Как посчитать пусковой ток электродвигателя
Величина пускового тока, необходимого для приведения двигателя в действие, существенно (иногда в 8-10 раз) превышает показатели тока, который подается для работы в нормальном режиме. Результатом резкого роста потребления энергии становится падение напряжения в питающих электросетях, что может повлечь за собой:
- проблемы с другими подключенными к сети приборами;
- более скорый износ узлов самого двигателя (этому способствует рывок при запуске).
Свести отрицательное воздействие к минимуму возможно, используя дополнительные устройства. Параметры вспомогательного оборудования определяют, исходя из значения пускового тока для данной модели двигателя.
Как посчитать пусковой ток электродвигателя
Разобраться, как посчитать пусковой ток электродвигателя, можно самостоятельно, ознакомившись с технической документацией к агрегату и формулами для расчета. Сначала вам потребуется определить величину номинального тока (IH, зависит от типа двигателя).
- 1000PH/(ηHUH) для двигателей постоянного тока;
- 1000PH/(UHcosφH√ηH) для устройств переменного тока.
Далее проводится собственно расчет значения пускового тока (IП) по формуле Кп (кратность постоянного тока к номинальному показателю, указана в техдокументации)*IH.
Способы уменьшения пускового тока
Проблема снижения пускового тока и более плавной подачи напряжения решается с помощью специального оборудования:
- софтстартеров и устройств плавного пуска;
- автоматических выключателей соответствующего типа отключения (B, D или C).
Грамотный подход к расчету значения пускового тока для электрического двигателя позволит вам получить точные результаты и подобрать наиболее эффективные средства защиты линии включения.
Как рассчитать пусковой ток
Пусковым называется ток, потребляемый электродвигателем при включении в электросеть. Поскольку величина пускового тока может во много раз превышать номинальную, его необходимо ограничивать, подобрав автоматические выключатели с необходимой токовой характеристикой, защищающей линию включения этого электродвигателя или их группы. Для этого и нужно рассчитать пусковой ток.Вам понадобитсяОпределите тип электродвигателя. Это может быть электродвигатель постоянного тока или трехфазного переменного тока. Рассчитайте номинальный токэлектродвигателя постоянного тока в амперах, используя формулу: IH=1000PH/(ηHUH), а номинальный ток электродвигателя трехфазного тока по формуле: IH=1000PH/(UHcosφH√ηH), где:Рн — номинальная мощность двигателя, квт;UH — номинальное напряжение двигателя, в;ηH — номинальный коэффициент полезного действия двигателя;cos фн — номинальный коэффициент мощности двигателя. Данные о номинальной мощности, номинальном напряжении, КПД и коэффициенте мощности возьмите из технической документации электродвигателя.
Вычислите величину пускового тока в амперах после расчета его номинальной величины. Для расчета используйте формулу:IП=IH*Кп, где IH — номинальная величина тока, а Кп — кратность постоянного тока к его номинальной величине. Просмотрите техническую документацию на электродвигатель, в ней должна быть указана кратность постоянного тока к его номинальной величине (Кп). Умножьте это число на получившуюся величину номинального тока и получите величину пускового тока в амперах. Рассчитайте ее для каждого электродвигателя, находящегося в цепи.
Подберите автоматический выключатель для защиты линии включения в зависимости от получившейся величины пускового тока по всем электродвигателям в цепи. Для выбора необходимо знать, что автоматические выключатели могут быть типа отключения В, С и Д.Выключатели с характеристикой отключения типа В подойдут для осветительных сетей общего назначения, с характеристикой отключения типа С служат для размыкания осветительных цепей и установок с умеренными пусковыми токами (двигатели и трансформаторы). Для цепей с активно-индуктивной нагрузкой, а также для защиты электродвигателей с большими пусковыми токами обычно применяются использовать выключатели с характеристикой типа D. Определив тип выключателя, подберите нужный в зависимости от получившейся величины пускового тока.
Пусковой ток. Типы и работа. Применение и особенности
Пусковой ток – представляет ток, который необходим для запуска электрического или электротехнического устройства. Он больше номинального тока в разы, вследствие чего при подборе оборудования так важно учитывать данный параметр. В качестве примера можно привести ситуацию, когда при разгоне автомобилю нужно на порядок больше топлива, чем при движении на автомагистрали с одинаковой скоростью. Таким же образом электрический двигатель потребляет больше электрического тока при «разгоне».
Подобные явления могут наблюдаться и в ином электрическом оборудовании: электрических магнитах, лампах и так далее. Пусковые процессы в устройствах определяются параметрами рабочих органов: намагниченностью катушки, накаливающейся нитью и тому подобное. Весьма часто производители ограничивают ток пуска при помощи пускового сопротивления.
ТипыПусковой ток появляется на небольшой период времени, что в большинстве случаев составляет доли секунд. Однако по своему значению он может быть в несколько раз выше номинального значения. Этот параметр также зависит от вида применяемого оборудования. В различных приборах указанные токи могут составлять в 2-9 раз больше номинального.
Для примера можно привести следующее оборудование:
В большинстве случаев производители практически не указывают данный параметр в спецификациях. Поэтому часто приходится довольствоваться ориентировочными параметрами. Измерительные приборы бытового значения выделяются инерционностью, поэтому при помощи них затруднительно измерить кратковременный всплеск тока пуска. Лучше всего уточнить параметр тока пуска у прибора непосредственно у дилера.
РаботаПри запуске любого вида электрического двигателя появляется пусковой ток, который может достигать 9 кратного значения от номинального тока. Характеристика тока пуска определяется типом двигателя, присутствием нагрузки на валу двигателя, схемы подключения, скорости вращения и тому подобное.
Ток пуска появляется вследствие того, что в период запуска требуется довольно сильное магнитное поле в обмотке, чтобы перевести ротор из статичного положения и раскрутить его. То есть это ток, который требуется, чтобы запустить электрический двигатель в рабочий режим. Именно поэтому его значение на порядок превышает рабочий ток.
В период включения мотора на обмотках наблюдается малое сопротивление, вследствие чего растет ток при постоянном напряжении. Как только двигатель начинает раскручиваться, то в обмотках появляется индуктивное сопротивление, вследствие чего ток начинает стремиться к номинальному значению.
Принцип действияЭлектрические двигатели обширно применяются в разных сферах промышленности. В результате этого знание параметров пусковых характеристик важно для правильного применения электрических приводов. Основными параметрами, которые влияют на ток пуска, являются момент и скольжение на валу.
При подаче тока в обмотки наблюдается рост насыщения сердечника ротора магнитным полем, появлению эдс самоиндукции. В результате растет индукционное сопротивление в цепи. При раскручивании ротора уменьшается степень скольжения. В результате ток пуска с ростом сопротивления уменьшается до рабочего параметра.
Ток пуска важен не только для электродвигателей, но и для источников питания. В частности, это касается аккумуляторных батарей. Параметры тока пуска характеризуют мощность в наивысшем значении, которую аккумулятор может выдавать в течение некоторого времени без значительной просадки напряжения. Ток пуска в большинстве случаев определяется емкостью батареи, в том числе условий климата. Так как при запуске движка летом требуется меньше энергии, чем зимой, то ток пуска при первом варианте будет несколько раз ниже, чем во втором. К примеру, для запуска современной машины аккумулятору в соответствии со стандартами необходимо выдавать ток на уровне 250-300 А минимум в течении 30 секунд.
ПрименениеДля правильной эксплуатации электрических приводов важно учитывать их пусковые характеристики. Если этого не учитывать и не пытаться нивелировать минусы тока пуска, то возможны неприятные последствия. Так ток пуска может негативно сказываться на другом оборудовании, которое одновременно работает с указанным электродвигателем на одной линии. При больших значениях ток пуска может приводить к падению напряжения сети и даже вызывать поломку оборудования.
Для снижения негативного воздействия подобных процессов, могут применяться специальные приспособления или методы, позволяющие снизить ток пуска:
- Электродвигатель запускается в холостом режиме. Только потом к нему прикладывают нагрузку, чтобы вывести на рабочий режим. К примеру, этот метод можно использовать для насосов и вентиляционного оборудования, в которых можно выполнять регулирование нагрузки на двигатель.
- Подключение двигателя по схеме звезда – треугольник.
- Использование автотрансформаторного запуска. В результате напряжение подается плавно через автотрансформатор.
- Использование пусковых резисторов либо реакторов, которые позволяют ограничить пусковой ток. Здесь ток, который превышает установленное значение, тратится на выделение тепла на гасящих резисторах.
- Использование частотных регуляторов позволяет уменьшить ток пуска двигателя. Но такой метод подходит лишь для двигателей мощностью не более 10–30 КВт. Оборудование большей мощности потребует частотных регуляторов, которые стоят очень дорого.
- Устройства плавного пуска, выполненные на тиристорах. Снижение влияния тока пуска обеспечивается фазовым управлением.
- Если известен пусковой ток своего старого аккумулятора, и хотите поменять его на новое устройство, то важно, чтобы его величина не была ниже. Также не нужно покупать аккумулятор с меньшим параметром электрической емкости.
- При приобретении аккумулятора необходимо учесть, что параметры тока пуска могут указываться в разных стандартах. Немцы используют DIN, американцы SAE, а европейцы EN. Чтобы не ошибиться, стоит попросить у продавца специальный лист соответствия, который позволит определить ток пуска батареи.
- Если Вы часто эксплуатируете автомобиль в зимний период, то выбирайте аккумулятор с большим значением тока пуска при прочих равных параметрах. Благодаря этому в морозы Вы сможете без проблем запустить свой автомобиль.
Похожие темы:
Расчет тока пускового
Как посчитать пусковой ток электродвигателя
Величина пускового тока, необходимого для приведения двигателя в действие, существенно (иногда в 8-10 раз) превышает показатели тока, который подается для работы в нормальном режиме. Результатом резкого роста потребления энергии становится падение напряжения в питающих электросетях, что может повлечь за собой:
- проблемы с другими подключенными к сети приборами;
- более скорый износ узлов самого двигателя (этому способствует рывок при запуске).
Свести отрицательное воздействие к минимуму возможно, используя дополнительные устройства. Параметры вспомогательного оборудования определяют, исходя из значения пускового тока для данной модели двигателя.
Как посчитать пусковой ток электродвигателя
Разобраться, как посчитать пусковой ток электродвигателя, можно самостоятельно, ознакомившись с технической документацией к агрегату и формулами для расчета. Сначала вам потребуется определить величину номинального тока (IH, зависит от типа двигателя). Для этого предусмотрены следующие формулы (все необходимые данные есть в техпаспорте к оборудованию):
- 1000PH/(ηHUH) для двигателей постоянного тока;
- 1000PH/(UHcosφH√ηH) для устройств переменного тока.
Далее проводится собственно расчет значения пускового тока (IП) по формуле Кп (кратность постоянного тока к номинальному показателю, указана в техдокументации)*IH.
Способы уменьшения пускового тока
Проблема снижения пускового тока и более плавной подачи напряжения решается с помощью специального оборудования:
- софтстартеров и устройств плавного пуска;
- автоматических выключателей соответствующего типа отключения (B, D или C).
Грамотный подход к расчету значения пускового тока для электрического двигателя позволит вам получить точные результаты и подобрать наиболее эффективные средства защиты линии включения.
Коэффициенты пусковых токов
В данной таблице приведены примерные значения номинальной и пусковой мощности популярных бытовых приборов и электроинструментов, а так же коэффициенты запаса мощности, которые следует учитывать при расчете мощности электростанции. Эта таблица поможет Вам в расчетах, но не забывайте, что лучше перед покупкой проконсультироваться со специалистом.
Коэффициенты пусковых токов, которые необходимо учитывать при подключении приборов:
Тип потребителя | Номинальная мощность, Вт | Мощность при пуске, Вт | Требуемый коэффициент запаса мощности |
Циркулярная пила | 1100 | 1450 | 1,32 |
Дрель электрическая | 800 | 950 | |
Шлифовальная машинка или станок | 2200 | 2800 | 1,27 |
Перфоратор | 1300 | 1600 | 1,23 |
Станок или машинка для финишного шлифования | 300 | 350 | 1,17 |
Ленточно-шлифовальная машина | 1000 | 1200 | 1,2 |
Рубанок электрический | 800 | 1000 | 1,25 |
Пылесос | 1400 | 1700 | 1,21 |
Подвальный вакуумный насос | 800 | 1000 | 1,25 |
Бетономешалка | 1000 | 3500 | 3,5 |
Буровой пресс | 750 | 2600 | 3,47 |
Инвертор | 500 | 2 | |
Шпалерные ножницы | 600 | 720 | 1,2 |
Кромкообрезной станок | 500 | 600 | 1,2 |
Холодильник | 600 | 2000 | 3,33 |
Фризер | 1000 | 3500 | 3,5 |
Кипятильник, котел (Бойлер) | 1700 | 3,4 | |
Кондиционер | 1000 | 3500 | 3,5 |
Стиральная машина | 1000 | 3500 | 3,5 |
Обогреватель радиаторного типа | 1000 | 1200 | 1,2 |
Лампа накаливания для освещения | 500 | 500 | 1 |
Неоновая подсветка | 500 | 1000 | 2 |
Электроплита | 6000 | 6000 | 1 |
Электропечь | 1500 | 1500 | 1 |
Микроволновая печь | 800 | 1600 | 2 |
Hi-Fi TV — бытовая техника | 500 | 500 | 1 |
Электромясорубка | 1000 | до 7000 (см. инструкцию) | 7 |
Погружной водяной насос | 1000 | 3500 | 3,5 |
Если здание оснащено сложным оборудованием, таким как системы охраны, вентиляции, отопления и т.д., то для точного определения необходимой мощности электростанции лучше обратиться к профессионалам.
Специалисты Первого Генераторного Салона обследуют Ваш объект, проанализируют предоставленные данные, дадут оценку требуемой мощности, количества фаз, типу двигателя, а так же проконсультируют относительно ценовых категорий различных марок электростанций.
Пусковой ток греющего кабеля: расчет и особенности
Пусковой (стартовый) ток – это максимальный ток, возникающий в момент подачи питания на систему. Этот параметр необходимо учитывать при проектировании, а точнее — при расчете максимальной длины отрезков кабеля.
От чего зависит стартовый ток
- Температуры включения. Чем ниже температура окружающей среды, при которой происходит включение системы обогрева, тем выше пусковой ток и тем больше стартовая мощность.
- Длины нагревательного кабеля. Чем больше длина секции, тем больше СТ системы. Для резистивного кабеля он определяется внутренним удельным сопротивлением Ом/м нагревательной жилы и рассчитывается, и контролируется при изготовлении секции на заводе. Саморегулируемый нагревательный кабель можно условно представить как множество параллельных резистеров (сопротивлений), подключенных к одному источнику питания. Сопротивление будет уменьшаться при увеличении длины линии, и, соответственно, увеличится пусковой ток.
От чего зависит величина стартового тока
-
Мощности греющего кабеля. Чем больше удельная мощность кабеля (Вт/м), тем больше СТ.
-
Особенности конструкции нагревательного кабеля. Резистивный греющий кабель из-за особенности конструкции имеет небольшой СТ, который на несколько процентов превышает рабочее значение тока.
Саморегулируемый кабель имеет достаточно большой СТ, который может увеличиваться в 1.5 -5 и более раз от своего рабочего значения. Причина — использование в конструкции проводящей матрицы с PTC-коэффициентом, меняющей свое электрическое сопротивление в зависимости от температуры окружающей среды.
В «холодном» состоянии кабель имеет небольшое сопротивление, которое к тому же зависит от температуры окружающей среды. При подаче питания на кабель, он начинает разогреваться, его сопротивление начинает расти, ток в цепи питания уменьшается. Коэффициент стартового тока зависит от компонентного состава и применяемых технологий при производстве матрицы кабеля.
У каждой марки нагревательного кабеля своя величина стартового тока. Производители редко указывают эту информацию в технических характеристиках. Этот параметр является условной величиной и при различных условиях один и тот же кабель может иметь разное значение СТ. Аналогично производители саморегулирующегося кабеля не нормируют его удельное сопротивление Ом/м.
График зависимости СТ кабеля Samreg-40-2CR* от температуры окружающей среды
*график построен на основе испытаний
Пиковая нагрузка приходится на первые 3-30 секунд после включения, в этот момент СТ может превышать номинальное значение в 2-5 раз. Примерно через 5-10 минут происходит полная стабилизация и выход греющего кабеля на номинальную мощность.
Расчет пускового тока греющего кабеля
Грубо рассчитать максимальный пусковой ток нагревательной секции можно исходя из общей длины греющего кабеля в системе и его удельной мощности.
Пример расчета максимального стартового тока греющего кабеля
Имеется секция саморегулирующегося кабеля удельной мощностью 30 Вт/м и длиной 50 м. Номинальная мощность секции при температуре +10°С составляет Pном=30Вт/м*50м=1500Вт. Это мощность уже разогретой секции. Если на кабель в «холодном» состоянии подать питание, то его мощность будет в несколько раз выше номинального значения. Для расчетов мы принимаем коэффициент стартового тока равный 2.5-3 для кабелей марки Samreg и Alphatrace. Коэффициент определен в ходе экспериментов с кабелем данных марок, а также изучения их физических и электротехнических свойств. У греющих кабелей иных производителей данный коэффициент может отличаться как в большую, так и меньшую сторону.
Тогда, стартовая (пусковая) мощность в нашем примере равна Pпуск=3хPном=4500Вт, пусковой ток Iпуск=4500/220=20,45 А.
По найденному значению СТ осуществляется выбор автоматических и дифференциальных выключателей для защиты нагревательной секции, а также тип и сечение силового питающего кабеля. Для секции, приведенной в примере, необходим дифференциальный автомат на номинальный ток Iном=25А с дифференциальным током Iут=30мА
Способы уменьшения стартового тока
Большая величина СТ является нежелательной для питающей сети, так как приходится использовать автоматы с большим номинальным током. Кроме того, подбирается силовой кабель увеличенного сечения.
Существует несколько способов снижения СТ системы:
Последовательное подключение
Последовательное подключение к питающей сети нагревательных секций, которое обеспечивается с помощью установки реле выдержки времени. Это устройство применимо в системе, состоящей из нескольких линий (нагревательных секций). Оно позволяет включать каждую линию с определенным временным интервалом (обычно около 5 минут). При данном способе подключения ток в нагревательной секции уменьшится до рабочего (номинального значения) через 5 минут после подачи питания. После этого можно осуществлять включение следующей линии. Таким образом, суммарный СТ всей системы обогрева равен:
Iсумм.пуск=Iном1+Iном2+…+Iпуск.n,
где Iном1, Iном2… — номинальные токи нагревательных секций соответственно 1ой, 2ой и т.д.
Iпуск.n – СТ секции, которая включается в сеть последней.
Чем больше секций включается по такой схеме (т.е. чем больше ступеней включения), тем больше пусковой ток будет стремиться к номинальному току для данной системы. Так, если по такой схеме включить хотя бы 3 группы (одна группа включается напрямую, 2 другие через реле времени через 5 и 10 минут соответственно) при условии равномерного распределения мощностей по группам, то пусковой ток можно снизить почти на 50%.
Пример принципиальной схемы шкафа управления с реле времени
Видео применения реле времени для последовательного включения линий обогрева
Устройство плавного пуска
Устройство в течение всего времени холодного запуска системы (порядка 10-12 минут) поддерживает значение тока на уровне не выше номинального. В этом случае можно использовать силовые и дифавтоматы, рассчитанные на номинальный ток секции. Кроме того, не придется применять питающий кабель с увеличенным сечением. Принцип работы устройства подробно описан в паспорте.
Паспорт устройства плавного спуска ICEFREE-PP.pdfСогласно максимальной стартовой мощности подбирается также силовой кабель подходящего сечения.
Подбор сечения силового кабеля для системы обогрева
Таблица выбора сечения кабеля по току и мощности с медными жилами
Таблица выбора сечения кабеля по току и мощности с алюминиевыми жилами
Неправильный расчет СТ приводит к выходу из строя системы защиты и управления, что может стать причиной аварийных ситуаций на обогреваемом объекте.
Проблемы из-за неправильного расчета пускового тока
Наиболее частые проблемы, возникающие по причине неправильного расчета пускового тока и в соответствии с этим неправильного выбора оборудования:
Срабатывания автоматов защиты и иных защитных устройств
Срабатывания автоматов защиты и иных защитных устройств при включении системы обогрева из «холодного» состояния. Фактически автоматы защиты нагревательных секций выключатся в первые 10-100 секунд после подачи на них питания. Автомат отключается по перегрузке, срабатывает его тепловой расцепитель. Автомат может работать некоторое время в режиме перегрузки, но ввиду затяжного характера процесса снижения СТ, его запаса не хватает. Для устранения этой проблемы приходится выбирать автомат на большее значение номинального тока.
Данная проблема может быть не выявлена на этапе тестирования или запуска системы, так как максимальный пусковой ток увеличивается при понижении температуры окружающей среды. Если систему тестировали до наступления минимальных температур ошибка возникнет только при включении системы в холодное время года (например, в мороз).
Перегрев силового кабеля
Перегрев силового кабеля возникает по причине неправильного подбора его сечения. Из-за большой длительности пускового процесса греющего кабеля высокое значение СТ нагревает жилы силового кабеля. При этом кабель может расплавиться, возникнуть короткое замыкание и даже пожар на объекте обогрева.
Максимальная длина греющего кабеля
ПодробнееВнимание!
При расчетах системы обогрева необходимо помнить, что в первую очередь максимальный стартовый ток зависит от длины секции кабеля.
Превышение допустимой длины приводит не только к увеличению СТ, но и к преждевременному износу системы.
Примеры электрообогрева
Греющий кабель Samreg
Саморегулирующийся кабель SAMREG 16-2- Мощность: 16 Вт
- Назначение: трубопровод
- Экран: без экрана
- Тип: саморегулирующийся
- Вид: низкотемпературный
- Применение: без взрывозащиты
Цена производителя
Саморегулирующийся кабель SAMREG 24-2CR- Мощность: 24 Вт
- Назначение: трубопровод / резервуар
- Экран: оплетка из луженой медной проволоки
- Тип: саморегулирующийся
- Вид: низкотемпературный
- Применение: без взрывозащиты
Цена производителя
Саморегулирующийся кабель SAMREG 40-2CR- Мощность: 40 Вт
- Назначение: трубопровод / кровля / резервуар
- Экран: оплетка из луженой медной проволоки
- Тип: саморегулирующийся
- Вид: низкотемпературный
- Применение: без взрывозащиты
Цена производителя
В разделДругие статьи на тему
Видео про шкафы управления
Пусковые токи электрооборудования | Статьи ЦентрЭнергоЭкспертизы
Пользователей электроэнергии не оставляет равнодушными мощность электроприборов, которые окружают нас в повседневности, ведь в конце концов она упирается в возможности нашего кошелька. Суммарную мощность, из указанных в документации на электроприборы цифр мы учитываем при проектировании будущей сети, правда, не всегда принимаем во внимание, что производитель указывает электрические характеристики для оборудования, работающего в номинальном режиме.
В реальных условиях большинство электроприборов превышает номинальные мощности, достигая максимальной нагрузки в момент включения. Происходит это из-за пусковых токов, которые в течение краткого периода времени (от десятых долей до нескольких секунд) превышают номинальный потребляемый ток до 10 раз.
Такими особенностями отличаются электроприборы, имеющие электродвигатели (холодильники, кондиционеры, электронасосы), электронагревательные приборы, использующие ТЭНы. Как ни странно даже обычные лампы накаливания имеют достаточно высокие величины пускового тока от 5 до 13 раз превышающие номинальные значения (недаром практически всегда они перегорают в момент включения).
Природа пусковых токов
Проиллюстрировать причину возникновения пускового тока легко на простом примере. Кто когда-либо катался на велосипеде, знает – больше всего усилий требуют первые повороты педалей, когда велосипед трогается с места, долее при достижении номинальной скорости это делать значительно легче.
Аналогичные процессы происходят при запуске электродвигателя, ведь для преодоления инерции вала мотора и сопряженных с ним механизмов требуется мощное электромагнитное поле, которое действует до набора рабочих оборотов. Оно характеризуется более высокими токами при запуске двигателя, связанными с номинальными значениями при помощи коэффициентов пускового тока (кратностью пускового тока к номинальному значению).
Иная природа пусковых токов у ламп накаливания. Величина сопротивления вольфрамовой нити 100 ваттной лампочки в холодном (выключенном) состоянии составляет 40 Ом, а в накаленном (включенном) – 490 Ом, не удивительно, что ток в момент включения имеет более чем 12 кратное превышение над номинальным током лампы. Аналогичным образом меняется сопротивление нихромовой нити ТЭНа нагревательного электрического прибора.
Чем опасны пусковые токи и методы борьбы с ними
Пусковые токи не только ведут к неоправданному увеличению потребляемой мощности, они несут в себе серьезную опасность для:
- электрической сети в целом путем создания пиковых нагрузок;
- электронике другого электрооборудования, чувствительной к импульсным перепадам напряжения.
Максимальную мощность с учетом величин пусковых токов необходимо учитывать при выборе:
- генераторов резервного питания;
- стабилизаторов напряжения;
- входных автоматов.
Конечно же, можно предположить, что при штатном использовании бытовой аппаратуры пусковые токи различных потребителей по времени не совпадают, однако представьте ситуацию с отключением электроэнергии и последующем ее включением, при всех включенных ранее потребителях.
Выдержит ли суммарный пусковой ток входной автомат?
Не сработает ли защита от перегрузки стабилизатора?
А как поведет себя генератор резервного питания?
При проектировании конкретной электрической сети следует предварительно найти ответы на поставленные вопросы и учитывать их при выборе аппаратуры.
На сегодняшний день существуют различные способы уменьшения пускового тока, особенно это актуально в производственных условиях, где используется масса технологического оборудования, работающего на электродвигателях переменного тока. Среди наиболее популярных можно назвать:
- запуск электрического двигателя на холостом ходу, с последующим подключением нагрузки;
- изменение схемы подключения в момент пуска треугольник-звезда, правда, такой метод имеет ограничения при пуске асинхронных электродвигателей;
- автотрансформаторный запуск позволяет плавно изменять ток до достижения номинальной величины;
- добиваться ограничения стартовых токов путем применения пусковых резисторов.
Отличные результаты показывают устройства плавного запуска (тиристорные, преобразователи частоты, софт-стартеры).
Смотрите также другие статьи :
Замер потребляемой мощности электрооборудования
Иногда возникает необходимость измерения потребляемой мощности, в частности на работе потребность определить суммарную мощность электрооборудования может возникнуть при проектировании резервной сети, в быту при появлении сомнений при оплате счетов за электроэнергию.
Подробнее…Для чего применяется УЗО
Защитным отключением в случае появления дифференциальных токов, равных току утечки занимается устройство защитного отключения (УЗО). При этом контролируемый ток утечки зависит от типа прибора и может начинаться от 10 мА. Устанавливать защитный прибор необходимо последовательно с входным автоматом.
Подробнее…Кратность пускового тока электродвигателя
Подключение и пусковые токи асинхронного двигателя
Приветствую вас, дорогие читатели. Прежде, чем разбираться с методиками подключения и характеристиками токов моторов асинхронного типа, не лишним будет вспомнить о том, что это такое.
Движком асинхронного типа зовут машину особого вида, которая преобразует энергию электричества в механическую. Главным рабочим принципом такого устройства считают вот какие свойства. Проходя по статорным обмоткам, переменный ток, состоящий из трех фаз, создает условия для появления вращающегося магнитного поля. Это поле и заставляет ротор вращаться.
Естественно, что при подключении двигателя надо учитывать все эти факторы, ведь вращение ротора будет производиться в ту сторону, в которую вращается магнитное поле. Частота вращения ротора, однако, ниже частоты вращения возбуждающего поля. По конструкции эти машины бывают самыми различными (то есть предназначенными для работы в разных условиях).
Как рабочие, так и пусковые характеристики таких устройств на много превосходят такие же показатели моторов однофазного типа.
Любой из таких моторов имеет две основные части – подвижную (роторную) и неподвижную (статорную). На обеих частях имеются обмотки. Разница между ними может быть лишь в типе обмотки ротора: она может иметь роторные кольца, либо быть короткозамкнутой. Подключение движков, имеющих короткозамкнутый ротор и мощность до двух сотен киловатт, производится напрямую к сети. Моторы же большей мощности необходимо подключать, сперва, к пониженному напряжению и лишь потом переключать на номинал (с целью снижения в несколько раз пускового тока).
Подключение асинхронного двигателя
Статорная обмотка практически любого такого устройства имеет шесть выводов (из них три – начала и три – концы). В зависимости от того, какова питающая сеть мотора, эти выводы соединяют либо в «звезду», либо в «треугольник». С этой целью корпус каждого мотора имеет коробку, в которой выведены начальные и конечные провода обмоток (они обозначаются, соответственно, С1, С2, С3 и С4, С5, С6).
Подключение звездой
Так называют метод соединения обмоток, при котором все три обмотки имеют одну общую точку (нейтраль). Линейное напряжение такого соединения выше фазного в 1,73 раза. Положительным качеством этого вида соединений считают малые токи пуска, хотя мощностные потери при этом довольно значительны.
Метод соединения в треугольник отличается тем, что при этом методе соединение выполняется таким образом, что конец одной обмотки становится началом следующей.
Подключение треугольником
При этом, соединении фазное и линейное напряжения одинаковы, следовательно, при линейном напряжении в 220 вольт, правильным соединением обмоток будет именно треугольник. Положительной стороной этого соединения является большая мощность, тогда как отрицательной – большие токи пуска.
Для выполнения реверса (смены направления вращения) трехфазного движка асинхронного типа, достаточно поменять местами выводы двух его фаз. На производстве это делается при помощи пары магнитных пускателей с зависимым включением.
Значительные величины токов пуска у асинхронных моторов являются весьма нежелательным явлением, потому как они могут привести к эффекту нехватки напряжения для других видов оборудования, подключенного к той же сети. Это стало причиной того, что подключая и налаживая двигатели этого типа, появляется задача минимизации токов пуска и повышения плавности запуска моторов методом использования специализированного оборудования. Наиболее эффективым типом таких приспособлений считаются софтстартеры и частотные преобразователи. Одним из наиболее ценных их качеств считают то, что они способны поддержать ток запуска мотора довольно долгое время (обычно больше минуты).
Помимо стандартного способа включения моторов асинхронного типа, существуют и методы включения их в питающую сеть, имеющую лишь одну фазу.
Конденсаторный пуск асинхронного двигателя
Для этого, в основном, применяют конденсаторный способ включения. Конденсатор может устанавливаться как один, так и пара (один пусковой, а второй рабочий). Пара кондеров ставится тогда, когда есть надобность в процессе пуска-работы менять емкость, что делают при помощи подключения-отключения одного из кондеров (пускового). Для этого, как правило, применяются емкости бумажного исполнения, поскольку они не имеют полярности, а при работе на переменном токе это очень важно.
Для расчета рабочего конденсатора существует следующая формула:
Ср=4800(i/u).
Пусковой конденсатор должен иметь емкость в пару-тройку раз большую емкости рабочего и рабочее напряжение в полтора раза превышающее напряжение питания.
Пусковой и рабочий конденсаторы соединяют параллельно, причем так, что параллельно пусковому, включено шунтирующее сопротивление и одним концом пусковой кондер включается через ключ. При пуске двигателя ключ замыкают, поднимая ток запуска, затем, размыкают.
Однако, не нужно забывать, что к однофазной сети можно подключить далеко не каждый движок. Кроме того, мощность мотора в таком подключении будет составлять лишь 0.5-0.6 мощности трехфазного включения.
Пусковые токи
Чтобы генератор служил вам как можно дольше, нужно правильно подобрать его мощность. А чтобы правильно подобрать мощность генератора, необходимо не только учесть номинальные мощности всех потребителей электроэнергии в сети, но и их пусковые токи.
Что же это такое? Официальное определение гласит, что это ток, потребляемый из сети электродвигателем при его пуске, который может во много раз превосходить номинальный ток двигателя. На самом же деле такие токи возникают при включении всех электроприборов, просто у большинства из них они длятся всего несколько миллисекунд, тогда как у электродвигателей это время может достигать 7 секунд.
Не будем вдаваться в подробности изложения причин возникновения пусковых токов. Проведем простую аналогию — каждый автомобилист знает, что при разгоне автомобиль потребляет больше топлива, чем во время движения по трассе с постоянной скоростью. Так же и электродвигатель потребляет больше электричества в момент «разгона». Часто пусковые токи производители ограничивают тем или иным способом, например, с помощью пусковых сопротивлений. Это снижает кратность превышения номинального значения мощности, но увеличивает длительность импульса.
В таблице, приведенной ниже, указаны примерные значения кратности и продолжительности пусковых токов для разных типов потребителей энергии.
Потребитель | Кратность пускового тока | Длительность импульса пускового тока (cек) |
---|---|---|
Лампы накаливания | 5 — 13 | 0,05 — 0,3 |
Электронагревательные приборы из сплавов: нихром, фехраль, хромаль | 1,05 — 1,1 | 0,5 — 30 |
Люминесцентные лампы с пусковыми устройствами | 1,05 — 1,1 | 0,1 — 0,5 |
Компьютеры, мониторы, телевизоры и другие приборы с выпрямителем на входе блока питания | 5 — 10 | 0,25 — 0,5 |
Бытовая электроника, офисная техника и другие приборы с трансформатором на входе блока питания | до 3 | 0,25 — 0,5 |
Устройства с электродвигателями асинхронного типа, холодильники, насосы, кондиционеры и т.п. | 3 — 7 | 1 — 7 |
Как мы видим из таблицы, пусковым током лампочки запросто можно пренебречь, в то время как про холодильник или кондиционер забывать никак нельзя.
Некоторые электростанции способны выдерживать 5- и даже 7-кратные перегрузки в течение нескольких секунд, однако все равно это не лучшим образом скажется на их сроке службы. Всегда учитывайте запас мощности при выборе электростанции.
Расчет тока электродвигателя
Привет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя. Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать. Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. А конкретно именно работать электромонтёром.
Перед этим я уже немного затрагивал темы электродвигателей, когда писал о том как запустить асинхронные двигателей, и когда писал какие бывают номиналы электродвигателей.
Ну а теперь приступим конкретно к самому расчёту. Допустим: у вас есть трёхфазный асинхронный электродвигателей переменного тока, номинальная мощность, которого составляет 25 кВт, и вам хочется узнать какой же у него будет номинальный ток.
Для этого существует специальная формула: Iн = 1000Pн /√3•(ηн • Uн • cosφн),
Где Pн – это мощность электродвигателя; измеряется в кВт
Uн – это напряжение, при котором работает электродвигатель; В
ηн – это коэффициент полезного действия, обычно это значение 0.9
ну и cosφн – это коэффициент мощности двигателя, обычно 0.8.
Последние два значения обычно пишутся на заводской бирке, хотя они у всех двигателей практически одинаковые. Но все же нужно брать данные именно с заводской бирки на двигателе.
Вот как на этой картинке все значения видны, а ток нет. Только если КПД написан 81%, то для расчёта нужно брать 0.81.
Теперь подставим значения Iн = 1000•25/√3 • (0.9 • 380 • 0.8) = 52.81 А
Тем, кто не помнит, сколько будет √3, напоминаю – это будет 1,732
Вот и всё, все расчёты закончены. Всё очень легко и просто. По моему образцу вы можете легко рассчитать номинальный ток электродвигателя, вам всего лишь нужно подставить своих данных.
Подписка на рассылку
Ток, который нужен для запуска электродвигателя, называется пусковым. Как правило, пусковые токи электродвигателей в несколько раз большие, чем токи, необходимые для работы в нормально-устойчивом режиме.
Рисунок 1. Асинхронный электродвигатель Большой пусковой ток асинхронного электродвигателя необходим для того, чтобы раскрутить ротор с места, для чего требуется приложить гораздо больше энергии, чем для дальнейшего поддержания постоянного числа его оборотов. Стоит отметить, что, несмотря на совсем другой принцип действия, однофазные двигатели постоянного тока также характеризуются большими значениями пусковых токов.
Высокие пусковые токи электродвигателей — нежелательное явление, поскольку они могут приводить к кратковременной нехватке энергии для другого подключенного к сети оборудования (падению напряжения). Поэтому при подключении и наладке двигателей переменного тока (наиболее распространенных в промышленности) всегда стоит задача минимизировать значения пусковых токов, а также повысить плавность пуска двигателя за счет применения специального дополнительного оборудования. Такие мероприятия также позволяют снизить уровень затрат на пуск электродвигателя (применять провода меньшего сечения, стабилизаторы и дизельные электростанции меньшей мощности, проч.).
Одной из наиболее эффективных категорий устройств, облегчающих тяжелые условия пуска, являются софтстартеры и частотные преобразователи. Особенно ценным считается их свойство поддерживать пусковой ток двигателей переменного тока в течение продолжительного периода — более минуты. Также пусковой ток асинхронного электродвигателя можно уменьшить за счет внедрения внешнего сопротивления в обмотку ротора.
Расчет пускового тока асинхронного электродвигателя
Рисунок 2. Асинхронный электродвигатель с частотным преобразователем Расчет пускового тока электродвигателя может потребоваться для того, чтобы подобрать подходящие автоматические выключатели, способные защитить линию включения данного электродвигателя, а также для того, чтобы подобрать подходящее по параметрам дополнительное оборудование (генераторы, проч.).
Расчет пускового тока электродвигателя осуществляется в несколько этапов:
Определение номинального тока трехфазного электродвигателя переменного тока согласно формуле: Iн=1000Pн/(Uн*cosφ*√ηн). Рн здесь — номинальная мощность двигателя, Uн выступает номинальным напряжением, а ηн — номинальным коэффициентом полезного действия. Cosφ — это номинальный коэффициент мощности электромотора. Все эти данные можно найти в технической документации по двигателю.
Расчет величины пускового тока по формуле Iпуск=Iн*Кпуск. Здесь Iн — номинальная величина тока, а Кпуск выступает кратностью постоянного тока к номинальному значению, которая также должна указываться в технической документации к электродвигателю.
Точно зная пусковые токи электродвигателей, можно правильно подобрать автоматические выключатели, которые будут защищать линию включения.
Iн = Pн/(√3Uн х сosφ), кА
где Pн — номинальная мощность двигателя, кВт, Uн — напряжение в сети, кВ (0,38 кВ). Коэффициент мощности (сosφ) — паспортные значения двигателя.
Рис. 1. Паспорт электрического двигателя.
Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.
Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.
При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.
При пуске из сети электрическим двигателем потребляется пусковой ток Iпуск, который в 3 — 8 раз выше номинального. Характеристика изменения тока представлена на графике (рис. 2, а).
Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)
Подлинную величину пускового тока для электродвигателя определяют зная величину кратности пускового тока — Iпуск/Iном. Кратность пускового тока — техническая характеристика двигателя, ее известна из каталогов. Пусковой ток рассчитывается согласно формуле: I пуск = Iх. х (Iпуск/Iном).
Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.
Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).
Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.
На клеммах электродвигателя, а также и на клеммах рядом работающих электродвигателей напряжение будет 220 — 75 = 145 В. Это понижение напряжения вызывает торможение работающих электродвигателей, что влечет за собой еще большее повышение тока в сети и выход из строя предохранителей.
В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи .
Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.
Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.
Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.
Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).
Какой ток потребляет двигатель из сети при пуске и работе
В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.
Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток. При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:
I н = P н/ ( √3 U н х η х с osφ).
где P н — номинальная мощность двигателя в кВт, U н — напряжение в сети, в кВ (0,38 кВ). Коэффициент полезного действия ( η) и коэффициент мощности (с osφ) — паспортные значения двигателя, которые написаны на щитке в виде металлической таблички. См. также — Какие паспортные данные указываются на щитке асинхронного двигателя.
Рис. 1. Паспорт электрического двигателя. Номинальная мощность 1,5 кВ, номинальный ток при напряжении 380 В — 3,4 А.
Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.
Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.
При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).
В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток. который может быть в 3 — 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).
Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)
Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока — I пуск/ I ном. Кратность пускового тока — одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х ( I пуск/ I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока — 6, пусковой ток равен 20 х 6 = 120 А.
Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.
Процесс выбора плавких предохранителей подробно рассмотрен в этой статье: Выбор предохранителей для защиты асинхронных электродвигателей
Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).
Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.
На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 — 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.
В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.
Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.
Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник
Важно понимать, что не далеко каждый двигатель можно подключать по этой схеме. Наиболее распространенные асинхронные двигатели с рабочим напряжение 380/200 В, в том числе и двигатель, показанный на рисунке 1 при включении по данной схеме выйдут из строя. Подробнее об этом читайте здесь: Выбор схемы соединения фаз электродвигателя
В настоящее время, для уменьшения пускового тока электрических двигателей активно используют специальные микропроцессорные устройства плавного пуска (софт-стартеры). Подробнее о назначении такого типа устройств читайте в статье Для чего нужен плавный пуск асинхронного двигателя.
>Полезное для электрика
Расчет токов самозапуска электродвигателей 6 кВ
Расчет токов самозапуска электродвигателей производиться для выбора тока срабатывания максимальной токовой защиты питающих элементов собственных нужд.
При расчете рассматривается самый тяжелый режим, когда все ответственные двигатели, присоединены к питающему элементу собственных нужд, полностью заторможены и, следовательно, сопротивление их будет минимальным, равным пусковым.
При определении токов самозапуска принимается, что они питаются от шин бесконечной мощности через реактор или трансформатор собственных нужд, вследствие чего самозапуск происходит при номинальном напряжении на питающей стороне источников собственных нужд. При этом в расчетах сопротивление системы принимается равным нулю: хсист.=0.
Ток самозапуска, проходящий через питающий элемент собственных нужд, определяется по выражению:
где:
- Uср. – среднее номинальное напряжение шин 6(10) кВ, принимаемое равным 6,3(10,5) кВ;
- хсам – эквивалентное сопротивление самозапуска, Ом.
Эквивалентное сопротивление самозапуска хсам определяется по выражению:
хсам = хсист. + хтр. + хдв.сум. (2)
где:
- хсист. – сопротивление системы, Ом;
- хтр. – сопротивление трансформатора, Ом;
- хдв.сум. – суммарное эквивалентное сопротивление всех ответственных электродвигателей при самозапуске, присоединенных к питающему элементу.
Суммарное эквивалентное сопротивление остановленных электродвигателей определяется по выражению:
где:
Iпуск.сумм. – суммарная величина пусковых токов электродвигателей, участвующих в самозапуске.
Для каждого двигателя электродвигателя пусковой ток определяется по выражению:
где:
- kпуск. – кратность пускового тока двигателя, данная в каталоге на электродвигатель;
- Iн.дв. – номинальный ток двигателя.
При расчете самозапуска определяется также остаточное напряжение на шинах собственных нужд, от которых питаются электродвигатели:
Пример определения тока самозапуска двигателей 6 кВ
Определить ток самозапуска ответственных двигателей, питающихся от трансформатора с расщепленными обмотками.
Расчетная схема, схема замещения и данные трансформатора приведены на рис.1 и 2.
Рис.1 — Расчетная схема
Рис.2 — Схема замещения и данные трансформатора
Расчет производится в следующем порядке.
1. Определяется суммарный пусковой ток электродвигателей Iпуск.сумм. для каждой секции 6 кВ. Расчет приведен в таблице 1 и 2. Таблица 1 — Характеристики электродвигателей
Наименование агрегата | Тип двигателя | Номинальная мощность Рн, кВт | Ном. ток Iн, А | Кратность пускового тока kпуск | Пусковой ток Iпуск=kп*Iн |
---|---|---|---|---|---|
Дымосос двухскоростной | ДАЗО-141410/12А | 1500/850 | 204/118 | 6,1/5,5 | 1245 (вторая скорость) |
Дутьевой вентилятор двухскоростной | ДАЗО-15498/10 | 630/320 | 76,5/42,5 | 5,5/5,7 | 420 (вторая скорость) |
Питательный электронасос | АС-4000/6000 | 4000 | 445 | 6,3 | 2800 |
Вентилятор первичного дутья | ДАЗО-12-55-8 | 250 | 31,5 | 6,2 | 195 |
Конденсатный насос | АВ-113-4 | 250 | 29,4 | 5,8 | 170 |
Элетронасос масляный пусковой | А-114-6М | 200 | 23,6 | 5,8 | 137 |
Резервный возбудитель | ДАЗ-1810-6 | 1200 | 142 | 10,2 | 1450 |
Циркуляционный насос | ВДД-213/54-16 | 1700 | 215 | 5,4 | 1160 |
Трансформатор 6,3/0,4 кВ, 750 кВА | — | — | 69 | 3 | 207 |
Трансформатор 6,3/0,4 кВ, 560 кВА | — | — | 52 | 3 | 156 |
Таблица 2 — Определение суммарных пусковых токов электродвигателей
Наименование агрегата | Тип двигателя | Распределение по секциям | |||
---|---|---|---|---|---|
I секция | II секция | ||||
Кол.,шт | Пусковой ток, А | Кол.,шт | Пусковой ток, А | ||
Дымосос двухскоростной | ДАЗО-141410/12А | 1 | 1245 | 1 | 1245 |
Дутьевой вентилятор двухскоростной | ДАЗО-15498/10 | 1 | 420 | 1 | 420 |
Питательный электронасос | АС-4000/6000 | 1 | 2800 | 2 | 2*2800=5600 |
Вентилятор первичного дутья | ДАЗО-12-55-8 | 1 | 195 | 1 | 195 |
Конденсатный насос | АВ-113-4 | 2 | 2*170=340 | 1 | 170 |
Элетронасос масляный пусковой | А-114-6М | 1 | 137 | — | — |
Резервный возбудитель | ДАЗ-1810-6 | 1 | 1450 | — | — |
Циркуляционный насос | ВДД-213/54-16 | 1 | 1160 | — | — |
Трансформатор 6,3/0,4 кВ, 750 кВА | — | 3 | 3*207=621 | 5 | 5*207=1035 |
Трансформатор 6,3/0,4 кВ, 560 кВА | — | 1 | 156 | 1 | 156 |
Суммарный пусковой ток: | — | 8525 | 8820 |
2. Определяется суммарное эквивалентное сопротивление электродвигателей согласно выражения 3 для каждой секции 6 кВ:
I секция
II секция
3. Определяется сопротивление трансформатора, исходя из напряжения короткого замыкания Uк.вн_нн, отнесенного к мощности расщепленной обмотки равной 16 МВА.
4. Определяется эквивалентное сопротивление самозапуска от ответственных двигателей для каждой секции согласно выражения 2.
I секция: хсам = хтр. + хдв.сум. = 0,286 + 0,423 = 0,709 Ом
II секция: хсам = хтр. + хдв.сум. = 0,286 + 0,413 = 0,699 Ом
5. Определяется максимальный ток самозапуска двигателей обеих секций согласно выражения 1.
I секция
II секция
6. Определяется максимальный ток самозапуска двигателей обеих секций.
Iсам = Iсам1 + Iсам2 = 5150 + 5200 = 10350 A
7. Определяется остаточное напряжение для наиболее нагруженной II секции, согласно выражения 5.
Литература:
1. Библиотека Электромонтера. Байтер И.И. Релейная защита и автоматика питающих элементов собственных нужд тепловых электростанций. 1968 г.
Всего наилучшего! До новых встреч на сайте Raschet.info.
Поделиться в социальных сетях
Калькулятор пускового и рабочего тока двигателя
Пусковой и рабочий ток — три важных фактора для определения номинальных характеристик асинхронного двигателя переменного тока. Пусковой ток , иногда сокращенно I start в электротехнике, является мерой или номинальной силой тока, необходимой для запуска одно- или трехфазного двигателя переменного тока. Обычно это четырехкратный рабочий ток. Точно так же рабочий ток , иногда сокращенно I пробег — это ток, необходимый для того, чтобы асинхронный двигатель переменного тока мог свободно работать без нагрузки после запуска.Аналогично, Ток полной нагрузки , иногда сокращенно I полная нагрузка — это ток, необходимый для работы асинхронного двигателя переменного тока с максимальной нагрузкой или номинальной мощностью. Единицей измерения тока является ампер, который часто используется как ампер.
Формулы для расчета пускового, рабочего и полного тока трехфазного асинхронного двигателя переменного тока
Калькулятор запуска двигателя — нарушение напряжения
Пуск асинхронного двигателя при полном напряжении (также известный как запуск от сети или прямой запуск от сети) имеет нежелательный эффект, заключающийся в потреблении в пять-десять или более раз тока полной нагрузки. Обычно этот пусковой ток сохраняется, пока двигатель не достигнет синхронной скорости (номинальной скорости). Асинхронные двигатели в пусковых условиях имеют чрезвычайно низкий коэффициент мощности, около 10-30%. Сочетание большого пускового тока и низкого коэффициента мощности вызовет большое падение напряжения на полном сопротивлении системы.
Следующие ниже калькуляторы могут использоваться для расчета падения пускового напряжения двигателя и пускового тока включения трехфазного асинхронного двигателя с использованием предположения о бесконечности источника, а также при наличии данных импеданса источника электросети.
Калькулятор пускового тока двигателя и падения напряжения
Используйте указанный ниже калькулятор, если полное сопротивление источника электросети или генератора неизвестно. .
Используйте нижеприведенный калькулятор, если известно полное сопротивление источника электросети или генератора .Этот калькулятор даст более точные результаты по сравнению с приведенным выше, который не учитывает полное сопротивление источника питания. Прочтите расчет импеданса источника в энергосистемах для получения дополнительной информации о расчете MVA короткого замыкания.
.Калькулятор тока полной нагрузки с уравнениями
Калькулятор тока полной нагрузки рассчитывает ток полной нагрузки для нагрузок однофазного переменного тока, трехфазного переменного тока и постоянного тока в кВт, кВА или л.с. Включает пошаговые уравнения.
См. Также
Параметры калькулятора тока полной нагрузки
- Напряжение (В):
- Укажите межфазное напряжение V LL для трехфазного источника переменного тока в вольтах.
- Укажите напряжение между фазой и нейтралью V LN для однофазного источника переменного или постоянного тока.
- Выберите расположение фаз: 1 фаза переменного тока, 3 фазы переменного тока или постоянного тока.
- Нагрузка (S): Укажите нагрузку в кВт, кВА, А или л.с. И укажите коэффициент мощности нагрузки ( pf ) (cosΦ), если нагрузка указана в кВт или л.с.
Расчет тока полной нагрузки для трехфазного источника переменного тока:
Ток полной нагрузки для 3-фазной нагрузки в кВт рассчитывается как:
\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kW}} {\ sqrt {3} \ cdot V_ {LL} \ cdot \ cos {\ phi}} \)
Где:
- S кВт : Номинальная мощность в киловаттах (кВт)
- В LL : Линейное (междуфазное) напряжение в вольтах.
- cosΦ: Коэффициент мощности нагрузки.
Ток полной нагрузки для трехфазной нагрузки в кВА рассчитывается как:
\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kVA}} {\ sqrt {3} \ cdot V_ {LL}} \)
Ток полной нагрузки для трехфазной нагрузки в л.с. рассчитывается как:
\ (I = \ displaystyle \ frac {745.7 \ cdot S_ {hp}} {\ sqrt {3} \ cdot V_ {LL} \ cdot \ cos {\ phi}} \)
Расчет тока полной нагрузки для однофазной сети переменного тока:
Ток полной нагрузки для однофазной нагрузки в кВт рассчитывается как:
\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kW}} {V_ {LN} \ cdot \ cos {\ phi}} \)
Ток полной нагрузки для однофазной нагрузки в кВА рассчитывается как:\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kVA}} {V_ {LN}} \)
Ток полной нагрузки для однофазной нагрузки в л.с. рассчитывается как:
\ (Я = \ Displaystyle \ гидроразрыва {745.7 \ cdot S_ {hp}} {V_ {LN} \ cdot \ cos {\ phi}} \)
Расчет тока полной нагрузки для источника постоянного тока:
Ток полной нагрузки для нагрузки постоянного тока в кВт рассчитывается как:
\ (I = \ displaystyle \ frac {1000 \ cdot S_ {кВт}} {V_ {LN}} \)
Ток полной нагрузки для нагрузки постоянного тока в кВА рассчитывается как:
\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kVA}} {V_ {LN}} \)
Ток полной нагрузки для нагрузки постоянного тока в л.с. рассчитывается как:
\ (Я = \ Displaystyle \ гидроразрыва {745.7 \ cdot S_ {hp}} {V_ {LN}} \)
.Расчет минимальных уровней тока короткого замыкания
Если защитное устройство в цепи предназначено только для защиты от короткого замыкания, важно, чтобы оно работало с уверенностью при минимально возможном уровне тока короткого замыкания, который может возникнуть в цепи.
Как правило, в цепях низкого напряжения одно защитное устройство защищает от всех уровней тока, от порога перегрузки до максимальной отключающей способности устройства по номинальному току короткого замыкания.Защитное устройство должно иметь возможность срабатывать в течение максимального времени, чтобы гарантировать безопасность людей и цепи, для всего тока короткого замыкания или тока повреждения, которые могут возникнуть. Чтобы проверить это поведение, необходимо вычислить минимальный ток короткого замыкания или ток короткого замыкания.
Кроме того, в некоторых случаях используются устройства защиты от перегрузки и отдельные устройства защиты от короткого замыкания.
Примеры таких устройств
Рисунок G43 — На рисунке G45 показаны некоторые общие устройства, в которых защита от перегрузки и короткого замыкания обеспечивается отдельными устройствами.
Рис. G43 — Цепь защищена предохранителями типа AM
Рис. G44 — Цепь защищена автоматическим выключателем без теплового реле перегрузки
Рис. G45 — Автоматический выключатель D обеспечивает защиту от короткого замыкания до нагрузки
включительноКак показано на Рисунок G43 и Рисунок G44, наиболее распространенные схемы, использующие отдельные устройства, управляют и защищают двигатели.
Рисунок G45 представляет собой частичное отступление от основных правил защиты и обычно используется в цепях шинопроводов (системы шинопроводов), рельсах освещения и т. Д.
Регулируемый привод
На рисунке G46 показаны функции, обеспечиваемые частотно-регулируемым приводом, и, если необходимо, некоторые дополнительные функции, обеспечиваемые такими устройствами, как автоматический выключатель, тепловое реле, УЗО.
Рис. G46 — Защита для приводов с регулируемой скоростью
Обеспечение защиты | Защита обычно обеспечивается частотно-регулируемым приводом | Дополнительная защита, если не обеспечивается приводом с регулируемой скоростью |
---|---|---|
Перегрузка кабеля | Да | CB / тепловое реле |
Перегрузка двигателя | Да | CB / тепловое реле |
Короткое замыкание на выходе | Да | |
Перегрузка привода с регулируемой скоростью | Да | |
Повышенное напряжение | Да | |
Пониженное напряжение | Да | |
Обрыв фазы | Да | |
Короткое замыкание на входе | Автоматический выключатель (отключение при коротком замыкании) | |
Внутренняя неисправность | Автоматический выключатель (отключение при коротком замыкании и перегрузке) | |
Замыкание на землю на выходе (косвенный контакт) | (самозащита) | УЗО ≥ 300 мА или выключатель в системе заземления TN |
Ошибка прямого контакта | УЗО ≤ 30 мА |
Обязательные условия
Защитное устройство должно соответствовать:
- Уставка мгновенного отключения Im мин для автоматического выключателя
- сварочный ток Ia мин для предохранителя
Следовательно, защитное устройство должно удовлетворять двум следующим условиям:
- Его отключающая способность должна быть больше, чем Isc, трехфазный ток короткого замыкания в точке установки
- Устранение минимального возможного тока короткого замыкания в цепи за время tc, совместимое с тепловыми ограничениями проводников схемы:
- tc≤k2S2Iscmin2 {\ displaystyle tc \ leq {\ frac {k ^ {2} S ^ {2}} {Isc_ {min} \, ^ {2}}}} (действительно для tc
где S — площадь поперечного сечения кабеля, k — коэффициент, зависящий от кабеля материал проводника, изоляционный материал и начальная температура.
Пример: для медного сшитого полиэтилена, начальная температура 90 ° C, k = 143 (см. IEC60364-4-43 §434.3.2, таблица 43A и , рисунок G52).
Сравнение кривой характеристик срабатывания предохранителя или предохранителя защитных устройств с предельными кривыми тепловых ограничений для проводника показывает, что это условие выполняется, если:
- Isc (min)> Im (уровень уставки тока срабатывания автоматического выключателя с мгновенной или короткой выдержкой времени), (см. рис. G47)
- Isc (мин)> Ia для защиты предохранителями.Значение тока Ia соответствует точке пересечения кривой предохранителя и кривой термостойкости кабеля (см. рис. G48 и рис. G49)
рис. G47 — Защита автоматическим выключателем
Рис. G48 — Защита предохранителями типа AM
Рис. G49 — Защита предохранителями типа gG
Практическая методика расчета Lmax
На практике это означает, что длина цепи после защитного устройства не должна превышать расчетную максимальную длину: Lmax = 0.8 U Sph4ρIm {\ displaystyle L_ {max} = {\ frac {0.8 \ U \ S_ {ph}} {2 \ rho I_ {m}}}}
Необходимо проверить ограничивающее влияние импеданса длинных проводников цепи на величину токов короткого замыкания и соответственно ограничить длину цепи.
Для защиты людей (защита от короткого замыкания или косвенные контакты) методы расчета максимальной длины цепи представлены в главе F для системы TN и системы IT (вторая неисправность).
Два других случая рассматриваются ниже, для межфазных коротких замыканий и межфазных коротких замыканий.
1 — Расчет L
max для 3-фазной 3-проводной цепиМинимальный ток короткого замыкания возникает при коротком замыкании двух фазных проводов на удаленном конце цепи (см. рис. G50).
Рис. G50 — Определение L для 3-фазной 3-проводной схемы
При использовании «традиционного метода» предполагается, что напряжение в точке защиты P составляет 80% от номинального напряжения во время короткого замыкания, так что 0,8 U = Isc Zd, где:
Zd = полное сопротивление контура короткого замыкания
Isc = ток короткого замыкания (фаза / фаза)
U = номинальное межфазное напряжение
Для кабелей ≤ 120 мм 2 реактивным сопротивлением можно пренебречь, так что Zd = ρ2LSph {\ displaystyle Zd = \ rho {\ frac {2L} {Sph}}} [1]
где:
ρ = удельное сопротивление материала проводника при средней температуре во время короткого замыкания,
Sph = c.s.a. фазного проводника в мм 2
L = длина в метрах
Условие для защиты кабеля: Im ≤ Isc при Im = ток срабатывания, что гарантирует мгновенное срабатывание выключателя.
Это приводит к Im≤0,8UZd {\ displaystyle Im \ leq {\ frac {0.8U} {Zd}}}, что дает L≤0,8 U Sph4ρIm {\ displaystyle L \ leq {\ frac {0.8 \ U \ S_ { ph}} {2 \ rho I_ {m}}}}
Для проводников аналогичной природы U и ρ являются постоянными (U = 400 В для межфазного замыкания, ρ = 0.023 Ом.мм² / м [2] для медных проводников), поэтому верхняя формула может быть записана как:
Lmax = k SphIm {\ displaystyle L_ {max} = {\ frac {k \ S_ {ph}} {I_ {m}}}}
с Lmax = максимальная длина цепи в метрах
Для промышленных автоматических выключателей (IEC 60947-2) значение Im дается с допуском ± 20%, поэтому Lmax следует рассчитывать для Im + 20% (наихудший случай).
Значения коэффициента kпредставлены в следующей таблице для медных кабелей с учетом этих 20% и в зависимости от поперечного сечения для Sph> 120 мм² [1]
Поперечное сечение (мм 2 ) | ≤ 120 | 150 | 185 | 240 | 300 |
---|---|---|---|---|---|
k (для 400 В) | 5800 | 5040 | 4830 | 4640 | 4460 |
2 — Расчет L
max для 3-фазной 4-проводной цепи 230/400 ВМинимальный Isc возникает, когда короткое замыкание происходит между фазным проводом и нейтралью в конце цепи.
Требуется расчет, аналогичный приведенному в примере 1 выше, но для однофазного замыкания (230 В).
- Если Sn (сечение нейтрали) = Sph
Lmax = k Sph / Im с k, рассчитанным для 230 В, как показано в таблице ниже
Поперечное сечение (мм 2 ) | ≤ 120 | 150 | 185 | 240 | 300 |
---|---|---|---|---|---|
k (для 230 В) | 3333 | 2898 | 2777 | 2668 | 2565 |
- Если Sn (сечение нейтрали) 2 )
Lmax = 6666SphIm11 + m {\ displaystyle L_ {max} = 6666 {\ frac {Sph} {Im}} {\ frac {1} {1 + m}}}
м = SphSn {\ displaystyle m = {\ frac {Sph} {Sn}}}
Табличные значения для Lmax
На основе практического метода расчета, описанного в предыдущем параграфе, можно подготовить предварительно рассчитанные таблицы.
На практике таблицы Рис. F25 — Рис. F28, уже использованные в главе «Защита от поражения электрическим током и электрические пожары для расчета замыканий на землю», также могут быть использованы здесь, но с применением поправочных коэффициентов в рис. G51 ниже, чтобы получить значение Lmax, относящееся к межфазным коротким замыканиям или между фазами и нейтралью.
Примечание : для алюминиевых проводов полученную длину необходимо снова умножить на 0,62.
Рис.G51 — поправочный коэффициент, применяемый к длинам, полученным от Рис. F25 до Рис. F28, для получения Lmax с учетом межфазных коротких замыканий или межфазных коротких замыканий
Детали схемы | ||
---|---|---|
3-фазная 3-проводная цепь 400 В или 1-фазная 2-проводная цепь 400 В (без нейтрали) | 1,73 | |
1-фазный 2-проводный (фаза и нейтраль) цепь 230 В | 1 | |
3-фазная 4-проводная цепь 230/400 В или 2-фазная 3-проводная цепь 230/400 В (т.е.e с нейтралью) | Sph / S нейтральный = 1 | 1 |
Sph / S нейтральный = 2 | 0,67 |
Примеры
Пример 1
В трехфазной трехпроводной установке на 400 В защиту от короткого замыкания двигателя мощностью 22 кВт (50 А) обеспечивает магнитный прерыватель цепи типа GV4L, мгновенное отключение по току короткого замыкания установлено на 700 А (точность ± 20%), т.е. в худшем случае для отключения потребуется 700 x 1,2 = 840 А.
Кабель c.s.a. = 10 мм², проводник — медь.
В рис. F25 столбец Im = 700 A пересекает строку c.s.a. = 10 мм² при значении Lmax 48 м. Рис. G51 дает коэффициент 1,73, применяемый к этому значению для 3-фазной 3-проводной цепи (без нейтрали). Автоматический выключатель защищает кабель от короткого замыкания, следовательно, при условии, что его длина не превышает 48 x 1,73 = 83 метра.
Пример 2
В цепи 3L + N 400 В защита обеспечивается автоматическим выключателем 220 A типа NSX250N с расцепителем micrologic 2, имеющим мгновенную защиту от короткого замыкания, установленную на 3000 A (± 20%), т.е.е. наихудший случай 3600 А, чтобы быть уверенным в отключении.
Кабель c.s.a. = 120 мм², проводник — алюминий.
В рис. F25 столбец Im = 3200 A (первое значение> 3000 A, так как таблица уже включает + 20% от Im в расчет) пересекает строку c.s.a. = 120 мм² при значении Lmax 125 м. Удельное сопротивление медных кабелей из EPR / XLPE при прохождении тока короткого замыкания, например, для максимальной температуры, которую они могут выдерживать = 90 ° C (см. Рисунок G37). .
определение, формула, нормы и ограничения
Определение коэффициента текущей ликвидности
Коэффициент текущей ликвидности является балансовым показателем финансовых показателей ликвидности компании.Коэффициент текущей ликвидности указывает на способность компании выполнять краткосрочные долговые обязательства. Коэффициент текущей ликвидности определяет, достаточно ли у фирмы ресурсов для выплаты своих долгов в течение следующих 12 месяцев. Потенциальные кредиторы используют этот коэффициент при принятии решения о выдаче краткосрочных ссуд.Коэффициент текущей ликвидности также может дать представление об эффективности операционного цикла компании или ее способности превращать свой продукт в наличные. Коэффициент текущей ликвидности также известен как коэффициент оборотного капитала .
Расчет (формула)Коэффициент текущей ликвидности рассчитывается путем деления оборотных активов на краткосрочные обязательства:
Коэффициент текущей ликвидности = оборотные активы / текущие обязательства.
Обе переменные показаны в балансе (отчете о финансовом положении).
Нормы и ограниченияЧем выше коэффициент, тем более ликвидна компания. Обычно приемлемый коэффициент текущей ликвидности — 2; это удобное финансовое положение для большинства предприятий. Приемлемые текущие коэффициенты варьируются от отрасли к отрасли. Для большинства промышленных компаний коэффициент текущей ликвидности 1,5 может быть приемлемым.
Низкие значения коэффициента текущей ликвидности (значения менее 1) указывают на то, что у фирмы могут возникнуть трудности с выполнением текущих обязательств.Однако инвестору следует также учитывать операционный денежный поток компании, чтобы лучше понять ее ликвидность. Низкий коэффициент текущей ликвидности часто может поддерживаться сильным операционным денежным потоком.
Если коэффициент текущей ликвидности слишком высок (намного больше 2), то компания может неэффективно использовать свои оборотные активы или средства краткосрочного финансирования. Это также может указывать на проблемы в управлении оборотным капиталом.
При прочих равных условиях кредиторы считают, что высокий коэффициент текущей ликвидности лучше, чем низкий коэффициент текущей ликвидности, потому что высокий коэффициент текущей ликвидности означает, что компания с большей вероятностью выполнит свои обязательства, которые подлежат погашению в течение следующих 12 месяцев.
Точная формула в аналитическом программном обеспечении ReadyRatiosКоэффициент текущей ликвидности = F1 [CurrentAssets] / F1 [CurrentLiabilities]
F1 — Отчет о финансовом положении (МСФО).
Коэффициент текущей ликвидности Отраслевой эталонСредние значения коэффициента вы можете найти в нашем справочнике по отраслевому сравнительному анализу — Коэффициент текущей ликвидности.
.Номинальный ток электродвигателя
Подавляющее большинство электродвигателей, используемых в промышленности, относятся к трехфазному асинхронному типу. Для питания таких устройств необходима промышленная трехфазная сеть переменного тока, обеспечивающая сетевое напряжение заданной частоты и напряжения. Высокая популярность асинхронных электродвигателей обусловлена дешевизной, простотой изготовления и механической прочностью данных устройств. Кроме того, изменяя схему подключения обмоток (звезда или треугольник) можно подключать двигатель к сетям различного напряжения (обычно используются комбинации 220/380 и 127/220В).
Высокий стартовый ток – главный недостаток асинхронного электродвигателя
Однако несмотря на множество неоспоримых преимуществ, асинхронные двигатели имеют минусы, среди которых одним из наиболее значительных является достаточно большой пусковой ток электродвигателя данного типа. Особенно заметен этот недостаток в асинхронных устройствах с короткозамкнутым ротором. Такие двигатели следует с осторожностью применять, в тех системах, для которых требуется значительный пусковой момент, который может привести к превышению номинального значения силы тока (Iн).
Для большинства асинхронных электродвигателей допустимо кратковременное превышение значение Iн, которое может произойти в момент пуска. Так, в момент запуска, допускается шестикратное превышение значения номинального тока при условии, что оно будет длиться не более 5 секунд. В случае, если в некотором режиме номинальный ток превышается не более чем в два раза, допускается увеличить время работы устройства в этом режиме до 15 секунд.
Расчет номинального значения тока асинхронного электродвигателя
Номинальный ток электродвигателя, при котором возможна его длительная работа, связан с номинальной мощностью устройства и его КПД следующим выражением: Iн=1000*Pн/(Uн*cosφ√η), где Рн – мощность, Uн – номинальное напряжение, которым питается электродвигатель, η – КПД, а cosφ – коэффициент мощности двигателя.
Отсюда можно сделать важный вывод, который состоит в том, что при уменьшении U (например при переключении устройства из сети в 220 В сеть 127 В), увеличивается ток двигателя, который может превысить номинальное значение. А длительная работа двигателя на токе I>Iн может привести не только к его повреждению, но и к возгоранию. Поэтому, используемые в системе с электрическим двигателем предохранительные устройства должны быть подобраны так, чтобы предотвратить продолжительную работу при токе I>Iн.
Просмотров: 14917
Дата: Воскресенье, 15 Декабрь 2013
Расчет номинального тока электродвигателя | Заметки электрика
Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
Решил написать статью о расчете номинального тока для трехфазного электродвигателя.
Этот вопрос является актуальным и кажется на первый взгляд не таким и сложным, но почему-то в расчетах зачастую возникают ошибки.
В качестве примера для расчета я возьму трехфазный асинхронный двигатель АИР71А4 мощностью 0,55 (кВт).
Вот его внешний вид и бирка с техническими данными.
Если двигатель Вы планируете подключать в трехфазную сеть 380 (В), то значит его обмотки нужно соединить по схеме «звезда», т.е. на клеммнике необходимо соединить выводы V2, U2 и W2 между собой с помощью специальных перемычек.
При подключении этого двигателя в трехфазную сеть напряжением 220 (В) его обмотки необходимо соединить треугольником, т.е. установить три перемычки: U1-W2, V1-U2 и W1-V2.
Если же Вы решите подключить этот двигатель в однофазную сеть 220 (В), то его обмотки также должны быть соединены треугольником.
Для информации: почитайте подробную статью о схемах соединения обмоток в «звезду» и «треугольник».
Для правильного выбора автоматического выключателя (или предохранителей) и тепловых реле для защиты двигателя, а также для выбора контактора для его управления, в первую очередь нам нужно знать номинальный ток двигателя для конкретной схемы соединения обмоток.
Обычно, номинальные токи указаны прямо на бирке, поэтому можно смело ориентироваться на них. Но иногда циферки не видны или стерты, а известна только лишь мощность двигателя или другие его параметры.
Такое очень часто встречается, но еще чаще бирка вообще отсутствует или так затерта, что на ней абсолютно ничего не видно — приходится только догадываться, что там изображено.
Но это отдельный случай и что делать в таких ситуациях, я расскажу Вам в ближайшее время.
В данной же статье я хочу акцентировать Ваше внимание на формулу по расчету тока двигателя, потому что даже не все «специалисты» ее знают, хотя может и знают, но не хотят вспомнить основы электротехники.
Итак, приступим.
Внимание! Мощность на шильдике двигателя указывается не электрическая, а механическая, т.е. полезная механическая мощность на валу двигателя. Об этом отчетливо говорится в действующем ГОСТ Р 52776-2007, п.5.5.3:
Полезную механическую мощность обозначают, как Р2.
Чаще всего мощность двигателя указывают не в ваттах (Вт), а в киловаттах (кВт). Для тех кто забыл, читайте статью о том, как перевести ватты в киловатты и наоборот.
Еще реже, на бирке указывают мощность в лошадиных силах (л.с.), но такого я ни разу еще не встречал на своей практике. Для информации: 1 (л.с.) = 745,7 (Ватт).
Но нас интересует именно электрическая мощность, т.е. мощность, потребляемая двигателем из сети. Активная электрическая мощность обозначается, как Р1 и она всегда будет больше механической мощности Р2, т.к. в ней учтены все потери двигателя.
1. Механические потери (Рмех.)
К механическим потерям относятся трение в подшипниках и вентиляция. Их величина напрямую зависит от оборотов двигателя, т.е. чем выше скорость, тем больше механические потери.
У асинхронных трехфазных двигателей с фазным ротором еще учитываются потери между щетками и контактными кольцами. Более подробно об устройстве асинхронных двигателей Вы можете почитать здесь.
2. Магнитные потери (Рмагн.)
Магнитные потери возникают в «железе» магнитопровода. К ним относятся потери на гистерезис и вихревые токи при перемагничивании сердечника.
Величина магнитных потерь в статоре зависит от частоты перемагничивания его сердечника. Частота всегда постоянная и составляет 50 (Гц).
Магнитные потери в роторе зависят от частоты перемагничивания ротора. Эта частота составляет 2-4 (Гц) и напрямую зависит от величины скольжения двигателя. Но магнитные потери в роторе имеют малую величину, поэтому в расчетах чаще всего не учитываются.
3. Электрические потери в статорной обмотке (Рэ1)
Электрические потери в обмотке статора вызваны их нагревом от проходящих по ним токам. Чем больше ток, чем больше нагружен двигатель, тем больше электрические потери — все логично.
4. Электрические потери в роторе (Рэ2)
Электрические потери в роторе аналогичны потерям в статорной обмотке.
5. Прочие добавочные потери (Рдоб.)
К добавочным потерям можно отнести высшие гармоники магнитодвижущей силы, пульсацию магнитной индукции в зубцах и прочее. Эти потери очень трудно учесть, поэтому их принимают обычно, как 0,5% от потребляемой активной мощности Р1.
Все Вы знаете, что в двигателе электрическая энергия преобразуется в механическую. Если объяснить чуть подробнее, то при подведенной к двигателю электрической активной мощности Р1, некоторая ее часть затрачивается на электрические потери в обмотке статора и магнитные потери в магнитопроводе. Затем остаточная электромагнитная мощность передается на ротор, где она расходуется на электрические потери в роторе и преобразуется в механическую мощность. Часть механической мощности уменьшается за счет механических и добавочных потерь. В итоге, оставшаяся механическая мощность — это и есть полезная мощность Р2 на валу двигателя.
Все эти потери и заложены в единственный параметр — коэффициент полезного действия (КПД) двигателя, который обозначается символом «η» и определяется по формуле:
η = Р2/Р1
Кстати, КПД примерно равен 0,75-0,88 для двигателей мощностью до 10 (кВт) и 0,9-0,94 для двигателей свыше 10 (кВт).
Еще раз обратимся к данным, рассматриваемого в этой статье двигателя АИР71А4.
На его шильдике указаны следующие данные:
- тип двигателя АИР71А4
- заводской номер № ХХХХХ
- род тока — переменный
- количество фаз — трехфазный
- частота питающей сети 50 (Гц)
- схема соединения обмоток ∆/Y
- номинальное напряжение 220/380 (В)
- номинальный ток при треугольнике 2,7 (А) / при звезде 1,6 (А)
- номинальная полезная мощность на валу Р2 = 0,55 (кВт) = 550 (Вт)
- частота вращения 1360 (об/мин)
- КПД 75% (η = 0,75)
- коэффициент мощности cosφ = 0,71
- режим работы S1
- класс изоляции F
- класс защиты IP54
- название предприятия и страны изготовителя
- год выпуска 2007
Расчет номинального тока электродвигателя
В первую очередь необходимо найти электрическую активную потребляемую мощность Р1 из сети по формуле:
Р1 = Р2/η = 550/0,75 = 733,33 (Вт)
Величины мощностей подставляются в формулы в ваттах, а напряжение — в вольтах. КПД (η) и коэффициент мощности (cosφ) — являются безразмерными величинами.
Но этого не достаточно, потому что мы не учли коэффициент мощности (cosφ), а ведь двигатель — это активно-индуктивная нагрузка, поэтому для определения полной потребляемой мощности двигателя из сети воспользуемся формулой:
S = P1/cosφ = 733,33/0,71 = 1032,85 (ВА)
Найдем номинальный ток двигателя при соединении обмоток в звезду:
Iном = S/(1,73·U) = 1032,85/(1,73·380) = 1,57 (А)
Найдем номинальный ток двигателя при соединении обмоток в треугольник:
Iном = S/(1,73·U) = 1032,85/(1,73·220) = 2,71 (А)
Как видите, получившиеся значения равны токам, указанным на бирке двигателя.
Для упрощения, выше приведенные формулы можно объединить в одну общую. В итоге получится:
Iном = P2/(1,73·U·cosφ·η)
Поэтому, чтобы определить номинальный ток двигателя, необходимо в данную формулу подставлять механическую мощность Р2, взятую с бирки, с учетом КПД и коэффициента мощности (cosφ), которые указаны на той же бирке или в паспорте на электродвигатель.
Перепроверим формулу.
Ток двигателя при соединении обмоток в звезду:
Iном = P2/(1,73·U·cosφ·η) = 550/(1,73·380·0,71·0,75) = 1,57 (А)
Ток двигателя при соединении обмоток в треугольник:
Iном = P2/(1,73·U·cosφ·η) = 550/(1,73·220·0,71·0,75) = 2,71 (А)
Надеюсь, что все понятно.
Примеры
Решил привести еще несколько примеров с разными типами двигателей и мощностями. Рассчитаем их номинальные токи и сравним с токами, указанными на их бирках.
1. Асинхронный двигатель 2АИ80А2ПА мощностью 1,5 (кВт)
Как видите, этот двигатель можно подключить только в трехфазную сеть напряжением 380 (В), т.к. его обмотки собраны в звезду внутри двигателя, а в клеммник выведено всего три конца, поэтому:
Iном = P2/(1,73·U·cosφ·η) = 1500/(1,73·380·0,85·0,82) = 3,27 (А)
Полученный ток 3,27 (А) соответствует номинальному току 3,26 (А), указанному на бирке.
2. Асинхронный двигатель АОЛ2-32-4 мощностью 3 (кВт)
Данный двигатель можно подключать в трехфазную сеть напряжением, как на 380 (В) звездой, так и на 220 (В) треугольником, т.к. в клеммник у него выведено 6 концов:
Iном = P2/(1,73·U·cosφ·η) = 3000/(1,73·380·0,83·0,83) = 6,62 (А) — звезда
Iном = P2/(1,73·U·cosφ·η) = 3000/(1,73·220·0,83·0,83) = 11,44 (А) — треугольник
Полученные значения токов при разных схемах соединения обмоток соответствуют номинальным токам, указанных на бирке.
3. Асинхронный двигатель АИРС100А4 мощностью 4,25 (кВт)
Аналогично, предыдущему.
Iном = P2/(1,73·U·cosφ·η) = 4250/(1,73·380·0,78·0,82) = 10,1 (А) — звезда
Iном = P2/(1,73·U·cosφ·η) = 4250/(1,73·220·0,78·0,82) = 17,45 (А) — треугольник
Расчетные значения токов при разных схемах соединения обмоток соответствуют номинальным токам, указанных на шильдике двигателя.
4. Высоковольтный двигатель А4-450Х-6У3 мощностью 630 (кВт)
Этот двигатель можно подключить только в трехфазную сеть напряжением 6 (кВ). Схема соединения его обмоток — звезда.
Iном = P2/(1,73·U·cosφ·η) = 630000/(1,73·6000·0,86·0,947) = 74,52 (А)
Расчетный ток 74,52 (А) соответствует номинальному току 74,5 (А), указанному на бирке.
Дополнение
Представленные выше формулы это конечно хорошо и по ним расчет получается более точным, но есть в простонародье более упрощенная и приблизительная формула для расчета номинального тока двигателя, которая наибольшее распространение получила среди домашних умельцев и мастеров.
Все просто. Берете мощность двигателя в киловаттах, указанную на бирке и умножаете ее на 2 — вот Вам и готовый результат. Только данное тождество уместно для двигателей 380 (В), собранных в звезду. Можете проверить и поумножать мощности приведенных выше двигателей. Но лично я же настаиваю Вам использовать более точные методы расчета.
P.S. А вот теперь, как мы уже определились с токами, можно приступать к выбору автоматического выключателя, предохранителей, тепловой защиты двигателя и контакторов для его управления. Об этом я расскажу Вам в следующих своих публикациях. Чтобы не пропустить выход новых статей — подписывайтесь на рассылку сайта «Заметки электрика». До новых встреч.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Как рассчитать ток зная мощность трехфазного двигателя. Какой ток потребляет двигатель из сети при пуске и работе
Идея этого поста родилась после многочисленных доставалок «сильно грамотных» инженеров на тему о том, что на двигатель мощностью, ну например 15 квт надо ставить автомат не ниже 50А, ибо номинал тока 40А + запас на пусковые токи, бла блаблаблабла…Это типичная ошибка тех, кто пытается считать мощность трехфазных асинхронников по стандартной формуле мощности I=P\U, при этом в расчет не берется ни то что двигатель трехфазный, ни то что у него еще есть непонятные почти никому Косинус Фи и КПД.
Кстати при установке новых двигателей ничего и считать не надо, как правило номинальный ток для обоих режимов (звезда 380 и треугольник 220) указан на шильдике, вместе со всеми остальными параметрами.
Так какже, правильно расчитать, грубо или поточнее мощность асинхронного двигателя в стандартной ситуации?
Для начала определимся с это самой «стандартной ситуацией» и с чем ее едят.
Стандартной я называю ситуацию, когда двигатель расчитанный на 380\220 звезда\треугольник, подключается на стандартные 380 звездой, на все три фазы. В промышленности это встречается наиболее часто, и также часто вызывает вопросы по поводу того, какого номинала автоматы ставить, ибо многие, знают стандартную формулу мощности I=P\U и почемуто, видимо от большой грамотности или большого ума, от которого горе по Грибоедову, начинают для трехфазной нагрузки применять ее.
А теперь раскрываю секрет, страааашный секрет….
Для расчета защиты маломощных двигателей на 380В, мощностью до 30 квт вполне достаточно умножить мощность ровно на 2, то есть P*2=~In , автомат все равно выбирается ближайший по номиналу в большую сторону, то есть 63А для 30 квт двигателя, имеющего на валу нагрузкой ну скажем турбину вентилятора типа Циклон. Это страаашный, нигде в учебниках не озвученный секретный экспресс-метод грубого расчета силы тока двигателей на 380В…Почему так? Очень просто при U=380В на один КВТ мощности приходится примерно сила тока в 2 Ампера. (Да меня щас побьют теоретики, которые помнят про КПД и Косинус ФИ…Помолчите Господа, пока помолчите, я же сказал, для МАЛОМОЩНЫХ двигателей до 30 квт, а для низких мощностей, зная модельный ряд наших автоматов, эти 2 значения можно и не учитывать, особенно если нагрузка на вал минимальная)
А теперь представим типовой двигатель* со следующими параметрами:
P=30 квт
U=380 В
сила тока на шильдике стерлась…
cos φ = 0,85
КПД=0,9
Как найти его силу тока? Если считать так, как советуют и сами считают упрямые «очень умные» горе-инженера, особенно любящие озадачивать этим вопросом на собеседованиях, то получаем цифру в 78,9А, после чего горе-инженера начинают лихорадочно вспоминать про пусковые токи, задумчиво хмурить брови и морщить лбы, а затем не стесняясь требуют поставить автомат минимум на 100А, так как ближайший по номиналу 80А будет выбивать при малейшей попытке запуска офигенными пусковыми токами…И переспорить их очень тяжело, так как все нижеследующее вызывает у умных дяденек бурю эмоций, недержание мочи и кала, разрыв шаблона, и погружение в глубокий транс с причитаниями и маханием корочками тех универов где они учились считать и жить..
Более полная формула, рекомендованная к применению выглядит несколько иначе.
Мощность в квт переводится в ватты, для чего 30*1000=30000 вт
Затем ватты делим на напряжение, затем делим на корень квадратный из 3(1,73), (у нас же ТРИ ФАЗЫ) и получаем примерную силу тока, которую нужно уточнить, поделив дополнительно на cos φ(коэффициент мощности, ибо всякая индуктивная нагрузка имеет и реактивную мощность Q) и затем, уточнить еще раз, поделив при желании на КПД, итак:
30000вт\380в\1,73=45,63 А\0,85=53,6А
Уточняем расчет: 53,6А\0,9 = 59,65А (Кстати программа электрик, считающая по похожей формуле, выдает более точные данные 59,584 А, то есть немного меньше чем мой проверенный временем расчет…то есть расчет довольно точен, а расхождения в десятые и сотые доли ампера в нашем случае никого особо не волнуют, почему — написано ниже)
59,65 Ампер, — почти полное совпадение с первым грубым расчетом, расхождение составляет всего лишь -0,35А, что для выбора автомата защиты не играет никакой роли в данном случае. Ну и какой же автомат выбрать??
При условии что нагрузка на валу не велика, скажем какая нибудь турбина вентилятора, можно смело ставить ВА 47-29 на 63А фирмы ИЭК, категории С..наиболее часто встречающиеся.
На вопли о пусковых токах могу смело ответить, что 63А пакетник категории В,С,D выдерживает по току превышение 1,13 раза дольше часа и 1,45 раза меньше часа, то есть если на автомате написано 63А, то это не значит, что при броске до 70А его сразу выбьет…Нифига подобного, нагрузку в 113% (сила тока равна 71,19А) он будет держать минимум час, особенно это касается дорогих автоматов фирм Легранд\АВВ, и даже при силе тока в 145% номинала = 91,35А он гарантированно продержит несколько минут, а для раскрута асинхронника и выхода на номинальный режим достаточно нескольких секунд, как правило от 5 до 20 секунд. За это время тепловой расцепитель автомата тупо не успеет разогрется и отключить нагрузку.
Конечно, умные дяди мне сейчас напомнят, что у автомата есть еще электромагнитный расцепитель, и уж он то, ну уж он то точно отрубит при превышении 63А несчастный двигатель…Хахаха, хрен вам и горе умное…
Буковки B,C,D, и некоторые другие в наименовании автомата как раз характеризуют кратность уставки электромагнитного расцепителя, и равна она
В — 3…5
С — 5…10
D — по ГОСТ Р — 10…50, большинство производителей заявляет диапазон 10…20.
Есть более редко встречающиеся
G — 6,4…9,6 (КЭАЗ ВМ40)
K — 8…14
L — 3,2…4,8 (КЭАЗ ВМ40)
Z — 2…3
То есть автомат категории С на 63А гарантированно отключится электромагнитным расцепителем только в диапазоне 315-630А и выше, чего при запуске исправного асинхронника на 30 квт никогда все равно не будет.
Второй законный вопрос- какой провод положить на наш двигатель. Ответ- кабель 4х16 миллиметров квадратных, с лихвой хватит, при длине до 50 метров, при большей длине лучше 25мм выбирать, ибо потери.
Все цифры проверены многократно, лично мной, и экспериментально. Проверены и по выбранным автоматам и по многократным замерам реальной силы тока токовыми клещами.
*-Единственное примечание и уточнение: У старых двигателей советского производства, вновь вводимых в эксплуатацию могут быть меньшие значения косинуса фи и КПД, тогда сила тока может быть чуть выше чем значение грубого расчета. Просто выбирается следующий по номиналу автомат на 80А. Не ошибётесь!
Второе примечание:
Для грубого расчета силы тока двигателя подключенного треугольником к сети 220 через конденсатор, можно взять мощность двигателя в Киловаттах, ну например теже 30 КВТ и умножить примерно на 3,9 и так: 30*3,9=117А
А для расчета конденсатора можно воспользоваться сайтом
В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.
Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток . При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:
I н = P н/(√3U н х η х сosφ) ,
Рис. 1. Паспорт электрического двигателя. Номинальная мощность 1,5 кВ, номинальный ток при напряжении 380 В — 3,4 А.
Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.
Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.
При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).
В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток
, который может быть в 3 — 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).
Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)
Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока — I пуск/I ном. Кратность пускового тока — одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х (I пуск/I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока — 6, пусковой ток равен 20 х 6 = 120 А.
Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.
Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).
Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.
На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 — 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.
В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.
Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.
Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник
Сумский государственный университет
Расчетно-практическая
работа №1
«Расчет трехфазного асинхронного двигателя
переменного тока»
по предмету «Электротехника»
Группа МВ-81
Вариант 162
Преподаватель Пузько И.Д.
По данным 3-х фазного асинхронного двигателя и заданной схемой соединения обмоток статора определить:
1. Линейное напряжение питающей трехфазной цепи U л и синхронную частоту вращения поля статора n 0 , номинальную n Н и критическую n КР частоту вращения ротора, номинальную мощность P 1 ном, потребляемую двигателем из сети, номинальный и пусковой токи двигателя I НОМ и I ПУС, номинальный и максимальный вращающий моменты двигателя М НОМ и М МАХ.
2. Построить кривую зависимости M(S) при U Л = const и определить
кратность пускового момента K п = М пуск /М ном.
3. Построить механическую характеристику n 2 =f(M) при U C =const и определить диапазон частот вращения ротора, при которых возмодна устойчивая работа двигателя.
4. Построить характеристики M(S) и n 2 =f(M) при U 1 =0.9U C =const.
Исходные данные:
Схема соеди-нения | l М =М МАХ / | m 1 =I ПУСК /I НОМ | |||||
голь-ником |
Расчетная часть.
1. При соединении триугольником линейное напряжение составляет 220 В.
2. Синхронная частота вращения поля статора:
3. Номинальная частота вращения ротора:
4. Критическое скольжение:
5. Критическая частота вращения ротора:
6. Номинальная мощность, потребляемая из сети:
7. Номинальный ток двигателя:
9. Пусковой ток двигателя:
10. Номинальный вращательный момент:
11. Маскимальный вращательный момент:
12. Момент при пуске:
13. Кратность пускового момента:
Калькулятор запуска двигателя — нарушение напряжения
Пуск асинхронного двигателя при полном напряжении (также известный как запуск от сети или прямой запуск от сети) имеет нежелательный эффект, заключающийся в потреблении в пять-десять или более раз тока полной нагрузки. Обычно этот пусковой ток сохраняется до тех пор, пока двигатель не достигнет синхронной скорости (номинальной скорости). Асинхронные двигатели в пусковых условиях имеют чрезвычайно низкий коэффициент мощности около 10-30%. Сочетание большого пускового тока и низкого коэффициента мощности вызовет большое падение напряжения на полном сопротивлении системы.
Следующие ниже калькуляторы могут использоваться для расчета падения пускового напряжения двигателя и пускового тока включения трехфазного асинхронного двигателя с использованием предположения о бесконечности источника, а также при наличии данных импеданса источника электросети.
Калькулятор пускового тока двигателя и падения напряжения
Используйте калькулятор ниже, если полное сопротивление источника электросети или генератора неизвестно. .
Используйте нижеприведенный калькулятор, если известно полное сопротивление источника электросети или генератора .Этот калькулятор даст более точные результаты по сравнению с приведенным выше, который не учитывает полное сопротивление источника питания. Прочтите расчет импеданса источника в энергосистемах для получения дополнительной информации о расчете MVA короткого замыкания.
NEMA определяет конструктивные буквы для обозначения крутящего момента, скольжения и пусковых характеристик трехфазных асинхронных двигателей.
Конструкция A : Эти двигатели аналогичны двигателям типа «B», за исключением того, что NEMA не ограничивает пусковые токи для двигателей конструкции A.
Конструкция B : Это промышленные двигатели общего назначения с низким пусковым током, нормальным крутящим моментом и скольжением (около 3%). Они используются для многих обычных промышленных нагрузок (вентиляторы, HVAC и т. Д.).
Конструкция C : Эти двигатели обладают высоким пусковым моментом, низким пусковым током и малым скольжением. Эти двигатели могут использоваться для тяжелых пусковых нагрузок.
Конструкция D : Эти двигатели имеют очень высокий пусковой момент, высокое скольжение и низкий пусковой ток.Двигатели конструкции D доступны со скольжением от 5 до 8% и от 8 до 13%.
Буквы кодаNEMA приведены ниже для удобства.
Буквенный код NEMA
Данные типовой паспортной таблички двигателя
Для более подробного обсуждения запуска асинхронного двигателя и соответствующих уравнений для расчета падения напряжения и пускового тока щелкните здесь.
Как рассчитать пусковой ток двигателя
«Пусковой ток», иногда называемый током заторможенного ротора или пусковым током, относится к электрическому току, протекающему через компоненты двигателя в долях секунды после включения питания двигателя.В течение этого короткого промежутка времени ток быстро нарастает и спадает, прежде чем какая-либо из частей двигателя действительно начнет двигаться, и система перейдет к динамическому электрическому равновесию, в течение которого достигается установившийся ток.
Повторяющиеся короткие всплески тока со значениями силы, во много раз превышающими установившееся состояние, представляют собой потенциальное нарушение работы системы, поскольку они могут привести к ненужному срабатыванию неисправных устройств в виде «ложной тревоги».
Характеристики двигателя, такие как постоянный ток, изменение источника питания и осветительные балласты, могут увеличить величину пускового тока.Вам может потребоваться знать значение этого тока, чтобы вы могли оборудовать свой двигатель правильным ограничителем пускового тока, чтобы защитить его от отключения, упомянутого выше, подобно сетевому фильтру в бытовом удлинителе.
Обычно вам необходимо знать максимальную выходную мощность двигателя и входное напряжение. Другая полезная информация включает время сброса, однофазную или трехфазную схему, величину емкости, сопротивления и КПД двигателя.
Для такого рода проблем обычно используются отношения:
V пик = I в R, где V пик = √2 (V)
Например, предположим, что у вас есть двигатель с входным напряжением 200 В и минимальным сопротивлением 15 Ом.
Шаг 1. Соберите переменные
В этой задаче у вас нет энергии или емкости, но у вас есть напряжение и сопротивление. Таким образом, представляющее интерес уравнение является первым из приведенных выше, или:
Шаг 2: Расчет пускового тока
Шаг 3: Интерпретация результатов
Это означает, что любые элементы двигателя, которые срабатывают для остановки при таких высоких значениях силы тока может вызвать проблемы при запуске, и вам может потребоваться изменить такие параметры, как напряжение и сопротивление.
Формулы и расчеты, приведенные ниже, следует использовать только для оценки. Заказчик обязан указать требуемые мощность двигателя, крутящий момент и время разгона для своего приложения. Продавец может пожелать проверить указанные заказчиком значения с помощью формул в этом разделе, однако, если есть серьезные сомнения относительно приложения заказчика или если заказчик требует гарантированной производительности двигателя / приложения, заказчик должен нанять инженера-электрика для точного определения расчеты. Чтобы получить подробное описание каждой формулы, нажмите на ссылки ниже, чтобы перейти прямо к ней. Практические правила (приближение)Механические формулы
Преобразование температурыГрадус C = (Deg F — 32) x 5/9Deg F = (Deg C x 9/5) + 32
Влияние линейного напряжения на ток заторможенного ротора (IL) (прибл.)
Основные расчеты мощности в лошадиных силахЛошадиная сила — это работа, выполненная в единицу времени. Один HP равен 33 000 фут-фунт работы в минуту. Когда источник крутящего момента (T) выполняет работу по вращению (M) вокруг оси, выполняемая работа составляет:
При вращении со скоростью N об / мин доставленное HP составляет:
Для вертикального или подъемного движения:
|
|
Для вентиляторов и нагнетателей:
|
Или
Или
Для оценки, эфф. вентилятора или нагнетателя можно принять равным 0,65.
Для насосов:
Для оценки КПД насоса можно принять равным 0.70. Ускоряющий моментЭквивалентная инерция привода с регулируемой скоростью указывает энергию, необходимую для поддержания работы системы. Однако запуск или ускорение системы требует дополнительной энергии. Крутящий момент, необходимый для разгона кузова, равен WK 2 кузова, умноженному на изменение оборотов в минуту, деленному на 308-кратный интервал (в секундах), в котором происходит это ускорение:
Где:
Или
|