103J конденсатор номинал: Маркировка конденсаторов — radiohlam.ru

Содержание

Маркировка конденсаторов — radiohlam.ru

1. Маркировка тремя цифрами.

В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).

кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
1091.0 пФ  
1591.5 пФ  
2292.2 пФ  
3393.3 пФ
  
4794.7 пФ  
6896.8 пФ  
10010 пФ0.01 нФ 
15015 пФ0.015 нФ 
22022 пФ0.022 нФ
 
33033 пФ0.033 нФ 
47047 пФ0.047 нФ 
68068 пФ0.068 нФ 
101100 пФ0.1 нФ 
151150 пФ0.15 нФ
 
221220 пФ0.22 нФ 
331330 пФ0.33 нФ 
471470 пФ0.47 нФ 
681680 пФ0.68 нФ 
102
1000 пФ
1 нФ 
1521500 пФ1.5 нФ 
2222200 пФ2.2 нФ 
3323300 пФ3.3 нФ 
4724700 пФ4.7 нФ 
682
6800 пФ6.8 нФ 
10310000 пФ10 нФ0.01 мкФ
153 15000 пФ15 нФ0.015 мкФ
223 22000 пФ22 нФ0.022 мкФ
333 33000 пФ33 нФ
0.033 мкФ
473 47000 пФ47 нФ0.047 мкФ
683 68000 пФ68 нФ0.068 мкФ
104100000 пФ100 нФ0.1 мкФ
154150000 пФ150 нФ0.15 мкФ
224220000 пФ
220 нФ0.22 мкФ
334330000 пФ330 нФ0.33 мкФ
474470000 пФ470 нФ0.47 мкФ
684680000 пФ680 нФ0.68 мкФ
1051000000 пФ1000 нФ
1 мкФ

2. Маркировка четырьмя цифрами.

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.

3. Буквенно-цифровая маркировка.

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n».

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы.

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ

маркировказначениемаркировказначениемаркировказначениемаркировказначение
A1.0
J
2.2S4.7a2.5
B1.1K2.4T5.1b3.5
C1.2L2.7U5.6d
4.0
D1.3M3.0V6.2e4.5
E1.5N3.3W6.8f5.0
F1.6P3.6X7.5m6.0
G1.8Q3.9Y8.2n7.0
H2.0R4.3Z9.1t8.0

5. Планарные электролитические конденсаторы.

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

, по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

букваeGJACDEVH
(T для танталовых)
K2A
напряжение
(Вольт)
2,546,3
(иногда 63)
10162025355080100

Как работают конденсаторы, параметры конденсаторов

Технические характеристики и свойства конденсатора 2A-104-J

При выборе компонентов для создания радиотехнических схем нужно проверить не только номинал ёмкости и ограничение по напряжению. Существенное значение имеет устойчивость к внешним воздействиям в процессе эксплуатации. Рекомендуется обратить внимание на долговечность и другие дополнительные параметры. С помощью этой публикации можно корректно оценить функциональность и назначение конденсатора 2a104j.

Типовой пленочный конденсатор с диэлектриком из полимерного материала

Эксплуатационные параметры конденсаторов 2A104J

Основные данные указаны в маркировке на корпусе изделия. Так как видимая площадь ограничена, применяют стандартные сокращения. По символам 2a104j конденсатор характеристики можно определить следующим образом.

Первая группа кода (цифра и буква «2а») содержит сведения о номинальном напряжении. Этот параметр указывают для применения в цепях постоянного тока. Следует учитывать эту особенности при работе с переменными сигналами.

К сведению. Чтобы исключить повреждения, делают определенный запас по возможным нагрузкам на стадии расчета электрической схемы.

В соответствии с действующими международными стандартами (IEC), утвержденными профильной комиссией, допустимо применение следующих обозначений (маркировка/ номинал по напряжению для постоянного тока, V):

  • 0J/ 6,3;
  • 1A/ 10;
  • 1C/ 16;
  • 1E/ 25;
  • 1H/ 50;
  • 2A/ 100.

Последней латинской буквой в маркировке обозначают допустимые отклонения в большую или меньшую сторону от номинальной емкости:

  • C – 0,25 пФ;
  • D – 0,5 пФ;
  • F – 1%;
  • J – 5%;
  • K – 10%;
  • M – 20%.

Важно! Следует обратить внимание на разные виды допусков. В отдельных сериях отклонения указывают в фиксированных значениях (пикофарадах, пФ). В других – кодируют процентную величину от номинального значения рабочего параметра.

Емкость обозначают тремя цифрами: две первые – это базовая часть, последняя – степень десяти.

С учетом изложенных сведений нетрудно расшифровать маркировку 2a104j:

  • 2а – напряжение при подключении к источнику постоянного тока не более 100V;
  • 104 – это 10 * 104 = 10 * 10 000 = 100 000 пФ;
  • j – допустимое нормативами отклонение 5%, то есть от 95 000 до 105 000 пФ.

Для удобства можно перевести данный номинал в микрофарады (0,1 мкФ) либо нанофарады (100 нФ). По аналогичному алгоритму можно расшифровать другое обозначение на корпусе. Например, конденсатор 103j – это 10 000 пФ±5%.

Базовые правила действительны только для обозначения номинального значения основного параметра (емкости). Производители часто применяют собственные корпоративные стандарты при указании отклонений, иных дополнительных характеристик. Пример кодировки напряжения (постоянный ток) компанией Panasonic:

  • 1H – 50 V;
  • 1J – 63 V;
  • 1 – 100 V.

К сведению. Этот производитель наносит сведения о максимальном напряжении перед основной группой цифр с данными о емкости конденсатора.

Обозначение напряжения в классическом виде

В подробных спецификациях производителя на модель 2a103j конденсатора характеристики приведены с описанием размеров (пример в мм):

  • длина х диметр выводов (L x d) – 20 x 0,5;
  • высота х ширина х толщина корпуса (H х W x Y) – 12 x 7,5 x 4;
  • расстояние между выводами (P) – 5,5.

В описании приводят материалы основных компонентов конструкции:

  • обкладок;
  • диэлектрика;
  • выводов;
  • защитно-декоративной оболочки.

Изделия этой категории рассчитаны на применение в широком диапазоне температур (от-40°C до +85°C).

В отдельном списке производитель делает ссылки на использованные технологические стандарты и методики проведения проверочных испытаний. В частности, проверяют:

  • рабочие параметры после серии рабочих циклов с применением определенных инструкцией токов заряда;
  • изоляционные свойства при напряжении до и более 100 V;
  • сохранение накопительной способности (целостности конструкции) при повышенной температуре до +235°C;
  • номинальную емкость в разных температурных режимах;
  • стойкость к вибрационным и другим внешним воздействиям;
  • частотные характеристики.

Торговым партнерам и оптовым покупателям предоставляются сведения об упаковке и маркировке товарных партий. В сопроводительных документах указывают рекомендации по температуре воздуха и относительной влажности. Сообщают содержание тяжелых металлов, которое необходимо учитывать при выборе метода утилизации.

Особенности применения конденсатора 2A 104 J

Хорошие потребительские параметры обеспечивают возможность использования радиокомпонентов этой категории для решения разных инженерных задач. Конденсаторы применяют в низковольтных цепях для создания качественных фильтров подавления помех. При подготовке конструкторского расчета можно учитывать следующие преимущественные особенности:

  • минимальную паразитную индуктивность;
  • значительный ток разряда;
  • надежность;
  • длительное сохранение исходных рабочих параметров в сложных условиях эксплуатации.

При рассмотрении аналогов следует обратить внимание на относительно высокую температурную зависимость. Керамические конденсаторы обладают недостаточно большой емкостью при сравнительных габаритах.

Плёночные конденсаторы с диэлектриком из полиэтилентерефталата

Перечисленные преимущества во многом объясняются конструктивными особенностями. Рассматриваемые модификации конденсаторов создают с применением диэлектрика, созданного из полимерной пленки. Для уменьшения индуктивных свойств вместо рулона применяют сложное формирование слоя с прессованием. Фактически создается множество пластинчатых накопителей энергии, соединенных параллельно.

Главным преимуществом диэлектрика этого типа является способность к самостоятельному восстановлению. После электрического пробоя созданный проводник постепенно испаряется. Процесс ускоряется прохождением тока по соответствующему участку конструкции, что сопровождается нагревом соответствующей области. Достаточно быстро без дополнительных действий функциональные характеристики конденсатора нормализуются.

Для сравнения с другими диэлектриками можно изучить сведения, представленные ниже.

Параметры конденсаторов

ХарактеристикиТип диэлектрика
ПолиэтилентерефталатПолипропиленПолистирол
Тангенс угла потерь0,01-0,10,0020,0001-0,0015
Сопротивление изоляции, МОм10 00050 000100 000
Коэффициент абсорбции, %0,2-0,8Меньше 0,5Меньше 0,1
ТКЕ (температурный коэффициент), 10-6/°CОт -200 до 400От -200 до 100-200

При выборе полиэтилентерефталатного изделия можно использовать высокую прочность конструкции, хорошие показатели диэлектрической проницаемости. Однако следует учесть сравнительно небольшой тангенс угла потерь и ограниченные изоляционные свойства.

На стадии подготовки проекта в комплексе проверяют рабочие параметры конденсатора и соответствие условиям будущей эксплуатации. Чтобы исключить ошибки, рекомендуется изучить отзывы экспертов о продукции определенных производителей. При выборе поставщика (магазина) оценивают затраты и официальные гарантийные обязательства.

Видео

Маркировка конденсаторов

Подробности
Категория: Начинающим

Очень важно знать емкость того или иного конденсатора, а под рукой не всегда оказываются измерительные приборы с помощью которых можно эту емкость узнать. Специально для этих случаев были придуманы кодовые маркировки. Существую 4 основных способа маркировки конденсаторов:

  • Кодовая маркировка 3 цифрами;
  • Кодовая маркировка 4 цифрами;
  • Буквенно цифровая маркировка;
  • Специальная маркировка для планарных конденсаторов.

Кодовая маркировка конденсаторов 3 цифрами 

К примеру конденсатор с обозначением 153 означает что его емкость составляет 15000 пФ.

Код Пикофарады, пФ, pF Нанофарады, нФ, nF Микрофарады, мкФ, μF
109 1.0 пФ  0.0010нф  
159 1.5 пФ 0.0015нф  
229 2.2 пФ 0.0022нф  
339 3.3 пФ  0.0033нф  
479 4.7 пФ  0.0048нф  
689 6.8 пФ  0.0068нФ  
100 10 пФ 0.01 нФ  
150 15 пФ 0.015 нФ  
220 22 пФ 0.022 нФ  
330 33 пФ 0.033 нФ  
470 47 пФ 0.047 нФ  
680 68 пФ 0.068 нФ  
101 100 пФ 0.1 нФ  
151 150 пФ 0.15 нФ  
221 220 пФ 0.22 нФ  
331 330 пФ 0.33 нФ  
471 470 пФ 0.47 нФ  
681 680 пФ 0.68 нФ  
102 1000 пФ 1 нФ  
152 1500 пФ 1.5 нФ  
222 2200 пФ 2.2 нФ  
332 3300 пФ 3.3 нФ  
472 4700 пФ 4.7 нФ  
682 6800 пФ 6.8 нФ  
103 10000 пФ 10 нФ 0.01 мкФ
153 15000 пФ 15 нФ 0.015 мкФ
223  22000 пФ 22 нФ 0.022 мкФ
333 33000 пФ 33 нФ 0.033 мкФ
473 47000 пФ 47 нФ 0.047 мкФ
683  68000 пФ 68 нФ 0.068 мкФ
104 100000 пФ 100 нФ 0.1 мкФ
154 150000 пФ 150 нФ 0.15 мкФ
224 220000 пФ 220 нФ 0.22 мкФ
334 330000 пФ 330 нФ 0.33 мкФ
474 470000 пФ 470 нФ 0.47 мкФ
684 680000 пФ 680 нФ 0.68 мкФ
105 1000000 пФ 1000 нФ 1 мкФ

Кодовая маркировка конденсаторов 4 цифрами

При маркировки конденсаторов этим способом важно запомнить что полученное значение будет измеряться в пикоФарадах. К примеру маркировка конденсатора  1002  будет расшифровываться следующим образом: 1002 = 100*102 пФ = 10000 пФ = 10.0 нФ. Последняя цифра это показатель степени по основанию 10. А первые три это число которое необходимо умножить на 10 возведенную в определенную степень.

Буквенно-цифровая маркировка

В данном случае вместо запятой ставится соответсвующая единица измерения (пФ, нФ, мкФ).

Пример: 10п или 10p  = 10 пФ, 4n7 или 4н7 = 4,7 нФ, μ22 = 0.22 мкФ.

Вожно запомнить что буква «п» очень похожа на «n» и не нужно их путать. Что довольно часто делают начинающие радиолюбители.

Иногда вместо мкФ используют букву R.

Например: 6R8 = 6,8 мкФ

 

Маркировка планарных керамических конденсаторов

Такие конденсаторы маркируются двумя буквами, первая это производитель конденсатора, а вторая это значение в пикофарадах в соответствии с таблицей, приведенной ниже.

Маркировка Значение Маркировка Значение Маркировка Значение Маркировка Значение
A 1.0 J 2.2 S 4.7 a 2.5
B 1.1 K 2.4 T 5.1 b 3.5
C 1.2 L 2.7 U 5.6 d 4.0
D 1.3 M 3.0 V 6.2 e 4.5
E 1.5 N 3.3 W 6.8 f 5.0
F 1.6 P 3.6 X 7.5 m 6.0
G 1.8 Q 3.9 Y 8.2 n 7.0
H 2.0 R 4.3 Z 9.1 t 8.0

Маркировка планарных электролитических конденсаторов

 Существую два основных способов маркировки таких конденсаторов:

  1. Буквенно-цифровой. Пример: 10 3.3V что соответсвует 10мкФ и 3.3 Вольтам.
  2. В соответствии с кодом. Пример : G101 где G — это напряжение по таблице, а 101 это10*101 что соответсвует 100пФ.
Буква e G J A C D E V H (T для танталовых)
Напряжение 2,5 В 4 В 6,3 В 10 В 16 В 20 В 25 В 35 В 50 В
  • < Назад
  • Вперёд >
Добавить комментарий

Маркировка конденсаторов (Коды)

0.5 pF
1.0 pF
1.2 pF
1.5 pF
1.8 pF
2.2 pF
2.7 pF
3.3 pF
3.9 pF
4.7 pF
5.6 pF
6.8 pF
8.2 pF
10 pF
12 pF
15 pF
18 pF
22 pF
27 pF
33 pF
39 pF
47 pF
56 pF
68 pF
82 pF
100 pF
120 pF
150 pF
180 pF
220 pF
270 pF
330 pF
390 pF
470 pF
560 pF
680 pF
820 pF
1 nF
1.2 nF
1.5 nF
1.8 nF
2.2 nF
2.7 nF
3.3 nF
3.9 nF
4.7 nF
5.6 nF
6.8 nF
8.2 nF
10 nF
12 nF
15 nF
18 nF
22 nF
27 nF
33 nF
39 nF
47 nF
56 nF
68 nF
82 nF
100 nF
120 nF
150 nF
180 nF
220 nF
270 nF
330 nF
390 nF
470 nF
560 nF
680 nF
820 nF
1 µF
0.5
1.0
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10
12
15
18
22
27
33
39
47
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
10000
12000
15000
18000
22000
27000
33000
39000
47000
56000
68000
82000
100000
120000
150000
180000
220000
270000
330000
390000
470000
560000
680000
820000
1000000
0R5
1R0
1R2
1R5
1R8
2R2
2R7
3R3
3R9
4R7
5R6
6R8
8R2
100
120
150
180
220
270
330
390
470
560
680
820
101
121
151
181
221
271
331
391
471
561
681
821
102
122
152
182
222
272
332
392
472
562
682
822
103
123
153
183
223
273
333
393
473
563
683
823
104
124
154
184
224
274
334
394
474
564
684
824
105
0.5
1
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10
12
15
18
22
27
33
39
47
56
68
82
101
121
151
181
221
271
331
391
471
561
681
821
102
122
152
182
222
272
332
392
472
562
682
822
103
123
153
183
223
273
333
393
473
563
683
823
104
124
154
184
224
274
334
394
474
564
684
824
105
p5
1p0
1p2
1p5
1p8
2p2
2p7
3p3
3p9
4p7
5p6
6p8
8p2
10
12
15
18
22
27
33
39
47
56
68
82
n10
n12
n15
n18
n22
n27
n33
n39
n47
n56
n68
n82
1n
1n2
1n5
1n8
2n2
2n7
3n3
3n9
4n7
5n6
6n8
8n2
10n
12n
15n
18n
22n
27n
33n
39n
47n
56n
68n
82n
100n
120n
150n
180n
220n
270n
330n
390n
470n
560n
680n
820n
1
.001
.0012
.0015
.0018
.0022
.0027
.0033
.0039
.0047
.0056
.0068
.0082
.01
.012
.015
.018
.022
.027
.033
.039
.047
.056
.068
.082
.1
.12
.15
.18
.22
.27
.33
.39
.47
.56
68
.82
1
u01
u012
u015
u018
u022
u027
u033
u039
u047
u056
u068
u082
u1
u12
u15
u18
u22
u27
u33
u39
u47
u56
u68
u82
1u

Конденсатор 330nk какая емкость

Автор На чтение 11 мин. Опубликовано

Правила маркировки конденсаторов постоянной ёмкости

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.

Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.

Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.

При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?

У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.

Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.

Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

Итак, разберёмся в том, как маркируют конденсаторы.

Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.

Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.


Конденсаторы серии К73 и их маркировка

Правила маркировки.

Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.

Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) – 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.

Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C – 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.

Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.

Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.

На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.


Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.

Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.

Буквенный код отклонения ёмкости (допуск).

Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.

Допуск в % Буквенное обозначение
лат.рус.
± 0,05pA
± 0,1pBЖ
± 0,25pCУ
± 0,5pDД
± 1,0FР
± 2,0GЛ
± 2,5H
± 5,0JИ
± 10KС
± 15L
± 20MВ
± 30NФ
-0. +100P
-10. +30Q
± 22S
-0. +50T
-0. +75UЭ
-10. +100WЮ
-20. +5YБ
-20. +80ZА

Маркировка конденсаторов по рабочему напряжению.

Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.

Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Номинальное рабочее напряжение, B Буквенный код
1,0I
1,6R
2,5M
3,2A
4,0C
6,3B
10D
16E
20F
25G
32H
40S
50J
63K
80L
100N
125P
160Q
200Z
250W
315X
350T
400Y
450U
500V

Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.

Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

1. Кодировка 3-мя цифрами

Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.


* Иногда последний ноль не указывают.

2. Кодировка 4-мя цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).

3. Маркировка ёмкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

4. Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандар-
тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

1. Маркировка тремя цифрами.

В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).

кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
1091.0 пФ
1591.5 пФ
2292.2 пФ
3393.3 пФ
4794.7 пФ
6896.8 пФ
10010 пФ0.01 нФ
15015 пФ0.015 нФ
22022 пФ0.022 нФ
33033 пФ0.033 нФ
47047 пФ0.047 нФ
68068 пФ0.068 нФ
101100 пФ0.1 нФ
151150 пФ0.15 нФ
221220 пФ0.22 нФ
331330 пФ0.33 нФ
471470 пФ0.47 нФ
681680 пФ0.68 нФ
1021000 пФ1 нФ
1521500 пФ1.5 нФ
2222200 пФ2.2 нФ
3323300 пФ3.3 нФ
4724700 пФ4.7 нФ
6826800 пФ6.8 нФ
10310000 пФ10 нФ0.01 мкФ
153 15000 пФ15 нФ0.015 мкФ
223 22000 пФ22 нФ0.022 мкФ
333 33000 пФ33 нФ0.033 мкФ
473 47000 пФ47 нФ0.047 мкФ
683 68000 пФ68 нФ0.068 мкФ
104100000 пФ100 нФ0.1 мкФ
154150000 пФ150 нФ0.15 мкФ
224220000 пФ220 нФ0.22 мкФ
334330000 пФ330 нФ0.33 мкФ
474470000 пФ470 нФ0.47 мкФ
684680000 пФ680 нФ0.68 мкФ
1051000000 пФ1000 нФ1 мкФ

2. Маркировка четырьмя цифрами.

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.

3. Буквенно-цифровая маркировка.

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n».

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы.

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

маркировказначениемаркировказначениемаркировказначениемаркировказначение
A1.0J2.2S4.7a2.5
B1.1K2.4T5.1b3.5
C1.2L2.7U5.6d4.0
D1.3M3.0V6.2e4.5
E1.5N3.3W6.8f5.0
F1.6P3.6X7.5m6.0
G1.8Q3.9Y8.2n7.0
H2.0R4.3Z9.1t8.0

5. Планарные электролитические конденсаторы.

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

, по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

букваeGJACDEVH (T для танталовых)
напряжение2,5 В4 В6,3 В10 В16 В20 В25 В35 В50 В

Кодовая маркировка, дополнение

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

КодЕмкость [пФ]Емкость [нФ]Емкость [мкФ]
1091,00,0010,000001
1591,50,00150,000001
2292,20,00220,000001
3393,30,00330,000001
4794,70,00470,000001
6896,80,00680,000001
100*100,010,00001
150150,0150,000015
220220,0220,000022
330330,0330,000033
470470,0470,000047
680680,0680,000068
1011000,10,0001
1511500,150,00015
2212200,220,00022
3313300,330,00033
4714700,470,00047
6816800,680,00068
10210001,00,001
15215001,50,0015
22222002,20,0022
33233003,30,0033
47247004,70,0047
68268006,80,0068
10310000100,01
15315000150,015
22322000220,022
33333000330,033
47347000470,047
68368000680,068
1041000001000,1
1541500001500,15
2242200002200,22
3343300003300,33
4744700004700,47
6846800006800,68
105100000010001,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

КодЕмкость[пФ]Емкость[нФ]Емкость[мкФ]
16221620016,20,0162
47534750004750,475

С. Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

КодЕмкость [мкФ]
R10,1
R470,47
11,0
4R74,7
1010
100100

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

КодЕмкость
p100,1 пФ
Ip51,5 пФ
332p332 пФ
1НО или 1nО1,0 нФ
15Н или 15n15 нФ
33h3 или 33n233,2 нФ
590H или 590n590 нФ
m150,15мкФ
1m51,5 мкФ
33m233,2 мкФ
330m330 мкФ
1mO1 мФ или 1000 мкФ
10m10 мФ

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

КодЕмкость [мкФ]Напряжение [В]
А61,016/35
А7104
АА71010
АЕ71510
AJ62,210
AJ72210
AN63,310
AN73310
AS64,710
AW66,810
СА71016
СЕ61,516
СЕ71516
CJ62,216
CN63,316
CS64,716
CW66,816
DA61,020
DA71020
DE61,520
DJ62,220
DN63,320
DS64,720
DW66,820
Е61,510/25
ЕА61,025
ЕЕ61,525
EJ62,225
EN63,325
ES64,725
EW50,6825
GA7104
GE7154
GJ7224
GN7334
GS64,74
GS7474
GW66,84
GW7684
J62,26,3/7/20
JA7106,3/7
JE7156,3/7
JJ7226,3/7
JN63,36,3/7
JN7336,3/7
JS64,76,3/7
JS7476,3/7
JW66,86,3/7
N50,3335
N63,34/16
S50,4725/35
VA61,035
VE61,535
VJ62,235
VN63,335
VS50,4735
VW50,6835
W50,6820/35

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Номиналы пленочных конденсаторов. Кодовая маркировка

Кодовая и цветовая маркировка конденсаторов

Допуски

В соответствии с требованиями Публикаций 62 и 115-2 IEC для конденсаторов установлены следующие допуски и их кодировка:

Таблица 1

Допуск [%]Буквенное обозначениеЦвет
±0,1*В(Ж)
±0,25*С(У)оранжевый
±0,5*D(Д)желтый
±1,0*F(P)коричневый
±2,0G(Л)красный
±5,0J(И)зеленый
±10К(С)белый
±20М(В)черный
±30N(Ф)
-10…+30Q(0)
-10…+50Т(Э]
-10…+100Y(Ю)
-20…+50S(Б)фиолетовый
-20,..+80Z(A)серый

*-Для конденсаторов емкостью

Перерасчет допуска из % (δ) в фарады (Δ):

Δ=(δхС/100%)[Ф]

Пример:

Реальное значение конденсатора с маркировкой 221J (0.22 нФ ±5%) лежит в диапазоне: С=0.22 нФ ± Δ = (0.22 ±0.01) нФ, где Δ= (0.22 х 10 -9 [Ф] х 5) х 0.01 = 0.01 нФ, или, соответственно, от 0.21 до 0.23 нФ.

Температурный коэффициент емкости (ТКЕ)


Конденсаторы с ненормируемым ТКЕ

Таблица 2

* Современная цветовая кодировка, Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Конденсаторы с линейной зависимостью от температуры

Таблица 3

Обозначение
ГОСТ
Обозначение
международное
ТКЕ
*
Буквенный
код
Цвет**
П100P100100 (+130…-49)Aкрасный+фиолетовый
П3333Nсерый
МПОNPO0(+30..-75)Счерный
М33N030-33(+30…-80]Нкоричневый
М75N080-75(+30…-80)Lкрасный
M150N150-150(+30…-105)Роранжевый
М220N220-220(+30…-120)Rжелтый
М330N330-330(+60…-180)Sзеленый
М470N470-470(+60…-210)Тголубой
М750N750-750(+120…-330)Uфиолетовый
М1500N1500-500(-250…-670)Vоранжевый+оранжевый
М2200N2200-2200Кжелтый+оранжевый

* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85 ° С.

** Современная цветовая кодировка в соответствии с EIA. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Конденсаторы с нелинейной зависимостью от температуры

Таблица 4

Группа ТКЕ*Допуск[%]Температура**[ ° C]Буквенный
код ***
Цвет***
Y5F±7,5-30…+85
Y5P±10-30…+85серебряный
Y5R-30…+85Rсерый
Y5S±22-30…+85Sкоричневый
Y5U+22…-56-30…+85A
Y5V(2F)+22…-82-30…+85
X5F±7,5-55…+85
Х5Р±10-55…+85
X5S±22-55…+85
X5U+22…-56-55…+85синий
X5V+22…-82-55..+86
X7R(2R)±15-55…+125
Z5F±7,5-10…+85В
Z5P±10-10…+85С
Z5S±22-10…+85
Z5U(2E)+22…-56-10…+85E
Z5V+22…-82-10…+85Fзеленый
SL0(GP)+150…-1500-55…+150Nilбелый

* Обозначение приведено в соответствии со стандартом EIA, в скобках — IEC.

** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим. Например: фирма «Philips» для группы Y5P нормирует -55…+125 °С.

*** В соответствии с EIA. Некоторые фирмы, например «Panasonic», пользуются другой кодировкой.

Рис. 1

Таблица 5

Метки
полосы, кольца, точки
123456
3 метки*1-я цифра2-я цифраМножитель
4 метки1-я цифра2-я цифраМножительДопуск
4 метки1-я цифра2-я цифраМножительНапряжение
4 метки1 и 2-я цифрыМножительДопускНапряжение
5 меток1-я цифра2-я цифраМножительДопускНапряжение
5 меток»1-я цифра2-я цифраМножительДопускТКЕ
6 меток1-я цифра2-я цифра3-я цифраМножительДопускТКЕ

* Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.

** Цвет корпуса указывает на значение рабочего напряжения.

Рис. 2

Таблица 6

Цвет1-я цифра
мкФ
2-я цифра
мкФ
Множи-
тель
Напряже-
ние
Черный0110
Коричневый1110
Красный22100
Оранжевый33
Желтый446,3
Зеленый5516
Голубой6620
Фиолетовый77
Серый880,0125
Белый990,13
Розовый35

Рис. 3

Таблица 7

Цвет1-я цифра
пФ
2-я цифра
пФ
3-я цифра
пФ
МножительДопускТКЕ
Серебряный0,0110%Y5P
Золотой0,15%
Черный00120%*NPO
Коричневый111101%**Y56/N33
Красный2221002%N75
Оранжевый33310 3N150
Желтый44410 4N220
Зеленый55510 5N330
Голубой66610 6N470
Фиолетовый77710 7N750
Серый88810 830%Y5R
Белый999+80/-20%SL

Рис. 4

Таблица 8

Цвет1-я и
2-я цифра
пФ
МножительДопускНапряжение
Черный10120%4
Коричневый12101%6,3
Красный151002%10
Оранжевый1810 30,25 пФ16
Желтый2210 40,5 пФ40
Зеленый2710 55%20/25
Голубой3310 61%30/32
Фиолетовый3910 7-2О…+5О%
Серый470,01-20…+80%3,2
Белый560,110%63
Серебряный682,5
Золотой825%1,6

Рис. 5

Таблица 9

Номинальная емкость [мкФ]ДопускНапряжение
0,01±10%250
0,015
0,02
0,03
0,04
0,06
0,10
0,15
0,22
0,33±20400
0,47
0,68
1,0
1,5
2,2
3,3
4,7
6,8
1 полоса2 полоса3 полоса4 полоса5 полоса

Кодовая маркировка

А. Маркировка 3 цифрами

Таблица 10

КодЕмкость [пФ]Емкость [нФ]Емкость [мкФ]
1091,00,0010,000001
1591,50,00150,000001
2292,20,00220,000001
3393,30,00330,000001
4794,70,00470,000001
6896,80,00680,000001
100*100,010,00001
150150,0150,000015
220220,0220,000022
330330,0330,000033
470470,0470,000047
680680,0680,000068
1011000,10,0001
1511500,150,00015
2212200,220,00022
3313300,330,00033
4714700,470,00047
6816800,680,00068
10210001,00,001
15215001,50,0015
22222002,20,0022
33233003,30,0033
47247004,70,0047
68268006,80,0068
10310000100,01
15315000150,015
22322000220,022
33333000330,033
47347000470,047
68368000680,068
1041000001000,1
1541500001500,15
2242200002200,22
3343300003300,33
4744700004700,47
6846800006800,68
105100000010001,0

В. Маркировка 4 цифрами

Таблица 11

КодЕмкость[пФ]Емкость[нФ]Емкость[мкФ]
16221620016,20,0162
47534750004750,475

Рис. 3

Таблица 7

Цвет1-я цифра
пФ
2-я цифра
пФ
3-я цифра
пФ
МножительДопускТКЕ
Серебряный0,0110%Y5P
Золотой0,15%
Черный00120%*NPO
Коричневый111101%**Y56/N33
Красный2221002%N75
Оранжевый33310 3N150
Желтый44410 4N220
Зеленый55510 5N330
Голубой66610 6N470
Фиолетовый77710 7N750
Серый88810 830%Y5R
Белый999+80/-20%SL

* Для емкостей меньше 10 пФ допуск ±2,0 пФ.
** Для емкостей меньше 10 пФ допуск±0,1 пФ.

Рис. 4

Таблица 8

Цвет1-я и
2-я цифра
пФ
МножительДопускНапряжение
Черный10120%4
Коричневый12101%6,3
Красный151002%10
Оранжевый1810 30,25 пФ16
Желтый2210 40,5 пФ40
Зеленый2710 55%20/25
Голубой3310 61%30/32
Фиолетовый3910 7-2О…+5О%
Серый470,01-20…+80%3,2
Белый560,110%63
Серебряный682,5
Золотой825%1,6

Для маркировки пленочных конденсаторов используют 5 цветных полос или точек. Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.

Рис. 5

Таблица 9

Номинальная емкость [мкФ]ДопускНапряжение
0,01±10%250
0,015
0,02
0,03
0,04
0,06
0,10
0,15
0,22
0,33±20400
0,47
0,68
1,0
1,5
2,2
3,3
4,7
6,8
1 полоса2 полоса3 полоса4 полоса5 полоса

Кодовая маркировка

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

Таблица 10

КодЕмкость [пФ]Емкость [нФ]Емкость [мкФ]
1091,00,0010,000001
1591,50,00150,000001
2292,20,00220,000001
3393,30,00330,000001
4794,70,00470,000001
6896,80,00680,000001
100*100,010,00001
150150,0150,000015
220220,0220,000022
330330,0330,000033
470470,0470,000047
680680,0680,000068
1011000,10,0001
1511500,150,00015
2212200,220,00022
3313300,330,00033
4714700,470,00047
6816800,680,00068
10210001,00,001
15215001,50,0015
22222002,20,0022
33233003,30,0033
47247004,70,0047
68268006,80,0068
10310000100,01
15315000150,015
22322000220,022
33333000330,033
47347000470,047
68368000680,068
1041000001000,1
1541500001500,15
2242200002200,22
3343300003300,33
4744700004700,47
6846800006800,68
105100000010001,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

Таблица 11

КодЕмкость[пФ]Емкость[нФ]Емкость[мкФ]
16221620016,20,0162
47534750004750,475

Рис. 6

С. Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

Таблица 12

КодЕмкость [мкФ]
R10,1
R470,47
11,0
4R74,7
1010
100100

Рис. 7

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Таблица 13

КодЕмкость
p100,1 пФ
Ip51,5 пФ
332p332 пФ
1НО или 1nО1,0 нФ
15Н или 15n15 нФ
33h3 или 33n233,2 нФ
590H или 590n590 нФ
m150,15мкФ
1m51,5 мкФ
33m233,2 мкФ
330m330 мкФ
1mO1 мФ или 1000 мкФ
10m10 мФ

Рис. 8

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Рис. 9

Таблица 14

КодЕмкость [мкФ]Напряжение [В]
А61,016/35
А7104
АА71010
АЕ71510
AJ62,210
AJ72210
AN63,310
AN73310
AS64,710
AW66,810
СА71016
СЕ61,516
СЕ71516
CJ62,216
CN63,316
CS64,716
CW66,816
DA61,020
DA71020
DE61,520
DJ62,220
DN63,320
DS64,720
DW66,820
Е61,510/25
ЕА61,025
ЕЕ61,525
EJ62,225
EN63,325
ES64,725
EW50,6825
GA7104
GE7154
GJ7224
GN7334
GS64,74
GS7474
GW66,84
GW7684
J62,26,3/7/20
JA7106,3/7
JE7156,3/7
JJ7226,3/7
JN63,36,3/7
JN7336,3/7
JS64,76,3/7
JS7476,3/7
JW66,86,3/7
N50,3335
N63,34/16
S50,4725/35
VA61,035
VE61,535
VJ62,235
VN63,335
VS50,4735
VW50,6835
W50,6820/35

Рис. 10

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

Рис. 11

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Рис. 12

Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

Рис. 13

Маркировка конденсаторов

1. Маркировка тремя цифрами .

В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).

код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF
109 1.0 пФ
159 1.5 пФ
229 2.2 пФ
339 3.3 пФ
479 4.7 пФ
689 6.8 пФ
100 10 пФ 0.01 нФ
150 15 пФ 0.015 нФ
220 22 пФ 0.022 нФ
330 33 пФ 0.033 нФ
470 47 пФ 0.047 нФ
680 68 пФ 0.068 нФ
101 100 пФ 0.1 нФ
151 150 пФ 0.15 нФ
221 220 пФ 0.22 нФ
331 330 пФ 0.33 нФ
471 470 пФ 0.47 нФ
681 680 пФ 0.68 нФ
102 1000 пФ 1 нФ
152 1500 пФ 1.5 нФ
222 2200 пФ 2.2 нФ
332 3300 пФ 3.3 нФ
472 4700 пФ 4.7 нФ
682 6800 пФ 6.8 нФ
103 10000 пФ 10 нФ 0.01 мкФ
153 15000 пФ 15 нФ 0.015 мкФ
223 22000 пФ 22 нФ 0.022 мкФ
333 33000 пФ 33 нФ 0.033 мкФ
473 47000 пФ 47 нФ 0.047 мкФ
683 68000 пФ 68 нФ 0.068 мкФ
104 100000 пФ 100 нФ 0.1 мкФ
154 150000 пФ 150 нФ 0.15 мкФ
224 220000 пФ 220 нФ 0.22 мкФ
334 330000 пФ 330 нФ 0.33 мкФ
474 470000 пФ 470 нФ 0.47 мкФ
684 680000 пФ 680 нФ 0.68 мкФ
105 1000000 пФ 1000 нФ 1 мкФ

2. Маркировка четырьмя цифрами .

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ .

3. Буквенно-цифровая маркировка .

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ, 22p = 22 пФ, 2н2 = 2.2 нФ, 4n7 = 4,7 нФ, μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n».

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы .

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

маркировка значение маркировка значение маркировка значение маркировка значение
A 1.0 J 2.2 S 4.7 a 2.5
B 1.1 K 2.4 T 5.1 b 3.5
C 1.2 L 2.7 U 5.6 d 4.0
D 1.3 M 3.0 V 6.2 e 4.5
E 1.5 N 3.3 W 6.8 f 5.0
F 1.6 P 3.6 X 7.5 m 6.0
G 1.8 Q 3.9 Y 8.2 n 7.0
H 2.0 R 4.3 Z 9.1 t 8.0

5. Планарные электролитические конденсаторы .

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

По таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

буква e G J A C D E V H (T для танталовых)
напряжение 2,5 В 4 В 6,3 В 10 В 16 В 20 В 25 В 35 В 50 В

Кодовая маркировка, дополнение

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

КодЕмкость [пФ]Емкость [нФ]Емкость [мкФ]
1091,00,0010,000001
1591,50,00150,000001
2292,20,00220,000001
3393,30,00330,000001
4794,70,00470,000001
6896,80,00680,000001
100*100,010,00001
150150,0150,000015
220220,0220,000022
330330,0330,000033
470470,0470,000047
680680,0680,000068
1011000,10,0001
1511500,150,00015
2212200,220,00022
3313300,330,00033
4714700,470,00047
6816800,680,00068
10210001,00,001
15215001,50,0015
22222002,20,0022
33233003,30,0033
47247004,70,0047
68268006,80,0068
10310000100,01
15315000150,015
22322000220,022
33333000330,033
47347000470,047
68368000680,068
1041000001000,1
1541500001500,15
2242200002200,22
3343300003300,33
4744700004700,47
6846800006800,68
105100000010001,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

КодЕмкость[пФ]Емкость[нФ]Емкость[мкФ]
16221620016,20,0162
47534750004750,475

Рис. 6

С. Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

КодЕмкость [мкФ]
R10,1
R470,47
11,0
4R74,7
1010
100100

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

КодЕмкость [мкФ]Напряжение [В]
А61,016/35
А7104
АА71010
АЕ71510
AJ62,210
AJ72210
AN63,310
AN73310
AS64,710
AW66,810
СА71016
СЕ61,516
СЕ71516
CJ62,216
CN63,316
CS64,716
CW66,816
DA61,020
DA71020
DE61,520
DJ62,220
DN63,320
DS64,720
DW66,820
Е61,510/25
ЕА61,025
ЕЕ61,525
EJ62,225
EN63,325
ES64,725
EW50,6825
GA7104
GE7154
GJ7224
GN7334
GS64,74
GS7474
GW66,84
GW7684
J62,26,3/7/20
JA7106,3/7
JE7156,3/7
JJ7226,3/7
JN63,36,3/7
JN7336,3/7
JS64,76,3/7
JS7476,3/7
JW66,86,3/7
N50,3335
N63,34/16
S50,4725/35
VA61,035
VE61,535
VJ62,235
VN63,335
VS50,4735
VW50,6835
W50,6820/35

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

В соответствии с требованиями Публикаций 62 и 115-2 IEC для конденсаторов установлены следующие допуски и их кодировка:

Таблица 1

*-Для конденсаторов емкостью

Перерасчет допуска из % (δ) в фарады (Δ):

Δ=(δхС/100%)[Ф]

Реальное значение конденсатора с маркировкой 221J (0.22 нФ ±5%) лежит в диапазоне: С=0.22 нФ ± Δ = (0.22 ±0.01) нФ, где Δ= (0.22 х 10 -9 [Ф] х 5) х 0.01 = 0.01 нФ, или, соответственно, от 0.21 до 0.23 нФ.

Температурный коэффициент емкости (ТКЕ)


Конденсаторы с ненормируемым ТКЕ

Таблица 2

* Современная цветовая кодировка, Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Конденсаторы с линейной зависимостью от температуры

Таблица 3

Обозначение
ГОСТ
Обозначение
международное
ТКЕ
*
Буквенный
код
Цвет**
П100P100100 (+130…-49)Aкрасный+фиолетовый
П3333Nсерый
МПОNPO0(+30..-75)Счерный
М33N030-33(+30…-80]Нкоричневый
М75N080-75(+30…-80)Lкрасный
M150N150-150(+30…-105)Роранжевый
М220N220-220(+30…-120)Rжелтый
М330N330-330(+60…-180)Sзеленый
М470N470-470(+60…-210)Тголубой
М750N750-750(+120…-330)Uфиолетовый
М1500N1500-500(-250…-670)Vоранжевый+оранжевый
М2200N2200-2200Кжелтый+оранжевый

* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85 ° С.

** Современная цветовая кодировка в соответствии с EIA. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Конденсаторы с нелинейной зависимостью от температуры

Таблица 4

Группа ТКЕ*Допуск[%]Температура**[ ° C]Буквенный
код ***
Цвет***
Y5F±7,5-30…+85
Y5P±10-30…+85серебряный
Y5R-30…+85Rсерый
Y5S±22-30…+85Sкоричневый
Y5U+22…-56-30…+85A
Y5V(2F)+22…-82-30…+85
X5F±7,5-55…+85
Х5Р±10-55…+85
X5S±22-55…+85
X5U+22…-56-55…+85синий
X5V+22…-82-55..+86
X7R(2R)±15-55…+125
Z5F±7,5-10…+85В
Z5P±10-10…+85С
Z5S±22-10…+85
Z5U(2E)+22…-56-10…+85E
Z5V+22…-82-10…+85Fзеленый
SL0(GP)+150…-1500-55…+150Nilбелый

* Обозначение приведено в соответствии со стандартом EIA, в скобках — IEC.

** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим. Например: фирма «Philips» для группы Y5P нормирует -55…+125 °С.

*** В соответствии с EIA. Некоторые фирмы, например «Panasonic», пользуются другой кодировкой.

Таблица 5

Метки
полосы, кольца, точки
123456
3 метки*1-я цифра2-я цифраМножитель
4 метки1-я цифра2-я цифраМножительДопуск
4 метки1-я цифра2-я цифраМножительНапряжение
4 метки1 и 2-я цифрыМножительДопускНапряжение
5 меток1-я цифра2-я цифраМножительДопускНапряжение
5 меток»1-я цифра2-я цифраМножительДопускТКЕ
6 меток1-я цифра2-я цифра3-я цифраМножительДопускТКЕ

* Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.

** Цвет корпуса указывает на значение рабочего напряжения.

Таблица 6

Таблица 7

Цвет1-я цифра
пФ
2-я цифра
пФ
3-я цифра
пФ
МножительДопускТКЕ
Серебряный0,0110%Y5P
Золотой0,15%
Черный00120%*NPO
Коричневый111101%**Y56/N33
Красный2221002%N75
Оранжевый33310 3N150
Желтый44410 4N220
Зеленый55510 5N330
Голубой66610 6N470
Фиолетовый77710 7N750
Серый88810 830%Y5R
Белый999+80/-20%SL

* Для емкостей меньше 10 пФ допуск ±2,0 пФ.
** Для емкостей меньше 10 пФ допуск±0,1 пФ.

Таблица 8

Цвет1-я и
2-я цифра
пФ
МножительДопускНапряжение
Черный10120%4
Коричневый12101%6,3
Красный151002%10
Оранжевый1810 30,25 пФ16
Желтый2210 40,5 пФ40
Зеленый2710 55%20/25
Голубой3310 61%30/32
Фиолетовый3910 7-2О…+5О%
Серый470,01-20…+80%3,2
Белый560,110%63
Серебряный682,5
Золотой825%1,6

Для маркировки пленочных конденсаторов используют 5 цветных полос или точек. Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.

Таблица 9

Номинальная емкость [мкФ]ДопускНапряжение
0,01±10%250
0,015
0,02
0,03
0,04
0,06
0,10
0,15
0,22
0,33±20400
0,47
0,68
1,0
1,5
2,2
3,3
4,7
6,8
1 полоса2 полоса3 полоса4 полоса5 полоса

Кодовая маркировка

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

Таблица 10

КодЕмкость [пФ]Емкость [нФ]Емкость [мкФ]
1091,00,0010,000001
1591,50,00150,000001
2292,20,00220,000001
3393,30,00330,000001
4794,70,00470,000001
6896,80,00680,000001
100*100,010,00001
150150,0150,000015
220220,0220,000022
330330,0330,000033
470470,0470,000047
680680,0680,000068
1011000,10,0001
1511500,150,00015
2212200,220,00022
3313300,330,00033
4714700,470,00047
6816800,680,00068
10210001,00,001
15215001,50,0015
22222002,20,0022
33233003,30,0033
47247004,70,0047
68268006,80,0068
10310000100,01
15315000150,015
22322000220,022
33333000330,033
47347000470,047
68368000680,068
1041000001000,1
1541500001500,15
2242200002200,22
3343300003300,33
4744700004700,47
6846800006800,68
105100000010001,0

* Иногда последний ноль не указывают.

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

Таблица 11

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Таблица 13

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Таблица 14

КодЕмкость [мкФ]Напряжение [В]
А61,016/35
А7104
АА71010
АЕ71510
AJ62,210
AJ72210
AN63,310
AN73310
AS64,710
AW66,810
СА71016
СЕ61,516
СЕ71516
CJ62,216
CN63,316
CS64,716
CW66,816
DA61,020
DA71020
DE61,520
DJ62,220
DN63,320
DS64,720
DW66,820
Е61,510/25
ЕА61,025
ЕЕ61,525
EJ62,225
EN63,325
ES64,725
EW50,6825
GA7104
GE7154
GJ7224
GN7334
GS64,74
GS7474
GW66,84
GW7684
J62,26,3/7/20
JA7106,3/7
JE7156,3/7
JJ7226,3/7
JN63,36,3/7
JN7336,3/7
JS64,76,3/7
JS7476,3/7
JW66,86,3/7
N50,3335
N63,34/16
S50,4725/35
VA61,035
VE61,535
VJ62,235
VN63,335
VS50,4735
VW50,6835
W50,6820/35

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

Название которых она получила благодаря основному цвету корпуса — красному и его оттенков (из-за чего их так же бывает называют «рыжими»). Конечно, встречаются и корпуса желтого цвета. Данный тип конденсаторов представляет собой «подушечки» компаунда, который нанесен на пластину конденсатора и окрашен в красный, оранжевый или желтый цвета. Емкости и размеры этих конденсаторов различны, вывода необходимо откусывать «по корешок», так, чтобы ничего не оставалось. Не смотря на высокую цену, подобный «микс» , «смесь» из конденсаторов различных типов, конечно, отличается от стоимости «зеленых» в меньшую сторону. Это обусловлено прежде всего значительной массой корпуса по сравнению с содержимым. Обратите внимание, что, как правило, «выход» по содержанию металлов таких, как , во многом зависит от многих факторов, однако принято считать, что чем меньше размер конденсатора, тем больше вес его корпуса и выводов внутри корпуса по сравнению с содержимым. Именно поэтому мелкие конденсаторы чаще дешевле, чем крупные. Обратите внимание, что далеко не все конденсаторы или радиодетали, которые принимают за конденсаторы «красные» таковыми являются. На фото изображены примеры непосредственно «красных» конденсаторов, которые принимаются.

Засор и единица измерения конденсаторов КМ

Очень часто в смеси присутствует так называемый «засор» — детали похожие на красные конденсаторы, но таковыми не являющиеся. Данная позиция – весовая, поэтому необходимо взвешивать общее количество конденсаторов, предназначенных к сдаче. Принято в качестве единицы веса использовать килограмм, за который и дается цена. Это очень просто: 100 граммов, например, будут считаться, как 0,1 кг., 20 граммов – как 0,02 кг., 7 граммов – 0,007 кг. Стоит отметить и тот факт, что зачастую эту позицию и доставляют именно килограммами, по 10-15 килограммов, именно поэтому единицей веса принято брать килограмм для расчета.

Где можно найти конденсаторы КМ

Такие конденсаторы можно найти в различных приборах советского и послесоветского производства. Как правило, это генераторы, осциллографы, различные . Эти элементы размещаются на печатных платах вышеуказанных (и не только) устройств и нередки случаи, когда с одного прибора вполне можно получить 300 граммов конденсаторов. Для демонтажа этих конденсаторов необходимо разобрать прибор и кусачками снимать (скусывать) конденсаторы в какую-нибудь емкость, стараясь действовать таким образом, чтобы проволочные выводы конденсаторов оставались на плате, а не на корпусе конденсатора (как я уже написал «под корешок»). Случается, что данные конденсаторы залиты на плате лаком, приклеены, вывода их бывает, имеют надетый на них кембрик. Это усложняет демонтаж и увеличивает засор. Бывает даже так, что в некоторых модулях конденсаторы залиты резиноподобной массой, часто прозрачной, сильно осложняющей демонтаж этих деталей. Непосредственно, обычно пластина конденсатора внутри его окрашенного корпуса имеет вид бескорпусного конденсатора и окрашена в бежевый или коричневый цвет. При раскусывании можно разглядеть так называемые «слои» из которых состоит сам элемент. Еще раз посмотрите на фото, я думаю, что однажды запомнив, как выглядят элементы этой позиции, Вы уже ни с чем их не спутаете, ведь конденсаторы КМ по праву (вернее, по содержанию драгметаллов) – одна из наиболее дорогих позиций, за которые можно выручить неплохие деньги.

Правильная подготовка конденсаторов КМ красных

Когда конденсаторов немного, то имеет смысл рассортировать их по позициям, начиная хотя бы с размера. С другой стороны, далеко не каждый в состоянии сделать это в соответствии с содержанием драгоценных металлов, которое конечно разное у разных конденсаторов. Когда уже килограммы, то обычно их не сортируют, а сдают «миксом» (смесью), кто-то находит для себя, что сортировать для него не выгодно, кто-то просто в силу того, что зрение подводит, не может обеспечить сортировку. Это не страшно, ведь наши специалисты помогут в любом случае, это наша работа. Итак, сняв конденсаторы с плат, необходимо их перевесить. Для этого берется любая емкость, устанавливается на весы, тарируются весы (это значит, что обнуляются с установленной пустой емкостью. В этом случае они будут показывать вес только содержимого емкости, а не прибавленный к этому вес банки или пакета). Я поясняю это, ибо далеко не все работали продавцами и умеют пользоваться весами, а для контроля это не будет лишним). После этого, счастливый обладатель «КМ красных» звонит нам по телефону, договаривается о прибытии, либо о самовывозе с нашей стороны, либо уточняет адрес для . В случае самостоятельного прибытия вы получаете деньги сразу, расчет незамедлительный, в случае с посылками – по факту получения и пересчета содержимого отправка на банковскую карту или согласно иных указанных Вами почтовых реквизитов.

Всем привет!
Предлагаю вашему вниманию таблицу
маркировок и расшифровки керамических конденсаторов .
Конденсаторы имеют определённую кодовую маркировку и, умея расшифровывать эти коды, можно узнать их ёмкость. Для чего это нужно — всем понятно.
Итак,
расшифровывать коды нужно так:
Например, на конденсаторе написано «104». Первые две цифры обозначают ёмкость конденсатора в пикофарадах (10 пф), последняя цифра указывает количество нулей, которое нужно прибавить к 10, т.е. 10 и четыре нуля, получится 100000 пф.
Если последняя цифра в коде «9», это значит ёмкость данного конденсатора меньше 10 пф. Если первая цифра «0», то ёмкость меньше 1 пф, например код 010 означает 1 пф. Буква в коде применяется в качестве десятичной запятой, т.е. код, например, 0R5 означает ёмкость конденсатора 0,5 пф.

Также в кодовых обозначениях конденсаторов применяется такой параметр, как температурный коэффициент ёмкости (ТКЕ). Этот параметр показывает изменение ёмкости конденсатора при изменении температуры окружающей среды и выражается в миллионных долях ёмкости на градус (10 — 6х о С). Существуют несколько ТКЕ – положительный (обозначается буквами «Р» или «П»), отрицательный (обозначается буквами «N» или «М») и ненормированный (обозначается «Н»).

Если кодовое число обозначается четырьмя цифрами, то расчёт производится по такой же схеме, но ёмкость обозначают первые три цифры.
Например код 4753=475000пф=475нф=0.475мкф

Как подобрать smd конденсатор — Инженер ПТО

Очень многие начинающие радиолюбители сталкиваются с проблемой определения характеристик таких накопительных устройств, как смд конденсаторы. Имеющие небольшой размер и используемые при такой технологии установки, как поверхностный монтаж, эти компоненты многих печатных плат имеют маркировку, отличающуюся от той, которая используется у более крупных аналогов для сквозного монтажа. В данной статье будут рассмотрены основные виды данных радиодеталей, их обозначение и его расшифровка.

Виды SMD-конденсаторов

Все используемые для поверхностного монтажа накопительные устройства бывают трех основных видов: керамические, электролитические и танталовые.

Электролитические

Такие компоненты для поверхностного монтажа состоят из:

  • Алюминиевого цилиндрического корпуса, диаметром от 4 до 10 мм и высотой от 5,4 до 10,5 мм;
  • Двух обкладок из тонкой фольги, разделенных пропитанной электролитом бумагой и скрученных в небольшой рулончик;
  • Двух контактов (выводов), которые располагаются перпендикулярно осевой линии компонента. Так как электролитические смд накопители являются полярными, то к одному из контактов, обозначенному специальной полосой на торце корпуса, подключают отрицательный потенциал, ко второму – положительный.
  • Монтажной площадки, предназначенной для фиксации компонента на рабочей поверхности.

Различные модели данных компонентов, имеющие номинал от 1 до 1000-150 мкФ, способны работать при напряжении от 4 до 1000 В.

Керамические

Наиболее часто применяемый керамический многослойный накопитель для поверхностного монтажа имеет следующее строение:

  • Керамическое тело – большое количество тонких слоев керамического диэлектрика;
  • Внутренние электроды – никелевые тонкие пластинки, расположенные между слоями керамического диэлектрика;
  • Торцевые контактные электроды – два вывода, к каждому из которых подключена половина внутренних электродов.

В отличие от электролитических, такие компоненты имеют уплощенную прямоугольную форму, небольшие размеры (длина и ширина самых мелких радиодетали этого вида составляют всего 0,8 и 1,5-1,6 мм, соответственно). Однако, несмотря на небольшие размеры, такие смд компоненты могут работать при напряжении от 25 до 700-1000В, накапливая при этом заряд, величиной от 0,5-1,пФ до 3-3,3 мкФ.

Танталовые

Основными составными частями танталовых полярных накопительных смд устройств являются:

  • Анод – контакт, на который подается электрический ток с отрицательным потенциалом;
  • Катод – расположенный на противоположной стороне корпуса контакт, запитываемый положительным потенциалом;
  • Диэлектрик – слой не проводящего электрический ток материала, располагающегося между анодом и катодом;
  • Электролит – находящееся в жидком или твёрдом агрегатном состоянии, проводящее электрический ток вещество. Для предотвращения высыхания конденсатора чаще всего в качестве электролита используют гранулированный оксид марганца.
  • Диэлектрик – оксид тантала, которым покрыт располагающийся в корпусе гранулированный анод.

Применяют такие небольшие по размерам накопительные устройства при рабочем напряжении от 6 до 32-35 В. Величина накапливаемого при этом заряда колеблется от 1 до 600-680 мкФ.

Как определить номинал и напряжение

Очень многие производители не указывают на своих изделиях такие основные для любого конденсатора характеристики, как рабочее напряжение и номинал (номинальная емкость).

Определение номинала данных электронных компонентов производится следующими способами:

  • С помощью такого имеющего функцию измерения номинала контрольно-измерительного прибора, как мультиметр. Для измерения значения номинала контрольные щупы прибора подключают к специальным разъемам. Затем переключатель устанавливается на самый большой по значению предел измерения (в большинстве мультиметров это 200 мкФ). После этого щупы прикладывают к контактам конденсатора, спустя несколько секунд на дисплее прибора получают значение номинала накопительного устройства.

Важно! Перед измерением емкости смд накопитель обязательно разряжают – оставшийся в обкладках заряд может повредить электронные схемы мультиметра.

  • С помощью специализированного измерительного прибора RLC.

Для того чтобы узнать рабочее напряжение накопительного SMD устройства, пользуются следующей простой методикой:

  • При помощи мультиметра измеряют напряжение между выводами включенного в схему компонента;
  • Полученное значение умножают на 1,5.

Рассчитанное таким способом рабочее напряжение будет примерным, более точное значение данной характеристики можно узнать из маркировочного кода конденсатора или его описания.

Маркировка конденсаторов: расшифровка цифр и букв

В зависимости от вида накопительного смд устройства, различают несколько методик их маркировки.

Маркировка керамических устройств

Устройства данного вида маркируются с помощью одной или двух латинских букв и цифры. Первая буква при этом обозначает производителя компонента, вторая – его номинальную ёмкость. Цифра в маркировочном коде указывает на степень номинала конденсатора в пикофарадах.

Пример. Маркировка накопительного смд компонента KG3 расшифровывается как изделие, произведенное компанией «Kemet» и имеющее емкость 1,8×103 пкФ.

Маркировка электролитических SMD накопителей

Электролитические накопительные устройства для поверхностного монтажа маркируются 4 основными способами:

  • В виде одной буквы, обозначающей рабочее напряжение, и трех цифр, две из которых указывают на значение емкости конденсатора, а третья – на степень номинала в пикофарадах.
  • В виде двух букв, обозначающих рабочее напряжение и емкость, одной цифры, указывающей на степень номинала в пикофарадах.

  • Четырьмя символами – это обозначение, состоящее из одной буквы, означающей рабочее напряжение, двух цифр, указывающих на емкость компонента, и последней цифры, определяющей количество нулей после значения емкости.
  • Двухстрочная – верхняя часть маркировки в виде цифры означает емкость компонента, нижняя – его рабочее напряжение.

Маркировка танталовых накопительных смд устройств

Маркировка танталовых смд накопителей состоит из следующих частей:

  • Большой латинской буквы, указывающей на рабочее напряжение компонента;
  • Трёхзначного числа, первые две цифры которого означают емкость накопителя, а последняя – количество нулей после значения емкости.

Пример. Маркировка танталового накопителя G103 означает, что он имеет рабочее напряжение 4 В и емкость 10 000 пикофарад.

Важно! При подключении танталовых и электролитических накопителей необходимо соблюдать полярность. Для этого на их корпуса наносится специальная полоса, имеющая черный цвет и обозначающая положительный (у танталовых накопителей) или отрицательный (у электролитических устройств) вывод. Неправильное подключение с игнорированием данных меток приведет к тому, что накопитель выйдет из строя.

Как маркируются большие конденсаторы

Большие накопительные смд устройства маркируются по тем же принципам, что их более мелкие аналоги. При больших размерах корпуса на таких компонентах часто пишется полное значение их емкости и рабочего напряжения.

На заметку. По поисковому запросу «smd конденсаторы без маркировки как определить», помимо сайтов, на первой странице выдачи полезную информацию по данной тематике содержат различные форумы радиолюбителей и специалистов, занимающихся ремонтом компьютерной и бытовой техники.Обозначение в схемах.

На электрических схемах накопительные смд устройства имеют такое же обозначение, как и у их используемых для сквозного монтажа аналогов.

Таким образом, умение читать и расшифровывать маркировочные коды позволяет правильно определять характеристики данных накопителей. Такие навыки очень важны при замене вышедших из строя накопителей, пайке сложных схем, чувствительных к перепадам вольт-амперных характеристик электрического тока.

Видео

Очень многие начинающие радиолюбители сталкиваются с проблемой определения характеристик таких накопительных устройств, как смд конденсаторы. Имеющие небольшой размер и используемые при такой технологии установки, как поверхностный монтаж, эти компоненты многих печатных плат имеют маркировку, отличающуюся от той, которая используется у более крупных аналогов для сквозного монтажа. В данной статье будут рассмотрены основные виды данных радиодеталей, их обозначение и его расшифровка.

Виды SMD-конденсаторов

Все используемые для поверхностного монтажа накопительные устройства бывают трех основных видов: керамические, электролитические и танталовые.

Электролитические

Такие компоненты для поверхностного монтажа состоят из:

  • Алюминиевого цилиндрического корпуса, диаметром от 4 до 10 мм и высотой от 5,4 до 10,5 мм;
  • Двух обкладок из тонкой фольги, разделенных пропитанной электролитом бумагой и скрученных в небольшой рулончик;
  • Двух контактов (выводов), которые располагаются перпендикулярно осевой линии компонента. Так как электролитические смд накопители являются полярными, то к одному из контактов, обозначенному специальной полосой на торце корпуса, подключают отрицательный потенциал, ко второму – положительный.
  • Монтажной площадки, предназначенной для фиксации компонента на рабочей поверхности.

Различные модели данных компонентов, имеющие номинал от 1 до 1000-150 мкФ, способны работать при напряжении от 4 до 1000 В.

Керамические

Наиболее часто применяемый керамический многослойный накопитель для поверхностного монтажа имеет следующее строение:

  • Керамическое тело – большое количество тонких слоев керамического диэлектрика;
  • Внутренние электроды – никелевые тонкие пластинки, расположенные между слоями керамического диэлектрика;
  • Торцевые контактные электроды – два вывода, к каждому из которых подключена половина внутренних электродов.

В отличие от электролитических, такие компоненты имеют уплощенную прямоугольную форму, небольшие размеры (длина и ширина самых мелких радиодетали этого вида составляют всего 0,8 и 1,5-1,6 мм, соответственно). Однако, несмотря на небольшие размеры, такие смд компоненты могут работать при напряжении от 25 до 700-1000В, накапливая при этом заряд, величиной от 0,5-1,пФ до 3-3,3 мкФ.

Танталовые

Основными составными частями танталовых полярных накопительных смд устройств являются:

  • Анод – контакт, на который подается электрический ток с отрицательным потенциалом;
  • Катод – расположенный на противоположной стороне корпуса контакт, запитываемый положительным потенциалом;
  • Диэлектрик – слой не проводящего электрический ток материала, располагающегося между анодом и катодом;
  • Электролит – находящееся в жидком или твёрдом агрегатном состоянии, проводящее электрический ток вещество. Для предотвращения высыхания конденсатора чаще всего в качестве электролита используют гранулированный оксид марганца.
  • Диэлектрик – оксид тантала, которым покрыт располагающийся в корпусе гранулированный анод.

Применяют такие небольшие по размерам накопительные устройства при рабочем напряжении от 6 до 32-35 В. Величина накапливаемого при этом заряда колеблется от 1 до 600-680 мкФ.

Как определить номинал и напряжение

Очень многие производители не указывают на своих изделиях такие основные для любого конденсатора характеристики, как рабочее напряжение и номинал (номинальная емкость).

Определение номинала данных электронных компонентов производится следующими способами:

  • С помощью такого имеющего функцию измерения номинала контрольно-измерительного прибора, как мультиметр. Для измерения значения номинала контрольные щупы прибора подключают к специальным разъемам. Затем переключатель устанавливается на самый большой по значению предел измерения (в большинстве мультиметров это 200 мкФ). После этого щупы прикладывают к контактам конденсатора, спустя несколько секунд на дисплее прибора получают значение номинала накопительного устройства.

Важно! Перед измерением емкости смд накопитель обязательно разряжают – оставшийся в обкладках заряд может повредить электронные схемы мультиметра.

  • С помощью специализированного измерительного прибора RLC.

Для того чтобы узнать рабочее напряжение накопительного SMD устройства, пользуются следующей простой методикой:

  • При помощи мультиметра измеряют напряжение между выводами включенного в схему компонента;
  • Полученное значение умножают на 1,5.

Рассчитанное таким способом рабочее напряжение будет примерным, более точное значение данной характеристики можно узнать из маркировочного кода конденсатора или его описания.

Маркировка конденсаторов: расшифровка цифр и букв

В зависимости от вида накопительного смд устройства, различают несколько методик их маркировки.

Маркировка керамических устройств

Устройства данного вида маркируются с помощью одной или двух латинских букв и цифры. Первая буква при этом обозначает производителя компонента, вторая – его номинальную ёмкость. Цифра в маркировочном коде указывает на степень номинала конденсатора в пикофарадах.

Пример. Маркировка накопительного смд компонента KG3 расшифровывается как изделие, произведенное компанией «Kemet» и имеющее емкость 1,8×103 пкФ.

Маркировка электролитических SMD накопителей

Электролитические накопительные устройства для поверхностного монтажа маркируются 4 основными способами:

  • В виде одной буквы, обозначающей рабочее напряжение, и трех цифр, две из которых указывают на значение емкости конденсатора, а третья – на степень номинала в пикофарадах.
  • В виде двух букв, обозначающих рабочее напряжение и емкость, одной цифры, указывающей на степень номинала в пикофарадах.

  • Четырьмя символами – это обозначение, состоящее из одной буквы, означающей рабочее напряжение, двух цифр, указывающих на емкость компонента, и последней цифры, определяющей количество нулей после значения емкости.
  • Двухстрочная – верхняя часть маркировки в виде цифры означает емкость компонента, нижняя – его рабочее напряжение.

Маркировка танталовых накопительных смд устройств

Маркировка танталовых смд накопителей состоит из следующих частей:

  • Большой латинской буквы, указывающей на рабочее напряжение компонента;
  • Трёхзначного числа, первые две цифры которого означают емкость накопителя, а последняя – количество нулей после значения емкости.

Пример. Маркировка танталового накопителя G103 означает, что он имеет рабочее напряжение 4 В и емкость 10 000 пикофарад.

Важно! При подключении танталовых и электролитических накопителей необходимо соблюдать полярность. Для этого на их корпуса наносится специальная полоса, имеющая черный цвет и обозначающая положительный (у танталовых накопителей) или отрицательный (у электролитических устройств) вывод. Неправильное подключение с игнорированием данных меток приведет к тому, что накопитель выйдет из строя.

Как маркируются большие конденсаторы

Большие накопительные смд устройства маркируются по тем же принципам, что их более мелкие аналоги. При больших размерах корпуса на таких компонентах часто пишется полное значение их емкости и рабочего напряжения.

На заметку. По поисковому запросу «smd конденсаторы без маркировки как определить», помимо сайтов, на первой странице выдачи полезную информацию по данной тематике содержат различные форумы радиолюбителей и специалистов, занимающихся ремонтом компьютерной и бытовой техники.Обозначение в схемах.

На электрических схемах накопительные смд устройства имеют такое же обозначение, как и у их используемых для сквозного монтажа аналогов.

Таким образом, умение читать и расшифровывать маркировочные коды позволяет правильно определять характеристики данных накопителей. Такие навыки очень важны при замене вышедших из строя накопителей, пайке сложных схем, чувствительных к перепадам вольт-амперных характеристик электрического тока.

Видео

Впервые столкнувшийся с видом SMD-конденсатора радиолюбитель недоумевает, как же разобраться во всех этих «квадратиках» и «бочонках», если на некоторых вообще отсутствует маркировка, а если и есть таковая, то и не поймешь, что же она обозначает. А ведь хочется идти в ногу со временем, а значит, придется разобраться все-таки, как определить принадлежность элемента платы, отличить один компонент от другого. Как оказалось, все же различия есть, и маркировка, хотя и не всегда и не на всех конденсаторах, дает представление о параметрах. Есть, конечно, SMD-компоненты и без опознавательных знаков, но обо всем по порядку. Для начала следует понять, что же представляет собой этот элемент и в чем его задача.

Работает такой компонент следующим образом. На каждую из двух пластинок, расположенных внутри, подаются разноименные заряды (полярность их разнится), которые стремятся один к другому согласно законам физики. Но «проникнуть» на противоположную пластину заряд не может по причине того, что между ними диэлектрическая прокладка, а следовательно, не найдя выхода и не имея возможности «уйти» от близлежащего противоположного полюса, накапливается в конденсаторе до заполнения его емкости.

Виды конденсаторов

Конденсаторы различаются по видам, их насчитывается всего три:

  • Керамические, пленочные и им подобные неполярные не маркируются, но их характеристики легко определяются при помощи мультиметра. Диапазон емкостей от 10 пикофарад до 10 микрофарад.
  • Электролитические – производятся в форме алюминиевого бочонка, маркируются, с виду напоминают обычные вводные, но монтируются на поверхности.
  • Танталовые – корпус прямоугольный, размеры разные. Цвет выпуска – черный, желтый, оранжевый. Маркируются специальным кодом.

Электролитические компоненты

На таких SMD-компонентах обычно промаркирована емкость и рабочее напряжение. К примеру, это может быть 156v, что будет означать, что его характеристики – 15 микрофарад и напряжение в 6 В.

А может оказаться, что маркировка совершенно другая, например D20475. Подобный код определяет конденсатор как 4.7 мкФ 20 В. Ниже представлен перечень буквенных обозначений совместно с их эквивалентом напряжения:

  • е – 2.5 В;
  • G – 4 В;
  • J – 6.3 В;
  • A – 10 В;
  • С – 16 В;
  • D – 20 В;
  • Е – 25 В;
  • V – 35 В;
  • Н – 50 В.

Полоска, равно как и срез, показывает положение ввода «+».

Керамические компоненты

Маркировка керамических SMD-конденсаторов имеет более широкое количество обозначений, хотя сам код их содержит всего 2–3 символа и цифру. Первым символом, при его наличии, обозначен производитель, второй говорит о номинальном напряжении конденсатора, ну а цифра – емкостный показатель в пкФ.

К примеру, простейшая маркировка Т4 будет означать, что емкость данного керамического конденсатора равна 5.1 × 10 в 4-й степени пкФ.

Таблица обозначений номинального напряжения представлена ниже.

Маркировка танталовых SMD-конденсаторов

Такие элементы типоразмера «а» и «в» маркируются буквенным кодом по номинальному напряжению. Таких букв 8 – это G, J, A, C, D, E, V, T. Каждая буква соответствует напряжению, соответственно – 4, 6.3, 10, 16, 20, 25, 35, 50. За ним следует емкостный код в пкФ, состоящий из трех цифр, последняя из которых будет обозначать число нулей. К примеру, маркировкой Е105 обозначен конденсатор 1 000 000 пкФ = 10 мкФ, а его номинал составит 25 В.

Размеры C, D, E маркируются прямым кодом, подобно коду электролитических конденсаторов.

Основная сложность в маркировке подобных конденсаторов в том, что на данный момент, хотя и есть общепринятые правила обозначений, некоторые крупные и известные компании вводят свою систему обозначений и кодов, которая кардинально отличается от общепринятой. Делается это для того, чтобы при ремонте изготовленных ими печатных плат применялись только оригинальные детали и SMD-компоненты.

Обозначение в схемах

Вообще при ремонте и перепайке современных печатных SMD-плат удобнее всего, когда под рукой все же имеется схема, глядя на которую намного проще разобраться с тем, что установлено, узнать расположение определенной детали, потому как SMD-конденсатор по виду может совершенно не отличаться от того же транзистора. Обозначения этих деталей в схемах остались такими же, как и были до прихода на рынок чипов, а потому и емкость, и другие нужные характеристики можно также без труда найти радиолюбителю, который не сталкивался с SMD-компонентами.

«>

Назначение выводов керамического конденсатора

, описание, параметры и техническое описание

Контакт Конфигурация

Керамические конденсаторы не имеют полярности. То есть их можно соединять в любом направлении. Они совместимы с макетными платами и могут быть легко использованы на перфокартах. Обозначение керамического конденсатора представляет собой две простые линии, как показано выше, поскольку они не имеют полярности.

Примечание: Есть много типов конденсаторов; однако керамические конденсаторы являются наиболее широко используемыми, и этот документ применим только к ним.

Керамический конденсатор Характеристики
  • Тип конденсатора — керамический
  • Имеет широкий диапазон значений емкости от 10 пФ до 3,3 мкФ
  • Имеет широкий диапазон значений напряжения от 16 В до 450 В.
  • Выдерживает максимальную температуру 105 ° C

Другие типы конденсаторов

Керамический конденсатор, коробчатый конденсатор, переменный конденсатор, майларовые конденсаторы.

Идентификация керамических конденсаторов

Значение керамической емкости на конденсаторе не указывается напрямую. Всегда будет трехзначное число, за которым следует переменная; давайте узнаем, как определить значение с помощью этих чисел. Рассмотрим следующий конденсатор.

Как вы можете заметить, эти три цифры разделены на две цифры, а третья — множитель. В этом случае 68 — это цифра, а 3 — множитель.0 равно 0.

Номинальное напряжение конденсатора можно найти, используя строку под этим кодом. Если есть линия, то значение напряжения составляет 50/100 В, если нет линии, то это 500 В.

Ниже приведены наиболее часто используемые значения конденсаторов вместе с их преобразованием в Пико Фарад, Нано Фарад и микрофарады.

Код

Пикофарад (пФ)

нанофарад (нФ)

Микрофарад (мкФ)

100

10

0.01

0,00001

150

15

0,015

0,000015

220

22

0.022

0,000022

330

33

0,033

0,000033

470

47

0.047

0,000047

331

330

0,33

0,00033

821

820

0.82

0,00082

102

1000

1,0

0,001

152

1500

1.5

0,0015

202

2000

2,0

0,002

502

5000

5.0

0,005

103

10000

10

0,01

683

68000

68

0.068

104

100000

100

0,1

154

150000

150

0.15

334

330000

330

0,33

684

680000

680

0.68

105

1000000

1000

1,0

335

3300000

3300

3.3

Выбор параметров конденсатора

Вы когда-нибудь задумывались о типах керамических конденсаторов , доступных на рынке, и о том, как выбрать один для вашего проекта? Керамические конденсаторы можно классифицировать по двум основным параметрам. Один из них — это их емкость (К-Фарад) , а другой — его номинальное напряжение (В-В) .

Конденсатор — это пассивный компонент, который может накапливать заряд (Q).Этот заряд (Q) будет произведением значения емкости (C) и приложенного к нему напряжения (V). Значение емкости и напряжения конденсатора будет указано на его этикетке.

Следовательно, количество заряда конденсатора можно определить, используя значение напряжения (В) и емкости (C) конденсатора.

C = Q × V

Конденсатор последовательно и параллельно

В большинстве схем значение емкости не обязательно должно быть точно таким же, как указано в схеме.Более высокое значение емкости обычно не влияет на работу схемы. Однако значение напряжения должно быть таким же или выше указанного значения, чтобы предотвратить риск, упомянутый выше в мерах предосторожности. В этом случае, если у вас нет точного значения, вы можете использовать конденсаторы, включенные последовательно или параллельно, для достижения желаемого значения.

Когда два конденсатора подключены последовательно , тогда значение емкости (C) складывается обратно пропорционально, а номинальное напряжение (В) складывается последовательно, как показано на рисунке ниже.

Когда два конденсатора подключены параллельно , тогда значение емкости (C) складывается напрямую, а номинальное напряжение (В) при параллельном подключении остается таким же, как показано на рисунке ниже.

Приложения
  • Фильтрующие контуры, такие как фильтр высоких / низких частот и т. Д.
  • Убрать шум из цепи
  • Сглаживание пульсаций в преобразователях
  • Светодиодные схемы с затухающим светом
  • Резонансные цепи.
  • Цепи развязки и байпаса

2D-представление (тип F)

* Значения указаны в таблице данных

Типы конденсаторов: работа и их применение

В любой электронной или электрической цепи конденсатор играет ключевую роль. Таким образом, каждый день может производиться от тысяч до миллионов конденсаторов различных типов. У каждого типа конденсатора есть свои преимущества, недостатки, функции и области применения.Таким образом, очень важно знать о каждом типе конденсатора при выборе для любого приложения. Эти конденсаторы варьируются от маленьких до больших, включая различные характеристики в зависимости от типа, что делает их уникальными. Маленькие и слабые конденсаторы можно найти в радиосхемах, тогда как большие конденсаторы используются в сглаживающих цепях. Конструирование небольших конденсаторов может быть выполнено с использованием керамических материалов, запечатанных эпоксидной смолой, в то время как конденсаторы промышленного назначения спроектированы с металлической фольгой с использованием тонких листов майлара, иначе пропитанных парафином бумаги.


Типы конденсаторов и их использование

Конденсатор является одним из наиболее часто используемых компонентов в проектировании электронных схем. Он играет важную роль во многих встроенных приложениях. Он доступен с разными рейтингами. Он состоит из двух металлических пластин , разделенных непроводящим веществом, или диэлектриком . Часто это хранилища аналоговых сигналов и цифровых данных.

Сравнение между различными типами конденсаторов обычно проводится в отношении диэлектрика, используемого между пластинами.Некоторые конденсаторы выглядят как трубки, небольшие конденсаторы часто изготавливаются из керамических материалов, а затем погружаются в эпоксидную смолу для их герметизации. Итак, вот несколько наиболее распространенных типов доступных конденсаторов. Посмотрим на них.


Диэлектрический конденсатор

Как правило, эти типы конденсаторов являются переменным типом, который требует непрерывного изменения емкости для передатчиков, приемников и транзисторных радиомодулей для настройки. Различные типы диэлектриков доступны в многопластинчатом исполнении и с воздушным зазором.Эти конденсаторы имеют набор фиксированных и подвижных пластин для перемещения между фиксированными пластинами.

Положение подвижной пластины по сравнению с неподвижными пластинами определяет приблизительное значение емкости. Как правило, емкость максимальна, когда два набора пластин полностью соединены. Настроечный конденсатор с высокой емкостью имеет довольно большие промежутки, в противном случае между двумя пластинами есть воздушные зазоры, в которых напряжение пробоя достигает нескольких тысяч вольт.

Слюдяной конденсатор

Конденсатор, в котором в качестве диэлектрического материала используется слюда, известен как слюдяной конденсатор.Эти конденсаторы доступны в двух типах: зажимные и серебряные. Зажимной тип сейчас считается устаревшим из-за его более низких характеристик, но вместо него используется серебряный тип.

Эти конденсаторы изготавливаются путем размещения листов слюды с металлическим покрытием на обеих сторонах. После этого эта конструкция покрывается эпоксидной смолой для защиты от окружающей среды. Как правило, эти конденсаторы используются всякий раз, когда требуются стабильные конденсаторы с относительно небольшими номиналами.

Минералы слюды чрезвычайно постоянны химически, механически и электрически из-за ее точной кристаллической структуры, которая включает типичные слои.Таким образом, возможно изготовление тонких листов толщиной от 0,025 до 0,125 мм.

Наиболее часто используемые слюда — флогопит и мусковит. В этом мусковит обладает хорошими электрическими свойствами, а второй — жаростойкостью. Слюда исследуется в Индии, Южной Америке и Центральной Африке. Большая разница в составе сырья приводит к высокой стоимости экспертизы и категоризации. Слюда не реагирует на кислоты, воду и масляные растворители.
Перейдите по этой ссылке, чтобы узнать больше о слюдяном конденсаторе

Поляризованный конденсатор

Конденсатор, имеющий определенные полярности, такие как положительная и отрицательная, называется поляризованным конденсатором. Каждый раз, когда эти конденсаторы используются в схемах, мы должны проверять, что они соединены с идеальной полярностью. Эти конденсаторы делятся на два типа: электролитические и суперконденсаторы.

Пленочные конденсаторы
Пленочные конденсаторы

являются наиболее часто готовыми из множества типов конденсаторов, состоящих из, как правило, обширной группы конденсаторов, отличающихся своими диэлектрическими свойствами.Они доступны практически любого номинала и напряжения до 1500 вольт. Они бывают с любым допуском от 10% до 0,01%. Пленочные конденсаторы также бывают разных форм и стилей корпуса.

Существует два типа пленочных конденсаторов: с радиальными выводами и с осевыми выводами. Электроды пленочных конденсаторов могут быть из металлизированного алюминия или цинка, нанесенного на одну или обе стороны пластиковой пленки, в результате чего получаются металлизированные пленочные конденсаторы, называемые пленочными конденсаторами. Пленочный конденсатор показан на рисунке ниже: Пленочные конденсаторы

Пленочные конденсаторы

иногда называют пластиковыми конденсаторами, поскольку в качестве диэлектриков они используют полистирол, поликарбонат или тефлон.Этим типам пленок требуется гораздо более толстая диэлектрическая пленка, чтобы уменьшить опасность разрывов или проколов пленки, и поэтому они больше подходят для более низких значений емкости и больших размеров корпуса.

Пленочные конденсаторы физически больше и дороже, они не поляризованы, поэтому их можно использовать в приложениях с переменным напряжением, и они имеют гораздо более стабильные электрические параметры. Зависимость емкости от коэффициента рассеяния, может применяться в устройствах класса 1 со стабильной частотой, заменяя керамические конденсаторы класса 1.

Керамические конденсаторы

Керамические конденсаторы используются в высокочастотных цепях, таких как аудио для RF. Они также являются лучшим выбором для компенсации высоких частот в аудиосхемах. Эти конденсаторы также называют дисковыми конденсаторами. Керамические конденсаторы изготавливаются путем покрытия двух сторон небольшого фарфорового или керамического диска серебром, а затем складываются вместе, образуя конденсатор. В керамических конденсаторах можно добиться как низкой, так и высокой емкости, изменяя толщину используемого керамического диска.Керамический конденсатор показан на рисунке ниже:

Керамические конденсаторы

Имеются значения от нескольких пикофарад до 1 микрофарада. Диапазон напряжения составляет от нескольких вольт до многих тысяч вольт. Керамика недорогая в производстве и бывает нескольких типов диэлектрика. Переносимость керамики невысока, но для той роли, которую она играет в жизни, они прекрасно работают.

Электролитические конденсаторы

Это наиболее часто используемые конденсаторы с большой допустимой емкостью.Электролитические конденсаторы доступны с рабочим напряжением примерно до 500 В, хотя самые высокие значения емкости недоступны при высоком напряжении, а устройства с более высокой температурой доступны, но редко. Обычно существует два типа электролитических конденсаторов: танталовые и алюминиевые.

Танталовые конденсаторы обычно лучше выставляются, имеют более высокую стоимость и готовы только к более ограниченным параметрам. Диэлектрические свойства оксида тантала намного превосходят свойства оксида алюминия, что обеспечивает более легкий ток утечки и лучшую емкость емкости, что делает их пригодными для создания препятствий, развязки и фильтрации.

Толщина пленки оксида алюминия и повышенное напряжение пробоя дают конденсаторам исключительно высокие значения емкости для их размера. В конденсаторе фольговые пластины анодированы постоянным током, таким образом устанавливая край материала пластины и подтверждая полярность его стороны.

Танталовые и алюминиевые конденсаторы показаны на рисунке ниже:

Электролитические конденсаторы

Электролитические конденсаторы делятся на два типа

  • Алюминиевые электролитические конденсаторы
  • Танталовые электролитические конденсаторы
  • Ниобиевые электролитические конденсаторы

Пожалуйста, перейдите по этой ссылке узнать больше об электролитических конденсаторах

Суперконденсаторы

Конденсаторы, которые имеют электрохимическую емкость с высокими значениями емкости по сравнению с другими конденсаторами, известны как суперконденсаторы.Их можно разделить на группы, состоящие из электролитических конденсаторов, а также аккумуляторных батарей, известных как ультраконденсаторы.

Использование этих конденсаторов дает несколько преимуществ, например, следующие:

  • Значение емкости этого конденсатора высокое.
  • Заряд может сохраняться, а также доставляться очень быстро.
  • Эти конденсаторы могут выдерживать дополнительный заряд с циклами разрядки.
  • Применения суперконденсаторов включают следующее.
  • Эти конденсаторы используются в автобусах, автомобилях, поездах, кранах и лифтах.
  • Они используются для рекуперативного торможения и для резервного копирования памяти.
  • Эти конденсаторы доступны в различных типах, таких как двухслойные, псевдо и гибридные.
Неполяризованный конденсатор

Конденсаторы не имеют полярности, как положительную, иначе отрицательную. Электроды неполяризованных конденсаторов можно произвольно вставлять в цепь для обратной связи, связи, развязки, колебаний и компенсации.Эти конденсаторы имеют небольшую емкость, поэтому используются в чистых цепях переменного тока, а также используются в высокочастотной фильтрации. Выбор этих конденсаторов может быть сделан очень удобно с аналогичными моделями и техническими характеристиками. Типы неполяризованных конденсаторов:

Керамические конденсаторы

Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о керамических конденсаторах

Серебряные слюдяные конденсаторы

Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о слюдяных конденсаторах

Полиэфирные конденсаторы

Полиэфирные или майларовые конденсаторы дешев, точен и имеет небольшую утечку.Эти конденсаторы работают в диапазоне от 0,001 до 50 мкФ. Эти конденсаторы применимы там, где стабильность и точность не так важны.

Конденсаторы из полистирола

Эти конденсаторы чрезвычайно точны, имеют меньшую утечку. Они используются в фильтрах, а также там, где важны точность и стабильность. Они довольно дороги и работают в диапазоне от 10 пФ до 1 мФ.

Конденсаторы из поликарбоната

Эти конденсаторы дорогие и доступны в очень хорошем качестве, с высокой точностью и очень низкой утечкой.К сожалению, они были сняты с производства, и сейчас их трудно найти. Они хорошо работают в суровых и высокотемпературных условиях в диапазоне от 100 пФ до 20 мФ.

Полипропиленовые конденсаторы

Эти конденсаторы дороги, и диапазон их рабочих характеристик может находиться в диапазоне от 100 пФ до 50 мФ. Они очень постоянны, точны во времени и имеют очень небольшую утечку.

Тефлоновые конденсаторы

Эти конденсаторы являются наиболее стабильными, точными и почти не имеют утечки.Они считаются лучшими конденсаторами. В широком диапазоне частотных вариаций образ поведения совершенно одинаков. Они работают в диапазоне от 100 пФ до 1 мФ.

Стеклянные конденсаторы

Эти конденсаторы очень прочные, стабильные и работают в диапазоне от 10 пФ до 1000 пФ. Но это тоже очень дорогие компоненты.

Полимерный конденсатор

Полимерный конденсатор — это электролитический конденсатор (e-cap), в котором вместо геля или жидких электролитов используется твердый электролит из проводящего полимера, такого как электролит.

Высыхания электролита легко избежать с помощью твердого электролита. Такая сушка является одним из факторов, ограничивающих срок службы обычных электролитических конденсаторов. Эти конденсаторы подразделяются на различные типы, такие как полимерный танталовый конденсатор, полимерный алюминиевый конденсатор, гибридный полимерный алюминиевый конденсатор и полимерный ниобий.

В большинстве случаев в этих конденсаторах используется альтернатива электролитическим конденсаторам, только если не повышается максимальное номинальное напряжение.Максимальное номинальное напряжение твердотельных полимерных конденсаторов меньше по сравнению с самым высоким напряжением конденсаторов классического электролитического типа, например, до 35 вольт, хотя некоторые конденсаторы полимерного типа рассчитаны на самые высокие рабочие напряжения, такие как 100 вольт постоянного тока.

Эти конденсаторы имеют другие и лучшие качества по сравнению с более длительным сроком службы, высокой рабочей температурой, хорошей стабильностью, более низким ESR (эквивалентным последовательным сопротивлением) и гораздо более безопасным режимом отказа.

Конденсаторы с выводами и для поверхностного монтажа

Конденсаторы доступны, как и конденсаторы с выводами и конденсаторы для поверхностного монтажа.Доступны почти все типы конденсаторов, такие как свинцовые версии, такие как керамические, электролитические, суперконденсаторы, серебряная слюда, пластиковая пленка, стекло и т. Д. Возможности поверхностного монтажа или поверхностного монтажа ограничены, но они должны выдерживать температуры, которые используются в процессе пайки. .

Когда у конденсатора нет выводов, а также в результате использования метода пайки, то конденсаторы SMD подвергаются полному повышению температуры самого припоя. В результате не все разновидности доступны в качестве конденсаторов SMD.

К основным типам конденсаторов для поверхностного монтажа относятся керамические, танталовые и электролитические. Все они были разработаны, чтобы выдерживать очень высокие температуры пайки.

Конденсаторы специального назначения

Конденсаторы специального назначения используются в системах переменного тока, таких как системы ИБП и CVT до 660 В переменного тока. Выбор подходящих конденсаторов в основном играет важную роль в ожидаемом сроке службы конденсаторов. Следовательно, совершенно необходимо использовать конденсатор надлежащей емкости через номинальное напряжение-ток, чтобы соответствовать точному применению.Эти конденсаторы отличаются прочностью, долговечностью, ударопрочностью, точностью размеров и чрезвычайно высокой прочностью.

Типы конденсаторов в цепях переменного тока

Когда конденсаторы используются в цепях переменного тока, тогда конденсаторы действуют иначе, чем резисторы, поскольку резисторы позволяют электронам проходить через них, что прямо пропорционально падению напряжения, тогда как сопротивление конденсаторов изменяется в пределах напряжение через подачу или потребление тока, потому что они заряжаются, иначе разряжаются до нового уровня напряжения.

Конденсаторы превращаются в заряженные по направлению к приложенному значению напряжения, которое действует как запоминающее устройство для поддержания заряда до тех пор, пока напряжение питания не будет присутствовать во всем соединении постоянного тока. В конденсатор будет подаваться зарядный ток, препятствующий любым изменениям напряжения.

Например, рассмотрим схему, которая разработана с конденсатором, а также с источником питания переменного тока. Таким образом, между напряжением и током существует разность фаз в 90 градусов, при этом ток достигает своего пика в 90 градусов до того, как напряжение достигает своего пика.

Источник питания переменного тока генерирует колебательное напряжение. Когда емкость высока, тогда должен течь огромный источник питания, чтобы создать определенное напряжение на пластинах, и ток будет выше.
Чем выше частота напряжения, тем короче время, доступное для регулировки напряжения, поэтому ток будет большим при увеличении частоты и емкости.

Конденсаторы переменной емкости

Конденсаторы переменной емкости — это конденсаторы, емкость которых может намеренно и многократно изменяться механически.Этот тип конденсатора используется для установки частоты резонанса в LC-цепях, например, для настройки радио для согласования импеданса в устройствах антенного тюнера. Конденсаторы переменной емкости

Применения конденсаторов

Конденсаторы

находят применение как в электротехнике, так и в электронике. Они используются в фильтрах, системах накопления энергии, пускателях двигателей и устройствах обработки сигналов.

Как узнать стоимость конденсаторов?

Конденсаторы — это важные компоненты электронной схемы, без которых схема не может быть завершена.Использование конденсаторов включает в себя сглаживание пульсаций переменного тока в источнике питания, соединение и развязку сигналов в качестве буферов и т. Д. В схемах используются различные типы конденсаторов, такие как электролитический конденсатор, дисковый конденсатор, танталовый конденсатор и т. Д. Электролитические конденсаторы имеют номинал, напечатанный на корпусе, чтобы его контакты можно было легко идентифицировать.

Обычно большой штифт положительный. Черная полоса возле отрицательного вывода указывает на полярность. Но в дисковых конденсаторах на корпусе напечатан только номер, поэтому очень сложно определить его значение в PF, KPF, uF, n и т. Д.Для некоторых конденсаторов значение печатается в мкФ, а для других используется код EIA. 104. Давайте посмотрим, как идентифицировать конденсатор и рассчитать его значение.

Число на конденсаторе представляет значение емкости в пикофарадах. Например, 8 = 8PF

Если третье число равно нулю, то значение находится в P, например. 100 = 100PF

Для трехзначного числа третье число представляет количество нулей после второй цифры, например, 104 = 10 — 0000 PF

Если значение получено в PF, его легко преобразовать в KPF или мкФ

PF / 1000 = KPF или n, PF / 10, 00000 = мкФ.Для значения емкости 104 или 100000 в пФ это будет 100 кпФ или н или 0,1 мкФ.

Формула преобразования

nx 1000 = PF PF / 1000 = n PF / 1000000 = мкФ мкФ x 1000000 = PF мкФ x 1000000/1000 = nn = 1 / 1000000000F мкФ = 1/1000000 F

Буква ниже значение емкости определяет значение допуска.

473 = 473 K

Для четырехзначного числа, если 4 -я цифра является нулем, тогда значение емкости выражается в пФ.

Например. 1500 = 1500PF

Если число представляет собой десятичное число с плавающей запятой, значение емкости выражается в мкФ.

Например. 0,1 = 0,1 мкФ

Если под цифрами указан алфавит, он представляет собой десятичную дробь и значение в KPF или n

Например. 2K2 = 2,2 KPF

Если значения указаны с косой чертой, первая цифра представляет значение в UF, вторая — допуск, а третья — максимальное номинальное напряжение

Например. 0,1 / 5/800 = 0,01 мкФ / 5% / 800 Вольт.

Некоторые общие дисковые конденсаторы

Без конденсатора проектирование схемы будет неполным, поскольку он играет активную роль в функционировании схемы.Конденсатор имеет две электродные пластины внутри, разделенные диэлектрическим материалом, таким как бумага, слюда и т. Д. Что происходит, когда электроды конденсатора подключены к источнику питания? Конденсатор заряжается до полного напряжения и сохраняет заряд. Конденсатор может хранить ток, который измеряется в фарадах.

DISC-CAPS

Емкость конденсатора зависит от площади его электродных пластин и расстояния между ними. Дисковые конденсаторы не имеют полярности, поэтому их можно подключать любым способом.Дисковые конденсаторы в основном используются для развязки / развязки сигналов. Электролитические конденсаторы, с другой стороны, имеют полярность, поэтому, если полярность конденсатора изменится, он взорвется. Электролитические конденсаторы в основном используются в качестве фильтров, буферов и т. Д.

Каждый конденсатор имеет свою собственную емкость, которая выражается как заряд в конденсаторе, деленный на напряжение. Таким образом, Q / V. При использовании конденсатора в цепи следует учитывать некоторые важные параметры. Во-первых, его ценность.Выберите подходящее значение, низкое или высокое значение, в зависимости от схемы.

Значение напечатано на корпусе большинства конденсаторов в мкФ или в виде кода EIA. В конденсаторах с цветовой кодировкой значения представлены в виде цветных полос и с использованием диаграммы цветового кода конденсатора; конденсатор легко идентифицировать. Ниже приведена цветовая диаграмма для обозначения конденсатора с цветовой кодировкой.

Видите, как и у резисторов, каждая полоса на конденсаторе имеет значение. Значение первой полосы — это первое число на цветовой диаграмме.Точно так же значение Второй полосы — это Второе число на цветовой диаграмме. Третья полоса — это умножитель, как в случае резистора. Четвертая полоса — это допуск конденсатора. Пятая полоса — это корпус конденсатора, который представляет рабочее напряжение конденсатора. Красный цвет представляет 250 вольт, а желтый — 400 вольт.

Допуск и рабочее напряжение — два важных фактора, которые необходимо учитывать. Ни один из конденсаторов не имеет номинальной емкости и может отличаться.

Поэтому используйте конденсатор хорошего качества, например танталовый, в чувствительных схемах, таких как схемы генератора. Если конденсатор используется в цепях переменного тока, он должен иметь рабочее напряжение 400 вольт. Рабочее напряжение электролитического конденсатора указано на его корпусе. Подбирайте конденсатор с рабочим напряжением в три раза превышающим напряжение блока питания.

Например, если напряжение питания 12 вольт, используйте конденсатор на 25 или 40 вольт. Для сглаживания лучше взять конденсатор большой емкости, например, 1000 мкФ, чтобы почти полностью убрать пульсации переменного тока.В источнике питания аудиосхем лучше использовать конденсатор емкостью 2200 мкФ или 4700 мкФ, поскольку пульсации могут создавать шум в цепи.

Ток утечки — еще одна проблема конденсаторов. Некоторые заряды будут протекать, даже если конденсатор заряжается. Это стих из схем таймера, так как временной цикл зависит от времени заряда / разряда конденсатора. Доступны танталовые конденсаторы с малой утечкой, которые используются в схемах таймера.

Описание функции конденсатора сброса в микроконтроллере

Сброс используется для запуска или перезапуска функций микроконтроллера AT80C51.Вывод сброса следует двум условиям для запуска микроконтроллера. Они

  1. Электропитание должно быть в указанном диапазоне.
  2. Длительность импульса сброса должна быть не менее двух машинных циклов.

Сброс должен оставаться активным до тех пор, пока не будут соблюдены все два условия.

В схеме этого типа конденсатор и резистор от источника питания подключены к контакту сброса №. 9. Пока переключатель питания находится в положении ON, конденсатор начинает заряжаться.В это время конденсатор вначале действует как короткое замыкание. Когда вывод сброса установлен на ВЫСОКИЙ, микроконтроллер переходит в состояние включения, и через некоторое время зарядка прекращается.

Когда зарядка прекращается, вывод сброса идет на землю из-за резистора. Штифт сброса должен быть слишком высоким, затем слишком низким, тогда программа начнется с попрошайничества. Если в этом устройстве нет конденсатора сброса или он оставался бы неподключенным, программа запускается с любого места на микроконтроллере.

Итак, это обзор различных типов конденсаторов и их применения. Теперь у вас есть представление о концепции типов конденсаторов и их применении. Если у вас есть вопросы по этой теме или по электрическим и электронным проектам, оставьте комментарии ниже.

Авторские фото

Пленочные конденсаторы от en.busytrade
Керамические конденсаторы от китайского производства
Электролитические конденсаторы от Solarbotics

b% 20103% 20k% 20ceramic% 20capacitor datasheet and application notes

TXQFN04041.014356REV.B

Абстракция: 1N4988A, B B / B / 47j + 1kv B / 2S8709A DC1341
Текст: нет текста в файле


Оригинал
PDF 123456547859AB1C338B 1234567892ABACD324E26F38C D52E7D 7895A4161 BCDE5F4161 5C161 3A494 945F4 5FC85AF 9A8748 TXQFN04041.014356REV.B 1N4988A, Б Б / Б / 47j + 1кв B / 2S8709A DC1341
2007 — Транзистор 3Кп

Резюме: tyc 103 K2001
Текст: нет текста в файле


Оригинал
PDF 100 пФ 1000 пФ 3КП транзистор tyc 103 K2001
Ай 4202

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Сканирование OCR
PDF 127jiim 635 / мкм 25 / дюйм) 27 / im 50 / дюйм) 308пол.D-B2339 Ai 4202
1N5844

Аннотация: IN5344 1N5844 эквивалент 1N5324 1n5844 диод IN4370 IN5344B 1N5981 MZ605 1N5379 эквивалент
Текст: нет текста в файле


Оригинал
PDF 1N4614 1N4615 1N4617 1N702 1N4618 1N4370 1N4371 IN4370 1N5221 1N5985 1N5844 IN5344 Эквивалент 1N5844 1N5324 1n5844 диод IN5344B 1N5981 MZ605 1N5379 эквивалент
2003 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF D-73099
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Сканирование OCR
PDF MCER41
2003 — CT34

Реферат: CT2A транзистор h2a диод ct2a s3 86A CT21 CT31 CT32 M52055 M52055P
Текст: нет текста в файле


Оригинал
PDF M52055P REJ03F0083-0100Z M52055 CT34 CT2A транзистор h2a диод ct2a s3 86A CT21 CT31 CT32 M52055P
2007 — приятель 007a

Аннотация: LA7458 BTA28 LA7458W FM-МИКРОФОН sw53 осциллятор BFM12 A0642 микрофонный усилитель с alc ta42
Текст: нет текста в файле


Оригинал
PDF ENA0642 LA7458W LA7458W A0642-22 / 22 приятель 007a LA7458 BTA28 FM-МИКРОФОН sw53 осциллятор BFM12 A0642 микрофонный усилитель с alc ta42
2008 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF RIA-2217B-D
2004 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF B6-4-101
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Сканирование OCR
PDF 14MAR02 0U1B-0249-01
2001 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 2005-янв-05 100ПФ 1000ПФ 010 мкФ AND13 10Kp / БАРАБАН
2011 — 1005 6.3 В 500 пФ

Аннотация: 016f Серия автомобильных конденсаторов (MG)
Текст: нет текста в файле


Оригинал
PDF AEC-Q200 60сек 1005 6,3 В 500 пФ 016f Автомобильные конденсаторы серии (MG)
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Сканирование OCR
PDF
2013 — Серия общего назначения (от 4 В до 100 В)

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 60сек Серия общего назначения (от 4 В до 100 В)
2012 — Серия общего назначения (от 4 В до 100 В)

Реферат: 1005 6.3 В 500 пФ
Текст: нет текста в файле


Оригинал
PDF 60сек Серия общего назначения (от 4 В до 100 В) 1005 6,3 В 500 пФ
2001 — NCB 1.5 — 8GM25-NO

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF IEC917 DIN43355) IEC61076-4-101. PA66-GF20 < 500 тк NCB 1.5 - 8GM25-NO
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Сканирование OCR
PDF cku4406 Mt00064062
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF D-73099
2011 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
2006 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 23 ИЮЛЯ 03
2008 — SS0805

Аннотация: VJ…. W1BC
Текст: нет текста в файле


Оригинал
PDF 08 апреля 2005 г. SS0805 VJ …. W1BC
A67-A72

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Сканирование OCR
PDF A73 / A78 / B73 / C73 / D73 / E73 A1 / A3 / A5 / A7 / A9 / A11 / A13 / A15 / A17 / A19 / A21 / A23 / A25 / A27 / A29 / A31 / A33 / 35 / A37 / A 51 / A53 / A55 / A57 / A59 / A61 / A63 / A65 / A67-A72 / A74-A76 / B71-B72 / B74-B78 / C1 / C3 / C5 / C7 / C9 / C11 / C13 / C15 / C17 / C19 / C21 / C23 / C25 / C27 / C29 / C31 / C33 / C35 / C37 / C39 / C41 / C43 / C45 / C47 / C49 / A67-A72
2004 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ERMB22

% PDF-1.2 % 202 0 объект > эндобдж xref 202 109 0000000016 00000 н. 0000002550 00000 н. 0000002671 00000 н. 0000002815 00000 н. 0000004000 00000 н. 0000004234 00000 н. 0000004318 00000 н. 0000004455 00000 н. 0000004511 00000 н. 0000004598 00000 н. 0000004694 00000 н. 0000004817 00000 н. 0000004873 00000 н. 0000004990 00000 н. 0000005046 00000 н. 0000005173 00000 п. 0000005229 00000 п. 0000005351 00000 п. 0000005407 00000 н. 0000005534 00000 н. 0000005590 00000 н. 0000005710 00000 н. 0000005765 00000 н. 0000005896 00000 н. 0000005951 00000 п. 0000006105 00000 н. 0000006160 00000 п. 0000006307 00000 н. 0000006362 00000 п. 0000006539 00000 н. 0000006594 00000 н. 0000006729 00000 н. 0000006784 00000 н. 0000006869 00000 н. 0000006954 00000 н. 0000007009 00000 н. 0000007064 00000 н. 0000007181 00000 п. 0000007236 00000 п. 0000007291 00000 н. 0000007451 00000 п. 0000007581 00000 п. 0000007636 00000 н. 0000007721 00000 н. 0000007806 00000 н. 0000007861 00000 п. 0000007916 00000 п. 0000008049 00000 н. 0000008104 00000 н. 0000008158 00000 н. 0000008281 00000 п. 0000008335 00000 н. 0000008391 00000 н. 0000008631 00000 н. 0000009698 00000 п. 0000009927 00000 н. 0000010144 00000 п. 0000011217 00000 п. 0000011354 00000 п. 0000012427 00000 п. 0000012538 00000 п. 0000012761 00000 п. 0000012784 00000 п. 0000013020 00000 н. 0000014099 00000 п. 0000015755 00000 п. 0000015778 00000 п. 0000016004 00000 п. 0000017078 00000 п. 0000019191 00000 п. 0000019214 00000 п. 0000028793 00000 п. 0000029871 00000 п. 0000029931 00000 н. 0000030137 00000 п. 0000032063 00000 п. 0000032086 00000 п. 0000034010 00000 п. 0000034033 00000 п. 0000035967 00000 п. 0000035990 00000 н. 0000037816 00000 п. 0000037839 00000 п. 0000039575 00000 п. 0000039598 00000 п. 0000049615 00000 п. 0000059834 00000 п. 0000070031 00000 п. 0000070107 00000 п. 0000070214 00000 п. 0000070321 00000 п. 0000070398 00000 п. 0000070476 00000 п. 0000070679 00000 п. 0000070785 00000 п. 0000070892 00000 п. 0000081133 00000 п. 0000081240 00000 п. 0000081347 00000 п. 00000 00000 п. 00000
00000 п. 00000 00000 п. 00000 00000 п. 00000 00000 п. 0000096301 00000 п. 0000096413 00000 п. 0000096805 00000 п. 0000002868 00000 н. 0000003977 00000 н. трейлер ] >> startxref 0 %% EOF 203 0 объект > эндобдж 204 0 объект Q83- @K ݽ l> \\ &) / U (͐5! $ ˞BX0N «? $ Ʞ \ (C? G) / P 65492 >> эндобдж 205 0 объект > эндобдж 309 0 объект > поток sD {ֹ ے (+ W2.ז- b = _ # F / _ ‘VMW s1M]! Ĝ / u $] J

104 конденсатор

104,8. Ширина продукта (дюйм) 1,75. Ширина продукта (мм) 44,5. Глубина продукта (дюймы) 1,8125. Глубина продукта (мм) 46. Резистивный (нагреватель) 15 А, 1800-4155 Вт, 120-277 В переменного тока. Отгрузка …

Маркировка конденсатора 104. Наконец, белая полоса указывает отрицательную ветвь этого конденсатора, которая обычно также является более короткой. На изображении выше показан конденсатор с майларовой пленкой. И от 1000 мкФ до 1 мкФ для хранения в солнечных двигателях. Система нумерации проста в использовании, если вы помните, что она основана на пикофарадах, а не микрофарадах.

Для новичков некоторые значения могут сбить с толку. Значения с заглавной буквой K соответствуют допуску ± 10%. Моя статья о значениях керамических дисковых конденсаторов может помочь с буквами допуска. Пример 103K представляет собой конденсатор 10 нФ с допуском 10%. 222K — это конденсатор емкостью 2,2 нФ с допуском 10%. 823K составляет 82 нФ с допуском 10%. 682K составляет 6,8 нФ 10 …

Конденсаторы могут влиять на производительность системы незаметным или очевидным образом; выбор может иметь решающее значение, и он выходит за рамки простого определения значения емкости, номинального напряжения и допуска.Parts Express — это ваш полный ресурс по электронике.

Трехзначный код конденсатора 104 означает 100 нФ, прописью: емкость 100 нанофарад. Это простой онлайн-калькулятор для маркировки цветных полос резисторов, цветных полос индукторов, трехзначной маркировки керамических или танталовых конденсаторов и трехзначных, четырехзначных, 10%, 5%, 2% и EIA-96 (E96) резисторов SMD. Маркировка кода допуска 1%.

0805B104K500 0805B104K500N 0805B104K500NT 0805 100nf 0,1 мкФ 50V 104 K керамические конденсаторы, 0 долл. США.004 — 0,005 / шт., 0805B104K500NT, КЕРАМИЧЕСКИЙ КОНДЕНСАТОР, Япония. Источник: Shenzhen Quanyuantong Electronics Co., Ltd. на Alibaba.com.

Концерты Flux Capacitor наполнены импровизацией, музыкальными переходами, спонтанными каверами и дразнями, создавая уникальный, единственный в своем роде опыт на каждом выступлении. Суть музыки братьев подпитывается их самоотверженной практикой медитации и осознанных сновидений, которые подпитывают их высшей силой.

Китайский монолитный керамический конденсатор 104 50 В, Подробная информация о китайском монолитном керамическом конденсаторе Mlcc от монолитного керамического конденсатора 104 50 В — SHENZHEN TERUIXIANG ELECTRONICS CO., ООО

Как читать коды конденсаторов


Возьмите измеритель LCR или емкости и прочтите значение конденсатора, который вы хотите заменить. Это предполагает, что конденсатор, который вы заменяете, не поврежден сверх точки достаточно точного чтения.

На конденсаторах большего размера, например на электролитических, четко указано значение, например 10 мкФ, но на конденсаторах меньшего размера часто всего 2 или 3 числа.

2 числа: читаются как пикофарады.Пример: 47, напечатанное на маленьком диске, можно принять за 47 пикофарад (или 47 пФ).

3 числа: первые два — это 1 st и 2 и значащие цифры, а третье — это код множителя. В большинстве случаев последняя цифра говорит вам, сколько нулей следует записать после первых двух цифр, но это не ВСЕГДА. например. дополнительная цифра может указывать на значение ESR.

Конденсатор Speak — милли, микро, нано, пико,

1 миллифарад (или любая другая единица) составляет 1/1000 или.001 раз больше единицы. (10 -3 )

1 микро = 1 / 1,000,000 или 0,000 001, умноженное на единицу (10 -6 )

1 нано = 1 / 1,000,000,000 или 0,000 000 001 умноженное на единицу (10 -9 )

1 пико = 1/10000000000000 или 0.000000000001, умноженное на единицу (10 -12 )

Таблица 1 Множители цифр
Третья цифра Множитель стоимость в пикофарадах)
0 1
1 10
2 100
3 1,000
4 10,000
5 100,000
6 не используется
7 не используется
8.01
9 .1

Пример: конденсатор с маркировкой 104 равен 10 с еще 4 нулями или 100000 пФ, который иначе называется конденсатором 0,1 мкФ .

Код допуска дается одной буквой. Пример 103J — это 10000 пФ с допуском +/- 5%

Таблица 2 Буквенный код допуска
Буквенный символ Допуск конденсатора
B +/- 0.10%
C +/- 0,25%
D +/- 0,5%
E +/- 0,5%
F +/- 1%
G +/- 2%
H +/- 3%
J +/- 5%
K +/- 10%
M +/- 20%
N +/- 0.05%
P + 100%, -0%
Z + 80%, -20%

Исключения: иногда букв-цифр-букв (например, Z5U) код, дающий дополнительную информацию.
Пример. 224 Z5U представляет собой конденсатор на 220 000 пФ (или 0,22 мкФ) с номинальной температурой -10 ° C, высокой температурой +85 ° C и допуском +22%, -56%.

Таблица 3 Диэлектрические коды
Первый символ
(буква)
Требование низкой температуры Второй символ
(число)
Требование высокой температуры Третий символ
(буква)
МАКС.Изменение емкости от температуры
Z +10 град. C 2 +45 град. C A + 1.0%
Y -30 град. C 4 +65 град. C B +/- 1,5%
X -55 град. С 5 +85 град. C C +/- 2,2%
6 +105 град.C D +/- 3,3%
7 +125 град. C E +/- 4,7%
F +/- 7,5%
P +/- 10,0 %
R +/- 15,0%
S +/- 22.0%
T + 22%, -33%
U + 22%, -56%
V + 22%, -82%

Есть несколько цветовых кодов конденсаторов — последняя точка — это код допуска, где коричневый +/- 1% красный +/- 2 %, как и в цветовом коде резистора, с двумя исключениями: черный — +/- 20%, а белый — +/- 10%, в обратном направлении три точки слева от точки допуска образуют значение в пФ. Будет еще два или три цвета. точки перед значением, но они означают разные вещи о температурном диапазоне и коэффициенте, в зависимости от того, какая из трех систем используется.

На заглавных буквах можно увидеть еще две системы счисления. Первый можно распознать как EIA, потому что он начинается с R.

R DM 15 F 471 (R) J 5 O (C)

Вышеупомянутое число означает следующее:

90 089
R сообщает нам, что это код EIA.
DM — это стиль корпуса с погружением. CM — это стиль литого корпуса.
F — это код характеристики из таблицы 4
471R R — десятичная точка при использовании (не часто), первые две цифры
образуют значащее значение, а третья
— множитель, таким образом , это часть 470 пФ
J — код допуска емкости, как указано в таблице 2 выше, таким образом J — часть 5%
5 — рабочее напряжение постоянного тока в сотнях вольт (только EIA ) таким образом 500V
O — диапазон температур из таблицы 5.
C говорит нам, что провода обжаты там, где буква S говорит нам, что они прямые.

Следующий пример кода военного назначения:

CM 15 BD 332 KN 3

CM — это код корпуса — DM — это стиль корпуса ближнего света CM — это стиль литого корпуса
15 — это код размера корпуса — если кто-нибудь спросит, я поставлю таблицу для этого
B код характеристики говорит нам, что у него нет указанного смещения (из таблицы 4)
D — это военный код напряжения из таблицы 6
332 сообщает нам, что это 3300 пФ
K говорит нам из таблицы 2, что это часть 10%
N дает нам диапазон температур от -55 до 85 C из таблицы 5
3 3 дает уровень вибрации 3 говорит нам 20g при 10-2000 Гц в течение 12 часов (1 — 10G при 10-55 Гц. для 4.5 часов)

Таблица 4 кодов характеристик
Код характеристики EIA или MIL Максимальный дрейф емкости Максимальный диапазон температурного коэффициента
B Не указано Not указано
C +/- (0,5% + 0,1 пФ) +/- 200 ppm / C
D +/- (0,3% + 0,1 пФ) +/- 100 ppm / C
E +/- (0.1% + 0,1 пФ) от -20 до +100 частей на миллион / C
F +/- (0,05% + 0,1 пФ) от 0 до +70 частей на миллион / C

Таблица 5 Диапазон температур
M от -55 до 70 C
N от -55 до 85 C
O от -55 до 125 C
P — 55-150 C

Таблица 6 Код диапазона напряжения Mil в вольтах
A 100
B 250
C 300
D 500
E 600
F 1,000
G 1,200
H 1,500
J 2,000
K 2,500
L 3000
M 4000
N 5000
P 6000
Q 8000
R 10,000
S 12,000
T 15,000
U 20,000
V 25,000
W 30,000
X 35,000

Cog или NPO относятся к крышкам, которые не имеют температурного дрейфа (по крайней мере, теоретически.)


ТАБЛИЦА ПРЕОБРАЗОВАНИЯ — мкФ — нФ — пФ

Чтобы использовать эту таблицу, просто прочтите ее. Например, 1 мкФ соответствует 1000 нФ или 1000000 пФ.

5 470000 пФ 330000 пФ555 250000 пФ5 900 180000 пФ 30000 пФ 15000 пФ нФ105 070000008 мкФ 91050000033 мкФ 2nF0000018 мкФ 1,2 нФ
например. мкФ нФ пФ например. мкФ нФ пФ
105 1 мкФ 1000 нФ 1000000pF 102 0.001 мкФ 1 нФ 1000 пФ
0,82 мкФ 820 нФ 820000 пФ 0,00082 мкФ 0,82 нФ05 820 пФ 0,82 нФ05 820 пФ 0,82 нФ 820p 900 0,0008 мкФ 0,8 нФ 800 пФ
0,7 мкФ 700 нФ 700000pF 0.0007 мкФ 0,7 нФ 700 пФ
0,68 мкФ 680 нФ 680000 пФ 0,00068 мкФ 0,68 нФ 9705 0,68 нФ 680 920 900 680 920 900 600000pF 0,0006uF 0.6nF 600pF
0.56uF 560nF 560000pF 0.00056 мкФ 0,56 нФ 560 пФ
0,5 мкФ 500 нФ 500000 пФ 0,0005 мкФ 0,5 нФ 500105
0,5 нФ 500
0,00047 мкФ 0,47 нФ 470 пФ
0,4 мкФ 400 нФ 400000pF 0.0004 мкФ 0,4 нФ 400 пФ
0,39 мкФ 390 нФ 3

пФ

0,00039 мкФ 0,39 нФ 3905 9205 9205 9205 0,00033 мкФ 0,33 нФ 330 пФ
0,3 мкФ 300 нФ 300000 пФ 0.0003 мкФ 0,3 нФ 300 пФ
0,27 мкФ 270 нФ 270000 пФ 0,00027 мкФ 0,27 нФ 27010
0,27 нФ 27010
270pF 0,00025 мкФ 0,25 нФ 250 пФ
0,22 мкФ 220 нФ 220000pF 0.00022 мкФ 0,22 нФ 220 пФ
0,2 мкФ 200 нФ 200000 пФ 0,0002 мкФ 0,2 нФ 200pF70 0,2 нФ 200pF70 0,00018 мкФ 0,18 нФ 180 пФ
0,15 мкФ 150 нФ 150000 пФ 0.00015 мкФ 0,15 нФ 150 пФ
0,12 мкФ 120 нФ 120000 пФ 0,00012 мкФ 0,12 нФ 120pF 0,12 нФ 120pF 0,12 нФ 120105 100000 пФ 101 0,0001 мкФ 0,1 нФ 100 пФ
0,082 мкФ 82 нФ 82000 пФ 0.000082 мкФ 0,082 нФ 82 пФ
0,08 мкФ 80 нФ 80000 пФ 0,00008 мкФ 0,08 нФ 80pF10 0,08 нФ 80pF10 900 70000pF 0,00007 мкФ 0,07 нФ 70 пФ
0,068 мкФ 68nF 68000pF 0.000068 мкФ 0,068 нФ 68 пФ
0,06 мкФ 60 нФ 60000 пФ 0,00006 мкФ 0,06 нФ 60pF10 0,06 нФ 60pF10 900 56 56000 пФ 0,000056 мкФ 0,056 нФ 56 пФ
0,05 мкФ 50 нФ 50000 пФ 0.00005 мкФ 0,05 нФ 50 пФ
0,047 мкФ 47 нФ 47000 пФ 0,000047 мкФ 0,047 нФ 47пФ 0,047 нФ 47pF10 0,047 900 47pF10 900 40000 пФ 0,00004 мкФ 0,04 нФ 40 пФ
0,039 мкФ 39 нФ 39000 пФ 0.000039 мкФ 0,039 нФ 39 пФ
0,033 мкФ 33 нФ 33000 пФ 0,000033 мкФ 0,033 нФ 9205
0,033 нФ
0,00003 мкФ 0,03 нФ 30 пФ
0,027 мкФ 27 нФ 27000 пФ 0.000027 мкФ 0,027 нФ 27 пФ
0,025 мкФ 25 нФ 25000 пФ 0,000025 мкФ 0,025 нФ 25pF 0,025 нФ 25pF10 0,025 нФ 25pF10 900 22000 пФ 0,000022 мкФ 0,022 нФ 22 пФ
0,02 мкФ 20 нФ 20000 пФ 0.00002 мкФ 0,02 нФ 20 пФ
0,018 мкФ 18 нФ 18000 пФ 0,000018 мкФ 0,018 нФ 9205
0,018 нФ
0,000015 мкФ 0,015 нФ 15 пФ
0,012 мкФ 12 нФ 12000 пФ 0.000012 мкФ 0,012 нФ 12 пФ
103 0,01 мкФ 10 нФ 10000 пФ 100 0,00001 мкФ 0,01 нФ 9205 0,01 нФ 9705
8200pF 0,0000082 мкФ 0,0082 нФ 8,2 пФ
0,008 мкФ 8nF 8000pF 0,008 нФ 8 пФ
0,007 мкФ 7 нФ 7000 пФ 0,000007 мкФ 0,007 нФ 9705 0.007 9705 6800 пФ 0,0000068 мкФ 0,0068 нФ 6,8 пФ
0,006 мкФ 6 нФ 6000 пФ 0.000006 мкФ 0,006 нФ 6 пФ
0,0056 мкФ 5,6 нФ 5600 пФ 0,0000056 мкФ 0,0056 нФ 9205 9205 0,0056nF 9205 5000 пФ 0,000005 мкФ 0,005 нФ 5 пФ
0,0047 мкФ 4,7 нФ 4700 пФ0000047 мкФ 0,0047 нФ 4,7 пФ
0,004 мкФ 4 нФ 4000 пФ 0,000004 мкФ 0,004 нФ
3900 пФ 0,0000039 мкФ 0,0039 нФ 3,9 пФ
0,0033 мкФ 3,3 нФ 3300 пФ 0,0033 нФ 3,3 пФ
0,003 мкФ 3 нФ 3000 пФ 0,000003 мкФ 0,003 нФ 9705
2700pF 0.0000027uF 0.0027nF 2.7pF
0.0025uF 2.5nF 2500pF0000025 мкФ 0,0025 нФ 2,5 пФ
0,0022 мкФ 2,2 нФ 2200 пФ 0,0000022 мкФ 0,0022 нФ 2,2pF 0,0022nF 2,2pF 0,0022nF 9705 2000pF 0,000002 мкФ 0,002nF 2pF
0,0018 мкФ 1,8nF 1800pF 0,0018 нФ 1,8 пФ
0,0015 мкФ 1,5 нФ 1500 пФ 0,0000015 мкФ 0,0015 нФ 1,5 70 0,0015 нФ 1,5 70 1200 пФ 0,0000012 мкФ 0,0012 нФ 1,2 пФ
102 0,001 мкФ 1 нФ 1000 пФ ………. 1R0 0,000001 мкФ 0,001 нФ 1 пФ
Коды кодирование.

Таблица множителей (керамика)

Керамический конденсатор Коды Керамический конденсатор

0
Число Умножение на (дополнительное количество нулей)
900 Нет (0) 900 10 (1)
2 100 (2)
3 1000 (3)
4 10,000 (4)
5 100,000 (5)
6 1000000 (6)

Общие коды температурного коэффициента (керамика)

C.25pF
Код Допуск 33
0.
J 5%
K 10%
M 20%
D 0.5pF
Z + 80% / -20 %

Общие характеристики температурного коэффициента (керамика)

Конденсатор
Температурный коэффициент Диапазон рабочих температур Изменение емкости Минимальное изменение емкости Допуск -30C ~ + 85C 4.7% 10%
Y5F -30C ~ + 85C 7,5% 20%
Y5P -30C ~ + 85C 10% 10%
Y5U -30C ~ + 85C + 22% / -56% 20%
Y5V -30C ~ + 85C + 22% / -82% 20%
Z5U + 10C ~ + 85C + 22% / -56% 20%
Z5V + 10C ~ + 85C + 22% / -82% + 80% / -20 %

Примечания по применению (керамика):

NPO: Обладает очень низким коэффициентом рассеяния и очень стабильны в широком диапазоне температур, частоты, напряжения и времени.Конденсаторы типа NPO часто используются для точного отсчета времени, фильтрации, установки частоты и настройки схем.

X7R: Используются, когда допускается некоторое изменение емкости и коэффициент рассеяния не критичен. Конденсаторы типа X7R часто используются для байпаса, развязки, фильтрации, частотной дискриминации, синхронизации, блокировки постоянного напряжения, подавления переходных процессов напряжения, контрольно-измерительных приборов, компьютеров, телекоммуникаций и автомобильной электроники.

Z5U: Диэлектрики имеют самую высокую емкость для своего размера.Конденсаторы типа Z5U находят применение в байпасе, развязке, подавлении переходных процессов, компьютерах и телекоммуникациях.


Рабочее напряжение общего конденсатора (постоянный ток),


По типу конденсатора.

933 933 970 970 970 970 970 970 970 970 970 970 970 970 970 90 064
Керамика Электролитическая Тантал Майлар (полиэстер) Майлар (металлическая пленка)
16V 16V 16V
20V
25V 25V 25V
  • 35V
    50V 50V 50V 50V
    63V
    10033
    160V
    200V
    250V 250V 250V
    400V 400V
    450V
    600V 630V
    1000V


    103j100 Конденсатор

    103j100 доступны на сайте Mouser Electronics.Может кто-нибудь, пожалуйста, скажите мне стоимость, чтобы я мог купить замену.

    10nf Mini Box 5 мм металлизированный полиэфирный пленочный конденсатор 103j

    Таблица конденсаторов Руководство по кодам конденсаторов Значения слюдяных конденсаторов

    Cl233x 103j 63v Cl233x 103j 63v Поставщики и производители

    Конденсаторы — идентификаторы первого и второго значимых номеров, а также первое и второе значения, за которыми следуют числовой код множителя, за которым следует буквенный код процентного допуска.

    103j100 емкость конденсатора . Если показания мультиметра ближе к фактическим значениям, указанным на конденсаторе, то конденсатор можно рассматривать как хороший конденсатор. Код iec — это числовой код, который работает аналогично цветовому коду резистора. Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания.

    Вначале у большинства будет три числа, но иногда бывает только два числа.У меня есть керамические дисковые конденсаторы с 104 z на них, 104 подчеркнуты, и они около 716 диаметра. Две цифры, за которыми следует множитель.

    Как читать коды конденсаторов. Как проверить конденсатор. Емкость измеряется в фарадах.

    Как измерить емкость Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение, а затем вычисляя емкость. Как читать коды номиналов конденсаторов.Если разница между фактическим значением и измеренным показанием значительно велика или иногда равна нулю, вам следует заменить конденсатор, так как он мертв.

    Это простой онлайн-калькулятор для цветовой маркировки резисторов индуктивности цветной маркировки керамических или танталовых конденсаторов 3-значная маркировка и 3-значная маркировка smd-резистора 3-значная 4-значная 10 5 2 и маркировка кода допуска eia 96 e96 1. Один фарад — это огромный конденсатор, поэтому большинство обычных конденсаторов имеют значения в диапазоне микрофарад 0000001f 1uf 10 6 или пикофарада 0000000000001f 1pf 10 12.Как определить номинал конденсаторов с печатными телами.

    Однако есть ряд производителей конденсаторов, которые используют код IEC. На большинстве конденсаторов указано их номинальное значение. 151k 15 x 10 150pf 10.

    Спасибо, Том, самый богатый человек, чьи удовольствия дешевле Генри Торо. На большинстве конденсаторов фактически нанесены числовые значения, однако некоторые из них имеют цветовую маркировку, а некоторые — буквенно-цифровые. Mouser предлагает таблицы с ценами на товарные запасы для 103j100.

    Как читать коды конденсаторов На больших конденсаторах указано значение, например 10 мкФ десять микрофарад, но на дисках меньшего размера и на пластиковых пленках часто всего 2 или 3 числа. Емкость восемьсот двадцать пикофарад. Трехзначный код конденсатора 821 прописью означает 820 пФ.

    Почему 104 a 01uf и другие загадки разгаданы. Это читается как пикофарады.

    0 1000 мкФ 100 В 100 нф 104j 5 P5mm U1j100 Конденсатор для коррекции коэффициента мощности B32529c1104j289 Полиэфирный пленочный конденсатор в штучной упаковке Вид коэффициента мощности

    20 шт. Полипропиленовый пленочный конденсатор 100 В 102j100 152j100

    Us 12 38 Корректирующий конденсатор Конденсатор в коробке 20100 Точность 010000 В интегральных схемах из электронных компонентов

    Корректирующий конденсатор 20 шт. 100 В 332j 472j 682 103j 123j 102j

    Вентилятор Пленочный конденсатор на основе полиэстера в мини-корпусе

    103j100 Паспорта пассивных компонентов Mouser United Kingdom

    Лучший конденсатор 22 пф 1 кВ 1 шт.

    1 пакет, 10 шт., Конденсатор Cbb, 400 В, 103 г, 0 01 мкФ, 10 нф,

    ,

    , 103, J100, Технические характеристики конденсаторов, Mouser, Сингапур,

    50 шт. Полиэфирный пленочный конденсатор 100v 2a272j 2a332j 2a392j

    103j100 Технические характеристики конденсаторов Mouser United Kingdom

    Kammas 50pc 630v 2j222j 2j152j 100v 2a563j 2a683j 2a823j

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *