Бп не запускается но дежурное напряжение присутствует: Ремонт бп компьютера своими руками дежурка есть

Содержание

Бп не запускается но дежурное напряжение присутствует

В прошлой статье мы рассмотрели, какие действия нужно предпринять, если у нас предохранитель блока питания ATX в коротком замыкании. Это означает, что проблема где-то в высоковольтной части, и нам нужно прозванивать диодный мост, выходные транзисторы, силовой транзистор или мосфет, в зависимости от модели блока питания. Если же предохранитель цел, мы можем попробовать подсоединить шнур питания к блоку питания, и включить его выключателем питания, расположенным на задней стенке блока питания.

И вот здесь нас может поджидать сюрприз, сразу как только мы щелкнули выключателем, мы можем услышать высокочастотный свист, иногда громкий, иногда тихий. Так вот, если вы услышали этот свист, даже не пытайтесь подключать блок питания для тестов к материнской плате, сборке, или устанавливать такой блок питания в системный блок!

Дело в том, что в цепях дежурного напряжения (дежурки) стоят все те же знакомые нам по прошлой статье электролитические конденсаторы, которые теряют емкость, при нагреве, и от старости, у них увеличивается ESR, (по-русски сокращенно ЭПС) эквивалентное последовательное сопротивление.

При этом визуально, эти конденсаторы могут ничем не отличаться от рабочих, особенно это касается небольших номиналов.

Дело в том, что на маленьких номиналах, производители очень редко устраивают насечки в верхней части электролитического конденсатора, и они не вздуваются и не вскрываются. Такой конденсатор не измерив специальным прибором, невозможно определить на пригодность работы в схеме. Хотя иногда, после выпаивания, мы видим, что серая полоса на конденсаторе, которой маркируется минус на корпусе конденсатора, становится темной, почти черной от нагрева. Как показывает статистика ремонтов, рядом с таким конденсатором обязательно стоит силовой полупроводник, или выходной транзистор, или диод дежурки, или мосфет. Все эти детали при работе выделяют тепло, которое пагубно сказывается на сроке работы электролитических конденсаторов. Дальнейшее объяснять про работоспособность такого потемневшего конденсатора, думаю будет лишним.

Если у блока питания остановился кулер, из-за засыхания смазки и забивания пылью, такой блок питания скорее всего потребует замены практически ВСЕХ электролитических конденсаторов на новые, из-за повышенной температуры внутри блока питания.

Ремонт будет довольно муторным, и не всегда целесообразным. Ниже приведена одна из распространенных схем, на которой основаны блоки питания Powerman 300-350 ватт, она кликабельна:

Схема БП АТХ Powerman

Давайте разберем, какие конденсаторы нужно менять, в этой схеме, в случае проблем с дежуркой:

Итак, почему же нам нельзя подключать блок питания со свистом к сборке для тестов? Дело в том, что в цепях дежурки стоит один электролитический конденсатор, (выделено синим) при увеличении ESR которого, у нас возрастает дежурное напряжение, выдаваемое блоком питания на материнскую плату, еще до того, как мы нажмем кнопку включения системного блока. Иными словами, как только мы щелкнули клавишным выключателем на задней стенке блока питания, это напряжение, которое должно быть равно +5 вольт, поступает у нас на разъем блока питания, фиолетовый провод разъема 20 Pin, а оттуда на материнскую плату компьютера.

В моей практике были случаи, когда дежурное напряжение было равно (после удаления защитного стабилитрона, который был в КЗ) +8 вольт, и при этом ШИМ контроллер был жив. К счастью блок питания был качественный, марки Powerman, и там стоял на линии +5VSB, (так обозначается на схемах выход дежурки) защитный стабилитрон на 6.2 вольта.

Почему стабилитрон защитный, как он работает в нашем случае? Когда напряжение у нас меньше, чем 6.2 вольта, стабилитрон не влияет на работу схемы, если же напряжение становится выше, чем 6.2 вольта, наш стабилитрон при этом уходит в КЗ (короткое замыкание), и соединяет цепь дежурки с землей. Что нам это дает? Дело в том, что замкнув дежурку с землей, мы сохраняем тем самым нашу материнскую платы от подачи на нее тех самых 8 вольт, или другого номинала повышенного напряжения, по линии дежурки на материнку, и защищаем материнскую плату от выгорания.

Но это не является 100% вероятностью, что у нас в случае проблем с конденсаторами сгорит стабилитрон, есть вероятность, хотя и не очень высокая, что он уйдет в обрыв, и не защитит тем самым нашу материнскую плату. В дешевых блоках питания, этот стабилитрон обычно просто не ставят.

Кстати, если вы видите на плате следы подгоревшего текстолита, знайте, скорее всего там какой-то полупроводник ушел в короткое замыкание, и через него шел очень большой ток, такая деталь очень часто и является причиной, (правда иногда бывает, что и следствием) поломки.

После того, как напряжение на дежурке придет в норму, обязательно поменяйте оба конденсатора на выходе дежурки. Они могут придти в негодность из-за подачи на них завышенного напряжения, превышающего их номинальное. Обычно там стоят конденсаторы номинала 470-1000 мкф. Если же после замены конденсаторов, у нас на фиолетовом проводе, относительно земли появилось напряжение +5 вольт, можно замкнуть зеленый провод с черным, PS-ON и GND, запустив блок питания, без материнской платы.

Если при этом начнет вращаться кулер, это значит с большой долей вероятности, что все напряжения в пределах нормы, потому что блок питания у нас стартанул. Следующим шагом, нужно убедиться в этом, померяв напряжение на сером проводе, Power Good (PG), относительно земли. Если там присутствует +5 вольт, вам повезло, и остается лишь замерить мультиметром напряжения, на разъеме блока питания 20 Pin, чтобы убедиться, что ни одно из них не просажено сильно.

Как видно из таблицы, допуск для +3.3, +5, +12 вольт – 5%, для -5, -12 вольт – 10%. Если же дежурка в норме, но блок питания не стартует, Power Good (PG) +5 вольт у нас нет, и на сером проводе относительно земли ноль вольт, значит проблема была глубже, чем только с дежуркой. Различные варианты поломок и диагностики в таких случаях, мы рассмотрим в следующих статьях. Всем удачных ремонтов! С вами был AKV.

В прошлой статье мы рассмотрели, какие действия нужно предпринять, если у нас предохранитель блока питания ATX в коротком замыкании. Это означает, что проблема где-то в высоковольтной части, и нам нужно прозванивать диодный мост, выходные транзисторы, силовой транзистор или мосфет, в зависимости от модели блока питания. Если же предохранитель цел, мы можем попробовать подсоединить шнур питания к блоку питания, и включить его выключателем питания, расположенным на задней стенке блока питания.

И вот здесь нас может поджидать сюрприз, сразу как только мы щелкнули выключателем, мы можем услышать высокочастотный свист, иногда громкий, иногда тихий. Так вот, если вы услышали этот свист, даже не пытайтесь подключать блок питания для тестов к материнской плате, сборке, или устанавливать такой блок питания в системный блок!

Дело в том, что в цепях дежурного напряжения (дежурки) стоят все те же знакомые нам по прошлой статье электролитические конденсаторы, которые теряют емкость, при нагреве, и от старости, у них увеличивается ESR, (по-русски сокращенно ЭПС) эквивалентное последовательное сопротивление. При этом визуально, эти конденсаторы могут ничем не отличаться от рабочих, особенно это касается небольших номиналов.

Дело в том, что на маленьких номиналах, производители очень редко устраивают насечки в верхней части электролитического конденсатора, и они не вздуваются и не вскрываются. Такой конденсатор не измерив специальным прибором, невозможно определить на пригодность работы в схеме.

Хотя иногда, после выпаивания, мы видим, что серая полоса на конденсаторе, которой маркируется минус на корпусе конденсатора, становится темной, почти черной от нагрева. Как показывает статистика ремонтов, рядом с таким конденсатором обязательно стоит силовой полупроводник, или выходной транзистор, или диод дежурки, или мосфет. Все эти детали при работе выделяют тепло, которое пагубно сказывается на сроке работы электролитических конденсаторов. Дальнейшее объяснять про работоспособность такого потемневшего конденсатора, думаю будет лишним.

Если у блока питания остановился кулер, из-за засыхания смазки и забивания пылью, такой блок питания скорее всего потребует замены практически ВСЕХ электролитических конденсаторов на новые, из-за повышенной температуры внутри блока питания. Ремонт будет довольно муторным, и не всегда целесообразным. Ниже приведена одна из распространенных схем, на которой основаны блоки питания Powerman 300-350 ватт, она кликабельна:

Схема БП АТХ Powerman

Давайте разберем, какие конденсаторы нужно менять, в этой схеме, в случае проблем с дежуркой:

Итак, почему же нам нельзя подключать блок питания со свистом к сборке для тестов? Дело в том, что в цепях дежурки стоит один электролитический конденсатор, (выделено синим) при увеличении ESR которого, у нас возрастает дежурное напряжение, выдаваемое блоком питания на материнскую плату, еще до того, как мы нажмем кнопку включения системного блока.

Иными словами, как только мы щелкнули клавишным выключателем на задней стенке блока питания, это напряжение, которое должно быть равно +5 вольт, поступает у нас на разъем блока питания, фиолетовый провод разъема 20 Pin, а оттуда на материнскую плату компьютера.

В моей практике были случаи, когда дежурное напряжение было равно (после удаления защитного стабилитрона, который был в КЗ) +8 вольт, и при этом ШИМ контроллер был жив. К счастью блок питания был качественный, марки Powerman, и там стоял на линии +5VSB, (так обозначается на схемах выход дежурки) защитный стабилитрон на 6.2 вольта.

Почему стабилитрон защитный, как он работает в нашем случае? Когда напряжение у нас меньше, чем 6.2 вольта, стабилитрон не влияет на работу схемы, если же напряжение становится выше, чем 6.2 вольта, наш стабилитрон при этом уходит в КЗ (короткое замыкание), и соединяет цепь дежурки с землей. Что нам это дает? Дело в том, что замкнув дежурку с землей, мы сохраняем тем самым нашу материнскую платы от подачи на нее тех самых 8 вольт, или другого номинала повышенного напряжения, по линии дежурки на материнку, и защищаем материнскую плату от выгорания.

Но это не является 100% вероятностью, что у нас в случае проблем с конденсаторами сгорит стабилитрон, есть вероятность, хотя и не очень высокая, что он уйдет в обрыв, и не защитит тем самым нашу материнскую плату. В дешевых блоках питания, этот стабилитрон обычно просто не ставят. Кстати, если вы видите на плате следы подгоревшего текстолита, знайте, скорее всего там какой-то полупроводник ушел в короткое замыкание, и через него шел очень большой ток, такая деталь очень часто и является причиной, (правда иногда бывает, что и следствием) поломки.

После того, как напряжение на дежурке придет в норму, обязательно поменяйте оба конденсатора на выходе дежурки. Они могут придти в негодность из-за подачи на них завышенного напряжения, превышающего их номинальное. Обычно там стоят конденсаторы номинала 470-1000 мкф. Если же после замены конденсаторов, у нас на фиолетовом проводе, относительно земли появилось напряжение +5 вольт, можно замкнуть зеленый провод с черным, PS-ON и GND, запустив блок питания, без материнской платы.

Если при этом начнет вращаться кулер, это значит с большой долей вероятности, что все напряжения в пределах нормы, потому что блок питания у нас стартанул. Следующим шагом, нужно убедиться в этом, померяв напряжение на сером проводе, Power Good (PG), относительно земли. Если там присутствует +5 вольт, вам повезло, и остается лишь замерить мультиметром напряжения, на разъеме блока питания 20 Pin, чтобы убедиться, что ни одно из них не просажено сильно.

Как видно из таблицы, допуск для +3.3, +5, +12 вольт – 5%, для -5, -12 вольт – 10%. Если же дежурка в норме, но блок питания не стартует, Power Good (PG) +5 вольт у нас нет, и на сером проводе относительно земли ноль вольт, значит проблема была глубже, чем только с дежуркой. Различные варианты поломок и диагностики в таких случаях, мы рассмотрим в следующих статьях. Всем удачных ремонтов! С вами был AKV.

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.

Ремонт блока питания дежурка есть.

Как включить блок питания без компьютера

Компьютер не включается. Часто под этой формулировкой могут скрываться совершенно разные поломки и неисправности. Поэтому прежде, чем приступать к ремонту компьютера, который не включается, важно выявить причину поломки.

Обычная процедура включения компьютера стандартна для любой операционной системы. Эта процедура состоит из нескольких шагов, на одном из которых и происходит сбой в работе.

Запуск компьютера начинается с включения его в сеть электропитания. За подачу питания на все микросхемы компьютера несет ответственность блок питания (БП). И если при нажатии кнопки включения на панели системного блока компьютер не включается, то в первую очередь тщательно проверяется именно БП. Как бы смешно это не звучало, но для начала нужно проверить, подключен ли БП к сети. Бывают случаи, когда пользователи не замечают, что блок питания их компьютера отключен от розетки или от сетевого фильтра, забывают переключить выключатель на БП в положение «вкл».

Если блок питания подключен правильно , но компьютер не включается, нужно осмотреть «внутренности» системного блока. Определенное напряжение на некоторые компоненты системы выдается блоком питания даже тогда, когда компьтер не работает, но просто включен в розетку. Это «дежурное» напряжение, которое может понадобиться для включения компьютера по локальной сети, например. Поэтому, проверить, исправен ли блок питания, можно, проверив наличие этого напряжения. Проверка выполняется при помощи тестера. Некоторые современные материнские платы оснащены специальным светодиодом, который показывает наличие напряжения от БП.

После нажатия кнопки включения компьютера на блок питания подается «рабочее» напряжение и спустя 0,5-1 с, когда схема контроля блока питания выдает материнской плате сигнал по линии Power Good, который означает наличие достаточного питания. Если же этого не происходит, то причин может быть несколько: неисправна или не подключена кнопка включения, либо мощности блока питания не хватает для работы системы, либо же блок питания неисправен.

Проверить, достаточно ли мощности, можно, отключив оптические накопители, жесткие диски и видеокарту, после чего повторив попытку включить компьютер. Если в компьютере установлена Award BIOS, то в случае с поломкой БП, спикер компьютера будет пищать непрерывно.

Если БП исправен, то после нажатия кнопки включения компьютера можно услышать шум стартующих вентиляторов (всех) и характерный гул раскручиваемых шпинделей жестких дисков.

Каждый блок питания оснащен системой защиты от короткого замыкания . Эта система автоматически выключает блок питания при коротком замыкании. Поэтому следует проверить эту версию, отключая по очереди периферийные устройства, которые могут быть причиной короткого замыкания.

Окончательно убедиться в неисправности блока питания можно, если установить в систему заведомо исправный и более мощный блок. Если при замененном блоке система нормально включается, то сомнений в том, кто же «виновник» Ваших проблем, не возникает.

Разработка сайтов любой компьютерной тематики от блога до портала — Webstudio2u!

Меры предосторожности.

Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.
Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.
Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Какой инструмент понадобится:

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отвертка.
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр.
Пинцет.
Лампочка на 100Вт.
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.

Устройство БП.

Что мы увидим, вскрыв блок питания.

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.
Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Визуальный осмотр.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.
Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.
Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Первичная диагностика.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Неисправности:

БП не запускается, отсутствует напряжение дежурного питания;
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG;
БП уходит в защиту;
БП работает, но воняет;
Завышены или занижены выходные напряжения.

Предохранитель.

Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Термистор.

Задачей термистора является снижение броска тока при включении. При возникновении высоковольтного импульса сопротивление термистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети термистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Термистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же термисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя термистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с термистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены термистора и проверки остальных элементов первичной цепи.

Диодный мост.

Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение тока должно быть около 500мА, а в обратном звониться как разрыв.

Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.

Конденсаторы.

Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.

Резисторы.

Номинал резистора определятся по цветовой маркировке. Резисторы следует менять только на аналогичные, т.к. небольшое отличие в номиналах сопротивления может привести к тому, что резистор будет перегреваться. А если это подтягивающий резистор, то напряжение в цепи может выйти за пределы логического входа, и ШИМ не будет генерировать сигнал Power Good. Если резистор сгорел в уголь, и у вас нет второго такого же БП, чтобы посмотреть его номинал, то считайте, что вам не повезло. Особенно, это касается дешевых БП, на которые практически не возможно достать принципиальных схем. Ниже представлена таблица цветовой маркировки резисторов:

Диоды и стабилитроны.

Проверяются методом прозвона в обе стороны. Если звонятся в обе стороны как К.З. или разрыв, то не исправны. Сгоревшие диоды следует менять на аналогичные или сходные по характеристикам, внимание обращаем на напряжение, силу тока и частоту работы.

Транзисторы, диодные сборки.

Транзисторы и диодный сборки, которые установлены на радиатор, удобнее всего выпаивать вместе с радиатором. В «первичке» находятся силовые транзисторы, один отвечает за дежурное напряжение, а другие формируют рабочие напряжения 12в и 3,3в. Во вторичке на радиаторе находятся выпрямительные диоды выходных напряжений (диоды Шоттки).

Проверка транзисторов заключается в “позвонке” р-п-переходов, также следует проверить сопротивление между корпусом и радиатором. Транзисторы не должны замыкать на радиатор. Проверка диодного моста: Если он выполнен в виде отдельной сборки, его нужно просто аккуратно выпаять и протестировать уже разделенную цепь на печатной плате. В том случае, если выпрямитель выполнен из отдельных диодов, вполне возможно проверить его, не выпаивая их все из платы. Достаточно прозвонить каждый из них на короткое замыкание в обоих направлениях, и выпаивать только подозреваемые в неисправности. Исправный диод должен иметь сопротивление в прямом направлении около 600 Ом и в обратном — порядка 1. 3 МОм.

Если все транзисторы и диодные сборки оказались исправные, то не спешите запаивать радиаторы обратно, т.к. они затрудняют доступ к другим элементам.

Если ШИМ визуально не поврежден и не греется, то без осциллографа его проверить довольно сложно.
Простым способом проверки ШИМ, является проверка контрольных контактов и контактов питания на пробой.
Для этого нам понадобиться мультиметр и дата шит на микросхему ШИМ. Диагностику ШИМ следует проводить, предварительно выпаяв её. Проверка производится прозвоном следующих контактов относительно земли (GND): V3.3, V5, V12, VCC, OPP. Если между одним из этих контактов и землей сопротивление крайне мало, до десятков Ом, то ШИМ под замену.

Способ проверки внутреннего стабилизатора: Суть способа заключается в проверке внутреннего стабилизатора микросхемы. Этот метод годится для модели tl494 и ее полных аналогов. При отключенном от сети блоке питания нужно подать на 12-ю ножку микросхемы постоянное напряжение от +9 до +12 вольт, при этом подсоединив «минус» к 7-ой ножке, после чего необходимо замерить напряжение на 14-й ножке — оно должно быть равно 5 вольтам. Если напряжение сильно отклонено (±0.5 В), это свидетельствует о неисправности внутреннего стабилизатора микросхемы. Данный элемент лучше купить новый.

По поводу ремонта дежурного питания что-либо конкретное посоветовать трудно — может сгореть все, что угодно, но это компенсируется довольно простым устройством данной части. Будет вполне достаточно полазить по форумам по данной тематике, чтобы найти причину неисправности и метод ее устранения.

Дежурное питание и POWER GOOD.

Теперь рассмотрим другую ситуацию: предохранитель не сгорает, все элементы, упомянутые выше, исправны, но устройство не запускается.

Немного отойдем от темы и вспомним, как работает блок питания стандарта АТХ. В ждущем режиме (именно в нем находится «выключенный» компьютер) БП все равно работает. Он обеспечивает дежурное питание для материнской платы, чтобы ты мог включить или отключить компьютер кнопкой, по таймеру, или при помощи какого-либо устройства. «Дежурка» представляет собой 5 вольт, которые постоянно (пока компьютер включен в электрическую сеть) подаются на материнскую плату. Когда ты включаешь компьютер, материнская плата формирует сигнал PS_ON и запускает блок питания. В процессе запуска системы проходит проверка всех питающих напряжений и формируется сигнал POWER GOOD. В том случае, если по каким-либо причинам напряжение сильно завышено или занижено, этот сигнал не формируется, и система не стартует. Впрочем, как уже упомяналось выше, во многих NONAME блоках питания защита отсутствует напрочь, что пагубно сказывается на всем компьютере.

Итак, первым делом нужно проверить наличие 5 вольт на контактах +5VSB и PS_ON. Если на какомто из этих контактов напряжения нет или оно сильно отличается от номинала, это указывает на неисправности либо в цепи вспомогательного преобразователя (если нет +5 vsb), либо на неисправность ШИМ контроллера или его обвязки (неработоспособность PS_ON).

Дроссель групповой стабилизации (ДГС).

Выходит из строя из-за перегрева (при остановке вентилятора) или из-за просчетов в конструкции самого БП (пример Microlab 420W). Сгоревший ДГС легко определить по потемневшему, шелушащемуся, обугленному изоляционному лаку. Сгоревший ДГС можно заменить на аналогичный или смотать новый. Если вы решите смотать новый ДГС, то следует использовать новое ферритовое кольцо, т.к. из за перегрева старое кольцо могло уйти по параметрам.

Трансформаторы.

Для проверки трансформаторов их следует предварительно выпаять. Их проверяют на короткозамкнутые витки, обрыв обмоток, потерю или изменение магнитных свойств сердечника.

Чтобы проверить трансформатор на предмет обрыва обмоток достаточно простого мультиметра, остальные неисправности трансформаторов определить гораздо сложнее и рассматривать их мы не будем. Иногда пробитый трансформатор можно определить визуально.

Опыт показывает, что трансформаторы выходят из строя крайне редко, поэтому их нужно проверять в последнюю очередь.

Профилактика вентилятора.


После удачного ремонта следует произвести профилактику вентилятора. Для этого вентилятор надо снять, разобрать, почистить и смазать.

Отремонтированный блок питания следует длительное время проверить под нагрузкой.
Прочитав эту статью, вы самостоятельно сможете произвести легкий ремонт блока питания, тем самым сэкономив пару монет и избавить себя от похода в сервис или магазин.

Инструкция

Не вскрывайте блок питания , чтобы найти в нем неисправности. Это — удел специалистов. Чтобы определить неисправность этого важнейшего компонента, не обязательно разбирать системный блок. Будьте внимательны к работе вашего компьютера.

Вспомните, имеют ли место частые перезагрузки и зависания компьютера без видимых причин (в процессе выполнения компьютером простых задач). Отметьте для себя появление ошибок в работе программ и операционной системы в целом. Ошибки в функционировании оперативной памяти во время тестирования и при дальнейшей работе в системе. Перебои в работе жесткого диска или отказ последнего говорят о пропадании напряжения на выходе блока питания .

Обратите внимание на появление неприятного запаха и чрезмерное нагревание системного блока . Это несомненные неисправности блока питания вашего компьютера.

Если компьютер не подает признаков жизни, вам придется его разобрать. Отсоедините кабель питания от системного блока . Возьмите отвертку. Открутите винты, которые держат правую от вас стенку системного блока . Снимите крышку, чтобы получить доступ к материнской плате.

Из гнезда материнской платы извлеките основной штекер разъема блока питания , у которого 20 или 24 контакта. Найдите третий и четвертый контакты, к ним ведут зеленый и черный провода. Замкните эти два контакта, используя обычную скрепку. Подключите кабель питания . В исправном блоке питания при этом запустится вентилятор, а на его клеммах появится напряжение.

Измерьте напряжение с помощью вольтметра. Между контактами черного и красного проводов оно будет 5 вольт, черного и желтого — 12 вольт, черного и оранжевого — 3,3 вольта (на черном минус, а на цветных плюс). Если полученные вами значения отличаются от вышеуказанных — ваш блок питания неисправен.

В интернете имеется достаточное количество сайтов, на которых можно рассчитать мощность блока питания . Для этого достаточно указать количество и системные характеристики устройств системного блока .

Инструкция

Выберите число оптических приводов, установленных на компьютере. Некоторые онлайн-калькуляторы предлагают их тип из списка. Так, например, сначала предлагается указать количество CD-приводов, потом – DVD, после — CD-DVD комбайн-приводов.

Укажите, сколько IDE-устройств имеется в вашем компьютере. Выберите из списка количество устройств, подключенных через шину IEEE 1394.

Укажите, какие устройства установлены в PCI-разъемы (марку, системные характеристики TV-тюнера, аудиокарты и т.п.).

Укажите количество USB и FireWire-устройств, имеющихся на вашем компьютере. Если какой-то из разъемов не эксплуатируется, снимите против него флажок.

В последнем поле онлайн-калькулятора укажите количество вентиляторов или кулеров, которые охлаждают системный блок (включая кулер на процессоре).

Видео по теме

Компьютеры прочно вошли в современную жизнь. Это – и рабочее место, и средство общения, и лучший отдых для многих миллионов граждан XXI века. Тем ужаснее выглядит ситуация, которую обездоленный владелец этого достижения высоких технологий описывает емкой фразой: «Мой комп сдох!» К счастью, далеко не всегда ситуация настолько фатальна. Иногда достаточно заменить неисправную деталь, чтобы вернуть компьютеру работоспособность. Как же определить неисправность компьютера ?

Вам понадобится

  • — компьютер;
  • — крестовая отвертка.

Инструкция

Вы включаете компьютер, однако при этом на передней панели системного блока не загорается индикатор Power, не слышен один короткий бип, не раскручиваются вентиляторы на и на процессоре. Вся эта грустная картина – свидетельство проблем с электропитанием. Проверьте, есть ли питание в розетке. Если компьютер подключен к розетке через пилот, убедитесь, что пилот включен. Если все в порядке, выдерните электрический кабель из розетки и из блока питания, а потом подключите назад и попробуйте еще раз включить компьютер. Если ничего не изменилось, отключите системный блок от электропитания, снимите его боковую панель, отсоедините блок питания от материнской платы и перемкните зеленый и черный контакты резистором 1кОм. Если блок питания , значит, проблема в нем.

При хаотических сбоях и зависаниях осмотрите материнскую плату на предмет наличия вздувшихся конденсаторов. Для их замены обратитесь в мастерскую, поскольку плата является многослойной, и даже при наличии навыков пайки, но отсутствии опыта работы именно с многослойными платами ее легко испортить.

Если изображения нет, а встроенный динамик издает звуки, найдите, что они означают, введя в поисковую систему следующую строку:
(Название производителя BIOS) beep codes
Поскольку при отсутствии изображения узнать производителя BIOS по заставке на экране невозможно, руководствуйтесь наклейкой, расположенной на микросхеме ПЗУ или рядом с ней.

Для ускорения нахождения неисправностей компьютера приобретите называемую POST-карту. Ее название является своеобразным каламбуром: postcard — почтовая открытка, POST — Power-On Self-Test, card — плата расширения (одно из значений). Она устанавливается (также при выключенном ) в один из PCI-слотов, и либо показывает код неисправности на цифровом индикаторе, либо ее название — на матричном. В первом случае, к ней прилагается буклет с описанием кодов неисправностей. Иногда устройство бывает встроенным в материнскую плату.

Жесткий диск (HDD) — один из самых основных узлов современных компьютеров, наряду с материнской платой и устройствами ввода и вывода. И в то же время HDD является весьма хрупким и ненадежным механизмом в силу того, что имеет значительное количество движущихся деталей. Своевременная диагностика может помочь пользователю избежать таких проблем, как физическое разрушение HDD, а также потери данных, восстановление которых зачастую становится невозможным даже для специалиста.

Вам понадобится

  • Специальное программное обеспечение.

Инструкция

Обратите внимание на характер работы HDD. В некоторых случаях наблюдаются визуальные изменения, которые заключаются в «задумчивости» жесткого диска , его периодическим «подвисаниям». При этом трудится во всю и практически не . Либо же, наоборот, его не слышно вовсе. В этом случае необходимо проверить температуру HDD при помощи специального программного обеспечения. Подходящего софта достаточно много, например, можно воспользоваться услугами Everest. Не рекомендуется трогать тот фрагмент корпуса компьютера и в особенности ноутбука, где расположен жесткий диск, так как можно получить ожог.

Установите программу и проведите мониторинг температуры HDD, которая не должна превышать 45 градусов по Цельсию. Если значение больше, нужно осмотреть вентилятор, а также очистить вентиляторные решетки от пыли, чтобы охлаждение HDD было эффективным. Нужно отметить, что переохлаждение жесткого диска также ведет к его неисправности, поэтому установка чрезмерного количества кулеров может привести к повреждению и остановке HDD.

Обработав данные по температуре, запустите служебную программу S.M.A.R.T., которая позволяет оценивать состояние жесткого диска компьютера. В процессе тестирования S.M.A.R.T. проверяет критически важные для работы HDD параметры, такие как: Raw Read Error Rate, Spin-up time, Uncorrectable Sector Unit и многие другие. Найденные S.M.A.R.T. некачественные сектора предъявляются пользователю в отчете по результатам тестирования.

После обнаружения bad-секторов скачайте из интернета и установите на компьютер одну из многочисленных утилит по диагностике HDD, находящихся в свободном доступе. Профессионалы рекомендуют такие программы как HDDScan, HDD Health или HD Tune. Если проверка при помощи этого софта выявит большое число bad –секторов, то самостоятельные попытки спасти данные с диска только ухудшат положение. В этом случае настоятельно рекомендуется воспользоваться услугами специалистов.

Попробуйте скопировать содержимое HDD до того, как он перестанет работать окончательно. Используйте специальные программы для восстановления данных. Одной из лучших является EasyRecovery. Есть и другие утилиты, однако они менее известны. Нужно особенно отметить, что работа по восстановлению данных возможна только в условиях небольшого количества пораженных секторов HDD. Если их много, то похода в сервис не избежать.

Источники:

При работе с мобильными компьютерами иногда достаточно сложно выяснить причину той или иной ошибки или неисправности. Для обнаружения конкретных неполадок необходимо использовать специальные программы и методы.

Вам понадобится

  • Доступ в интернет.

Инструкция

Если ваш мобильный компьютер , проверьте напряжение в разъеме блока питания. Попробуйте подключить к ноутбуку аккумулятор, если он был отключен. Повторите попытку включить компьютер. Убедитесь в том, что кнопка включение исправна.

Гораздо чаще можно наблюдать следующую картину: мобильный компьютер , но загрузка не выполняется должным образом. Обычно данная неисправность сопровождается различными текстовыми надписями или синими экранами. Внимательно изучите текст ошибки и найдите ее описание на сайте производителя данной модели .

Попробуйте заменить платы оперативной памяти. Если это не помогло, и ноутбук все еще не загружается, проблема, скорее всего, в видеокарте, процессоре или системной плате. Выясните тип используемого видеоадаптера.

Если в установлена полноценная дискретная видеокарта, замените ее аналогичной моделью. Если же вы имеете дело с интегрированным видеочипом, обратитесь в сервисный центр для диагностики неисправностей.

Если пропало изображение, значит, проблема с видеокартой или дисплеем. Иногда причиной данной неисправности может быть шлейф, идущий к матрице. Попробуйте закрыть крышку мобильного компьютера и вновь открыть ее. Включите ноутбук несколько раз, постоянно меняя положение дисплея.

Несильно нажмите на матрицу. Если вы увидите разводы вблизи места нажатия, значит, проблема в шлейфе или видеокарте. Сбросьте параметры меню BIOS. Вновь попробуйте включить мобильный компьютер.

Если не работают отдельные устройства ноутбука, попробуйте обновить драйверы. Выполните загрузку необходимых файлов с официального сайта фирмы, разработавшей данный ноутбук. Помните о том, что в большинстве случаев причиной неполадок являются именно драйверы или сбои в работе операционной системы.

Видеокарта – это устройство, которое выводит на экран результаты работы компьютера. Современные видеокарты используют собственные ресурсы – графический процессор и память. Такое сложное устройство, разумеется, может выйти из строя в результате неправильной эксплуатации, скачков напряжения, конструктивных дефектов и по многим другим причинам.

Инструкция

При включении компьютера программа POST, которая тестирует все устройства. Если проверка прошла успешно, система генерирует короткий звуковой сигнал. После этого начинается загрузка операционной системы. Если же какое-то устройство неисправно, BIOS (Basic In-Out System) выдает определенную последовательность сигналов. Расшифровав ее, можно определить неисправность.

Разные производители BIOS назначают разные комбинации звуковых сигналов для обозначения проблемы, однако для видеокарты, как правило, это один длинный и два коротких «бипа». Итак, если при включении компьютера на экране не появляется изображение, а вместо привычного короткого писка вы слышите какие-то другие, возможно, проблема в видеокарте.

Если у вас видеоадаптер в виде карты расширения, выключайте компьютер и отсоедините электрический кабель от источника питания. Отверните крепежные винты и снимите боковую панель системного блока. Отсоедините интерфейсный кабель, идущий к монитору. Открутите винт, которым видеокарта крепится к системному блоку, и извлеките ее из слота. Протрите контакты обычным ластиком и вставьте адаптер назад плотно, до упора. Пластмассовые защелки, фиксирующие карту в слоте, должны защелкнуться.

Включите компьютер и проверьте, осталась ли проблема. Если да, попробуйте проверить работу видеокарты на другом системном блоке – возможно, проблема не в ней, а в материнской плате.

Если при включении раздается обычный короткий сигнал, а изображения на мониторе нет, выключайте компьютер и проверьте интерфейсный кабель – возможно, он неплотно вставлен в разъем или неисправен.

Если при длительной работе на экране монитора появляются артефакты в виде цветных полос , не исключено, что видеокарта . Поставьте программу Everest, которая мониторит температуру устройств внутри компьютера. Если у вас нет такой возможности, снимите боковую панель системного блока и пальцем попробуйте определить нагрев радиатора, который установлен на чипсете видеокарты.

Современные графические процессоры охлаждаются принудительно при помощи кулера. Посмотрите, как вращается вентилятор при включенном питании. Возможно, он забит пылью, которая мешает работе. Помните, что профилактику компьютера нужно проводить регулярно. Отсоедините компьютер от электросети, поставьте на выдув пылесос и продуйте как следует системный блок изнутри.

Фразу, вынесенную в заголовок, часто приходится слышать и читать в комментариях пользователей на этом сайте. В этой инструкции подробно изложены все наиболее часто встречающиеся ситуации такого рода, возможные причины проблемы и информация о том, что делать, если компьютер не включается.

На всякий случай замечу, что здесь рассматривается только тот случай, если после нажатия кнопки питания на экране не появляется вообще никаких сообщений от компьютера (т.е. вы видите черный экран без предшествующих надписей материнской платы или же сообщение о том, что нет сигнала).

Если компьютер не включается и при этом пищит, рекомендую обратить внимание на материал , который поможет выяснить причину неполадки.

Почему не включается компьютер — первый шаг на пути к выяснению причины

Кто-то может сказать, что предлагаемое ниже — лишнее, но личный опыт говорит об обратном. Если ваш ноутбук или компьютер не включается, проверьте подключение кабелей (не только вилка, воткнутая в розетку, но и коннектор, подключенный к системному блоку), работоспособность самой розетки и прочее, имеющее отношение к соединительным кабелям (возможно, работоспособность самого кабеля).

Также на большинстве блоков питания есть дополнительный переключатель ВКЛ-ВЫКЛ (обычно обнаружить ее можно сзади системного блока). Проверьте, чтобы он был в положении «Включено» (Важно: не перепутайте его с переключателем 127-220 Вольт, обычно красным и недоступного для простого переключения пальцем, см. фото ниже).

Если незадолго до появления проблемы вы чистили компьютер от пыли или устанавливали новое оборудование, а компьютер не включается «совсем», т.е. нет ни шума вентиляторов, ни света индикаторов питания, проверьте подключение блока питания к коннекторам на материнской плате, а также подключение коннекторов передней панели системного блока (см. ).

Если при включении компьютер шумит, но монитор не включается

Один из самых распространенных случаев. Некоторые ошибочно считают, что если компьютер гудит, кулеры работают, светодиоды («лампочки») на системном блоке и клавиатуре (мыши) светятся, то проблема не в ПК, а просто не включается монитор компьютера. На самом деле, чаще всего это говорит о проблемах с блоком питания компьютера, с оперативной памятью или материнской платой.

В общем случае (для обычного пользователя, у которого нет под рукой дополнительных блоков питания, материнских плат, плат оперативной памяти и вольтметров), можно попробовать выполнить следующие действия для диагностики причины такого поведения (перед описываемыми действиями выключайте компьютер из розетки, а для полного обесточивания нажмите и подержите кнопку питания несколько секунд):


Подводя итог, если компьютер включается, вентиляторы работают, но нет изображения — чаще всего дело не в мониторе и даже не видеокарте, «топ 2» причин: оперативная память и блок питания. На эту же тему: .

Компьютер включается и сразу выключается

Если сразу после включения компьютер выключается, без каких-либо писков, особенно если незадолго перед этим он уже включался не с первого раза, то причина, вероятнее всего в блоке питания или материнской плате (обратите внимание на пункты 2 и 4 из списка выше).

Но иногда это может говорить и о неисправностях другого оборудования (например, видеокарты, опять же, обратите внимание на пункт 2), проблемах с охлаждением процессора (особенно если иногда компьютер начинает загружаться, а со второй или третьей попытки — выключается сразу после включения, а незадолго до этого вы не очень умело меняли термопасту или чистили компьютер от пыли).

Другие варианты причин поломки

Существует также множество маловероятных, но все же встречающихся на практике вариантов, среди которых доводилось сталкиваться с такими:

  • Компьютер включается только при наличии дискретной видеокарты, т.к. внутренняя вышла из строя.
  • Компьютер включается только если выключить подключенный к нему принтер или сканер (или другие USB устройства, особенно если они появились у вас недавно).
  • Компьютер не включается при подключенной неисправной клавиатуре или мышке.

Если ничто в инструкции вам не помогло, спрашивайте в комментариях, постаравшись как можно подробнее описать ситуацию — как именно не включается (как это выглядит для пользователя), что происходило непосредственно перед этим и были ли какие-то дополнительные симптомы.

Наиболее распространенные проблемы с компьютером и их решение.

    Что делать, если:

Компьютер не включается.

Компьютер включается, но загрузка не начинается.

Загрузка начинается, но заканчивается сбросом и перезагрузкой.

Компьютер самопроизвольно включается.

Компьютер самопроизвольно выключается.

Компьютер зависает или самопроизвольно перезагружается.

Дополнительно:

Программы для тестирования оборудования.

Компьютер не включается.

В первую очередь, проверьте есть ли на входе блока питания (БП) первичное напряжение ~220V. Причиной отсутствия могут быть обрыв, неисправность вилки, шнура, розетки, сетевого фильтра или источника бесперебойного питания, если они у вас используются. Кроме того, на задней стенке большинства блоков питания имеется выключатель первичного электропитания — он может быть выключен, или неисправен.

Если есть первичное напряжение на входе блока питания, то даже при выключенном компьютере, на выходе должно присутствовать так называемое, дежурное напряжение, +5VSB . Его можно проверить на контактах разъема блока питания (контакт 9 с проводом фиолетового цвета) Напряжение между контактом +5VSB (9) и любым контактом черного цвета (GND, земля) должно быть равно 5 вольт. На большинстве современных материнских плат присутствует светодиод индикации наличия дежурного напряжения. Если он светится — значит, есть и первичное напряжение, и дежурное питание. Отсутствие дежурного напряжения может говорить о неисправности блока питания или о коротком замыкании в цепи дежурного напряжения. Для проверки на неисправность блока питания (БП), можно, отключив первичное 220V, отсоединить разъем БП от материнской платы. Если, при наличии первичного напряжения на входе БП, дежурное напряжение на его выходе отсутствует – неисправен блок питания. Если первичное напряжение присутствует, вероятнее всего, имеет место короткое замыкание в цепи дежурного напряжения. Кроме материнской платы, дежурное напряжение разводится и на некоторые периферийные устройства, которые могут использоваться для генерации событий управления электропитанием (включения, вывода из режима сна или гибернации). Если, при отключенном периферийном оборудовании, дежурное напряжение пропадает при подключении разъема БП к материнской плате, то неисправна материнская плата.

Если дежурное напряжение присутствует, но компьютер все равно не включается, то наиболее вероятными причинами могут быть:

— обрыв в цепи кнопки включения. Для проверки данного предположения, можно замкнуть пинцетом контакты включения электропитания на материнской плате (Power On), или замкнуть контакт основного разъема блока питания с проводом зеленого цвета (на схемах обозначается как ON, иногда — как PS_ON, контакт 16) и любым контактом с проводом черного цвета (на схемах обозначается как GND — земля, иногда — как COM — общий). Для того, чтобы блок питания включился, к нему должна быть подключена нагрузка.

Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:

Таблица контактов 24-контактного разъема блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов

Конт Обозн   Цвет Описание
1 3.3V   Оранжевый +3.3 VDC
2 3.3V   Оранжевый +3.3 VDC
3 COM   Черный Земля
4 5V   Красный +5 VDC
5 COM   Черный Земля
6 5V   Красный +5 VDC
7 COM   Черный Земля
8 PWR_OK   Серый Power Ok — Все напряжения в пределах нормы. Это сигнал формируется при включении БП и используется для сброса системной платы.
9 5VSB   Фиолетовый +5 VDC Дежурное напряжение
10 12V   Желтый +12 VDC
11 12V   Желтый +12 VDC
12 3.3V   Оранжевый +3.3 VDC
13 3.3V   Оранжевый +3.3 VDC
14 -12V   Синий -12 VDC
15 COM   Черный Земля
16 /PS_ON   Зеленый Power Supply On. Для включения блока питания нужно закоротить этот контакт на землю ( с проводом черного цвета).
17 COM   Черный Земля
18 COM   Черный Земля
19 COM   Черный Земля
20 -5V   Белый -5 VDC  (это напряжение используется очень редко, в основном, для питания старых плат расширения.)
21 +5V   Красный +5 VDC
22 +5V   Красный +5 VDC
23 +5V   Красный +5 VDC
24 COM   Черный Земля

— короткое замыкание на выходе блока питания. При коротком замыкании срабатывает защита, и блок питания отключается. Нередко, это заметно даже визуально – лопасти вентиляторов могут начать вращение и сразу же остановиться. Поскольку короткое замыкание может быть не только на материнской плате, но и в периферийных устройствах, попробуйте удалить из слотов все адаптеры, отключить все внешние устройства, дисковые накопители и приводы CD/DVD. Если БП, после отключения внешних устройств, включается – необходимо определить, какое из устройств неисправно.

Если имело место срабатывание защиты блока питания от короткого замыкания, перед последующим включением нужно на несколько секунд отключить первичное напряжение 220V (вынуть вилку из розетки, отключить сетевой фильтр или UPS).

Если БП, после отсоединения всех периферийных устройств не включается, отсоедините 4-8 контактный разъём дополнительного питания процессора +12V Power Connector (может обозначаться как +12V CPU) на материнской плате. Если Блок питания включится, то причиной неисправности является схема дополнительного питания +12V CPU (модуль VRM) материнской платы.

— неисправность БП или материнской платы. Если к разъему блока питания подключена только материнская плата, но БП все равно не включается — наиболее вероятно, что неисправен именно БП. Неисправность материнской платы, приводящая к невозможности включить электропитание компьютера, на практике встречается довольно редко. Для получения дополнительной диагностической информации можно попробовать включить БП без подключения основного разъема к материнской плате. При этом, нужно обеспечить некоторую нагрузку на выходе БП, например, подключив CD/DVD привод. Для включения БП нужно замкнуть контакты проводника зеленого цвета PS ON (контакт 16 разъема блока питания) и любой из контактов с проводом черного цвета GND (схемная земля). Если БП включится — неисправна материнская плата. Если не включится – неисправен блок питания.

Большой подбор принципиальных схем компьютерных блоков питания можно найти на странице Схемы

Компьютер включается, но загрузка не начинается.

&nbsp &nbsp Внешнее проявление данной ситуации: блок питания включается, вентиляторы вращаются, но на экране монитора нет изображения, индикатор активности жесткого диска не мигает и, либо нет никаких звуковых сигналов, либо они присутствуют в виде серии звуков разной длительности. Чтобы понять, что является причиной данной неисправности, желательно хотя бы в общих чертах иметь представление о том, что происходит с компьютером после того, как была нажата кнопка включения электропитания.

При включении БП и установке на его выходе номинальных напряжений вырабатывается специальный сигнал, поступающий на материнскую плату для выполнения начального сброса оборудования и запуска программы самотестирования, прошитой в постоянном запоминающем устройстве (ПЗУ) BIOS — Power On Self Test или POST). POST включает в себя подпрограммы тестирования основных узлов оборудования, необходимых для выполнения начальной загрузки операционной системы (ОС). При этом прохождение тестов может сопровождаться индикацией кодов ошибок или POST-кодов на специальном индикаторном устройстве материнской платы, если такая индикация предусмотрена в конкретной модели. Также, для индикации ошибок может использоваться специальная диагностическая плата, установленная в один из слотов расширения. Кроме кодов ошибок, на подавляющем большинстве материнских плат, предусмотрена выдача звуковых сигналов через динамик системного блока, предназначенных для первичной диагностики ошибок, обнаруженных при прохождении тестов POST. Звуковые сигналы не стандартизированы, и их расшифровка выполняется в зависимости от производителя материнской платы и версии BIOS. Например, отсутствие или неисправность видеоадаптера при выполнении самотестирования AWARD BIOS вызовет 1 длинный и 2 коротких сигнала, AMI BIOS — 8 коротких. Для всех версий BIOS используется один короткий сигнал, если тестирование прошло без ошибок, и начинается этап загрузки операционной системы. Если же присутствуют прочие звуковые сигналы или их нет вообще – имеются проблемы с оборудованием, не позволяющие выполнить начальную загрузку операционной системы.

Отсутствие звуковых сигналов может означать наличие неисправности в самом начале тестирования, когда ошибка настолько серьезная, что даже нет возможности воспроизвести звук. Например – неисправен центральный процессор (CPU) или генератор тактовой частоты. Конечно, это не относится к случаям, когда нет звуковых сигналов из-за отсутствия динамика системного блока или его неисправности.

В случаях неисправности, не позволяющей выполнить начальную загрузку попробуйте максимально упростить конфигурацию оборудования. Выключите компьютер, уберите из слотов расширения все адаптеры и отключите все периферийные устройства, подключенные к компьютеру. Если имеется несколько модулей памяти — оставьте только один. Если звуковые сигналы отсутствуют, попробуйте включить системный блок вообще без модулей памяти. Если вы услышите характерный писк — материнская плата запустилась. Если нет – материнская плата неисправна.

Естественно, все манипуляции с отключением и подключением периферийных устройств, адаптеров и модулей нужно выполнять при выключенном компьютере и при отсутствии первичного электропитания 220V, потому, что в выключенном, но не обесточенном состоянии, блок питания вырабатывает дежурное напряжения +5VSb, которое подается на материнскую плату и обеспечивает включение компьютера при возникновении событий управления электропитанием (PME – Power Management Event), таких как нажатие определенных клавиш на клавиатуре, кнопок мыши, получение специальных кадров по локальной сети (Wake On Lan, Magic Packet), и т.п. Таким образом, часть оборудования системной платы выключенного компьютера находится под напряжением +5V Sb и отключение или подключение плат или устройств к ее разъемам может привести к выходу из строя блока питания, самой материнской платы или подключаемого устройства.

Комбинации звуковых сигналов при выполнении POST для конкретной версии материнской платы и BIOS можно найти на сайте производителя.

Существуют также специальные программы, разработанные энтузиастами, как например, Beep Codes Viewer. Программа позволяет получить описание кодов звуковых сигналов (beep codes) для наиболее распространенных версий BIOS. Язык — английский. Тем не менее, наиболее достоверным источником информации была и будет документация от производителя.

    Если в минимальной конфигурации звуковые сигналы отсутствуют, то наиболее вероятными причинами неисправности являются блок питания, материнская плата, процессор, модули памяти.

В качестве средства отображения диагностических событий в некоторых моделях ноутбуков могут использоваться не только звуковые, но и световые сигналы с использованием светодиодных индикаторов клавиатуры (CAPS Lock, Num Lock). Расшифровку подобных сигналов нужно выполнять с использованием документации, размещаемой на сайтах производителей, например, для ноутбуков Hewlett Packard и Compaq на странице Служба поддержки клиентов HP — База знаний. На новых компьютерах для указания на определенные ошибки, используется последовательность визуальной индикации из двух частей с разными цветами. В таблице с описаниями ошибок такие сигналы обозначаются числом, например, 3.5, что означает 3 длинных мигания красным цветом и 5 коротких миганий белым цветом. Таблицы содержат сведения о проверяемом компоненте компьютера, последовательности световых и звуковых сигналов, состоянии ошибки и действиях по устранению неполадки. Таблицы сигналов для моделей разного года выпуска могут отличаться .

При некоторых неисправностях, связанных с заменой компонент или изменением настроек в BIOS, может помочь сброс настроек установкой специальной перемычки на материнской плате (Clear CMOS).

Для современных недорогих материнских плат, одной из наиболее частых причин неисправности являются вздувшиеся электролитические конденсаторы в цепях питания процессора и памяти. Обычно это легко обнаружить при визуальном осмотре.

При выполнении программы самотестирования BIOS, также выполняется опрос доступных периферийных контроллеров и информация о них записывается в энергонезависимую память ( CMOS ) — создается специальная таблица, называемая Desktop Management Interface (DMI) pool . Таблица DMI может использоваться операционными системами для определения списка доступных устройств, но в большинстве случаев, информация DMI не используется, а список создается собственными программными средствами загрузчика ОС. Тем не менее, таблица DMI создается ( или проверяется ) до загрузки операционной системы всегда. Обычно, этот процесс сопровождается сообщением «Building DMI pool» или «Verifying DMI pool data» . Как правило, процесс создания таблицы DMI длится не более нескольких секунд и, если после подобного сообщения, загрузка не началась, то возможны варианты:

— изменилась конфигурация компьютера и какая-либо подпрограмма BIOS не может правильно ее интерпретировать.

— какое – то из устройств выдает неверные данные о себе (неисправно).

— таблица DMI , записанная в энергонезависимой памяти (CMOS) повреждена и не может быть создана заново ( неисправность CMOS, севшая батарейка, конфликтующее устройство и т.п. ).

— повреждена сама подпрограмма BIOS ( например, при перепрошивке )

Возможные пути решения проблемы:

— сбросить содержимое CMOS ( Clear CMOS Configuration) и загрузить оптимальную конфигурацию ( Load Setup Defaults, Load Optimal и т.п. )
— сбросить содержимое буфера DMI и вынудить подпрограмму самотестирования пересоздать его. Обычно эта процедура выполняется с использованием настройки в BIOS разрешением пункта Reset Configuration Data (Force Update ESCD и т.п — зависит от версии и производителя BIOS)

— если предыдущие пункты не сработали, попробуйте отключить как можно больше периферийных устройств и интегрированных контроллеров в настройках BIOS (звук, порты ввода – вывода и т.п.)

Загрузка начинается, но заканчивается сбросом и перезагрузкой.

&nbsp &nbsp Подобное поведение системы, обычно, вызвано критической ошибкой, обнаруженной в процессе начальной загрузки. Информация о такой ошибке традиционно отображалась в виде текста на синем фоне, и получила название ”синий экран смерти” или BSOD (Blue Screen Of Death или BSOD).

Иногда синие экраны смерти называют стоп — ошибками (stop error) или сокращенно Stop с указанием кода ошибки — Stop 0x000000F4 или ещё короче — Stop F4.

Информация синего экрана смерти обычно содержит :

— Краткое описание, например,
CRITICAL_OBJECT_TERMINATION

— код ошибки и дополнительные данные для детализации, например,
*** STOP: 0x00000050 (0xe80f26cd, 0x00000000, 0xe80f26cd, 0x00000002)
— имя программного модуля ядра или драйвера и другие параметры, если это возможно определить, например,
*** ntoskrnl.exe — Address 0x8044a2c9 base at 0x80400000 DateStamp 0x3ee6c002

Критическая ошибка не может быть исправлена аппаратно-программными средствами и работа операционной системы завершается аварийно. Синий экран смерти может возникнуть как в процессе, так и после завершения загрузки, например, когда в программе обработки ошибки также возникла неустранимая ошибка. Если подобная ситуация возникает при выполнении пользовательской программы, то она просто завершается аварийно, но если ситуация возникает при работе модуля ядра или системного драйвера, то аварийно завершается работа всей системы.

По умолчанию, операционные системы семейства Windows настроены на выполнение автоматической перезагрузки при возникновении критической ошибки. Этот режим устанавливается в Панель управления — Система — вкладка «Дополнительно» — режим «Загрузка и восстановление » — режим « Выполнить автоматическую перезагрузку»

При такой настройке, «синий экран смерти» можно просто не увидеть, начальная загрузка завершается перезагрузкой так, как будто во время ее выполнения была нажата кнопка сброса системного блока (Reset). В результате, пользователь не получает информацию синего экрана, которую можно было бы использовать для анализа причин возникновения ошибки. Для исключения перезагрузки по критической ошибке в операционных системах Windows XP и старше, нужно войти в меню загрузчика по нажатию клавиши F8 и выбрать режим

Отключить автоматическую перезагрузку при отказе системы

При загрузке в таком режиме вы сможете проанализировать данные синего экрана смерти и определить причину критической ошибки.

В операционных системах Windows 7 и старше, попасть в меню загрузчика довольно проблематично из-за очень малого времени, отводимого на ожидание нажатия F8 . Приходится многократно и часто нажимать клавишу F8 в самом начале загрузки до появления логотипа Windows. А в Windows 10 по умолчанию используется новый режим (standard), при котором опрос нажатия F8 вообще не производится. В этом случае можно выполнить перевод системы в совместимый (legacy) режим загрузки с помощью редактора конфигурации загрузки bcdedit.exe:

bcdedit /set {default} bootmenupolicy legacy — включить совместимый режим загрузки для текущей конфигурации.

bcdedit /store Z:\EFI\Microsoft\Boot\BCD /set bootmenupolicy legacy — включить режим совместимости для конфигурации с хранилищем загрузки на диске Z: в папке \EFI\Microsoft\Boot\. В данном случае загрузка выполнена в другой операционной системе и изменения выполняются для диспетчера загрузки в конфигурации определяемой параметром /store

bcdedit /store Z:\EFI\Microsoft\Boot\BCD /set bootmenupolicy standard — включить стандартный режим для конфигурации с хранилищем загрузки на диске Z: в папке \EFI\Microsoft\Boot\.     Одним из примеров возникновения синего экрана смерти является случай загрузки старой операционной системы после установки новой материнской платы, или изменением режима работы контроллера жесткого диска в настройках BIOS (SATA – IDE или RAID). Подробно, практика восстановления работоспособности Windows в данном случае описана в отдельной статье

Если непосредственно перед появлением проблемы производилась установка нового программного обеспечения или устанавливались обновления Windows, или другого ПО, имеющего в своем составе системные службы или драйверы (антивирусы, брандмауэры и т.п.), то возможно, что проблема заключается не в неисправном оборудовании, а в аварийном завершении системы из-за некорректно работающих системных служб или драйверов.

Самым простым способом восстановления системы в данном случае, является откат ее состояния на момент создания точки восстановления, когда проблемы еще не было. Механизм точек восстановления Windows позволяет создавать, и некоторое время хранить, копии реестра и важных системных файлов. Такие копии создаются периодически, или при серьезных изменениях системы, и в подавляющем большинстве случаев, откат на точку работоспособного состояния вернет Windows к жизни. Но, главной проблемой такого способа восстановления системы заключается в том, что запустить средство восстановления Windows ( утилиту rstrui.exe ) можно только в среде самой ОС, которая не загружается из-за синего экрана смерти. Тем не менее, если данные точек восстановления существуют, проблему можно решить очень просто с использованием диска аварийного восстановления MicroSoft Diagnostic and Recovery Toolset ( MS DaRT), ранее известного как ERD Commander ( ERDC ). Средства аварийного восстановления MS DaRT позволяют выполнить откат системы в несколько щелчков мышью, а также быстро и легко деинсталлировать обновления системы. Даже в тех случаях, когда данные точек восстановления не кондиционны или не могут быть использованы в полном объеме, проблема может быть решена с использованием выборочной замены системных файлов вручную. Например, если Windows аварийно завершается с кодом Stop: 0xc0000218 {Registry File Failure}, это означает, что с большой долей вероятности повреждены файлы system и / или software из каталога \windows\system32\config , которые являются разделами реестра
HKLM\SYSTEM и HKLM\SOFTWARE
Повреждения файлов остальных разделов ( SAM, SECURITY, BCD ) менее вероятно, поскольку запись в них выполняется гораздо реже и они значительно меньше по размеру. Кроме того, повреждение данных файлов, вызывают другие проблемы загрузки системы и сопровождаются иными сообщениями о критической ошибке. В данном случае, для восстановления системы можно либо выполнить полный откат, либо вручную скопировать файл куста System ( Software ) из данных контрольной точки. Кроме данных точек восстановления в Windows 7-8 можно воспользоваться автоматически создаваемыми копиями файлов реестра, хранящимися в папке \Windows\System32\Config\Regback. Подробно о приемах восстановления работоспособности Windows с использованием данных точек восстановления, если загрузка системы невозможна, изложено в статье ERD Commander — инструкция по применению.

Компьютер самопроизвольно включается.

    Подобное поведение компьютера, как правило, связано с настройками BIOS, имеющим отношение к системе управления электропитанием (ACPI — Advanced Configuration and Power Interface или интерфейсу управления электропитанием). Частью спецификации ACPI являются функции включения электропитания компьютера при возникновении определенных условий.

    Если коротко, то электропитание компьютера может быть включено не только нажатием кнопки POWER, но и при возникновении событий управления электропитанием (Power Management Events или PME), задаваемых настройками BIOS материнской платы. Такими событиями могут быть нажатие определенных клавиш на клавиатуре, специально сформированные кадры ETHERNET, сигнал, сформированный по внутреннему таймеру, сигнал при подаче первичного напряжения (220V) на вход блока питания и т.п.

Название и содержимое раздела управления электропитанием BIOS зависит от конкретного производителя и версии (Power Management Setup, ACPI Configuration, Advanced Power Management Setup, APM и т.п.)

Ниже приведен пример настроек раздела «Power — APM Configuration» AMI BIOS v2.61:

Restore on AC Power Lost — поведение системы при пропадании электропитания. Значение Power Off — система останется в выключенном состоянии, Power On — будет выполнено включение компьютера, как только электропитание будет восстановлено. Другими словами, если этот режим включен в BIOS — при подаче первичного напряжения (220В) компьютер включится самостоятельно, без нажатия кнопки POWER
Power On By RTC Alarm — включение электропитания по внутренним часам компьютера (аналог будильника).
Power On By External Modems — включение электропитания будет выполняться при входящем звонке на внешний модем, подключенный к последовательному порту.
Power On By PCI (PCIE) Devices — разрешает включение компьютера от устройств на шине PCI(PCI-E).
Power On By PS/2 Keyboard — разрешает включение электропитания от клавиатуры, подключенной к разъему PS/2

В заключение добавлю, что в некоторых версиях BIOS , настройка автоматического включения электропитания при появлении первичного 220V может быть в разделе Integrated Periferals — пункт PWRON After PWR-Fail ( встречается в некоторых версиях Foenix — AwardBIOS CMOS Setup Utility )

Компьютер самопроизвольно выключается.

    Подобное проявление неисправности может быть связано не только с компьютерным оборудованием, но и с внешними факторами – температурой окружающей среды, качеством первичного электропитания на входе БП ( 220 V ) и т.п. Наиболее вероятные причины самопроизвольного выключения компьютера:

— Перегрев. Показания температурных датчиков можно получить с помощью специального программного обеспечения. Обычно такое ПО можно имеется на сайтах производителей оборудования (материнской платы, видеоадаптера, дисковых накопителей и т.д ). Можно также воспользоваться специальными программами мониторинга состояния системы, как например, AIDA64 ( бывший EVEREST ) компании Lavalis Consuting Group или Speccy от разработчиков более известных продуктов CCleaner и Recuva. Если самопроизвольное выключение компьютера связано с перегревом, то обычно оно сопровождается ошибками прикладных программ, синими экранами смерти, зависаниями системы.

— Срабатывает защита блока питания. Причиной срабатывания может быть недостаточная мощность БП. Дополнительным признаком работы на предельной нагрузке может быть то, что выключение происходит не всегда, а, например, при запуске игровых программ, резко увеличивающих потребление электроэнергии видеоадаптером.

Срабатывание защиты в редких случаях, может быть вызвано кратковременным коротким замыканием, возникающим при вибрации корпуса или электронных плат. Обычно это вызвано малым расстоянием между шинами питания, выводами разъемов, элементов плат или проводников с поврежденной изоляцией и корпусом. При диагностике можно воспользоваться легким простукиванием предполагаемых мест возникновения замыкания.

Компьютер зависает или самопроизвольно перезагружается.

&nbsp &nbsp Речь идет только о зависаниях и перезагрузках, вызванных неисправностью или нестабильной работой оборудования.

Нередко зависания и перезагрузки сопровождаются ошибками распаковки архивов, сообщениями об ошибках отдельных программ, сообщениями системы о невозможности выполнить приложение или открыть файл.
Как и в случае с самопроизвольным выключением, причиной может быть перегрев, недостаточная мощность или нестабильность выходных напряжений блока питания. Также распространенной причиной является использование разгона с целью повышения быстродействия. Разгон всегда снижает стабильность работы системы.

Диагностика проблемы:

— проанализируйте журналы системы. Возможно, там есть записи, которые помогут установить причины нестабильной работы.
— отмените режим автоматической перезагрузки при возникновении критической ошибки Windows. «Пуск» — «Настройка» — «Панель управления» — «Система» — «Дополнительно» — «Загрузка и восстановление — Параметры» — нужно убрать галочку «Выполнить автоматическую перезагрузку». Полезно включить (если не включен) режим записи малого дампа памяти, который может помочь в поиске причин возникновения критической ошибки с помощью утилиты BlueScreenView, как описано здесь в разделе «Поиск проблемного драйвера»

— попробуйте выполнить загрузку ОС в безопасном режиме. В данном режиме выполняется загрузка только тех драйверов устройств и системных служб, которые минимально необходимы. Их перечень определяется содержимым раздела реестра
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot
Подразделы:
Minimal — список драйверов и служб, запускаемых в безопасном режиме (Safe Mode)
Network — то же, но с поддержкой сети.

Синий экран смерти (BSOD) с разными кодами на разных драйверах с большой вероятностью говорит о неполадках в оборудовании, обычно это:

  • оперативная память

  • материнская плата

  • несовместимость памяти и материнской платы

  • перегрев микросхем чипсета материнской платы

  • вздувшиеся электролитические конденсаторы на материнской плате

  • блок питания.
  • &nbsp &nbsp Несколько советов:

    1. Диагностика значительно упрощается, если вам удастся зафиксировать ситуацию, т.е. — найти такую комбинацию условий, при которых сбой будет повторяться. .

    2. При диагностике старайтесь максимально упростить конфигурацию оборудования — физически отключайте то, без чего можно обойтись.

    3. Если у вас возникло подозрение, что причиной нестабильной работы является перегрев, попробуйте установить дополнительные вентиляторы. При их установке, старайтесь не создавать встречных воздушных потоков. Можно, также, используя настройки BIOS материнской платы, искусственно занизить производительность компьютера.
    Обычно, в BIOS имеются настройки для повышения производительности (разгона) путем увеличения тактовых частот работы процессора, памяти, шин обмена данными. Для стабильной работы, как правило, требуется еще и увеличение напряжений питания разгоняемых устройств. И первое, и второе, сопровождается ростом энергопотребления и дополнительным нагревом. Занижение тактовых частот и напряжений питания снизит нагрев элементов. Однако, учтите, что значительное снижение напряжения, как правило, еще и уменьшает стабильность их работы.

    4. Если у вас используются модули оперативной памяти, не входящие в список рекомендованных производителем материнской платы, то, как и в предыдущем случае, попробуйте снизить настройками BIOS их производительность, но не уменьшайте, а, наоборот, пошагово увеличивайте напряжения питания. Если модулей несколько, попробуйте для эксперимента, использовать только один из них.

    Программы для контроля и тестирования оборудования

    Everest Ultimate Edition (Everest Corporate Editions) — наверно, самая популярная программа компании Lavalys Consulting Group для диагностики и тестирования аппаратных средств компьютера. Выдает более 100 страниц информации, о процессоре, материнской плате, памяти, устройствах, показания температурных датчиков, и т.д. Также может использоваться для проведения сетевого аудита и настройки на оптимальную работу. Everest Corporate Edition, по сравнению с EVEREST Ultimate Edition обладает несколько более широкими возможностями по диагностике, в том числе по анализу локальной сети. Имеется поддержка русского языка. Программа платная. Сайт программы — www.lavalys.com/

    SIV (System Information Viewer) — В отличие от Everest, бесплатная. Показывает очень подробную информацию о системе, локальной сети и аппаратном обеспечении. Выдает информацию о широком наборе характеристик локального компьютера и рабочих станций: установленное оборудование и программное обеспечение, данные с датчиков температуры и напряжений, сведения о процессоре, памяти, жестких дисках и очень многое другое. По возможностям (кроме удобства представления информации) практически не уступает платному Everest. Программа постоянно обновляется. Скачать последнюю версию можно на странице загрузки производителя rh-software.com

    SpeedFan — бесплатная программа для контроля материнской платы (температура, напряжения, скорости вращения вентиляторов). Имеет возможность считывания S.M.A.R.T — атрибутов жестких дисков, и соответственно, их температуры. Позволяет регулировать скорость вращения вентиляторов. Поддерживается множество аппаратных платформ, включая и IPMI для серверов.

    Скачать актуальную версию SpeedFan можно на официальном сайте разработчика.

    Speccy — популярная программа для получения сведений о системе от разработчиков оптимизатора Ccleaner. Сайт программы — www.ccleaner.com/speccy. Программа распространяется в бесплатном (Speccy Free) и платном (Specce Professional) вариантах, а также в составе платного пакета Ccleaner Professional .

    Memtest86+ — создана на основе Memtest86 независимыми разработчиками. Сайт программы — www.memtest.org

    В современных операционных системах может быть доступна программа тестирования оперативной памяти непосредственно из меню менеджера загрузки установленной ОС Windows или из меню загрузочного диска с дистрибутивом.

    Если вы желаете поделиться ссылкой на эту страницу в своей социальной сети, пользуйтесь кнопкой «Поделиться»

    В начало страницы.     |     На главную страницу сайта.

    Ремонт компьютерных блоков питания | Полезные статьи от ITComplex

    Меры предосторожности.

    Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

    Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

    Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

    Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

    Инструментарий.

    1. Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
    2. Отсос для припоя и (или) оплетка. Служат для удаления припоя.
    3. Отвертка
    4. Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
    5. Мультиметр
    6. Пинцет
    7. Лампочка на 100Вт
    8. Очищенный бензин или спирт. Используется для очистки платы от следов пайки.

    Устройство БП.

    Немного о том, что мы увидим, вскрыв блок питания.

    Внутреннее изображение блока питания системы ATX

    A – диодный мост, служит для преобразования переменного тока в постоянный

    B – силовые конденсаторы, служат для сглаживания входного напряжения

    Между B и C – радиатор, на котором расположены силовые ключи

    C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

    между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

    D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

    E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

    Распиновка разъема 24 pin и измерение напряжений.

    Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

    Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

    Визуальный осмотр.

    Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

    Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

    Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.
    Первичная диагностика.

    Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

    Неисправности:

    1. БП не запускается, отсутствует напряжение дежурного питания
    2. БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
    3. БП уходит в защиту,
    4. БП работает, но воняет.
    5. Завышены или занижены выходные напряжения

    Предохранитель.

    Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

    Варистор

    Задачей варистора является защита блока питания от импульсных помех. При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

    Варистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же варисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя варистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с варистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены варистора и проверки остальных элементов первичной цепи.

    Диодный мост
    Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение тока должно быть около 500мА, а в обратном звониться как разрыв.

    Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.

    Конденсаторы
    Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

    Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.


    Резисторы

    Номинал резистора определятся по цветовой маркировке. Резисторы следует менять только на аналогичные, т.к. небольшое отличие в номиналах сопротивления может привести к тому, что резистор будет перегреваться. А если это подтягивающий резистор, то напряжение в цепи может выйти за пределы логического входа, и ШИМ не будет генерировать сигнал Power Good. Если резистор сгорел в уголь, и у вас нет второго такого же БП, чтобы посмотреть его номинал, то считайте, что вам не повезло. Особенно, это касается дешевых БП, на которые, практически не возможно достать принципиальных схем.

    Диоды и стабилитроны

    Проверяются прозвонкой в обе стороны. Если звонятся в обе стороны как К.З. или разрыв, то не исправны. Сгоревшие диоды следует менять на аналогичные или сходные по характеристикам, внимание обращаем на напряжение, силу тока и частоту работы.

    Транзисторы, диодные сборки.

    Транзисторы и диодный сборки, которые установлены на радиатор, удобнее всего выпаивать вместе с радиатором. В «первичке» находятся силовые транзисторы, один отвечает за дежурное напряжение, а другие формируют рабочие напряжения 12в и 3,3в. Во вторичке на радиаторе находятся выпрямительные диоды выходных напряжений (диоды Шоттки).

    Проверка транзисторов заключается в “позвонке” р-п-переходов, также следует проверить сопротивление между корпусом и радиатором. Транзисторы не должны замыкать на радиатор. Для проверки диодов ставим минусовой щуп мультиметра на центральную ногу, а плюсовым щупом тыкаем в боковые. Падение тока должно быть около 500мА, а в обратном направление должен быть разрыв.

    Если все транзисторы и диодные сборки оказались исправные, то не спешите запаивать радиаторы обратно, т.к. они затрудняют доступ к другим элементам.

    ШИМ

    Если ШИМ визуально не поврежден и не греется, то без осциллографа его проверить довольно сложно.

    Простым способом проверки ШИМ, является проверка контрольных контактов и контактов питания на пробой.

    Для этого нам понадобиться мультиметр и дата шит на микросхему ШИМ. Диагностику ШИМ следует проводить, предварительно выпаяв её. Проверка производится прозвоном следующих контактов относительно земли (GND): V3.3, V5, V12, VCC, OPP. Если между одним из этих контактов и землей сопротивление крайне мало, до десятков Ом, то ШИМ под замену.

    Дроссель групповой стабилизации (ДГС).

    Выходит из строя из-за перегрева (при остановке вентилятора) или из-за просчетов в конструкции самого БП (пример Microlab 420W). Сгоревший ДГС легко определить по потемневшему, шелушащемуся, обугленному изоляционному лаку. Сгоревший ДГС можно заменить на аналогичный или смотать новый. Если вы решите смотать новый ДГС, то следует использовать новое ферритовое кольцо, т.к. из за перегрева старое кольцо могло уйти по параметрам.

    Трансформаторы.

    Для проверки трансформаторов их следует предварительно выпаять. Их проверяют на короткозамкнутые витки, обрыв обмоток, потерю или изменение магнитных свойств сердечника.

    Чтобы проверить трансформатор на предмет обрыва обмоток достаточно простого мультиметра, остальные неисправности трансформаторов определить гораздо сложнее и рассматривать их мы не будем. Иногда пробитый трансформатор можно определить визуально.

    Опыт показывает, что трансформаторы выходят из строя крайне редко, поэтому их нужно проверять в последнюю очередь.

    Профилактика вентилятора.

    После удачного ремонта следует произвести профилактику вентилятора. Для этого вентилятор надо снять, разобрать, почистить и смазать.

    Отремонтированный блок питания следует длительное время проверить под нагрузкой.
    Прочитав эту статью, вы самостоятельно сможете произвести легкий ремонт блока питания, тем самым сэкономив пару монет и избавить себя от похода в сервис или магазин.


    Статьи по теме:

    Ремонт блока питания компьютера. | Компьютерная помощь

    Сразу хочу оговориться, что ремонт обычного, недорого блока питания имеет смысл, если он не требует значительных трудовых и материальных затрат. То есть я лично ремонтирую только блоки питания, неисправность которых легко обнаруживается и устраняется. Блоки питания с более сложными неисправностями я либо пускаю на запчасти, либо откладываю на потом, то есть на случай если уж совсем нет другой работы. Если блок питания не подлежит ремонту, то его нужно заменить на новый или рабочий б.у. подходящий по своим характеристикам. О выборе блоков питания можно почитать здесь. О признаках неисправности именно блока питания в вашем компьютере можно прочитать тут.

    При ремонте блока питания компьютера нужно соблюдать меры безопасности, так как здесь присутствует высокое напряжение и существует опасность поражения электрическим током, взрыва и воспламенения компонентов. Для обеспечения безопасности нужно:

    1. Подключать ремонтируемый блок питания через дополнительный предохранитель на ток не более 2А, плавкий или автоматический.

    2. Кроме предохранителя первое включение после ремонтных операций производить через последовательно включенную лампу накаливания. Если лампа горит полным накалом, то это говорит о коротком замыкании в цепи.

    3. После каждого включения блока питания в сеть необходимо разряжать входные высоковольтные электролитические конденсаторы. Во избежание искрения нужно разряжать конденсаторы на лампу накаливания 220 вольт. Вспышка лампы является индикатором разряда конденсаторов.

    4. Не забывать и строго следить за тем, чтобы блок питания был отключен от сети при проведении ремонтных работ (кроме проведения измерений напряжений, токов, снятия осцилограмм).

    5. Рядом не должно быть заземленных предметов, например водопроводных труб, батарей отопления и т.п., либо подключаться к сети нужно через разделительный трансформатор.

    6. С высоковольтной частью блока питания нужно работать особенно осторожно и стараться не допускать ошибок.

    Теперь непосредственно о ремонте и неисправностях.

    Чаще всего встречаются следующие неисправности, которые достаточно легко обнаруживаются и устраняются:

    1. Отсутствие напряжения «дежурки» +5в. Это напряжение выходит на фиолетовый провод главного разъема блока питания. Обычно первое, что я делаю еще до вскрытия, это проверяю блок питания на наличие этого напряжения, правда, при этом нужно быть уверенным, что исправна высоковольтная часть. Обычно если высоковольтная часть исправна, то при подключении сетевого разъёма наблюдается искрение и щелчки.

    2. Выходят из строя электролитические конденсаторы фильтров напряжений. Часто неисправные конденсаторы видно по вспухшей задней части, хотя не всегда. Проверяются конденсаторы омметром. Методика проверки описана здесь. В некоторых случаях можно определить неисправность конденсатора даже без отпайки, хотя для надежности диагностики лучше его снять.  Заменяются конденсаторы такой же или несколько большей емкости и с напряжением не менее чем у прежних.

    3. Вылетают ключевые транзисторы в высоковольтной части, обычно из-за бросков напряжения в электросети. При этом обычно сгорает внутренний предохранитель. Определяется омметром. Замена на такие же или аналоги по току, напряжению и скорости переключения.

    4. Пробивается входной высоковольтный выпрямитель. Выпрямитель бывают как в виде мостиков в одном корпусе, так и из отдельных диодов. Заменять можно на любые диоды, которые подходят по току и напряжению. Я ставил даже советские диоды и все работало. Определяется при помощи омметра.

    5. Пробиваются выходные выпрямители 5, 12в. Обычно это сборки из двух диодов с тремя выводами на радиаторах, но бывают и дискретные диоды. Поскольку частота высокая, то обычные диоды не подходят. Нужно ставить диоды Шоттки, анологичные по току и напряжению. Определяется омметром.

    6. В некоторых случаях при внимательном рассмотрении платы, дефекты обнаруживаются визуально. Это почерневшие сгоревшие детали, непропаи, перемычки, взорвавшиеся микросхемы, диоды и транзисторы. Последнее не всегда удаётся устранить просто заменой, так как они снова сгорают. В таком случае нужно анализировать и находить причины превышения тока или напряжения. Часто это бывает неисправность трансформатора или неисправность других элементов обвязки приводящих к нарушению режима работы элементов схемы.

    «Дежурка» это отдельная песня. Очень часто замена вылетевших транзисторов не дает долговременного положительного результата и они сгорают в новь. Как правило, горят парой. Виновником обычно является трансформатор, который очень трудно купить и проверяется он заменой на заведомо исправный. В некоторых случаях причиной отсутствия напряжения «дежурки» является изменение рабочей частоты, которое нередко сопровождается характерным свистом. Такое лечится заменой времязадающих элементов, в частности конденсатора. Встречается выход из строя высокоомного резистора подающего напряжение с высоковольтного моста на «дежурку».

    Более сложные случаи неисправностей блоков питания я в этой статье описывать не стану, поскольку остаюсь при мнении, что в этих случаях ремонт экономически не оправдан.

    Поделитесь этим постом с друзьями:

    Добавь меня в друзья:

    Импульсный блок питания не держит нагрузку

    Причина отказа блока питания, или почему техника перестает работать. С недавних пор, стал все чаще замечать, что люди стали обращаться, да и сам попадаю, на странный и однообразный ремонт техники. Все начинается примерно по одному сценарию – работал себе аппарат год или два и тут вдруг начал включаться медленно, или вообще не запускаться, или же при включение выключается резко, или же пытается включиться но не включается! В общем берем тестер и проверяем блок питания измерением напряжения на нем, точнее на выходных клеммах, оно как правило находится в допустимых рамках, или как вариант отличается на 0.3-0.4 вольт в меньшую сторону, например у 12 вольтовых блоках питания оно как правило 11.4 вольта.

    А вот если проверить осциллографом, или простым тестером из динамика, то слышны высокочастотные пульсации, поэтому без сглаживания эта аппаратура с таким питанием не может работать!

    Такие конденсаторы, как правило, внешне заметно на крышке вздуваются или взрываются вообще, при проверки могут показать заметное уменьшение ёмкости – вместо 1000 мкф будет 120-150 мкф, или того меньше, или же в тестере конденсатор может определиться вообще как другой элемент.

    При таком чуде, когда конденсатор вдруг стал резистором либо диодом, блок питания пытается включиться, но токи становятся высокими и в крупных фирменных телевизорах такие блоки уходят в защиту. При новой попытки включить все повторяется по кругу.

    Часто замену фильтрующего конденсатора можно выполнить увеличенной емкостью, например вместо батареи из трех конденсаторов редкой емкости в 1500 мкф, можно поставить в 4000 мкф. Главное проверить потом стабильность работы прибора и уровень пульсаций, чтобы все было в норме, ну и чтоб конденсатор был на нужное напряжение, или лучше с запасом по напряжению, тогда он будет дополнительно защищен от перепадов.

    В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

    Меры предосторожности.
    Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

    Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

    Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

    Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

    Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
    Отсос для припоя и (или) оплетка. Служат для удаления припоя.
    Отвертка
    Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
    Мультиметр
    Пинцет
    Лампочка на 100Вт
    Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
    Устройство БП.

    Немного о том, что мы увидим, вскрыв блок питания.

    Внутреннее изображение блока питания системы ATX

    A – диодный мост, служит для преобразования переменного тока в постоянный

    B – силовые конденсаторы, служат для сглаживания входного напряжения

    Между B и C – радиатор, на котором расположены силовые ключи

    C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

    между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

    D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

    E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

    Распиновка разъема 24 pin и измерение напряжений.

    Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

    Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

    Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

    Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

    Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

    Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

    БП не запускается, отсутствует напряжение дежурного питания
    БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
    БП уходит в защиту,
    БП работает, но воняет.
    Завышены или занижены выходные напряжения
    Предохранитель.

    В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

    Меры предосторожности.
    Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

    Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

    Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

    Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

    Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
    Отсос для припоя и (или) оплетка. Служат для удаления припоя.
    Отвертка
    Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
    Мультиметр
    Пинцет
    Лампочка на 100Вт
    Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
    Устройство БП.

    Немного о том, что мы увидим, вскрыв блок питания.

    Внутреннее изображение блока питания системы ATX

    A – диодный мост, служит для преобразования переменного тока в постоянный

    B – силовые конденсаторы, служат для сглаживания входного напряжения

    Между B и C – радиатор, на котором расположены силовые ключи

    C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

    между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

    D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

    E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

    Распиновка разъема 24 pin и измерение напряжений.

    Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

    Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

    Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

    Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

    Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

    Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

    БП не запускается, отсутствует напряжение дежурного питания
    БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
    БП уходит в защиту,
    БП работает, но воняет.
    Завышены или занижены выходные напряжения
    Предохранитель.

    Компьютерный блок питания не запускается вентилятор дергается

    В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

    Меры предосторожности.
    Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

    Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

    Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

    Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

    Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
    Отсос для припоя и (или) оплетка. Служат для удаления припоя.
    Отвертка
    Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
    Мультиметр
    Пинцет
    Лампочка на 100Вт
    Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
    Устройство БП.

    Немного о том, что мы увидим, вскрыв блок питания.

    Внутреннее изображение блока питания системы ATX

    A – диодный мост, служит для преобразования переменного тока в постоянный

    B – силовые конденсаторы, служат для сглаживания входного напряжения

    Между B и C – радиатор, на котором расположены силовые ключи

    C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

    между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

    D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

    E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

    Распиновка разъема 24 pin и измерение напряжений.

    Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

    Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

    Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

    Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

    Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

    Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

    БП не запускается, отсутствует напряжение дежурного питания
    БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
    БП уходит в защиту,
    БП работает, но воняет.
    Завышены или занижены выходные напряжения
    Предохранитель.

    В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

    Меры предосторожности.
    Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

    Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

    Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

    Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

    Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
    Отсос для припоя и (или) оплетка. Служат для удаления припоя.
    Отвертка
    Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
    Мультиметр
    Пинцет
    Лампочка на 100Вт
    Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
    Устройство БП.

    Немного о том, что мы увидим, вскрыв блок питания.

    Внутреннее изображение блока питания системы ATX

    A – диодный мост, служит для преобразования переменного тока в постоянный

    B – силовые конденсаторы, служат для сглаживания входного напряжения

    Между B и C – радиатор, на котором расположены силовые ключи

    C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

    между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

    D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

    E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

    Распиновка разъема 24 pin и измерение напряжений.

    Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

    Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

    Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

    Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

    Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

    Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

    БП не запускается, отсутствует напряжение дежурного питания
    БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
    БП уходит в защиту,
    БП работает, но воняет.
    Завышены или занижены выходные напряжения
    Предохранитель.

    Ребят, есть такой блок ATX. При змыкании зеленого и черного кулер дергается и все. Запускаю с нагрузкой. Кондеры все целые, КЗ на линиях нет. Диоды выходные исправные. Что может быть?

    Похожие статьи

    23 comments on “ При змыкании зеленого и черного кулер дергается и все ”

    дежурка есть, 5в

    Alexey, так кулер же при нагреве радиатора должен только врубаться, при небольшой нагрузке с чего греться?

    Владимир, но блок то не запускается

    Alexey, а, так бы и сказал) Надеюсь замыкаешь и не отпускаешь PS_ON?

    Алексей, С какой нагрузкой запускаещь? Попробуй без. И шо это ты за транс там прилепил?

    Эдуард, с резюками 47 ом, пробовал и без них.

    Владимир, не, он по идее на пониженных маслать должен

    Эдуард, это называется корректор коэффициента мощности (пассивный)

    Вадим, ясно, просто первый раз именно такой вижу, обычно бублик на плате увесистый.

    Повышенное напряжение от источника питания Sony. Ремонт бп пк

    Итак, отдали в ремонт блок питания Power Man мощностью 350 Вт

    Что делать в первую очередь? Внешний и внутренний осмотр. Смотрим на «субпродукты». Есть ли сгоревшие радиоэлементы? Может быть, плата где-то обгорела, или взорвался конденсатор, или пахнет горелым силиконом? Все это мы учитываем при обследовании. Обязательно посмотрите на предохранитель. Если перегорел, то вместо нее ставим временную перемычку примерно на такой же Ампера, а потом замеряем через два сетевых провода.Это можно сделать на вилке блока питания при включенной кнопке ON. Он НЕ должен быть слишком маленьким, иначе это повторится снова при включении питания.

    Замеряем напряжение

    Если все в порядке, включаем наш блок питания в сеть сетевым кабелем, идущим в комплекте с блоком питания, и не забываем про кнопку включения, если она у вас была выключена.



    У моего пациента на фиолетовом проводе было 0 вольт.Я беру фиолетовый провод и опускаю его на землю. Земля — ​​это черные провода с надписью COM. COM — это сокращение от «common», что означает «общий». Также есть несколько типов «земель»:


    Как только я коснулся земли и фиолетового провода, мой мультиметр издал дотошный звуковой сигнал и показывал нули на дисплее. Короткое замыкание, определенно.

    Ну давайте поищем схему на этот блок питания. Погуглив в Интернете, нашел схему.Но я нашел на Power Man всего 300 Вт. Они все равно будут похожи. Отличия в схеме заключались только в серийных номерах радиодеталей на плате. Если вы умеете анализировать печатную плату на соответствие схеме, то это не будет большой проблемой.

    А вот схема Power Man 300W. Нажмите на нее, чтобы увеличить в натуральную величину.


    Ищем виновника

    Как видно на схеме, дежурная мощность, далее именуемая дежурной, обозначается как + 5VSB:


    Непосредственно от нее исходит стабилитрон номиналом 6.3 вольта на землю. И, как вы помните, стабилитрон — это тот же диод, но в схемах он включен противоположным образом. В стабилитроне используется обратная ветвь ВАХ. Если бы стабилитрон был под напряжением, то наш провод + 5VSB не замкнул бы на массу. Скорее всего перегорел и разрушился стабилитрон.

    Что происходит с физической точки зрения при сгорании различных радиодеталей? Во-первых, их сопротивление меняется. Для резисторов он становится бесконечным, или другими словами уходит в разрыв.В конденсаторах он иногда становится очень маленьким или, другими словами, переходит в короткое замыкание. Для полупроводников возможны оба этих варианта, как короткое замыкание, так и обрыв.

    В нашем случае это можно проверить только одним способом, сняв сразу одну или обе ножки стабилитрона, как наиболее вероятного виновника короткого замыкания. Далее проверим, исчезло ли короткое замыкание между дежурным помещением и землей. Почему так происходит?

    Давайте вспомним простые советы:

    1) При последовательном соединении правило больше, чем большее, другими словами, общее сопротивление цепи больше, чем сопротивление большего из резисторов.

    2) При параллельном подключении действует противоположное правило, меньшее, чем меньшее, другими словами, конечное сопротивление будет меньше, чем сопротивление резистора меньшего из номиналов.

    Можно взять произвольные значения сопротивлений резисторов, рассчитать самостоятельно и убедиться в этом. Попробуем мыслить логически, если у нас одно из сопротивлений параллельно включенных радиодеталей равно нулю, какие показания мы увидим на экране мультиметра? Правильно, тоже равно нулю…

    И пока мы не устраним это короткое замыкание, припаяв одну из ножек той детали, которую мы считаем проблемной, мы не сможем определить, в какой части у нас короткое замыкание. Дело в том, что со звуком наберите, ВСЕ части, соединенные параллельно с деталью в коротком замыкании, в ближайшее время позвонят нам с общим проводом!

    Пытаюсь снять стабилитрон. Как только я прикоснулся к нему, он распался надвое. Без комментариев…


    Дело не в стабилитроне

    Проверяем, устранили ли мы короткое замыкание в дежурной и заземляющей цепях или нет.Действительно, короткого замыкания больше нет. Сходил в радиомагазин за новым стабилитроном и припаял его. Включаю питание, и … вижу, как мой новый, только что купленный стабилитрон излучает волшебный дым) …

    И тут сразу вспомнил одно из главных правил мастера по ремонту:

    Если что-то горит Выходите, сначала выясните причину этого, а уже потом меняйте деталь на новую или рискуете получить другую сгоревшую деталь.

    Ругаясь про себя, откусываю перегоревший стабилитрон бокорезами и снова включаю питание.

    Действительно, дежурная завышена: 8,5 Вольт. В голове крутится главный вопрос: «ШИМ-контроллер еще жив, или я уже благополучно сжег?» Качаю даташит на микросхему и вижу максимальное напряжение питания ШИМ-контроллера, равное 16 Вольт. Уфф, вроде как надо …


    Проверка конденсаторов

    Начинаю гуглить о своей проблеме на специальных сайтах, посвященных ремонту БП ATX. Ну и конечно же проблемой перенапряжения сторожа оказывается банальное повышение ESR электролитических конденсаторов в цепях сторожа.Ищем эти конденсаторы на схеме и проверяем.

    Вспоминая собранный мной измеритель СОЭ


    Пора проверить, на что он способен.

    Проверка первого конденсатора в цепи часов.


    СОЭ в пределах нормы.

    Поиск виновника

    Проверить второй


    Я жду, пока на экране мультиметра появится значение, но ничего не изменилось.


    Я понимаю, что виновник или хотя бы один из виновников проблемы найден. Перепаиваю конденсатор на точно такой же, по номиналу и рабочему напряжению, снятому с донорской платы БП. Хочу остановиться здесь подробнее:

    Если вы решили поставить в блок питания ATX электролитический конденсатор не от донора, а новый из магазина, обязательно покупайте конденсаторы LOW ESR, а не обычные. Обычные конденсаторы плохо работают в высокочастотных цепях, а в блоке питания как раз в таких цепях.

    Итак, включаю блок питания и снова меряю напряжение на дежурном. Наученный горьким опытом, уже не тороплюсь устанавливать новый защитный стабилитрон и измерять напряжение на дежурном, относительно земли. Напряжение 12 вольт и слышен высокочастотный свист.

    Опять гуглил про проблему перенапряжения в дежурной, а на сайте rom.by посвящен как ремонту блоков питания и материнских плат ATX, так и вообще всего компьютерного железа.Я нахожу свою ошибку в поисках типичных неисправностей этого блока питания. Рекомендуется заменить конденсатор на 10 мкФ.

    Я измеряю ESR на конденсаторе…. Жопа.


    Результат такой же, как и в первом случае: прибор зашкаливает. Некоторые говорят, мол, зачем собирать какие-то устройства, типа вздутые нерабочие конденсаторы, чтоб видно — они вздулись, или вскрылись розой


    Да, согласен с этим.Но это касается только конденсаторов большой емкости. Сравнительно небольшие конденсаторы не вздуваются. В их верхней части нет выемок, по которым они могли открываться. Поэтому определить их работоспособность визуально просто невозможно. Осталось только обменять их на заведомо рабочих.

    Итак, перебрав мои платы, второй нужный мне конденсатор был найден на одной из плат-доноров. Его СОЭ измеряли на всякий случай. Оказалось нормально. После впайки второго конденсатора в плату включаю блок питания клавишным выключателем и измеряю напряжение дежурного режима.Что требовалось, 5,02 вольта … Ура!

    Все остальные напряжения измеряю на разъеме блока питания. Все верно. Отклонения рабочего напряжения менее 5%. Осталось припаять стабилитрон на 6,3 Вольт. Долго думал, почему стабилитрон ровно 6,3 Вольт, когда напряжение дежурной части +5 Вольт? Логичнее было бы выставить его на 5,5 вольт или аналогичный, если бы он стоял для стабилизации напряжения на дежурной. Скорее всего, этот стабилитрон здесь стоит как защитный, чтобы в случае повышения напряжения на дежурной части выше 6.3 Вольта, он сгорает и замыкает цепь дежурного помещения, тем самым отключая питание и спасая нашу материнскую плату от сгорания при поступлении на нее завышенного напряжения через дежурное помещение.

    Как видите, вторая функция стабилитрона — защита ШИМ-контроллера от перенапряжения. Поскольку дежурное помещение подключено к питанию микросхемы через резистор с достаточно низким сопротивлением, следовательно, на силовую ногу 20 микросхемы ШИМ подается практически такое же напряжение, какое присутствует в нашем дежурном помещении.

    Вывод

    Итак, какие выводы можно сделать из этого ремонта:

    1) Все соединенные параллельно детали влияют друг на друга при измерении. Их значения активных сопротивлений рассчитываются по правилу параллельного включения резисторов. В случае короткого замыкания на одном из подключенных параллельно радиокомпонентов такое же короткое замыкание произойдет на всех других частях, подключенных параллельно этому.

    2) Для выявления неисправных конденсаторов одного визуального осмотра недостаточно и необходимо либо заменить все неисправные электролитические конденсаторы в цепях проблемного блока прибора на заведомо исправные, либо отбраковать его измерением с помощью Измеритель СОЭ.

    3) Обнаружив перегоревшую деталь, не торопимся менять ее на новую, а ищем причину, которая привела к ее возгоранию, иначе рискуем получить еще одну обгоревшую деталь.

    Блок питания выходит из строя довольно часто, особенно у агрегатов с «стажем» работы. Хуже всего то, что иногда поломка этого устройства влечет за собой выход из строя практически всех установленных компонентов, особенно если материнская плата лишена необходимой защиты — стабилизаторов питания.

    Ниже приведены наиболее частые неисправности, влияющие на источник питания.

    • Нестабильное переменное напряжение. Источником переменного напряжения для источника питания является внешняя сеть переменного напряжения. К сожалению, качество этой напряженности в странах СНГ крайне низкое. «Нормальным» явлением является значение напряжения 180, 200 и даже 260 В, при этом желаемое напряжение находится в диапазоне 210-230 В. Входные цепи блока питания принимают на себя весь удар, и если качество компоненты этих схем находится на низком уровне, блок питания либо перегревается, либо выходит из строя совсем.
    • Низкое качество электронных компонентов. Количество производителей электронных компонентов растет с каждым днем, но, к сожалению, это не влияет на качество этих компонентов. В результате блок питания сильно зависит от работы этих компонентов, что, в свою очередь, влияет на его срок службы.
    • Действия пользователя. Часто причиной неисправности является «начитанный» пользователь, который вопреки здравому смыслу пытается снизить шум вентилятора блока питания, используя существующий регулятор скорости или подавая на него пониженное напряжение, пока температура внутри блока питания находится на критическом уровне.Кроме того, мало кто задумывается о приобретении источника бесперебойного питания и защите себя от проблем, связанных с резкими скачками напряжения, от которых блок питания страдает очень болезненно.
    • Повышенная влажность. Конденсат просачивается в электронику источника питания, и больше всего страдают трансформаторы, дроссели и другие компоненты с проволочной обмоткой. Влажность регулирует сопротивление таких компонентов, что в случае достаточно частых скачков напряжения приводит к чрезмерной нагрузке на них.Соответственно, в результате резко сокращается время их эксплуатации, что может привести к частичному или полному выходу из строя.
    • Время и срок службы. Не забывайте, что любые электронные компоненты имеют определенный срок службы, который к тому же напрямую зависит от условий их использования. Так что, если от блока питания с максимальной мощностью 300 Вт вам всегда потребуется такая мощность, а иногда и больше, ресурс комплектующих быстро исчерпается и блок питания в лучшем случае просто не сможет доставить даже среднего показателя мощности больше нет.
    • Истощение внутренних ресурсов. Самая частая и неизбежная неисправность — постепенное истощение ресурсов блока питания и падение его мощности. Результат такого эффекта — нестабильная работа компьютера, частые перезагрузки или отказ от включения.

    Блок питания — это не прибор, который нельзя отремонтировать вручную: многие неисправности легко устранить самостоятельно. Однако перед этим стоит понять, что работа всех других устройств зависит от источника питания, поэтому безответственные действия при поиске и устранении неисправностей этих устройств подвергают эти устройства большому риску.

    СОВЕТ !!! В большинстве случаев ремонт блока питания не дает ожидаемого эффекта или дает, но на очень непродолжительное время. Поэтому советую сразу приобретать новый блок питания, выбирая при этом проверенную временем модель.

    Мы рассмотрели, что делать в случае короткого замыкания предохранителя блока питания ATX. Это означает, что проблема где-то в высоковольтной части, и нам нужно прозвонить диодный мост, выходные транзисторы, силовой транзистор или МОП-транзистор, в зависимости от модели блока питания.Если предохранитель не поврежден, мы можем попробовать подключить шнур питания к блоку питания и включить его с помощью переключателя питания, расположенного на задней панели блока питания.

    И тут нас может поджидать сюрприз, как только мы щелкаем выключателем, мы слышим высокочастотный свист, то громкий, то тихий. Итак, если вы слышали этот свист, даже не пытайтесь подключить блок питания для тестов к материнской плате, сборке или установить такой блок питания в системный блок!

    Дело в том, что в цепях дежурного напряжения (дежурной) есть все те же электролитические конденсаторы, знакомые нам по прошлой статье, которые при нагревании теряют емкость, а от старости их ESR увеличивается, (по-русски сокращенно ESR ) эквивалентное последовательное сопротивление… При этом визуально эти конденсаторы могут ничем не отличаться от рабочих, особенно для небольших номиналов.

    Дело в том, что на небольших номиналах производители очень редко устраивают выемки в верхней части электролитического конденсатора, и они не вздуваются и не открываются. Без замера такого конденсатора специальным прибором определить пригодность работы в схеме невозможно. Хотя иногда после пайки мы видим, что серая полоска на конденсаторе, отмечающая минус на корпусе конденсатора, от нагрева становится темной, почти черной.Как показывает статистика ремонта, рядом с таким конденсатором всегда есть силовой полупроводник, или выходной транзистор, или дежурный диод, или МОП-транзистор. Все эти детали при работе выделяют тепло, что отрицательно сказывается на сроке службы электролитических конденсаторов. Думаю, что дальше будет излишне объяснять, как работает такой потемневший конденсатор.

    Если охладитель блока питания остановился из-за высыхания смазки и засорения пылью, такой блок питания, скорее всего, потребует замены почти ВСЕХ электролитических конденсаторов на новые из-за повышенной температуры внутри блока питания Блок.Ремонт будет довольно муторным и не всегда целесообразным. Ниже представлена ​​одна из распространенных схем, на которых базируются блоки питания Powerman 300-350 Вт, кликабельна:

    Powerman ATX Схема powerman

    Давайте разберемся, какие конденсаторы нужно менять в этой схеме, при проблемах с дежурной:

    Так почему нельзя свистеть БП в сборку для тестирования? Дело в том, что в схемах дежурного помещения стоит один электролитический конденсатор (выделен синим цветом), при увеличении ESR которого мы увеличиваем рабочее напряжение, выдаваемое блоком питания на материнскую плату, еще до того, как нажимаем кнопку включения системного блока.Другими словами, как только мы нажали тумблер на задней панели источника питания, это напряжение, которое должно быть равно +5 вольт, поступит на наш разъем источника питания, фиолетовый провод 20-контактного разъема и от там к материнской плате компьютера.

    В моей практике были случаи, когда напряжение в дежурном режиме было равным (после снятия защитного стабилитрона, который был в коротком замыкании) +8 вольт, а ШИМ-контроллер был еще жив. К счастью, блок питания был качественный, марки Powerman, и был 6.Защитный стабилитрон 2 вольта на линии + 5VSB (так на схемах обозначен выход дежурного помещения).

    Почему стабилитрон защитный, как он работает в нашем случае? Когда наше напряжение меньше 6,2 вольт, стабилитрон не влияет на работу схемы, но если напряжение становится выше 6,2 вольт, наш стабилитрон замыкается (короткое замыкание) и подключает сторожевую схему к земля. Что это нам дает? Дело в том, что, замыкая дежурную комнату на землю, мы тем самым избавляем нашу материнскую плату от подачи на нее тех же 8 вольт или другого номинального повышенного напряжения по линии дежурного помещения к материнской плате, и защищаем материнскую плату от выгорания.

    Но это не 100% вероятность, что при проблемах с конденсаторами стабилитрон перегорит, есть вероятность, хотя и не очень высокая, что он уйдет в разрыв цепи, и тем самым не защитит нашу материнскую плату. В дешевых блоках питания этот стабилитрон обычно просто не ставят. Кстати, если вы видите на плате следы сгоревшей печатной платы, знайте, что скорее всего там произошло короткое замыкание какой-то полупроводник, и по нему протекал очень большой ток, такая деталь очень часто является причиной, ( хотя иногда бывает, что это тоже следствие) поломка.

    После того, как напряжение в дежурном помещении нормализуется, обязательно замените оба конденсатора на выходе дежурного помещения. Они могут прийти в негодность из-за подачи на них перенапряжения, превышающего их номинальное значение. Обычно встречаются конденсаторы номиналом 470-1000 мкФ. Если после замены конденсаторов на фиолетовом проводе появится напряжение +5 вольт относительно земли, можно замкнуть зеленый провод на черный, PS-ON и GND, запустив блок питания, без материнская плата.

    Если при этом кулер начинает вращаться, это с большой долей вероятности означает, что все напряжения находятся в пределах нормы, потому что наш блок питания запустился. Следующий шаг — проверить это, измерив напряжение на сером проводе Power Good (PG) относительно земли. Если там присутствует +5 вольт, вам повезло, и все, что осталось, это измерить напряжение мультиметром на 20-контактном разъеме источника питания, чтобы убедиться, что ни одно из них не слишком ослаблено.

    Как видно из таблицы, допуск для +3,3, +5, +12 вольт составляет 5%, для -5, -12 вольт — 10%. Если дежурная в норме, но БП не запускается, у нас нет Power Good (PG) + 5 вольт, а на сером проводе относительно земли ноль вольт, значит проблема была глубже, чем просто с дежурная. Различные варианты поломок и диагностики в таких случаях мы рассмотрим в следующих статьях. Всем счастливого ремонта! АКВ был с тобой.

    Устранение неполадок | Оборудование электронной безопасности


    Убедитесь, что питание было подключено с помощью вольтметра на плате ЦП, чтобы убедиться в наличии правильного напряжения. Если напряжение очень низкое, проблема может заключаться в том, что отказоустойчивый замок, управляемый DK-26, потребляет слишком большой ток для источника питания. Снимите блокировку с цепи. Если это восстановит правильное напряжение и работу DK-26, вам нужно будет определить, является ли источник питания недостаточным или есть короткое замыкание в проводке замка, которая отключает источник питания.Если DK-26 получает заданное напряжение, коротко замкните клемму SRC на клемму REX. Вы должны услышать щелчок реле. Это подтверждает, что плата ЦП работает, но по какой-то причине не считывает ключи. Убедитесь, что кабель клавиатуры подключен точно так, как показано в инструкциях. Обратите особое внимание на белый провод клавиатуры, идущий к клемме WHT. Если этот провод не подключен, клавиатура будет отключена. Если реле не работает при подключении SRC и REX, на плате ЦП либо сработал один из автоматических предохранителей, либо возникла серьезная проблема, требующая замены.

    В DK-26 используются три предохранителя специального типа, называемые PolySwitches. Коммутаторы PolySwitches
    выглядят как конденсаторы. Когда PolySwitch переходит в режим перегрузки, он автоматически добавляет к цепи высокое сопротивление, которое ограничивает ток примерно до 100 мА, защищая цепь. Каждый PolySwitch защищает от конкретной проблемы, и вам нужно знать, как определить, сработал ли PolySwitch, и как исправить проблему и сбросить PolySwitch.

    • PolySwitch # 1 вступает в игру, когда вы запитываете устройство от источника переменного тока, подключенного к входным клеммам переменного тока.Он защищает от короткого замыкания на плате. Если вы подаете на плату напряжение постоянного тока на входные клеммы постоянного тока, игнорируйте PolySwitch # 1.
    • PolySwitch # 2 защищает от внутреннего короткого замыкания постоянного тока на плате ЦП.
    • PolySwitch # 3 защищает от короткого замыкания в клавиатуре, которое может быть вызвано обшивкой проводов клавиатуры или неправильным подключением кабеля клавиатуры к клеммам платы ЦП. PolySwitch # 3 также сработает, если возникнут проблемы с коротким замыканием на клеммах SRC, REX, UCD и HCD.

    Чтобы проверить PolySwitches, подключите щупы вольтметра к обоим выводам PolySwitch при включенном питании платы. Если вы проверяете PolySwitch # 1, установите вольтметр на переменный ток. Установите значение DC для переключателей PolySwitches №2 и №3. В нормальном состоянии PolySwitch будет проводить ток, поэтому вы получите менее одного вольт. Сработавший PolySwitch действует как резистор с высоким сопротивлением, поэтому на выводах PolySwitch вы увидите несколько вольт. Если ни один из трех переключателей PolySwitches не сработал, но правильно запитанная плата не будет управлять своим реле, когда SRC и REX кратковременно замкнуты вместе, обратитесь на завод.

    Если вы обнаружили сработавший переключатель PolySwitch, значит, вы его сбросили. Ток перегрузки через PolySwitch отключает его, так что он ограничивает ток примерно до 100 мА. PolySwitch будет продолжать зажиматься до тех пор, пока не будет отключено все питание примерно на 5 секунд. Недостаточно исправить состояние перегрузки; вам нужно отключить доску на 5 секунд, и PolySwitch перезагрузится.

    Если сработал переключатель PolySwitch # 1, визуально проверьте четыре больших диода на плате, чтобы убедиться, что на них не упал свободный провод и не возникло короткое замыкание.Если вы не обнаружите такую ​​физическую проблему, которую можно легко исправить, плату следует заменить, хотя вы должны знать, что с ней можно без проблем работать от источника питания постоянного тока, подключенного к входным клеммам постоянного тока.

    Если сработал переключатель PolySwitch # 2, и вы используете питание постоянного тока, убедитесь, что полярность вашего входа правильная. Изменение полярности входа приведет к срабатыванию переключателя PolySwitch # 2. В противном случае поищите любые незакрепленные провода, которые могут вызвать короткое замыкание в любом месте на плате.Если вы не можете исправить неисправность, которая вызывает срабатывание переключателя PolySwitch № 2, плату необходимо заменить.

    Если сработал переключатель PolySwitch # 3, это означает, что перегрузка связана с проводкой клавиатуры или клеммами SRC, REX, UCD и HCD. Внимательно убедитесь, что все провода клавиатуры подключены к правильным клеммам. Если это так, временно отключите клавиатуру и попытайтесь сбросить PolySwitch # 3, отключив питание платы на 5 секунд. После повторного включения платы на мгновение подключите SRC к REX, чтобы проверить, будет ли плата работать (сработает реле управления блокировкой).Если плата ЦП возобновляет работу, повторно подключите клавиатуру. Если PolySwitch # 3 снова сработает, клавиатуру необходимо заменить. Если плата ЦП не возобновила работу, отсоедините все провода от клемм SRC, REX, UCD и HCD и попытайтесь выполнить сброс. Если это не восстанавливает работу платы, ее необходимо заменить.

    Последовательные и параллельные конфигурации батарей и информация

    BU-302: Configuraciones de Baterías en Serie y Paralelo (Español)

    Узнайте, как расположить батареи для увеличения напряжения или увеличения емкости.

    Батареи достигают желаемого рабочего напряжения путем последовательного соединения нескольких ячеек; каждая ячейка складывает свой потенциал напряжения, чтобы получить общее напряжение на клеммах. Параллельное соединение обеспечивает более высокую мощность за счет суммирования общего ампер-часа (Ач).

    Некоторые блоки могут состоять из комбинации последовательного и параллельного подключения. Аккумуляторы для ноутбуков обычно имеют четыре литий-ионных элемента 3,6 В последовательно для достижения номинального напряжения 14,4 В и два параллельно для увеличения емкости с 2400 мАч до 4800 мАч.Такая конфигурация называется 4s2p, что означает четыре последовательно соединенных ячейки и две параллельно. Изоляционная фольга между ячейками предотвращает электрическое короткое замыкание проводящей металлической оболочкой.

    Аккумуляторы большинства типов подходят для последовательного и параллельного подключения. Важно использовать батареи одного типа с одинаковым напряжением и емкостью (Ач) и никогда не смешивать батареи разных производителей и размеров. Более слабая ячейка вызовет дисбаланс. Это особенно важно в последовательной конфигурации, потому что мощность батареи определяется мощностью самого слабого звена в цепи.Аналогия — цепочка, звенья которой представляют последовательно соединенные элементы батареи (рис. 1).

    Рисунок 1: Сравнение батареи с цепью.
    Звенья цепи представляют собой элементы, включенные последовательно для увеличения напряжения, удвоение звена означает параллельное соединение для повышения токовой нагрузки.

    Слабый элемент может не выйти из строя сразу, но при нагрузке он истощится быстрее, чем сильный.При зарядке аккумулятор с низким уровнем заряда заполняется раньше, чем с высоким уровнем, потому что его нужно заполнять меньше, и он остается в избыточном заряде дольше, чем другие. При разряде слабая ячейка опорожняется первой, и ее забивают более сильные братья. Ячейки в групповых упаковках должны быть согласованы, особенно при использовании под большими нагрузками. (См. BU-803a: Несоответствие ячеек, балансировка).


    Приложения с одной ячейкой

    Одноэлементная конфигурация представляет собой простейший аккумуляторный блок; элемент не требует согласования, и схема защиты на небольшом литий-ионном элементе может быть простой.Типичными примерами являются мобильные телефоны и планшеты с одним литий-ионным аккумулятором 3,60 В. Одноэлементный элемент также используется в настенных часах, в которых обычно используется щелочной элемент на 1,5 В, наручные часы и резервное копирование памяти, большинство из которых являются приложениями с очень низким энергопотреблением.

    Номинальное напряжение аккумуляторной батареи на никелевой основе составляет 1,2 В, щелочной — 1,5 В; оксид серебра составляет 1,6 В, а свинцово-кислотный — 2,0 В. Первичные литиевые батареи находятся в диапазоне от 3,0 до 3,9 В. Литий-ионный — 3,6 В; Li-фосфат — 3,2 В, а литий-титанат — 2,4 В.

    Литий-марганцевые и другие системы на основе лития часто используют ячейки с напряжением 3.7V и выше. Это связано не столько с химией, сколько с увеличением ватт-часов (Втч), что становится возможным при более высоком напряжении. Аргумент гласит, что низкое внутреннее сопротивление элемента поддерживает высокое напряжение под нагрузкой. Для рабочих целей эти ячейки подходят как кандидаты на 3,6 В. (См. BU-303 «Путаница с напряжениями»)

    Соединение серии


    В портативном оборудовании, требующем более высокого напряжения, используются аккумуляторные блоки с двумя или более элементами, соединенными последовательно. На рисунке 2 показан аккумулятор с четырьмя 3.Последовательные литий-ионные элементы 6 В, также известные как 4S, для получения номинального напряжения 14,4 В. Для сравнения, свинцово-кислотная цепочка из шести элементов с 2 В на элемент будет генерировать 12 В, а четыре щелочных с 1,5 В на элемент — 6 В.

    Рисунок 2: S eries соединение четырех ячеек (4s).
    Добавление ячеек в цепочку увеличивает напряжение; емкость остается прежней.
    Предоставлено Cadex


    Если вам нужно нечетное напряжение, скажем, 9.50 вольт, соедините пять свинцово-кислотных, восемь никель-металлгидридных или никель-кадмиевых или три литий-ионных последовательно. Конечное напряжение батареи не обязательно должно быть точным, если оно выше, чем указано в устройстве. Источник питания 12 В может работать вместо 9,50 В. Большинство устройств с батарейным питанием могут выдерживать некоторое перенапряжение; однако необходимо соблюдать напряжение в конце разряда.

    Высоковольтные батареи сохраняют малый размер проводника. Аккумуляторные электроинструменты работают от батарей 12 В и 18 В; в моделях высокого класса используются 24 В и 36 В. Большинство электровелосипедов поставляются с литий-ионным аккумулятором 36 В, некоторые — 48 В.Автомобильная промышленность хотела увеличить стартерную батарею с 12 В (14 В) до 36 В, более известную как 42 В, путем последовательного размещения 18 свинцово-кислотных элементов. Логистика замены электрических компонентов и проблемы с дугой на механических переключателях сорвали ход.

    Некоторые легкие гибридные автомобили работают от литий-ионных аккумуляторов 48 В и используют преобразование постоянного тока в 12 В для электрической системы. Запуск двигателя часто осуществляется от отдельной свинцово-кислотной аккумуляторной батареи на 12 В. Ранние гибридные автомобили работали от батареи 148 В; электромобили обычно 450–500 В.Такой аккумулятор требует более 100 последовательно соединенных литий-ионных элементов.

    Высоковольтные батареи требуют тщательного согласования ячеек, особенно при работе с большими нагрузками или при работе при низких температурах. Если несколько ячеек соединены в цепочку, вероятность отказа одной ячейки реальна, и это приведет к сбою. Чтобы этого не произошло, твердотельный переключатель в некоторых больших батареях обходит неисправную ячейку, чтобы обеспечить непрерывный ток, хотя и при более низком напряжении в цепи.

    Сопоставление ячеек является проблемой при замене неисправного элемента в устаревшем блоке.Новая ячейка имеет большую емкость, чем другие, что вызывает дисбаланс. Сварная конструкция усложняет ремонт, поэтому аккумуляторные блоки обычно заменяют как единое целое.

    Высоковольтные батареи в электромобилях, полная замена которых невозможна, делят батарею на модули, каждый из которых состоит из определенного количества ячеек. Если одна ячейка выходит из строя, заменяется только затронутый модуль. Небольшой дисбаланс может возникнуть, если новый модуль будет оснащен новыми ячейками.(См. BU-910: Как отремонтировать аккумуляторный блок.)

    На рисунке 3 показан аккумуляторный блок, в котором «ячейка 3» выдает только 2,8 В вместо полностью номинальных 3,6 В. При пониженном рабочем напряжении эта батарея достигает точки окончания разряда раньше, чем обычная батарея. Напряжение падает, и устройство выключается с сообщением «Батарея разряжена».


    Рисунок 3: S eries соединение с неисправной ячейкой.
    Неисправный элемент 3 снижает напряжение и преждевременно отключает оборудование.
    Предоставлено Cadex


    Батареи в дронах и пультах дистанционного управления для любителей, которым требуется высокий ток нагрузки, часто демонстрируют неожиданное падение напряжения, если одна ячейка в цепочке слаба. Максимальный ток нагружает хрупкие ячейки, что может привести к поломке. Считывание напряжения после заряда не позволяет выявить эту аномалию; проверка баланса ячеек или проверка емкости с помощью анализатора батарей.


    Постукивание по последовательной строке

    Обычной практикой является подключение к последовательной цепочке свинцово-кислотного массива для получения более низкого напряжения.Для тяжелонагруженного оборудования, работающего от батарейного блока 24 В, может потребоваться источник питания 12 В для вспомогательной работы, и это напряжение удобно доступно в промежуточной точке.

    Постукивание не рекомендуется, поскольку оно создает дисбаланс ячеек, так как одна сторона блока батарей загружена больше, чем другая. Если несоответствие не может быть исправлено с помощью специального зарядного устройства, побочным эффектом является сокращение срока службы батареи. Вот почему:

    При зарядке несбалансированной свинцово-кислотной аккумуляторной батареи с помощью обычного зарядного устройства в недозаряженной части возникает тенденция к сульфатированию, поскольку элементы никогда не получают полного заряда.Секция высокого напряжения батареи, которая не принимает дополнительную нагрузку, имеет тенденцию к перезарядке, что приводит к коррозии и потере воды из-за выделения газов. Обратите внимание, что зарядное устройство, заряжающее всю цепочку, проверяет среднее напряжение и соответственно прекращает заряд.

    Постукивание также распространено на литий-ионных и никелевых батареях, и результаты аналогичны свинцово-кислотным: сокращение срока службы. (См. BU-803a: Согласование и балансировка ячеек.) В новых устройствах используется преобразователь постоянного тока в постоянный для обеспечения правильного напряжения.В электрических и гибридных транспортных средствах в качестве альтернативы используется отдельная низковольтная батарея для вспомогательной системы.


    Параллельное соединение

    Если требуются более высокие токи, а ячейки большего размера недоступны или не соответствуют конструктивным ограничениям, одна или несколько ячеек могут быть подключены параллельно. Большинство химикатов батарей допускают параллельную конфигурацию с небольшими побочными эффектами. На рисунке 4 показаны четыре ячейки, соединенные параллельно в схеме P4. Номинальное напряжение показанного блока остается равным 3.60 В, но емкость (Ач) и время работы увеличиваются в четыре раза.

    Рисунок 4: Параллельное соединение четырех ячеек (4p).
    При использовании параллельных ячеек емкость в Ач и время работы увеличиваются, а напряжение остается неизменным.

    Предоставлено Cadex


    Ячейка, которая развивает высокое сопротивление или размыкается, менее критична в параллельной цепи, чем в последовательной конфигурации, но неисправная ячейка снизит общую нагрузочную способность.Это как двигатель, работающий только на трех цилиндрах, а не на всех четырех. С другой стороны, электрическое короткое замыкание является более серьезным, поскольку неисправный элемент забирает энергию из других элементов, вызывая опасность пожара. Большинство так называемых электрических коротких замыканий мягкие и проявляются как повышенный саморазряд.

    Полное короткое замыкание может произойти из-за обратной поляризации или роста дендритов. Большие блоки часто включают в себя предохранитель, который отключает неисправный элемент от параллельной цепи в случае короткого замыкания.На рисунке 5 показана параллельная конфигурация с одной неисправной ячейкой.

    Рис. 5: Параллельное соединение / соединение с одной неисправной ячейкой.
    Слабый элемент не повлияет на напряжение, но обеспечит малое время работы из-за пониженной емкости. Закороченный элемент может вызвать чрезмерный нагрев и стать причиной возгорания. На больших батареях предохранитель предотвращает высокий ток, изолируя элемент.

    Предоставлено Cadex

    Серия


    / параллельное соединение

    Последовательная / параллельная конфигурация, показанная на рисунке 6, обеспечивает гибкость конструкции и позволяет достичь требуемых номинальных значений напряжения и тока со стандартным размером ячейки.Полная мощность — это сумма напряжения, умноженного на ток; батарея 3,6 В (номинальная), умноженная на 3400 мАч, дает 12,24 Втч. Четыре элемента питания 18650 емкостью 3400 мАч каждый можно подключить последовательно и параллельно, как показано, чтобы получить номинальное напряжение 7,2 В и общую мощность 48,96 Вт-ч. Комбинация с 8 ячейками даст 97,92 Втч, допустимый предел для перевозки на воздушном судне или перевозки без опасных материалов класса 9. (См. BU-704a: Доставка литиевых батарей по воздуху). Тонкий элемент позволяет гибкую конструкцию блока, но необходима схема защиты.

    Рисунок 6: S eries / параллельное соединение четырех ячеек (2s2p).
    Эта конфигурация обеспечивает максимальную гибкость проектирования. Распараллеливание ячеек помогает в управлении напряжением.

    Предоставлено Cadex

    Литий-ионный аккумулятор
    хорошо подходит для последовательной / параллельной конфигурации, но элементы нуждаются в мониторинге, чтобы оставаться в пределах напряжения и тока.Интегральные схемы (ИС) для различных комбинаций ячеек доступны для контроля до 13 литий-ионных ячеек. Для более крупных пакетов требуются специальные схемы, и это относится к аккумуляторным батареям для электронных велосипедов, гибридным автомобилям и Tesla Model 85, которая потребляет более 7000 ячеек 18650, чтобы составить аккумулятор мощностью 90 кВт · ч.

    Терминология для описания последовательного и параллельного соединения

    В производстве аккумуляторов сначала указывается количество ячеек, соединенных последовательно, а затем ячеек, размещаемых параллельно. Пример — 2с2п.При использовании литий-ионных аккумуляторов в первую очередь всегда изготавливаются параллельные струны; завершенные параллельные блоки затем помещаются последовательно. Литий-ионная система — это система, основанная на напряжении, которая хорошо подходит для параллельного формирования. Объединение нескольких ячеек в параллель с последующим последовательным добавлением блоков снижает сложность управления напряжением для защиты блока.

    Сначала сборка гирлянд, а затем их параллельное размещение может быть более обычным для никель-кадмиевых аккумуляторов, чтобы удовлетворить механизму химического челнока, который уравновешивает заряд в верхней части заряда.«2с2п» — обычное дело; Были выпущены официальные документы, которые относятся к 2p2s при параллельном соединении последовательной строки.


    Устройства безопасности при последовательном и параллельном подключении

    Переключатели с положительным температурным коэффициентом (PTC) и устройства прерывания заряда (CID) защищают аккумулятор от перегрузки по току и избыточного давления. Хотя эти защитные устройства рекомендуются для обеспечения безопасности в меньших 2- или 3-элементных батареях с последовательной и параллельной конфигурацией, они часто не используются в более крупных многоэлементных батареях, например, для электроинструментов.PTC и CID работают, как ожидалось, переключая ячейку на чрезмерный ток и внутреннее давление в ячейке; однако завершение работы происходит в каскадном формате. Хотя некоторые ячейки могут рано отключиться, ток нагрузки вызывает избыточный ток на оставшихся ячейках. Такое состояние перегрузки может привести к тепловому разгоне до срабатывания остальных предохранительных устройств.

    Некоторые ячейки имеют встроенные PCT и CID; эти защитные устройства также могут быть добавлены задним числом. Инженер-проектировщик должен знать, что любое предохранительное устройство может выйти из строя.Кроме того, PTC вызывает небольшое внутреннее сопротивление, которое снижает ток нагрузки. (См. Также BU-304b: Обеспечение безопасности литий-ионных аккумуляторов)


    Простые инструкции по использованию бытовых первичных батарей
    • Следите за чистотой контактов аккумулятора. Конфигурация с четырьмя ячейками имеет восемь контактов, и каждый контакт добавляет сопротивление (ячейка к держателю и держатель к следующей ячейке).
    • Никогда не смешивайте батареи; замените все ячейки, когда они слабые. Общая производительность зависит от самого слабого звена в цепи.
    • Соблюдайте полярность. Перевернутая ячейка вычитает, а не добавляет к напряжению ячейки.
    • Выньте батареи из оборудования, когда оно больше не используется, чтобы предотвратить утечку и коррозию. Это особенно важно для первичных цинк-углеродных элементов.
    • Не храните незакрепленные элементы в металлическом ящике. Поместите отдельные ячейки в небольшие полиэтиленовые пакеты, чтобы предотвратить короткое замыкание. Не носите в карманах незакрепленные ячейки.
    • Храните батарейки в недоступном для маленьких детей месте.Ток от батареи может не только вызвать удушье, но и вызвать изъязвление стенки желудка при проглатывании. Батарея также может разорваться и вызвать отравление. (См. BU-703: Проблемы со здоровьем при использовании батарей.)
    • Не заряжайте неперезаряжаемые батареи; скопление водорода может привести к взрыву. Выполняйте экспериментальную зарядку только под наблюдением.


    Простые инструкции по использованию вторичных батарей
    • Соблюдайте полярность при зарядке вторичного элемента.Обратная полярность может вызвать короткое замыкание и создать опасную ситуацию.
    • Выньте полностью заряженные аккумуляторы из зарядного устройства. Потребительское зарядное устройство может не подавать правильный постоянный заряд при полной зарядке, что может привести к перегреву элемента.
    • Заряжайте только при комнатной температуре.

    Последнее изменение: 19 июн 2020

    *** Пожалуйста, прочтите комментарии ***

    Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта.Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.

    Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: [email protected]. Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев, чтобы Battery University Group (BUG) могла поделиться им.

    Предыдущий урок Следующий урок

    Или перейти к другой артикуле

    Батареи как источник питания

    Строительная бытовая техника с нулевым резервированием

    Последние достижения в области ИС управления питанием помогают разработчикам достичь минимальных потерь в режиме ожидания

    МАЙК МЭТЬЮС
    Директор по стратегическому маркетингу
    Power Integrations, Сан-Хосе, Калифорния
    www.powerint.com

    Широко распространено мнение о том, что достижение нулевых потерь мощности в режиме ожидания — впечатляющая цель. Недавние исследования показали, что энергопотребление в режиме ожидания может достигать 10 процентов от всего потребления электроэнергии в домашних условиях. За последние несколько лет многочисленные программы, включая Energy Star, Кодекс поведения ЕС и Директиву EcoDesign, пытались повысить осведомленность о важности снижения потерь энергии в режиме ожидания.

    Учитывая растущее во всем мире внимание к энергоэффективности, неудивительно, что производители бытовой техники хотели бы продавать свою продукцию как предлагающую нулевое потребление в режиме ожидания.Но точно определить, что означает нулевой режим ожидания, было непросто. В любой конструкции всегда присутствует некоторый ток утечки. Итак, вопрос, с которым столкнулись разработчики, заключался в том, на каком пороге уровень тока в режиме ожидания считается эквивалентным нулю?

    За последние несколько лет все более широкое признание в отношении определения нулевого тока в режиме ожидания в соответствии со спецификациями, изложенными в стандарте IEC 63201. Разработанный в качестве руководства для процедур проверки мощности, раздел 4.5 стандарта IEC определяет разрешающую способность измерения, равную 0.01 Вт (10 мВт). Соответственно любое измерение

    Новый функционал

    Пользователи всегда могли достичь нулевого режима ожидания, просто отключив свою систему от электросети, когда она не используется. Но полагаться на пользователя в выполнении этой задачи нереально. Производители предпочли бы разрабатывать решения, которые достигают того же результата, не доставляя неудобств пользователю и не нарушая функциональности системы.

    Для достижения этой цели дизайнерам необходимо будет включить новые функции в свои системы.Бытовая техника, такая как сушилки для одежды, стиральные машины и кофеварки, обычно требует некоторого ввода или действий со стороны пользователя, чтобы вывести систему из состояния ожидания. Некоторые ранние решения с нулевым резервированием были реализованы с использованием реле и ручных переключателей, но эти подходы, как правило, были слишком громоздкими и дорогостоящими, чтобы гарантировать широкое внедрение.

    Чтобы упростить реализацию этой функции и минимизировать энергопотребление в режиме ожидания, даже когда входное напряжение все еще подключено, производители ИС управления питанием недавно начали предлагать интегрированные ИС с автономной коммутацией, которые позволяют разработчикам достичь нуля.Энергопотребление в режиме ожидания 00 Вт. Один из примеров этого типа устройства, LinkZero-AX компании Power Integrations (рис.1), имеет инновационный режим отключения питания, который отключает вспомогательное питание, включая операции в режиме переключения и внутренние схемы управления переключателем, когда приложение находится в режиме ожидания .

    Устройство LinkZero-AX переводится в режим пониженного энергопотребления (PD) путем подтягивания вывода обратной связи (FB) к высокому уровню в течение не менее 2,5 мс. Этот так называемый «сигнал о самоубийстве», обычно генерируемый в конце задачи, такой как цикл стирки в стиральной машине, посылается системным микроконтроллером на автономную коммутирующую ИС, сообщая ей отключить источник питания.После отправки в режим PD эта автономная коммутирующая ИС потребляет

    Рис. 1: Функциональная схема верхнего уровня CAPZero.

    В режиме PD это устройство также предлагает альтернативный источник питания, способный выдавать до 500 мкА при 4 В от регулируемого контакта BP / M. Это питание можно использовать для управления датчиком пробуждения в режиме PD, когда остальная часть системы находится в режиме ожидания, например, для питания ИК-датчиков или датчиков движения в телевизионных / охранных системах. Хотя эта функция увеличивает энергопотребление системы в режиме ожидания, она обеспечивает простой способ питания слаботочного датчика без необходимости переключения источника питания.

    Проблемы, связанные с EMI

    Большинство бытовых электроприборов, оснащенных переключательной силовой электроникой в ​​автономном режиме, имеют высоковольтные и сильноточные коммутационные сигналы, которые создают электромагнитные помехи. Чтобы уменьшить негативное влияние электромагнитных помех на другие системы и соответствовать стандартам шума, разработчики вставляют каскад фильтра на вход переменного тока. Учитывая их местоположение и возможность шокировать потребителя, отключив его от сети, разработчики обычно выбирают одобренные агентством по безопасности конденсаторы x-класса.

    Для соответствия международным нормам безопасности, конденсаторы x со значением выше 100 нФ должны разряжаться автоматически с постоянной времени

    Одним из способов управления этим разрядом является добавление двухконтактной ИС, которая уменьшает протекание тока через разрядный резистор, когда источник переменного тока все еще подключен, но позволяет полному току разряда протекать через резистор, когда напряжение переменного тока источник отключен.Производители ИС теперь предлагают устройства, такие как Power Integrations CAPZero, с двумя внутренними двунаправленными переключателями, которые рассчитаны на работу с напряжением до 1000 В при любой полярности. Функция внутреннего контроля управляет двунаправленными переключателями, удерживая их в выключенном состоянии, пока подключен переменный ток. При обнаружении пропадания переменного тока на входе более 22 мс оба внутренних переключателя включаются, что позволяет разрядить внешний x-конденсатор любой полярности. Поскольку устройство генерирует собственное внутреннее питание и не требует внешних компонентов, его можно легко вставить в существующую систему, просто изменив компоновку печатной платы вокруг разрядных резисторов x-конденсатора.

    Управляющие цепочки резисторов

    Многие бытовые товары имеют несколько резисторов, которые проходят между высоковольтными шинами и спускаются к контроллеру. Информация поступает из высоковольтной шины или переменного тока через сигнал, который пропускается через резистор / делитель на контроллер. Чтобы лучше управлять питанием в этих схемах, производители ИС теперь предлагают ИС с отключением сенсорных резисторов, которые объединяют несколько полевых МОП-транзисторов с низким током утечки на 650 В, предназначенных для последовательного соединения с цепями резисторов, подключенными к высоковольтным входным шинам.

    С помощью этого устройства система может снизить энергопотребление в режиме ожидания путем отключения высоковольтных измерительных резисторов или резисторных делителей, подключенных к высоковольтной шине постоянного тока на этапах коррекции коэффициента мощности (PFC) или преобразования мощности источника питания. Это позволяет отключать или отключать функциональные блоки в блоке питания, чтобы они не потребляли энергию, когда блок питания не находится в полном рабочем режиме. Ток утечки от каждого полевого МОП-транзистора в устройстве в выключенном состоянии меньше 0.5 мВт от выпрямленной входной шины 230 В переменного тока. На рисунке 2 показана схема бытового прибора, использующего все три типа силовых ИС, упомянутых ранее.

    Рис.2: Конфигурация бытового прибора со сверхнизким энергопотреблением в режиме ожидания

    Поскольку стоимость энергии продолжает расти, потери энергии в режиме ожидания будут становиться все более важным отличительным признаком для производителей бытовой техники.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *