Асинхронный двигатель с короткозамкнутым ротором принцип работы – Трехфазный асинхронный двигатель

Содержание

Асинхронный двигатель с короткозамкнутым ротором — виды, принцип работы

Все электрические двигатели содержат две главные части, взаимодействующие друг с другом. Этими частями являются статор и ротор. Статор инициирует взаимодействие, и ротор отвечает на него своим вращением. Все электродвигатели классифицируются на основе того или иного принципа, обеспечивающего взаимодействие главных частей. Например, в движке статор подобно первичной обмотке трансформатора индуцирует во вторичной обмотке — роторе — электромагнитные процессы. Значит это — асинхронный электродвигатель.

Разновидности простейших движков-трансформаторов

Движки переменного тока могут быть синхронными. Схема получается проще, а мотор дешевле. Хотя все асинхронные двигатели содержат статор, аналогичный синхронной машине, конструкция ротора определяет их существенное отличие от них. Его не нужно намагничивать тем или иным способом, как это делается в синхронном движке. Несмотря на отличия моделей асинхронных машин, конструкция их ротора — это эквивалент короткозамкнутой вторичной обмотки.

Самый простой вариант — короткозамкнутый ротор. Его можно просто отлить из ферромагнитного материала и обработать надлежащим образом. Сплавы на основе железа проводят электрический ток и взаимодействуют с магнитным полем. Цельнометаллическая конструкция обладает следующими преимуществами:

  • наиболее проста в изготовлении и по этой причине обладает минимальной себестоимостью;
  • лучше всего переносит усилия, возникающие при работе двигателя;
  • хорошо разгоняется из-за эффективного взаимодействия магнитных полей.
Цельнометаллический вариант

Как преодолеваются недостатки болванки

Однако вполне очевидно то, что такой короткозамкнутый ротор будет не лучшим проводником для токов, индуцируемых статором. Сплавы железа проводят электроток заметно хуже алюминия или меди. Кроме этого ведь неспроста магнитопроводы трансформаторов изготавливают из стальных пластин, а не из цилиндрических болванок. Вихревые токи нагревают литой металл и уменьшают общую эффективность электроустановки. Поэтому недостатки массивности конструкции из железного сплава конструктивно учитывает наиболее эффективный двигатель с короткозамкнутым ротором.

В таком электродвигателе используются алюминиевые или медные детали. Функции применительно к созданию магнитного поля и проводимости тока конструктивно разделяются. Для получения переменного магнитного поля с малыми потерями по аналогии с трансформаторами применяются тонкие изолированные пластины. Каждая из них содержит выемки и по форме эквивалентна поперечному сечению ротора. Ее материалом является трансформаторная сталь.

Как получается беличье колесо (клетка)

После того как пластины собраны, получается цилиндр с канавками. Они образованы выемками, в которые укладываются стержни из алюминия или меди. На торцы цилиндра надеваются пластины или кольца из такого же металла, что и стержни, концы которых крепятся к ним. Каждая пара диаметрально противоположных стержней, таким образом, создает короткозамкнутый виток. Его сопротивление индуцируемому току гораздо меньше, чем у железного сплава. Стержни с пластинами выглядят, как беличья клетка.

Беличья клетка

Поэтому двигатель с короткозамкнутым ротором такой конструкции имеет меньше потерь и по этой причине широко распространен. Но сходство этого электромотора асинхронного электродвигателя короткозамкнутым ротором своим похожего на обычный нагруженный силовой трансформатор ограничено к применению в некоторых электросетях. Не каждая из них может выдержать большой пусковой ток. Если асинхронные электродвигатели с короткозамкнутым ротором будут стартовать одновременно, величина тока будет велика и сравнима с коротким замыканием.

В начале их пуска происходит процесс, аналогичный включению трансформатора с вторичной обмоткой, замкнутой накоротко. В этом начальном положении магнитное поле почти неподвижно, и в этой связи так называемое скольжение получается самым большим. Неподвижный короткозамкнутый ротор асинхронного двигателя создает при пуске наиболее мощное электромагнитное поле. Ведь он собран из листовой стали, отличающейся минимальными вихревыми потерями, а беличье колесо характеризуется минимальным электрическим сопротивлением.

Как ограничить пусковой ток

По этой причине асинхронный двигатель с короткозамкнутым ротором в некоторых сетях приходилось заменять движками другой конструкции. Конструктивно несложно сделать так, чтобы в одном и том же статоре применить и короткозамкнутый, и фазный ротор. Дело в том, что в установившемся режиме, когда обороты набраны, обе эти конструкции эквивалентны нагруженной вторичной обмотке трансформатора. Поэтому и фазный, и короткозамкнутый ротор будут работать без существенных отличий.

Следует упомянуть специальные конструктивные решения, которые сглаживают броски пускового тока. Они основаны на распределении электротока в зависимости от его силы по сечению проводника. Речь идет о двойной беличьей клетке и глубоком пазе. Изображения таких конструкций показаны далее. Но устройство асинхронного двигателя с короткозамкнутым ротором не обеспечивает управление электромагнитными процессами в нем.

Ротор с глубокими пазами
Двуклеточный ротор

Если потребуется плавно с ограничением тока запустить трехфазный асинхронный двигатель с короткозамкнутым ротором, надо в каждой фазе установить регулятор. Потребуется три регулятора, которыми надо согласованно управлять под напряжением источника питания. Получается сложная схема, которую не всегда удавалось эффективно реализовать. Поэтому применение фазного ротора вместо короткозамкнутого до появления мощных полупроводниковых приборов было самым оптимальным техническим решением ограничения пускового тока.

Как выглядит эта конструкция и его эквивалентная схема, показано далее.

Фазный ротор

 

Фазный ротор и его схема со стартовыми реостатами

Вместо намного более простой, но сильно токовой беличьей клетки для каждой фазы делается обмотка (1) из большого числа витков. Соответственно, уменьшается величина тока. С этой же целью выбрано соединение звездой. Выводы обмоток расположенных на вале (2) и присоединяются к трем кольцам (3), установленным на этом же вале. Для получения возможности соединения с ними на корпусе движка крепятся щетки (4). Фактически каждая щетка — это вывод вторичной обмотки трансформатора. Присоединение статора к источнику питания будет означать появление напряжения на щетках.

Если к этим выводам не присоединена нагрузка, ротор реагирует на поле статора весьма незначительно. Он собран из пластин, изоляция которых препятствует появлению электротока. А при замыкании щеток накоротко получится разновидность короткозамкнутой конструкции. Следовательно, подбирая нагрузку, например, реостатом (5), можно обеспечить регулировку пускового тока и режима работы движка в дальнейшем. Но стоимость фазного ротора существенно выше беличьего колеса. И надежность щеточного контакта ухудшает характеристики электродвигателя.     

Трехфазный асинхронный двигатель

Движки однофазные, отличие которых от трехфазных моделей заключено в первую очередь в существенно меньшей мощности, никогда не изготовляются с фазными роторами. 

Пример схемы управления на полупроводниковых элементах

Да и современные асинхронные трехфазные движки дешевле сделать в виде короткозамкнутой конструкции с инверторным регулятором в цепи статора. Так что фазный ротор постепенно становится анахронизмом.

Похожие статьи:

domelectrik.ru

Принцип работы асинхронного двигателя с короткозамкнутым ротором


Пожалуй, нет ни одного серьезного механизма или машины, где не применялись бы электрические двигатели. В автомобиле, с стиральной машине, сельхозтехнике и мелких бытовых приборах — везде используется электрический двигатель. Наибольшее распространение получил асинхронный электрический двигатель и о нем сегодня мы поговорим.

Содержание:

  1. Синхронные и асинхронные двигатели в машиностроении и в быту
  2. Преимущества АС двигателя
  3. Двигатель с фазным ротором
  4. Короткозамкнутый ротор и его особенности
  5. Как работает магнитное поле

Синхронные и асинхронные двигатели в машиностроении и в быту

Благодаря своей простоте и экономичности, асинхронный электромотор может пригодиться не только в машиностроении и в быту, но мы рассмотрим именно такие двигатели, которые встречаются чаще всего. Причиной популярности асинхронного двигателя переменного тока стали его доступность, возможность подключения к любой розетке электропитания без всяких выпрямителей и согласовательных устройств, а также простотой обслуживания и ремонта в случае чего.

 

Существуют два вида асинхронных электромоторов — с короткозамкнутым ротором и с фазным ротором. Но для начала стоит разобраться в конструкции и узнать принцип работы асинхронного двигателя с короткозамкнутым ротором, после чего станет понятна причина его популярности. Несмотря на то, что асинхронный мотор был разработан еще в конце 19 века, до сих пор его конструкция особенных изменений не претерпела.

Преимущества АС двигателя

Главной особенностью характеристик этого двигателя и самым ценные их проявлением, считают тот факт, что нагрузка на двигатель практически никак не зависит от частоты вращения вала. Магнитные поля и электродвижущую силу изучают уже лет двести, а наш асинхронный двигатель стал лучшим подтверждением тому, это один из самых эффективных методов трансформации энергии.

Принцип работы этого мотора как раз основан на взаимодействии подвижного магнитного поля и токопроводящего элемента, распложенного внутри этого поля. Двигатель, как известно еще со школьной скамьи, состоит из двух базовых узлов — рoтора и статора. Статoр как раз генерирует вращающееся магнитное поле. Конструктивно, статoр представляет собой металлический сердечник, на него намотана обмотка из медной проволоки с термолаковой изоляцией.

Внутри статора, внутри его магнитного поля, поместили ротор, который представляет собой вал с сердечником и обмоткой. На рисунке ниже изображена схема устройства асинхронного мотора.
По схеме понятно, что статор состоит из наборных пластин и нескольких обмоток, которые намотаны на пластинчатый сердечник. Эти обмотки могут подсоединяться по разным схемам, в зависимости от типа напряжения. Каждая их обмоток сдвинута друг отнoсительно друга на 120 градусов. А ротор такого двигателя может быть принципиально двух типов.

Двигатель с фазным ротором

Ротор фазного типа принципиально не отличается обмoткой от статора. Это трехфазная обмотка, концы которой соединены по схеме «звезда». Свободные концы обмоток подключены к токоприемным кольцам. Кольца контактируют с проводником посредством щеток и поэтому есть возможность установить в схему подключения дополнительный ограничивающий резистор.

Резистор, как устройство плавного пуска, служит для того, чтобы была возможность уменьшать значения пускового тока, который может достигать довольно крупных значений.

Короткозамкнутый ротор и его особенности

Короткoзамкнутый ротор представляет собой наборной сердечник из специальной листовой стали. Сердечник имеет каналы, которые не изолируют обмотки друг от друга, а наоборот — они залиты расплавленным легкоплавким легким металлом, а он образует прутки, которые в торцах фиксируются на кольцах.

Металл, из которого выполняют эти прутки и которым заливают пространства между сердечниками, зависит от требуемых характеристик двигателя и это может быть как медь, так и алюминий.

Как работает магнитное поле

Работает двигатель на основе процесса получения механической работы в результате воздействия на проводник движущегося магнитного поля. На обмотку статора подают напряжение, причем каждая фаза образует свой магнитный поток. Частота магнитного потока напрямую зависит от частоты подаваемого тока на концы обмотки.

За счет того, что обмотки сдвинуты на 120 градусов, сдвигаются и магнитные поля, причем сдвигаются они как в пространстве, так и во времени. Суммарный магнитный поток и будет вращать ротор двигателя. Это происходит потому, что вращающийся поток суммы частот каждой из обмоток, образуют в роторе электродвижущую силу. Поскольку ротор — короткозамкнутый, то он имеет свою собственную электрическую цепь, которая взаимодействуя с магнитным полем статора, образует крутящий момент, направленный в сторону движения магнитного потока статора.

Следовательно, принцип работы асинхронного двигателя с короткозамкнутым ротором, объясняется вращением магнитного суммарного потока статора и его взаимодействия с возникшим в результате подачи тока, магнитным полем ротора.

Читайте также:


avtoshef.com

Принцип действия асинхронного двигателя ~ Электропривод

Самым распространенным электродвигателем, используемым в быту, промышленности, строительстве и сельском хозяйстве, на сегодняшний день, является асинхронный двигатель с короткозамкнутым ротором (АД с КЗ ротором). Основным его преимуществом, перед другими типами двигателей является простота, надежность и дешевизна.

Принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором

Принцип действия трехфазного АД с КЗ ротором основан на взаимодействии вращающегося магнитного поля и расположенного в этом поле проводника. Вращающееся магнитное поле создается статором асинхронного двигателя, которая является неподвижной частью двигателя. Статор асинхронного электродвигателя представляет собой стальной сердечник, с пазами в которых расположена обмотки, намотанная медным изолированным проводом.

Это поле пересекая обмотку ротора наводит в ней ЭДС. Под действием этой ЭДС по обмотке будет протекать ток. Этот ток будет взаимодействовать с магнитным потоком. Взаимодействие вращающего магнитного поля статора с током в роторе создает вращающий момент, за счет которого ротор будет вращаться в ту же сторону, что и поле, но с небольшим отставанием.

Обмотки статора намотаны таким образом, что образуют три катушки, смещенные друг, относительно друга на 120°. Между собой их соединяют либо в «звезду», либо в «треугольник» и пропускают трехфазный переменный ток. При частоте тока 50 Гц, магнитное поле будет вращаться со скоростью 3000 об./мин. Магнитное поле, образованное тремя катушками, называется двухполюсным.

Особенностью асинхронного двигателя является то, что появление ЭДС в роторной обмотке ротора возможно только при различии частоты вращения магнитного поля ротора, обозначаемое букой n и магнитного поля статора n0. Разница n0 и n создает электромагнитный момента асинхронного двигателя. Характеризует эту разность скольжение S, определяемое по формуле:
S=( n0-n )/ n0,
где n0=60f/P синхронная частота вращения магнитного поля статора об/мин, f- частота питающей сети, Гц, p-число пар полюсов статора.

В такой конструкции двигателя, магнитное поле статора опережает скорость вращения ротора. Т.е. поле ротора вращается асинхронно со скоростью вращения поля статора. Отсюда и пошло название двигателя асинхронный двигатель переменного тока.

Если нагрузка на валу двигателя отсутствует, частота вращения поля ротора n, стремиться достичь частоты вращения поля ротора, но никогда не достигает ее, так как если n0-n=0, то и электромагнитный момент двигателя М будет равен 0.

В паспорте и на шильдике асинхронного электродвигателя производитель указывает номинальную частота вращения двигателя, замеряемую при номинальной мощности. При увеличении нагрузки на валу двигателя, частота вращения двигателя уменьшается, а ток статора увеличивается. Асинхронные двигатели могут изготовляться с 1,2,3 ,4,5,6 парами полюсов. Соответственно синхронная скорость вращения асинхронного двигателя соответственно будет составлять 3000, 1500, 1000, 750, 600 и 500 об/мин.

На смену классической конструкции асинхронного двигателя приходят энергоэффективные конструкции асинхронных двигателей обладающие более высоким КПД и технико-экономическими показателями. Применение частотно-регулируемого привода в тандеме с энергоэффективными двигателями, позволит существенно улучшить энергетические показатели и снизить затраты на электроэнергию.

eprivod.com

Асинхронный двигатель: принцип работы, особенности конструкции

Асинхронный двигатель представляет собой мотор переменного тока, скорость вращения которого не равна частоте напряжения в обмотках статора. Эти электродвигатели получили широкое распространение, потому что являются достаточно выносливыми. Асинхронный однофазный, трехфазный моторы могут работать при значительной нагрузке продолжительное время, не перегреваясь, держать свой крутящий момент. Работа асинхронного двигателя проста, но при этом его характеристики напрямую зависят от параметров обмоток и технологии их укладки.

Область применения

Асинхронный двигатель получил широкое распространение в качестве тягового, второстепенного и прочих видов силовых компонентов. Учитывая особенности его конструкции, отсутствие скользящих контактов, эксплуатация такого мотора намного проще. Также, схема подключения не требует сложных устройств управления, если говорить о простом режиме работы с постоянной частотой. Плюс ко всему и срок службы до сервисного обслуживания намного дольше, так как внутреннее пространство и обмотки не загрязняются графитом.

Применяется асинхронный электродвигатель во многих сферах:

  • Системы вентиляции – благодаря выносливости и неприхотливости при эксплуатации моторы с короткозамкнутыми роторами достаточно часто используются в качестве вентиляторов. Они хорошо переживают продолжительную работу на максимальных оборотах, обеспечивая пользователей или технологическое оборудование интенсивным воздушным потоком.
  • Конвейеры – благодаря высокому моменту, способности его поддерживать при нагрузках моторы асинхронного типа стали идеальным вариантом для реализации управления подвижными производственными линиями.
  • Следящие системы и приводные устройства – особо часто применяют асинхронные двигатели в приводных системах на технологическом оборудовании. Но для организации управления таким типом двигателя потребуется особая схема подключения и частотный блок управления, а ротор асинхронного двигателя оснащается неодимовыми магнитами. Такие моторы рассчитаны на работы с частотой до 400 Гц.
  • Бытовая сфера. Из такого мотора можно сделать различные рабочие агрегаты бытового назначения или для небольшой мастерской: вентилятор, управляемые заслонки, циркулярная пила, фуганок, прочее оборудование.

Разновидности моторов

От типа питающей сети асинхронные электродвигатели подразделяются на:

  1. Трехфазные. Обмотки асинхронных двигателей такого типа состоят из 3 катушек, специальным образом уложенных в пазах статора. Они предназначены для работы в промышленности, так как имеют высокий КПД и cosφ приближенный к 1, а для обеспечения дополнительной экономии работают с системой рекуперации энергии при торможении, выступая генератором.
  2. Однофазный асинхронный двигатель. Применяется в быту и промышленности: старые стиральные машины, бытовые вентиляторы, холодильное и прочие виды оборудования. Имеют меньший КПД, мощность, по сравнению с трехфазными, что объясняется потерями в статоре из-за отсутствия дополнительной фазы.

Устройство асинхронного двигателя

Устройство асинхронного двигателя является достаточно простым:

  • Статор – является неподвижной частью электрического двигателя, который снабжен обмотками возбуждения.
  • Ротор – вращающийся элемент мотора, который крутится под действием магнитного поля, создаваемым обмотками возбуждения, расположенными на статоре. Различают 2 типа двигателя от конструкции ротора: короткозамкнутые и фазные.
  • Фланцы – статическая часть электрического двигателя, в которой находятся опорные подшипники, удерживающие ротор и являющиеся своего рода крепежом для статора. Он зажимается между двумя фланцами-крышками стяжными болтами. Либо они прикручены к корпусу статора.
  • Клеммная коробка – часть статической конструкции двигателя, в которую выводятся концы обмоток со статора. Посредством его осуществляется подключение двигателя к схеме управления.
  • Крыльчатка и защитный кожух – используется для обеспечения принудительной вентиляции, а кожух предохранит обслуживающий персонал от травматизма.
  • Дополнительные сервисные обмотки – при необходимости совместно с обмоткой возбуждения на статоре может быть дополнительная, предназначенная для контроля и измерения рабочих параметров мотора во время его работы.
  • Термодатчики – промышленные асинхронные двигателя, кроме обмоток, также имеются датчики температуры, контролирующие перегрев на случай резкого возрастания тока потребления.

Также двигателя могут быть оборудованными планарными редукторами и изготовленными в едином корпусе. Это преимущественно промышленные типы агрегатов, применяемые на станках, конвейерах и прочих видах оборудования.

Особенности устройства каждого из элементов

Статор асинхронного электродвигателя представляет собой цилиндр, изготовленный из листов специальной электротехнической стали толщиной до 0.5 мм, покрытых лаком. Этот цилиндр является сердечником, с внутренней стороны имеются пазы, куда укладываются обмотки. В трехфазных, соответственно, сдвинутые на 120 градусов, в однофазных – на 90. Обмотки могут быть уложены несколькими способами в зависимости от схемы их подключения и эксплуатационных требований. Именно от этого зависит такой показатель, как момент и мощность на валу. А при наличии количества полюсов более, чем 2 пары, то он может использоваться в следящих системах управления приводными механизмами.

Статор запрессован в корпус либо же расположен между фланцами. Корпус и боковые крышки изготовлены из чугуна или сплава алюминия. На них имеются ребра для увеличения площади и повышения эффективности отведения тепла при работе. Такое устройство позволяет лучше охлаждать двигатель, обеспечивая продолжительную работу при предельных нагрузках.

Однополюсная обмотка такого электродвигателя наматывается из 3-х катушек. Каждая из них называется фазой. Для достижения требуемых параметров работы мотора обмотка укладывается в противоположных пазах сердечника. Катушки соединяются между собой специальным образом в соответствии со схемой подключения и ожидаемых характеристик, обеспечивая возбуждение магнитного поля и необходимый момент при вращении.

Все концы датчиков выводятся в клеммную коробку, что позволяет их соединять в звезду или треугольник, что зависит от схемы подключения системы управления, величины питания. 3-фазный электродвигатель является универсальным, при необходимости его можно подключать к однофазному питанию с линейным напряжением. При соединении обмоток треугольником напряжение обмоток равно линейному Uф, а при подключении по схеме звезды – √3Uф.

Ротор

Ротор в асинхронном электродвигателе представляет собой вал, на котором закрепляется сердечник, набранный из листов электротехнической стали. Что трехфазный, что однофазный мотор, ротор имеет практически одинаковую конструкцию. В качестве обмотки в обычных асинхронных моторах на рабочую частоту 50Гц используются куски медного или алюминиевого провода большой толщины или стержни, соединенные между собой торцевыми замыкающими кольцами.

Для того чтобы обмотка надежно удерживалась в сердечнике, имеются специальные пазы, куда она запрессована. Торцевые кольца могут быть снабжены вентиляционными лопатками, предназначенными для улучшения интенсивности охлаждения внутреннего пространства. Вал закреплен на подшипниках, впрессованных во фланцы или плитах, закрепленных к станине в зависимости от устройства.

Между валом и статором имеется зазор, величина которого зависит от пусковых параметров мотора. Если необходимо увеличить мощность и момент, то он должен быть как можно меньше. Одновременно с ростом мощности увеличиваются и добавочные потери в верхних слоях статора и ротора.

Принцип работы

Асинхронный двигатель принцип работы имеет достаточно простой. Он основан на двух физических явлениях:

  1. При подаче напряжения на статорные обмотки в двигателе возникает вращающееся магнитное поле.
  2. Поле оказывает воздействие на ток, индуцируемый в роторе. А это создает крутящий момент, поворачивающий вал двигателя относительно полюсов.

За каждый поворот вала полюса меняются полярностью с частотой сети. Поэтому напряжение обмотки статора имеет стандартную частоту, а скорость вращения зависит от:

  • нагрузки на валу;
  • количества пар полюсов;
  • особенностей намотки статора.

Маркировка электродвигателя

Для упрощения процесса подключения и выбора схемы асинхронного 3-фазного ЭД на каждом из них имеется соответствующая маркировка. В ней указываются такие характеристики, как:

  • крутящий момент;
  • мощность;
  • максимальная скорость вращения;
  • cosφ.

Также в зашифрованной маркировке имеется указание типа двигателя, количества полюсов. Их необходимо учитывать при выборе мотора для тех или для других нужд. А для облегчения процесса подключения все концы сводятся в клеммную коробку, где подписаны следующим образом:

Если мотор подключается к сети 380 В с линейным напряжением обмоток 220В, то его схема обмоток должна быть треугольником. Но если двигатель подключается к стандартной сети 380В, то схема включения обмоток должна быть звездой.

Скольжение

При рассмотрении принципа работы асинхронного электрического двигателя применяют такое понятие, как скольжение, и обозначается параметр буквой «s». Оно возникает из-за разницы в скоростях вращения магнитного поля статора и реальной частоты вращения ротора. При этом первый показатель на порядок больше. Следовательно, чем выше разница, тем сильнее скольжение.

Скольжение позволяет объяснить принцип работы. За счет отставания частоты вращения ротора от магнитного поля статора и обеспечивается наведение ЭДС в короткозамкнутом роторе. Но если бы поле вращалось со скоростью частоты ЭДС в роторе, то собственно вращения не происходило.

Скольжение, являясь относительной величиной, измеряется в %. И становится больше при увеличении нагрузки на валу двигателя.

Двигателя с фазным ротором

Когда речь идет о моторах с фазным ротором, то он имеет немного иное устройство. Также имеется 3 обмотки, которые соединены в звезду, а их начала выведены на подводящие кольца. Сравнивая два типа двигателя с короткозамкнутым и фазным роторами, то у второго развивается момент сразу же под высокой нагрузкой. Такие моторы получили применение в системах, где требуется сделать мощный приводной агрегат с высокой тягой. Также такие моторы являются более удобными для регулируемого управления посредством регулятора частоты.

Недостатки асинхронных электродвигателей

В стандартном исполнении без магнитов на роторе асинхронные электродвигатели являются маломощными. Они неспособны сразу обеспечить высокий крутящий момент. А также для их запуска требуется большое количество электрической мощности, которая может превышать предельно допустимые показатели системы питания. Поэтому их пуск должен выполняться без нагрузки. Кроме этого, асинхронные электродвигатели являются мощными источниками электромагнитных помех, сопровождающимися сбоями в работе различных других устройств, находящихся вблизи. Для снижения их влияния необходимо предусматривать качественное заземление и обязательное экранирование.

instrument.guru

Крановые электродвигатели с фазным и короткозамкнутым ротором

Для работы подъемных механизмом необходимо использование специального редуктора. Предлагаем рассмотреть, как работают асинхронные крановые электродвигатели с фазным ротором для частотного регулирования, их обмоточные данные и технические характеристики.

Особенности двигателей

Все тяговые электродвигатели ГОСТ 18374 делятся на две группы:

  • работающие с фазным ротором;
  • работающие с короткозамкнутым ротором.

Обе эти группы имеют высокий КПД, но у них несколько разный принцип работы. Данные моторы используются во всех видах кранов: тельферах, талях, башенных, козловых и портальных установках. Главным преимуществом работы обоих типов является то, что помимо динамического способа работы, когда определенное количество времени поднимается груз  с некоторым весом, они могут работать статично, когда груз некоторое время висит на кране неподвижно. Рассмотрим подробнее их принцип работы.

Фото — Общий вид фазного двигателя

У данных устройств есть щеткодержатели для крановых электродвигателей, которые применяются для обеспечения лучшего контакта коллектора и контактного кольца. У них очень простая конструкция: щеточный механизм, держатель, также они оснащены встроенным механизмом нажатия, который служит не только ля их запуска, но и предотвращения движения в случае ЧП на производстве. Благодаря такой конструкции, щеткодержатель является гарантом безопасности при эксплуатации электрического асинхронного кранового двигателя, а также своеобразным тормозом.

Замена кранового двигателя

Основные технические характеристики

Фото — Обмоточные данные

Двигатели с фазным ротором

Стандартные габариты и основные размеры мощностей двигателей:

Фото — Короткозамкнутые двигатели

Роторный мотор – это асинхронный двигатель, где ротор обмотки соединен через контактные кольца для внешнего сопротивления с рабочей и передаточной частью. Регулировка сопротивления позволяет контролировать частоты вращения крутящего момента двигателя. Роторный движок может быть запущен при помощи низкого пускового тока, а также путем использования высокого сопротивления в цепи ротора; при разгоне двигателя, сопротивление может быть уменьшено.

По сравнению с короткозамкнутым ротором, фазный двигатель роторного типа имеет больше витков обмотки; наведенное напряжение увеличивается, и имеющееся ниже, чем для короткозамкнутого ротора. При запуске типичного ротора используются 3 полюса, связанные с контактными кольцами. Каждый полюс соединен последовательно с переменной мощностью резистора. Во время запуска резисторов  можно снизить напряженность поля статора. Как результат, пусковой ток сокращается. Еще одним важным преимуществом по сравнению с короткозамкнутым ротором является высокий стартовый крутящий момент.

Фото — Управление торможением фазного двигателя

Фазный роторный двигатель (сибэлектромотор), может быть использован в нескольких формах регулируемой скоростью вращения диска. Определенные типы вариаторов могут восстановить частоту скольжения и мощность от цепи ротора и питать  его обратно в сеть, позволяя охватывать широкий диапазон скоростей с высокой энергетической эффективностью. Двойное питание электрических машин использует контактные кольца для внешнего питания в цепи ротора, что позволяет увеличить диапазон регулирования скорости вращения. Но сейчас такие механизмы редко используются, в основном они заменены на асинхронные двигатели с частотно-регулируемым приводом.

Фото — Конструкция фазного кранового электродвигателя

Короткозамкнутые роторы

Электродвигатели с короткозамкнутым ротором – это асинхронные крановые двигатели, которые состоят из стального цилиндра с алюминиевыми или медными жилами, внедренными в их поверхность и вращающейся части — ротора.

Эта модель двигателя представляет собой цилиндр, закрепленный на валу. Внутренне он содержит продольные проводящие бары (обычно изготавливается из алюминия или меди), установленные в пазы и присоединенные с обоих концов путем замыкания кольца, образующих каркасообразную форму. Название происходит от схожести между кольцами обмотки и баров с короткозамкнутым ротором.

Твердый сердечник ротора состоит из соединений легированной стали. Ротор имеет меньшее количество слотов, чем статор и не может быть кратен числу его пазов, для того чтобы предотвращать магнитные блокировки зубов ротора и статора первоначальный крутящий момент.

Описание принципа работы короткозамкнутого ротора: поля обмотки статора асинхронного электродвигателя переменного тока настраиваются на вращающееся магнитное поле через ротор. Благодаря движению, устройство начинает индуцировать ток и передавать его в обмотку и на бары. В свою очередь эти продольные токи в проводниках взаимодействуют с магнитным полем для производства моторной силы, выступая на касательный ортогональный ротор, в результате чего крутящий момент проворачивает вал. Также ротор вращается от магнитного поля, но на более низкой скорости. Разница в скорости называется скольжением и увеличивается с ростом нагрузки.

Схема работы изображена ниже:

Фото — Схема работы короткозамкнутых приводов

Проводники часто слегка наклонены по длине ротора, что снижает шум и сглаживает колебания крутящего момента, это может привести к увеличению скорости из-за взаимодействия с полюсными наконечниками статора. Количество баров на короткозамкнутом роторе определяет, в какой степени индуцированные токи возвращаются на обмотки статора и, следовательно, ток через них. Конструкция также может работать в качестве реверсивного механизма.

Железный якорь используется для того, чтобы проводить магнитное поле через проводники ротора. Дело в том, что МП ротора взаимодействует с МП якоря, и несмотря на то, что конструкция аналогичная трансформатору, это является причиной снижения и потери энергии. Якорь сделан из тонких пластин, разделенных лаковой изоляцией, чтобы уменьшить вихревые токи, циркулирующие в нем. Материал отличается низким уровнем выбросов углекислого газа, высоким кремния. Основа из чистого железа значительно снижает потери на вихревые токи, низкая коэрцитивная сила уменьшает малые потери на гистерезис.

Эта базовая конструкция используется как для однофазных, так и для трехфазных двигателей в широком диапазоне размеров. Роторы для трехфазных двигателей будут иметь вариации в глубину и форму баров. Как правило, бруски с большей толщиной могут иметь хороший крутящий момент и являются более эффективными в борьбе со скольжением, поскольку они представляют меньшую устойчивость к ЭМП.

Фото — Конструкция трехфазного двигателя

Трехфазные двигатели с короткозамкнутым ротором широко используются для:

  1.  Крановых механизмов;
  2. Тяговых машин;
  3. Комбайнов;
  4. Грузовых автомобилей и кораблей.

Говоря про варианты установки двигателей, они бывают вертикально-фланцевые, горизонтальные, горизонтально-фланцевые.

Марки двигателей и обзор цен

На данный момент, в России и Украине осуществляется производство таких крановых электродвигателей:

Фазных – MTF, MTKF, MTM, MTН, MEZ FRENSTAT, KMR, DMTF, (завод Leroy Somer), WASI, FLSLB, SMH;

Короткозамкнутых – Sew-Eurodrive, двигатели от Bularia, Siemens, VEM, HORS, МТВ, МТИ, МТК, МТКМ, МТКН, МТМ, МТН, МТФ;

Для некоторых видов крановых механизмов (к примеру, металлургические подъемники), используются серии АИР (двухскоростные двигатели постоянного тока).

Купить крановые электродвигатели можно в любом городе СНГ, цена товара напрямую зависит от его мощности, фирмы-производителя и города, де он покупается. Возможен наличный и безналичный расчет. Из открытых источников мы собрали прайс-лист, предлагаем с ним ознакомиться (цены приблизительные, при покупке кранового электродвигателя обязательно просмотрите дополнительно каталог производителя, возможны изменения цен):

ГородСтоимость, рублиГородСтоимость, рубли
Москва50 000Минск43 000
Киев50 000Владивосток46 000
Воронеж43 000Омск40 000
Новосибирск46 000Владимир40 000
Вологда40 000Томск46 000
Тула40 000Уфа40 000
Екатеринбург43 000Казань40 000
Астана46 000Волгоград40 000

Все производители дают на свои приборы гарантию – 5 лет (минимум – год, т.к. мощность более 10 кВт). Продажа осуществляется в специализированных центрах, магазинах. Мы не советуем приобретать данные устройства из рук либо на стихийных рынках. Следите за тем, чтобы двигатели были работоспособные и полностью исправные, обязательно должны быть соблюдены условия хранения (влажность ниже 40 %, температура от +3 до +20 градусов), иначе возможно окисление внутренних контактов.

www.asutpp.ru

Вопрос 1. Объясните устройство и принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Ответ 1 Двигатель состоит из неподвижного статора и вращающегося ротора.

Статор изготовлен в виде полого стального цилиндраcпазами на внутренней стороне. Впазах статора расположена 3-х фазная обмотка (несколько токовых катушек с осями под углом α =120° /р, гдеpчисло пар катушек- полюсов). Обмотки соединяются по схеме «звезда» или «треугольник».

Ротор представляет собой цилиндрический сердечник, собранный из листов электротехнической стали, изолированных друг от друга лаком. Сердечник ротора насажен на вал, закрепленный в подшипниках. В пазах сердечника ротора располагаются алюминиевые или медные стержни короткозамкнутой обмотки, торцевые концы которых замыкаются накоротко кольцами из того же материала, что и стержни (так называемое “беличье колесо”). [ Касаткин, Электротехника, стр. 419]

Рисунок фото стр. 415 Пантюшин

Принцип действия АД – основан на взаимодействии вращающегося магнитного поля с токами, которые наводятся этим полем в проводниках ротора. Магнитное поле, пересекая активные проводники обмотки ротора, индуцирует в них ЭДС, согласно закону ЭМИ. В замкнутом проводнике ротора возникает ток Iр. На проводник с током, помещенный в магнитное поле действует сила, направление которой определяется правилом левой руки. Эта сила создает вращающий момент M=FD, где D-диаметр ротора.

Ротор начинает вращаться в направлении магнитного поля с частотой n2 несколько меньшей n1. Степень отставания характеризуется параметром скольжение S . S =n1-n2/n1. Под действием нагрузки скорость вращения ротора уменьшается.

Вопрос2. Какими достоинствами и недостатками обладает трехфазный асинхронный двигатель с короткозамкнутым ротором?

Ответ2:

Достоинства:

а)простота конструкции и обслуживания,

б) низкая стоимость,

в) надежность в эксплуатации, экономичность,

г) легко осуществлять реверс,

д) возможность использования во взрывоопасных производствах. ( нет искрения).

Недостатки:

а)Потребление реактивного намагничивающего тока, что снижает коэффициент мощности сети.,

б) Плохие пусковые характеристики. Пусковой ток превышает номинальный в 6-8 раз,

в) Неудовлетворительные регулировочные характеристики.

Вопрос3. Дать характеристику магнитного поля асинхронного двигателя.

Ответ3: Принцип получения вращающегося магнитного поля.

Если подключить катушки статора АХ,ВY,CZ ( рис 6-3а ) к 3-х фазному напряжению, то ток в каждой из катушек будет изменяться в соответствии с временной диаграммой изменения 3-х фазного напряжения (рис 6-3б) , соответственно магнитное поле создаваемое этими токами будет изменяться аналогичным образом. В каждый момент времени магнитные поля каждой из катушек суммируются и дают результирующее поле. Рассмотрим процесс получения результирующего поля в моменты времени когда токи в фазах А, В и С максимальны и положительны ( интервал времени составит одну треть периода Т/3) .

Пусть в момент времени t1 ток катушки АХ IA положительный и поле этой катушки направлено вдоль оси этой катушки. В это же время токи катушек фаз В и С отрицательны и их магнитные поля направлены противоположно их осям. Оси катушек расположены под углом 120°. Сумма 3х-полей дает магнитное поле направленное вдоль оси катушки АХ. (рис 6-4a)

Аналогичные рассуждения в моменты времени t2=t1+T/3 и t3=t3+T/3 дают результирующие поля вдоль осей BY второй катушки и CZ третьей катушки соответственно. Через время равное периоду Т вектор магнитного поля вновь будет расположен вдоль оси АХ первой катушки. Таким образом, мы получили вращающееся магнитное поле. В каждый момент времени поле направлено перпендикулярно продольной оси статора.

Часть магнитного поля статора выходит из статора и замыкается по воздуху. Это поля рассеяния. Они не участвуют в процессе передачи энергии от статора к ротору.

studfile.net

Трехфазный асинхронный двигатель: принцип работы :: SYL.ru

Асинхронные моторы нашли большое применение в хозяйстве. В них преобразуется до семидесяти процентов электроэнергии в механическую. Среди всех электрических двигателей этот вид является самым простым, надежным и дешевым в производстве. Наибольшее распространение имеет трехфазный асинхронный двигатель, принцип работы которого рассмотрен вкратце в этой статье.

Общее об асинхронных моторах

Двигатели не имеют щеточно-коллекторного или скользящего токосъемного узлов, благодаря чему достигаются минимальные расходы при их эксплуатации. Дешевизна и высокая степень надежности сделали эти двигатели широко распространенными в разных сферах.

Моторы бывают:

  • однофазными;
  • трехфазными.

Однофазные механизмы работают в вентиляторах, станках, стиральных машинах, различных электрических инструментах и водоподающих насосах. Трехфазные виды нашли свое применение в разных механизмах, функционирующих в промышленных, сельскохозяйственных, строительных секторах. Также их широко используют и для бытовых нужд.

Устройство

Трехфазный асинхронный двигатель, принцип работы которого выполняется стандартным образом, является электроагрегатом, состоящим из:

  • неподвижного статора;
  • ротора.

Статор включает в себя станину, куда впрессовывается электромагнитное ядро, состоящее из магнитного провода и трехфазной распределительной обмотки. Ядро служит для намагничивания агрегата или появления вращающегося магнитного поля. Магнитопровод состоит из тонких, штампованных, отделенных друг от друга листов, при скреплении которых образуются зубцы и пазы. Он является малым магнитным сопротивлением для потока, который образует обмотка статора. В итоге происходит намагничивание, которое и усиливает поток.

В пазы укладывается трехфазная обмотка статора, которая в самом простом своем варианте состоит из трех катушек с осями, сдвинутыми друг к другу на 120 градусов. Фазные катушки соединяются в форме звезды или треугольника.

Более подробно принцип работы асинхронного электродвигателя в части соединений наглядно раскрывается ниже через проведение простого опыта.

Ротор состоит из магнитопровода, который тоже имеет штампованные стальные листы с пазами, где располагается обмотка. Последняя бывает:

  • фазной, подобной той, что в статоре, которая соединена в звезду;
  • короткозамкнутой, наиболее применяемой, которая представляет собой форму «беличьей клетки».

Принцип действия асинхронного двигателя

Уже говорилось, что трехфазная обмотка статора необходима для намагничивания или образования вращающегося магнитного поля. Нетрудно догадаться, что законом электромагнитной индукции управляется асинхронный двигатель. Принцип работы его заключается в следующем: вращающееся статорное магнитное поле пересекает роторную короткозамкнутую обмотку, что вызывает электродвижущую силу и протекание переменного тока. Этот ток образует свое магнитное поле, а взаимодействуя со статорным вращающимся полем, начинает роторное вращение. Еще в восемнадцатом веке был продемонстрирован этот принцип посредством проведения простого опыта: подковообразный магнит вращали с постоянной скоростью рядом с металлическим диском, который свободно был закреплен на оси. Диск начинал вращаться за магнитом, но с меньшей скоростью.

Если знать закон элетромагнитной индукции, то явление становится понятным. Когда магнитные полюса движутся, то рядом с поверхностью диска под ними наводится электродвижущаяся сила. Из-за нее создаются токи, которые образуют магнитное дисковое поле.

Наглядное представление

Это же явление для простоты можно представить себе как колесо (вместо диска), в котором находится большое количество спиц, соединенных втулкой и ободом. Они проводят ток. Элементарным контуром являются две спицы, соединяющие их обод и втулки. Дисковое поле сцепляется с полюсным магнитным полем, и диск увлекается им. Понятно, что самая большая электродвижущаяся сила будет действовать в неподвижном состоянии, а самая меньшая, наоборот, когда она приближается к скорости дискового вращения.

Если взять асинхронный двигатель, принцип работы короткозамкнутой роторной обмотки подобен диску, а статорной — вращающемуся магниту. Однако в неподвижном статоре вращение магнитного поля реализуется через трехфазную токовую систему, проходящую в обмотке со сдвигом фаз.

www.syl.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *