сети.
  3. Значение необходимого напряжения во вторичной обмотке.

S = 1,2 * √P1.

А мощность Р1 = Р2 / КПД. Коэффициент полезного действия трансформатора никогда не будет более 0,8 (или 80%). Поэтому при расчете берется максимальное значение — 0,8.

Мощность во вторичной обмотке:

Р2 = U2 * I2.

Эти данные известны по умолчанию, поэтому произвести расчет не составит труда. Вот как понизить напряжение до 12 вольт, используя трансформатор. Но это не все: бытовая техника питается постоянным током, а на выходе вторичной обмотки — переменный. Потребуется совершить еще несколько преобразований.

Схема блока питания: выпрямитель и фильтр

Далее идет преобразование переменного тока в постоянный. Для этого используются полупроводниковые диоды или сборки. Самый простой тип выпрямителя состоит из одного диода. Называется он однополупериодный. Но максимальное распространение получила мостовая схема, которая позволяет не просто выпрямить переменный ток, но и избавиться максимально от пульсаций. Но такая схема преобразователя все равно неполная, так как от переменной составляющей одними полупроводниковыми диодами не избавиться. А понижающие трансформаторы способны преобразовать переменное напряжение в такое же по частоте, но с меньшим значением.

Электролитические конденсаторы используются в блоках питания в качестве фильтров. По теореме Кирхгофа, такой конденсатор в цепи переменного тока является проводником, а при работе с постоянным — разрывом. Поэтому постоянная составляющая будет протекать беспрепятственно, а переменная замкнется сама на себя, следовательно, не пройдет дальше этого фильтра. Простота и надежность — это именно то, что характеризует такие фильтры. Также могут применяться сопротивления и индуктивности для сглаживания пульсаций. Подобные конструкции используются даже в автомобильных генераторах.

Стабилизация напряжения

Вы узнали, как понизить напряжение до нужного уровня. Теперь его нужно стабилизировать. Для этого используются специальные приборы — стабилитроны, которые изготовлены из полупроводниковых компонентов. Они устанавливаются на выходе блока питания постоянного тока. Принцип работы заключается в том, что полупроводник способен пропустить определенное напряжение, излишек преобразуется в тепло и отдается посредством радиатора в атмосферу. Другими словами, если на выходе БП 15 вольт, а установлен стабилизатор на 12 В, то он пропустит именно столько, сколько нужно. А разница в 3 В пойдет на нагрев элемента (закон сохранения энергии действует).

Заключение

Совершенно другая конструкция — это стабилизатор напряжения понижающий, он делает несколько преобразований. Сначала напряжение сети преобразуется в постоянное с большой частотой (до 50 000 Гц). Оно стабилизируется и подается на импульсный трансформатор. Далее происходит обратное преобразование до рабочего напряжения (сетевого или меньшего по значению). Благодаря использованию электронных ключей (тиристоров) постоянное напряжение преобразуется в переменное с необходимой частотой (в сетях нашей страны — 50 Гц).

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Простая схема источника питания 12 В 2 А

Сегодня мой сын построил простую схему источника питания 12 В для солнечного насоса 12 В. Это нерегулируемый источник питания 2А. Потому что нагрузка — только двигатель постоянного тока.

Почему вы должны этому научиться?
Это пример принципа работы нерегулируемого источника питания . Которые являются основными для каждого источника питания.

Как это работает

Учу сына понимать принцип работы этих проектов.

Основной принцип, мы используем этот проект для снижения напряжения от сети переменного тока 220В до 12В постоянного тока.( Источник питания с фильтром 12 В, )

На рисунке 1 Переменный ток 220 В 50 Гц подключен к цепи через переключатель S1-ON-OFF и предохранитель F1 для защиты этой цепи.

Затем они протекают через трансформатор на 2 А для понижения напряжения до 12 В переменного тока.

Затем через оба диода к выпрямительному преобразователю переменного тока в постоянный.

Затем на конденсаторе в качестве фильтра постоянного напряжения.

Светодиод LED1 отображает питание при включении, а R1 ограничивает ток для использования светодиодов.


Рис. 1 простая принципиальная схема блока питания 12 В 2 А

Детали, которые вам понадобятся

T1: Трансформатор 12 ТТ 12 В, 2 А
D1, D2: 1N5402, диод 3 А
C1: 2200 мкФ Электролитический конденсатор 25 В
R1 : 1.Резисторы 2 кОм 0,5 Вт
LED1: светодиоды, как вам нравится
S1: выключатели
F1: предохранитель 1A
Медные провода и гвоздь 0,5 дюйма, питание от сети переменного тока

Сделать источник питания 12 В постоянного тока

Этот проект, мой сын построил 12 вольт фильтровал блок питания с самим собой много ступенек.

В первую очередь кладем бумагу на лист фанеры и забиваем гвоздь в стык деталей. ( Рисунок 2 )

Паял все детали на шляпку гвоздя вместо печатной платы. ( Рисунок 3 ).

Все части линии переменного тока под высоким напряжением Я подключаю их вместо моего сына.


Рисунок 2 Забить гвоздь в стык деталей


Рисунок 3 припаять все детали на гвоздь

По завершении Он измеряет напряжение на выходе 17 В Без нагрузки ( Рисунок 4 )

Рисунок 4

Затем он пытается применить насос постоянного тока в качестве нагрузки. Как на видео ниже.


Тогда он измеряет ток нагрузки около 0.9A как Рисунок 5

Этот проект применяется на открытом воздухе, поэтому он поместил его в пластиковые коробки для защиты воды как Рисунок 6

Схема источника питания 12 В 3 А

Если вам нужен выход 3 А. Перечень нескольких деталей легко изменить:
1. Переключите трансформатор на ток 3А.
2. Добавьте еще конденсаторный фильтр до 4700 мкФ. Добавив параллельно еще один 2200 мкФ.

Это просто?

Это первый проект по обучению мальчика на дому. Мы рады, что он отлично работает.

Подробнее: Разработка линейного источника питания 12 В, 5 А

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ЧЕРЕЗ ЭЛЕКТРОННУЮ ПОЧТУ

Я всегда стараюсь сделать Electronics Learning Easy .

Источник питания 12 В — 30 А


Это сильноточный источник питания 12 В. Блок питания использует микросхему LM7812 и может подавать на нагрузку до 30 А с помощью проходных транзисторов TIP2955. Каждый транзистор может обрабатывать до 5 А, а шесть из них дают общий выходной ток 30 А.Вы можете увеличить или уменьшить количество TIP2955, чтобы получить больший или меньший ток на выходе. В этой конструкции ИС выдает около 800 мА. Предохранитель на 1 А подключается после LM7812 для защиты ИС от сильноточных переходных процессов. И транзисторам, и микросхеме стабилизатора 12 В требуется соответствующий радиатор. Когда ток нагрузки велик, рассеиваемая мощность каждого транзистора также увеличивается, поэтому избыточное тепло может привести к выходу транзисторов из строя. Тогда вам понадобится очень большой радиатор или вентиляторное охлаждение.Резисторы 100 Ом используются для обеспечения стабильности и предотвращения перегрузки по току, поскольку допуски усиления постоянного тока будут разными для каждого транзистора. Диоды выпрямительного моста должны выдерживать не менее 100 ампер.


Заметки
Входной трансформатор, вероятно, будет самой дорогой частью всего проекта.В качестве альтернативы можно использовать пару автомобильных аккумуляторов на 12 В. Входное напряжение регулятора должно быть как минимум на несколько вольт выше выходного напряжения (12 В), чтобы регулятор мог поддерживать свое выходное напряжение. Если используется трансформатор, то выпрямительные диоды должны быть способны пропускать очень высокий пиковый прямой ток, обычно 100 ампер или более. Микросхема 7812 пропускает только 1 ампер или меньше выходного тока, остальная часть обеспечивается внешними проходными транзисторами. Поскольку схема рассчитана на нагрузку до 30 ампер, шесть TIP2955 подключаются параллельно, чтобы удовлетворить эту потребность.Рассеивание в каждом силовом транзисторе составляет одну шестую от общей нагрузки, но все же требуется адекватный отвод тепла. Максимальный ток нагрузки обеспечивает максимальное рассеивание, поэтому требуется очень большой радиатор. Рассматривая радиатор, может быть хорошей идеей поискать либо вентилятор, либо радиатор с водяным охлаждением. В случае выхода из строя силовых транзисторов, стабилизатор должен будет обеспечивать полный ток нагрузки, что приведет к катастрофическим последствиям. Предохранитель на 1 ампер на выходе регулятора не работает.Нагрузка 400 МОм предназначена только для целей тестирования и не должна включаться в окончательную схему. Смоделированная производительность показана ниже:

Расчеты
Эта схема является прекрасным примером законов Кирхгофа по току и напряжению. Подводя итог, сумма токов, входящих в переход, должна равняться току, выходящему из перехода, а напряжения вокруг петли должны равняться нулю. Например, на диаграмме выше входное напряжение составляет 24 вольта. 4 вольт падает на R7 и 20 вольт на входе регулятора, 24-4-20 = 0.На выходе: — общий ток нагрузки 30 ампер, стабилизатор выдает 0,866 А и 6 транзисторов по 4,855 А каждый, 30 = 6 * 4,855 + 0,866. Каждый силовой транзистор дает нагрузке около 4,86 ​​А. Базовый ток составляет около 138 мА на транзистор. Требуется усиление постоянного тока 35 при токе коллектора 6 ампер. Это вполне укладывается в рамки TIP2955. Резисторы от R1 до R6 включены для обеспечения стабильности и предотвращения перегрузки по току, поскольку производственные допуски усиления постоянного тока будут разными для каждого транзистора.2) / 200 или около 160 мВт. Я рекомендую использовать резистор на 0,5 Вт для R7. Входной ток в регулятор подается через эмиттерный резистор и переходы база-эмиттер силовых транзисторов. Еще раз используя законы Кирхгофа, входной ток регулятора 871 мА выводится из базовой цепи, а 40,3 мА протекает через резистор 100 Ом. 871,18 = 40,3 + 830. 88. Ток от самого регулятора не может быть больше входного. Как видно, регулятор потребляет всего около 5 мА и должен работать в холодном состоянии.

Первоначальное тестирование и устранение неисправностей
Для первоначального теста не подключайте нагрузку. Сначала используйте вольтметр на выходных клеммах, вы должны измерить напряжение 12 В или очень близко к нему. Затем подключите резистор 100 Ом, 3 Вт или другую небольшую нагрузку. Показания вольтметра не должны измениться. Если вы не видите «12 Вольт», выключите питание и проверьте все соединения.

Я слышал от одного читателя, питание которого составляло 35 Вольт, а не регулируемые 12 Вольт. Это было вызвано коротким замыканием силового транзистора.В случае короткого замыкания на любом из выходных транзисторов все 6 необходимо распаять. С помощью мультиметра проверьте сопротивление и измерьте между клеммами коллектора и эмиттера. Силовые транзисторы обычно выходят из строя при коротком замыкании, поэтому неисправный транзистор будет легко найти.

Готовый проект
Я недавно получил известие от Райана Лауренсианы из Филиппин, который построил себе блок питания 12 В 30 А. Ниже приведены изображения блока питания Ryans.





Загрузки

Блок питания 12 В — 30 А — Ссылка


Accurate LC Meter

Создайте свой собственный Accurate LC Meter (измеритель индуктивности емкости) и начните создавать свои собственные катушки и индукторы.Этот LC-метр позволяет измерять невероятно малые индуктивности, что делает его идеальным инструментом для изготовления всех типов ВЧ-катушек и индукторов. LC Meter может измерять индуктивность от 10 нГн до 1000 нГн, 1 мкГн — 1000 мкГн, 1 мГн — 100 мГн и емкости от 0,1 пФ до 900 нФ. Схема включает автоматический выбор диапазона, а также переключатель сброса и обеспечивает очень точные и стабильные показания.

PIC Вольт-амперметр

Вольт-амперметр измеряет напряжение 0-70 В или 0-500 В с разрешением 100 мВ и потребление тока 0-10 А или более с разрешением 10 мА.Счетчик является идеальным дополнением к любым источникам питания, зарядным устройствам и другим электронным проектам, в которых необходимо контролировать напряжение и ток. В измерителе используется микроконтроллер PIC16F876A с ЖК-дисплеем с подсветкой 16×2.


Частотомер / счетчик 60 МГц

Частотомер / счетчик измеряет частоту от 10 Гц до 60 МГц с разрешением 10 Гц. Это очень полезное стендовое испытательное оборудование для тестирования и определения частоты различных устройств с неизвестной частотой, таких как генераторы, радиоприемники, передатчики, функциональные генераторы, кристаллы и т. Д.

1 Гц — 2 МГц XR2206 Функциональный генератор

1 Гц — 2 МГц Функциональный генератор XR2206 выдает высококачественные синусоидальные, квадратные и треугольные сигналы с высокой стабильностью и точностью. Формы выходных сигналов могут модулироваться как по амплитуде, так и по частоте. Выход 1 Гц — 2 МГц Функциональный генератор XR2206 может быть подключен непосредственно к счетчику 60 МГц для настройки точной выходной частоты.


BA1404 HI-FI стерео FM-передатчик

Будьте в прямом эфире со своей собственной радиостанцией! BA1404 HI-FI стерео FM-передатчик передает высококачественный стереосигнал в FM-диапазоне 88–108 МГц.Его можно подключить к любому типу стереофонического аудиоисточника, например iPod, компьютеру, ноутбуку, проигрывателю компакт-дисков, Walkman, телевизору, спутниковому ресиверу, магнитофонной кассете или другой стереосистеме для передачи стереозвука с превосходной четкостью по всему дому, офису, двору или палаточный лагерь.

USB IO Board

USB IO Board — это крошечная впечатляющая маленькая плата разработки / замена параллельного порта с микроконтроллером PIC18F2455 / PIC18F2550.Плата USB IO совместима с компьютерами Windows / Mac OSX / Linux. При подключении к плате ввода-вывода Windows будет отображаться как COM-порт RS232. Вы можете управлять 16 отдельными выводами ввода / вывода микроконтроллера, отправляя простые последовательные команды. Плата USB IO получает питание от порта USB и может обеспечить до 500 мА для электронных проектов. Плата USB IO совместима с макетной платой.


ESR Meter / Capacitance / Inductance / Transistor Tester Kit

ESR Meter Kit — удивительный мультиметр, который измеряет значения ESR, емкость (100 пФ — 20000 мкФ), индуктивность, сопротивление (0.1 Ом — 20 МОм), тестирует множество различных типов транзисторов, таких как NPN, PNP, полевые транзисторы, полевые МОП-транзисторы, тиристоры, тиристоры, симисторы и многие типы диодов. Он также анализирует такие характеристики транзистора, как напряжение и коэффициент усиления. Это незаменимый инструмент для поиска и устранения неисправностей и ремонта электронного оборудования путем определения производительности и исправности электролитических конденсаторов. В отличие от других измерителей ESR, которые измеряют только значение ESR, этот измеритель одновременно измеряет значение ESR конденсатора, а также его емкость.

Комплект усилителя для наушников для аудиофилов

Комплект усилителя для наушников для аудиофилов включает в себя высококачественные компоненты аудиосистемы, такие как операционный усилитель Burr Brown OPA2134, потенциометр регулировки громкости ALPS, разветвитель шины Ti TLE2426, фильтрующие конденсаторы Panasonic FM с ультранизким ESR 220 мкФ / 25 В, Высококачественные входные и развязывающие конденсаторы WIMA и резисторы Vishay Dale. Разъем для микросхем 8-DIP позволяет заменять OPA2134 на многие другие микросхемы двойных операционных усилителей, такие как OPA2132, OPA2227, OPA2228, двойной OPA132, OPA627 и т. Д.Усилитель для наушников достаточно мал, чтобы поместиться в жестяную коробку Altoids, и благодаря низкому энергопотреблению может питаться от одной батареи 9 В.


Комплект прототипа Arduino

Прототип Arduino — это впечатляющая плата для разработки, полностью совместимая с Arduino Pro. Он совместим с макетной платой, поэтому его можно подключить к макетной плате для быстрого прототипирования, и на обеих сторонах печатной платы имеются выводы питания VCC и GND.Он небольшой, энергоэффективный, но настраиваемый с помощью встроенной перфорированной платы 2 x 7, которую можно использовать для подключения различных датчиков и разъемов. Arduino Prototype использует все стандартные компоненты со сквозными отверстиями для легкой конструкции, два из которых скрыты под разъемом IC. Плата оснащена 28-контактным разъемом DIP IC, заменяемым пользователем микроконтроллером ATmega328 с загрузчиком Arduino, кварцевым резонатором 16 МГц и переключателем сброса. Он имеет 14 цифровых входов / выходов (0-13), из которых 6 могут использоваться как выходы ШИМ и 6 аналоговых входов (A0-A5).Эскизы Arduino загружаются через любой USB-последовательный адаптер, подключенный к 6-контактному гнезду ICSP. Плата питается напряжением 2-5 В и может питаться от аккумулятора, такого как литий-ионный элемент, два элемента AA, внешний источник питания или адаптер питания USB.

4-канальный беспроводной радиочастотный пульт дистанционного управления, 200 м, 433 МГц

Возможность беспроводного управления различными приборами внутри или снаружи вашего дома является огромным удобством и может сделать вашу жизнь намного проще и веселее.Радиочастотный пульт дистанционного управления обеспечивает дальность действия до 200 м / 650 футов и может найти множество применений для управления различными устройствами, и он работает даже через стены. Вы можете управлять освещением, вентиляторами, системой переменного тока, компьютером, принтером, усилителем, роботами, гаражными воротами, системами безопасности, занавесками с электроприводом, моторизованными оконными жалюзи, дверными замками, разбрызгивателями, моторизованными проекционными экранами и всем остальным, о чем вы можете подумать.

Как создать преобразователь питания с 120 В переменного тока в 12 В постоянного тока

Создание простого блока питания постоянного тока 12 В — отличный проект для новичков в электронике.Вы можете сделать его из нескольких недорогих компонентов и, когда закончите, использовать его для зарядки батарей, силовых цепей или запуска двигателей. Схема состоит из трансформатора, выпрямителя, преобразующего переменный ток в постоянный, и конденсатора. Сборка преобразователя мощности занимает от одного до двух часов.

1. Найдите на трансформаторе проушины первичной и вторичной обмоток; они обычно находятся на противоположных сторонах устройства. Поместите трансформатор на монтажную плату так, чтобы выступы первичной обмотки свешивались над левым краем платы или находились очень близко к ней.

2. Установите трансформатор на монтажную плату с помощью винтов №6, шайб и гаек. Трансформатор имеет монтажные отверстия в металлическом каркасе. Возможно, вам придется просверлить небольшие отверстия в доске кончиком ножа для хобби или сверла, чтобы оно подошло к оборудованию.

3. Припаяйте концы медных проводов сетевого шнура к наконечникам первичной обмотки трансформатора, по одному проводу к каждому наконечнику. Когда ушки остынут, обмотайте их изолентой.

4. Поместите двухполупериодный выпрямитель на монтажную плату так, чтобы два вывода, помеченные знаком «~», вплотную совпали с выводами вторичной обмотки трансформатора.Символ «~» указывает на входы переменного тока выпрямителя; два выходных провода помечены «+» и «-» для положительного и отрицательного выхода постоянного тока. Припаяйте выводы выпрямителя к выводам вторичной обмотки, по одному выводу к каждому выводу. Если трансформатор имеет три вывода вторичной обмотки, игнорируйте средний.

5. Проденьте выводы конденсатора через отверстия в монтажной плате так, чтобы отрицательный вывод конденсатора совпал с выводом «-» выпрямителя. Припаяйте два отрицательных вывода вместе. Припаяйте положительный вывод конденсатора к положительному выводу выпрямителя.При необходимости обрежьте лишний провод с помощью приспособлений для зачистки проводов.

6. Отрежьте два 12-дюймовых куска соединительного провода 22-го калибра и снимите 1/2 дюйма изоляции с обоих концов каждого провода. Подключите один конец одного провода к положительному выводу конденсатора и припаяйте его. Подключите один конец другого провода к отрицательному выводу конденсатора и припаяйте его. Преобразователь питания 12 В постоянного тока закончен; вы можете подключить положительный и отрицательный выходные выводы к цепи или батарее.

TL; DR (слишком долго; не читал)

Схема, описанная здесь, не регулируется, то есть ее напряжение будет немного дрейфовать, а ток будет содержать некоторые электрические помехи.Нерегулируемый источник питания подходит для зарядки аккумуляторов и питания электродвигателей; для некоторых чувствительных аудиосхем может потребоваться немного более сложный регулируемый источник питания, точно поддерживающий 12 В.

Если вы не можете найти конденсатор на 25 В, то подойдет и конденсатор с более высоким номинальным напряжением. Не используйте устройство, рассчитанное на более низкое напряжение.

Адаптеры питания постоянного тока 12 В. 1, 2, 3, 4, 5 А, 12 В (1 А, 2 А, 2,5 А, 3 А, 3,5 А, 4 А, 5 А, 6 А)

Краткая инструкция по выбору блока питания:

Единственная информация, которую вам нужно иметь, чтобы найти правильный источник питания для вашего устройства, — это напряжение / вольты (В) и сила тока / амперы (A).

Напряжение должно точно совпадать. Для устройства на 12 В постоянного тока требуется адаптер на 12 В постоянного тока.

Сила тока — это количество энергии, которое использует ваше устройство. Адаптер, который вы заказываете, должен обеспечивать, по крайней мере, то количество ампер, которое потребляет ваше устройство. Если ваше устройство заявляет, что оно составляет 12 В 3 А, адаптер на 3 А может справиться с этой нагрузкой, но также с 4 А и 5 А. Блок питания с большей силой тока (ампер) работать не будет. так же трудно справиться с меньшей нагрузкой, и он будет работать более прохладно и стабильно.

Если сила тока вашего устройства неравномерная, например 3.13A или 4,16A, всегда округляйте в большую сторону. 3,13 А округляется до 3,5 А, а 4,16 А устройство округлит до 4,5 А или 5 А.

Если вы соответствуете этим двум спецификациям (V и A), блок питания будет работать для вашего устройства.

Подробные инструкции:

Чтобы найти подходящий блок питания для вашего устройства, вам понадобятся две части информации. Это напряжение (измеряется в вольтах или В) и сила тока (измеряется в амперах или А). Вы можете найти эту информацию на задней панели старого блока питания, или с задней стороны самого устройства.Если вы не нашли его на устройстве, вы можете проверить на сайте производителя или в инструкции к устройству в разделе «Технические характеристики».

Напряжение:
Все продаваемые нами блоки питания рассчитаны на 12 В постоянного тока. Они принимают любой вход от 100 В до 220 В переменного тока, который выходит из вашей сетевой розетки, и выход 12 В постоянного тока. Это то, что большинство цифровых устройств, таких как ЖК-экраны, DVD-плееры, жесткие диски, аудио Gear и большинство других цифровых устройств используют. Мы поставляем только блоки питания 12 В постоянного тока, поэтому, если ваш блок не 12 В, вы не найдете здесь подходящего адаптера.

Сила тока:
После того, как вы подтвердите, что вам нужен блок питания на 12 В, вам нужно будет узнать, сколько мощности ваше устройство. рисует. Это называется силой тока. Рядом с 12 В в технических характеристиках будет еще один номер, за которым следует заглавная буква «А» для ампер. Вам понадобится блок питания, который может обеспечить достаточное количество энергии для вашего устройства. Если ваше устройство говорит, что потребляет 3 А (3 А), вам необходимо использовать блок питания. который может выдать хотя бы такое количество ампер. Если ваше устройство заявляет, что ему требуется 3А, вы можете использовать блок на 3А, 4А или 5А.Все будет работать.

Если сила тока вашего устройства неравномерная, например 3,13 А или 4,16 А, всегда округляйте в большую сторону. 3,13 А округляется до 3,5 А, а 4,16 А устройство округлит до 4,5 А или 5 А.

Разъем:
Все наши блоки питания имеют разъем, который является стандартным для устройства 12 В постоянного тока. В большинстве устройств 12 В постоянного тока используется стандартный наконечник. Этот наконечник имеет размер 5,5 мм (внешний цилиндр) на 2,5 мм (внутренний цилиндр) и положительный по центру. Это простой круглый цилиндрический соединитель. Повторяю, если вы соответствуете напряжению и силе тока, вам не нужно беспокоиться о типе разъема, принятом в Редкий случай, когда у вашего устройства есть необычный разъем, такой как двойной цилиндр или 4-контактный, но их легко обнаружить как разъем, на котором находится адаптер В заглушках не будет простой круглой бочки со шпилькой внутри.

Каталог источников питания 12 В от 500 мА до 100 А, настольный компьютер в наличии, настенное крепление и закрытая рама, вход переменного тока от PowerStream.

мм DC / DC преобразователи
AC / DC 0,32 А на канал, 4 канала 12 В, четырехканальный источник питания блок питания для видеосистем безопасности Этот блок питания имеет четыре выхода для работы до 4 видеокамеры
ПСТ-412В
AC / DC 500 мА 12 Вольт 0.Переключатель для настенного монтажа 5А блок питания Этот блок питания мощностью 12 В и мощностью 6 Вт в тонком корпусе. комплект для настенного крепления. Класс II, двойная изоляция
AC / DC
1 А
Адаптер питания 12 В, 1000 мА Регулируемый импульсный источник питания 12 Вт с универсальный вход
AC / DC 1,2 А 12В, 1,2 А, линейный источник питания Линейный малошумящий настольный компьютер на базе трансформатора источник питания, 1.2A, избыточное обозначение 50-04000-070 Ред. A PST-ACT1212
$ 9,00
AC / DC 1,5 А 12 В, 1,5 А, крепление ROHS walll блок питания Высококачественное недорогое настенное крепление для электросети блок питания
PST-AC1215W
AC / DC 2 А 12 вольт 2 Блок питания, одобренный ROHS Превосходная энергетическая звезда с двойной изоляцией 12 В Блок питания 2 А со съемным шнуром переменного тока и международными сертификатами
AC / DC 2 А 12 вольт 2000 миллиампер одобренный с медицинской точки зрения источник питания Универсальный импульсный источник питания с UL60601 TUV, ROHS и Energy Star
AC / DC 2.5 ампер Импульсная мощность 30 Вт, 12 В постоянного тока Расходные материалы Настенная регулируемая мощность 12 В постоянного тока до 2500 мА, со складными контактами переменного тока
PST-AC1225
AC / DC 3 А Блок питания для настенного монтажа 12В 3А Настенный блок питания мощностью 36 Вт с размерами 5,5 x 2,1 цилиндрический соединитель
AC / DC 3 А 12 В, 3 А, импульсная мощность питание с гнездом прикуривателя прикуриватель розетка позволяет запитать автомобильные аксессуары от сети переменного тока.
AC / DC 3 А EA1050F-120F блок питания для LCD Телевизоры 12 В, 3 А, мощность поставлять. Замена оригинального оборудования для Magnavox и других ЖК-дисплеев телевизоры
4,0 А постоянного / переменного тока 12 В, 4,0 А, импульсная мощность поставка Это блок питания мощностью 50 Вт с универсальным Вход переменного тока и выход 12 В.12 вольт переменного тока адаптер.
PST-AC1240
PST-AC1238
перем. / Пост. Ток 5,0 A 12V 5.0A Импульсный блок питания Блок питания 12 В, 60 Вт, 5000 мА,
AC / DC 3 или 6 А Одиночная резервная батарея 12 В Выходные блоки питания Универсальный импульсный источник питания 35 или 70 Вт. Крепление DIN с винтовыми клеммами для входа и выхода.Аккумулятор заряжен автоматически.
PST-SP12AS
PST-SP12AL
AC / DC 6,6 А 12 В, 6600 мАч, импульсная мощность поставка Маленький кабель питания 80 Вт 6,6 Ампер
AC / DC 7 А Регулируемый выход преобразователя переменного тока в постоянный Выход от 12 до 21 вольт Регулируемая пользователем мощность в импульсном режиме от 12 до 21 В питание, 90 Вт

PST-AC0407

AC / DC 10.8 ампер 12 В, 10 А, импульсная мощность поставка Это блок питания мощностью 120 Вт с универсальным Вход переменного тока и выход 12 В.
PST-EA11603A
AC / DC 12A Крепление на DIN-рейку 12 В, мощность 150 Вт источник питания с резервным аккумулятором Импульсный источник питания может работать от сети переменного тока. или постоянного тока: от 90 до 265 В переменного тока, от 47 до 63 Гц или от 130 до 375 В постоянного тока
AC / DC 12.5 ампер 12 В, блок питания 150 Вт для мини ПК Блок питания Switchmode мощностью 150 Вт, используемый с Dell мини
AD / DC 12 В 18A 12В 216Вт настольный блок питания работает с Dell Y2515 и другими Изолированный источник питания 12 В, используемый во многих старые компьютеры Dell Optiplex
AC / DC от 15 до 100 А 13.Блоки питания 6В с очень низким уровнем шума. Источники питания с высоким уровнем стабилизации и низким уровнем шума разработан для демонстрации автомобильного аудиооборудования в автосалонах и торговле показывает
AC / DC от 20 до 100 А Промышленное сверхмощные блоки питания 12 В с 3-летней гарантией Ограничение тока позволяет использовать в качестве аккумулятора зарядные устройства.
Соответствует требованиям НАФТА
Двойной выход AC / DC 5.5 В 8,5 А и 12 В 3 А Питание Общая модель FLU2-65-1 Питание с двумя выходами и открытой рамой питание
5,5 В постоянного тока при 8,5 А

12 В постоянного тока при 3 А

Каталожный номер FLU2-65-1
1-10 25,00 $
11+ $ 20,00
DC / DC 500 мА Автомобильное зарядное устройство на 12 В для Ipod Это позволяет заряжать Ipod в машина.
постоянный / постоянный ток 2000 мА Слаботочные преобразователи постоянного / постоянного тока 12 В в 1.5, 3, 4,5, 6, 7,5 или 9 В Эти недорогие 24-ваттные преобразователи постоянного тока в постоянный полезен для автомобильных приложений. Вход 12 В для более низких напряжений, 14 В или больше для выхода 12 В.
PST-DC292
DC / DC 5000 мА Преобразователи постоянного тока в постоянный с 24 на 12 В Преобразователи постоянного тока в постоянный от 100 Вт до 800 Вт с Выход 12 В
DC / DC 8 А Buck-Boost 10-15 вольт до 13.8 вольт В этих понижающе-повышающих преобразователях используется специальный DC / DC-преобразователь. топология преобразователя для регулирования и преобразования напряжений с широким входом диапазон
PST-DC / 1212-8
DC / DC
15 А
Сильноточные преобразователи постоянного / постоянного тока 48 В в 13,8 В Эти 200 Вт импульсного напряжения постоянного тока в постоянный. редукторы используются для питания 12-вольтового оборудования на вилочных погрузчиках и других промышленных оборудование.Диапазон ввода от 40 до 65 вольт, что покрывает 48 вольт. оборудование.
PVTC180-48-12
13 В постоянного тока
4,5 А
Настольный блок питания 13 В, 58,5 Вт Адаптер питания 13 В из EDAC
12В 1А
-12В 0,5А
5В 2А
Блок питания с тройным выходом Тройная выходная мощность питание с 5-контактным разъемом DIN 180 ° DIN
СНП-П051
DC / DC 10 А Повышение постоянного / постоянного тока с 6 В до 12 В Преобразователи 6 вольт на входе, 12 вольт на выходе, для работы радио или аудиотехника в старинных автомобилях.
PST-DU700-6
PST-SR700-6

Схема двойного источника питания +12 В и -12 В

Целью этого проекта является преобразование источника переменного тока 220 В в источник питания +12 В и -12 В постоянного тока , поэтому он назван Dual Power Supply as мы получаем одновременно положительный и отрицательный источник питания 12 В.

Этого можно достичь за три простых шага:

  1. Во-первых, 220 В переменного тока преобразуется в 12 В переменного тока с помощью простого понижающего трансформатора (220 В / 12 В).
  2. Во-вторых, выходной сигнал этого трансформатора передается на схему выпрямителя, которая преобразует источник переменного тока в источник постоянного тока. Выходной сигнал выпрямительной цепи постоянного тока содержит пульсации выходного напряжения. Для фильтрации этих пульсаций используется конденсатор 2200 мкФ, 25 В.
  3. Наконец, выходной сигнал конденсатора, являющийся чистым постоянным током, подается на регуляторы напряжения IC 7812 и IC7912, которые будут регулировать выходное напряжение на 12 В и -12 В постоянного тока, несмотря на изменение входного напряжения.

Требуемые компоненты:

  • Трансформатор с центральным ответвлением (220 В / 12 В)
  • Силовые диоды (6А) — 4 шт.
  • Конденсатор (2200 мкФ, 25 В) — 2 шт.
  • Регулятор напряжения (IC 7812 и 7912)
  • Тумблер
  • Нагрузка постоянного тока (двигатель постоянного тока)

Принципиальная схема:

Создание двойной цепи питания:

Шаг-I: преобразование 220 В переменного тока в 12 В переменного тока с помощью понижающего трансформатора

Первичные выводы трансформатора с центральными ответвлениями подключены к бытовой электросети (220 В, переменного тока, , 50 Гц), а выход осуществляется от вторичных выводов трансформатора.Центральное ответвление описывает выходное напряжение трансформатора с центральным ответвлением. Например: трансформатор с центральным ответвлением 24 В будет измерять 24 В переменного тока на двух внешних отводах (обмотка в целом) и 12 В переменного тока от каждого внешнего отвода до центрального отвода (половина обмотки). Эти два источника питания 12 В, переменного тока, , сдвинуты по фазе на 180 градусов друг к другу, что упрощает получение из них положительного и отрицательного 12-вольтных источников питания постоянного тока и . Преимущество использования трансформатора с центральным ответвлением состоит в том, что мы можем получить питание как + 12В, так и -12В постоянного тока , используя только один трансформатор.

ВХОД : 220 В переменного тока , 50 Гц

ВЫХОД : Между внешней клеммой и средней клеммой: 12 В, переменного тока, 50 Гц

Между двумя внешними клеммами: 24 В перем. 50 Гц

Шаг — II: Преобразование 12 В переменного тока в 12 В постоянного тока с помощью мостового выпрямителя

Две внешние клеммы трансформатора с центральным ответвлением подключены к схеме мостового выпрямителя.Схема выпрямителя представляет собой преобразователь, который преобразует источник переменного тока в источник постоянного тока . Обычно он состоит из диодных переключателей, как показано на принципиальной схеме.

Чтобы преобразовать переменного тока в постоянного тока , мы можем изготовить два типа выпрямителей: полумостовой выпрямитель и полумостовой выпрямитель. В полумостовом выпрямителе выходное напряжение составляет половину входного напряжения. Например, если входное напряжение составляет 24 В, то выходное напряжение постоянного тока и составляет 12 В, а количество диодов, используемых в этом типе выпрямителя, равно 2.В полномостовом выпрямителе количество диодов равно 4, и он подключен, как показано на рисунке, а выходное напряжение совпадает с входным.

Здесь используется полный мостовой выпрямитель . Таким образом, количество диодов равно 4, входное напряжение (24 В, переменного тока, ) и выходное напряжение также равно 24 В, постоянного тока, , с пульсациями в нем.

Для выходного напряжения полного мостового выпрямителя,

V  DC  = 2Vm / Π, где Vm = пиковое значение напряжения питания переменного тока, а Π Pi 

Форма сигнала входного и выходного напряжения полного мостового выпрямителя показана ниже.

В этой схеме двойного источника питания диодный мостовой выпрямитель состоит из четырех силовых диодов на 6 А. Номинал этого диода 6А и 400В. Нет необходимости использовать такое количество диодов с высокой токовой нагрузкой, но из соображений безопасности и гибкости используется диод с высокой токовой нагрузкой. Как правило, из-за скачков тока возможно повреждение диода, если мы используем диод с малым током.

Выход выпрямителя не чистый dc , но он содержит пульсации.

ВХОД: 12 В переменного тока

ВЫХОД: 24 В пик (с рябью)

Шаг III: Отфильтруйте рябь на выходе:

Теперь выход 24V dc , который содержит пульсации от пика до пика, нельзя подключать напрямую к нагрузке. Так, чтобы убрать рябь с питанием , используются конденсаторы фильтра. Теперь используются два фильтрующих конденсатора номиналом 2200 мкФ и 25 В, как показано на принципиальной схеме.Соединение обоих конденсаторов таково, что общий вывод конденсаторов подключается непосредственно к центральному выводу центрального трансформатора с ответвлениями. Теперь этот конденсатор будет заряжен до 12 В постоянного тока , поскольку оба подключены к общей клемме трансформатора. Кроме того, конденсаторы удаляют пульсации от источника постоянного тока и дают чистый выходной сигнал постоянного тока . Но выход обоих конденсаторов не регулируется. Итак, чтобы сделать питание регулируемым, выходные конденсаторы передаются на микросхемы регулятора напряжения, что объясняется в следующем шаге.

ВХОД: 12 В постоянного тока (с волнами, не чисто)

ВЫХОД: Напряжение на конденсаторе C 1 = 12 В постоянного тока (чистый постоянного тока, , но не регулируемый)

Напряжение на конденсаторе C 2 = 12 В постоянного тока (чистый постоянного тока, , но не регулируемый)

Шаг-IV: Отрегулируйте источник питания постоянного тока 12 В

Следующим важным моментом является регулировка выходного напряжения конденсаторов, которое в противном случае будет изменяться в соответствии с изменением входного напряжения.Для этого в зависимости от требований к выходному напряжению используются микросхемы стабилизатора . Если нам нужно выходное напряжение +12 В, то используется IC 7812. Если требуемое выходное напряжение составляет + 5В, то используется 7805 IC. Последние две цифры IC обозначают номинальное выходное напряжение. Третья последняя цифра показывает положительное или отрицательное напряжение. Для положительного напряжения (8) и для отрицательного напряжения (9) используется число. Таким образом, IC7812 используется для регулирования напряжения +12 В, а IC7912 — для регулирования напряжения -12 В.

Теперь соединение двух микросхем выполняется, как показано на принципиальной схеме.Клемма заземления обеих ИС соединена с клеммой центрального отвода трансформатора для создания опорного сигнала. Теперь выходные напряжения измеряются между выходной клеммой и клеммой заземления для обеих ИС.

ВХОД: 12 В постоянного тока (чистый постоянного тока , но не регулируемый)

ВЫХОД: + 12V dc между выходной клеммой 7812 и землей (чистый dc и регулируемый)

-12V dc между выходной клеммой 7912 и землей (чистый dc и регулируемый)

Применение двойной цепи питания:

  • Операционные усилители нуждаются в двух источниках питания (обычно один положительный источник и один отрицательный источник), потому что операционный усилитель должен работать при обеих полярностях входящего сигнала.Без отрицательного источника операционный усилитель не будет работать во время отрицательного цикла сигнала. Таким образом, выход этой сигнальной части будет «обрезан», то есть сам останется на земле; что явно не рекомендуется.
  • Если в качестве нагрузки используются двигатели постоянного тока, то при +12 В он будет вращаться по часовой стрелке, а при -12В — в противоположном направлении. Например, двигатели, которые используются в игрушках (автомобиль, автобус и т. Д.), Будут двигаться вперед при напряжении +12 В и двигаться назад при напряжении -12 В.Мы показали вращение двигателя в обоих направлениях, используя эту схему двойного источника питания, в видео ниже .

Проверьте нашу другую схему источника питания :

509 Превышен предел пропускной способности

509 Превышен предел пропускной способности Сервер временно не может обслуживать ваш запрос из-за того, что владелец сайта достиг своего ограничение пропускной способности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *