Как проверить фазу и ноль: Как определить фазу и ноль

Содержание

Как самому определить фазу, ноль и заземление?

Смотрите также обзоры и статьи:

Любой человек, который запланировал выполнять любые электромонтажные работы во время ремонта в жилом или производственном помещении, рано или поздно столкнется с важнейшим вопросом: как самому определить где в электрической сети фаза, ноль и заземление. Ведь без этих знаний либо же придется воспользоваться услугами электрика, и нанимать его. Либо же самостоятельно, чтобы подключить люстру, бра, торшер, светильник, светодиодную ленту, любой электрический прибор, научится распознавать где защитный провод, где под напряжением, а где нулевой.

Определение по цветовой маркировке

Все современные кабели или электрические провода под своей изоляционной оболочкой содержат обычно три жилы, каждая из которых помечена изоляцией своего цвета. Таким образом, определить где какая жила можно и просто по цветовой маркировке. Так, обычно в новых проводах:

  • фаза отмечена черным, белым или коричневым цветами;
  • нейтральный провод, он же нулевой по мировым стандартам должен соответствовать синему или голубому цвету,
  • а заземление или защитный кабель обычно выполнен в двухцветном варианте – желто-зеленый, полосатый и т.п.

На постсоветском пространстве закреплен на законодательном уровне стандарт IEC 60446 2004 года, который и регламентирует какого цвета необходимо применять и изготавливать электроизоляцию проводов. Согласно нему в жилых квартирах:

  • синий или сине-белый провод – это ноль,
  • желто-зеленый – земля;
  • все остальные цвета могут быть фазой, как черный, так и красный.

Однако правило применимо в основном только для проводов, которые установлены в доме или офисе последние лет двадцать-тридцать. А как же быть с электросетями, которые были установлены раньше этого периода, где часто попадаются жилы с алюминиевым сечением? Или вам необходимо поменять часть какого-либо устройства или схемы, в которой данные цвета могли по стандартам и не быть использованы? Тогда вам пригодятся другие, более эффективные способы определения жил и напряжения в электропроводке.

Как определить ноль и фазу индикаторной отверткой

Одним из наиболее надежных, простых, доступных и не требующих особых затрат, и умений способом является определение ноль и фазы при помощи индикаторной отвертки. В чем заключается принцип работы индикаторной отвертки? Индикаторная отвертка – это ручной вспомогательный инструмент практически ничем не отличающийся от привычной нам плоской отвертки с пластиковой ручкой и металлическим наконечником, но есть одно «Но»: внутри рукояти есть индикационная лампочка или светодиод, который срабатывает свечением или загорается, если металлической частью коснутся фазы. На некоторых моделях для индикации следует также нажимать на специальную кнопку на рукояти, которая смыкает контакты и подает ток на индикатор. Однако в целях безопасности следует работать с такой отверткой только в резиновых перчатках электрика, чтобы избежать поражения электрическим током.

Как работать с индикаторной отверткой? В первую очередь, необходимо отключить напряжение в сети, и кусачками снять изоляцию на концах всех трех жил, оголив металлическую часть проводов, зачастую она будет медной. Дальше все три жилы необходимо развести между собой, так, чтобы они не соприкасались, чтобы избежать короткого замыкания при подаче на них напряжения.

После этого, одеть резиновые диэлектрические специальные перчатки и включить напряжение в сети. Хорошо, если ваш щиток имеет встроенный при монтаже устройства устройство защитного отключения. Или другими словами УЗО – он в аварийном режиме отключает питание в сети, если есть утечка тока на корпус.

Вооружившись индикаторной отверткой поочередно ее металлическим наконечником прикасаться к металлической оголенной части каждой жилы. Там, где лампочка индикаторной отвертки сработает и загорится – это фаза. Далее для работы с данными проводами следует изолентой после выключения напряжения замотать оголенные концы проводов.

Определение фазы, нуля и заземления контрольной лампой

Способ простой, однако не самый безопасный и требующий определенной ловкости и осторожности. Считается несколько кустарным и часто используется в грубых производственных условиях опытными мастерами, под рукой у которых не оказалось другого контрольного инструмента. Для того, чтобы воспользоваться данным методом, следует для начала собственно и собрать данную контрольную лампу. Для этого нужен патрон, два провода – фазы и нуля – и лампочка, можно самую обыкновенную, накаливания с вольфрамовой нитью. Это все необходимо скрутить, зачистить на концах его провода и поочередно скручивать с другими проводами в проводке, определить где фаза по тому, когда загорится лампа. Конечно же, скрутку нужно делать, отключив подачу напряжения на провода.

Если патрона не оказалось, можно задействовать часть светильника или настольной лампы, произведя ту же манипуляцию с концами его жил. Однако способ весьма сложный для неподготовленного и неопытного мастера, поскольку есть вероятность перепутать провода и пустить вместо постоянного тока, переменный, при котором лампочка тоже будет гореть. Лучше тогда основательно вывести жилу-землю, сделать ее нулем и тогда спокойно искать фазу.

Как определить фазу и ноль мультиметром

Мультиметры — универсальные многофункциональные приборы для измерения емкости, напряжения, сопротивления и силы тока, имеют отдельные выводы под щупы, укомплектованы самыми щупами, которыми легко и удобно пользоваться, точно определив напряжение. Это самый надежный и довольно простой способ определить фазу и ноль, без особых сложностей и безопасно для здоровья. Ведь все мультиметры имеют на своем корпусе прорезиненный диэлектрический чехол, который не только защищает от ударов тока, но и оставит прибор целым, если он случайно выскользнет из рук и упадет с высоты не более полутора метров. Универсальное мультифункциональное устройство для измерения силы тока, напряжения, сопротивления, емкости, частоты используется повсеместно, как автолюбителями, так и электронщиками, электриками, строителями, рабочими технических специальностей.

Есть целых пять причин, по которым стоит выбрать именно мультиметр для домашнего обихода и работы:

  • Высокая точность измерений – при максимальных значениях постоянного напряжения 0,8%, при больших позициях переменного — максимум 1,2%.
  • Возможность измерять переменное значение тока,
  • Одновременное измерение кроме постоянного и переменного напряжения, сопротивления, также такие величины как емкость, частота, скважность, а также температура благодаря термопаре.
  • Эргономический дизайн и большой мультифункциональный экран.
  • Усиленная индикация батареи и перегрузки.

Это надежный и добротный инструмент для качественного измерения всех требуемых показателей для проверки электрических показаний в цепи питания, а также замера целостности цепи, схемы, платы.

Как же определить фазу и ноль мультиметром? Для начала необходимо знать, что практически все современные мультифункциональные приборы данного типа имеют жидкокристаллический экран, на который выводятся показания в цифровом эквиваленте, однако не плавно, как это было в аналоговых устройствах, без экрана, а рывками.

Поэтому при измерении стоит выждать некоторое время, буквально секунду-две, чтобы прибор определил точное напряжение в сети. Кстати, на панельной панели мультиметра есть множество, свыше 20-30 режимов работы, которые выбираются поворотным рычагом. На этом круге нужно найти тот, что отвечает за переменное напряжение в сети и выглядит как обозначение вольт, также в большинстве мультиметров вручную нужно настроить и диапазон измерений, хотя многие могут это сделать и автоматически.

Далее один из щупов присоединяем к разъему мультиметра, а его другую сторону металлическим наконечником прикасаемся к проводу или в розетку. Если показания на экране прибора будут соответствовать 10-15 вольтам, то, скорее всего, вы попали не в фазу, а в ноль. Если показания в пределах от ста и до 250 вольт – то это и есть фаза.

Как определить фазу и ноль без приборов

Без никаких приборов, даже самых примитивных, искать фазу и ноль в сети не особо стоит. Но если у вас крайний случай, то, рискнуть, конечно можно, но нельзя сказать, что безопасность при этом будет выдержана. Есть несколько оригинальных, забавных, но в тоже время достаточно надежных и точных способа это сделать. Для первого из них стоит взять из подручных средств, которые скорее всего найдутся в каждом доме картофелину. Да-да! А помимо этого два провода на полметра и резистор на 1 мегаом. Все это необходимо собрать, чтобы один проводник был подключен к трубе, а второй – вставить в отрезанную половинку картофелины. Второй провод вставить в срез картофелины рядом с первым. Произведя подобную манипуляцию, только спустя минут пять-десять необходимо оценивать результат измерений.

Что же должно произойти? На том месте, где соприкасался проводник с фазой, должно появится сине-зеленый след от взаимодействия крахмалистых соединений с электричеством, т.е. окисление. Где его не окажется – это нулевой провод.

Второй такой же неоднозначный метод – использование чашки с обыкновенной водой. Тут срабатывает принцип, чем-то схожий с функционированием кипятильника – минус будет там, где вода возле проводника начнет пузырится. Соответственно, методом исключения – плюс будет находится на втором проводе.

Как определить заземление

Кроме очевидного способа по определению заземления, который заключается в идентификации земли по цвету изоляции в жиле, в частности желто-зеленого цвета по мировым стандартам, существует и несколько других, менее очевидных.

Например, если у вас в доме были случаи, что электроприборы, будь то стиральная машина, компьютер, микроволновка, бились током, то практически можно быть полностью уверенным, что заземление в вашей проводке отсутствует, поскольку именно оно должно ликвидировать остаточное напряжение на корпусы электроустройств.

Можно определить заземление мультиметром по принципу исключения, провод, в котором вовсе не будет наблюдаться отклонений по переменному напряжению – скорее всего и будет им.

Выводы

Очень важно научится самостоятельно понимать где в розетке в вашем доме фаза, ноль и заземление, ведь скорее всего доведется столкнуться с необходимостью замены или дополнительной установки каких-либо устройств, связанных с электричеством. Однако настоятельно рекомендуем пользоваться надежными методами, а нетрадиционными только в случае крайней необходимости! А лучше – воспользоваться мультиметром, индикаторной отверткой или вызвать опытного и надежного специалиста-электрика.

ПОДХОДЯЩИЕ ТОВАРЫ

Поделиться в соцсетях

Как определить фазу и ноль — Построй свой дом

 

Любые электромонтажные работы в частном доме связаны с определением назначения жил проводки. Если сказать проще, возникает необходимость определить фазу и «ноль», а также заземляющий провод. Эта несложная для профессиональных электромонтеров задача порой ставит в тупик тех, кто мало знаком с правилами устройства электрических сетей. О том, как определить фазу и ноль в вашей электрической сети мы и поговорим в этой статье.

 

Устройство бытовых электрических сетей

 

В предыдущей статье мы уже говорили, что при технологическом присоединении вашего дома, вам подводится трехфазное напряжение 380 В. Разводка по дому имеет напряжение 220 В, так как она подключена к одной из фаз и нулевому проводнику. Кроме того, правильно смонтированная бытовая проводка должна быть обязательно заземлена. О том, как устроен заземляющий контур мы говорили в предыдущей статье. В домах старой застройки заземляющего проводника может и не быть. Таким образом, при монтаже проводки и электроприборов необходимо знать назначение каждого из двух или трех проводов.

 

Правила подключения электрических приборов

 

Также следует знать правила подключения различных приборов. При монтаже обычной розетки подключение фазного и нулевого провода производится к клеммам в произвольном порядке, а заземляющий провод, при его наличии, подключают к медной или латунной шине. В выключатель подключают фазный провод, чтобы при его отключении в патроне осветительного прибора не было напряжения. Это обеспечит безопасность при смене ламп. Сложные бытовые приборы необходимо подключать в обязательном соответствии с маркировкой проводов, в противном случае безопасность их использования не гарантирована.

 

Приборы и инструменты для электромонтажных работ

 

Прежде чем приступить к электромонтажным работам и определить фазу и ноль в проводке, необходимо подготовить необходимые приборы и инструмент:

  • Мультиметр стрелочный или цифровой;
  • Индикаторную отвертку или тестер;
  • Маркер;
  • Пассатижи;
  • Нож для зачистки изоляции.

 

Также вам необходимо выяснить, где расположена защитная аппаратура: автоматические выключатели и УЗО. Обычно их устанавливают в распределительном щитке. Все операции по подключению электроаппаратуры и зачистке проводов необходимо проводить при отключенных автоматах.

 

Правила работы с индикаторной отверткой

 

Чтобы проверить фазу с помощью индикаторной отвертки необходимо зажать отвертку между большим и средним пальцем руки, не касаясь не изолированной части. Указательным пальцем дотронуться до металлического пятачка на торце ручки. Металлическим концом отвертки прикасаются к оголенным концам проводов. Если провод фазный, загорится светодиод.

 

Визуальный метод определения фазы

 

Если проводка выполнена по всем правилам, то определить фазу, ноль и заземляющий проводник в распределительной коробке можно по цвету изоляции. Заземление имеет двухцветную желто-зеленую окраску, изоляция нулевого провода бывает синей или голубой, а фазный провод может быть белым, черным или коричневым. Убедиться в правильности подключения можно с помощью визуального осмотра, при этом необходимо проверить соответствие цвета изоляции не только в щитке, но и в распределительных коробках. Для этого необходимо сделать следующие действия:

  • Откройте щиток и осмотрите автоматические выключатели. В зависимости от расчетной нагрузки их количество может быть разным. Через автоматы может быть подключен только фазный провод. Заземляющий проводник подключают всегда сразу к шине. Проверьте соответствие цветовой маркировки всех проводов.
  • Если в щитке цвет изоляции кабеля, уходящего в квартиру, соответствует правилам, вскройте все распределительные коробки и осмотрите соединения проводов. В них цвета изоляции нуля и заземляющего провода также не должны быть перепутаны.
  • К фазе в распределительных коробках бывают подключены выключатели. Часто монтаж выполняют двужильным проводом, имеющим другие цвета изоляции, например, белый и бело-голубой. Это не должно вас смутить.

 

Определение фазы, нуля и заземляющего провода

 

Если сеть трех проводная и выполнена проводом одного цвета, либо вы не уверены в правильности подключения проводов, необходимо определять назначение проводников перед установкой каждого элемента сети.

 

 

  • Определите фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  • Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  • Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  • Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй поочередно к двум другим. Лампа загорится при касании нулевого проводника.

 

Если все указанные рекомендации, как определить фазу и ноль, не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут прозвонку всех цепей. Не забывайте, что речь идет о вашей безопасности.

 

В следующей статье я расскажу о видах ламп и цоколей.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Как определить фазу и ноль мультиметром, индикаторной отверткой и без приборов

Проведение ремонтных работ в любом помещении, важным моментом является оснащение этого помещения электричеством. Помимо электропроводки, не стоит забывать о необходимости установки розеток и выключателей, при помощи которых будет происходить регулирование освещения. Тут достаточно важным моментом будет найти фазу, ноль и заземляющего проводника системы.

Для профессиональных монтажников данная задача является очень простой, чего не скажешь о простых обывателях, которые далеко не всегда могут справиться с подобной задачей. Тем не менее, поиск фазы и нуля является процессом не настолько сложным, как может показаться изначально, при этом включает в себя несколько способов определения.

Следует понимать, что проводка в квартире обычно имеет напряжение в 220В, поскольку она предусматривает подключение к нулевому проводнику и к одной из фаз. При этом обязательным является заземление, что делает электрификацию помещения безопасной для обитателей.

Что такое фаза и ноль в электричестве для новичка

Чтобы уловить принцип нахождения фазы и нуля в сети, следует для начала определить для себя, что означают данные термины, которые для простого обывателя могут звучать как совершенно непонятные понятия. Любая система, независимо от ее протяженности, состоит из трех фаз, причем касается также и низковольтных линей, задачей которых является питание жилых домов.

Между двумя любыми фазами возникает линейное напряжение, составляющее 380В. Однако напряжение бытовой сети составляет 220В, главной задачей является появление требуемого для сети напряжения. Для этой цели в любой сети присутствует нулевой провод, которой в сочетании с любой фазой образует разность потенциалов в 200В, которая и будет представлять собой фазное напряжение.

Нулем в электрической цепи называется проводник, который соединяется с контуром земли и используется для создания нагрузки от фазы. Фаза эта подключена к противоположному концу обмотки на ТП. Таким образом, в стандартной розетке, для наглядности, один вход принимается за фазу, а второй за ноль.

Если говорить более простым языком, то фаза представляет собой провод, по которому поступает ток. По нулевому проводу ток возвращается обратно к источнику. В зависимости от количества фаз, система имеет несколько проводов. Допустим, в трехфазовой цепи имеются три фазовых провода и один обратный, нулевой.

Цветовое обозначение. Не редко многих интересует вопрос, какого цвета провода фаза ноль земля, как определить, где какой провод, часто предоставляется возможным при помощи используемых в электрике цветовых разграничений. Однако сработает данный метод только в случае, если проводка действительно выполнена по всем правилам. Изоляция нулевого провода обычно обозначается синим или голубым цветом, земля сочетает в себе сразу две окраски – зеленую и желтую. Провод фазы по правилам обозначается в коричневый, белый или черный цвет.

Обозначение фазы и нуля буквы. Помимо цветовых обозначений, возможной является также буквенная маркировка проводов. Фаза обычно обозначается латинской буквой “L” а нулевой провод принято маркировать буквой “N”. Кроме того, свое обозначение имеет и заземление, обозначать которое принято буквой “G”.

Как определить фазу и ноль индикаторной отверткой

Для нахождение фазы и нуля в сети можно использовать различные инструменты. Наиболее удачным изобретением в помощь начинающим электрикам считается индикаторная отвертка, имеющая специальные чувствительные элементы и индикатор-отражатель.

Осуществлять проверку фазу и нуля в сети при помощи отвертки проще простого. Отвертку следует зажать между большим и средним пальцем. Касаться неизолированной части жала отвертки не разрешается. Палец указательный следует поставить на металлический круглый выступ в конце рукоятки.

Далее жало прикладывают к оголенным концам проводов. В том случае, если произошло касание с фазным проводником, в отвертке загорается соответствующий светодиод.

Определить принцип действия индикаторной отвертки нетрудно, внутри нее расположена специальная лампа, а также резистор, представляющий собой сопротивление. Лампа загорается, если замыкается цепь. Благодаря сопротивлению, можно не бояться поражения током во время проверки, поскольку оно снимает его значение до минимального показателя.

Как узнать где фаза а где ноль в розетке индикаторным пробником видео

Найти ноль такой отверткой, соответственно, не получится. Кроме того, подобный способ нередко дает сбой из-за не слишком хорошей чувствительности. В итоге индикаторная отвертка, реагируя на наводки, может выдать напряжение там, где его совершенно нет.

Как определить фазу и ноль мультиметром

Помимо применения индикаторной отвертки, возможным является использование мультиметра, который также позволит узнать где фаза а где ноль в сети. Обязательным условием для его использования является предварительная зачистка проводов.

На приборе перед использованием требуется установить значение предела измерения переменного тока, величина которого должна превышать 220В. Ориентироваться также следует по маркировке гнезд, куда включены щупы прибора. Для данного типа проверки потребуется щуп, включенный в гнездо с маркировкой «V».

Сама проверка заключается в прикосновении щупа к одному из проводов, следя при этом за показаниями прибора. Если мультиметр идентифицирует какое либо напряжение, то данный провод является фазным. Если другой провод покажет нулевое значение, то это, соответственно, нулевой провод.

Прибор для работы может использоваться любого типа – стрелочный или с цифровым индикатором. В любом случае, важным моментом будет соблюдение мер безопасности, а также правильная индикация прибором показаний с проводов. Точность этого прибора обычно выше индикаторной отвертки.

Главным правилом при использовании мультиметра является запрет на одновременное касание фазы и заземляющего контура. Такая халатность может привести к короткому замыканию и, как следствие, к травматическим ожогам.

Как определить фазу и ноль без приборов

Несмотря на столь широкое распространение приборных способов определения фазы и нуля в сети, далеко не всегда под рукой может оказаться нужное устройство, которое позволит сделать верное заключение. При этом неправильное выявление проводов в сети «на глаз» может привести к достаточно опасным последствиям.

Первый метод, позволяющий справиться с данной задачей, был описан в одном из разделов выше. Заключается он в нахождении проводов, в зависимости от цвета их изоляции, а также от маркировки. Однако это окажется верным только в том случае, если проводка была выполнена по всем правилам.

Второй способ определить их – это сделать так называемую контрольную лампочку, применяя при этом подручные средства. Для этого потребуется простая лампа накаливания и два отрезка провода, длиной примерно 50 сантиметров. Жилы проводов следует присоединить к лампочке, при этом вторым концом одного из проводов следует прикоснуться к трубам отопления (зачищенным), а вторым прикоснуться к «прозваниваемым» проводам. Тот провод, при прикосновении к которому загорается лампочка, является фазным.

Определение фазы без индикатора и прибора видео

Стоит обратить внимание, что описанный способ является очень опасным и может привести к поражению током во время его использования. Ни в коем случае не рекомендуется применять его в случае наличия предельного напряжения в сети, а также нельзя касаться оголенных проводов.

Альтернативной лампочки накаливания может стать лампочка неоновая, которая позволит найти полярность системы.

В заключении следует отметить, что ответ на вопрос: как определить фазу и ноль имеет несколько решений. А именно: индикаторной отверткой, мультиметром, а также можно без приборов. Все зависит от возможностей и наличия приборов под рукой. Обязательным является соблюдение всех мер безопасности при работе с электричеством.

Как найти фазу и ноль? несколько способов определения фазного и нулевого провода » сайт для электриков

Способ №3 – Картошка в помощь!

Забавная, но все же эффективная идея, которая позволяет определить фазу и ноль без индикатора, мультиметра либо другого тестера. Все, что Вам нужно – картошина, 2 провода по 50 см и резистор на 1 МОм. Найти напряжение можно по методике, описанной выше. Конец первого проводника подключается к трубе, второй конец вставляется в срез картошки, как показано на фото. Что касается второго провода, один его конец нужно вставить в тот же срез, на максимально возможном расстоянии от уже вставленной жилы, а вторым Вы будете щупать те выводы, на которых Вам нужно найти фазу и ноль без приборов. Определение происходит следующим образом:

  • Если на срезе образовалось небольшое потемнение – это фазный проводник;
  • Никакой реакции не произошло – Вы «нащупали» ноль.

Следует сразу же отметить, что в данном случае определение должно происходить с небольшой выдержкой времени при контакте жилы со срезом картошки. Вы должны дотронуться проводом к картошине и подождать около 5-10 минут, после чего будет виден результат!

Наглядный видео урок по определению полярности без приборов своими руками

По похожей методике можно определить полярность контактов в цепи постоянного тока. Для этого два провода опускаются в чашку с водой и если возле одного из них начинают образовываться пузыри, как показано на фото ниже, значит, это минус и, соответственно, вторая жила – плюс.

Цифровой мультиметр очень полезная вещь в быту. С помощью тестера просто определить, какой из проводов фаза, ноль, а какой заземление.

Любая электросеть, как бытовая, так и промышленная может быть с постоянным током или с переменным. При постоянной подаче электронапряжения электроны перемещаются в одном направлении, при переменной подаче это направление постоянно меняется.

Переменная сеть в свою очередь состоит из двух частей – рабочей и пустой фазы. На рабочую, которую называют в электричестве так и называют — «фазой», подаётся рабочее электронапряжение, а на пустую, которая получила название «ноль» — нет. Она нужна для создания замкнутой сети для работы и подключения электроприборов, а также для заземления сети.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

Как отличить друг от друга фазу и ноль?

Для того чтобы отличить «фазу» от других проводов можно воспользоваться таким инструментом, как индикаторная отвёртка.

Если дотронуться до металлической части провода, жалом этой отвёртки при этом, придерживая противоположный торец указательным пальцем то индикатор, будет светиться при наличии фазного провода. Также можно определить «фазу» с помощью мультиметра.

Для этого необходимо включить прибор в режим измерения переменного тока.

Выставить максимально возможное напряжение на приборе. Минусовой щуп необходимо подсоединить к какому-нибудь заземлённому предмету, например, к радиатору отопления, а другой попеременно подключать к проводникам.

Когда прибор покажет напряжение, которое примерно равно 220 В. то проводник, к которому вы подключились и есть фазный провод.

Как определить «фазу» и «ноль» без измерительных приборов.

Для того чтобы обнаружить фазу можно использовать проверенный временем, очень простой и недорогой способ.

С помощью обыкновенного патрона с лампой накаливания несложно определить пару «ноль» — «фаза». Нужно взять патрон и два провода, которые отходят от него попеременно подсоединять к проводам с предполагаемыми фазным и нулевым проводами.

Когда же лампочка загорится это будет означать что один из подключённых проводов является фазным. Теперь останется узнать какой именно. Очень просто это сделать если в электрической сети включена система УЗО. В этом случае если подключить патрон с лампой одним концом к третьему проводу, который является в данном случае заземлением, а другой попеременно к другим проводникам.

В момент, когда произойдёт автоматическое отключение электричества, будет означать то, что второй провод, к которому вы подсоединили щуп мультиметра, является «фазой». Соответственно третий проводник будет «ноль».

Если нет УЗО то после определения пары «фаза» — «ноль», один провод следует подключить к заземлению, а второй будет слегка искрить при соприкосновении с «фазой».

Заблуждения, которые могут возникнуть при определения фазного провода.

Это не совсем заблуждения, просто, если следовать этому способу определения фазы можно неправильно сделать вывод о том, где именно она находится.

Способ определения фазы по цвету провода

Если рабочие, которые занимались монтажом проводки сделали всё правильно то фазный провод должен быть чёрного или коричневого цвета.

Но полностью полагаться на такой способ определения фазы нельзя, т. к. не исключено, что при подключении, провода просто перепутали. И вместо фазного провода чёрного цвета там будет «земля» или «ноль».

В заключении стоит отметить, что заниматься самостоятельными электромонтажными работами стоит только в том случае если вы очень хорошо разбираетесь в том, что делаете, в противном случае стоит обратиться к специалистам, которые выполнят работы по монтажу проводки, качественно и в срок.

О чем еще важно знать?

Иногда определение назначения токоведущих жил может быть облегчено благодаря знанию их общепринятой цветовой маркировки:

  • Ноль может маркироваться латинской буквой N. Общепринятый цвет изоляции – голубой или синий. Другой вариант окраски изоляции – белая полоса на синем фоне.
  • Земля маркируется латиницей PE. В системе заземления, объединяющей функции защитного и рабочего нуля, обозначается PEN. Цвет применяемой изоляции – желтый, имеющий одну или две полосы ярко – зеленого оттенка.
  • Фаза может обозначаться латинской буквой L или маркироваться как фаза трехфазной электрической сети, то есть A, B или C. Цвет изоляции может быть произвольный, но не повторяющий тех, которыми обозначается земля (защитное заземление) или нулевой проводник. В большинстве случаев, это красный, коричневый или черный цвет.

Полезно знать и правила монтажа электропроводки. Это также может помочь определить, где фаза, ноль и земля. Фаза всегда должна приходить в распределительный щиток на автоматический выключатель или плавкий предохранитель. Нулевая жила может крепиться на шине специальной конструкции, которая имеет несколько клемм. В металлических щитках и клеммных ящиках старого типа, ноль или земля крепились под гайку болтом, приваренным к корпусу ящика. Эти правила могут облегчить определение функций приходящих проводников. Узнать больше о том, как определить фазу и ноль без приборов, вы можете из нашей отдельной статьи.

Теперь вы знаете, как определить фазу, ноль и землю мультиметром или же индикаторной отверткой. Надеемся, предоставленные рекомендации помогли вам решить вопрос самостоятельно!

Наверняка вы не знаете:

  • Способы определения потребляемой мощности электроприборов
  • Что такое чередование фаз
  • Как определить сечение кабеля по диаметру жилы

Как определить ноль и фазу? Самые быстрые способы

Часто при монтаже бытового электрооборудования мастеру важно знать, где находится «фаза». Такая необходимость возникает в тех случаях когда, например, требуется установить выключатель или подключить чувствительные к правильной фазировки электротехнические устройства

Если выключатель света подключён правильно, то при положении «выкл» будет обесточен участок проводки который ведёт к патрону и можно абсолютно спокойно проводить монтажные работы в этом месте, например замену лампочки, не опасаясь удара электрическим током.

Определить наличие или отсутствие электрического тока в цепи «на глаз» не представляется возможным, поэтому стоит приобрести специальные приборы и инструменты.

  • Индикаторная отвёртка.
  • Тестер или мультиметр.
  • Пассатижи.

Цена их, как правило, не велика. При выборе стоит отдать предпочтение только тем моделям, которые имеют надёжную изоляцию.

Определение фазы, нуля и заземляющего провода

Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.

  1. Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  2. Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  3. Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  4. Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.

Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей. Не забывайте, что речь идет, прежде всего, о безопасности.

Для отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

Правила работы с индикаторной отверткой

При отсутствии заземляющего провода решить задачу, как определить фазу будет очень легко. Достаточно воспользоваться обыкновенной индикаторной отверткой.

В этом случае действия происходят следующим образом:

  • Вначале обесточивается сеть путем отключения автомата. После этого на проводах острым ножом зачищается изоляция примерно на 1-1,5 см. Жилы нужно развести между собой, чтобы исключить случайное соприкосновение.
  • Включается автомат и подается напряжение. Концом индикаторного устройства нужно по очереди коснуться зачищенных мест проводников. При попадании на фазовый провод светодиод начнет светиться.
  • Обнаруженную фазу следует отметить, после чего вновь выключить автомат и сделать все запланированные подключения.
  • Подключая освещение, выключатель нужно соединять с фазным проводом. Именно он будет обеспечивать разрыв контакта, выключение и включение осветительных приборов.

При работе с трехпроводной сетью все проводники могут оказаться одинакового цвета, поэтому нужно обязательно установить назначение каждого из них. Процесс обнаружения происходит в следующем порядке:

  • Задача, как найти фазу решается теми же способами, что и в двухпроводной сети, после этого провод нужно отметить, отделив его от других проводов.
  • Ноль и землю определяют мультиметром в режиме измерения напряжения. Один щуп касается фазного провода, а другой – нулевого и заземляющего, по очереди. Меньшее напряжение показывает нулевой провод.
  • В случае одинакового напряжения измеряется сопротивление провода заземления. Оно должно быть не выше 4 Ом, а сопротивление нуля будет заметно выше.

Как определить фазу и ноль

Индикаторная отвертка

Что такое фаза, как определить фазу и ноль в электричестве

Цвет проводов фаза, ноль, земля

Схема подключения люстры с 3 лампами

Как определить сечение провода

Народный способ

Существует также народный способ идентификации нулевой и фазовой жилы. Несмотря на то, что некоторые специалисты относятся к нему довольно саркастически, этот метод работает достаточно эффективно.

Для определения понадобятся следующие элементы:

  • 2 многожильных провода, длиною около полуметра;
  • резистор номиналом на 1 МОм;
  • крупная картофелина.

Схема проверки напоминает идентификацию фазы на контрольной лампочке. Один конец провода крепят к металлу (зачастую используют отопительные или водопроводные трубы), другой плотно примыкают к разрезанной вдоль картофелине. Второй проводник также примыкают к овощу, а другой его конец соединяют с резистором и интересующей жилой.

Результат исследования придется подождать около 10 мин. При контакте с фазой мякоть овоща потемнеет, а в случае с нулем она останется неизмененной.

Проверить назначение проводника можно с помощью подручных средств. Но такие методы далеко не безопасны. Поэтому применять их нужно исключительно в крайних случаях. А лучше – обзавестись специальной индикаторной отверткой.

Назначение фазы и нуля

Чтобы полностью понять, что же именно подразумевает словосочетание “фаза и ноль в электрике” обратимся к аналогии. Электрический ток наиболее удобно сравнивать с водой, а токонесущие провода – с трубами.

Итак, представим следующее. У нас имеется одна труба, по которой горячая вода из резервуара поступает в большую кастрюлю. Также имеется вторая труба, которая по мере наполнения кастрюли сбрасывает излишек поступающей горячей воды обратно в резервуар. Теперь расшифровка: первая труба – фаза, кастрюля – полезная нагрузка, вторая труба – ноль. Ток по фазе приходит к нагрузке, а по нулевому проводу уходит обратно. Вот и все.

Теперь представим что произойдет, если из-за неисправности второй трубы горячая вода из кастрюли не будет уходить обратно в резервуар. В этом случае кастрюля очень быстро наполнится, а кипяток начнет с нее выливаться и может нас ошпарить.

Чтобы этого избежать, подводим к кастрюле третью трубу. Эта труба будет играть роль аварийного выхода для поступающей воды. Тогда, если вторая труба, отводящая воду отказывается работать, то излишек воды будет уходить через третью трубу. А третья труба идет в землю в специально выкопанный для этого котлован. Вот именно этот пример нам наглядно демонстрирует заземление.

Выше мы описали работу тока в однофазной сети, а также назначение фазы и нуля. В трехфазной происходит то же самое, только ток течет одновременно по трем проводам, а возвращается по четвертому.

Из примера становится понятно, что нельзя путать фазу с нулем, а также нельзя их соединять между собой. Для удобства все кабеля имеют свою цветовую маркировку, благодаря которой можно без всяких приборов определить принадлежность провода к фазе или нулю.

Внимание! Для пущей уверенности лучше перед началом работы все-таки прозвонить кабель, несмотря на цветовую маркировку. Очень часто в силу собственного незнания, неопытные электрики вообще не заморачиваются по поводу цвета проводов, и именно из-за этого существует опасность

Тут хорошо работает правило: доверяй, но проверяй!

По поводу цветовой маркировки. В электричестве приняты следующие обозначения: фазный провод коричневого, черного либо белого цвета, нулевой – голубого или синего, а провод заземления имеет желто-зеленый цвет.

Имейте ввиду, цвета не всегда могут быть такими: не так давно мне в трехфазной сети попались три красных провода (фаза), а нулевой провод был черного цвета.

Другие варианты проверки

Кроме перечисленных способов проверки фазы и нуля мультиметром, существует проверка с использованием контрольной ламы.
Способ довольно необычный и требует особой осторожности, но действенный. Для такого устройства необходим патрон, лампа, провод со срезанной на концах изоляцией

При использовании лампы удастся определить — есть фаза или нет, а какой именно фазный проводник — установить не получится. Если во время соединения проводки контрольной лампы с определяемыми жилам она засветится, тогда один из проводов фазный, а второй вероятнее ноль. Если не засветится, то фазы нет либо фазы, либо ноля, что тоже возможно

Для такого устройства необходим патрон, лампа, провод со срезанной на концах изоляцией. При использовании лампы удастся определить — есть фаза или нет, а какой именно фазный проводник — установить не получится. Если во время соединения проводки контрольной лампы с определяемыми жилам она засветится, тогда один из проводов фазный, а второй вероятнее ноль. Если не засветится, то фазы нет либо фазы, либо ноля, что тоже возможно.

Правильно определить фазу

Провода трехжильные

Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль – искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.

Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

  1. В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая – земля (в противном случае – резервный провод питания напряжением 220 вольт).

  2. В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.
  3. Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.

Фазы автомобиля

Электрические сети помогают многим объектам. Автомобиль считается относительно простым устройством. Основу снабжения составляют аккумулятор 12 вольт (реально – 14,5 В), генератор, уровень выходного напряжения которого регулируется сообразно вариациям оборотов. Напряжение после выпрямления пригодно подпитывать аккумулятор бортовой сети. Активация вала генератора ведется аккумулятором через специальное регулирующее устройство.

Трехфазная схема Ларионова

Выпрямляемые диодным мостом схемы Ларионова фазы питают авто. Популярная сегодня методика. Диодов присутствует шесть штук. Фазы сливаются механическим объединением после выпрямления единой магистралью. Обеспечивает максимальную мощность. Чувствительные компоненты авто (бортовой компьютер), дополнительно выпрямляют нестабильный ток. Чтобы продлить срок службы устройства.

Далее напряжение идет потребителям. Дворники, система индикации, освещение, зажигание. Бортовой компьютер может выдать закодированное сообщение: пора проверить датчик фаз. Элемент, работа которого использует эффект Холла, определяет положение распределительного вала двигателя. Подобными оснащают стиральные машины, оценивая скорость вращения. Авто определяет угловое положение вала. Датчик выдает импульсы, оценивая параметры которых компьютер получит нужную информацию.

Сенсорами авто напичкан. На две клеммы подается питание, третья формирует сигнал. Для проверки посмотрим схему: местонахождение узлов. Затем вплотную займемся прозвонкой. Имитируя условия формирования импульсов, пользуйтесь постоянным магнитом.

Вопрос, как определить фазу и ноль мультиметром на авто, отпадает. Опорой служит корпус автомобиля – масса. Понятное дело, генератор работает только при запущенном двигателе. Внутри квартиры ищем фазу и нуль, здесь масса задана априори. Можно вызванивать пробитую изоляцию (например, диодов выпрямительного моста). На авто проще простого измерить три фазы мультиметром. Действующее значение косвенно сказали. Порядка 20 вольт (учитывая потери неидеального моста).

Ошибки пользователей мультиметра

Китайские мультиметры настроены работать, даже если неправильно поставлены щупы. Сломать прибор случайно остерегайтесь. Избегайте способа: воткнуть черный провод в разъем измерения высоких токов, красный – на свое место. Попытаетесь измерить переменное напряжение высоковольтной линии – ремонт обеспечен. Нельзя применять неправильные диапазоны. Зарекитесь пытаться измерить переменное напряжение, применив шкалу постоянного. Проверка фаз станет последней в жизни мультиметра.

Прибор выводится из строя большим напряжением переменной полярности. Прочее (к примеру, неправильная полярность щупов) не так страшно.

Фаза и нуль в электрике

Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.

Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.

Замер сопротивления «кольца фаза-нуль»

Для планового контроля и своевременного обнаружения и устранения нарушений безопасности в электросети обеспечения её нормальной работы, проводятся систематические замеры сопротивления кольца фаза-нуль, так как причинами поломок приборов освещения являются сетевые перегрузки и короткое замыкание.

Самый быстрый и эффективный способ выявления и предотвращения таких случаев – это замер сопротивления.

Не всем известно, что значит понятие «кольцо фаза-нуль». Оно означает контур, созданный соединением нулевого проводника, расположенного в заземленной нейтрали. Замыкание этой электрической сети образует кольцо фаза-нуль.

Сопротивление в контуре измеряется:

  1. Падением напряжения в выключенной цепи.
  2. Падением напряжения вследствие сопротивления растущей нагрузки.

По цвету провода

Узнать назначении жилы можно по цвету ее изоляции. Существует стандарт цветовой маркировки проводников. Нулевые провода принято обозначать голубым либо синим цветом. Заземление можно найти по зеленому цвету изоляционного материала. Впрочем, здесь допустимо использовать также желтую маркировку либо сочетание зеленого и желтого цветов.

С фазовым проводом дело обстоит труднее. Палитра оттенков его обозначения довольно широка:

  • белый;
  • черный;
  • красный;
  • коричневый;
  • серый;
  • оранжевый;
  • розовый;
  • фиолетовый цвет.

Встречаются фазы даже бирюзового цвета. В этом случае следует быть очень аккуратным, чтобы случайно не перепутать его с зеленым заземлением или с голубым нулем.

Строго говоря, определение по цвету изоляции – не самый надежный способ. Поэтому специалисты часто называют его условным. Во-первых, цветная маркировка встречается далеко не всегда, – например, в старых постройках использовали исключительно белый цвет изоляции для всех кабелей. Во-вторых, сами специалисты-электромонтажники часто пренебрегают установленными правилами маркировки, подсоединяя к системе те провода, которые оказались под рукой.

Фаза и ноль. Как определить и какой способ лучше

Иногда при выполнении монтажных, пуско-наладочных, испытательных работ или из простого любопытства возникает необходимость определения фазного или нулевого проводника. Это сделать довольно просто. Рассмотрим как.

Индикаторная отвертка

Это устройство как раз и предназначено для определения наличия фазного напряжения, более того его можно использовать как обычную отвертку.

Для определения фазы необходимо коснутся острым концом отвертки к точке, в которой вы хотите проверить фазу, а пальцем коснутся к специальному выводу на противоположном конце отвертки. Если световой индикатор загорится – значит там фаза, если нет, то ноль. Схема индикатора показана ниже:

В данном случае контакт подключается к измеряемой точке. Прикоснувшись замыкающего контакта пальцем, вы замыкаете цепь протекания тока через резистор, светодиод и вас на землю. Резистор подбирается таким образом, что ток, который будет протекать через индикатор, будет слишком мал, чтоб нанести вред человеку, но его будет достаточно для зажигания светодиода. Недостатком такого типа отвертки индикатора является невозможность проверки напряжения в сетях напряжением ниже 100 В.

Также существуют индикаторы отвертки которые имеют встроенные источники питания и логику работы, основанную на транзисторах.

Такие устройства позволяют определять наличие напряжения в сетях ниже 100 В контактным и бесконтактным способом, а также определять кабели, по которым протекает ток. Некоторые модели могут определять проводку в стене, при неглубоком ее размещении.

Определение фазы мультиметром

Если отвертки индикатора рядом нет, а взять не у кого или лень ее брать, то можно для определения фазного провода использовать мультиметр.

Этот способ более сложен и требует произвести больше действий чем с индикатором, но многим нравится. Они не ищут легких путей на пути к цели. Итак, чтоб определить фазу мультиметром необходимо установить предел измерения 750 В (если вы измеряете напряжение в сети 220 или 380 В) и для начала измерять напряжение источника. Если оно присутствует и соответствует заданному (220 или 380) то начинаем определение. Для этого необходимо один измерительный щуп мультиметра подключить к предполагаемому фазному проводу, а второй к какому-то предмету, который заземлен или имеет связь с землей. Кто-то подключает к батарее, кто-то к стене или себе и получают при этом разные значения. Это зависит от многих факторов – класс точности мультиметра, заземлены ли батареи в вашем доме или нет, от того на каком этаже вы находитесь и какие там стены и полы (покрытие).

Поэтому, если получили при одном измерении 0, то переключите на перекиньте измерительный щуп на другой провод. Если напряжение будет больше от нуля, то там фаза, при этом учитывайте погрешность прибора (если у вас на шкале напряжение скачет от 0 до, к примеру, 10 В – это может быть погрешность прибора).

При этом проводя измерения таким образом не перепутайте входы на мультиметре.

Если вы подключите щуп в порт для измерения тока 10ADC, то результат ваших измерений может стать непредсказуем как для мультиметра, так и для вас, поскольку этот порт применяется для измерения токов более 200 мА и имеет очень малое сопротивление, что при измерении напряжения равно короткому замыканию.

Сравнения способа определения фазы мультиметром и индикатором

Как я думаю вы уже поняли, что способ определения фазного проводника с помощью индикатора все же проще, чем с помощью мультиметра. Также отвертку-индикатор можно использовать еще и как обычную отвертку. При покупке отвертки-индикатора не стоит экономить и покупать дешевые китайские, которые светятся просто при прикосновении к ним. При покупке попросите продавца продемонстрировать вам их работу, для того чтоб убедится в качестве этого изделия.

Как определить ноль и фазу индикаторной отверткой

В процессе выполнения электромонтажных работ каждый специалист сталкивается с необходимостью точного определения фазного и нулевого проводников сети. Если провода распределены в соответствии с цветом изоляции, то определить принадлежность каждого из них не будет сложной проблемой. Однако, так бывает далеко не всегда, особенно в старых сетях, и тогда приходится определять ноль и фазу индикаторной отверткой или другим способом. В этом нет ничего сложного, если знать общее устройство электрической сети и основные правила пользования указателями напряжения.

Особенности домашних электрических сетей
Практически во всех квартирах электричество подается через однофазную сеть, с напряжением 220 вольт и частотой 50 Гц. Общее питание к жилому дому подводится посредством мощной трехфазной линии, а потом электроэнергия коммутируется в распределительных щитах. Дальнейшее движение тока к потребителям осуществляется по однофазным линиям с фазным и нулевым проводами.

Распределение нагрузки на каждую фазу должно быть максимально равномерным, чтобы избежать перекосов в процессе эксплуатации. В современных домах дополнительно прокладывается контур защитного заземления. Таким образом, в электрической сети добавляется еще один провод, который в дальнейшем тоже придется идентифицировать при необходимости.

Во многих старых зданиях защитный заземляющий контур отсутствует, следовательно в сети имеется лишь фазный и нулевой провода. С целью повышения уровня электробезопасности при выполнении электромонтажных работ внутренние сети довольно часто подвергаются усовершенствованию и реконструкции путем добавления проводника РЕ.

В частном секторе нередко используются трехфазные линии. Напряжение в 380 вольт может напрямую подводиться к отдельным потребителям – отопительным котлам, электродвигателям и другому оборудованию. Однако для внутренней разводки внутри частного дома все равно используются однофазные линии, в которых равномерно распределяются все три фазы. Таким образом, к розеткам оказывается подведенными три провода – фазный, нулевой и заземление.

Фаза и ноль в электрической сети
Многие потребители даже не догадываются о настоящем предназначении фазы и нуля. Поэтому, если намечается работа с электропроводкой, данный пробел в знаниях должен быть ликвидирован.

Изначально электрическая энергия подводится к жилым домам от трансформаторной подстанции, где она преобразуется из высокого напряжения в допустимые 380 вольт. В общем вводно-распределительном устройстве жилого дома электричество распределяется и расходится по отдельным щиткам, установленным в каждом подъезде. От них в квартиры заводится уже по одной фазе номиналом 220 вольт и заземляющий провод, если он предусмотрен схемой электропроводки.

Один из проводников подающий ток к потребителю, считается фазным. В трансформаторе все три фазы соединяются по схеме «звезда». Их общая точка является нейтралью, защищенной на подстанции заземляющим контуром. Данная нейтраль и выполняет функции нуля, отдельно подводимого к нагрузке. Основной задачей нулевого провода является обеспечение протекания тока обратно, в направлении источника электроэнергии. Дополнительно, нулевой проводник способствует выравниванию фазного напряжения.

Многие потребители не видят особой разницы в подключении бытовой техники в сеть с переменным током 220 вольт. При обычном включении в розетку можно не соблюдать полярность, а при смене контактов напряжение остается неизменным. Но так бывает не всегда. При работах с электропроводкой требуется точно обнаружить расположение фазного и нулевого проводов. Перемена их местами приводит к неправильному подключению, вызывающему сбой в работе оборудования и поражение током.

Определение принадлежности проводов без приборов
Для того чтобы избежать неприятных последствий, необходимо узнать, где и какой провод расположен. Обычно используется индикаторная отвертка, но при её отсутствии проблема может разрешиться другими способами.

Чаще всего принадлежность проводов, в том числе определение фазы, устанавливается визуально, путем изучения цветной маркировки. Если прокладка линий выполнялась квалифицированными специалистами, они обязательно используют стандарт IEC 60446-2004. В соответствии с этим нормативом, нулевой провод маркируется синим или голубым цветом, заземление – желто-зеленым, а фазный – коричневым или другим нейтральным цветом. Самое главное, чтобы расцветка фазы полностью отличалась от нуля и заземления. Рассмотреть маркировку можно внутри распределительной коробки, а также в местах подключений.

Если нет приборов – указателей напряжения, существует вариант проверить сеть с использованием контрольки, состоящей из патрона с лампой накаливания и подключенными проводами. Конец одного из проводников соприкасается с металлическими трубами системы отопления, а другой проводник касается проверяемого участка. Если лампочка загорелась, значит в этом месте есть фаза. Данный способ считается опасным, так как вероятность получения электротравмы очень велика.

Безопаснее всего определить фазу и ноль индикаторной отверткой, с помощью которой выполнить все необходимые проверки сетевых параметров.

Принцип действия индикаторных отверток
Для того чтобы эффективно и правильно пользоваться индикаторными отвертками, рекомендуется ознакомиться с их устройством и общими принципами работы. Несмотря на внешние различия, у каждой из них основной функцией является проверка наличия и отсутствия напряжения, определение фазы и нуля. Для этого достаточно подключиться рабочим органом к одному из контактов.

Наиболее простым устройством считается индикаторная отвертка с неоновой лампочкой. В ее конструкцию входит металлический токопроводящий стержень, на конце у которого расположено плоское жало. В схему индикаторной отвертки дополнительно включен токоограничивающий резистор и неоновая лампочка. Стальная пружина прижимает лампу к резистору.

Одновременное касание жалом контакта фазы и касание пальцем контактной кнопки на рукоятке, приведет к свечению неоновой лампочки. Если фаза отсутствует – лампа погаснет. Данный инструмент обладает ограниченной функциональностью, для определения фазы ему требуется непосредственный контакт. Нижний предел напряжения составляет 90 вольт, более низкие значения не поддаются определению.

Отвертка на светодиоде может работать и с более низким напряжением – до 45 вольт. Для нормального функционирования требуется импульсный режим, то есть, с увеличением силы тока пропорционально снижается время непрерывного горения светодиода. Кроме ограничительного резистора, в схеме имеется диодный мост, выполняющий функцию выпрямителя. Незначительное количество тока, появившееся на контактах моста, поступает к накопительному конденсатору. Далее через транзистор пульсирующий ток подается на светодиод, который начинает гореть мерцающим светом.

Наиболее эффективной, но и самой дорогой считается индикатор, в конструкции которого имеется светодиодный сигнализатор и собственные элементы питания. Данное устройство позволяет не только определить ноль и фазу индикаторной отверткой, но и успешно искать скрытую проводку.

Принцип работы с такой отвёрткой заключается в следующем. Человеческое тело представляет собой своеобразный конденсатор с достаточной емкостью. Когда палец касается сенсора, в цепи возникают слабые электрические токи в пределах 0,5 мкА. Если жало инструмента одновременно касается фазного проводника, происходит увеличение силы тока до значения, достаточного для открытия транзистора. Далее выполняется подключение питающего элемента к светодиоду, который начинает излучать свет.

Показатель напряжения срабатывания составляет около 50 вольт. Порог чувствительности удается снизить за счет использования собственных источников питания. Это дает возможность отличить ложные срабатывания, возникающие под действием наводок электрического поля.

Правила работы с индикаторной отверткой
При отсутствии заземляющего провода решить задачу, как определить фазу будет очень легко. Достаточно воспользоваться обыкновенной индикаторной отверткой.

В этом случае действия происходят следующим образом:

Вначале обесточивается сеть путем отключения автомата. После этого на проводах острым ножом зачищается изоляция примерно на 1-1,5 см. Жилы нужно развести между собой, чтобы исключить случайное соприкосновение.
Включается автомат и подается напряжение. Концом индикаторного устройства нужно по очереди коснуться зачищенных мест проводников. При попадании на фазовый провод светодиод начнет светиться.
Обнаруженную фазу следует отметить, после чего вновь выключить автомат и сделать все запланированные подключения.
Подключая освещение, выключатель нужно соединять с фазным проводом. Именно он будет обеспечивать разрыв контакта, выключение и включение осветительных приборов.
При работе с трехпроводной сетью все проводники могут оказаться одинакового цвета, поэтому нужно обязательно установить назначение каждого из них. Процесс обнаружения происходит в следующем порядке:

Задача, как найти фазу решается теми же способами, что и в двухпроводной сети, после этого провод нужно отметить, отделив его от других проводов.
Ноль и землю определяют мультиметром в режиме измерения напряжения. Один щуп касается фазного провода, а другой – нулевого и заземляющего, по очереди. Меньшее напряжение показывает нулевой провод.
В случае одинакового напряжения измеряется сопротивление провода заземления. Оно должно быть не выше 4 Ом, а сопротивление нуля будет заметно выше.

Как определить ноль и землю в трехжильном проводе

Главная » Блог » Как определить ноль и землю в трехжильном проводе

Как определить фазу, ноль и землю

Современные отвертки-индикаторы избавят от головной боли человека, пытающегося осмыслить, как определить фазу, ноль, землю. Замечены сложности, расскажем ниже. Для тестирования применяется сигнал, генерируемый отверткой. Понятно, внутри стоят батарейки. Старая советская отвертка-индикатор на базе единственной газоразрядной лампочки негодна. Позволит безошибочно определить фазу. Следовательно, другая цепь — ноль или земля.

Правильно определить фазу

Провода трехжильные

Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль — искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.

Объясним происходящее. Тело человека наделено емкостью. Не столь велика, хватает пропустить мизерный ток. Фаза начинает колебания, электроны идут в сеть и обратно. Создается небольшой ток. Размер сильно ограничен резистором, убиться, взявшись рукой за контактную площадку отвертки-индикатора, другой за трубу снабжения водой непросто. Обнаружить при помощи инструмента непосредственно землю невозможно.

Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

  1. В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая — земля (в противном случае — резервный провод питания напряжением 220 вольт).

    Неверное положение нуля и фазы евророзетки

  2. В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.
  3. Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.

Определение положения фазы по цвету изоляции жил провода

Нулевой рабочий провод снабжен синей изоляцией, земля желто-зеленая. Соответственно, на фазу приходится красный (коричневый) цвет. Правило может грубо нарушаться. Дома старой застройки часто оснащались проводами двух жил. Цвет изоляции в каждом случае белый. Отдельные устройства, наподобие датчиков освещенности или движения, имеют другую раскладку. К примеру, нулевой провод черный. Здесь приготовьтесь смотреть руководство по эксплуатации, вариантов раскладки бесчисленное количество.

Найти нулевой провод в квартире

По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые — не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.

Штекер 230 вольт Великобритании

В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией. Обратите внимание – если в доме обустроено заземление, жил на входе минимум 5. Корпус щитка сажается на желто-зеленую. Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):

  • Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Потом стоит автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
  • Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
  • Токовыми клещами измерим значения на жилах. По каждой фазе проявится значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
  • Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.

Дополнительные сведения о нахождении земли, фазы, нулевого провода

Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.

Добавим другой способ — промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.

Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.

Современные отвертки-индикаторы определения фазы, нулевого провода, земли

Когда нельзя понять, какого цвета провода, полезно пользоваться отверткой-индикатором. Инструкция диковинки на батарейках говорит: удастся при помощи щупа найти землю. Спешим огорчить читателей – любой длинный проводник определяется ложно. Разорванная в области пробок фаза, нулевой провод, настоящая земля – ответ один. Не каждая отвертка-индикатор способна выполнять функции одинаково эффективно. Смысл операции следующий:

Отвертка-индикатор

  • Активная отвертка-индикатор способна обнаружить длинный проводник путем излучения туда сигнала, ловли отклика.
  • На практике при плохом качестве контактов волна быстро затухает. Отвертка-индикатор показывает наличие земли на разомкнутой пробке фазы.
  • Для определения земли существует условие – нужно пальцем коснуться контактной площадки. В этом разница меж активной и пассивной отвертками-индикаторами. В первой возможно по этому принципу найти фазу, во второй правильное определение происходит при условии отсутствия контакта с данной областью.

Современная отвертка-индикатор на расстоянии позволит судить, течет ли по проводу ток. Существует специальный дистанционный режим. Обычно даже два: повышенной и пониженной чувствительности. Позволит отсеять неиспользуемую часть проводки. Допустим, известны случаи: строители заводили в дом две фазы вместо одной, путали местами. Пользоваться проводкой нужно с большой осторожностью.

Хочется отметить, на практике измерить сопротивление проводки, прозвонить непросто. Гораздо удобнее определять наличие фазы. Нет опасности сжечь китайский тестер (бывает временами при попытках измерить сопротивление жилы под током). Следует также знать, низкоомные цепи определяются с ошибкой. К примеру, большинство тестеров при прямом замыкании щупов не дают нуль шкалы. Зато если не получится определить землю при помощи активной отвертки-индикатора, плохие контакты – запросто. Если при выключенных пробках огонек горит с пальцем, прижатым к контактной площадке, время задуматься о покупке нового автомата распределительной коробки, скрутки замените современными колпачками.

Часто занимающимся ремонтом рекомендуем выход из положения: маркировка проводов. Лучше делать краской принтера, цвета примерно совпадают:

  1. Красный – фаза.
  2. Синий – нулевой провод.
  3. Желтый – земля.

Обычно водорастворимая краска смывается с трудом. Цвета электрических проводов допустимо проставить колерами принтеров. Приведенная выше система не одинока, часто встречается. В продаже найдем черный цвет. Можете использовать, как заблагорассудится. Обозначение проводов выполняется один раз навсегда. Смыть маркировку проще концентрированной уксусной кислотой, вещество понадобится вознамерившимся отчистить руки (не всегда просто выходит на практике). Напоследок – старайтесь не заляпать одежду.

vashtehnik.ru

Как определить фазу, ноль и заземление самому, подручными средствами?

Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке.

Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов — как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.

  На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.

Маркировка проводов по цвету

Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.

Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.

В нашей стране, как и в Европе в целом, действует стандарт IEC 60446 2004 года, который жестко регламентирует цветовую маркировку электрических проводов. 

Согласно этому стандарту для квартирной электросети:

Рабочий ноль (нейтраль или ноль) — Синий провод или сине-белый

Защитный ноль (земля или заземление) — желто-зеленый провод

Фаза – Все остальные цвета среди которых – черный, белый, коричневый, красный и т.д.

Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет. Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.

Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного). 

КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ

Итак, начнем по порядку:

ОПРЕДЕЛЕНИЕ ФАЗЫ

Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.

ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ

Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.

Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки — загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.

Принцип действия индикаторной отвертки прост — внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня. 

Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.

ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ

Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы. Способ неоднозначный, но действенный, требующий особой осторожности.

Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.

Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым. 

Определить фазу и ноль из двух проводов

В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.

Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.

Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.

Найти фазу, ноль и заземление из трех проводов:

В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.

Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.

Действуем методом исключения: 

Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.

После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:

— Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.

— Если после смены положения лампа ненадолго вспыхнет, при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.

— Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях. В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.

Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.

А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях. Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.

rozetkaonline.ru

Как отличить ноль от заземления

С помощью современных индикационных отверток несложно разобраться в том, как отличить ноль от заземления. Для поиска применяется световой сигнал, возникающий внутри отвертки при обнаружении фазы. Следовательно, другая цепь будет нолем (землей). Несмотря на простоту задачи, имеются в этом деле и определенные нюансы, о которых пойдет речь в этой статье.

Поиск фазы

Индикационная отвертка включает металлический щуп, за которым расположено сопротивление (чаще всего углеродистое), благодаря чему ограничивается ток. Световой сигнал образуется за счет газоразрядной лампы небольшого размера.

Со стороны ручки на отвертке имеется металлическая контактная площадка, представляющая собой кнопку. Эту кнопку следует прижать пальцем, так как в противном случае индикатор не станет светиться.

Принцип работы отвертки можно объяснить в нескольких предложениях. У тела имеется емкость — небольшая, но достаточная для пропуска малого тока. Как только фаза начинает колебаться, электроны начинают движение — в сеть и обратно. Благодаря таким движениям, создается мизерный ток. Показатель тока ограничивается резистором, поэтому переживать насчет собственной безопасности не стоит, даже если взяться за контактную площадку индикационной отвертки и, например, водопроводную трубу.

Обратите внимание! Найти отверткой-индикатором ноль нельзя.

Нахождение фазы чрезвычайно важно, поскольку напряжение не должно покидать, к примеру, ламповый патрон, когда выключатель находится в выключенном положении. Если же что-то пошло не так, простая замена лампы может стать крайне опасным мероприятием.

Согласно техническим нормам, фаза должна располагаться в левой части розетки. Если выключатель установлен как полагается (включение нажатием кнопки вверх), то для обнаружения фазы нужно лишь знать, где находится левая рука и низ:

  1. Фаза находится в левом гнезде розетки. В правом гнезде располагается нуль. Если имеется провод в зелено-желтой изоляционной ленте, это земля. Вместо этого провода можно обнаружить резервный провод электропитания напряжением 220 В.
  2. В двойном выключателе контакты входа и выхода находятся по разным сторонам — внизу и вверху. Сторона, где расположен один контакт, является фазой, а сторона, где есть пара контактов, — нулем. Здесь важно сделать замечание, что сказанное верно только для тех помещений, где разводка выполнена правильно.
  3. В случае с одиночным выключателем определить фазу несколько сложнее, поскольку контакты чаще всего располагаются с одной стороны. Бывают и исключения, когда ноль находится внизу. Для определения фазы патрон прозванивается тестером. Следует заметить, что описываемый способ является нарушением правил безопасности, да к тому же может привести к поломке устройства. Именно поэтому данный способ нельзя рекомендовать — мы лишь сообщаем о его возможности. Кроме того, возможен замер переменного напряжения: 220 В можно обнаружить лишь между фазой выключателя и нулем патрона.
к содержанию ↑
Определение фазы по цвету изоляции

Провод нуля чаще всего синий, а провод земли — зелено-желтый. Фаза имеет коричневую или красную расцветку. Однако из любого правила есть исключения. В зданиях старой постройки часто встречаются двухжильные провода с только белым цветом изоляционного материала. Также следует заметить, что некоторые приборы, например, датчики освещения или движения, оснащаются проводами нетипичного цвета. К примеру, нуль может быть черным. Поэтому во многих случаях перед началом проверки рекомендуется заглянуть в руководство по эксплуатации.

к содержанию ↑

Поиск нуля в квартире

Согласно техническим регламентам, электрощит, расположенный в подъезде, должен быть заземленным. В старых зданиях следует ориентироваться на большую клемму, зафиксированную болтом. В новых домах рекомендуется обращать внимание на количество жил. Чаще всего нулевой шине свойственно иметь наибольшее количество подключений, а вот фазы распределяются по отдельным квартирам.

Указанные обстоятельства можно отследить по раскладке защитных автоматов или электросчетчиков. Общий провод является нулем. При этом цвет проводов в данном случае не имеет определяющего значения, хотя, согласно нормативам, современные кабели также оснащаются цветной изоляцией.

Важно! Если здание оснащено заземлением, минимальное количество жил на входе составит не менее пяти. В таких случаях корпус электрощита обычно содержит зелено-желтый провод, а провод нуля используется для отвода тока от электроприборов, то есть замыкания цепи. Причем объединение указанных веток на стороне потребителя не допускается правилами безопасности.

Ниже представлено несколько правил, благодаря знанию которых будет легче понимать устройство электрощита в подъезде:

  1. Защитный автомат должен прерывать именно фазу. Изредка можно встретить модификации с двумя полюсами, однако их использование оправдано только для помещений, эксплуатация которых связана с высокой опасностью. Таким образом, по расположению провода можно уверенно говорить, что это фаза. После этого автомат можно отключить и сделать прозвон жилы на стороне потребителя. В результате определится положение фазы.
  2. Напряжение между нулем и фазой составляет чаще всего 220 В. На основании этого принципа можно определить жилу, которая передает на любую другую жилу разницу напряжения. При этом фазный разброс равен 380 В. Реальные значения могут быть больше на 8-10 %, поскольку российские сети пытаются отвечать европейским стандартам.
  3. Делаем замеры значений во всех жилах при помощи токовых клещей. Суммарное значение всех трех жил должно проходить обратно в электросеть по проводу нуля. Следует заметить, что заземление чаще всего не применяется очень интенсивно, а потому ток будет почти на нуле в любое время дня и ночи. Участок, где отмечается наибольшее значение, является проводом нуля.
  4. Заземлительная клемма распределительного электрощита расположена на видном месте. Исходя из этого, легко определить провод нуля в зданиях с NT-C-S. В других случаях необходим подвод заземления.
к содержанию ↑

Выше рассматривались ситуации, когда нет индикационной отвертки, но имеется мультиметр или токовые клещи. Предполагалось, что до входа в помещение есть земля, фаза и нуль, а помещение со стороны потребителя прозванивается. В случае с тремя жилами метод еще проще, так как между фазой и любым проводом разница потенциалов равна 220 В. При этом нужно заметить, что способ не подойдет в других ситуациях, к примеру, когда имеется нулевая разница межфазного напряжения. В указанном случае тестер будет бесполезен.

Есть и другая методика проверки, применение которой в промышленных условиях, однако, запрещено. Понадобится лампа в патроне с парой оголенных проводов. С помощью лампы определяется фаза — любую жилу можно замкнуть на заземление. Использование с этой целью водопроводных, канализационных или газовых коммуникаций запрещено. Можно использовать кабельную антенну, оплетка которой, согласно нормативам, должна быть заземлена, а это означает, что найти фазу можно будет с помощью тестера (или, как говорилось выше, можно использовать лампу в патроне).

Также можно использовать пожарные лестницы или металлические громоотводные шины. Необходимо зачистить сталь до появления блеска, а затем прозвонить фазу на зачищенном участке. Следует сказать, что далеко не всякая пожарная лестница имеет заземление в отличие от громоотводной шины. При обнаружении такого дефекта рекомендуется обращаться с жалобами на нарушение технологии защитного зануления в управляющие или государственные организации.

к содержанию ↑

Индикационные отвертки

Если отсутствует определенность с цветами изоляции, можно использовать обычную индикационную отвертку. В инструкции к этому приспособления указывается, что с помощью щупа можно определить землю. Однако таким образом находится не только земля, но и любой длинный проводник, в том числе прерванная возле пробки фаза, провод нуля. В результате далеко не всякая индикационная отвертка позволит правильно найти землю.

Необходимо учитывать следующие обстоятельства:

  1. С помощью активной индикационной отвертки можно найти длинный проводник методом отправки к нему сигнала и получения отклика на этот сигнал.
  2. В случае некачественных контактов волна быстро сходит на нет. Таким образом, индикатор может определить землю даже на разорванной фазе возле пробок.
  3. Чтобы найти землю, необходимо дотронуться пальцем до контактной площадки. В данном случае речь идет об активной отвертке. В случае же с пассивным индикатором условие обратное — не должно быть никаких физических контактов с указанной областью.

Современные модели индикационных отверток позволяют проверить наличие тока в проводах даже дистанционно. Для этого в них предусмотрена специальная функция. Причем данная функция подразделяется еще на два режима: повышенная чувствительность и пониженная. С помощью такой отвертки легко определить неиспользуемую часть проводов.

Обратите внимание! Не так уж редко встречаются ситуации, когда в здание по ошибке заводятся две фазы, а не одна, или же происходит другая путаница. Применять отвертку при работе с подобной проводкой нужно крайне осторожно.

Измерить сопротивление проводки не самая простая задача. Намного проще определить фазу. Тем более что в такой ситуации отсутствует риск порчи тестера, что не редкость при попытках замеров сопротивления жилы, находящейся под напряжением. Еще один фактор: низкоомные цепочки часто устанавливаются с ошибкой. К примеру, большая часть тестеров при непосредственном замыкании щупов не показывает нуль. Однако даже если поиск земли при помощи активной индикационной отвертки не дал результата, то некачественные контакты найдутся наверняка.

Обратите внимание! Если пробки отключены, а отвертка светится с пальцем на контактной площадке, скорее всего, нужно менять распредкоробку, а скрутки понадобится заменить, например, на колпачки.

к содержанию ↑

Советы по маркировке проводов

Если ремонты проводятся часто, а провода не имеют маркировки, рекомендуется пометить их принтерной краской. Для фазы можно выбрать красный цвет, для нуля — синий, для земли — желтый. Принтерная краска хорошо держится и плохо смывается. Также по своему усмотрению можно использовать и черный цвет.

Пометив провода, задачу поиска нуля, фазы и земли решите раз и навсегда. Если же маркировку нужно будет удалить, для этой цели лучше всего подойдет концентрат уксусной кислоты.

220.guru

Правила определения фазы, нуля и заземления в сети

Необходимость решения такой задачи может возникнуть при установке розетки, когда к ней подходят немаркированные проводники. В этом случае, перед монтажом розетки должно быть выполнено определение, какой из проводов за что отвечает. Рассмотрим, как определить фазу, ноль и землю индикаторной отверткой, мультиметром, а также подручными средствами.

Использование индикаторной отвертки

Последовательность действий зависит от того, какая система проводки смонтирована в помещении. Рассмотрим правила определения фазного и нулевого провода в разных случаях.

Двухпроводная сеть

Этот вариант электропроводки встречается в старых домах. По современной терминологии данная система обозначается TN-C. Суть ее заключается в том, что нулевой рабочий провод, заземленный на питающей подстанции, совмещает роль защитного заземляющего (PEN). В системе IT также присутствует только фазный и рабочий нулевой проводник, но в обычных жилых и производственных помещениях она не применяется. В двухпроводной сети отдельный заземляющий провод просто отсутствует, то есть, имеется только фаза и ноль. Определить их очень просто: прикасаемся индикатором последовательно к каждой из токоведущих жил, фаза вызывает зажигание индикаторной лампы, как показано на фото ниже:

Система является устаревшей. На вилке любого современного электроприбора имеется три клеммы. Проводка должна выполняться трехпроводной, исключение — группа освещения.

Трехпроводная сеть

В этом варианте, в дом или квартиру заходит три провода. Такие сети имеют несколько разновидностей. В системе TN-S рабочий ноль и защитное заземление раздельно идут от питающей подстанции, где оба соединены с рабочим заземлением. При таком типе проводки, определение назначения проводов можно осуществить следующим образом:

  • в щитке или в распределительной коробке индикатором определить провод, на котором присутствует фаза;
  • два оставшихся – это рабочий и защитный ноль (земля), отсоединяем на щитке один провод из них;
  • если отсоединить рабочий ноль, все электрооборудование в квартире перестанет работать, значит, оставшийся проводник – это земля, или защитное заземление.

Теперь остается определить в розетке среди трех проводов, на котором из них фаза, ноль и земля. Если не удается найти по цвету изоляции, определение их функций может быть выполнено подручными средствами, без приборов. Для этого нужно взять патрон с вкрученной лампой и выведенными наружу проводами. Определение проводим следующим образом. Одним проводником от патрона прикасаемся к фазному проводу (фаза уже найдена с помощью индикатора), вторым поочередно прикасаемся к двум оставшимся. Если на щитке отключен рабочий ноль, лампа зажжется только при соединении с защитным заземлением, и наоборот.

На видео ниже наглядно показывается, как определить фазу, ноль и землю индикаторной отверткой:

Другой разновидностью системы TN является разводка TN-C-S. В этом случае нулевой провод расщепляется на рабочий ноль и защитное заземление на вводе в дом. Здесь, чтобы определить назначение проводников, можно применить последовательность действий, описанную для системы TN-S. Добавляется дополнительная возможность, обследовав место разделения PEN, определить, где рабочий и защитный ноль (земля) по сечению жилы в проводе.

В случае, если заземление выполнено по системе TT, объект (частный дом) имеет собственное заземляющее устройство, от которого выполнена разводка защитного заземления. В этих условиях, как правило, определить фазу, ноль и землю можно путем отслеживания заземляющего проводника по трассе его прокладки.

Определение мультиметром или тестером

Начнем с того, что определить фазу лучше всего с помощью отвертки, совмещенной с индикатором. Будем исходить из того, что если в хозяйстве есть мультиметр, индикатор найдется наверняка. В крайнем случае, можно сделать следующее. В некоторых случаях может помочь определение с помощью мультиметра напряжения между проводом и трубой отопления или водоснабжения. К сожалению, результат здесь не всегда предсказуем. Чаще всего, напряжение между фазой и системой отопления близко к 220 В, во всяком случае, оно должно быть выше, чем между тем же отоплением и нулем. Картина может измениться, например, если вороватый сосед использует трубы отопления как рабочее заземление.

В трехпроводных схемах мультиметр покажет рабочее напряжение между проводником, на который подана фаза и любым из двух других. Определение, какой ноль рабочий, а какой – земля, можно проводить по методике, изложенной выше, то есть, отсоединив на щитке один из приходящих нулей и воспользовавшись контрольной лампой.

О чем еще важно знать?

Иногда определение назначения токоведущих жил может быть облегчено благодаря знанию их общепринятой цветовой маркировки:

  • Ноль может маркироваться латинской буквой N. Общепринятый цвет изоляции – голубой или синий. Другой вариант окраски изоляции – белая полоса на синем фоне.
  • Земля маркируется латиницей PE. В системе заземления, объединяющей функции защитного и рабочего нуля, обозначается PEN. Цвет применяемой изоляции – желтый, имеющий одну или две полосы ярко – зеленого оттенка.
  • Фаза может обозначаться латинской буквой L или маркироваться как фаза трехфазной электрической сети, то есть A, B или C. Цвет изоляции может быть произвольный, но не повторяющий тех, которыми обозначается земля (защитное заземление) или нулевой проводник. В большинстве случаев, это красный, коричневый или черный цвет.

Полезно знать и правила монтажа электропроводки. Это также может помочь определить, где фаза, ноль и земля. Фаза всегда должна приходить в распределительный щиток на автоматический выключатель или плавкий предохранитель. Нулевая жила может крепиться на шине специальной конструкции, которая имеет несколько клемм. В металлических щитках и клеммных ящиках старого типа, ноль или земля крепились под гайку болтом, приваренным к корпусу ящика. Эти правила могут облегчить определение функций приходящих проводников. Узнать больше о том, как определить фазу и ноль без приборов, вы можете из нашей отдельной статьи.

Теперь вы знаете, как определить фазу, ноль и землю мультиметром или же индикаторной отверткой. Надеемся, предоставленные рекомендации помогли вам решить вопрос самостоятельно!

Наверняка вы не знаете:

samelectrik.ru

Как определить провод заземления

При монтаже розетки или других элементов электропроводки, необходимости подключения кабеля в распределительной коробке, стает вопрос о том, как определить где какой провод из трех имеющихся. Где находится фазный провод, как правило, определить не сложно – для этого достаточно воспользоваться индикаторной отверткой. Дальше стает вопрос: где из оставшихся двух проводов нулевой рабочий проводник, а где проводник защитного заземления.

Если проводники не промаркированы, то есть, на них нет соответствующих бирок, указывающих, где какой провод, то для многих это стает проблемой. В данном случае нужно точно определить, где какой провод, так как в случае ошибочного подключения возможны негативные последствия – короткое замыкание или поражение электрическим током. Ниже постараемся ответить на вопрос о том, как определить провод заземления в домашней электропроводке.

Что такое ноль, фаза и заземление:

  • Заземление — третий провод в однофазной сети (по ней ток попадает в наши квартиры), рабочей нагрузки он не несет, но служит своего рода предохранителем,

  • Ноль (при разомкнутой цепи, например в розетке, напряжения на нулевом проводе нет),

  • Фаза — фазовый провод, по которому течет ток. 

Цветовая маркировка проводов

Кабеля и провода могут иметь цветовую маркировку. Если электропроводка была монтирована по всем правилам, и каждый из проводников линий проводки был подключен строго по цветам, соответствующим общепринятым для фазного, нулевого и заземляющего проводников, то проблем в поиске, где какой проводник, не возникнет.

В соответствии с ПУЭ синим или голубым цветом маркируется рабочий нулевой проводник, полосатым желто-зеленым – защитный заземляющий проводник. Что касается фазного проводника домашней электропроводки, то он может быть одним из следующих цветов – белого, черного, коричневого, красного, серого, фиолетового, розового, оранжевый и бирюзовый. Производители кабельно-проводниковой продукции могут выбрать один из приведенных цветов для маркировки фазного проводника.

Другой вопрос – было ли выполнено подключение правильно. Быть уверенным, что провода были подключены по цветам правильно можно лишь только в том случае, если монтаж электропроводки был выполнен самостоятельно.

Во всех остальных случаях не может быть гарантировано, что все линии проводки были подключены строго по цветам и, следовательно, при необходимости подключения тех или иных элементов к электропроводке нельзя ориентироваться на цветовую маркировку проводников, чтобы избежать ошибки при подключении.

В данном случае для определения провода заземления необходимо воспользоваться другими способами, которые рассмотрим ниже.

Определение провода заземления при помощи мультиметра

Когда дело касается электропроводки, то, прежде всего, следует помнить о мерах безопасности и обесточивать электропроводку каждый раз, когда необходимо будет производить работы с оголенными жилами и другими токопроводящими элементами. Например, при необходимости зачистки жил кабеля или подключения кабеля к розетке.

Итак, перед нами три провода – фазный, нулевой и заземляющий, которые никак не промаркированы. Фазный проводник, как и упоминалось в начале статьи, определить легко, при помощи индикаторной отвертки. Остальные проводники можно определить при помощи мультиметра.

Выставляем мультиметр на диапазон измерения переменного напряжения величиной выше 220 В. В зависимости от типа мультиметра, величины измеряемого напряжения могут отличаться, но в любом случае нужно выбирать предел выше 220 В.

Измеряем поочередно между фазным проводником и одним из оставшихся, затем между фазным и другим проводником. Большее из двух значений – это напряжение между фазным проводником и рабочим нулевым, соответственно меньшее значение напряжение будет между фазным и заземляющим проводником.

Следует отметить, что многие электрики советуют рассмотренный способ определения нулевого и заземляющего провода, даже не уточняя, какая система заземления электропроводки.

Данная рекомендация относительно поиска провода заземления актуальна исключительно для сетей конфигурации TT, то есть для тех случаев, когда домашняя электропроводка имеет индивидуальный заземляющий контур, а нейтральный проводник электрической сети используется исключительно в качестве рабочего нулевого провода.

Что касается наиболее распространенной в наше время сети конфигурации TN-C-S, то для такой сети вышеприведенная рекомендация неактуальна.

Данная система заземления предусматривает разделение совмещенного проводника на рабочий нулевой и защитный проводник непосредственно в здании, то есть, по сути, данные проводники электрически соединены между собой, от точки разделения до места проведения замеров примерно одинаковое расстояние и соответственно одинаковое сопротивление.

Поэтому в данном случае замеры покажут одинаковое значение напряжения, отличия в несколько вольт не могут быть признаком того, что это нулевой провод или заземляющий.

В сетях конфигурации TN-S такой способ также не актуален. В данных сетях рабочий нулевой проводник и защитный заземляющий проводник разделен на всем протяжении электросети от источника питания до потребителя. Сопротивление проводов линии электропередач разное и соответственно разница в замерах напряжения между фазой и поочередно нулевым и заземляющим проводником обусловлена исключительно разницей сопротивления.

Способ с отключением нулевого провода

Для того чтобы точно определить провод заземления в электропроводке необходимо выполнить следующие манипуляции. Первое, что нужно сделать – отключить от сети все электроприборы, чтобы через них не проходил ток в нулевой провод электропроводки.

Затем в электрическом распределительном щитке необходимо отключить нулевой провод путем отсоединения его от вводного автоматического выключателя или от нулевой шины, от которой осуществляется разветвление нуля на другие линии. Таким образом, на всей электропроводке будет присутствовать фазный проводник и защитный заземляющий.

Берем мультиметр и поочередно измеряем напряжением между заведомо промаркированным фазным проводником и двумя другими. В данном случае напряжение будет показано только между фазным и заземляющим проводником, который можно сразу промаркировать. Между фазным и нулевым проводником не будет напряжения, так как он отключен в щитке. Возможно, будет небольшое значение, до десятка вольт – это так называемое наведенное напряжение.

Прозвонка электропроводки

Определить провод заземления домашней электропроводки можно посредством проведения прозвонки. Данный способ актуален для тех случаев, когда на одном конце прозваниваемого кабеля заведомо известно расположение нулевого и заземляющего проводника, а на другом отсутствует маркировка.

В данном случае достаточно обесточить электропроводку и методом проверки целостности жил определить начало и конец каждой из жил кабеля. Например, в распределительной коробке одной из комнат квартиры промаркированы фазный, нулевой и защитный проводник, а кабель, подключенный от данной распределительной коробки, не имеет никаких маркировок.

Перед проведением работ электропроводку необходимо полностью обесточивать. Для прозвонки можно использовать обычную самоделку из лампочки, батарейки и проводов или мультиметр в режиме прозвонки. Если длина кабеля сравнительно небольшая, например, в пределах комнаты, то можно использовать провода необходимой длины для подключения к обоим концам кабеля.

Для длинных участков, например, от распределительного щитка до розетки одной из комнат, лучше использовать заведомо известную с обоих концов жилу. Для этого, пока электропроводка не обесточена, необходимо индикатором найти фазный проводник и промаркировать его с обоих концов прозваниваемого участка.

После обесточения электропроводки следует подключить один щуп мультиметра (или самоделки) к промаркированному проводу, а другим щупом к одному из двух оставшихся проводов.

На другом конце прозваниваемого участка касаемся поочередно двумя проводами к ранее промаркированному проводу и, таким образом, определяем второй конец провода и маркируем его с обоих концов.

В заключении следует отметить, что если возникла необходимость определения провода заземления, то лучше его сразу промаркировать таким образом, чтобы в дальнейшем не пришлось производить данную процедуру повторно.

Для этой цели можно приобрести термоусадочную или полиэтиленовую трубку цветов соответствующих общепринятой маркировке жил, о которой упоминалось в начале статьи, или использовать для этой цели бирки. 

Андрей Повный 

electrik.info

Вам также могут понравиться

Алексей Помазов профессиональный электромонтёр, инженер промышленного оборудования, опыт работы — 18 лет

В комментариях к статье «Что нужно знать о ремонте электропроводки» был задан вопрос о том, как в электропроводке найти ноль и землю, если провода не соответствуют традиционным цветам. На вопрос отвечает специалист по электромонтажу, эксперт PROFI.RU.

Согласно правилам устройства электроустановок (ПУЭ, главный документ всех электриков) — электропровода разного назначения должны иметь отличающуюся по цвету маркировку. И если проводку в вашей квартире делал грамотный специалист, то, открыв разделительную коробку, вы увидите провода разного цвета.

Но иногда домашнего мастера ждёт неприятный сюрприз в виде проводов одного цвета. Или того хуже — от щитка до квартиры тянутся провода одного цвета, а внутри помещения — другого. Как разобраться в хитросплетении проводов?

Правильнее всего пригласить квалифицированного электрика, электричество — штука коварная и опасная. Но если вы совершенно уверены в своей осторожности и аккуратности, действуйте!

Ищем фазу

Первым делом отключите подачу тока в квартиру на электрощите. Все переключатели должны быть выключены! Затем нужно добраться до проводов, сняв уплотняющую рамку и раскрутив розетку.

Отсоединив провода от розетки, обязательно разведите их в разные стороны.

После этого можно освободить провода от изоляции и, подав в квартиру напряжение, приступить к поиску фазы при помощи индикаторной отвёртки. Держите инструмент только за защитный корпус, расположив указательный палец на металлическом конце рукоятки. Поочерёдно прикоснитесь жалом отвёртки к проводам. Фаза — тот, на котором загорится индикатор. Если провод двухжильный, этого достаточно: второй проводник — это ноль. В случае трёхжильного придётся продолжить изыскания при помощи мультиметра.

В поиске земли

Мультиметр — это комбинированный электроизмерительный прибор, сочетающий функции вольтметра, амперметра и омметра. Нужно включить мультиметр на измерение переменного напряжения в диапазоне выше 220 вольт. Одним из щупов прибора прикасаемся к найденной ранее фазе, другим — сначала к одному из неопознанных проводов, потом к другому. Смотрим, какое значение напряжения показывает мультиметр в каждом из случаев. 220 вольт соответствует нулю, при прикосновении к земле значение будет меньше.

Кстати, при помощи мультиметра можно определить и фазу. Диапазон измерения будет тот же — выше 220 вольт. Щупом, который тянется от гнезда с маркировкой V, поочерёдно прикасаемся к проводам. Фаза просигнализирует о себе показателем 8–15 вольт, а ноль — нулём на шкале прибора.

Метки: демонтаж электрики мелкие электромонтажные работы монтаж электропроводки электромонтажные работы

profi.ru

4 способа отличить заземляющий проводник от нулевого

Очень часто даже сами электрики путают два таких понятия как заземление и зануление. Как же их отличить рядовому потребителю? По определению заземление — это принудительное соединение металлических частей оборудования с землей. Главное его назначение — понизить до минимума напряжение, которое может возникнуть на корпусе аппарата, если произойдет пробой изоляции.

Зануление — это соединение металлических частей эл.оборудования с нулевым проводом. Если произойдет пробой изоляции и фаза попадет на зануленный корпус — получится однофазное короткое замыкание. Оно то и вызовет отключение напряжение через защитный автомат. Зануление и заземление выполняют по сути одну задачу, но немного разными способами.

Как на практике отличить проводник заземления от нулевого провода? Допустим у вас не завершен до конца ремонт и из подрозетника торчит кабель с тремя жилами. Определить какая из них фазная не так сложно. Для этого нужно воспользоваться индикаторной отверткой или тестером.

Только поняв какой из проводников является фазным, можно приступать с методам поиска земли и нуля.

1-й способ отличия заземления от зануления

Чтобы выяснить, где заземление и зануление, необходимо в первую очередь обратить внимание на цветовою маркировку. Если проводку делал грамотный электрик, то как правило нулевой рабочий проводник имеет синий цвет, а заземляющий защитный желто-зеленый.

Но не стоит полагаться на это на 100% и всегда перепроверяйте другими способами:

2-й способ

  • ⚡отключите все приборы в квартире и автоматы в эл.щите
  • ⚡отсоедините заземляющий проводник в щите от шинки заземления (шина PE) или корпуса
  • ⚡заново включите автоматы
  • ⚡мультиметром в режиме переменного напряжения замерьте показания между жилами. При этом заранее индикаторной отверткой выясните где у вас фаза.
  • ⚡там где относительно фазного проводника напряжение будет в пределах 220В — это и есть ноль. Другой проводник — защитная земля.

3-й способ отличия заземляющего проводника от нулевого

Данный метод применим, когда на вводе установлен двухполюсный автомат (то есть автомат одновременно отключает фазный и нулевой проводники):

  • ⚡отключаете все приборы и вводной автомат
  • ⚡мультиметром в режиме «прозвонки» соединяете предполагаемый заземляющий провод и металлические корпуса ближайшего борудования, которое должно быть заземлено — батареи, ванная и т.д.
  • ⚡та жила, на которой тестер будет показывать близкое значение к нулевому или издавать звуковой сигнал — и будет землей. Там где сопротивление будет близко к бесконечности — рабочий ноль.

4-й способ как определить заземление и зануление

  • ⚡отключаете все приборы в квартире, не только выключателем, но и из розеток тоже
  • ⚡отключаете вводной двухполюсный автомат
  • ⚡на выходе с автомата между нулевым и фазным проводом ставите перемычку — шунт
  • ⚡с помощью тестера в режиме прозвонки диодов проводите замеры на проводниках в подрозетнике
  • ⚡фазная и нулевая жила должны давать между собой полный ноль. Тестер будет пищать.
  • ⚡оставшаяся жила и есть заземляющая

Данный способ наименее предпочтительный и несет за собой большие риски для неопытного пользователя эл.энергии. Поэтому используйте его в последнюю очередь, если имеете необходимые навыки и знания.

domikelectrica.ru

электрическая — Как определить фазу и нейтраль на розетке?

Вам не обязательно нужна активная земля, но в противном случае вам понадобится немного внимания.

По сути, вы представляете собой один большой конденсатор с большой поверхностью для распределенной земли вокруг вас, в 9 из 10 мест ваше тело будет работать как земля. Наверное, даже гораздо чаще. Только в очень старых зданиях с проводной индукцией или в деревянных высотках ваша личная земля может быть слишком далеко от реальной земли, чтобы что-то изменить.

Эта концепция используется ручкой тестера напряжения, она имеет резистор от 220 кОм до 510 кОм и неоновый свет, и вы касаетесь другой стороны неонового света. Таким образом, максимум 1 мА проходит от фазы через неоновый свет к вашему телу, который затем передает его в окружающую среду через вашу «личную емкость». Если вы прикоснетесь к нейтрали ручкой, не загорится никакой свет, потому что нейтраль находится слишком близко к земле, которая, как кажется, есть у вашего тела, и ток не течет.

Плавающий ток 1 мА в вашу руку почти незаметен и совсем не дотягивает до груди, поэтому это безопасно, если вы не используете его под струей душа и знаете, что всегда нужно касаться только того конца, на котором есть резистор и свет между вами и живой силой.


Теперь, когда я ответил на этот вопрос в меру своих возможностей, мне очень любопытно, почему EVM интересуется фазой. Связан ли он каким-то образом с внешним миром? В принципе, цепи переменного тока не замечают фазу и нейтраль, потому что, как говорится в этом термине, ток меняется. Схема, подключенная только к этим двум проводам, всегда будет видеть текущую съемку «влево и вправо» с частотой 50 Гц, независимо от того, является ли «левый» фазовым или нейтральным.

Риск становится очевидным только тогда, когда есть какое-то взаимодействие с внешним миром, которое не имеет предсказуемой связи ни с одним из проводов.Например, когда пользователь что-то делает со схемой или подключается другая электроника, внутренняя маршрутизация которой неизвестна. Но в этом случае я бы категорически возражал против уменьшения RC-мощности из соображений безопасности.

(в качестве примечания: срабатывание симистора в фазовой линии, все же в этом смысле не является непредсказуемым, поскольку он является частью той же самой токовой цепи).

Возможно ли, что техническое описание означает только вашу безопасность? Если большой резистор находится в фазовой линии, у вас меньше шансов убить себя, если вы возитесь с чем-то во время экспериментов?

Основы трехфазного тестирования — Снижение гармоник тока

Электрический проводник нагревается, когда по нему проходит ток.Если нагрев достаточно высок, проводник может быть поврежден, поэтому рекомендуется ограничить ток. Трехфазные системы распределения электроэнергии очень эффективны в ограничении протекания тока без уменьшения мощности, подаваемой на нагрузку. Они делают это, разделяя фазы, а также балансируя нагрузку. Схема, состоящая из горячих ветвей, сдвинутых по фазе на 120 ° друг к другу, может обеспечивать большую мощность через проводники меньшего диаметра.

Галилео Феррарис, Михаил Доливо-Добровольский, Йонас Венстрём и Никола Тесла в 1880-х годах независимо друг от друга изобрели многофазные системы.Тесла задумал и разработал трехфазную систему и трехфазный асинхронный двигатель.

Идеальные формы сигналов трехфазного напряжения — реальные обычно имеют наложенный шум.

Трехфазная мощность обычно вырабатывается в одной из двух конфигураций: Y или треугольник. Генератор электросети имеет три обмотки, расположенные симметрично, так что ток в каждой обмотке отделен от двух других на один и тот же фазовый угол, равный одной трети цикла. Это 120 ° или 2π / 3 радиана. Вне генератора ток от каждой обмотки может проходить через один или несколько трансформаторов, где ток и напряжение, обратно пропорциональные, повышаются или понижаются без изменения межфазного интервала или частоты.На стороне заказчика трансформатор, установленный на опоре или опоре, преобразует мощность до желаемого уровня и подает ее по трем проводам к точке подключения.

Трехфазные конфигурации, Y и треугольник.

Более распространенная Y-образная конфигурация соединяет одну сторону каждой обмотки с одной из трех шин на входной панели, а другую ветвь — с общей, обычно заземленной, нейтралью. На входной панели трехфазные выключатели зажимают три шины для питания трехфазных нагрузок, а однополюсные выключатели зажимают только одну из шин для питания однофазных нагрузок.Таким образом, трехфазное и однофазное питание может быть получено от одной входной панели или центра нагрузки без использования трансформатора или фазового преобразователя, поворотного или электронного. Там, где должны быть запитаны междуфазные нагрузки, используются двухполюсные выключатели.

Обмотка трансформатора, соединенная треугольником (греческая буква «Дельта», Δ), соединена между двумя первичными фазами. В системе с открытым треугольником используются только два трансформатора, в то время как в системе с закрытым треугольником используются три трансформатора, по одному на каждую фазу.Если один из трансформаторов выходит из строя или его необходимо удалить, система продолжит функционировать как система с открытым треугольником при мощности 58%.

С точки зрения электрика, проводящего проводку от трехфазной коробки, двухполюсный выключатель снимает напряжение между двумя фазами. Однополюсный выключатель снимает напряжение в одной фазе вместе с нулевым проводом шины. В любом случае следует проложить заземляющий провод оборудования для облегчения работы от сверхтока.

В некоторых системах с треугольником заземление выполняется посередине между двумя из трех фаз. Они называются трехфазными системами, соединенными треугольником с заземлением от центра. Из-за этого центрального отвода одна из трех фаз будет иметь более высокое напряжение относительно земли, чем две другие. Следует проявлять осторожность в отношении этой высокой ножки. Он имеет оранжевый цвет, чтобы отличить его от двух других ножек.

Трехфазный двигатель меньше, дешевле и служит дольше, чем однофазный двигатель той же мощности, поскольку он не подвержен вибрации и требует меньшего рассеивания тепла.По этой причине большинство асинхронных двигателей мощностью более пяти лошадиных сил являются трехфазными, хотя также доступны трехфазные двигатели с дробной мощностью. Их легко подключить. Просто проложите три питающих провода с защитой от перегрузки по току с правильной амплитудой к двигателю и подключите их к двигателю. При необходимости используйте контроллер мотора.

Чтобы повернуть в обратном направлении, поменяйте местами две из трех линий. Некоторые моторные нагрузки, такие как вентиляторы или насосы, работают более эффективно в одном направлении, чем в другом.Причина в форме лопастей или крыльчатки. Правильное вращение можно определить методом проб и ошибок, измерив выходную мощность. Однако некоторые насосы мгновенно выходят из строя из-за неправильного вращения.

Этот индикатор чередования фаз от Fluke показывает последовательность подключения для вращения по и против часовой стрелки.

В трехфазной системе Y или схеме треугольника без заземленного центрального ответвителя в одной из обмоток однофазные нагрузки могут подключаться от одной фазы к нейтрали или между любыми двумя фазами. Это делает возможными многочисленные однофазные напряжения, которые можно использовать в различных приложениях.Если эти нагрузки сбалансированы, т.е. имеют равное сопротивление, трансформаторы и проводники используются наиболее экономично.

В сбалансированной системе Y все три фазных провода имеют одинаковый ток и напряжение относительно нейтрали системы. При линейных нагрузках измеренное напряжение между линейным проводом при равных нагрузках представляет собой квадратный корень из трех значений напряжения между фазой и нейтралью.

Проблема сегодня в том, что постоянно увеличивающаяся часть подключенных нагрузок является нелинейной. Люминесцентное освещение с балластом, которое широко распространено в офисных помещениях, а также импульсные источники питания и асинхронные двигатели являются примерами нелинейных нагрузок.Они производят дорогостоящие гармоники третьего порядка, которые синфазны во всех трех ветвях. В результате они складываются в нейтральных проводниках. Эта избыточная нагрузка вызывает нагрев нейтрали в ответвленных цепях и распределительных линиях на всем пути вверх по потоку, включая генераторы энергоснабжения.

Однофазные электронные нагрузки генерируют гармоники, кратные основной гармонике. Наиболее вредными из них являются тройные гармоники, поскольку их амплитуда наибольшая. Гармоники более высокого порядка уменьшаются по амплитуде по мере того, как они удаляются от основной гармоники, как показано на оси X в частотной области осциллографа.

Трехфазные нагрузки не генерируют тройные гармоники. Следовательно, на промышленных объектах с большой трехфазной нагрузкой наибольшую проблему представляют нечетные гармоники более высокого уровня — пятая, седьмая, одиннадцатая и так далее.

Активные фильтры могут подавлять гармоники, но они сложны и дороги в реализации. Они синтезируют в цифровом виде реактивную мощность для подавления гармоник. Более экономичным решением является использование фазосдвигающих трансформаторов для ослабления гармоник. Они работают, комбинируя гармоники от разных источников, которые сдвинуты по фазе относительно друг друга, так что гармоники затем компенсируются.Другие методы подавления гармоник включают использование сетевых дросселей, ловушек гармоник, 12- и 18-импульсных выпрямителей и фильтров нижних частот.

Гармоники

также дороги, потому что они приводят к превышению полной мощности в системе и нагрузке на активные и реактивные компоненты. Более того, поскольку они имеют более высокую частоту, чем основная гармоника, они уменьшают емкостное реактивное сопротивление, параллельное явление, до определенной степени шунтируя намеченную нагрузку и нагревая проводку питания. При наличии гармоник конденсаторы испытывают более высокое приложенное напряжение, что может вызвать диэлектрические потери и реальные повреждения.Трехфазные асинхронные двигатели также испытывают потери и нагрев своих обмоток. Гармоники увеличивают ток и перегревают нейтральные проводники, которые обычно не имеют защиты от сверхтоков.

Когда большие двигатели не загружены на полную мощность, совокупный эффект внутри объекта добавляется к наличию гармоник для уменьшения коэффициента мощности. Электроэнергетические компании часто взимают с промышленных потребителей более высокую плату, когда коэффициент мощности падает ниже 90%.

Коэффициент мощности можно улучшить, добавив в электрическую систему конденсаторы коррекции коэффициента мощности.Обычная реализация включает автоматический переключатель, который подключает конденсаторы только по мере необходимости.

Конденсаторы коррекции коэффициента мощности

требуют периодического осмотра и обслуживания. Тепловидение — хороший способ начать. Рабочие должны знать, что эти устройства способны сохранять смертельное напряжение еще долгое время после отключения питания. Вспышка дуги также представляет собой потенциальную опасность. В связи с этим любой, кто работает с испытательными приборами в непосредственной близости от трехфазных цепей питания, должен носить средства индивидуальной защиты (СИЗ) в соответствии с требованиями стандартов безопасности.

При измерении трехфазных электрических параметров необходимо учитывать несколько тонкостей. Один касается трехфазного режима 480Y. В этой конфигурации используются четыре провода, три контакта, нейтраль и заземляющий провод. Напряжение между любой ногой и землей будет 277 В, а между любыми двумя горячими проводами вы получите 480 В. Для работы с однофазными и трехфазными нагрузками 120/208 должен использоваться трансформатор. Трансформатор должен иметь первичную обмотку 480 Ом и вторичную обмотку 208 Ом.

Трехфазное оборудование обычно работает от напряжения Delta, в конфигурации с тремя горячими проводами и без нейтрального провода.Если автомат на 230 В по ошибке подключить к 480 В, его мотор, скорее всего, сгорит. Напряжение не влияет на частоту вращения двигателя, но частота напряжения влияет.

Наконец, существуют разные способы измерения трехфазной мощности. Возможно, самым простым является использование одного измерителя мощности для измерения мощности в одной фазе за раз. Потенциальная проблема этого метода заключается в том, что он предполагает, что мощность в неизмеряемых фазах такая же, как и измеренная после того, как измеритель мощности введен в эту фазу.

Самый простой метод — использовать измеритель мощности одновременно в каждой фазе. Здесь фазное напряжение для измерения мощности измеряется относительно нейтрального провода. Очевидно, общая мощность — это сумма их показаний.

Интересно, что есть способ точно измерить трехфазную мощность с помощью всего двух измерителей мощности. Одна из фаз служит нулевым эталоном, и мощность необходимо измерять только для оставшихся двух фаз.

Но есть сравнительный расчет, связанный с этим методом, который используется для проверки его точности.Легко понять, когда источник напряжения и нагрузка имеют Y-образную конфигурацию. Поскольку нейтраль не подключена, сумма мгновенных токов в трех фазах должна быть равна нулю по закону Кирхгофа: I 1 + I 2 + I 3 = 0.

Это может быть продемонстрировано, что сумма мгновенных полномочий трех фаз равна мгновенными степени двух фаз с третьей фазой (L2) в качестве опорного напряжения:

V 1 × I 1 + V 2 × I 2 + V 3 × I 3 = [(V 1 — V 2 ) × I 1 ] + [(V 3 — V 2 ) × I 3 ]

Что такое нулевая фаза в электричестве.Что такое фаза ноль и земля и зачем они нужны. Определение фазы, нуля и земли по контрольной лампе

Вам не нужно углубляться в технические детали электрической схемы, чтобы понять основы электротехники. Достаточно знать способы передачи электрического тока, которые бывают однофазными или трехфазными. Трехфазная сеть — это когда электричество течет по трем проводам, и еще один должен вернуться обратно к источнику тока, которым может быть трансформатор, электросчетчик.Однофазная сеть — это когда электричество проходит по одному проводу и возвращается обратно к источнику питания по другому. Такая система называется электрической схемой, и ее основы лежат на уроках физики.

В электроэнергетике вырабатывается трехфазный электрический ток для передачи по электрической сети для снабжения электроэнергией жилых домов, предприятий и промышленности. Большинство домов и малых предприятий используют только однофазное электричество, но фабрики часто используют трехфазное питание для больших двигателей и других целей.Трансформаторы, питающие трехфазное питание, имеют два разных способа подключения, которые называются треугольником и звездой. В зависимости от способа подключения существуют небольшие различия в напряжении.

Помните — электрическая цепь состоит из источника, потребителей, соединительных проводов и других элементов. В любом источнике тока «работают» положительно и отрицательно заряженные частицы. Они накапливаются на разных полюсах источника, один из которых становится положительным, а другой отрицательным. Если полюса источника соединены, возникает электрический ток.Под действием электростатической силы частицы приобретают движение только в одном направлении.

Проверить трехфазное напряжение довольно просто. Переведите выключатель двигателя в положение выключения. Выверните винты, крепящие крышку к переключателю, и снимите крышку. Если мультиметр не является автоматическим мультиметром, выберите диапазон напряжения выше, чем напряжение, которое вы планируете проверить. Посмотрите в блок выключателя остановки двигателя. Вы увидите один набор из трех проводов и один набор из трех проводов.

Функции поиска и устранения неисправностей

Показания напряжения должны быть одинаковыми для каждого теста. Переведите рычаг переключателя в положение «Вкл.». При любом испытании напряжение не должно изменяться более чем на несколько вольт. Однофазное напряжение составляет половину испытанного напряжения между парами линий. Трехфазный ток от реверсивного преобразователя фаз может иметь одну фазу с напряжением, отличным от двух других. Это напряжение также будет варьироваться в зависимости от условий нагрузки, например, при работающем двигателе.

Сначала рассмотрим пример однофазной сети: квартира, в которой электричество подается на чайник, микроволновую печь, стиральную машину по одному проводу, а обратно к источнику питания по другому проводу. Если такую ​​цепь разомкнуть, то электричества не будет. Провод, по которому подается ток, называется фазой или фазой, а провод, по которому ток возвращается, называется нулевым или нулевым.

Помните, что вы делаете в любое время. При испытании электрическим током вы подвергаетесь воздействию потенциально опасных для жизни напряжений и токов.Обратите внимание на то, что вы делаете, и не позволяйте другим отвлекать вас. Выключатель остановки двигателя на некоторых двигателях также является выключателем «стоп-старт». Обратите внимание, что перевод выключателя двигателя в положение ВКЛ. В этом случае двигатель запускается.

Фильтры могут иметь три типа фазовых характеристик: нулевая фаза, линейная фаза и нелинейная фаза. Пример каждого из них показан на рисунке 19. Как показано на рисунке, фильтр нулевой фазы имеет импульсную характеристику, симметричную относительно нулевой точки.Фактическая форма не имеет значения, только то, что образцы с отрицательными номерами являются зеркальным отображением образцов с положительными номерами. Когда преобразование Фурье берется из этого симметричного сигнала, фаза будет полностью равна нулю, как показано на рисунке.

Если сеть трехфазная, электричество будет проходить по трем проводам и возвращаться по одному. Трехфазные сети чаще встречаются в домах загородного типа. Если в такой сети разомкнуть один провод, то в других фазах останется ток.

То есть фаза в электрике — это провод, по которому подается ток от источника питания, а ноль — это провод, по которому ток возвращается к источнику питания. Если ток не обеспечен постоянной цепью — были аварии на линии, произошел обрыв проводов, то приборы могут просто перестать работать или сгореть от перенапряжения в электрической сети … В электротехнике это явление называется «фазовый дисбаланс». При обрыве нуля напряжение может измениться как в наибольшую, так и в наименьшую сторону.

Недостатком фильтра с нулевой фазой является то, что он требует отрицательных индексов, с которыми может быть неудобно работать. Линейный фазовый фильтр — это то, что вам нужно. Импульсная характеристика идентична показанной, за исключением того, что она была сдвинута, чтобы использовать только образцы с положительными номерами. Импульсный отклик остается симметричным между левым и правым; однако положение симметрии смещено от нуля. Наклон этой линии прямо пропорционален величине сдвига.

Зачем нужна обнуление

Поскольку сдвиг импульсной характеристики ничего не дает, кроме идентичного сдвига выходного сигнала, фильтр с линейной фазой для большинства целей эквивалентен фильтру с нулевой фазой.На рисунке показан импульсный отклик, который не является симметричным между левым и правым. Соответственно фаза не прямая. Другими словами, он имеет нелинейную фазу. Не путайте термины нелинейная и линейная фаза с концепцией линейности системы, обсуждаемой в этой главе. Хотя в обоих словах используется линейность, они не связаны.

В наше время, когда практически любое здание оборудовано хотя бы простейшей электропроводкой, профессия электрика пользуется большим спросом, поэтому все больше и больше соискателей настроены на получение этой профессии.

Образование

Минимальное базовое образование для начала обучения на электрика — это неполное среднее образование. Это означает, что для того, чтобы начать изучать эту профессию, необходимо окончить не менее 9 классов средней школы. Найти специальность «электрик» можно в техникуме, профессионально-техническом училище или колледже практически любого города России областного значения. Также существуют специальные учебные центры, в которых готовят специалистов в этой области.

Личные качества

Несмотря на кажущуюся доступность этой профессии, стать хорошим электриком не так-то просто.Вы должны обладать техническим складом ума, уметь работать руками и мыслить логически. Кроме того, из-за высокого риска получения травмы на работе, потенциальный электрик должен соблюдать осторожность и иметь возможность хорошо сконцентрироваться во время работы.

Группы электробезопасности и разряды

По окончании обучения по специальности «Электрик» студент, в зависимости от содержания курса и результатов итогового экзамена, получает либо вторую, либо третью квалификационную категорию.Всего у электриков шесть категорий, есть еще пять так называемых групп допусков (групп электробезопасности). Не путайте разряд электрика с группой допуска электрика. Разряд показывает квалификацию электрика, сколько трудных работ в своей области он способен выполнить. Группа допуска, в свою очередь, указывает на уровень опасности, с которой может справиться рабочий. Чем выше категория и группа приема у электрика, тем он востребован и тем выше зарплата, которую может ему предложить работодатель.

Аттестат электрика

По результатам итоговых испытаний электрику выдается специальный аттестат электрика, в котором указывается присвоенная ему группа электробезопасности, а также оценка его квалификации по пятибалльной шкале. Квалификация электрика должна подтверждаться каждые пять лет, кроме того, возможно проведение внеочередной проверки квалификации, например, с целью повышения категории и (или) группы электробезопасности.Следует отметить, что электрик с группой допуска 2-5 при проведении работ, соответствующих данному диапазону групп, должен иметь при себе сертификат.

Зачем кому нужна линейная фаза или нет? Цифры и показывают ответ. Это импульсные характеристики каждого из трех фильтров. Импульсный отклик — это не что иное, как положительная ступенчатая характеристика, за которой следует отрицательная ступенчатая характеристика. Здесь используется импульсная характеристика, поскольку она показывает, что происходит с нарастающим и спадающим фронтами сигнала.Вот важная часть: нулевой и линейный фазовые фильтры имеют левый и правый края, которые выглядят одинаково, в то время как нелинейные фазовые фильтры имеют левый и правый края, которые выглядят по-разному.

Во-первых, проверьте, есть ли у вас все необходимое, чтобы повесить люстру … Во-первых, у вас должна быть стремянка или другая стабильная опора. Кроме того, вам понадобятся инструменты: плоскогубцы, кусачки, отвертка с индикатором напряжения, отвертка с узким наконечником и монтажные зажимы (так называемые лягушки).Не забудьте также убедиться, что комната достаточно хорошо освещена, так как вы не сможете использовать осветительные приборы во время работы. Очень желательно перед началом работы запастись фонариком.

Многие приложения не могут переносить левый и правый края, которые выглядят по-разному. Одним из примеров является дисплей осциллографа, где эта разница может быть неверно интерпретирована как индикация измеряемого сигнала. Другой пример — обработка видео. Это связано с тем, что импульсная характеристика напрямую задается в процессе проектирования.Создание ядра фильтра имеет симметрию слева и справа — это все, что нужно. Импульсная характеристика рекурсивного фильтра не симметрична между левым и правым, и поэтому имеет нелинейную фазу.

Подобные электронные схемы имеют одинаковую проблему с фазовой характеристикой. Представьте себе схему с резисторами и конденсаторами, стоящими на вашем столе. Если вход всегда равен нулю, выход всегда будет также равен нулю. Когда на вход подается импульс, конденсаторы быстро заряжаются до некоторого значения, а затем начинают экспоненциально спадать через резисторы.Импульсная характеристика представляет собой комбинацию этих различных воздействий распада. Импульсный отклик не может быть симметричным, потому что выходной сигнал был равен нулю до импульса, а экспоненциальный спад больше никогда не достигнет нуля.

Люстры обычно вешают на подготовленный крючок. Его необходимо аккуратно обернуть изолентой или другим непроводящим материалом. Изоленту желательно наклеивать минимум в два слоя — чтобы исключить непокрытую поверхность. Обязательно ознакомьтесь с инструкцией к вашему осветительному устройству и убедитесь, что его использование не требует обязательного заземления.В противном случае его нужно будет заземлить.

Разработчики аналоговых фильтров решают эту проблему с помощью фильтра Бесселя, представленного в этой главе. Фильтр Бесселя спроектирован так, чтобы быть максимально линейным; однако он намного ниже характеристик цифровых фильтров. Возможность обеспечить точную линейную фазу — явное преимущество цифровых фильтров.

К счастью, есть простой способ изменить рекурсивные фильтры для достижения нулевой фазы. На рис. 19-8 показан пример того, как это работает.Входной сигнал для фильтрации показан на рисунке. На рисунке показан сигнал после фильтрации однополюсным фильтром нижних частот. Поскольку это нелинейный фазовый фильтр, левый и правый края не выглядят одинаково; они являются перевернутыми версиями друг друга. Как описано выше, этот рекурсивный фильтр реализуется, начиная с шаблона 0 и воздействуя на шаблон 150, оценивая каждый шаблон на этом пути.

Теперь вы должны начать обесточивание комнаты. Для этого на электросчетчике выключите автоматический выключатель, а индикаторной отверткой проверьте отсутствие напряжения в сети.На потолке должно быть три конца провода (два конца — «фаза», а один конец — «ноль»). «Нулевой» наконечник впоследствии будет направлен на распределительную коробку, а «фазные» — на выключатель. Все три конца зачищены (не менее 3–4 мм проводов) и разводятся так, чтобы они не соприкасались.

Предположим теперь, что вместо перехода от шаблона 0 к шаблону 150 мы начинаем с шаблона 150 и переходим к шаблону. Другими словами, каждая выборка в выходном сигнале вычисляется из входных и выходных выборок справа от обрабатываемой выборки.Это означает, что рекурсивное уравнение 19-1 изменится на.

На рисунке показан результат этой обратной фильтрации. Сама по себе обратная фильтрация бесполезна; у отфильтрованного сигнала все еще есть различный левый и правый края. Волшебство случается, когда есть комбинация прямой и обратной фильтрации. На рисунке показаны результаты прямой и обратной фильтрации. Это создает рекурсивный фильтр с нулевой фазой. Фактически, любой рекурсивный фильтр можно преобразовать в нулевую фазу с помощью этой технологии двунаправленной фильтрации.

Теперь нам нужно определить, какие из концовок являются «фазовыми», а какие — «нулевыми». Для этого переводим автоматический выключатель во включенное положение и проверяем концы проводов индикаторной отверткой. На тех проводах, где будет «фаза» загорится лампочка, на «нуле» — нет. Желательно промаркировать провода, чтобы потом их не перепутать. Следует отметить, что современные провода не нужно проверять на фазировку: они имеют обязательную маркировку. Провода с «фазой» отмечены черно-коричневым цветом, а «ноль» — синим.

Непосредственно о таинственной фазе и нуле

Единственным недостатком такой улучшенной производительности являются два фактора: время выполнения и сложность программы. Как найти импульсную и частотную характеристику обычного фильтра? Величина АЧХ одинакова для каждого направления, а фазы противоположны по знаку. Когда два направления объединяются, величина становится квадратной, а фаза обращается к нулю. Во временной области это соответствует свертке исходной импульсной характеристики с наиболее инвертированной версией слева направо.

Такая же маркировка есть на проводах люстры. В противном случае фаза проводов проверяется следующим образом. Два провода подключаются к розетке. Часть лампочек должна загореться, пометьте провода, которые в этот момент были подключены к сети. Теперь меняем один из проводов на третий. Если загорается вторая часть лампочек, первый провод — «ноль», а второй и третий (поменявшие местами) — «фаза». Если

Например, импульсная характеристика однополюсного фильтра нижних частот является односторонней экспоненциальной.Импульсная характеристика соответствующего двунаправленного фильтра представляет собой одностороннюю экспоненту, которая убывает вправо, сложенная с односторонней экспонентой, которая убывает влево. Посредством математики выясняется, что это двусторонняя экспонента, которая затухает как слева, так и справа с той же постоянной затухания, что и исходный фильтр.

Некоторые приложения имеют только часть сигнала на компьютере в определенное время, например, системы, которые постоянно меняют входные и выходные данные. В этих случаях можно использовать двунаправленную фильтрацию, комбинируя ее с методом перекрытия-добавления, описанным в предыдущей главе.Когда вы задаетесь вопросом, как долго длится импульсный отклик, не говорите «бесконечно». Если вы это сделаете, вам нужно направить каждый сегмент сигнала с бесконечным количеством нулей. Помните, что импульсная характеристика может быть усечена, когда она спадает ниже округленного уровня шума, то есть от 15 до 20 постоянных времени.

  • фаза электрическая
  • Начнем с основ.
    Предположим, на электростанции вращается магнит (например, обычный, а на самом деле — электромагнит), называемый «ротором», а вокруг него на «статоре» закреплены три катушки (размазанные по статор).


    Этот магнит вращает, скажем, поток воды на ГЭС.



    Поскольку в этом случае магнитный поток, проходящий через катушки, изменяется, в катушках создается напряжение.
    Каждая из трех катушек представляет собой отдельную цепь, и в каждой из этих трех цепей появляется одно и то же напряжение, смещенное на треть круга относительно друг друга.
    Получается «трехфазный генератор».


    Можно было бы просто взять два провода от одной такой катушки и вывести их в дом, а затем запитать от них чайник.
    Но вы можете сделать это экономичнее: зачем тащить два провода, если можно просто заземлить один конец катушки прямо там, а с другого конца провести провод в дом.
    Этот провод будет называться «фазным».
    В доме подключите этот провод к одному контакту вилки чайника, а другой контакт вилки к заземлению.
    Получаем такое же электричество.

    Теперь, поскольку у нас есть три катушки, давайте сделаем это: (например) соединим вместе левые концы катушек прямо здесь и затем заземлим их.
    А оставшиеся три провода потянем к потребителю.
    Получается, что мы тянем к потребителю три «фазы».
    Итак, мы получили «трехфазный ток».
    Точнее генератор «трехфазного тока».
    Это «трехфазное» напряжение идет по проводам ЛЭП до нашего двора, на дворовую подстанцию ​​(есть такой дом, рядом с детской площадкой).


    «Трехфазный ток» изобрел Никола Тесла.
    Передача электроэнергии по трехфазному току, некоторые говорят, что это более экономично (не знаю как), и там также говорят, что она имеет другие преимущества перед обычным током для промышленных приложений.
    Например, все вращающееся оборудование на заводах — там машины, двигатели, насосы и т. Д. — созданы специально для трехфазного тока, поскольку на трехфазном токе гораздо проще построить вращающуюся хрень: вам просто нужно подключите эти три фазы к трем катушкам по кругу таким же образом, а в центр вставьте металлический стержень с рамкой — и он закрутится сам, как только протечет ток.
    Этот агрегат называется «трехфазным двигателем».
    Поскольку изначально электричеством занимались фабрики (в то время в домах не было компьютеров, холодильников и люстр), то исторически все исходит в первую очередь из промышленности.
    Следовательно, видимо, ток от электростанции в ЛЭП всегда заводится по трехфазному, с напряжением между фазами 35 киловольт (а ток около трехсот ампер).

    Такое высокое напряжение необходимо, потому что нужна большая сила тока: ведь весь город ест энергию.
    Большая сила тока может быть получена либо за счет увеличения силы тока, либо за счет увеличения напряжения.
    В этом случае, чем больше ток, тем больше энергии тратится на преодоление сопротивления проводов (потерянная энергия равна силе тока в квадрате, умноженной на сопротивление проводов).
    Следовательно, экономически целесообразно увеличивать мощность передаваемого тока за счет увеличения напряжения.
    Потребитель потребляет энергию из розетки (ток, умноженный на напряжение), а не из чего-то отдельного, поэтому ему все равно, как эта мощность попадет в его дом.

    Кстати, интересный момент: у нас обычно нет контроля над силой тока в линии электропередачи: сила тока является мерой того, насколько сильно ток течет по проводам.
    Это можно сравнить с силой потока холодной воды по трубам: если в ванных комнатах будут открыты все краны, то сила потока воды будет очень большой, а если, наоборот, все их краны закрыты, то вода по трубам вообще не потечет, и мы не сможем справиться с этой силой тока.
    Но напряжение совершенно не имеет значения, потребляет кто-то ток или нет — это полностью в наших силах, и только мы можем им управлять.

    Следовательно, в ЛЭП за основу берется именно текущее напряжение, и именно с ним они работают: перед передачей тока по проводам избыточный ток, генерируемый электрогенератором, перегоняется в напряжение, а когда ток поступает на «подстанцию» во дворе вашего дома, наоборот, избыточное напряжение перегоняется обратно до силы тока, так как весь путь был успешно пройден током с минимальными потерями.

    Непосредственно накачать весь ток в напряжение не получится, потому что при гигантских напряжениях в проводах возникают свои сложности (может пробить изоляцию например, или поджарить человека, проходящего под проводом, или что-то еще).
    Кстати, забавное видео про короткое замыкание в ЛЭП:



    А теперь подробнее рассмотрим «трехфазный ток».
    Это три провода, по которым протекает один и тот же ток, но со сдвигом на 120 градусов (одна треть окружности) относительно друг друга.
    Какое напряжение у этого тока?
    Напряжение всегда измеряется между чем-то и чем-то.
    Трехфазное напряжение — это напряжение между двумя его фазами («линейное» напряжение).
    Там, где мы соединили все три фазы вместе в одной точке (это называется звездой), мы получили «нейтраль» (G на рисунке).
    В нем, как несложно догадаться (или вычислить по формулам тригонометрии), напряжение равно нулю.

    А пока попробуем подключить генератор к нагрузке рядом с ним.
    Если все три выходящие из генератора линии через сопротивления соединить со второй «нейтралью» (точка G), то мы получим так называемый «нейтральный провод» (от G к M).



    Зачем нам нейтральный провод?
    Дома можно было бы просто подключить одну из фаз к одному штырю вилки, а другой штырь штепсельной вилки заземлить, и чайник закипел.
    В общем, насколько я понимаю, так и делают в старых советских домах: в квартирах только фаза и земля.
    В новых домах в квартирах уже включено три провода: фаза, земля и этот «ноль».
    Это европейский стандарт.
    И правильно подключить именно фазу к нулю, а землю вообще оставить в покое, отдав ей лишь роль защиты от поражения электрическим током («заземление»).
    Потому что, если все тоже пошлют ток на землю, то само заземление станет опасным — это будет абсурд.
    Еще несколько мыслей о том, зачем нужны все три провода, в конце статьи, можете сразу пролистать и прочитать.

    Теперь попробуем рассчитать напряжение между фазой и «нейтралью».
    Вот еще ссылка с расчетами.
    Пусть напряжение между каждой фазой и «нейтралью» будет U.
    Тогда напряжение между двумя фазами будет:
    U sin (a) — U sin (a + 120) = 2 U sin ((- 120) / 2 ) cos ((2a + 120) / 2) = -√ 3 U cos (a + 60).
    То есть, напряжение между двумя фазами в √ 3 раза больше напряжения между фазой и «нейтралью».
    Поскольку наш трехфазный ток на подстанции имеет напряжение между фазами 380 вольт, напряжение между фазой и нулем равно 220 вольт.
    Для этого нужен «ноль» — чтобы всегда, при любых условиях, при любых нагрузках в сети было напряжение 220 Вольт — ни больше, ни меньше.
    Если бы не нейтральный провод, то при разной нагрузке на каждую из фаз был бы «перекос» (подробнее об этом ближе к концу статьи), и кто-то мог бы что-нибудь сжечь.

    Еще один момент: выше мы рассмотрели введение нейтрали на генераторе.
    А где взять нейтраль на дворовой подстанции?
    На подстанции во дворе трехфазное напряжение снижается (трехфазным) трансформатором до 380 В на каждой фазе.
    Это будет похоже на генератор: тоже три катушки, как на картинке.
    Следовательно, их тоже можно соединить между собой и получить «нейтраль» на подстанции. А от нейтрали — «нейтральный провод».
    Таким образом, «фаза», «ноль» и «земля» покидают подстанцию, идут к каждому входу (наверное, своя фаза к каждому входу), к каждой лестнице, к электрораспределительным щитам.

    Итак, у нас есть все три провода, выходящие из подстанции: «фаза», «ноль» («нейтраль») и «земля».
    «фаза» — это любая из трехфазных фаз тока (уже уменьшенная до 380 вольт).
    «ноль» — провод от «нейтрали» (заземлен — воткнут в землю — на подстанции).
    «земля» — это провод от земли (скажем, припаянный к длинной трубе с очень низким сопротивлением, проложенной глубоко в земле).

    В подъездах получается следующая планировка (при условии, что подъезд = квартира):



    На подстанции фазы с левой стороны все соединены и заземлены, образуя ноль, а в конечных точках — в конце подъезда, после того, как пройдут все квартиры — они вообще нигде не связаны.
    Потому что, если бы в конце каждая фаза была бы замкнута на «ноль», то ток прошел бы по этому пути наименьшего (нулевого) сопротивления и вообще не попадал бы в квартиры (под нагрузкой).
    В противном случае ему придется пройтись по квартирам.
    И он будет разделен по правилу параллельного тока: напряжение пойдет на каждую квартиру одинаковое, а ток будет тем больше, чем больше нагрузка.
    То есть ток пойдет в каждую квартиру «по его потребностям» (и пройдет через счетчик, который все это посчитает).
    Но для того, чтобы ток был постоянным при включении и выключении новых потребителей, необходимо, чтобы ток в общем проводе сам каждый раз подстраивался под подключенную нагрузку.

    Что делать, если все включают обогреватели зимним вечером?
    Ток в ЛЭП может превышать допустимые пределы, и либо провода могут загореться, либо сгорит электростанция (что было несколько раз в Москве, но летом).

    Есть еще один вопрос: зачем протягивать в дом все три провода, если можно было протянуть только два — фазу и ноль или фазу и землю?

    Фазу и землю тянуть нельзя (в общем случае).
    Это то, что мы вычислили выше, что напряжение между фазой и нулем всегда составляет 220 вольт.
    Но чему равно напряжение между фазой и землей, это не факт.
    Если бы нагрузка на всех трех фазах была всегда одинаковой (см. Диаграмму «звезда»), то напряжение между фазой и землей всегда было бы 220 Вольт (такое совпадение).
    Если на одной из фаз нагрузка значительно больше, чем на других фазах (скажем, кто-то включает суперсварщик), то будет «дисбаланс фаз», а на слабо нагруженных фазах напряжение относительно земли может подскочить до 380 Вольт…
    Естественно, оборудование (без «предохранителей») в этом случае горит, и незащищенные провода тоже, что может привести к возгоранию.
    Точно такой же дисбаланс фаз произойдет, если «нулевой» провод обрывается или перегорает на подстанции.
    Следовательно, в домашней сети требуется ноль.

    Тогда зачем нам в доме «заземляющий» провод?
    Для «заземления» корпусов электроприборов (компьютеров, чайников, стиральных и посудомоечных машин) от поражения электрическим током.
    Иногда выходят из строя устройства.
    Что произойдет, если где-то внутри устройства фазовый провод упадет и упадет на корпус устройства?
    Если вы заранее заземлили корпус устройства, то возникнет «ток утечки» (ток в проводе основной фазы-ноль упадет, потому что почти все электричество устремится по пути меньшего сопротивления — почти прямым короткое замыкание фазы на ноль).
    Этот ток утечки будет обнаружен устройством остаточного тока (УЗО), и оно откроет цепь.
    УЗО контролирует ток, поступающий в квартиру (фазу) и ток, выходящий из квартиры (ноль), и размыкает цепь, если эти токи не равны.
    Если эти токи разные, значит, где-то «течет»: где-то фаза имеет какой-то контакт с землей.
    Если эта разница резко подскакивает, то где-то в квартире фаза замкнулась на массу.
    Если бы в щите не было УЗО и вышеупомянутый фазный провод внутри корпуса, скажем, компьютера, упал бы и приблизился к корпусу компьютера, и лежал бы так себе, а затем через пару дней , человек будет стоять рядом и разговаривать по телефону, опираясь одной рукой на корпус компьютера, а другой — на радиатор, а затем гадать, что станет с этим человеком.
    Значит, «земля» тоже нужна.

    Следовательно, нужны все три провода: «фаза», «ноль» и «земля».

    В квартире каждая розетка имеет свои три провода «фаза», «ноль», «земля».
    Например, вот эти три провода выходят из приборной панели на лестничной площадке (вместе с ними еще телефон, витая пара для интернета и какое-то кабельное телевидение) и идут в квартиру.
    В квартире есть внутренний щит на стене.
    Там на каждую «точку доступа» к электричеству стоит «автомат».
    У каждой машины свои, отдельные, три провода, уже идущие к «точке доступа»: три к плите, три к посудомоечной машине, три к розеткам в холле и свету в люстре и т. Д.
    Каждая «машина» — это изготавливаются на заводе на определенную максимальную силу тока.
    Следовательно, «вырубается», если на «точку доступа» слишком сильно нагружать (например, в розетках в холле включили слишком много мощных штучек).
    Также автомат «отключится» при «коротком замыкании» (замыкание фазы на ноль), что убережет вашу квартиру от пожара.
    Это вас не спасет (слишком медленно). Только УЗО вас спасет.

    Напоследок просто так напишу немного про «трансформер» (читать не обязательно).

    Я несколько раз пытался понять, как это работает, но так и не понял …

    Ток в цепи всегда подстраивается под подключенную нагрузку.

    Если мы не будем отводить ток оттуда, то входная катушка будет сама по себе, и она создает магнитный поток, который, в свою очередь, создает «напряжение сопротивления» (это называется «ЭДС самоиндукции»), равное напряжение во входной цепи и доведение его до нуля…
    Это «естественное» свойство катушки («индуктивность») — она ​​всегда сопротивляется любому изменению напряжения.
    А по подключенному участку входной цепи ток практически не течет (этот участок отведен от ЛЭП параллельно, так что если в нем пропадет ток, то ток есть у всех остальных), да и практически нет потери на этом «холостом» трансформаторе.

    Будет потеряно лишь небольшое количество энергии, включая энергию, затраченную на «гистерезис» сердечника и на нагрев сердечника вихревыми токами (поэтому особенно мощные трансформаторы погружаются в масло для постоянного охлаждения).

    Магнитный поток, распространяющийся по сердечнику внутри выходной катушки, создает в нем напряжение, которое может вызвать протекание тока, но поскольку в этом случае мы ничего не подключали к выходной цепи, тока там не будет .

    Если мы начинаем выводить ток — мы замыкаем выходную цепь — тогда через выходную катушку начинает течь ток, и он также начинает создавать собственное магнитное поле в сердечнике, противоположное магнитному полю, создаваемому вводной катушкой. Из-за этого ЭДС самоиндукции входной катушки уменьшается и больше не компенсирует напряжение во входной цепи, и через входную цепь начинает течь ток.Ток увеличивается до тех пор, пока магнитный поток «не станет прежним». Как это — я хз, в Википедии написано, но я сам так и не понял, как работает этот трансформер.

    Следовательно, получается, что ток на выходе трансформатора регулируется сам: если нет нагрузки, значит, нет и тока, протекающего там; если есть нагрузка, то ток течет в соответствии с нагрузкой.
    А если мы смотрим телевизор, а потом соседи включают пылесос, то у нас обоих ничего не «вырубается», так как сила тока сразу подстраивается под нас — потребителей электроэнергии.

    Каждый сегмент должен быть дополнен нулями слева и справа, чтобы обеспечить расширение во время двунаправленной фильтрации. Прежде чем приступить к правильной работе, необходимо знать состояние системы во время сбоев. Знание статуса электрических неисправностей необходимо для того, чтобы найти соответствующие различные реле защиты в разных местах энергосистемы. Информация о значениях максимального и минимального токов короткого замыкания с этими погрешностями по величине и соотношению фаз для токов в различных частях энергосистемы должна быть собрана для правильного применения системы в этих различных частях электрической системы.

    3 фазы нулевое заземление. Что такое ноль и фаза? Поглубже в тему

    Как найти фазовый ноль и землю по цветам проводов

    Самый простой метод определения фазы нуля и земли — по окраске проводов. Эта опция применима только для зданий, где стандарт IFC используется со стандартом используемых цветов для проводки.

    Согласно этим стандартам провода электропроводки в домах должны иметь цвета:
    — рабочий нулевой провод обозначен синим или синим цветом — белый:
    — защитное заземление должно иметь желтый цвет — изоляция провода зеленого цвета:
    — цвет фазы утеплитель может быть несколько разных: белый, серый, коричневый и так далее.

    Таким образом, мы сталкиваемся со сложными линиями разной важности для просроченных расстояний и объемов передаваемой энергии, но от источников питания в несколько тысяч вольт через десятки тысяч вольт первичных сетей при 100 и 200 тысячах вольт суперсвязей они имеют тенденцию электрическая дифференциация в чистом виде и, следовательно, требует различных расчетных процессов, в основном потому, что явления, связанные с электростатическим полем, важны с увеличением напряжения.

    Хотя явления электромагнитного поля всегда чувствительны, поскольку токи, которые его создают, никогда не выходят далеко за пределы явления электростатического поля, за исключением тех, поддержка которых может поддерживаться с помощью адекватного усиления изоляции и начала корпуса кабеля, они на самом деле не ощущают, что с 000 вольт.

    По этой цветовой маркировке проводов довольно легко определить назначение жилы. Однако от распределительной коробки до выключателя иногда используют лампу, розетки, провода другого цвета, в основном белого цвета. Как найти нулевую фазу и землю в этом варианте.


    Но если рабочее напряжение возрастет до значений, приложенных к сверхлинейным линиям, то последствия этого факта становятся очевидными: проводники линии и земли ведут себя как якоря сложной системы конденсаторов, которые попеременно заряжаются от изменений приложенного альтернативного потенциала, генерируют токи смещения через встроенную среду, которые приводят к движению проводников, преобразовывая их в токи проводимости, которые замыкаются — как и любой другой линейный ток — через генерирующее оборудование, постепенно изменяя результирующая интенсивность в проводниках.

    Цвета трехпроводного жгута

    Чтобы найти в этом варианте нулевую и заземляющую фазу, нужно выключить электрическую сеть квартиры вводным автоматом, вскрыть ответвительную коробку, отсоединить провода. Нужно вызвать провода тестером, мультиметром в режиме минимального сопротивления или батареей с лампочкой или со светодиодом.

    Дополнительная информация о поиске заземления, фазы, нейтрального провода

    На который влияет тот же угол γ, который предсказывает вакуумный ток через напряжение, и такой, что.Отношения, которые решают проблему, заключаются в следующем. Аналитические и графически процитированные процессы, правильно разработанные, могут позволить почти полное исследование проводимости суперлинии.

    Даже кабельные линии, удобно уменьшающие значения коэффициентов самоиндукции и расширяющие значения вместо мощностей, могут быть исследованы аналогичным образом, но хотя токи сдвига приобретают «важность» для одинаковой длины и протяженности, они также их расширение является их распределение практически не влияет на их общую стоимость.

    Определение нулевой и нулевой фазы по индикатору напряжения

    Индикатор напряжения может найти только фазу, ноль и землю нужно будет вызвать, как описано выше. Перед использованием индикатора напряжения его необходимо проверить на работоспособность. Индикатор напряжения с неоновой лампой подходит для определения фазы при отсутствии наведенного напряжения на нулевом и заземляющем проводах.

    Энергопотребление — счетчики — пользователи распределительных сетей — помимо специальных предложений, которые могут быть использованы только для крупных поставок, могут использовать его, пока они установлены, тем больше они касаются.Конечно, такая свобода использования подразумевает необходимость без потерь адаптировать доступность для запроса. Это достигается путем объединения различных электростанций либо за счет накопления энергии, либо за счет тарифов, адаптируя их к различным характеристикам потребления.

    Конечно, в зависимости от типа договора поставки энергоемкие электросчетчики различаются. Самый простой и распространенный тариф — это так называемое потребление, поэтому ниже среди всех устройств мы опишем только самый эффективный индукционный счетчик.Этот счетчик имеет часть или, как сказано, мобильную команду, состоящую из легкого алюминиевого диска, снабженного тонким стальным штифтом, установленного как можно дальше без трения между двумя опорами, от оси с крошечной зубчатой ​​передачей, движение передается на интегратор скорости встряхивания. Таким образом, разница в показаниях измеряет количество оборотов, которые счетчик принимает за диапазон.

    Отвертка индикаторная с неоновой лампой

    Неоновая лампа очень чувствительна к помехам, так как загорается при очень малом токе.Для электропроводки в квартире или доме наводка на провода при отключенной сети — довольно редкое явление. Но если рядом с электропроводкой находится внешняя электросеть или дом находится рядом с ЛЭП, то для определения фазы лучше использовать контрольную лампу.

    Фаза и ноль в старом разъеме

    Это результат зацепления двигателя с тормозом, подвижным элементом, оба из которых находятся в разных секторах, наложенным диском.Двигатель асинхронной системы двухфазный с последовательной обмоткой с внутренней и другой встроенной установкой, установленный на комплекте пакетов из листового железа, которые не касаются его грациозно, ограничены небольшим сектором, краем диска, и что они расположен симметрично относительно свинцовой обмотки, чтобы избежать смещения: небольшое рассеяние преднамеренно сохраняется для фиксации, в отличие от дополнительного тормозного момента и, независимо от трения, начальной нагрузки.

    В ПУЭ 7-й редакции не допускается использование контрольной лампы для проверки наличия или отсутствия напряжения.Этот запрет основан на том, что индикаторы напряжения низкого сопротивления не чувствительны к наведенным напряжениям, которые могут представлять угрозу для жизни человека.

    Этот пункт, вероятно, будет применяться к кабелям большой длины и большого поперечного сечения, проходящим рядом с другими кабелями, находящимися под напряжением. Эти кабели могут нести большой и опасный для жизни заряд из-за кабеля большой емкости. Тогда, конечно, используйте контрольную лампу, которая не может определить отсутствие напряжения, она не будет показывать опасное индуцированное напряжение.

    Онлайн-калькуляторы для определения номинала резисторов по цветовой кодировке

    Все устроено так, что когда ток и напряжение находятся в фазе, потоки, соответствующие двум виткам, являются квадратурными; их сосуществование затем преобразуется в поток периодически меняющейся полярности, который движется по касательной вдоль края диска на амплитуду сектора, так что индуцированный ток и крутящий момент, пропорциональные мощности, определяются на диске: если, согласно Согласно текущей гипотезе, напряжения были в квадратуре — нулевая мощность — потоки компонентов будут синфазными, результирующий поток будет переменным потоком, крутящий момент будет равен нулю, а также, когда при нулевом поглощенном токе будет только поток компонентов из-за производной схемы.

    Данная позиция относится к промышленным предприятиям. В бытовой электропроводке провода имеют (если они есть) очень низкую емкость, которой явно недостаточно для опасного наведенного напряжения. Единственное, пользоваться контрольной лампой нужно очень осторожно, так как есть открытые неизолированные торцы.


    Тормоз возникает из-за действия постоянного магнита, который упирается, не касаясь диска в другой области, когда диск движется под действием двигателя, магнит индуцирует ток, который увеличивается со скоростью, в результате крутящий момент пропорционален самой скорости и увеличивается до тех пор, пока крутящий момент привода не будет сбалансирован для скорости, пропорциональной мощности.

    Очевидно, что если для данной мощности диск вращает определенное количество оборотов в час для удвоения мощности, это также в два раза больше кругов и его рекордов. Вскоре после изобретения лампы накаливания начала формироваться отрасль производства и распределения электроэнергии. С тех пор она получила такое техническое и экономическое развитие, что вместе со вспомогательной отраслью электротехники заняла позицию первой. По инвестициям отрасль становится сопоставимой с отраслью железных дорог.

    Определение фазы нуля и земли индикаторной отверткой

    Чтобы найти фазу с помощью контрольной лампы, находим два провода, при подключении к которым лампа горит. В этой версии мы нашли фазу и ноль.

    Теперь соединяем один конец регулятора свободным проводом. Лампа не горит. Тогда свободный провод — это фаза, а замкнутые через контрольную лампу провода — ноль и земля. В этом случае может сработать УЗО (при его наличии).

    Показания тестера

    Две системы сосуществовали до начала двадцатого века.Независимо от этих общих технических рекомендаций, наиболее важно отметить, что с момента зарождения отрасли до последних лет это большой прогресс в мощности машин и установок. От 16-свечных ламп Эдисона они перешли на вольфрам в газе, достигнув отметки 000 000 рублей. Также значительно снижаются затраты на материалы и оборудование.

    Дальнейший прогресс должен быть записан. Производительность лампы накаливания с 2 люмен на ватт увеличилась в среднем до 13 люмен, что в некоторых случаях тоже.Но даже больше, чем снижение вышеупомянутых тарифов, технический прогресс отражается в улучшении услуг, которые с большой пользой для потребителя служат для распространения использования электроэнергии среди всех слоев населения.

    Теперь берем фазный провод и один из двух оставшихся. Если лампа загорится, а УЗО не выключится, значит мы нашли ноль, и свободный провод будет заземлен. Теперь проверяем землю (при установленном УЗО). Подключаем фазу и намеченную землю через регулятор.Если лампа мигает и УЗО отключает сеть, значит, мы нашли землю.

    Без УЗО вам нужно перевернуть заземление в электрической панели доступа. Соединив фазу и один из двух оставшихся проводов, находим провод, в котором лампа не горит, этот проводник будет заземлен. Категорически запрещается использовать водопроводные, канализационные, газовые трубы для поиска фазы с помощью контрольной лампы, так как вы подвергаете соседей опасности поражения электрическим током или возгорания.

    Взаимосвязь между производством, потреблением, затратами.- С технической и экономической точки зрения одной из наиболее важных характеристик электростанций общего пользования является то, что они должны удовлетворять самые разнообразные потребности в энергии. Более того, современная отрасль производства и распределения электроэнергии изначально создавалась для удобства мелких потребителей, давая им право использовать сеть, когда они им больше нравились.

    Определение фазы, нуля и земли с помощью контрольной лампы

    Учитывая финансовый успех именно потому, что он предлагал это преимущество больше, чем его конкурент, чем газ, промышленность всегда была заинтересована в его предложении, потому что потребители готовы платить за него, то есть стоило того.Если в квартире 20 лампочек по 50 свечей в каждой, возможно, что в какие-то моменты все они освещены поглощением кВт; чаще всего по большей части гаснут. Требуемая мощность намного меньше, а выход энергии намного меньше, чем у обслуживаемых квартир с большим количеством квартир.

    Как найти фазный ноль и землю с помощью мультиметра

    Определить назначение жил в трехпроводной схеме подключения мультиметром несложно. Для этого зачищаем заплатку металлической батареи или стальной трубы для отопления, водоснабжения и касаемся одним концом щупа мультиметра к трубе, а вторым щупом поочередно подключаем к одному из трех проводов, пока на дисплее не отобразится напряжение 220 В.

    Все это похоже на потребление энергии, которое, однако, длится намного дольше, чем освещение. Вышеупомянутое является одним из основных преимуществ крупных объектов коммунального обслуживания перед небольшими частными объектами. Однако это преимущество, если пользователи разбросаны по слишком большой территории, может привести к наиболее дорогостоящим затуханиям в распределительной сети.

    Обычно в полдень в период минимального потребления, когда учреждения и офисы закрыты, и чаевые в начале вечера, когда потребление освещения перекрывается с движущей силой; другие чаевые, обычно намного меньшие, в утренние часы, соответствующие началу работы или непосредственно предшествующие ей.Высота этих кончиков минимум летом, максимум зимой. Использование электрических кухонь, ночная работа промышленных предприятий, подключение трамвайных или железнодорожных сетей — все это факторы, которые меняют форму схемы. из Рима и Берлина — это сети, в которых преобладает освещение, а в двух других — это сети, которые вырабатывают больше энергии.

    Мультиметр

    Мультиметр должен быть включен в положение измерения напряжения 220 В. Найденный провод будет фазным.Теперь по фазе подключаем щуп прибора по очереди к оставшимся проводам. Провод, на котором тестер покажет полные 220 В, будет нулевым, а второй, соответственно, будет заземлен.

    Другая очень важная характеристика отрасли зависит от того факта, что электроэнергия не хранится и должна производиться одновременно с потреблением. У них были серьезные недостатки: дороговизна, быстрое разложение, большие потери. Мощность электростанций, питающих сеть, должна быть равна наивысшему требованию в обычных советах по потреблению, лучше, чем требуется в исключительных советах, поскольку пользователи все менее и менее склонны терпеть даже те небольшие недостатки, которые возникают с понижение напряжения и затемнение ламп.

    При измерении напряжения фаза-земля мультиметр покажет напряжения менее 220 В — этот провод будет заземлен. Однако, если в старом здании с системой питания TN-C и повторным заземлением рядом с домом, то тестер покажет одинаковое напряжение фаза-ноль и напряжение фаза-земля.

    В этом случае нужно отключить заземление в проезде и найти провода фаза-ноль, на которых будет 220 В, на оставшемся заземляющем проводе с фазой наличие напряжения не будет.

    Кроме того, в случае неисправности потребуется некоторая дополнительная мощность в качестве резервной, и в результате установки будут полностью загружены всего на несколько часов в день, а поскольку на них работает очень мало рабочих, это будет легко запустить их с полной нагрузкой в ​​течение 24 часов.

    В случае тепловых электростанций, ограниченная работа в течение нескольких часов в день соответствует более высокой норме амортизации, процентной ставке и общей стоимости произведенного кВтч, чем если бы работа была непрерывной; однако затраты на топливо и другие вспомогательные расходы немного снижаются в той же пропорции, что и производство энергии.Однако в случае гидравлических установок, когда потребителям не нужна энергия, они должны быть потеряны вместе с водой, которую они могли бы обеспечить, если бы на станции не было резервуаров.

    Помните, что при работе с сетевым напряжением должны быть приняты все защитные меры по электробезопасности (защитные перчатки, изолированные инструменты). Если вы не уверены в своих силах, то доверьте определение фазы нуля и заземления опытному электрику.

    Источник электрической энергии служит генератором, который состоит из трех обмоток или полюсов, соединенных в трехлучевую звезду, центральная точка соединена с землей или заземлена.Посмотри, как получится.

    Как видно на рисунке в соответствии со схемой к трем концам звезды , провода, по которым проходят фазы, подключены, и центральная точка будет равна нулю, поскольку я сказал, что она заземлена, потому что источник питания на 380 вольт представляет собой систему с глухозаземленная нейтраль. Без заземления нейтрали трансформатора на ТП блок питания не будет работать нормально.

    Три фазы, ноль и дополнительный заземляющий провод (также подключенный к земле) — всего пять жил, которые идут от подстанции к электрическому щитку дома, но в каждую квартиру приходит только одна фаза, ноль и земля из панели пола.Но при передаче электрического тока задействованы только фаза и ноль. А по пятому заземляющему проводнику электрический ток не течет, он выполняет еще одну защитную функцию, которая заключается в том, что при попадании фазы на металлический корпус бытовой техники (подключенный к заземляющему проводнику) автомат или УЗО отключается при текущие утечки.

    Электроэнергия передается по фазе, а на нейтральном проводе напряжение равно нулю, но не всегда с подключенными к нему электроприборами — читайте дальше.

    Напряжение между нулем (землей) и любой фазой составляет 220 В и 380 В между противоположными фазами — и это напряжение используется там, где есть большие нагрузки или высокое энергопотребление. И это не касается квартиры! К тому же 380 вольт в несколько раз опаснее для человека.

    В распределительном щите воды ноль и земля соединены вместе и дополнительно с заземляющим электродом, который закопан в землю.А дальше идут отдельно по панелям пола дома, то есть изолированы друг от друга, к тому же заземлитель соединен по прямой с корпусом электрощита, а ноль сидит на изолированном блоке!

    Электрический переменный ток протекает между двумя проводами, фазой и нулем, и при его частоте в нашей электрической сети 50 Гц он меняет свое направление (от нуля или до нуля) 50 раз в секунду.

    Но не просто течет, а через потребителя электроэнергии, подключенного к розетке или к электрическому кабелю по прямой!

    Третий проводник защитный он не участвует в передаче электричества, а служит одной цели — защитить нас от поражения электрическим током в аварийных ситуациях, когда на металлическом корпусе электроприборов появляется фаза! Поэтому он через заземляющие контакты розетки соединяется с металлическими корпусами стиральной машины, холодильника, СВЧ печи и так далее.Кроме того, заземление значительно снижает вредное электромагнитное излучение от бытовой техники.

    Удары при прикосновении Только фаза тока. Если вы плохо изолированы от земли, то есть не носите резиновые тапочки или не стоите на деревянном стуле, не касаясь пола или стены другой рукой, то при прикосновении к оголенному фазному проводу вы почувствуете протекающий электрический ток. через вас от фазы к земле.

    Внимание, люди нередко умирают в повседневной жизни в результате длительного воздействия или прохождения электрического тока через сердце человека.Будь осторожен!

    В редких случаях ноль может превзойти , когда к нему подключен электроприбор с импульсным блоком питания — компьютер, бытовая техника и т.д. ты!

    Всегда можно взять заземлитель и не бояться, кроме случаев его обрыва в проводке или в щите!

    Как найти фазу, ноль и землю?

    Для определения фазного провода необходимо приобрести недорогую индикаторную отвертку, которая светится при прикосновении к защищаемому фазному проводу.Рекомендую прочитать наш. Обычно фазный провод красный, коричневый, белый или черный.

    Ноль подключает в лампе или розетке вместе с фазой к контакту питания, и при прикосновении к индикатору он не загорается. Под него используется синий провод или с синей полосой!

    Защитный провод подключается к заземляющим контактам розетки, металлического корпуса лампы или электроприбора. По общепринятым нормам заземляющий провод выполняется желто-зеленым проводом или с полосой этих цветов.

    Подобные материалы.

    Мониторинг только одной или двух из трех фаз

    Вопросы

    «Из-за нехватки места мы можем установить только два трансформатора тока (ТТ) для контроля трехфазной цепи. Есть ли поправочный коэффициент, который мы можем использовать для компенсации мониторинга только двух из трех фаз? »

    «Что, если мы будем отслеживать только одну из трех фаз?»

    Ответ

    Для симметричных трехфазных четырехпроводных (звездообразных) цепей каждый трансформатор тока измеряет ровно одну треть общего тока.Поэтому, если вы измеряете две из трех фаз, вы должны умножить свои результаты на 1,5, чтобы масштабировать показания до правильного значения. Если вы измеряете только одну фазу, вам нужно умножить на 3, чтобы получить правильное значение.

    Ограничения

    Существует несколько различных способов разбалансировки трехфазной цепи, которые могут снизить точность при таком подходе:

    • Нагрузка может быть несбалансированной. Трехфазные двигатели, как правило, хорошо сбалансированы, но другие нагрузки могут отсутствовать.Если ваша нагрузка на самом деле состоит из нескольких нагрузок (например, мониторинг трехфазного подключения к полу здания), тогда существует высокая вероятность дисбаланса.
    • Напряжение от нейтрали (или земли) к каждой фазе может быть несимметричным. Всегда есть небольшой дисбаланс, но он может быть больше в зависимости от сервиса и других нагрузок. Например, если напряжение одной фазы на 1,0% выше, чем напряжение других фаз, и вы не контролируете одну фазу с высоким уровнем напряжения, ваши показания мощности будут равны 0.5% низкий.
    • В редких случаях однофазное напряжение может быть заземлено (это называется «заземленный треугольник» или «заземленная ветвь»). В этом случае измеритель WattNode будет измерять нулевую мощность на заземленной фазе, поэтому простое решение — контролировать две другие фазы и исключить поправочный коэффициент 1,5. В этом случае для получения точных результатов необходимо контролировать обе фазы , активные (незаземленные).

    Рекомендации

    Если возможно, вам следует использовать портативный анализатор мощности или мультиметр (DMM), чтобы убедиться, что нагрузка достаточно хорошо сбалансирована.С помощью анализатора мощности вы можете измерить мощность на каждой фазе и сравнить. С помощью цифрового мультиметра вы можете проверить напряжения фаза-нейтраль или фаза-земля, чтобы убедиться, что они очень похожи. Если у вас есть измеритель с токовыми клещами, вы также можете проверить ток в каждой фазе, чтобы убедиться, что они хорошо сбалансированы.

    Разве теорема Блонделя не позволяет использовать два трансформатора тока для контроля трехфазной трехпроводной (треугольник) цепи?

    Да, это означает, что можно спроектировать счетчик только с двумя элементами (и только с двумя трансформаторами тока) для контроля трехпроводной схемы треугольника.Но это не значит, что все счетчики могут этим воспользоваться. Чтобы использовать теорему Блонделя, одну из трех фаз необходимо использовать в качестве контрольной точки, так что две другие фазы измеряются относительно этой контрольной точки.

    Архитектура счетчиков WattNode серий WNB и WNC позволяет использовать только землю или нейтраль в качестве опорных точек, но не одну из фаз напряжения. Следовательно, теорема Блонделя не может быть применена к этой серии измерителей WattNode, позволяющих использовать два трансформатора тока для трехпроводных незаземленных схем треугольника.Как отмечалось выше, если ваша нагрузка сбалансирована, вы можете использовать только один ТТ и умножить показания на 3. Или использовать два ТТ и умножить показания на 1,5.

    Однако в приложениях, использующих трансформаторы напряжения (ТП), вторичная обмотка ТП может быть подключена к проводам для обеспечения контрольной точки. Следовательно, в этом приложении измерители серий WNB и WNC могут использоваться только с двумя трансформаторами тока. См. Рисунок 3: Мониторинг схемы треугольника на странице «Использование трансформаторов напряжения».

    Измерители серии WND могут измерять трехфазные, трехпроводные, треугольные, четырехпроводные, треугольные и заземленные треугольником, используя только два трансформатора тока.

    См. Также

    Знайте разницу между трехфазным и однофазным питанием

    По всей Северной Америке дома питаются от однофазного электричества напряжением 120 вольт. Типичная коробка автоматического выключателя в жилых помещениях показывает четыре провода, идущие в наши дома: два «горячих» провода, нейтральный провод и заземление. Два «горячих» провода несут 240 В переменного тока, который используется для тяжелых бытовых приборов, таких как электрические плиты и сушилки. Однако напряжение между горячим проводом и нейтральным проводом составляет 120 В переменного тока, от которого питается все остальное в наших домах.

    Однако производственные предприятия по производству электроэнергии в Северной Америке передают трехфазную энергию сверхвысокого напряжения в диапазоне от 230 кВ до 500 кВ. При внимательном рассмотрении линий электропередач высокого напряжения можно обнаружить три отдельных проводника, каждый из которых проводит ток, а также нейтральный провод. Распределение трехфазной энергии обходится дешевле, поскольку для линий передачи трехфазной энергии не требуются такие же толстые медные провода, как для однофазной линии передачи. Кроме того, трехфазное соединение обеспечивает гибкость при подключении к сервису и может предоставить клиентам не только обычную услугу 120 В переменного тока, но также и 208 В переменного тока.Практически каждое промышленное здание, включая ваше, получает трехфазное питание, так как оно имеет много преимуществ перед однофазным.

    Проектирование или переоборудование центра обработки данных для использования трехфазного питания окупается, но некоторые центры не понимают преимуществ, которые дает трехфазное питание. Давайте посмотрим на различия между однофазным и трехфазным питанием, чтобы понять, почему трехфазное питание не только обеспечивает реальную экономию затрат, но и создает более эффективный центр обработки данных.

    Проблема с однофазным двигателем

    Обычная однофазная сеть на 120 В переменного тока, работающая при 60 Гц, не может обеспечить непрерывное питание.На этой частоте синусоидальная волна переменного тока пересекает нулевую точку 120 раз в секунду. Лучше всего понимать, что мощность измеряется в ваттах, а ватты — это произведение приложенного напряжения на амперы тока, протекающего в цепи (W = V x A).

    Когда напряжение или ток пересекает нулевую точку, подаваемая электрическая мощность падает до нуля. На практике эти мгновенные падения до нуля не оказывают заметного влияния на оборудование в цепи. Например, если оборудование представляет собой двигатель, механическая инерция его вращающегося якоря «проезжает» через нулевые точки.(Однако эти пересечения нулевой точки действительно складываются. Двигатели, работающие на однофазном питании, имеют более короткий срок службы, чем двигатели, рассчитанные на трехфазное питание). Точно так же, если оборудование, находящееся под нагрузкой, представляет собой твердотельную электронику, сглаживающие конденсаторы в фильтре источника питания «буферизуют» эти нулевые точки.

    Трехфазное питание, с другой стороны, состоит из трех синусоид, разделенных на 120 градусов. Эта форма мощности создается генератором переменного тока с тремя независимыми обмотками, каждая из которых находится на расстоянии 120 градусов друг от друга.Каждый ток (фаза) проходит по отдельному проводнику. Из-за фазового соотношения ни напряжение, ни ток, приложенные к IT-нагрузке, никогда не падают до нуля. Это означает, что трехфазное питание при заданном напряжении может обеспечить большую мощность. Фактически, это примерно в 1,7 раза больше мощности однофазного источника питания.

    В последние годы увеличилась вычислительная мощность, которую можно сконфигурировать в одной стойке. Не так давно в стойке могло быть до десяти серверов, потребляющих 5 кВт. Теперь, из-за непрекращающейся миниатюризации и неудержимого развития технологий, та же самая стойка может вмещать четыре или пять десятков серверов и потреблять более 15 кВт.

    Для питания стойки 15 кВт однофазным напряжением 120 В переменного тока требуется 125 А. Медь, необходимая для безопасного проведения этого тока, AWG 4, имеет диаметр почти четверть дюйма. [1] С ним сложно работать, и с ним дорого. Понятно, что однофазный режим для таких нагрузок нецелесообразен. Однако в трехфазной системе каждый проводник AWG 11 диаметром всего 0,09 дюйма может выдерживать только около 42 ампер. Если вы заинтересованы в более подробном изучении арифметики, стоящей за этим, прочтите наш блог «Трехфазные разветвители питания на 208 В (стоечные блоки распределения питания), раскрытие тайны, часть II: понимание емкости».

    Как трехфазное питание может помочь

    Ваш выбор энергосистемы может принести вам эффективность и экономию или негибкость и чрезмерные затраты. Однофазное питание идеально подходит для бытовых пользователей, у которых наибольшая нагрузка приходится на сушилку или электрическую плиту. Однако центрам обработки данных необходимо учитывать преимущества трехфазного питания. К ним относятся:

    • Может работать как с устройствами на 120 В переменного тока, так и на 208 В переменного тока от одного источника питания, при необходимости смешивая и согласовывая блоки PDU.
    • Трехфазный режим позволяет вам сегодня использовать все ваши устройства при напряжении 120 В переменного тока, но обновите его до 208 В переменного тока, просто заменив блоки распределения питания, что можно сделать быстро и без значительных простоев.
    • Стоимость кабельной разводки резко снижается, если трехфазное питание подается непосредственно в серверные шкафы.
    • Уменьшается как работа электриков, устанавливающих кабели переменного тока, так и общее время установки.

    Если вы ищете способы обеспечить соответствие вашего центра обработки данных требованиям будущего, используя трехфазное питание, узнайте, как блоки распределения питания вписываются в набор необходимых вам решений.

    Это сообщение в блоге спонсировано Raritan.

    Фаза, ноль и земля — ​​что это такое? Для чего нужны фаза, ноль и заземление?

    Электрическая энергия, которую мы используем, вырабатывается генераторами переменного тока на электростанциях.Они вращаются за счет энергии сгоревшего топлива (угля, газа) на тепловой электростанции, падающей воды на гидроэлектростанции или распада ядер на атомной электростанции. Электроэнергия доходит до нас через сотни километров линий электропередач, претерпевая трансформации по пути от одного значения напряжения к другому. От трансформаторной подстанции до распределительных щитов подъездов и далее в квартиру. Либо по трассе распределяется между частными домами села или села.

    Разберемся, откуда взялись понятия «фаза», «ноль» и «земля». Выходной элемент подстанции — с понижающим трансформатором , с его обмоток низковольтное питание поступает к потребителю. Обмотки соединены в звезду внутри трансформатора, общая точка которой ( нейтраль ) заземлена на трансформаторной подстанции. Отправляется потребителю в виде отдельного руководства. К нему также идут проводники трех выводов других концов обмоток.Эти три проводника называются « фаз, » (L1, L2, L3), а общий провод — ноль (PEN).

    Поскольку нейтральный проводник заземлен, такая система называется «система с глухозаземленной нейтралью ». PEN проводник называется совмещенным нулевым проводом … До выхода 7-й редакции ПУЭ ноль в таком виде доходил до потребителя, что создавало неудобства при заземлении корпусов электрооборудования.Для этого они были подключены к нулю, и это называлось исчезающим … Но рабочий ток проходил через ноль, и его потенциал не всегда был нулевым, что создавало риск поражения электрическим током.

    Теперь два нулевых проводника выходят из вновь введенных трансформаторных подстанций: нулевой рабочий (N) и нулевой защитный (PE). Их функции разделены: ток нагрузки протекает через рабочую, а защитная соединяет проводящие части, подлежащие заземлению, с цепью заземления подстанции.На выходящих от него ЛЭП нулевой защитный провод дополнительно подключается к цепи повторного заземления опор, содержащих элементы защиты от перенапряжения. При входе в дом подключается к контуру заземления.

    Напряжения и токи нагрузки в системе с глухозаземленной нейтралью

    Напряжение между фазами трехфазной системы называется линейным , а между фазой и рабочим нулем — фаза … Номинальные фазные напряжения составляют 220 В, а линейные напряжения — 380 В.Провода или кабели, содержащие все три фазы, рабочий и защитный ноль, проходят по панелям перекрытия многоквартирного дома. В сельской местности они расходятся по поселку с помощью самонесущего изолированного провода (СИП). Если линия содержит четыре алюминиевых провода на изоляторах, то используются три фазы и PEN. В этом случае деление на N и PE осуществляется для каждого дома индивидуально во вводной коробке.


    К каждому потребителю в квартире приходит одна фаза, рабочий и защитный ноль.Потребители дома распределяются равномерно по фазам, чтобы нагрузка была одинаковой. Но на практике это не работает: невозможно предсказать, сколько энергии будет потреблять каждый абонент. Поскольку токи нагрузки в разных фазах трансформатора не одинаковы, явление называется « смещение нейтрали ». Между «землей» и нулевым проводом у потребителя возникает разность потенциалов. Он увеличивается, если сечение проводника недостаточно или ухудшается его контакт с нейтральным выводом трансформатора.При обрыве связи с нейтралью происходит авария: в максимально нагруженных фазах напряжение стремится к нулю. В ненагруженных фазах напряжение приближается к 380 В, и все оборудование выходит из строя.

    В случае, когда PEN проводник попадает в такую ​​ситуацию, все нейтрализованные корпуса щитов и электроприборов находятся под напряжением. Прикосновение к ним опасно для жизни. Разделение функции защитного и рабочего проводника позволяет избежать поражения электрическим током в такой ситуации.

    Как распознать фазу и защитный провод

    Фазные проводники несут потенциал относительно земли, равный 220 В (фазное напряжение). Прикосновение к ним опасно для жизни. Но на этом и основан способ их распознавания. Для этого приспособление называется однополюсным индикатором напряжения или индикатором … Внутри него последовательно соединены лампочка и резистор. Когда индикатор касается «фазы», ​​ток течет через него и тело человека в землю.Свет горит. Сопротивление резистора и порог воспламенения лампочки подобраны так, чтобы сила тока превышала чувствительность человеческого тела и он этого не чувствовал.


    Фазовые жилы можно узнать по цвету, они бывают черного, серого, коричневого, белого или красного цвета. Сложнее всего со старыми электрическими щитами: у них жилы одного цвета. Но «фазу» с помощью индикатора всегда можно определить без ошибок.

    Нулевой рабочий проводник синий (голубой), защитный отмечен желто-зелеными полосами.На них нет напряжения, но без надобности их лучше не трогать. У электриков такой закон: если сейчас нет напряжения, то оно может появиться в любой момент.

    Электроэнергия передается по трехфазным сетям, в то время как большинство домов имеют однофазные сети. Разделение трехфазной цепи осуществляется с помощью вводно-распределительных устройств (ВРУ). Проще говоря, этот процесс можно описать следующим образом. На электрощит дома подводится трехфазная цепь, состоящая из трех фазных, одного нулевого и одного заземляющего проводов.Посредством ВРУ схема разбивается — к каждому фазному проводу добавляется по одному нулевому и одному заземляющему проводу, получается однофазная сеть, к которой подключаются отдельные потребители.

    Что такое фаза и ноль

    Попробуем разобраться что такое ноль в электричестве и чем он отличается от фазы и земли. Фазовые жилы используются для подачи электроэнергии. В трехфазной сети есть три провода питания и один ноль (нейтраль). Передаваемый ток сдвинут по фазе на 120 градусов, поэтому в цепи достаточно одного нуля.Фазный проводник имеет напряжение 220 В, пара фаза-фаза — 380 В. Ноль не имеет напряжения.


    Фазы генератора и фазы нагрузки соединены линейными проводниками. Нулевые точки генератора и нагрузки соединены рабочим нулем. Ток движется по линейным проводам от генератора к нагрузке, по нулевым проводам — ​​в обратном направлении. Фазное и линейное напряжения равны независимо от способа подключения. Земля (провод заземления), как и ноль, не имеет напряжения.Имеет защитную функцию.

    Зачем нужна обнуление

    Человечество активно использует электричество, фаза и ноль — важнейшие понятия, которые нужно знать и различать. Как мы уже выяснили, по фазе к потребителю подается электричество, ноль забирает ток в обратном направлении. Следует различать нулевой рабочий (N) и нулевой защитный (PE) проводники. Первый нужен для выравнивания фазных напряжений, второй используется для защитной нейтрализации.

    Изолированный, надежно заземленный и эффективно заземленный ноль может использоваться в зависимости от типа линии питания. Большинство линий электропередачи, питающих жилой сектор, имеют глухозаземленную нейтраль. При симметричной нагрузке на фазные проводники рабочий ноль не имеет напряжения. Если нагрузка неравномерна, ток дисбаланса стекает до нуля, и цепь питания может самостоятельно регулировать фазы.

    Электрические сети с изолированной нейтралью не имеют нулевого проводника.В них используется нейтральный провод заземления. В электрических системах TN рабочий и защитный нулевой провод объединены по всей длине цепи и обозначены PEN. Совмещение рабочего и защитного нуля возможно только до КРУ … От него до конечного потребителя уже запущены два нуля — PE и N. Совмещение нулевых проводов запрещено из соображений безопасности, так как в случае короткого замыкания фаза будет близка к нейтрали, и все электроприборы будут под фазным напряжением.

    Как отличить фазу, ноль, землю

    Самый простой способ определить назначение жил — по цветовой кодировке. В соответствии с нормами фазовый провод может иметь любой цвет, нейтраль — синюю маркировку, земля — ​​желто-зеленую. К сожалению, при установке электрики не всегда соблюдается цветовая кодировка. Нельзя забывать о вероятности того, что недобросовестный или неопытный электрик запросто перепутает фазу и ноль или соединит две фазы. По этим причинам всегда лучше использовать более точные методы, чем цветовое кодирование.

    Определить фазный и нейтральный проводники можно с помощью индикаторной отвертки. При касании отверткой фазы индикатор загорается, так как по проводнику проходит электрический ток. У нуля нет напряжения, поэтому индикатор не может загореться.

    Вы можете отличить ноль от земли, набрав номер. Сначала определяется и маркируется фаза, затем нужно прикоснуться к одному из проводов и клемме заземления в распределительном щите щупом обрыва. Зеро звонить не будет.При касании земли будет слышен характерный звуковой сигнал.

    На сегодняшний день в электроэнергетике существует небольшое количество разновидностей при соединении проводов. Электрики различают силовые и защитные провода. В нашей статье фаза и ноль в розетке будем разбирать на примере обычной розетки.

    Фаза и ноль в старой розетке

    Если посмотреть на обычную старую розетку, то сразу можно заметить, что розетка подключается с помощью всего двух проводов.Если вы присмотритесь, то наверняка заметите, что один из этих проводов синий. Так определяется рабочий нейтральный проводник. Именно через него ток будет течь от источника к вашему устройству или наоборот. Если схватиться за него, но не трогать второй провод, то с вами ничего не случится. Считается совершенно безвредным.

    Фаза в розетке — второй кабель. Он может быть разных цветов, кроме следующих цветов:

    Также иметь разноцветные провода.Этот провод всегда находится под напряжением, поскольку именно по нему всегда проходят заряженные частицы. Если прикоснуться к нему, то обязательно получите заряд тока. Помните, что любое напряжение выше 50 вольт может убить человека.

    Индикаторы напряжения

    С помощью специальных индикаторов можно легко определить напряжение. Обычно они похожи на отвертку или шпатель. Ручка этой отвертки обычно изготавливается из специального прозрачного пластика. Внутри него диод. Верхняя часть ручки металлическая.Если загореться индикатор, то это будет означать, что напряжение прошло. Значит, его лучше не трогать. Помните, что если прикоснуться к нейтральному проводнику, то диод не сгорит, так как в нем нет напряжения до тех пор, пока он не соприкоснется с другим проводом.

    Фаза и ноль в современной розетке

    Обычно эти устройства имеют три провода. Фазовый провод здесь может быть любого цвета. Кроме фазы и нуля здесь есть еще один проводник. Этот третий проводник обычно желтого или зеленого цвета.Его обычно называют защитным нейтральным проводом. Напряжение подается по фазному проводу. Он проходит по нулевому проводнику к прибору. Многие сейчас зададутся вопросом, а зачем нам третий. В замкнутом состоянии третий проводник потребляет избыточный ток и направляет его на землю или обратно к источнику.

    Типов подключаемых проводов в электроэнергетике не так уж и много. Различают провода питания и защитные провода.

    В этой небольшой статье мы не будем углубляться в джунгли, трехфазные и пятифазные сети.Мы рассмотрим буквально все на пальцах, на том, что нас окружает и что есть во всех магазинах и в каждом электрифицированном доме. Проще говоря, возьмем и откроем обычную розетку.

    Начнем с прошлого и отдадим предпочтение той розетке, которая была изготовлена ​​и установлена ​​10 или даже 15 лет назад. Мы видим, что розетка подключена всего к двум проводам.

    Один из этих проводов должен быть голубоватого или синего цвета. Так определяется рабочий нейтральный проводник… По нему не течет ток от источника — он направлен от вас к источнику. Он совершенно безвреден, и если за него ухватиться, не касаясь второго, то ничего страшного и ужасного не произойдет.

    А вот второй провод, цвет которого может быть любым, кроме синего, синего, желто-зеленого полосатого и черного, более коварен и злостен. А что вы хотите, ведь он всегда под напряжением, ведь именно к нему поступают свежие электроны и заряженные частицы от трансформаторов и генераторов электростанций и подстанций.Называется

    он фазный проводник.

    Прикосновение к этому проводу может вызвать шок или даже смерть. И это не шутка, ведь любой ток, напряжение которого превышает 50 вольт, убивает человека за несколько секунд, а у нас в бытовых розетках не менее 220 вольт переменного тока.

    Наличие напряжения на фазных проводниках можно определить специальными индикаторами … Они выполнены в виде обычных отверток с крестиком или шпателем.

    Ручка такой отвертки состоит из полупрозрачного пластика со встроенной лампочкой — диодом.Верхняя часть ручки металлическая.

    Прикоснитесь рабочей частью индикатора к проводнику, а большим пальцем — к металлической части ручки. Если загорелся встроенный диод, то трогать этот провод не стоит — он сейчас под напряжением.

    Обратите внимание, что нейтральный проводник никогда не вызовет возгорание диода, поскольку он по определению не имеет напряжения, при условии, что он не касается проводника, по которому течет ток.

    А что мы увидим, если откроем розетки современного производства, соответствующих евростандартам.В такой розетке три провода. Два нам уже знакомы. Фазовый проводник, который всегда находится под напряжением, может быть любого цвета. Рабочий нулевой провод обычно бывает синего или голубоватого цвета. И третий проводник, состоящий из желтого и зеленого цветов по всему проводу, который принято называть защитным нейтральным проводом … Причем обычно фазный провод находится справа в розетках или сверху в выключателях. А нулевой защитный провод находится слева в розетках или внизу в выключателях.

    Если по фазному проводу напряжение подводится к розетке, а по нулевому проводу выходит от розетки к источнику, то зачем нам защитный?

    Если оборудование, подключенное к розетке, полностью исправно, а проводка в исправном состоянии, то защитный нейтральный провод не принимает участия и просто неактивен.

    Но давайте представим, что произошло короткое замыкание, перенапряжение или короткое замыкание на частях оборудования, которые обычно не находятся под напряжением.То есть ток попадает в те части, которые обычно не находятся под его воздействием, и поэтому изначально не подключены к проводникам фазы и рабочего нуля. Вы просто почувствуете на себе электрический шок, а в худшем случае можете умереть в результате остановки сердечной мышцы.

    Здесь необходим такой же защитный нейтральный провод. Он возьмет этот ток и перенаправит его к источнику или на землю, в зависимости от того, как проводится проводка в конкретной комнате. И даже если вы случайно прикоснетесь к оборудованию, которое обычно не находится под напряжением, сильного удара не почувствуете, потому что ток тоже не дурак — ищет легкие пути, то есть выбирает дорогу с наименьшим сопротивлением.Сопротивление человеческого тела составляет примерно 1000 Ом, в то время как сопротивление защитного нейтрального проводника составляет всего около 0,1-0,2 Ом.

    Используйте современные технологии и стандарты, чтобы быть в безопасности всегда и при любых обстоятельствах. Помните, что ваша безопасность зависит от ваших действий и мер по ее обеспечению!

    Яков Кузецов

    Вам не нужно углубляться в технические детали электрической схемы, чтобы понять основы электротехники.Достаточно знать способы передачи электрического тока, которые бывают однофазными или трехфазными. Трехфазная сеть — это когда электричество течет по трем проводам, и еще один должен вернуться обратно к источнику тока, которым может быть трансформатор, электросчетчик. Однофазная сеть — это когда электричество проходит по одному проводу и возвращается обратно к источнику питания по другому. Такая система называется электрической схемой, и ее основы изучаются на уроках физики.

    Помните — электрическая цепь состоит из источника, потребителей, соединительных проводов и других элементов.В любом источнике тока «работают» положительно и отрицательно заряженные частицы. Они накапливаются на разных полюсах источника, один из которых становится положительным, а другой отрицательным. Если полюса источника соединены, электричество … Под действием электростатической силы частицы приобретают движение только в одном направлении.

    Сначала рассмотрим пример однофазной сети: квартира, в которой электричество подается на чайник, микроволновую печь, стиральную машину по одному проводу, а обратно к источнику тока — по другому.Если такую ​​цепь разомкнуть, то электричества не будет. Провод, по которому подается ток, называется фазой или фазой, а провод, по которому ток возвращается, называется нулевым или нулевым.

    Если сеть трехфазная, электричество будет проходить по трем проводам и возвращаться по одному. Трехфазные сети чаще встречаются в домах загородного типа. Если в такой сети разомкнуть один провод, то в остальных фазах ток останется.

    То есть фаза в электрике — это провод, по которому подается ток от источника питания, а ноль — это провод, по которому ток возвращается к источнику питания.Если постоянная цепь тока не предусмотрена — на линии были аварии, произошел обрыв проводов, то приборы могут просто перестать работать или сгореть от перенапряжения в электрической сети. В электротехнике это явление называется «фазовым дисбалансом». При обрыве нуля напряжение может измениться как в наибольшую, так и в наименьшую сторону.

    В наше время, когда практически любое здание оборудовано хотя бы простейшей электропроводкой, профессия электрика пользуется большим спросом, поэтому все больше и больше соискателей настроены на получение этой профессии.

    Образование

    Минимальное базовое образование для начала обучения на электрика — это неполное среднее образование. Это означает, что для того, чтобы начать обучение по этой профессии, необходимо окончить не менее 9 классов общеобразовательной школы … Специальность «электрик» можно найти в техникуме, профессиональном училище или колледже практически любого города областного значения России. Также существуют специальные учебные центры, в которых готовят специалистов в этой области.

    Личные качества

    Несмотря на кажущуюся доступность этой профессии, стать хорошим электриком не так-то просто.Вы должны обладать техническим складом ума, уметь работать руками и мыслить логически. Кроме того, из-за высокого риска получения травмы на работе, потенциальный электрик должен соблюдать осторожность и иметь возможность хорошо сконцентрироваться во время работы.

    Группы электробезопасности и разряды

    По окончании обучения по специальности «Электрик» студент, в зависимости от содержания курса и результатов итогового экзамена, получает либо вторую, либо третью квалификационную категорию.Всего у электриков шесть категорий, есть еще пять так называемых групп допусков (групп электробезопасности). Не путайте разряд электрика с группой допуска электрика. Разряд показывает квалификацию электрика, сколько трудных работ в своей области он способен выполнить. Группа допуска, в свою очередь, указывает на уровень опасности, с которой может справиться рабочий. Чем выше категория и группа приема у электрика, тем он востребован и тем выше зарплата, которую может ему предложить работодатель.

    Аттестат электрика

    По результатам итоговых испытаний электрику выдается специальный аттестат электрика, в котором указывается присвоенная ему группа электробезопасности, а также оценка его квалификации по пятибалльной шкале. Квалификация электрика должна подтверждаться каждые пять лет, кроме того, возможно проведение внеочередной проверки квалификации, например, с целью повышения категории и (или) группы электробезопасности.Следует отметить, что электрик с группой допуска 2-5 при проведении работ, соответствующих данному диапазону групп, должен иметь при себе сертификат.

    Во-первых, проверьте, есть ли у вас все необходимое, чтобы повесить люстру … Во-первых, у вас должна быть стремянка или другая стабильная опора. Кроме того, вам понадобятся инструменты: плоскогубцы, кусачки, отвертка с индикатором напряжения, отвертка с узким наконечником и монтажные зажимы (так называемые «лягушки»).Не забудьте также убедиться, что комната достаточно хорошо освещена, потому что вы не сможете использовать осветительные приборы во время работы. Очень желательно перед началом работы запастись фонариком.

    Люстры обычно вешают на подготовленный крючок. Его необходимо аккуратно обернуть изолентой или другим непроводящим материалом. Изоленту желательно наклеивать минимум в два слоя — чтобы исключить непокрытую поверхность. Обязательно ознакомьтесь с инструкцией к вашему осветительному устройству и убедитесь, что его использование не требует обязательного заземления.В противном случае его нужно будет заземлить.

    Теперь вы должны начать обесточивание комнаты. Для этого на электросчетчике выключите автоматический выключатель, а индикаторной отверткой проверьте отсутствие напряжения в электросети. На потолке должно быть три конца провода (два конца — «фаза», а один конец — «ноль»). «Нулевой» наконечник впоследствии будет направлен на распределительную коробку, а «фазные» — на выключатель. Все три конца зачищены (не менее 3–4 мм проводов) и разводятся так, чтобы они не соприкасались.

    Теперь нам нужно определить, какие из концовок являются «фазовыми», а какие — «нулевыми». Для этого переводим автоматический выключатель во включенное положение и проверяем концы проводов индикаторной отверткой. На тех проводах, где будет «фаза», загорится лампочка, на «нуле» — нет. Желательно промаркировать провода, чтобы потом их не перепутать. Следует отметить, что современные провода не нужно проверять на фазировку: они имеют обязательную маркировку. Провода с «фазой» отмечены черно-коричневым цветом, а «ноль» — синим.

    Такая же маркировка есть на проводах люстры. В противном случае фаза проводов проверяется следующим образом. Два провода подключаются к розетке. Часть лампочек должна загореться, пометьте провода, которые в этот момент были подключены к сети. Теперь меняем один из проводов на третий. Если загорается вторая часть лампочек, первый провод — «ноль», а второй и третий (поменявшие местами) — «фаза». Если

  • фаза электрическая
  • .

    Добавить комментарий

    Ваш адрес email не будет опубликован.