Что будет если соединить фазу и ноль: Что будет если соединить фазу и ноль — Ремонт в квартире

Содержание

Что будет если соединить фазу и ноль — Ремонт в квартире

Современные отвертки-индикаторы избавят от головной боли человека, пытающегося осмыслить, как определить фазу, ноль, землю. Замечены сложности, расскажем ниже. Для тестирования применяется сигнал, генерируемый отверткой. Понятно, внутри стоят батарейки. Старая советская отвертка-индикатор на базе единственной газоразрядной лампочки негодна. Позволит безошибочно определить фазу. Следовательно, другая цепь — ноль или земля.

Правильно определить фазу

Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль — искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера.

Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.


Объясним происходящее. Тело человека наделено емкостью. Не столь велика, хватает пропустить мизерный ток. Фаза начинает колебания, электроны идут в сеть и обратно. Создается небольшой ток. Размер сильно ограничен резистором, убиться, взявшись рукой за контактную площадку отвертки-индикатора, другой за трубу снабжения водой непросто. Обнаружить при помощи инструмента непосредственно землю невозможно.

Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

  1. В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая — земля (в противном случае — резервный провод питания напряжением 220 вольт).
  2. В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.

  3. Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.

Определение положения фазы по цвету изоляции жил провода

Нулевой рабочий провод снабжен синей изоляцией, земля желто-зеленая. Соответственно, на фазу приходится красный (коричневый) цвет. Правило может грубо нарушаться. Дома старой застройки часто оснащались проводами двух жил. Цвет изоляции в каждом случае белый. Отдельные устройства, наподобие датчиков освещенности или движения, имеют другую раскладку. К примеру, нулевой провод черный. Здесь приготовьтесь смотреть руководство по эксплуатации, вариантов раскладки бесчисленное количество.

Найти нулевой провод в квартире

По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые — не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.

В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией. Обратите внимание – если в доме обустроено заземление, жил на входе минимум 5. Корпус щитка сажается на желто-зеленую. Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):

  • Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Потом стоит автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
  • Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
  • Токовыми клещами измерим значения на жилах. По каждой фазе проявится значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
  • Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.

Дополнительные сведения о нахождении земли, фазы, нулевого провода

Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.

Добавим другой способ — промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.

Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.


Современные отвертки-индикаторы определения фазы, нулевого провода, земли

Когда нельзя понять, какого цвета провода, полезно пользоваться отверткой-индикатором. Инструкция диковинки на батарейках говорит: удастся при помощи щупа найти землю. Спешим огорчить читателей – любой длинный проводник определяется ложно. Разорванная в области пробок фаза, нулевой провод, настоящая земля – ответ один. Не каждая отвертка-индикатор способна выполнять функции одинаково эффективно. Смысл операции следующий:

  • Активная отвертка-индикатор способна обнаружить длинный проводник путем излучения туда сигнала, ловли отклика.
  • На практике при плохом качестве контактов волна быстро затухает. Отвертка-индикатор показывает наличие земли на разомкнутой пробке фазы.
  • Для определения земли существует условие – нужно пальцем коснуться контактной площадки. В этом разница меж активной и пассивной отвертками-индикаторами. В первой возможно по этому принципу найти фазу, во второй правильное определение происходит при условии отсутствия контакта с данной областью.

Современная отвертка-индикатор на расстоянии позволит судить, течет ли по проводу ток. Существует специальный дистанционный режим. Обычно даже два: повышенной и пониженной чувствительности. Позволит отсеять неиспользуемую часть проводки. Допустим, известны случаи: строители заводили в дом две фазы вместо одной, путали местами. Пользоваться проводкой нужно с большой осторожностью.

Хочется отметить, на практике измерить сопротивление проводки, прозвонить непросто. Гораздо удобнее определять наличие фазы. Нет опасности сжечь китайский тестер (бывает временами при попытках измерить сопротивление жилы под током). Следует также знать, низкоомные цепи определяются с ошибкой. К примеру, большинство тестеров при прямом замыкании щупов не дают нуль шкалы. Зато если не получится определить землю при помощи активной отвертки-индикатора, плохие контакты – запросто. Если при выключенных пробках огонек горит с пальцем, прижатым к контактной площадке, время задуматься о покупке нового автомата распределительной коробки, скрутки замените современными колпачками.

Часто занимающимся ремонтом рекомендуем выход из положения: маркировка проводов. Лучше делать краской принтера, цвета примерно совпадают:

  1. Красный – фаза.
  2. Синий – нулевой провод.
  3. Желтый – земля.

Обычно водорастворимая краска смывается с трудом. Цвета электрических проводов допустимо проставить колерами принтеров. Приведенная выше система не одинока, часто встречается. В продаже найдем черный цвет. Можете использовать, как заблагорассудится. Обозначение проводов выполняется один раз навсегда. Смыть маркировку проще концентрированной уксусной кислотой, вещество понадобится вознамерившимся отчистить руки (не всегда просто выходит на практике). Напоследок – старайтесь не заляпать одежду.

Источник: VashTehnik.ru

Такой вопрос иногда возникает у начинающих электриков или владельцев квартир, которые хорошо владеют набором ремонтных инструментов, но раньше особо не вникали в устройство электропроводки. И вот наступил момент, когда перестала работать розетка или светиться лампочка в люстре, а звать электрика не хочется и есть огромное желание сделать все самому.

В этом случае первоочередная задача домашнего мастера заключается не в устранении возникшей неисправности, как кажется на первый взгляд, а в соблюдении правил электробезопасности, исключения возможности попасть под действие электрического тока. Почему-то об этом многие забывают, пренебрегая своим здоровьем.

Все токоведущие части проводки должны быть надежно заизолированы, а контакты розеток спрятаны вглубь корпуса так, чтобы к ним не было возможности случайного прикосновения открытыми участками тела. Даже механическая конструкция вилки, вставляемой в розетку, продумана таким образом, что держаться рукой за оба контакта и попасть под действие электрического тока довольно проблематично.

В обыденной жизни мы этого не замечаем и в сознании уже сложилась привычка не обращать внимания на электричество, которая может пагубно сказаться при проведении ремонтных работ с электроприборами. Поэтому изучите основные правила безопасности и будьте внимательны при обращении с электричеством.

Как устроена бытовая электропроводка

Электроэнергия в жилой дом приходит от трансформаторной подстанции, которая преобразует высоковольтное напряжение промышленной электросети в 380 вольт. Вторичные обмотки трансформатора соединены по схеме «звезда», когда выполнено подключение трех выводов к одной общей точке «0», а три оставшихся выведены на клеммы «А», «В», «С» (для увеличения нажмите на рисунок).

Соединенные вместе концы «0» подключены к контуру заземления подстанции. Здесь же выполнено расщепление нуля на;

  • рабочий ноль, показанный на картинке синим цветом;

  • защитный РЕ-проводник (желто-зеленая линия).

По этой схеме создаются все вновь строящиеся дома. Она называется системой TN-S. У нее на вход внутри распределительный щита дома подводятся три фазных провода и оба перечисленных нуля.


В зданиях старой постройки еще часто встречаются случаи отсутствия РЕ-проводника и четырех-, а не пятипроводная схема, которую обозначают индексом TN-C.

Фазы и ноли с выходной обмотки ТП воздушными проводами или подземными кабелями подводятся к вводному щиту многоэтажного дома, образуя трехфазную систему напряжения 380/220 вольт. Она разводится по подъездным щиткам. Внутрь жилой квартиры поступает напряжение одной фазы 220 вольт (на картинке выделены провода «А» и «О») и защитный проводник РЕ.

Последний элемент может отсутствовать, если не проведена реконструкция старой электропроводки здания.

Таким образом, «нулем» в квартире называют проводник, соединенный с контуром земли в трансформаторной подстанции и используемый для создания нагрузки от «фазы», подключенной к противоположному потенциальному концу обмотки на ТП. Защитный ноль, называемый еще РЕ-проводником, исключен из схемы электропитания и предназначен для ликвидации последствий возможных неисправностей и аварийных ситуаций с целью отвода возникающих токов повреждений.

Нагрузки в такой схеме распределяются равномерно за счет того, что на каждом этаже и стояках выполнена разводка и подключение определенных квартирных щитков к конкретным линиям 220 вольт внутри подъездного распределительного щита.

Система подводимых напряжений к дому и подъезду представляет собой равномерную «звезду», повторяющую все векторные характеристики ТП.

Когда в квартире выключены все электроприборы, а в розетках нет потребителей и напряжение к щитку подведено, то ток в этой цепи протекать не будет.

Сумма токов трехфазной сети складывается по законам векторной графики в нулевом проводе, возвращаясь к обмоткам трансформаторной подстанции величиной I0, или как еще ее называют 3I0.

Это рабочая, оптимальная и отработанная длительными годами система электроснабжения. Но, в ней тоже, как и в любом техническом устройстве, могут возникать поломки и неисправности. Чаще всего они связаны с низким качеством контактных соединений или же полным обрывом проводников в различных местах схемы.

Чем сопровождается обрыв провода в нуле или фазе

Оторвать или просто забыть подключить проводник к какому-нибудь устройству внутри квартиры не сложно. Такие случаи происходят так же часто, как и отгорания металлических тоководов при плохом электрическом контакте и повышенных нагрузках.

Если внутри квартирной проводки пропало соединение любого электроприемника с квартирным щитком, то этот прибор не будет работать. И абсолютно не важно, что разорвано: цепь нуля или фазы.

Такая же картина проявляется в случае, когда происходит обрыв проводника любой фазы, питающей внутридомовой или подъездный электрощит. Все квартиры, подключенные к этой линии с возникшей неисправностью, перестанут получать электроэнергию.

При этом в двух других цепочках все электроприборы будут функционировать нормально, а ток рабочего нулевого проводника I0 суммируется из двух оставшихся составляющих и будет соответствовать их величине.

Как видим, все перечисленные обрывы проводов связаны с отключением электропитания с квартиры. Они не вызывают повреждения бытовых приборов. Самая же опасная ситуация возникает при исчезновении соединения между контуром заземления трансформаторной подстанции и средней точкой подключения нагрузок внутридомового или подъездного электрощита.

Такая ситуация может возникнуть по разным причинам, но чаще всего она проявляется при работе бригад электриков, владеющих смежной специальностью дегустаторов…

В этом случае пропадает путь прохождения токов по рабочему нулю к контуру заземления (А0, В0, С0). Они начинают двигаться по внешним контурам АВ, ВС, СА к которым подключено суммарное напряжение 380 вольт.

На правой части картинки показано, что ток IАВ возник при подключении линейного напряжения к последовательно соединенным нагрузкам Ra и Rв двух квартир. В этой ситуации один хозяин может экономно отключить все электроприборы, а другой — использовать их по максимуму.

В результате действия закона Ома U=I∙R на одном квартирном щитке может оказаться очень маленькая величина напряжения, а на втором — близкая к линейному значению 380 вольт. Оно вызовет повреждение изоляции, работу электрооборудования при нерасчетных токах, повышенный нагрев и поломки.

Для предотвращения подобных случаев служат защиты от повышения напряжения, которые монтируются внутри квартирного щитка или дорогостоящих электроприборов: холодильников, морозильников и подобных устройств известных мировых производителей.

Как определить ноль и фазу в домашней проводке

При возникновении неисправностей в электрической сети чаще всего домашние мастера используют дешевую отвертку-индикатор напряжения китайского производства, показанную на верхней части картинки.

Она работает по принципу прохождения емкостного тока через тело оператора. Для этого внутри диэлектрического корпуса размещены:

  • оголенный наконечник в виде отвертки для присоединения к потенциалу фазы;

  • токоограничивающий резистор, снижающий амплитуду проходящего тока до безопасной величины;

  • неоновая лампочка, свечение которой при протекании тока свидетельствует о наличии потенциала фазы на проверяемом участке;

  • контактная площадка для создания цепи тока сквозь тело человека на потенциал земли.

Квалифицированные электрики используют для проверки наличия фазы более дорогостоящие многофункциональные индикаторы в форме отверток со светодиодом, свечением которого управляет транзисторная схема, питаемая от двух встроенных батареек, создающих напряжение 3 вольта.

Такие индикаторы кроме определения потенциала фазы способны выполнять другие дополнительные задачи. У них нет контактной площадки, к которой необходимо прикасаться при замерах. Подробнее о том, как устроены и работают различные отвертки-индикаторы рассказано здесь: Индикаторы и указатели напряжения.

Способ проверки наличия и отсутствия напряжения в гнездах обыкновенной розетки простым индикатором показан на фотографиях ниже.

На левом снимке хорошо видно, что свечение индикаторной лампочки при дневном свете плохо заметно, поэтому требует повышенного внимания при работе.

Контакт, на котором индикатор засвечивается, является фазой. На рабочем и защитном нуле неоновая лампочка не должна светиться. Любое обратное действие индикатора свидетельствует о неисправностях в схеме подключения.

При эксплуатации такой отвертки необходимо обращать внимание на целостность изоляции и не прикасаться к оголенному выводу индикатора, находящемуся под напряжением.

На следующих фотографиях показан способ определения напряжения в той же розетке с помощью старого тестера, работающего в режиме вольтметра.

Стрелка прибора показывает:

  • 220 вольт между фазой и рабочим нулем;

  • отсутствие разницы потенциалов между рабочим и защитным нулем;

  • отсутствие напряжения между фазой и защитным нулем.

Последний случай является исключением. Стрелка в нормальной схеме должна тоже показывать напряжение 220 вольт. Но оно в нашей розетке отсутствует по той причине, что здание старой постройки еще не прошло этап реконструкции электропроводки, а хозяин квартиры, выполнивший последний ремонт, сделал разводку РЕ-проводника в своих помещениях, но не подключил его к заземляющим контактам розеток и шинке РЕ-проводника квартирного щитка.

Эта операция будет проводиться после перевода здания с системы TN-C на TN-C-S. Когда он завершится, стрелка вольтметра будет находиться в положении, отмеченном красной линией, показывать 220 вольт.

Несколько способов определения фазного и нулевого провода: Как найти фазу и ноль

Особенности поиска неисправностей

Простое определение наличия или отсутствия напряжения не всегда позволяет точно определить состояние схемы. Наличие различных положений выключателей может ввести мастера в заблуждение. Например, на картинке ниже показан типичный случай, когда при отключенном выключателе на фазном проводе светильника в точке «К» не будет напряжения даже при исправной схеме.

Поэтому при проведении замеров и поисках неисправностей следует внимательно анализировать все возможные случаи.

Пример пошагового поиска неисправности в неработающей люстре с помощью индикаторной отвертки показан здесь: Что делать, если не работает люстра

Источник: electrik.info

Зачем нужен этот «нулевой» провод?
Можно было бы, как и раньше, не заморачиваться, и просто подсоединять одну из фаз на один шпенёк вилки чайника, а другой шпенёк вилки чайника соединять с землёй, как мы делали раньше, и чайник бы нормально работал.
Вообще, как я понял, так и делали в старых советских домах: там от подстанции в дом заходят только два провода — провод фазы и провод земли.

В новых же домах (новостройках) в квартиры входят уже три провода: фаза, земля и этот «ноль». Это более прогрессивный вариант. Это европейский стандарт.
И правильно соединять фазу именно с нулём, а землю вообще оставить в покое, отдав ей только роль защиты от удара током (именно такой смысл должно нести слово «заземление», и никакого отношения к потреблению тока в розетке оно иметь не должно).
Потому что если все на землю ещё и ток будут пускать, то само заземление станет опасным — абсурд получится, будет поставлен с ног на голову весь смысл заземления.

Теперь немного математики, для тех, кто умеет её считать, и для тех, кто ещё не устал: попробуем посчитать напряжение между фазой и «нейтралью» (то же самое, что между фазой и «нулём»).
(вот ещё ссылка с расчётами, если кто-то захочет заморочиться этим)
Пусть амплитуда напряжения между каждой фазой и «нейтралью» равна U (само напряжение переменное, и скачет по синусу от минус амплитуды до плюс амплитуды).
Тогда напряжение между двумя фазами равно:
U sin(a) — U sin(a + 120) = 2 U sin((-120)/2) cos((2a + 120)/2) = -√3 U cos(a + 60).
То есть, напряжение между двумя фазами в √3 («квадратный корень из трёх») раз больше напряжения между фазой и «нейтралью».
Поскольку наш трёхфазный ток на подстанции имеет напряжение 380 Вольт между фазами, то напряжение между фазой и нулём получается равным 220 Вольтам.
Для этого и нужен «ноль» — для того, чтобы всегда, при любых условиях, при любых нагрузках в сети, иметь напряжение в 220 Вольт — ни больше, ни меньше. Оно всегда постоянно, всегда 220 Вольт, и вы можете быть уверены, что пока вся электрика в доме правильно подсоединена, у вас ничего не сгорит.
Если бы не было нулевого провода, то при разной нагрузке на каждую из фаз возник бы так называемый «перекос фаз», и у кого-то что-то могло бы сгореть в квартире (возможно даже в прямом смысле слова, вызвав пожар). Например, банально могла бы загореться изоляция проводки, если она не является пожаробезопасной.

До сих пор мы для простоты рассматривали случай воображаемого трёхфазного генератора, стоящего прямо в квартире.
Поскольку расстояние от квартиры до дворовой подстанции мало, и на проводах можно не экономить, то можно (и нужно, так же удобнее) перенести этот воображаемый трёхфазный генератор из квартиры в подстанцию.
Мысленно перенесли.
Теперь разберёмся с воображаемостью генератора. Понятно, что реальный генератор стоит не на подстанции, а где-нибудь далеко, на ГидроЭлектроСтанции, за городом. Можем ли мы на подстанции, имея три входящих фазных провода от ЛЭП, как-нибудь их соединить так, чтобы получилось всё то же самое, как если бы генератор стоял прямо в этой подстанции? Можем, и вот как.
В дворовой подстанции приходящее с ЛЭП трёхфазное напряжение снижается так называемым «трёхфазным» трансформатором до 380 Вольт на каждой фазе.
Трёхфазный трансформатор — это в простейшем случае просто три самых обычных трансформатора: по одному на каждую фазу

В реальности его конструкцию немного улучшили, но принцип работы остался тем же самым:

Бывают маленькие, и не очень мощные, а бывают большие и мощные:

Таким образом, входящие фазные провода от ЛЭП не прямо подсоединяются и заводятся в дом, а идут на этот огромный трёхфазный трансформатор (каждая фаза — на свою катушку), из которого уже «бесконтактным» способом, через электромагнитную индукцию, передают электроэнергию на три выходные катушки, от которых она идёт по проводам в жилой дом.
Поскольку на выходе из трёхфазного трансформатора имеются те же самые три фазы, которые вышли из трёхфазного генератора на электростанции, то здесь можно точно так же одни концы (условно, «левые») этих трёх выходных катушек трансформатора соединить друг с другом, чтобы получить «нейтраль» у себя на подстанции. А из нейтрали — вывести в жилой дом четвёртый «нулевой провод», вместе с тремя фазными (идущими от условно «правых» концов этих трёх выходных катушек трансформатора). И ещё добавить пятый провод — «землю».

Таким образом, из подстанции в итоге выходят три «фазы», «ноль» и «земля» (всего — пять проводов), и далее распределяются на каждый подъезд (например, можно распределить по одной фазе в каждый подъезд — получается по три провода заходит в каждый подъезд: одна фаза, ноль и земля), на каждую лестничную площадку, в электрораспределительные щитки (где счётчики стоят).

Итак, мы получили все три провода, выходящие из подстанции: «фаза», «ноль» (иногда «ноль» называют ещё «нейтралью») и «земля».
«фаза» — это любая из фаз трёхфазного тока (уже пониженного до 380 Вольт между фазами на подстанции; между фазой и нулём получится ровно 220 Вольт).
«ноль» — это провод от «нейтрали» на подстанции.
«земля» — это просто провод от хорошего правильного грамотного заземления (например, припаян к длинной трубе с очень малым сопротивлением, вбитой глубоко в землю рядом с подстанцией).

Внутри подъезда фазовый провод по схеме параллельного включения расщипляется на все квартиры (то же самое делается с нулевым проводом и проводом земли).
Соответственно, делиться ток по квартирам будет по правилу параллельного тока: напряжение в каждую квартиру будет идти одно и то же, а сила тока — тем больше, чем больше подключенная нагрузка в каждой квартире.
То есть, в каждую квартиру сила тока будет идти «каждому по потребностям» (и проходить через квартирный счётчик, который это всё будет подсчитывать).

Что может произойти, если все включат обогреватели зимним вечером?
Потребляемая мощность резко возрастёт, ток в проводах ЛЭП может превзойти допустимые рассчитанные пределы, и может либо какой-то из проводов перегореть (провод разогревается тем сильнее, чем больше его сопротивление и чем большая сила тока в нём течёт, и борется с этим сопротивлением), либо просто сама подстанция сгорит (не та, которая во дворе дома, а одна из Главных Подстанций города, которая может оставить без электроэнергии сотни домов, часть города может несколько суток сидеть без света и без возможности приготовить себе еду).

Если ещё у кого-то остался вопрос: зачем тянуть в дом все три провода, если можно было бы тянуть только два — фазу и ноль или фазу и землю?

Только фазу и землю тянуть не получится (в общем случае).
Выше мы посчитали, что напряжение между фазой и нулём всегда равно 220 Вольтам.
А вот чему равно напряжение между фазой и землёй — это не факт.
Если бы нагрузка на всех трёх фазах всегда была равной (см. схему «звезды», когда я объяснял её выше), то напряжение между фазой и землёй было бы всегда 220 Вольт (просто вот такое совпадение).
Если же на какой-то из фаз нагрузка будет значительно больше нагрузки на других фазах (скажем, кто-нибудь включит супер-сварочную-установку), то возникнет «перекос фаз», и на малонагруженных фазах напряжение относительно земли может подскочить вплоть до 380 Вольт.
Естественно, техника (без «предохранителей») в таком случае горит, и незащищённые провода тоже могут загореться, что может привести к пожару в квартире.
Точно такой же перекос фаз получится, если провод «нуля» оборвётся, или даже просто отгорит на подстанции, если по нулевому проводу пойдёт слишком большой ток (чем больше «перекос фаз», тем сильнее ток идёт по проводу нуля).
Поэтому в домашней сети обязательно должен использоваться ноль, и нельзя ноль заменить землёй.
Помню, когда мой отец делал разводку в его квартире в новостройке в Москве, и видел знакомый ему с советской молодости провод земли, а потом видел незнакомый ему провод ноля, то он, недолго думая, просто откусывал кусачками провод ноля, приговаривая, что «а он не нужен»…

УЗО наблюдает за входящим в квартиру током (фаза) и исходящим из квартиры током (ноль), и размыкает цепь, если эти токи неодинаковы (в то время как «автомат» измеряет только силу тока на фазе, и размыкает цепь, если ток на фазе превосходит допустимый предел).
Принцип работы УЗО очень прост и логичен: если входящий ток не равен исходящему, то, значит, где-то «протекает»: где-то фаза имеет какой-то контакт с землёй, чего по правилам быть не должно.
УЗО измеряет разность между силой тока на фазе и силой тока на нуле. Если эта разность превышает несколько десятков миллиАмперов, то УЗО немедленно срабатывает и выключает электричество в квартире, чтобы никто не пострадал, прикоснувшись ко сломанному прибору.
Если бы в щитке не стояло УЗО, и вышеупомянутый провод фазы внутри корпуса, скажем, компьютера, отвалился бы, и замкнулся бы на заземлённый корпус компьютера, и лежал бы так себе незамеченным, а, потом, через пару дней, человек стоял бы рядом, и разговаривал по телефону, оперевшись одной рукой на корпус компьютера, а другой рукой — скажем, на батарею отопления (которая тоже фактически является одной гигантской землёй, т.к. протяжённость отопительной сети огромная), то догадайтесь, что бы стало с этим человеком.
А если бы, например, УЗО стояло, но корпус компьютера не был бы заземлён, то УЗО сработало бы только во время прикосновения человека к корпусу и батарее. Но, по крайней мере, оно бы в любом случае мгновенно сработало, в отличие от «автомата», который бы сработал только через некоторый промежуток времени, пусть и маленький, но не мгновенно, как УЗО, и к тому времени человек мог бы быть уже «зажарен». Казалось бы, тогда, можно и не заземлять корпусы электроприборов — УЗО же в любом случае «мгновенно» сработает и разомкнёт цепь. Но кто-нибудь хочет испытать судьбу на предмет того, успеет ли УЗО достаточно «мгновенно» сработать и отключить ток, пока этот ток не нанесёт серьёзных повреждений организму?
Так что и «земля» нужна, и УЗО нужно ставить.

Поэтому нужны все три провода: «фаза», «ноль» и «земля».

В квартире к каждой розетке подходит тройка проводов «фаза», «ноль», «земля».
Например, из щитка на лестничной площадке выходят три этих провода (вместе с ними ещё телефон, витая пара для интернета — всё это называют «слаботочкой», потому что там протекают маленькие токи, неопасные), и идут в квартиру.
В квартире на стене (в современных квартирах) висит внутренний квартирный щиток.
Там эти три провода расщепляются и на каждую «точку доступа» к электричеству стоит свой отдельный «автомат», подписнанный: «кухня», «зал», «комната», «стиральная машина», и так далее.
(на рисунке ниже: сверху стоит «общий» автомат; после которого стоят подписанные «отдельные» автоматы; зелёный провод — земля, синий — ноль, коричневый — фаза: это стандарт цветового обозначения проводов)

От каждого такого «отдельного» автомата своя, отдельная, тройка проводов уже идёт к «точке доступа»: тройка проводов к печке, тройка проводов к посудомойке, одна тройка проводов на все зальные розетки, тройка проводов на освещение, и т.п..

Наиболее популярно сейчас совмещать «главный» автомат и УЗО в одном устройстве (на рисунке ниже оно показано слева). Счётчик электроэнергии ставится между «главным» общим автоматом (который имеет также встроенное УЗО) и остальными, «отдельными», автоматами (синий — ноль, коричневый — фаза, зелёный — земля: это стандарт цветового обозначения проводов):

И вот ещё до кучи схема, по сути, о том же (только здесь главный автомат и УЗО — это разные устройства):

Источник: halt-hammerzeit.blogspot.com


Что будет если соединить фазу и землю: можно ли заземлять на ноль?

Заземление через ноль

Как найти фазу ноль и землю по цветам проводов

Самый простой метод определения фазы нуля и земли возможен по расцветке проводов. Этот вариант применим только для построек, где используется стандарт IFC c нормативом используемых цветов для электропроводки.

По этим нормам провода электропроводки в домах должны иметь цвета:
— рабочий нулевой проводник обозначается синим или сине — белым цветом:
— защитное заземление должно иметь желто — зеленый цвет изоляции провода:
— цвет изоляции фазы может иметь несколько разных это белый, серый, коричневый и далее.

По этой цветной маркировке проводов достаточно легко определить назначение проводника. Однако от разветкоробки до выключателя, светильника, розеток иногда используется провода другого цвета в основном белого. Как в этом варианте найти фазу ноль и землю.

Цвета трехпроводной электропроводки

Для нахождения фазы нуля и земли в таком варианте нужно отключить электросеть квартиры вводным автоматом, открыть разветкоробку, разъединить провода. Прозванивать провода нужно тестером, мультиметром в режиме минимального сопротивления или батарейкой с лампочкой или со светодиодом.

Определение фазы нуля и земли индикатором напряжения

Индикатором напряжения можно найти только фазу, ноль и землю придется вызванивать, как описано выше. Перед использованием индикатора напряжения его нужно проверять на работоспособность. Индикатор напряжения с неоновой лампой годен для нахождения фазы, если на нулевом и заземляющем проводе отсутствует наводимое напряжение.

Индикаторная отвертка с неоновой лампой

К наводкам неоновая лампа очень чувствительна, так как она загорается при очень маленьком токе. Для электропроводки в квартире или доме наводки на проводах при отключенной сети довольно редкое явление. Но если рядом с электропроводкой находится посторонняя электросеть или дом расположен вблизи высоковольтной линией электропередач, тогда для определения фазы лучше использовать контрольную лампу.

В 7 издании ПУЭ для проверки наличия или отсутствия напряжения использование контрольной лампы не разрешается. Этот запрет основан на том, что индикаторы напряжения с низким сопротивлением не чувствительны к наведенным напряжениям, какие могут создать угрозу жизни человеку.

Этот пункт, скорее всего, применим к кабелям большой длины и большого сечения и проходящим рядом с другими кабелями, находящимися под напряжением. Эти кабеля могут скапливать большой и опасный для жизни заряд, благодаря большой емкости кабеля. Тогда конечно пользоваться контрольной лампой для определения отсутствия напряжения нельзя, она не покажет опасное наведенное напряжение.

Этот пункт касается промышленных предприятий. В домашней электропроводке провода имеют (если имеют) очень малую емкость, что явно недостаточно для опасного наведенного напряжения. Единственно, что пользоваться контрольной лампой нужно очень осторожно, так как имеются открытые не изолированные концы.

Определение фазы ноля и земли индикаторной отверткой

Для нахождения фазы контрольной лампой находим два провода, при присоединении к которым лампа горит. В этом варианте мы нашли фазу и ноль.

Теперь один конец контрольки соединяем со свободным проводом. Лампа не горит. Тогда свободный проводник это фаза, а замкнутые через контрольную лампу провода — это ноль и земля. В этом случае может сработать УЗО (если оно имеется).

Теперь берем фазный провод и один из двух оставшихся. Если лампа загорелась и УЗО не отключается, тогда мы нашли ноль, а свободный провод будет землей. Теперь проверяем землю (при установленном УЗО). Соединяем через контрольку фазу и предполагаемую землю. Если лампа моргнет, и УЗО отключит сеть, тогда мы нашли землю.

Без УЗО нужно в подъездном электрощите откинуть заземление. Соединяя фазу и один из двух оставшихся проводников, находим провод, при котором лампа не горит, этот проводник будет земляным. Использовать водопроводные, канализационные, газовые трубы для нахождения фазы контрольной лампой категорически запрещается, так как вы подвергаете риску поражения током соседей или возникновение пожара.

Как мультиметром найти фазу ноль и землю

Определить назначение проводников в трехпроводной схеме электропроводки мультиметром нетрудно. Для этого зачищаем пятачок металлической батареи или стальной трубы отопления, водопровода и прикасаемся одним концом щупа мультиметра к трубе, а вторым щупом подключаемся к одному из трех проводов поочередно, пока на дисплее не покажется напряжение 220 В.

Мультиметр

Мультиметр должен быть включен в положении измерения напряжения 220 В. Найденный провод будет фазой. Теперь относительно фазы подсоединяем щуп прибора по очереди к оставшимся проводам. Провод, при котором тестер покажет полные 220 В будет нулем, а второй соответственно землей.

При измерении напряжения фаза — земля, мультиметр покажет напряжения меньше, чем 220 В — этот проводник будет землей. Однако, если в старой постройке с системой энергоснабжения TN — C и повторным заземлением рядом с домом, то тестер покажет одинаковое напряжение фаза — ноль и фаза — земля.

В этом случае нужно отключить в подъездном щитке заземление и найти провода фаза — ноль на которых будет 220 В, оставшийся земляной проводник с фазой не покажет наличие напряжения.

Помните, что работая с напряжением сети нужно предпринимать все защитные меры по электробезопасности (защитные перчатки изолированный инструмент). Если вы не уверены в своих силах, тогда определение фазы ноля и земли доверьте опытному электрику.

Источник: http://electricavdome.ru/kak-opredelit-fazu-nol-i-zemlyu.html

Про заземление и зануление для «чайников»

Мой горький опыт электрика позволяет мне утверждать: Если у Вас «заземление» сделано как надо – то есть в щитке есть место присоединения «заземляющих» проводников, и все вилки и розетки имеют «заземляющие» контакты – я вам завидую, и вам не о чем беспокоиться.

Правила подключения заземления

В чем же состоит проблема, почему нельзя подключать провод заземления на трубы отопления или водоснабжения?

Реально в городских условиях блуждающие токи и пр. мешающие факторы столь велики, что на батарее отопления может оказаться что угодно. Однако основная проблема, в том, что ток срабатывания автоматов защиты достаточно велик. Соответственно один из вариантов возможной аварии — пробой накоротко фазы на корпус с током утечки как раз где-то на границе срабатывания автомата, то есть, в лучшем случае 16 ампер. Итого, делим 220в на 16А – получаем 15 ом. Всего каких-то тридцать метров труб, и получите 15 ом. И потек ток куда-то, в сторону не пиленого леса. Но это уже не важно. Важно то, что в соседней квартире (до которой 3 метра, а не 30, напряжение на кране почти те же 220.), а вот на, скажем, канализационной трубе – реальный ноль, или около того.

А теперь вопрос – что будет с соседом, если он, сидя в ванной (соединившись с канализацией посредством открывания пробки) коснется крана? Угадали?

Приз — тюрьма. По статье о нарушении правил электробезопасности повлекшем жертвы.

Не надо забывать, что нельзя делать имитацию схемы «заземления» , соединяя в евророзетке «нулевой рабочий» и «нулевой защитный» проводники, как иногда практикуют некоторые «умельцы». Такая замена крайне опасна. Не редки случаи отгорания «рабочего нуля» в щите. После этого на корпусе Вашего холодильника, компьютера и т.д. очень прочно размещается 220В.

Последствия будут примерно такими же, как и с соседом, с той разницей, что за это ни кто ответственности нести не будет, кроме того, кто сделал такое соединение. А как показывает практика, это делают сами же хозяева, т.к. считают себя достаточными специалистами, чтобы не вызывать электриков.

«Заземление» и «зануление»

Одним из вариантов «заземления» является «зануление». Но только не как в случае описанном выше. Дело в том, что на корпусе распределительного щита, на Вашем этаже имеется нулевой потенциал, а если точнее, нулевой провод, проходящий через этот самый щиток, просто-напросто имеет контакт с корпусом щита посредством болтового соединения. Нулевые проводники с расположенных на этом этаже квартир, тоже присоединяются к корпусу щита. Давайте рассмотрим этот момент поподробнее. Что мы видим, каждый из этих концов заведен под свой болт (на практике правда часто встречается по парное соединение этих концов). Вот как раз туда и надо подсоединять наш новоиспеченный проводник, который в последствии будет называться «заземлением».

В этой ситуации тоже есть свои нюансы. Что мешает «нулю» отгореть на входе в дом. Собственно говоря, ни чего. Остается лишь надеяться, что домов в городе меньше чем квартир, а значит и процент возникновения такой проблемы значительно меньше. Но это опять же русский «авось», который проблему не решает.

Контур заземления

Единственно правильное решение, в этой ситуации. Взять металлический уголок 40х40 или 50х50, длинной метра 3, забить его в землю, чтобы за него не запинались, а именно, копаем яму на два штыка лопаты в глубину и максимально забиваем туда наш уголок, а от него провести провод ПВ-3 (гибкий, многожильный), сечением не менее 6 мм. кв. до, Вашего распределительного щита.

В идеале «контур заземления» должен состоять из 3х — 4х уголков, которые свариваются металлической полосой той же ширины. Расстояние между уголками должно составлять 2 м.

Только не надо сверлить в земле дыру метровым буром и опускать туда штырь. Это не правильно. Да и КПД такого заземления близко к нулю.

Но, как и в любом способе здесь есть свои минусы. Вам, конечно, повезло, если Вы живете в частном доме, или хотя бы, на первом этаже. А как быть тем, кто живет этаже на 7-8? Запастись 30-ти метровым проводом?

Так как же найти выход из создавшейся ситуации? Боюсь, что ответ на этот вопрос Вам не дадут даже самые опытные электромонтажники.

Что требуется для разводки по дому

Для разводки по дому Вам понадобится медный провод заземления, соответствующей длины, и сечением не менее 1,5 мм. кв. и, конечно, розетка с «заземляющим» контактом. Короб, плинтус, скоба — дело эстетики. Идеальный вариант, это когда Вы делаете ремонт. В этом случае я рекомендую выбрать кабель с тремя жилами в двойной изоляции, лучше ВВГ. Один конец провода заводится под свободный болт шины распределительного щита, соединенной с корпусом щита, а второй — на «заземляющий» контакт розетки. При наличии в щите УЗО заземляющий проводник не должен нигде на линии иметь контакта с N проводником (в противном случае будет срабатывать УЗО).

Не надо так же забывать, что «земля» не имеет права разрываться, посредством каких либо выключателей.

Читайте также по этой теме: Заземление и зануление — в чем разница?

Источник: http://electrik.info/main/master/52-pro-zazemlenie-i-zanulenie-dlja.html

Что будет если соединить две фазы между собой в трехфазной сети

Жилой фонд городов и посёлков представлен не только современными зданиями. Большинство домов построены 60-е или 70-е годы ХХ века, до ВОВ и даже до революции. Соответственно, электропроводка в этих сооружениях выполнена без маркировки кабелей и диспетчерских надписей.

Поэтому при ремонте или модернизации проводки есть опасность неправильного подключения кабелей. В некоторых ситуациях это не приведёт к аварии, но что будет, если соединить две фазы между собой?

Особенности работы трехфазной сети

Несмотря на то, что большая часть бытовых электроприборов подключаются к однофазной сети, электропитание многоквартирных жилых зданий осуществляется по трёхфазным воздушным или кабельным линиям с заземлённой нейтралью.

Такие сети разделяются на однофазные во вводном щитке в доме. Питание частных домов осуществляется по аналогичной схеме, но разделение трёхфазных сетей на однофазные производится в месте подключения вводного кабеля к магистральной линии.

Информация! Питание некоторых частных домов, особенно оборудованных электроотоплением и электроплитами осуществляется трёхфазной электросетью.

Трёхфазная система электроснабжения жилых зданий используется для уменьшения тока и сечения кабелей при сохранении передаваемой мощности.

В промышленности такое питание позволяет применять трёхфазные электродвигатели, обладающие лучшими характеристиками по сравнению с однофазными.

Конструкция и работа трёхфазной электросети имеет ряд отличий от однофазной:

  • Количество питающих проводов. Для работы этой системе необходимы 4 токоведущих жилы — 3 фазных и 1 нейтральная. В однофазной схеме используются только 2 провода — ноль и фаза.
  • Разный ток в нейтральном проводнике. В однофазной сети он равен фазному, а в трёхфазной по нему протекает уравнительный ток. При равномерном распределении нагрузки по фазам этот ток отсутствует.
  • Уменьшенное падение напряжения в проводах. В однофазной схеме для расчёта потерь учитывается двойное расстояние до источника питания, в трёхфазной сети ток, протекающий по нейтральному проводу и потери меньше, чем в фазном.

Какое напряжение между фазами

В трёхфазной системе электроснабжения существуют два вида напряжений:

  • Линейное. Измеряется между двумя фазами в трехфазной сети (линиями L1, L2 или L3). Обозначается Uл.
  • Фазное. Между фазой L и нейтралью N. В формулах это напряжение обозначается Uф.

Согласно нормам, действующим с середины 60-х до 1993г, оно должно составлять 380 и 220В соответственно. Согласно ГОСТу 29322-92 (МЭК 38-83), введённому в действие 01.01.1993г. линейное напряжение составляет 400В, а фазное 230В.

По нормам этого документа допускаются отклонения от этих параметров, поэтому показания вольтметра могут колебаться от -10% до +10% от номинальных значений.

На самом деле напряжение в сети намного выше. В розетке имеется не постоянное, а переменное напряжение синусоидальной формы, и вольтметр измеряет действующее значение напряжения, которое в √2 меньше пикового значения.

Для расчёта мощности электроприборов достаточно знать именно действующее, но при определении параметров конденсаторов и изоляции необходимо учитывать пиковые величины, составляющие Uпф=325В и Uпл=566В.

Интересно! Линейное напряжение связано с фазным по формуле Uл=√3Uф.

Что будет при неправильном соединении проводов

Вопрос «можно ли соединить две фазы» в рамках данной статьи рассматривает аспект соединения подходящих проводов между собой напрямую, без использования дополнительных элементов. Результат этих действий зависит от того, какие именно кабеля были соединены неправильно.

Соединение двух фаз между собой

В трёхфазной сети используются три разных фаза, обозначающиеся А, В и С или L1, L2 и L3, поэтому, что будет, если соединить две фазы между собой зависит от того, какие именно замыкаются фазы:

  1. Соединение одноимённых (одинаковых) фаз. Фактически, это параллельное соединение двух автоматических выключателей. Приведёт к повышению тока срабатывания защиты и некорректной работе УЗО и дифавтоматов. В некоторых случаях, например, в панельных домах, в которых в одной переходной коробке находятся провода разных квартир, может неправильно работать прибор учёта электроэнергии.
  1. Подключение друг к другу разноимённых (разных) фаз. Такое соединение двух фаз между собой является аварийным режимом и приведёт к отключению одного из автоматических выключателей, причёт сработает автомат с меньшей уставкой.

Единственным условно-допустимым случаем замыкания двух фаз является включение двух и более одинаковых автоматов в параллельную работу. Это повысит ток уставки, но рекомендовать такую сборку для использования нельзя из-за нестабильных параметров конструкции.

Что будет если соединить фазу и ноль

Прямое соединение нулевого и фазного проводников — это режим короткого замыкания. В этом случае происходит срабатывание электромагнитной защиты автоматического выключателя, установленного в фазном проводе выше места подключения.

Что будет если соединить фазу и землю

Такое соединение аналогично подключению фаза-ноль, однако в этом случае вместо отключения автоматического выключателя может сработать УЗО или дифференциальный автомат. Это связано с нарушением равенства токов в фазном и нулевом проводниках.

Обрыв нуля в трехфазной сети

Питание потребителей в трёхфазной сети осуществляется по четырёх- или пятипроводной схеме — 3 фазных провода и нейтраль. В системе электроснабжения TN-S к ним может быть добавлен заземляющий провод.

Большинство бытовых потребителей подключаются только к одному из фазных проводов и к нулевому проводнику. Для уменьшения нагрузки и тока, протекающего по проводам, разные квартиры и частные дома подключаются к различным фазам и запитаны по схеме «звезда с нейтралью».

Нулевой проводник в этой системе необходим для обеспечения постоянного напряжения в однофазной розетке. Свою функцию он выполняет за счёт протекания по кабелю уравнительных токов.

При обрыве нулевого проводника однофазные потребители оказываются соединёнными по схеме «звезда без нейтрали».

Отсутствие уравнительных токов приводит к колебаниям напряжения в розетке в диапазоне 0-380В, причем, чем больше мощность включённых электроприборов, тем ниже напряжение.

Такой режим является опасным для электроприборов и для защиты от подобных ситуаций необходима установка реле напряжения РН. Это устройство перед включением и во время работы проверяет параметры сети и при выходе напряжения за допустимые пределы отключает линию.

Информация! Обмотки трёхфазных электродвигателей не подключаются к нейтрали. Равенство напряжения на каждой из катушек обеспечивается одинаковым числом витков в обмотках.

Почему в розетке появляется две фазы

В некоторых случаях при проверке наличия напряжения индикаторной отвёрткой инструмент вместо ноля и фазы показывает наличие на клеммах розетки двух фаз.

Это могут быть две одинаковые или две разные фазы. Основной причиной этого явления является обрыв нулевого провода, приводящий к разным результатам в зависимости от того, где именно произошло нарушение контакта.

Более точно можно определить место обрыва можно при использовании вольтметра или индикатора типа «Контакт», показывающего не только наличие напряжения, но и, хотя бы приблизительно, его величину:

  • Обрыв ноля в квартирной электропроводке. В этом случае на клеммах розетки появляются две одноимённые фазы. Одна из них приходит непосредственно с автоматического выключателя, а вторая через включённую лампочку или другой электроприбор. Вольтметр покажет отсутствие напряжения в розетке, а индикатор — короткое замыкание.
  • Установка однополюсного автомата в нулевом проводе. В некоторых домах отдельные линии к вводному автоматическому выключателю подключены через однополюсный автомат. При его отключении или срабатывании защиты в розетке появятся две одинаковые фазы. Напряжение между клеммами при этом отсутствует.
  • Нарушение контакта в нулевом проводе между вводом в дом и подстанцией. При этом через нейтраль перестаёт идти уравнительный ток и при мощности электроприборов, подключённых к фазе, от которой питается квартира меньшей, чем на других фазах, на нулевой клемме появляется напряжение. В зависимости от распределения нагрузки оно может достигать 220В по отношению к заземлению и 380В по отношению ко второй клемме розетки, но даже небольшое напряжение в розетке указывает на обрыв нейтрали в подходящем кабеле.
  • Замыкание фазного провода воздушной линии с нулевым. В этом случае возможны два варианта развития событий — срабатывание защитной аппаратуры на трансформаторной подстанции и отключение линии или отгорание ноля. Во втором случае в розетку придут не нулевой и фазный провода, а две разноимённых фазы и напряжение на клеммах составит 380В.
Важно! При появлении в розетке двух РАЗНЫХ фаз следует немедленно отключить вводной автомат и не включать его до устранения неисправности.

Вывод

Исходя из вышеизложенного на вопрос — что будет, если соединить две фазы между собой можно дать однозначный ответ. Такая ситуация даже если не приведёт к короткому замыканию и срабатыванию защиты, то в любом случае повлияет на её работу. Аналогичные последствия будут, если произвести подключение фаза-земля или фаза-ноль.

Исключением является соединение разных разноимённых фаз не напрямую, а через какие-либо электроприборы. В этом случае короткого замыкания не произойдёт, но это приведёт к выходу из строя включённых аппаратов из-за того, что вместо 220В на питание устройства будет подано 380В.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Если перепутать ноль и фазу

Что будет, если при подключении розетки перепутать фазу и ноль?

Что будет, если при подключении розетки спутать ноль и фазу?

Что делать, если перепутаны фаза и ноль в розетке (двухфазной)?

Что будет, если перепутать фазу и ноль при подключении розетки?

Ну, как бы вам сказать, чтобы не обидеть?

Дело в том, что если к розетке подходит три провода, из которых один – фаза, второй – ноль и третий – земля или заземление, то это не двухфазная розетка, а однофазная.

Теперь о том, что будет, если при подключении розетки перепутать провода фаза и ноль местами.

Давайте представим, что мы “по правилам” подключили розетку и хотим в неё включить вентилятор или пылесос, но вилку в розетку вставляем не по правилам, а “вверх ногами”, ну, или “задом на перёд”, в общем, наоборот, не так, как надо.

И что же у нас получится: пылесос будет мусор изнутри на ковёр высыпать, а будет не в лицо дуть, а наоборот, как вытяжка на кухне будет работать? Нет, ничего подобного не произойдёт – как не поворачивай “вилку”, вставляя её в розетку, пылесос будет мусор всасывать, а вентилятор, направленный в лицо, будет обдувать.

И ещё один момент: если бы было очень принципиально, куда подключать фазу, а куда ноль, то и в розетке, и на штекере были бы какие-то элементы, которые будут препятствовать неправильному включению.

А вообще, электрику нужно быть внимательным – он ведь, как сапёр, ошибается только 2 раза!

Короткое замыкание, не допускайте этого!

Ну, если речь идет именно о двухфазной розетке – то подключенный к такой розетке электроприбор, как минимум, заработает с меньшей мощностью – например, если речь об электронагревателе или электроплите. Что- вообще не заработает. Как максимум – прибор может выйти из строя. Ибо двухфазная розетка – это розетка, к которой подведены: две фазы и ноль. Нагреватели и электроплиты так можно подключать. А то, что показано на изображении у автора вопроса – это однофазная линия, включающая фазу, ноль и “землю” (“земля” может и отсутствовать).

Перепутав фазировку двух-фазной розетки, вы вместо двух фаз подадите на прибор фазу и “ноль”, то есть 220 вольт вместо 380. Нагревательный прибор заработает – но с меньшей мощностью.

Ну а в однофазной линии – фазировка не имеет значения. Конечно, если нигде не выполнено запрещенного Правилами эксплуатации электроустановок защитного зануления (вместо заземления). Зануление же потому и запрещено, что при нарушении фазировки корпус электроприбора может оказаться под напряжением, что чревато. Ну а в однофазной сети, смонтированной по правилам, фазировка значения не имеет.

Что будет, если при подключении розетки перепутать фазу и ноль?

В электрике мы не сильны, поэтому нужен профессиональный совет. Что будет, если при подключении розетки перепутать фазу и ноль?

А ничего не будет, собственно говоря, плохого. Посмотрите на вилки всех электроприборов, что есть в доме, и на розетки. Если розетка без специального заземляющего штыря – никто же нам не мешает вилку воткнуть и так, и этак. Если бы электроприборам было бы критично “правильное” подключение фазы и нуля – конструкторы сделали бы все вилки и розетки так, чтобы они стыковались в единственно возможном положении относительно друг друга.

Вообще, профессионалы придерживаются мнения, что фазой должен быть правый контакт розетки.

Но те же профессионалы никогда не верят слепо в то, что розетку монтировал тоже профи, а обязательно проверяют расположение фазы и нуля отверткой-индикатором, когда им это нужно.

Ничего не будет.

Разницы нет к какому контакту розетки будет подведена фаза, к какому контакту ноль.

Электрическая розетка не USB-порт, чтобы в единственном положении было доступно подключение.

В квартире-новостройке электрик делал разводку, розетки я сам устанавливал. Везде фазу пустил в левую сторону, чтобы не получилось разнобоя и после голову не ломать, не проверять индикатором.

Просто часто лень автомат на щитке отключать, работаю под напряжением, хотя неправильно это.

В чужих квартирах вначале проверяю индикаторной отвёрткой, нахожу фазу, потом отключаю питание в автомате на щитке. Часто убеждаешься, что сделано вразнобой,то слева фаза, то справа.

В новой квартире без ремонта провода торчат из штукатурки в запланированном месте установки розетки. Коронкой делается отверстие на глубину подрозетника с небольшим припуском, крепится подрозетник, в него заводится провод, разделывается, зачищается, подсоединяется к контактам розетки. Куда попала фаза а куда ноль, осмотрел несколько розеток, везде по разному, главное, что центральный провод желто – зеленого цвета из кабеля везде прикручен к заземляющим контактам розеток.

К чему я это – да к тому, что как провод попал в подрозетник, как удобно, так его и подсоединяют нанятые специалисты.

если при подключении розетки перепутать фазу и ноль

ничего не будет, ничего страшного не случиться!

Любой исправный бытовой электроприбор будет работать как положено.

Ни чего критичного не будет, ибо вилку в розетку можно “воткнуть” и так и эдак.

Нет жёсткой привязки (правил) с какой стороны должна быть фаза, а с какой ноль.

Есть негласные правила которых придерживаются профессиональные электрики (если речь идёт об обычных однофазных розетках), фаза слева в розетки, а ноль справа.

В обычных розетках переменный ток, поэтому разницы нет где ваза, где ноль.

Если Вам необходимо точно узнать где фаза в конкретной розетки, то можно приобрести вот такую индикаторную отвёртку.

Электричество не отключаем.

Жало отвёртки вставляем в гнездо (отверстие) розетки (любое) пальцем зажимаем контакт на конце ручки отвёртки.

Если лампочка загорится, то тут фаза, если нет, то ноль.

Если лампочка не загорается ни с какой стороны, то это проблема, розетка не исправна.

Возможно Вас смущает наличие третьего провода в розетки, третий это “земля”, вот его нельзя путать ни с нулём, ни с фазой.

Да и розетки с заземлением отличаются от обычных на корпусе находятся заземляющие контакты.

Строительный портал №1

Энциклопедия Технологий и Методик

Для начинающего радиолюбителя

Как определить: фазу, ноль и землю

Для двухжильной проводки:

Важно: При определении фазы в проводке дома либо квартиры необходимо будет подать напряжение на эту самую проводку. В связи с этим последующие работы и эксперименты становятся небезопасными для жизни. Поэтому 100 раз подумайте, нужно ли вам это, может лучше вызвать профессионального электрика, у которого имеется допуск. Жизнь значительно дороже тех денег, которые он с вас возьмет.

Если вы отнеслись к моим предостережениям равнодушно, тогда идем дальше и по пунктам читаем, как из двух проводов определить, где фаза, а где ноль.

1. Выключите из розеток все приборы.

2. Обесточьте квартиру либо дом, напряжение вообще должно быть отключено.

3. Оголите те два провода, с которыми собрались «выяснять отношения».

Что будет если перепутать местами опорные подшипники?

Я не имею в виду, что нужно полностью снимать изоляцию с проводов, просто их кончики должны быть слегка оголенными и зачищенными, а так же находится на расстоянии друг от друга, чтобы они случайно не соприкоснулись, и не возникло КЗ.

4. Снова подайте напряжение, в том числе и на нужные вам провода.

5. Возьмите индикаторную отвертку. Если ее у вас нет, значит нужно купить. Стоит она очень смешных денег, как буханка хлеба. Поэтому не нужно искать другие методы и говорить, что: «у меня нет никакой отвертки, может лучше лампочкой».

6. Индикаторная отвертка должна находится в правой руке. Брать ее нужно только за диэлектрическую ручку. Дотроньтесь концом отвертки поочередно до каждого из проводов. При этом указательный палец правой руки нужно класть на кончик рукоятки, который должен быть металлическим.

Тот провод, на котором загорелся индикатор и есть фаза, а второй провод, естественно – это ноль.

Вся эта инструкция очень хорошо подходит для двухжильной проводки, но провода может быть и 3, то есть ноль, фаза и земля.

Для трёхжильной проводки:

Фазу в трехжильном проводе вы определите точно так же: индикатор будет гореть. На землю и ноль индикаторная отвертка реагировать не будет.

Ноль и земля определяется в разных случаях по-разному. Некоторые определяют по цветам проводов: коричневый — фаза, синий/голубой — ноль, злёно-жёлтый/полосатый — земля. Однако в этом случае нужно полагаться на электриков, которые не должны были перепутать и использовать конкретный цвет для конкретного провода. Поэтому этот метод сразу отпадает.

Можно взять патрон с лампочкой и двумя проводами, один прикрутить к определенной вами индикатором фазе, а вторым коснуться поочередно двух оставшихся проводков: где загорится – тот провод и ноль. Однако лампочка может загореться и при соприкосновении с землей. Можно померить поочередно напряжение при помощи вольтметра. В паре фаза-ноль напряжение должно быть больше, чем в паре фаза-земля.

Советы, как узнать 0 и землю:

1. Залезть в щит и отключить защитное зануление. На оставшейся паре проводов нагрузка (лампа) будет работать. Это если вы точно знаете, где земля в щитке.

2. Замкнуть фазу на один из оставшихся проводов. Если пробки выбьет, то ноль. Если нет, то земля. При условии, что у вас есть пробки, и вы не боитесь, что вся проводка сгорит. И это довольно опасно.

3. Есть индикаторные отвёртки специальные с батарейкой, ИЭК тот же продаёт (такие жёлтые), таким землю от нуля отличать удобно. Выявляем неонкой фазу, вырубаем пакетник/вводной автомат (работает это понятно только если он двухполюсный), тыкаем оставшиеся концы, который светится — земля, который не светится — ноль.

4. Вольтметром переменного тока померять напряжение между неопределенным проводом и батареей теплоснабжения (отковырнуть краску и касаться металла). У “заземляющего” провода потенциал будет ноль, у “нулевого” провода, за счет перекоса фаз (разных нагрузок по фазам) потенциал может быть от нуля до 20-30 вольт.

5. Если у Вас трех проводная сеть то тогда должно быть УЗО, далее определяете фазный провод, предварительно отключив всю нагрузку (т.е. нигде не должна замыкаться на устройствах). После определения фазы и подключения к ней (например, лампы накаливания), второй провод соединяете с любым из оставшихся, проводов (все подключения делайте со снятием напряжения), включите УЗО, затем включите вводной автоматический выключатель, если УЗО не отключится то второй провод и является нулевым, а если произойдет отключение УЗО, то это защитное заземление.

© «Энциклопедия Технологий и Методик» Патлах В.В. 1993-2007 гг.

All-Audio.pro

Статьи, Схемы, Справочники

Что будет если соединить ноль и фазу

После последней статьи о заземлении мне пришло сразу несколько вопросов на эту тему. Постараюсь ответить на них в этом посте. Мне сделали заземление и ввели в щит в гараже. А электрик, который делает проводку по дому говорит что надо в розетках соединять заземление с нулем.

Поиск данных по Вашему запросу:

Что будет если соединить ноль и фазу

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.
Перейти к результатам поиска >>>

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Если ноль из земли а фаза со счетчика Nik

Что такое фаза и ноль в электричестве

Давайте же получим крупицу полезных знаний и разберемся, что такое фаза и ноль в электричестве. В первую очередь нас интересуют электрический ток и электрический заряд. Ежедневная рассылка с полезной информацией для студентов всех направлений — на нашем телеграм-канале. Электрический заряд — это физическая скалярная величина, которая определяет способность тел быть источником электромагнитных полей. Носителем наименьшего или элементарного электрического заряда является электрон.

Его заряд равен примерно -1,6 на 10 в минус девятнадцатой степени Кулон. Заряды условно делятся на положительные и отрицательные. Например, если мы потрем эбонитовую палочку о шерсть, она приобретет отрицательный электрический заряд избыток электронов, которые были захвачены атомами палочки при контакте с шерстью. Такую же природу имеет статическое электричество на волосах, только в этом случае заряд является положительным волосы теряют электроны.

Кстати, о том, что такое ток, напряжение и сопротивление можно дополнительно почитать в нашей отдельной статье, посвященной закону Ома. Электрический ток — это направленное движение заряженных частиц носителей заряда по проводнику.

Само движение заряженных частиц возникает под действием электромагнитного поля — одного из фундаментальных физических полей. Электрический ток может быть постоянным и переменным. При постоянном токе направление и величина тока не меняются. Переменный ток — это ток, изменяющийся во времени. Источником постоянного тока является, например, батарейка. Но именно переменный ток используется в бытовых розетках, которые стоят в наших домах. Причина в том, что переменные токи гораздо проще получать и передавать на большие расстояния.

Основным видом переменного тока является синусоидальный ток. Это такой ток, который сначала нарастает в одном направлении, достигая максимума амплитуды начинает спадать, в какой-то момент становится равным нулю и снова нарастает, но уже в другом направлении. Простейший случай электрической цепи — однофазная цепь. В ней всего три провода. По одному из проводов ток течет к потребителю пусть это будет утюг или фен , а по другому — возвращается обратно.

Третий провод в однофазной сети — земля или заземление. Провод заземления не несет нагрузки, но служит как бы предохранителем. В случае, когда что-то выходит из-под контроля, заземление помогает предотвратить удар электрическим током. По этому проводу избыток электричества отводится или “стекает” в землю. Провод, по которому ток идет к прибору, называется фазой , а провод, по которому ток возвращается — нулем.

Итак, зачем нужен ноль в электричестве? Да за тем же, что и фаза! По фазному проводу ток поступает к потребителю, а по нулевому – отводится в обратном направлении. Сеть, по которой распространяется переменный ток, является трехфазной. Она состоит из трех фазовых проводов и одного обратного. Именно по такой сети ток идет до наших квартир.

Подходя непосредственно к потребителю квартирам , ток разделяется на фазы, и каждой из фаз дается по нулю. Частота изменения направления тока в странах СНГ – 50 Гц. Провода фазы и нуля нельзя путать. Иначе можно устроить короткое замыкание в цепи.

Чтобы этого не произошло и Вы ничего не перепутали, провода приобрели разную окраску. Каким цветом фаза и ноль обозначены в электричестве? Ноль, как правило, синего или голубого цвета, а фаза – белого, черного или коричневого.

Провод заземления также имеет свой окрас – желто-зеленый. Будем просто счастливы, если для кого-то эта информация была новой и интересной. Теперь, когда вы услышите что-то про электричество, фазу, ноль и землю, вы уже будете знать, о чем идет речь. Напоследок напоминаем, если вам вдруг понадобится произвести расчет трехфазной цепи переменного тока, вы можете смело обращаться в студенческий сервис.

Что будет если соединить фазу и ноль

Любой человек, занимаясь электромонтажными работами у себя дома или просто решивший установить люстру, бра или подключить розетку, обязательно столкнется с вопросом — как определить фазу, ноль и заземление у проводов , в месте монтажа? В наших статьях и инструкциях, мы часто выкладываем схемы подключения, правила монтажа и подсоединения электрооборудования к сети, а также многое другое, где для правильного выполнения всех операций необходимо знать, где у вас фазный провод, где нулевой рабочий ноль , а где заземляющий защитный ноль. Для опытного электрика определить где фаза и ноль или найти землю, обычно не составляет труда, а вот как быть остальным? Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке. Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов – как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела. На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.

Как отличить ноль от заземления подручными средствами

Список форумов Список форумов Форумы RolleR. Вопрос по электрике. О роликах и роллерах. Полная версия. Здесь можно поговорить о чем угодно только для зарегистрированных пользователей. Предположим что они все старые, пятикратно перемотанные изолентой и их цвет уже не различить. Как определить что из них что?

Вы узнаете, что такое фаза, ноль и земля в электрическом кабеле! Ноль и фаза что это

Электрическая сеть, из которой мы получаем электричество это довольно хитрая штука. Там есть разные фазы , есть ноль , есть земля , а иногда и ноль и земля “в одном флаконе”. Немудрено запутаться! Мы поможем вам разобраться раз и навсегда в том, где нужно соединять ноль с землёй и нужно ли это делать! Давайте посмотрим на обычную воздушную линию в обычной российской деревне.

Почему в розетке могут появиться две фазы и что с этим делать. Если соединить две фазы что будет

Регистрация Вход. Ответы Mail. Вопросы – лидеры Задача по физике 1 ставка. Провод КСПВ, вопрос к электрикам 1 ставка. Мощность рассеивания транзистора? Зачем электродрели нужен редуктор, точнее большая шестеренка?

«Ноль» и «земля»: в чем принципиальное отличие?

Давайте же получим крупицу полезных знаний и разберемся, что такое фаза и ноль в электричестве. В первую очередь нас интересуют электрический ток и электрический заряд. Ежедневная рассылка с полезной информацией для студентов всех направлений — на нашем телеграм-канале. Электрический заряд — это физическая скалярная величина, которая определяет способность тел быть источником электромагнитных полей. Носителем наименьшего или элементарного электрического заряда является электрон. Его заряд равен примерно -1,6 на 10 в минус девятнадцатой степени Кулон. Заряды условно делятся на положительные и отрицательные.

Как отличить ноль от земли если провода одного цвета?

Что будет если соединить ноль и фазу

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие.

соединить две фазы

С помощью современных индикационных отверток несложно разобраться в том, как отличить ноль от заземления. Для поиска применяется световой сигнал, возникающий внутри отвертки при обнаружении фазы. Следовательно, другая цепь будет нолем землей. Несмотря на простоту задачи, имеются в этом деле и определенные нюансы, о которых пойдет речь в этой статье. Индикационная отвертка включает металлический щуп, за которым расположено сопротивление чаще всего углеродистое , благодаря чему ограничивается ток.

Что будет, если при подключении розетки перепутать фазу и ноль?

Регистрация и вход. Поиск по картине Поиск изображения по сайту Указать ссылку. Загрузить файл. Крутой поиск баянов. Везде Темы Комментарии Видео.

Можно ли соединять 0 и землю в розетке.

Источником электрической энергии служит генератор, который состоит их трех обмоток или полюсов, соединенных в трех лучевую звезду, центральная точка соединяется с землей или заземляется. Посмотрите как это происходит. Без заземления нейтрали трансформатора на ТП- не будет работать нормально электроснабжение.

Если перепутать фазу и ноль

Здравствуйте, уважаемые читатели сайта sesaga.ru. Иногда в электрической проводке возникает интересная неисправность, которая приводит неопытного электрика или простого любителя в затруднительное положение. Такой неисправностью является возникновение второй фазы в розетке, которая там оказывается на месте нуля, что заставляет сильно призадуматься.

На самом же деле на обоих гнездах розетки присутствует одна и та же фаза, так как в однофазной электрической сети переменное напряжение 220В формируется одним фазным и одним нулевым проводниками, и второй фазы там быть не может. Но именно понимание этого и вызывает некоторое недоумение, когда на месте штатного нуля обнаруживается фаза.

Если бы в розетке действительно оказалась вторая фаза, то напряжение между обеими фазами составило бы 380В и все включенные бытовые приборы пришлось бы нести в ремонтную мастерскую.

Немного теории.

Не вдаваясь в технические подробности можно сказать так, что однофазная электрическая сеть это такой способ передачи электрического тока, когда к потребителю (нагрузке) переменный ток течет по одному проводу, а от потребителя возвращается по другому проводу.

Возьмем, к примеру, замкнутую электрическую цепь, состоящую из источника переменного напряжения, двух проводов и лампы накаливания. От источника напряжения к лампе ток течет по одному проводу и, пройдя через нить накала лампы, раскалив ее, ток возвращается к источнику напряжения по другому проводу. Так вот, провод, по которому ток течет к лампе, называют фазным или просто фазой (L), а провод, по которому ток возвращается от лампы, называют нулевым или просто нулем (N).

При разрыве, например, фазного провода, цепь размыкается, движение тока прекращается и лампа гаснет. При этом участок фазного провода от источника напряжения и до места разрыва будет находиться под током или фазным напряжением (фазой). Остальная же часть фазного и нулевого проводов будут обесточены.

При разрыве нулевого провода движение тока также прекратится, но теперь под фазным напряжением окажутся фазный провод, оба вывода лампы и часть нулевого провода, отходящего от цоколя лампы к месту разрыва.

Убедиться в наличии фазы на обоих выводах лампы и на нулевом проводе, отходящем от лампы, можно индикаторной отверткой. Но если на этих же выводах и проводе измерить напряжение вольтметром, то он ничего не покажет, так как в этой части цепи присутствует одна и та же фаза, которую относительно себя измерить нельзя.

Вывод: между одной и той же фазой никакого напряжения нет. Напряжение есть только между нулевым и фазным проводом.

Совет. Для определения наличия фазы и напряжения в электрической сети необходимо совместное использование индикаторной отвертки и вольтметра. В качестве вольтметра можно использовать мультиметр.

А теперь перейдем к практике и рассмотрим некоторые ситуации с нулем, которые можно самостоятельно определить и по возможности устранить без привлечения службы коммунэнерго:

1. Обрыв нуля во входном щитке дома или квартиры;
2. Обрыв нуля на входе или внутри распределительной коробки;
3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.

1. Обрыв нуля во входном щитке дома или квартиры.

Во входном щитке дома или квартиры нулевой провод может оборваться на вводном автоматическом выключателе или на нулевой шине. Как правило, ослабляется винтовое соединение, из-за чего теряется контакт между проводом и зажимом, или, в редких случаях, нулевой провод обламывается на зажиме и повисает в воздухе.

Также из-за плохого контакта между зажимом и проводом происходит нагрев и обгорание провода и, как следствие, между ними образуется большое переходное сопротивление в виде нагара, которое постепенно переходит в обрыв.

При отсутствии нуля все электрические приборы в доме работать не будут. Но если останется включенный в розетку хоть один бытовой прибор или останется включенный выключатель света, фаза через радиокомпоненты блока питания бытовой техники или нить накала лампы беспрепятственно пройдет на нулевую шину, а с шины на все нулевые провода электрической проводки. И как следствие, на обоих гнездах розеток и контактах выключателей будет присутствовать фаза. Это объясняется тем, что все нулевые провода электрической проводки соединяются вместе на нулевой шине.

Для определения такой неисправности достаточно отключить из розеток все бытовые приборы и отключить все выключатели света или выкрутить лампочки. После этих действий вторая фаза из розеток и контактов выключателей пропадет. Лечится неисправность восстановлением контактов на зажимах вводного автомата или на нулевой шине.

2. Обрыв нуля на входе или внутри распределительной коробки.

При обрыве нулевой жилы перед распределительной коробкой или в самой коробке проблема с нулем и работой электрооборудования будет именно в том помещении дома или квартиры, в которое распределяет напряжение данная коробка. При этом в соседних помещениях все будет работать в штатном режиме.

На рисунке выше видно, что перед левой распределительной коробкой произошел разрыв нулевой жилы провода, и фаза через нить накала лампы (нагрузку) попадает на розеточный ноль.

При поиске такой неисправности вскрывается проблемная коробка и находится скрутка общего нуля (она самая толстая в коробке). Жилы скрутки отрезаются, заново разделываются и опять скручиваются вместе.

Совет. Если провод медный, то скрутку желательно пропаять.

Когда ноль обрывается перед распределительной коробкой, как показано на верхнем рисунке, для поиска обрыва часто приходится вскрывать в стене штробу с этим проводом, чтобы найти место повреждения.

При поиске такой неисправности сначала в коробке находят скрутку с общим нулем и раскручивают на отдельные жилы. Затем каждая нулевая жила вызванивается до розеток и до потолка. Жила, которая не прозвонится, и будет являться входящим проводом в коробку.

Далее этот провод продергивается и вскрывается штукатурка в стене для поиска места повреждения провода. Однако такая неисправность относится к разряду трудновыполнимых, потому как ковырять стену мало кто берется – проще проложить новую трассу.

3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.

Может возникнуть ситуация, когда при сверлении отверстия, вкручивании самореза или забивании гвоздя в стену нарушается электрическая проводка. В довесок к этому, повреждение проводки сопровождается коротким замыканием, из-за которого провод повреждается полностью или частично. Лечится такая неисправность вскрытием места повреждения и восстановлением поврежденного участка провода.

Иногда при такой неисправности можно также наблюдать две фазы в розетке.
В момент замыкания происходит сварка фазной и нулевой жилы вместе, и поэтому фаза беспрепятственно попадает на нулевую жилу. Причем даже при выключенном из розеток электрооборудования и отключенных выключателей освещения фаза будет присутствовать на тех розетках и выключателях, на которые подается напряжение от этого провода.

Лечится неисправность восстановлением поврежденного участка проводки.

Если же остались вопросы, то в дополнение к статье посмотрите видеоролик, где также раскрыта тема обрыва нуля.

В этой статье мы рассмотрели только самые распространенные неисправности, возникающие в однофазной электрической сети при повреждении нулевой жилы провода. Теперь если у Вас в розетке появятся две фазы, Вы сможете легко определить и устранить подобную неисправность.
Удачи!

Фаза и ноль. Работа и измерения. Особенности

У хозяев дома появляется вопрос: что же такое фаза и ноль? Раньше они не вникали в то, как устроена электропроводка. А теперь понадобилось отремонтировать розетку, заменить лампочку, и хочется все это сделать самому.

Безопасность

Электросеть разделена на два типа: постоянного и переменного тока. Электрический ток является движением электронов в каком-либо направлении. При постоянном токе электроны двигаются в одну сторону, имеют полярность. При переменном токе электроны меняют свою полярность с определенной частотой.

В первую очередь домашнему умельцу нужно соблюдать электробезопасность, а потом уже думать об устранении неисправности. Некоторые пренебрежительно относятся к опасности попасть под действие тока.

Все части под напряжением должны быть защищены изоляцией, клеммы розеток углублены в корпус таким образом, чтобы не было доступа и нельзя было случайно коснуться рукой. Даже конструкция вилки сделана так, что невозможно попасть под напряжение электрического тока, держась рукой за вилку. Мы уже привыкли к электричеству, и не замечаем опасности при проведении работ по ремонту электрических устройств. Поэтому, лучше освежить в памяти правила безопасности и быть внимательными.

Принцип действия

Сеть электрического переменного тока разделена на фазу и ноль (рабочую и пустую). Нулевая фаза предназначена для образования постоянной электросети при включении устройств, а также для создания заземления. На фазе находится рабочее напряжение.

Для работы электроустройства не важно, где находится фаза, а где ноль. При установке электрических проводов и включении ее в сеть дома нужно учитывать, где фаза и ноль. Проводка прокладывается кабелем с двумя или тремя жилами. В кабеле с двумя жилами находится фаза и ноль, а в кабеле с 3-мя жилами третий провод отводится для заземления. Перед работой нужно точно определить расположение выводов проводов.

Электрический ток заходит от подстанции с трансформатором, преобразующим высокое напряжение до 380 вольт. Низкая сторона трансформатора соединена в звезду. Три вывода соединены в нулевой точке, а оставшиеся выводятся на клеммы фаз.

Узел в нулевой точке подключается к заземляющему контуру подстанции. Ноль расщепляется на рабочий и защитный. Новые строящиеся дома оснащаются проводкой по такой схеме. На входе дома в щите располагается три фазы и два провода расщепленного ноля.

В старых зданиях остается схема проводки старого типа без расщепленного ноля, там вместо пяти проводов идут 4 жилы. Электрический ток от трансформатора проходит по воздуху или под землей к входному щиту, образует систему из трех фаз (питающая сеть 380) на 220. Производится разводка по щитам подъездов. В квартиру поступает кабель с 1-й фазой на 220 В и защитный провод.

Защитный провод не всегда есть в наличии, если старая проводка не переделана. В квартире нулем называется провод, который соединен с заземляющим контуром на подстанции, применяется для образования нагрузки фазы, которая подключена к противоположному выводу на трансформаторе. Защитный ноль из схемы удален, он служит для устранения неисправностей и аварий для отвода тока при повреждениях.

В такой цепи нагрузки распределены равномерно, так как на этажах сделана разводка и выведены щиты к линиям на 220В в распредщите подъезда. Напряжение, подходящее к дому, выполнено звездой. При выключенных в квартире всех устройств и отсутствии нагрузки в розетках, в линии питания тока не будет.

Это является простой рабочей схемой электроснабжения, которая использовалась много лет. Но в любой сети могут возникнуть неисправности, которые связаны с плохими контактами соединений, либо обрывом проводов.

Обрыв провода

Проводник может легко оторваться, или его могут забыть подключить. Это происходит довольно часто, так же, как и могут отгореть провода при некачественном контактном соединении и большой нагрузке. Если в квартире нет соединения потребителя с щитком напряжения, то устройство не будет работать. Какой именно провод разорван, не имеет значения. То же самое получается при обрыве провода одной из фаз, которая питает дом или подъезд. Квартиры, питающиеся от этой линии, не будут иметь возможность получать электричество.

В двух остальных цепях все устройства будут работать в нормальном режиме, а ток ноля будет складываться из оставшихся составляющих. Все вышеописанные обрывы проводников связаны с выключением питания от квартиры, бытовые устройства при этом не ломаются. Опасным случаем может стать момент, когда исчезнет соединение между средней точкой потребителей щита дома и контуром заземления трансформатора подстанции. Это возникает у электриков, не имеющих достаточной квалификации.

Путь прохода тока через ноль к заземлению исчезает. Ток начинает идти по наружным контурам, имеющим напряжение в 380 В. В результате получается что на нагрузках вместо 220В будет 380В. На одном щите окажется небольшое напряжение, а на втором около 380 В. Высокое значение напряжения повредит изоляцию, нарушит работу устройств, приведет к поломкам и выходу из строя приборов.

Чтобы таких ситуаций не было, применяют защитные устройства для блокировки от повышенного напряжения. Они устанавливаются в щиток квартиры, либо внутри дорогостоящих приборов.

Способы определения где фаза и ноль

Любой домашний мастер при электромонтажных работах дома или в другом месте при подключении розетки или люстры сталкивается с вопросом определения фазы и ноля на проводах. Мы расскажем, какие существуют методы и способы правильного определения фазных проводов, нулевых жил, заземляющих защитных проводов. Конечно, для имеющего опыт в таких электромонтажных работах специалиста не доставит большого труда определить фазу и нулевой провод. Но как быть людям, которые не умеют этого делать?

Разберемся, как можно в домашних условиях без специальных инструментов для измерения и электронных приборов своими силами узнать наличие на проводах где фаза и ноль, заземление.

Во время поломок в сети тока часто домашние умельцы применяют недорогую индикаторную отвертку для проверки наличия напряжения китайского изготовления.

Она действует по закону емкостного тока, проходящего по телу человека. Такая отвертка состоит из следующих деталей:
  • Наконечник металлический, заточенный под отвертку, присоединяется к фазе.
  • Резистор для ограничения тока, который уменьшает амплитуду тока до небольшой величины.
  • Лампочка неоновая, начинает светиться при прохождении тока, показывает наличие фазы на проводнике.
  • Площадка для касания пальцем человека, чтобы создавалась цепь тока по телу через землю.

Квалифицированные специалисты применяют для контроля фазы приборы с качественными деталями и имеющими несколько функций, с индикаторами под отвертку, светодиод светится с помощью транзисторной схемы, подключенной от батареек на 3 вольта.

Такие устройства кроме фазы могут решать другие вспомогательные задачи. Они не имеют клеммы для контакта пальцем. Как проверять наличие фазы в розетках индикатором, показано на рисунке.

Днем плохо видно, как светится лампочка, требуется приглядываться. Там, где лампочка светится, есть фаза. На рабочем нуле и защитном заземлении лампочка не будет гореть. Если лампа светится в других случаях, то это говорит о том, что имеются неисправности в схеме.

Во время работы с такой отверткой нужно проверить исправность ее изоляции, не касаться вывода индикатора без изоляции под напряжением. Также с помощью тестера можно в розетке определить наличие напряжения.

Показания на тестере:
  • 220 В между фазой и нолем.
  • Нет напряжения между защитным нолем и рабочим.
  • Нет напряжения между защитным нолем и фазой.

Последний вариант – это исключение. При нормальной схеме стрелка будет показывать разность потенциалов 220 В. Но в наших розетках его нет, так как здание дома старое, электропроводка не изменялась. После реконструкции электропроводки вольтметр покажет напряжение 220 В.

Особенности нахождения неисправности

Состояние схемы электропроводки не всегда определяется путем обычной проверки напряжения. На выключателях имеется различное положение, которое иногда вводит в заблуждение электрика. На рисунке изображен случай, при выключенном выключателе на проводе фазы светильника нет напряжения при исправной проводке.

Поэтому, при измерениях в поиске поломок нужно проводить тщательный анализ возможных случаев.

Цветовка проводов

Определить, на какой жиле есть напряжение, а на какой нет, довольно просто. Существует много способов вычисления где находятся фаза и ноль.

Одним из методов является определение по цвету изоляции проводов. Каждая жила в кабеле и в электрооборудовании окрашена цветом изоляции определенной расцветки, определенной стандартом. Зная цвета распределения функциям проводов, можно легко произвести установку электропроводки.

Рабочие фазы подключают проводами с черным цветом изоляции, либо может быть коричневый или серый цвет. Нулевой провод монтируют в светло-синей изоляции. При установке вспомогательного дополнительного заземления применяют проводники с зеленым или желтым цветом изоляции.

Такой способ определения по цвету проводов, фаза и ноль, не является надежным, так как при монтаже электропроводки специалисты не всегда добросовестно соблюдают маркировку проводов по цвету жил.

Похожие темы:

Фаза и ноль в электрике

Хозяин квартиры или частного дома, решивший проделать любую процедуру, связанную с электричеством, будь то установка розетки или выключателя, подвешивание люстры или настенного светильника, неизменно сталкивается с необходимостью определить, где в месте производства работ находятся фазный и нулевой провод, а также кабель заземления. Это нужно для того, чтобы правильно подсоединить монтируемый элемент, а также избежать случайного удара током. Если вы имеете определенный опыт работы с электричеством, то такой вопрос не поставит вас в тупик, но для новичка он может оказаться серьезной проблемой. В этой статье мы разберемся, что такое фаза и ноль в электрике, и расскажем, как найти эти кабели в цепи, отличив их друг от друга.

В чем отличие фазного проводника от нулевого?

Назначение фазного кабеля – подача электрической энергии к нужному месту. Если говорить о трехфазной электросети, то в ней на единственный нулевой провод (нейтральный) приходится три токоподающих. Это обусловлено тем, что поток электронов в цепи такого типа имеет фазовый сдвиг, равный 120 градусам, и наличия в ней одного нейтрального кабеля вполне достаточно. Разность потенциалов на фазном проводе составляет 220В, в то время как нулевой, как и заземляющий, не находится под напряжением. На паре фазных проводников значение напряжения составляет 380 В.

Линейные кабели предназначены для соединения нагрузочной фазы с генераторной. Назначение нейтрального провода (рабочего нуля) заключается в соединении нулей нагрузки и генератора. От генератора поток электронов перемещается к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым кабелям.

Нулевой провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.

Назначение нулевого провода заключается в создании цепочки с низким показателем сопротивления, чтобы в случае короткого замыкания величины тока хватило для немедленного срабатывания устройства аварийного отключения.

Таким образом, за повреждением установки последует ее быстрое отключение от общей сети.

В современной проводке оболочка нейтрального проводника бывает синей или голубой. В старых схемах рабочий нулевой провод (нейтраль) совмещен с защитным. Такой кабель имеет покрытие желто-зеленого цвета.

В зависимости от назначения электропередающей линии она может иметь:

  • Глухозаземленный нейтральный кабель.
  • Изолированный нулевой провод.
  • Эффективно-заземленный ноль.

Первый тип линий все чаще используется при обустройстве современных жилых зданий.

Чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами и доставляется также по трем фазным проводникам, находящимся под высоким напряжением. Рабочий ноль, являющийся по счету четвертым проводом, подается от этой же генераторной установки.

Наглядно про разницу между фазой и нолем на видео:

Для чего нужен заземляющий кабель?

Заземление предусмотрено во всех современных электрических бытовых устройствах. Оно помогает снизить величину тока до уровня, который безопасен для здоровья, перенаправляя большую часть потока электронов в землю и защищая человека, коснувшегося прибора, от электрического поражения. Также заземляющие устройства являются неотъемлемой частью громоотводов на зданиях – через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не становясь причиной пожара.

На вопрос – как определить провод заземления – можно было бы ответить: по желто-зеленой оболочке, но цветовая маркировка, к сожалению, довольно часто не соблюдается. Бывает и такое, что электромонтер, не обладающий достаточным опытом, путает фазный кабель с нулевым, а то и подключает сразу две фазы.

Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Профессиональные электромонтеры используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными элементами питания, но простенькое устройство китайского производства вполне доступно любому человеку и должно иметься у каждого хозяина дома.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

Заключение

В этом материале мы подробно ответили на вопрос, что собой представляют фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где в проводке находится фазная жила. Какой из этих способов предпочтительнее, решать вам, но помните, что вопрос определения фазы, ноля и заземления очень важен. Неправильные результаты проверки могут стать причиной сгорания приборов при подключении, или, что еще хуже – причиной поражения электрическим током.

Отличить ноль от заземления в проводке с тремя жилами

При ремонте или частичной замене электропроводки, электрику приходится сталкиваться с определением фазы, ноля и заземления в распаячных коробках. С определением фазы проблем никаких нет, достаточно воспользоваться отверткой-индикатором. Когда проводка проложена двумя жилами, без земли, естественно, вторая жила является нулем. Однако при ремонте проводки с тремя токоведущими проводниками, зачастую возникает вопрос: где рабочий ноль, а где защитный. Ведь по электрическим свойствам оба проводника идентичны — можно подключить даже приличную нагрузку к паре фаза-земля и не заметить разницы. При измерении напряжения мультиметром между парами фаза-ноль и фаза-земля примерно одинаковые напряжения.

Для тех, кто в танке: если вы думаете, что можно проверить мультиметром или лампой два провода из трех и там, где будет напряжение, это и есть фаза с нулем — вы заблуждаетесь! Между фазой и заземлением (занулением) напряжение также составляет около 220 вольт!

Если проводка современная, с цветной маркировкой проводов — дело упрощается. Обычно фаза маркируется коричневым или белым (при отсутствии коричневого) проводниками, ноль — синим или белым (с синей полосой). Заземление по современным стандартам маркируется желтой изоляцией с зеленой полосой. Однако здесь два НО: далеко не факт, что монтажники были в курсе об общепринятой цветовой маркировке или использовали провода для трехфазной сети с черным, коричневым и синим (белым или желтым) проводниками. Поэтому хорошему электрику не следует безоговорочно ориентироваться на цвета проводников, смонтированных другими электромонтажниками.

Методы определения

Рассмотрим способы определения нулевого и заземляющего проводников, от очень простого к более сложным.

Цепь имеет защиту по дифф-току. Если весь объект или исследуемая ветка снабжены защитой по дифференциальному току — дифф-автоматом или УЗО, задача значительно упрощается. Нужно контрольный прибор, например лампа с проводниками, подключить к фазе и к одному из исследуемых проводников. Если дифф-защита не сработала, значит лампа подключена к рабочему нолю. Если происходит срабатывание УЗО при подключении лампы — вы ее подключаете к фазе и земле. Все достаточно просто и заодно проверите устройство защитного отключения на практике.

Перед выполнением такого теста нужно убедиться в работоспособности дифф-защиты, нажав кнопку «тест» на защитном аппарате. Следует отметить, что способ будет работать при условии, что ток через лампу будет превышать номинальный дифференциальный ток аппарата. То есть, при использовании лампы накаливания (энергосберегайка не подходит) сработает УЗО с током утечки 10-30 мА. Вводное УЗО на утечку 300 мА может не сработать, для надежной проверки нужно брать прибор помощнее.

Сравнение с заземляющими контактами розеток. Данный метод будет работать если на вводе стоит двухполюсный автомат, размыкающий рабочий ноль и в помещении имеются розетки с заземлением. Вводной автомат следует отключить, тем самым мы разомкнем любую связь ноля с землей. По возможности следует отключить все приборы из розеток.

Далее следует «прозвонить» мультиметром в режиме измерения сопротивления заземляющий контакт одной из розеток с исследуемыми контактами. При соединении с нулевым проводом, мультиметр должен показывать большое сопротивление, с заземляющим контактом на неизвестной точке с землей розетки сопротивление практически нулевое.

Таким способом можно заодно проверить правильность подключенных розеток: при отключенном вводном двухполюсном автомате, нулевые и заземляющие контакты прозваниваться не должны. Ну это при условии, что проводка изначально исправна и верно смонтирована.

Лезть в щит. Если предыдущие способы реализовать нет возможности, придется лезть в «начинку» электрощита. Думаю напоминать здесь о технике безопасности не стоит: ее никто не отменял. На самом деле способ достаточно прост: нужно найти нулевой проводник, уходящий в помещение и отсоединить его от клемм щита. Затем прозвонить с исследуемыми контактами: с которым будет звониться — тот и есть нулевой проводник.

В случае с щитом вполне может возникнуть сложность, когда даже в щите сложно отличить ноль от заземления. В этом случае понадобятся токовые клещи. Нужно включить напряжение и нагрузку в помещении, и исследовать клещами неизвестные проводники в щите — где будет ток, так и рабочий ноль. Обратите внимание: метод работает только в том случае, когда вы точно знаете, что один из проводников — ноль, а другой — земля.

Все вышеописанные методы работают как с заземлением, так и с «занулением»

Определить контакты при подключении электроплиты. Иногда возникает необходимость заменить розетку электроплиты, а проводка советских времен или начала 90-х, одноцветная. Для верного определения зануления электроплиты необходимо условие — двухполюсный автомат во вводном щите, отключающий и фазу, и ноль от всей квартиры.

Итак, при включенной электроэнергии определяем фазу на ичсследуемых выводах для будущей розетки — этот контакт помечаем и откидываем в сторону, далее он нам не нужен. Потом нужно определить ноль в любой розетке в квартире — так как проводка советская, земли там нет, поэтому нолем окажется тот вывод, на котором не светится отвертка-индикатор.

Теперь обесточиваем всю квартиру и мультиметром прозваниваем ноль обычной розетки с двумя оставшимися контактами на электроплиту. Тот контакт, который звонится с нолем розетки — рабочий, а тот что не звонится — зануление (земля). Если же звонятся оба контакта — нужно искать ошибки в электропроводке. При организации зануления в советское время, его присоединяли к клемме «PEN» без каких-либо коммутационных аппаратов.

Что будет, если перепутать ноль с землей?

Если заземление исправно и выполнено в соответствии со всеми требованиями, об ошибке можно не подозревать многие годы. Мне много раз попадались неправильно подключенные электроплиты с советских времен. Однако на эти ошибки не следует закрывать глаза:

1. Приборы учета электроэнергии будут некорректно работать, из-за этого можно схлопотать приличный штраф от энергетиков, когда все выяснится.

2. При установке дифференциальных выключателей (УЗО) или дифференциальных автоматов, корректная их работа невозможна. Эти аппараты будут все время отключаться.

3. Заземление перестанет выполнять свою основную функцию — защищать человека от поражения электрическим током. В добавок, это может стать самой причиной поражений.

4. При «слабом» заземлении в частном доме оно быстро выйдет из строя и в любом случае, придется производить ремонт.

Смотрите также другие статьи

Что такое однофазное и трехфазное питание и что происходит, когда нейтраль вашего источника питания отключается?

  1. Главная страница ›
  2. Экономия электроэнергии›
  3. Общие советы ›
  4. Что такое одно- и трехфазное питание и что происходит, когда нейтраль вашего источника питания отключается?

Вы либо видели, либо слышали от других о проблеме высокого или низкого напряжения в своем доме. Сомнения чаще всего связаны с некачественным питанием или скачком напряжения.Но есть и другая причина, а именно «отключение нейтрали». В этом посте мы рассмотрим, как отключение нейтрали и его расположение влияют на производительность вашего источника питания.

Электропитание в вашем доме может быть однофазным, т. Е. 2-проводным с фазой и нейтралью или 4-проводным с 3 фазой и нейтралью. Подробнее об одно- и трехфазном питании. Электропитание распределяется параллельно к разным домам либо однофазной, либо трехфазной системой электроснабжения в зависимости от разрешенной нагрузки.Трансформатор на подстанции подключен по схеме треугольник-звезда, при этом вход является трехпроводным, трехфазным, а выход трансформатора — четырехпроводным, трехфазным. В зависимости от нагрузки энергокомпания разрешает одно- или трехфазное электроснабжение вашего дома. Когда он однофазный, мощность поочередно распределяется от фаз R, Y и B, так что нагрузка на систему уравновешивается.

Что такое нейтральный терминал?

Нейтраль выводится из трансформатора, через который между фазой и нейтралью подается напряжение 240 В.Этот нейтральный провод заземлен на самом трансформаторе и проходит как изолированный провод к дому. Заземление нейтрального вывода удерживает нейтраль под напряжением земли. Это помогает поддерживать фазный потенциал на уровне 240 В минус несколько вольт в сторону падения напряжения. Из-за неуравновешенности нагрузки через нейтральный провод всегда течет ток обратно в систему. Помните, что нейтраль заземляется только на трансформаторе, а не на нагрузке, т. Е. В доме. Не следует заземлять нейтраль у себя дома.В этом случае часть тока может течь к источнику через землю с некоторой потерей мощности.

Что такое отключение нейтрали?

Отключение нейтрали аналогично отключению фазы. Если фазное питание отключено, в этой фазе не будет электричества в вашем доме и не будет причинен ущерб. Теперь представьте себе отключение нейтрали по сценарию, приведенному ниже, и то, как напряжение ведет себя на выводах различных фаз.

На трансформаторе

Трансформатор питает нагрузку во всех трехфазных сетях, а распределение таково, что нагрузка сбалансирована в пределах плюс / минус 5-15%.Из-за отключения нейтрали на трансформаторе его потенциал будет плавающим в зависимости от дисбаланса нагрузки. Теперь, если дисбаланс нагрузки значительный, скажем, плюс-минус 15%, фаза с низкой нагрузкой, напряжение станет высоким, и электронное оборудование, предусмотренное в этой фазе, может сгореть и снизить нагрузку, что может вызвать эффект домино. В то же время фаза с высокой нагрузкой будет испытывать низкое напряжение, но не повредит электронику / свет / вентилятор. Но это может привести к повреждению оборудования с электроприводом, а также к возникновению дыма или пламени, снижению нагрузки в этой фазе или отключению из-за защиты действия стабилизатора.В любом случае нагрузка снижается, а напряжение повышается. Теперь нейтраль может перейти в состояние устойчивости, и последовательность повреждений оборудования может прекратиться.

Так объясняются жалобы на повреждение оборудования в обществе, и каждая квартира / дом сталкивается с этой проблемой.

У вас дома

Несимметрия нагрузки будет значительной, а также будет большой разбаланс напряжения. Существует вероятность существенного повреждения электронного оборудования в связи с явлением, описанным выше.

В доме с однофазным подключением

Поскольку нейтраль отключена, в доме не будет электропитания. Вы будете искать MCB или RCCB, но без отключения и что дальше? Естественное отключение приведет к появлению фазного напряжения на клемме нейтрали. Обнаружить это можно только при помощи тестера. Убедитесь, что это испытание проводится с помощью электрика.

Нейтраль отключена, но касается земли

А! Это самый безопасный режим отключения при отключении нейтрали и касании земли.Теперь обратный ток течет обратно к источнику через землю. Потенциал нейтрали не сильно смещается и не повреждает какое-либо оборудование.

Как часто это бывает?

В воздушной распределительной сети LT это может быть обычным явлением во время штормов, особенно в деревнях с ненадлежащим обслуживанием нейтрального провода. Это одна из причин, по которой сельчане будут использовать землю в качестве обратного проводника вместо нейтрали, потому что нет надежности воздушных проводов.Раньше в городах была широко распространена воздушная раздача LT, но в то время электронная или моторизованная техника также была не очень распространена в домах и не вызывала особой жалобы. При LT-распределении по кабельной сети вероятность таких инцидентов очень мала, кроме случаев, когда есть перерыв в техническом обслуживании.

Какое решение?

На данный момент нет стандартного продукта, продаваемого какой-либо компанией, производящей распределительное устройство. MCB не будет работать, так как ток не будет очень высоким, и RCCB также не будет работать, поскольку нет утечки тока.Можно представить себе самодельную схему, предусматривающую трехполюсный силовой контактор на 63 А после входных автоматических выключателей с катушкой, подключенной к фазе, а другой — к нулевой шине в распределительной коробке. Когда нейтраль отключена, катушка не получает питания и размыкает контактор. Схема, нарисованная от руки, приведена ниже. Показан входящий TPN 63A, но у одного должно быть твердое нейтральное соединение.

Об авторе :
Г-н Махеш Кумар Джайн — выпускник Университета Рурки (IIT Roorkee) со степенью в области электротехники, проработавший 36 лет, служа Индийским железным дорогам.Он ушел в отставку с Индийских железных дорог с должности директора IREEN (Институт электротехники Индии), а также работал главным инженером-электриком на многих железных дорогах. Он выполнял обязанности электрического инспектора правительства. Индии. Г-н Махеш Кумар Джайн страстно увлечен вопросами электробезопасности, пожарной безопасности, надежности, потребления / сохранения / управления электрической энергией, электроприборов. В настоящее время он работает консультантом в Nippon Koi Consortium в области распределения энергии и электровозов. Ещё от автора .

электричество — разница между живыми и нулевыми проводами

Вы можете понять концепцию нейтрального провода математически или практически. Поскольку я больше практичный парень, давайте посмотрим на картину в целом. Нет нулевого провода, идущего от генератора или в системах передачи. Нейтральный провод реализован только на распределительном (4-проводные системы) и сетевом (под напряжением и нейтралью …. и заземлении) конце изображения.

Вы можете спросить, почему это так. Причина в том, что на уровне генератора и передачи линии или проводники имеют почти идентичный импеданс (в идеале идентичный), поэтому напряжение между каждой из 3 линий имеет одинаковую величину, но на 120 градусов друг от друга по фазе. На уровне распределения ваши нагрузки далеко не идентичны, фактически каждый раз, когда потребитель электроэнергии включает свет, полное сопротивление распределительной сети изменяется.

Это означает, что без нейтрального провода напряжение на каждой нагрузке и напряжение между фазами были бы разными, что не идеально как для потребителя, так и для электрической системы, поскольку это приводит к дисбалансу в системе распределения электроэнергии.Нагрузки с большим импедансом потребуют большего падения напряжения на них, чем нагрузки с меньшим импедансом.

Последствия этого могут быть разрушительными для оборудования, не рассчитанного на изменение напряжения питания, не говоря уже о том, что ваш свет будет колебаться между тусклым и солнечным, как в дискотеке. Здесь в игру вступает нейтральный провод. Нейтральный провод подключается в общей точке ко всем трем фазам. В идеале при $ 0 \, V $, например, в звездообразной конфигурации.

Это гарантирует, что если есть разница между импедансом нагрузки каждой фазы, то напряжение останется постоянным.Вот почему у вас есть только $ 220 \, V $ (RMS) и $ 110 \, V $ (RMS) или другие стандартные уровни напряжения. Электрический ток всегда должен колебаться. С реализованной нейтралью мы получаем постоянное напряжение на любой нагрузке (полное сопротивление) с переменным током.

Как нейтральный провод делает это возможным? Поскольку нейтральный провод представляет собой потенциал между всеми тремя фазами, каждая фаза вместе с нейтральным проводом может образовывать независимую цепь, например, ваш дом, следовательно, под напряжением и нейтраль.Роль нейтрального провода заключается в пропускании любого тока в результате дисбаланса импеданса каждой из фазных нагрузок. Это приводит к поддержанию стабильного стандартного номинального напряжения. Помните, что напряжение относится к другому уровню напряжения.

Если $ 220 \, V $ высокое, нейтраль, с другой стороны, низкое, что также означает, что, поскольку существует эта разность потенциалов, в первую очередь может быть сформирована электрическая цепь.

Теперь, чтобы ответить на вопрос, поставленный в этой теме, провод под напряжением , который можно проследить вплоть до ближайшего трансформатора (-ов), чьи фазные провода можно проследить до обмотки статора генератора на всем пути к источнику питания. станция. Нейтраль — это провод, связанный с концом с низким потенциалом между каждой фазой, позволяющий завершить цепь и поддерживать стабильный уровень напряжения.

Поскольку нейтральный провод замыкается, и электрическая цепь (с точки зрения переменного тока) проходит по тому же току, что и под напряжением или фазный провод, идущий обратно к генератору, однако его потенциал относительно земли составляет почти $ 0 \, V $. Напряжение между проводом фазы и землей будет составлять $ 220 \, V $, поэтому фазный провод будет чередовать направление тока между максимальными положительными и максимальными отрицательными пиками цикла переменного тока.

Что произойдет, если аккумулятор подключен к сети переменного тока?

Что произойдет, если мы подключим батарею к источнику переменного тока?

Мы знаем, что аккумулятор не может хранить переменный ток вместо постоянного тока в качестве накопителя энергии. Поэтому никогда не пытайтесь подключить аккумулятор к источнику переменного тока дома, в лаборатории или где-либо еще. Теперь давайте посмотрим, что произойдет, если вы подключите аккумулятор 12 В постоянного тока к источникам переменного тока 110/230 В и 12 В переменного тока?

Подключение аккумуляторной батареи 12 В постоянного тока к 110 В или 230 В переменного тока

Если мы подключим аккумулятор к источнику переменного тока (например, 120 В или 230 В переменного тока от сетевой розетки), он может нагреться и взорваться со стрелой, что создает серьезную опасность. травмы и опасный пожар.Причина в том, что источник переменного тока имеет частоту (50 Гц в Великобритании и 60 Гц в США), то есть направление и величина переменного тока изменяется несколько раз в секунду в зависимости от частоты.

Таким образом, аккумулятор будет заряжаться в первом полупериоде и разряжаться во втором полупериоде переменного тока. Теперь аккумулятор будет заряжаться и разряжаться одновременно 50 или 60 раз за одну секунду. Этот непрерывный процесс нагревает пластины аккумулятора из-за частой зарядки и разрядки.

Поскольку аккумулятор не может менять свои клеммы, то есть положительные и отрицательные клеммы в соответствии с напряжением питания, поскольку они постоянно меняются. По этой причине мы не можем хранить в батарее переменный ток (имеющий разную частоту и величину) вместо постоянного тока (имеющего одно направление с нулевой частотой). Имейте в виду, что, как и аккумулятор, трансформатор также нельзя подключить к источнику постоянного тока.

Подключение аккумулятора 12 В постоянного тока к 12 В переменного тока

Понижение уровня переменного напряжения не означает, что оно будет действовать как постоянный ток или заряжать аккумулятор.Одинаковая зарядка и разрядка, а также частые химические реакции будут происходить на обоих полюсах батареи без какого-либо заряда аккумулятора.

Имейте в виду, что 12 В переменного тока не равно 12 В постоянного тока. Это среднеквадратичное значение, которое означает, что значение 12 В переменного тока будет генерировать такое же тепло в случае 12 В постоянного тока. Но в питании постоянного тока нет концепции размахов и размахов и частоты.

Например:

  • 12 В постоянного тока RMS = 12 В переменного тока RMS = 16.97 В перем. RMS )

Или

  • 12V AC RMS = 33,94 AC V Peak-to-Peak … .. (V Peak = 2 x V Peak or V Peak = 2.828 x V RMS )

То же самое для электрического тока, что и для напряжения, упомянутого выше.

Это означает, что DC RMS = 12V AC RMS составляет 16,97 AC V Peak или 33,94 AC V Peak-to-Peak . Другими словами, значение напряжения переменного тока может быть выше, чем напряжение постоянного тока, имеющее те же среднеквадратичные значения. По этой причине оборудование постоянного тока не следует подключать к источнику переменного тока и наоборот. Проще говоря, аккумулятор работает от постоянного тока и не должен подключаться к источнику переменного тока.

Полезно знать: Электроды батареи известны как анод и катод.Что касается батарей, анод всегда имеет отрицательный «-» (имеет больше электронов), а катод — положительный «+» (имеет меньшее количество электронов).

Осторожно:

  • В аккумуляторе происходит опасная химическая реакция для преобразования химической энергии в форму электрической энергии, поэтому всегда используйте защитные стеклянные и резиновые перчатки и используйте другие меры безопасности при работе с аккумуляторами и соответствующими опасными объектами. оборудование.
  • Никогда не подключайте источник переменного тока к оборудованию постоянного тока и наоборот (ожидайте, что универсальные двигатели работают как от источника переменного, так и от постоянного тока, но перед этим прочтите руководство пользователя, предоставленное производителем продукта.
  • Автор не несет ответственности за какие-либо убытки, травмы или повреждения в результате отображения или использования этой информации, или если вы попробуете какую-либо схему в неправильном формате. Так пожалуйста! Будьте осторожны, потому что все дело в электричестве, а электричество слишком опасно.

Видео:

На следующем видео показан взрыв и выброс батареи при подключении к сетевой розетке (напряжение переменного тока).

Примечание: графический контент. На усмотрение зрителя рекомендуется

Заключение:

  • В: Можно ли подключить батарею к источнику переменного тока?
  • Ответ: Нет и только Нет! Пожалуйста, не делайте этого любой ценой.

Связанные сообщения:

Трехфазный источник — обзор

7.2.3 Метод модуляции прямого матричного преобразователя

В этом разделе матрица рабочего цикла для управления каждым переключателем трехфазного прямого матричного преобразователя и Будет описан способ модуляции трехфазного преобразователя с прямой матрицей с использованием матрицы рабочего цикла. Напряжение на входе и ток на выходе прямого матричного преобразователя даны как независимые переменные в формуле.(7.12).

(7.12) vi = vsavsbvsc = Vimcosωitcosωit − 2π / 3cosωit + 2π / 3, io = ioAioBioC = Iomcosωot − ϕocosωot − ϕo − 2π / 3cosωot − ϕo + 2π / 3.

В этом случае предположим, что операция генерирует выходное фазное напряжение и входной фазный ток в формуле. (7.13) контролем.

(7.13) vo = voAvoBvoC = Vomcosωotcosωot − 2π / 3cosωot + 2π / 3, ii = isaisbisc = Iimcosωit − ϕicosωit − ϕi − 2π / 3cosωit − ϕi + 2π / 3,

где cos ( ϕ6 5 o o ) и cos ( ϕ i ) — коэффициенты мощности нагрузки и входного каскада, соответственно, а ω i и ω o — входная и выходная угловые частоты, соответственно.Опорный потенциал выходного фазного напряжения v oA , v oB и v oC является нейтральной точкой трехфазного источника напряжения входного каскада, как показано на рис. 7.3 .

Входная мощность прямого матричного преобразователя должна быть равна выходной мощности. Следовательно, уравнение. (7.14) определяется из v i T i i = v o T i o .

(7,14) VimIimcosϕi = VomIomcosϕo.

Когда коэффициент усиления по напряжению прямого матричного преобразователя определяется как q = В ом / В im , уравнение. (7.15) определяется как

(7.15) Vom = qVim, Iim = qIomcosϕocosϕi.

Когда уравнения. (7.12), (7.13) подставляются в уравнение. (7.10) матрица T заполнения, которая удовлетворяет ограниченному условию продолжительности включения, как в формуле. (7.11) рассчитывается по формуле. (7.16).

(7.16) T = dAadAbdAcdBadBbdBcdCadCbdCc = p13d1d2d3d3d1d2d2d3d1 + p23d1’d2’d3’d2’d3’d1’d3’d1’d2 ‘,

где d 0 1 9005 9005 9005 9005 0 1 , d 1 ′, d 2 ′ и d 3 ′ выражены в уравнении. (7.17).

(7.17) d1 = 1 + 2qcosω1t, d2 = 1 + 2qcosω1t + 2π3, d3 = 1 + 2qcosω1t − 2π3, d1 ′ = 1 + 2qcosω2t, d2 ′ = 1 + 2qcosω2t − 2π3, d3 ′ = 1 + 2qcosω2t + 2π3,

, где ω 1 и ω 2 ω o ω i и ω o + ω i , соответственно, и p 1 и p 2 — это переменные управления коэффициентом мощности в положительном и отрицательном направлении, соответственно, которые выражены в формуле.(7.18).

(7.18) p1 = 121 + p, p2 = 121 − p, p = tanϕitanϕo.

Из уравнения. (7.18), p 1 + p 2 = 1 и p 1 p 2 = p . Кроме того, p — это коэффициент передачи фазы между входом и выходом прямого матричного преобразователя. Среди переменных, которые определяют p, , ϕ o определяется характеристиками нагрузки, а ϕ i определяется желаемым значением команды.

Если входной каскад матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), уравнение. (7.16) можно просто переписать, как это дает Ур. (7.19).

(7,19) djk = 131 + 2vojvskVim2j = ABCk = abc.

На рис. 7.10 показан диапазон значений трехфазного входного напряжения источника и выходного фазного напряжения прямого матричного преобразователя. Трехфазное выходное фазное напряжение не может выходить за пределы диапазона входного фазного напряжения, поскольку выходное фазное напряжение прямого матричного преобразователя синтезируется из входного напряжения.Следовательно, максимальная величина выходного фазного напряжения ограничена 50% от входного фазного напряжения. Другими словами, максимальное значение управляющего параметра q составляет 0,5 в матрице скважности уравнения. (7.16).

Рис. 7.10. Входное напряжение и выходное фазное напряжение ( q макс. = 0,5).

На рис. 7.11 показан способ получения большего выходного фазного напряжения, чем выходное фазное напряжение на рис. 7.10, путем добавления синфазного напряжения к выходному фазному напряжению по формуле.(7.13). Как упоминалось ранее, синфазное напряжение, приложенное к выходному фазному напряжению, не влияет на линейное напряжение выходного каскада прямого матричного преобразователя, поскольку опорные потенциалы выходного фазного напряжения В, , А , , v oB и v oC являются нейтральными точками трехфазного источника напряжения входного каскада.

Рис. 7.11. Входное напряжение и выходное фазное напряжение ( q max = 0.866) с использованием синфазного напряжения в модуляции.

Следовательно, фазные напряжения на выходе выражаются в формуле. (7.20) как

(7.20) vo = voAvoBvoC = Vomcosωot + vcmtcosωot − 2π / 3 + vcmtcosωot + 2π / 3 + vcmt,

, где v cm — синфазное напряжение, выраженное в уравнении . (7.21) как

(7.21) vcmt = −16cos3ωot + 36cos3ωit.

В результате максимальное значение q увеличивается до √ 3/2 (= 0,866). Кроме того, q max = 0.866 — это уникальная характеристика прямого матричного преобразователя, которая определяется независимо от метода модуляции управления прямого матричного преобразователя.

Если выходное фазное напряжение уравнения. (7.20) вместо уравнения. (7.13) окончательное решение обычно выражается комплексным уравнением, полученным с помощью оптимального метода Вентурини. Кроме того, этот метод необходим для многих расчетов в реальном приложении. Однако, если входной каскад прямого матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), окончательное решение может быть легко реализовано, как показано в уравнении.(7.22).

(7.22) djk = 131 + 2vojvskVim2 + 4q33sinωit + βksin3ωit, j = A, B, C, k = a, b, c, βa = 0, βb = −2π / 3, βc = 2π / 3.

В зависимости от оптимального метода анализа Вентурини, соотношение между передаточным отношением фазы на входе и выходе p прямого матричного преобразователя и коэффициентом усиления по напряжению q выбирается из уравнения. (7.23).

(7,23) 2qp⋅1 − signλ3 + signλ3≤1,

, где λ и sign ( λ ) выражаются следующим образом в уравнении. (7.24).

(7.24) λ = 2q31 − p, signλ = 1, λ≥0−1, λ <0.

На рис. 7.12 показано изменение максимального усиления по напряжению q max в зависимости от значения p . Если p контролируется для управления коэффициентом мощности входного каскада прямого матричного преобразователя, необходимо соблюдать осторожность, поскольку максимальное усиление напряжения q max изменяется, как показано на рис. 7.12.

Рис. 7.12. Максимальное усиление напряжения q max в зависимости от значения p .

Если требуется q max > 0,5, диапазон p должен быть ограничен в диапазоне — 1 < p <1. Кроме того, в диапазоне - 1 < p <1, диапазон регулировки угла коэффициента мощности входного каскада ограничен как - | ϕ o | < ϕ i <| ϕ o | из уравнения. (7.18).

На рис. 7.13 показан пример метода, который генерирует стробирующие сигналы, которые являются функцией присутствия переключателя ( S jk ), с использованием каждого матричного элемента ( d jk ) матрицы заполнения . Т матричного преобразователя.Стробирующие сигналы переключателей S Aa , S Ab и S Ac , подключенных к выходному каскаду фазы A, определяются путем сравнения несущего сигнала v tri треугольной формы. форма с d Aa и ( d Aa + d Ab ) мгновенно. Кроме того, они выражаются следующим образом в формуле. (7.25):

Рис. 7.13. Формирование стробирующих сигналов из дежурного сигнала (переключение фазы А).

(7.25) sAasAbsAc = 100,0≤vtri

, где s ij = 0 представляет состояние выключения переключателя и s ij = 1 представляет состояние включения. Методы, которые генерируют стробирующие сигналы переключателей ( S Ba , S Bb и S Bc ), подключенных к выходному каскаду B-фазы и переключателям ( S Ca , S Cb и S Cc ), подключенные к выходному каскаду C-фазы, аналогичны методу для переключателей, подключенных к выходному каскаду A-фазы.

Удары плавающей нейтрали в распределительной сети

Обрыв (ослабленная) нейтраль

Если нейтральный провод разомкнут, сломан или потерян на одной из сторон источника (распределительный трансформатор, генератор или на стороне нагрузки — распределительный щит потребителя), нейтральный проводник распределительной системы будет « плавать » или потеряет свою контрольную точку заземления.

Удары по плавающей нейтрали в распределителе мощности (фото Mardix Limited; Fickr)

Состояние плавающей нейтрали может привести к тому, что напряжение может достигать максимального значения, равного среднеквадратичному значению фазового напряжения относительно земли, в зависимости от состояния несбалансированной нагрузки.Состояние плавающей нейтрали в электросети имеет разное влияние в зависимости от типа источника питания, типа установки и балансировки нагрузки в распределительной сети.

Обрыв нейтрали или Ослабленная нейтраль может привести к повреждению подключенной нагрузки или создать опасное напряжение прикосновения на корпусе оборудования.

Здесь мы пытаемся понять состояние плавающей нейтрали в распределительной системе T-T.


Что такое плавающая нейтраль?

Если точка звезды несимметричной нагрузки не соединена с точкой звезды ее источника питания (распределительного трансформатора или генератора), то фазное напряжение не остается одинаковым для каждой фазы, а изменяется в зависимости от несимметричной нагрузки.

Поскольку потенциал такой изолированной точки звезды или нейтральной точки всегда меняется и не фиксируется, он называется Floating Neutral .


Нормальное состояние питания и состояние плавающей нейтрали

Нормальное состояние питания

В трехфазных системах существует тенденция для точки звезды и фаз, требующих « уравновешивать » в зависимости от коэффициента утечки для каждого из них. Фаза к Земле. Точка звезды будет оставаться близкой к 0 В в зависимости от распределения нагрузки и последующей утечки (более высокая нагрузка на фазе обычно означает более высокую утечку).

Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные приборы с более низким напряжением. В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).

Схема системы здорового питания
3-фазная 3-проводная система

Три фазы имеют свойства, которые делают ее очень востребованной в электроэнергетических системах.

Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга (сумма равна нулю в случае линейной сбалансированной нагрузки). Это позволяет исключить нейтральный провод на некоторых линиях. Во-вторых, передача мощности в линейную сбалансированную нагрузку постоянна.


3-фазная 4-проводная система для смешанной нагрузки

Большинство бытовых нагрузок являются однофазными. Обычно трехфазное питание либо не поступает в жилые дома, либо разделяется на главном распределительном щите.

Текущий закон Кирхгофа гласит, что подписанная сумма токов, входящих в узел, равна ноль .Если нейтральная точка является узлом, то в сбалансированной системе одна фаза соответствует двум другим фазам, в результате чего ток через нейтраль отсутствует. Любой дисбаланс нагрузки приведет к протеканию тока по нейтрали, так что сумма будет равна нулю.

Например, в сбалансированной системе ток, входящий в нейтральный узел с одной стороны фазы, считается положительным, а ток, входящий (фактически выходящий) из нейтрального узла с другой стороны, считается отрицательным.

Это усложняется с трехфазным питанием, потому что теперь мы должны учитывать фазовый угол, но концепция в точности та же.Если мы соединены звездой с нейтралью, тогда нейтральный проводник будет иметь нулевой ток на нем только в том случае, если три фазы имеют одинаковый ток на каждой. Если мы проведем векторный анализ этого, сложив sin (x) , sin (x + 120) и sin (x + 240) , мы получим ноль .

То же самое происходит, когда мы соединены треугольником, без нейтрали, но затем возникает дисбаланс в системе распределения, за пределами сервисных трансформаторов, потому что система распределения обычно соединяется звездой.

Нейтраль никогда не должна быть подключена к заземлению, кроме той точки обслуживания, где нейтраль изначально заземлена (на распределительном трансформаторе). Это может настроить землю в качестве пути, по которому ток возвращается обратно в службу. Любой разрыв цепи заземления может привести к возникновению потенциала напряжения.

Заземление нейтрали в трехфазной системе помогает стабилизировать фазные напряжения. Незаземленная нейтраль иногда называется «плавающей нейтралью » и имеет несколько ограниченных применений.


Состояние плавающей нейтрали

Электроэнергия течет в помещения клиентов и из них из распределительной сети, входя через фазу и покидая нейтраль. В случае обрыва нейтрального обратного пути электричество может двигаться по другому пути. Поток мощности, поступающий в одну фазу, возвращается через оставшиеся две фазы. Нейтральная точка не находится на уровне земли, но находится на уровне напряжения сети.

Эта ситуация может быть очень опасной, и клиенты могут серьезно пострадать от поражения электрическим током, если они коснутся чего-либо, где присутствует электричество.

Состояние плавающей нейтрали

Обрыв нейтрали может быть трудно обнаружить, а в некоторых случаях может быть нелегко идентифицировать. Иногда на сломанные нейтрали могут указывать мерцающие огни или покалывание.

Если в вашем доме мерцает свет или постукивает по телефону, вы можете получить серьезные травмы или даже смерть.


Измерение напряжения между нейтралью и землей

Практическое правило , используемое многими в промышленности, гласит, что напряжение между нейтралью и землей 2 В или меньше на розетке нормально, а несколько вольт или более указывают на перегрузку; 5 В считается верхним пределом.


Низкое показание

Если напряжение между нейтралью и землей низкое в розетке, значит система исправна. Если оно высокое, то вам все равно необходимо определить, в основном ли проблема на уровне ответвленной цепи или в основном на уровне панели. .

Напряжение между нейтралью и землей существует из-за падения IR тока, проходящего через нейтраль обратно в соединение нейтрали с землей. Если система правильно подключена, не должно быть заземления нейтрали, за исключением трансформатора источника (в том, что NEC называет источником раздельно производной системы или SDS, который обычно является трансформатором).

В этой ситуации заземляющий провод практически не должен иметь тока и, следовательно, на нем не должно быть падения IR . Фактически, заземляющий провод используется в качестве длинного тестового провода, ведущего назад к заземлению нейтрали.


Высокое показание

Высокое показание может указывать на общую нейтраль ответвления , то есть нейтраль, совместно используемую более чем одной ответвленной цепью. Эта общая нейтраль просто увеличивает возможности для перегрузки, а также для воздействия одной цепи на другую.


Нулевое показание

Определенное напряжение между нейтралью и землей является нормальным для нагруженной цепи. Если показание стабильно близко к 0В. Есть подозрение на незаконное соединение нейтрали с землей в розетке (часто из-за потери жилы нейтрали, касающейся какой-либо точки заземления) или на субпанели.

Любые соединения нейтрали с землей, кроме тех, которые находятся у источника трансформатора (и / или главной панели), должны быть удалены, чтобы предотвратить обратные токи, протекающие через заземляющие проводники.


Различные факторы, вызывающие плавающее положение нейтрали

Существует несколько факторов, которые определяют как причину плавающего положения нейтрали. Воздействие плавающей нейтрали зависит от положения, в котором нейтраль нарушена:

1) На трехфазном распределительном трансформаторе

Неисправность нейтрали в трансформаторе в основном связана с выходом из строя проходного изолятора нейтрали.

Использование ответвителя на вводе трансформатора определено как основная причина выхода из строя нейтрального провода на вводе трансформатора.Гайка на линии со временем ослабляется из-за вибрации и разницы температур, что приводит к горячему соединению. Проводник начал плавиться и в результате оборвался нейтраль.

Плохое качество монтажа и технического персонала также является одной из причин отказа нейтрали.

Обрыв нейтрали на трех фазах трансформатора приведет к скачку напряжения до линейного напряжения в зависимости от балансировки нагрузки в системе. Этот тип нейтрального положения может повредить оборудование клиента, подключенное к источнику питания.

В нормальных условиях ток течет от фазы к нагрузке к нагрузке обратно к источнику (распределительный трансформатор). При обрыве нейтрали ток из красной фазы вернется в синюю или желтую фазу, в результате чего между нагрузками будет напряжение между линиями.

У некоторых клиентов будет повышенное напряжение, а у других — низкое.


2) Обрыв провода нейтрали в линии НН

Воздействие обрыва нейтрального проводника в воздушном распределении НН будет таким же, как и при обрыве провода на трансформаторе .Напряжение питания увеличивается до линейного напряжения вместо фазного. Этот тип неисправности может привести к повреждению оборудования клиента, подключенного к источнику питания.


3) Обрыв провода нейтрали обслуживания

Обрыв провода нейтрали обслуживания приведет только к прекращению подачи электропитания на стороне потребителя. Никаких повреждений оборудования заказчика.


4) Высокое сопротивление заземления нейтрали на распределительном трансформаторе:

Хорошее сопротивление заземления Заземление Нейтраль обеспечивает путь с низким сопротивлением для тока нейтрали , идущего в землю.Высокое сопротивление заземления может обеспечить путь высокого сопротивления для заземления нейтрали на распределительном трансформаторе.

Предельное сопротивление заземления должно быть достаточно низким, чтобы обеспечить достаточный ток короткого замыкания для срабатывания защитных устройств во времени и уменьшить смещение нейтрали.


5) Перегрузка и разбалансировка нагрузки

Распределительная сеть Перегрузка в сочетании с плохим распределением нагрузки является одной из основных причин отказа нейтрали. Нейтраль должна быть правильно спроектирована так, чтобы минимальный ток проходил через нейтральный проводник.Теоретически предполагается, что ток в нейтрали равен нулю из-за отмены из-за сдвига фаз фазового тока на 120 градусов.

IN = IR <0 + IY <120 + IB <-120

In Overloaded Unbalancing Network Много тока будет течь в нейтрали, которая разрывает нейтраль в самом слабом месте.


6) Общие нейтрали

В некоторых зданиях разводка проводов так, что две или три фазы совместно используют одну нейтраль. Первоначальная идея заключалась в том, чтобы продублировать на уровне ответвленной цепи четырехпроводную (три фазы и нейтраль) разводку панелей управления.Теоретически на нейтраль вернется только несимметричный ток. Это позволяет одной нейтрали выполнять работу для трех фаз. Этот способ подключения быстро зашел в тупик с ростом однофазных нелинейных нагрузок. Проблема в том, что ток нулевой последовательности

от нелинейных нагрузок, в первую очередь третьей гармоники, будет арифметически складываться и возвращаться на нейтраль. Помимо потенциальной проблемы безопасности из-за перегрева нейтрали меньшего размера, дополнительный ток нейтрали создает более высокое напряжение нейтрали относительно земли.

Это напряжение нейтрали относительно земли вычитается из напряжения линии на нейтраль, доступного для нагрузки. Если вы начинаете чувствовать, что общие нейтралы — одна из худших идей, когда-либо воплощенных в меди.


7) Плохое качество изготовления и обслуживания

Обычно обслуживающий персонал обычно не уделяет внимания сетям низкого напряжения. Ослаблено. или . Неадекватная затяжка нейтрального проводника повлияет на непрерывность нейтрали, что может привести к смещению нейтрали.

Как определить состояние плавающей нейтрали в панели?

Давайте возьмем один пример, чтобы понять состояние нейтрального плавающего положения . . У нас есть трансформатор, вторичная обмотка которого соединена звездой, фаза-нейтраль = 240 В, и фаза-фаза = 440 В, .


Состояние (1) — нейтраль не плавает

Независимо от того, заземлена ли нейтраль, напряжения остаются неизменными: 240 В между фазой и нейтралью и 440 В между фазами. Нейтраль не плавает.


Условие (2) — Нейтраль плавает

Все устройства подключены: Если нейтральный провод цепи отсоединяется от основной панели электропитания дома, в то время как фазный провод для цепи все еще остается подключенным к панели и в цепи есть электроприборы, включенные в розетки. В этой ситуации, если вы поместите тестер напряжения с неоновой лампой на нейтральный провод, он будет светиться так же, как если бы он был под напряжением, потому что на него подается очень небольшой ток, идущий от фазового источника через подключенное устройство ( s) к нейтральному проводу.

Все устройства отключены: Если вы отключите все приборы, освещение и все остальное, что может быть подключено к цепи, нейтраль больше не будет казаться находящейся под напряжением, потому что от нее больше нет пути к фазовому питанию.

  • Междуфазное напряжение: Измеритель показывает 440 В переменного тока. (Никакого влияния на 3-фазную нагрузку)
  • Напряжение между фазой и нейтралью: Измеритель показывает от 110 В до 330 В переменного тока.
  • Напряжение нейтрали относительно земли: Измеритель показывает 110 В.
  • Напряжение между фазой и землей: Измеритель показывает 120 В.

Это связано с тем, что нейтраль «плавает» над потенциалом земли (110 В + 120 В = 230 В переменного тока) . В результате выход изолирован от системного заземления, и полный выход 230 В устанавливается между линией и нейтралью без заземления.

Если внезапно отключить нейтраль от нейтрали трансформатора, но оставить цепи нагрузки такими, какие они есть, тогда нейтраль на стороне нагрузки станет плавающей, поскольку оборудование, которое подключено между фазой и нейтралью, станет между фазой и фазой (R — Y, Y — B ), и поскольку они не имеют одинаковых номиналов, полученная в результате искусственная нейтраль будет плавающей, так что напряжения, присутствующие на различном оборудовании, больше не будут составлять 240 В, а будут где-то между 0 (не точно) и 440 В (также не совсем точно). ).

Это означает, что на одной линии от фазы к фазе у некоторых будет меньше 240 В, а у других — почти до 415 В. Все зависит от импеданса каждого подключенного элемента.

В системе с дисбалансом, если нейтраль отсоединена от источника, нейтраль становится плавающей нейтралью и смещается в положение, при котором она находится ближе к фазе с более высокими нагрузками и от фазы с меньшей нагрузкой. Предположим, что несимметричная трехфазная система имеет нагрузку 3 кВт в фазе R, нагрузку 2 кВт в фазе Y и нагрузку 1 кВт в фазе B.Если нейтраль этой системы отключена от сети, плавающая нейтраль будет ближе к R-фазе и дальше от B-фазы.

Таким образом, нагрузки с фазой B будут испытывать большее напряжение, чем обычно, в то время как нагрузки с фазой R будут испытывать меньшее напряжение. Нагрузки в фазе Y будут испытывать почти одинаковое напряжение. Выключатель нейтрали для несбалансированной системы опасен для нагрузок. Из-за более высокого или более низкого напряжения наиболее вероятно повреждение оборудования.

Здесь мы видим, что состояние нейтрального плавающего положения не влияет на трехфазную нагрузку, а влияет только на однофазную нагрузку.

Как устранить нейтральное плавающее положение?

Есть некоторые моменты, которые необходимо учитывать, чтобы предотвратить нейтральное плавание.


a) Используйте 4-полюсный выключатель / ELCB / RCBO в распределительном щите

Плавающая нейтраль может быть серьезной проблемой. Предположим, у нас есть панель выключателя с трехполюсным выключателем для трех фаз и шиной для нейтрали для трехфазных входов и нейтрали (здесь мы не использовали четырехполюсный выключатель). Напряжение между каждой фазой — 440, а напряжение между каждой фазой и нейтралью — 230. У нас есть одиночные выключатели, питающие нагрузки, требующие 230 вольт. Эти нагрузки 230 В имеют одну линию, питаемую от выключателя и нейтраль.

Теперь предположим, что нейтраль ослабла, окислилась или каким-то образом отсоединилась на панели или, возможно, даже отключилась от источника питания. Нагрузки 440 В не будут затронуты, однако нагрузки 230 В могут иметь серьезные проблемы. В этом состоянии «плавающая нейтраль» вы обнаружите, что одна из двух линий упадет с 230 вольт до 340 или 350, а другая линия упадет до 110 или 120 вольт. Половина вашего оборудования на 230 В будет повышена из-за перенапряжения, а другая половина не будет работать из-за низкого напряжения.Так что будьте осторожны с плавающими нейтралами.

Просто используйте ELCB, RCBO или 4-полюсный автоматический выключатель в качестве дохода в 3-фазной системе питания, поскольку при размыкании нейтрали отключится все питание без повреждения системы.


b) Использование стабилизатора напряжения

Каждый раз, когда нейтраль выходит из строя в трехфазной системе, подключенные нагрузки будут подключаться между фазами из-за плавающей нейтрали. Следовательно, в зависимости от сопротивления нагрузки на этих фазах, напряжение продолжает колебаться от 230 В до 400 В.

Подходящий сервостабилизатор с широким диапазоном входного напряжения с высокой и низкой отсечкой может помочь в защите оборудования.


c) Хорошее качество изготовления и техническое обслуживание.

Дайте более высокий приоритет техническому обслуживанию сети низкого напряжения. Затяните или примените соответствующий крутящий момент для затяжки нейтрального проводника в системе низкого напряжения.

Заключение

Состояние неисправности «плавающая нейтраль» (отключенная нейтраль) — ОЧЕНЬ НЕ БЕЗОПАСНО , потому что, если устройство не работает, и кто-то, кто не знает о «плавающем» нейтральном положении, может легко прикоснитесь к нейтральному проводу, чтобы узнать, почему приборы не работают, когда они подключены к цепи и получают сильный ток.Однофазные устройства рассчитаны на работу с нормальным фазным напряжением, когда они получают линейное напряжение. Устройства могут быть повреждены.

Неисправность нейтрали отключена — это очень опасное состояние, и ее следует устранить как можно раньше путем поиска неисправностей именно тех проводов, которые необходимо проверить, а затем правильно подключить.

Публикуется в Электрических заметках и статьях

Выключатели и заземляющие провода

Термин «земля» относится к заземлению, которое действует как резервуар заряда.Заземляющий провод обеспечивает проводящий путь к земле, который не зависит от нормального пути прохождения тока в электрическом приборе. На практике в бытовых электрических цепях он подключается к электрической нейтрали на сервисной панели, чтобы гарантировать достаточно низкое сопротивление для отключения автоматического выключателя в случае электрического сбоя (см. Рисунок ниже). Прикрепленный к корпусу устройства, он удерживает напряжение корпуса при потенциале земли (обычно принимаемом за ноль напряжения).Это защищает от поражения электрическим током. Заземляющий провод и предохранитель или прерыватель являются стандартными устройствами безопасности, используемыми в стандартных электрических цепях.

Нужен ли заземляющий провод? Устройство будет нормально работать без заземляющего провода, поскольку он не является частью токопроводящей дорожки, по которой к устройству подается электричество. Фактически, если заземляющий провод сломан или удален, вы, как правило, не заметите разницы. Но если на корпус попадет высокое напряжение, может возникнуть опасность поражения электрическим током.При отсутствии заземляющего провода условия опасности поражения электрическим током часто не приводят к срабатыванию выключателя, если в цепи нет прерывателя замыкания на землю. Частично роль заземляющего провода состоит в том, чтобы заставить выключатель сработать, обеспечивая путь к земле, если «горячий» провод соприкасается с металлическим корпусом устройства.

В случае электрической неисправности, которая приводит к опасному высокому напряжению в корпусе устройства, вы хотите, чтобы автоматический выключатель немедленно отключился, чтобы устранить опасность.Если корпус заземлен, в заземляющем проводе прибора должен протекать большой ток, который отключит прерыватель. Это не так просто, как кажется — привязки заземляющего провода к заземляющему электроду, вбитому в землю, обычно недостаточно для срабатывания прерывателя, что меня удивило. Статья 250 Национального электротехнического кодекса США требует, чтобы заземляющие провода были привязаны к электрической нейтрали на сервисной панели. Таким образом, при межфазном замыкании ток короткого замыкания протекает через провод заземления устройства к сервисной панели, где он присоединяется к нейтральному тракту, протекая через главную нейтраль обратно к центральному отводу сервисного трансформатора.Затем он становится частью общего потока, приводимый в действие служебным трансформатором в качестве электрического «насоса», который производит достаточно высокий ток короткого замыкания для отключения выключателя. В электротехнической промышленности этот процесс привязки заземляющего провода к нейтрали трансформатора называется «соединением», и суть в том, что для обеспечения электробезопасности вы должны быть как заземлены, так и соединены.

Это лишь верхушка айсберга, важная для правильного заземления и соединения электрических систем.См. Сайт Майка Холта для получения дополнительной информации.

Указатель

Практические концепции схем


Майк Холт

Безопасное использование измерителя | Электробезопасность

Безопасное и эффективное использование электросчетчика — это, пожалуй, самый ценный навык, которым может овладеть электронщик, как ради собственной безопасности, так и для профессионального мастерства. Поначалу может быть сложно использовать счетчик, зная, что вы подключаете его к цепям под напряжением, которые могут содержать опасные для жизни уровни напряжения и тока.

Это опасение небезосновательно, и всегда лучше действовать осторожно при использовании счетчиков. Небрежность больше, чем какой-либо другой фактор, является причиной несчастных случаев с электричеством у опытных технических специалистов.

Мультиметры

Самым распространенным электрическим испытательным оборудованием является мультиметр . Мультиметры названы так потому, что они могут измерять множество переменных: напряжение, ток, сопротивление и часто многие другие, некоторые из которых не могут быть описаны здесь из-за их сложности.

В руках обученного техника мультиметр является одновременно эффективным рабочим инструментом и защитным устройством. Однако в руках невежественного и / или неосторожного человека мультиметр может стать источником опасности при подключении к «действующей» цепи.

Существует много разных марок мультиметров, причем каждый производитель выпускает несколько моделей с разными наборами функций. Мультиметр, показанный здесь на следующих иллюстрациях, представляет собой «универсальную» конструкцию, не специфичную для какого-либо производителя, но достаточно общую, чтобы научить основным принципам использования:

Вы заметите, что дисплей этого измерителя имеет «цифровой» тип: числовые значения отображаются с использованием четырех цифр аналогично цифровым часам.Поворотный селекторный переключатель (теперь установлен в положение Off ) имеет пять различных положений измерения, в которых он может быть установлен: два значения «V», два значения «A» и одно положение посередине с забавной «подковой». Символ на нем, представляющий «сопротивление».

Символ «подкова» — это греческая буква «Омега» (Ω), которая является общим обозначением электрической единицы измерения в омах.

Из двух настроек «V» и двух настроек «A» вы заметите, что каждая пара разделена на уникальные маркеры либо парой горизонтальных линий (одна сплошная, одна пунктирная), либо пунктирной линией с волнистой кривой над ней. .Параллельные линии представляют «постоянный ток», а волнистая кривая — «переменный ток». «V», конечно, означает «напряжение», а «A» означает «сила тока» (ток).

Измеритель использует внутренние методы измерения постоянного тока, отличные от тех, которые он использует для измерения переменного тока, и поэтому он требует от пользователя выбора типа напряжения (В) или тока (А) для измерения. Хотя мы не обсуждали переменный ток (AC) в каких-либо технических деталях, это различие в настройках счетчика важно помнить.

Гнезда для мультиметра

На лицевой панели мультиметра есть три разных гнезда, в которые мы можем подключить наши измерительные провода . Измерительные провода — это не что иное, как специально подготовленные провода, используемые для подключения измерителя к тестируемой цепи.

Провода покрыты гибкой изоляцией с цветовой кодировкой (черной или красной), чтобы руки пользователя не касались оголенных проводов, а концы зондов представляют собой острые жесткие кусочки проволоки:

Черный измерительный провод всегда вставляется в черный разъем на мультиметре: тот, который отмечен «COM» для «общего».”Красные измерительные провода подключаются либо к красной розетке с маркировкой напряжения и сопротивления, либо к красной розетке с маркировкой тока, в зависимости от того, какое количество вы собираетесь измерить с помощью мультиметра.

Чтобы увидеть, как это работает, давайте рассмотрим несколько примеров, показывающих, как работает прибор. Сначала мы настроим измеритель для измерения постоянного напряжения от батареи:

Обратите внимание, что два измерительных провода подключены к соответствующим гнездам на измерителе напряжения, а селекторный переключатель установлен на «V» постоянного тока.Теперь рассмотрим пример использования мультиметра для измерения напряжения переменного тока от бытовой электрической розетки (настенной розетки):

Единственное отличие в настройке измерителя — это расположение селекторного переключателя: теперь он установлен на переменный ток «V». Поскольку мы все еще измеряем напряжение, измерительные провода останутся подключенными к тем же гнездам.

В обоих этих примерах настоятельно рекомендуется, , чтобы вы не позволяли наконечникам пробников соприкасаться друг с другом, пока они оба находятся в контакте со своими соответствующими точками в цепи.Если это произойдет, образуется короткое замыкание, вызывающее искру и, возможно, даже шар пламени, если источник напряжения способен обеспечить достаточный ток! Следующее изображение иллюстрирует потенциальную опасность:

Это лишь один из способов, по которым счетчик может стать источником опасности при неправильном использовании.

Измерение напряжения, пожалуй, самая распространенная функция, для которой используется мультиметр. Это, безусловно, первичное измерение, выполняемое в целях безопасности (часть процедуры блокировки / маркировки), и оно должно быть хорошо понято оператором счетчика.

Поскольку напряжение между двумя точками всегда относительное, измеритель должен быть надежно подключен к двум точкам в цепи, прежде чем он будет обеспечивать надежное измерение. Обычно это означает, что оба щупа должны быть схвачены руками пользователя и прижаты к правильным точкам контакта источника напряжения или цепи во время измерения.

Поскольку путь электрического тока из рук в руки является наиболее опасным, удерживание измерительных щупов в двух точках высоковольтной цепи таким образом всегда представляет опасность с потенциалом .Если защитная изоляция на датчиках изношена или потрескалась, пальцы пользователя могут соприкоснуться с проводниками датчика во время испытания, что приведет к сильному удару. Это более безопасный вариант, если можно использовать только одну руку для захвата зондов.

Иногда можно «защелкнуть» один наконечник щупа на контрольной точке цепи, чтобы его можно было отпустить, а другой установить на место, используя только одну руку. Для облегчения этого можно прикрепить специальные аксессуары для наконечников зонда, такие как пружинные зажимы.

Помните, что измерительные провода измерителя являются частью всего комплекта оборудования и что с ними следует обращаться так же осторожно и уважительно, как и с самим измерителем. Если вам нужен специальный аксессуар для ваших измерительных проводов, такой как пружинный зажим или другой специальный наконечник зонда, обратитесь к каталогу продукции производителя измерителя или другого производителя испытательного оборудования.

Не пытайтесь проявить изобретательность и сделать свои собственные испытательные пробники, так как вы можете подвергнуть себя опасности в следующий раз, когда будете использовать их в цепи под напряжением.

Также необходимо помнить, что цифровые мультиметры обычно хорошо справляются с различением измерений переменного и постоянного тока, поскольку они настраиваются на одно или другое при проверке напряжения или тока.

Как мы видели ранее, как переменное, так и постоянное напряжение и ток могут быть смертельными, поэтому при использовании мультиметра в качестве устройства проверки безопасности вы всегда должны проверять наличие как переменного, так и постоянного тока, даже если вы не ожидаете найти оба! Кроме того, при проверке наличия опасного напряжения вы должны обязательно проверить всех пар рассматриваемых точек.

Например, предположим, что вы открыли шкаф с электропроводкой и обнаружили три больших проводника, подающих питание переменного тока на нагрузку. Автоматический выключатель, питающий эти провода (предположительно), был отключен, заблокирован и помечен. Вы дважды проверили отсутствие питания, нажав кнопку Start для нагрузки. Ничего не произошло, поэтому теперь вы переходите к третьему этапу проверки безопасности: проверке измерителя напряжения.

Сначала вы проверяете свой измеритель на известном источнике напряжения, чтобы убедиться, что он работает правильно.Любая ближайшая электрическая розетка должна обеспечивать удобный источник переменного напряжения для проверки. Вы делаете это и обнаруживаете, что счетчик показывает как следует. Затем вам нужно проверить напряжение между этими тремя проводами в шкафу. Но напряжение измеряется между двумя точками, так где же проверить?

Ответ — проверить все комбинации этих трех точек. Как видите, на рисунке точки обозначены буквами «A», «B» и «C», поэтому вам нужно будет взять мультиметр (установленный в режиме вольтметра) и проверить его между точками A и B, B и C, а также A и C.

Если вы обнаружите напряжение между любой из этих пар, цепь не находится в состоянии нулевой энергии. Но ждать! Помните, что мультиметр не будет регистрировать напряжение постоянного тока, когда он находится в режиме переменного напряжения, и наоборот, поэтому вам необходимо проверить эти три пары точек в для каждого режима , в общей сложности шесть проверок напряжения для завершения!

Однако, даже несмотря на всю эту проверку, мы еще не охватили все возможности. Помните, что опасное напряжение может появиться между одиночным проводом и землей (в этом случае металлический каркас шкафа будет хорошей точкой отсчета заземления) в энергосистеме.

Итак, чтобы быть в полной безопасности, мы должны не только проверять между A и B, B и C, и A и C (как в режимах переменного, так и постоянного тока), но мы также должны проверять между A и землей, B и землей. , а также C и заземление (в режимах переменного и постоянного тока)! Это дает в общей сложности двенадцать проверок напряжения для этого, казалось бы, простого сценария всего с тремя проводами. Затем, конечно же, после того, как мы завершили все эти проверки, нам нужно взять мультиметр и повторно проверить его с помощью известного источника напряжения, такого как розетка, чтобы убедиться, что он по-прежнему в хорошем рабочем состоянии.

Использование мультиметра для проверки сопротивления

Использование мультиметра для проверки сопротивления — гораздо более простая задача. Измерительные провода будут оставаться подключенными к тем же розеткам, что и для проверки напряжения, но селекторный переключатель необходимо повернуть до тех пор, пока он не укажет на символ сопротивления «подкова». Касаясь щупами устройства, сопротивление которого необходимо измерить, измеритель должен правильно отображать сопротивление в омах:

При измерении сопротивления нужно помнить, что это должно выполняться только на обесточенных компонентах ! Когда измеритель находится в режиме «сопротивления», он использует небольшую внутреннюю батарею для генерации крошечного тока через измеряемый компонент.

Путем определения того, насколько сложно пропустить этот ток через компонент, можно определить и отобразить сопротивление этого компонента. Если в контуре измерителя-вывод-компонент-вывод-измеритель имеется дополнительный источник напряжения, который либо помогает, либо противодействует току измерения сопротивления, производимому измерителем, это приведет к ошибочным показаниям. В худшем случае счетчик может даже выйти из строя из-за внешнего напряжения.

Мультиметр в режиме «Сопротивление»

Режим «сопротивления» мультиметра очень полезен для определения целостности проводов, а также для точных измерений сопротивления.Когда между наконечниками пробников имеется хорошее, прочное соединение (моделируется путем их соприкосновения), измеритель показывает почти нулевое сопротивление. Если бы в измерительных проводах не было сопротивления, он показывал бы ровно ноль:

Если выводы не контактируют друг с другом или не касаются противоположных концов разорванного провода, измеритель покажет бесконечное сопротивление (обычно путем отображения пунктирных линий или сокращения «O.L.», что означает «разомкнутый контур»):

Измерение тока с помощью мультиметра

Безусловно, наиболее опасным и сложным применением мультиметра является измерение тока.Причина этого довольно проста: для того, чтобы измеритель мог измерять ток, измеряемый ток должен проходить с по измеритель.

Это означает, что измеритель должен быть частью цепи тока, а не просто подключаться к какой-либо стороне, как в случае измерения напряжения. Чтобы сделать измеритель частью пути тока цепи, исходная цепь должна быть «разорвана», а измеритель должен быть подключен к двум точкам разомкнутого разрыва.Чтобы настроить измеритель на это, селекторный переключатель должен указывать на переменный или постоянный ток «A», а красный измерительный провод должен быть вставлен в красную розетку с маркировкой «A».

На следующем рисунке показан измеритель, полностью готовый к измерению тока, и проверяемая цепь:

Цепь прервана при подготовке к подключению счетчика:

Следующий шаг — вставить измеритель в линию со схемой, подключив два наконечника щупа к разомкнутым концам цепи, черный щуп к отрицательной (-) клемме 9-вольтовой батареи, а красный щуп к свободный конец провода, ведущего к лампе:

Этот пример показывает очень безопасную схему для работы.9 вольт вряд ли представляют опасность поражения электрическим током, поэтому не стоит бояться разомкнуть эту цепь (не голыми руками, не меньше!) И подключить счетчик параллельно с током. Однако с цепями более высокой мощности это действительно может быть опасным занятием.

Даже если напряжение в цепи было низким, нормальный ток мог быть достаточно высоким, чтобы возникла опасная искра в момент установления последнего подключения датчика измерителя.

Другой потенциальной опасностью использования мультиметра в режиме измерения тока («амперметр») является невозможность правильно вернуть его в конфигурацию измерения напряжения перед измерением напряжения с его помощью.Причины этого зависят от конструкции и работы амперметра. При измерении тока в цепи путем размещения измерителя непосредственно на пути тока, лучше всего, чтобы измеритель оказывал небольшое сопротивление току или не оказывал никакого сопротивления.

В противном случае дополнительное сопротивление изменит работу схемы. Таким образом, мультиметр спроектирован так, чтобы сопротивление между наконечниками измерительного щупа было практически нулевым, когда красный щуп был вставлен в красное гнездо «А» (для измерения тока).В режиме измерения напряжения (красный провод вставлен в красное гнездо «V») между наконечниками измерительных щупов имеется большое количество мегаомов сопротивления, потому что вольтметры рассчитаны на сопротивление, близкое к бесконечному (так, что они не работают). t потребляет значительный ток из тестируемой цепи).

При переключении мультиметра из режима измерения тока в режим измерения напряжения легко повернуть селекторный переключатель из положения «A» в положение «V» и забыть, соответственно, переключить положение разъема красного измерительного провода с «A» на положение «V». «V».В результате — если счетчик затем подключить к источнику значительного напряжения — произойдет короткое замыкание счетчика!

Чтобы предотвратить это, у большинства мультиметров есть функция предупреждения, с помощью которой они издают звуковой сигнал, если когда-либо в гнездо «A» вставлен провод, а селекторный переключатель установлен в положение «V». Однако какими бы удобными ни были эти функции, они по-прежнему не заменяют ясного мышления и осторожности при использовании мультиметра.

Все качественные мультиметры содержат внутри предохранители, которые спроектированы так, чтобы «перегорать» в случае чрезмерного тока через них, как в случае, показанном на последнем изображении.Как и все устройства максимальной токовой защиты, эти предохранители в первую очередь предназначены для защиты оборудования (в данном случае самого счетчика) от чрезмерного повреждения и только во вторую очередь для защиты пользователя от повреждений.

Мультиметр можно использовать для проверки собственного предохранителя, установив селекторный переключатель в положение сопротивления и создав соединение между двумя красными розетками, как это:

Исправный предохранитель будет указывать на очень небольшое сопротивление, в то время как перегоревший предохранитель всегда показывает «O.Л. » (или любое другое указание, которое эта модель мультиметра использует для обозначения отсутствия непрерывности). Фактическое количество Ом, отображаемое для исправного предохранителя, не имеет большого значения, если оно является произвольно низким.

Итак, теперь, когда мы увидели, как использовать мультиметр для измерения напряжения, сопротивления и тока, что еще нужно знать? Множество! Ценность и возможности этого универсального испытательного прибора станут более очевидными по мере того, как вы приобретете навыки и познакомитесь с ним.

Ничто не заменит регулярных занятий со сложными инструментами, такими как эти, поэтому не стесняйтесь экспериментировать с безопасными схемами с батарейным питанием.

ОБЗОР:

  • Измеритель, способный проверять напряжение, ток и сопротивление, называется мультиметром .
  • Поскольку напряжение между двумя точками всегда относительное, измеритель напряжения («вольтметр») должен быть подключен к двум точкам в цепи, чтобы получить хорошие показания. Будьте осторожны, не касайтесь оголенных наконечников щупов вместе при измерении напряжения, так как это приведет к короткому замыканию!
  • Не забывайте всегда проверять как напряжение переменного, так и постоянного тока при использовании мультиметра для проверки наличия опасного напряжения в цепи.Убедитесь, что вы проверяете напряжение между всеми комбинациями пар проводников, в том числе между отдельными проводниками и землей!
  • В режиме измерения напряжения («вольтметр») мультиметры имеют очень высокое сопротивление между выводами.
  • Никогда не пытайтесь измерить сопротивление или целостность цепи с помощью мультиметра в цепи, которая находится под напряжением. В лучшем случае показания сопротивления, полученные от глюкометра, будут неточными, а в худшем случае глюкометр может быть поврежден, а вы можете получить травму.
  • Измерители тока («амперметры») всегда подключены в цепь, поэтому электроны должны проходить через через счетчик .
  • В режиме измерения тока («амперметр») мультиметры практически не имеют сопротивления между выводами. Это сделано для того, чтобы электроны могли проходить через счетчик с наименьшими трудностями. Если бы это было не так, измеритель добавлял бы дополнительное сопротивление в цепи, тем самым влияя на ток.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *