Трансформатор блока питания почему – Отличия импульсного блока питания от обычного

Содержание

Отличия импульсного блока питания от обычного


Отличия импульсного блока питания от обычного-1Отличия импульсного блока питания от обычного-1

Отличия импульсного блока питания от обычного

Отличия импульсного блока питания от обычного между трансформаторным и импульсными, а также их достоинства и недостатки. Например трансформаторный блок питания, в составе которого имеется трансформатор выполняющий функцию понижения сетевого напряжения до заданного, такая конструкция называется понижающим трансформатором.

Блоки питания работающие в импульсном режиме являются импульсным преобразователем или инвертором. В импульсных источниках питания переменное напряжение на входе вначале выпрямляется, а затем происходит формирование импульсов необходимой частоты. У такого ИП в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования. p>

Трансформаторные блоки питания

Самым распространенным блоком питания считается конструкция, в составе которого имеется понижающий трансформатор, его определенная обязанность — понижать входное напряжение. Его первичная обмотка намотана с учетом работы с сетевым напряжением. Кроме понижающего трансформатора в таком БП установлен еще выпрямитель собранный на диодах, как правило применяется две пары выпрямительных диодов (диодный мост) и конденсаторах фильтра. Такое устройство служит для преобразования однонаправленного пульсирующего переменного напряжение в постоянное. Не редко применяются и другие конструктивно выполненные устройства, например, выполняющий в выпрямителях функцию удвоения напряжения. Кроме сглаживающих пульсации фильтров, там же могут быть элементы фильтра помех высокой частоты и всплесков, схема защиты от короткого замыкания, полупроводниковые приборы для стабилизации напряжения и тока.

Отличия источников питания-3Отличия источников питания-3


Схема простейшего трансформаторного БП c двухполупериодным выпрямителем

Достоинства трансформаторных блоков питания

● Простота в конструировании
● Высокая надежность
● Доступность составляющих компонентов
● Отсутствие паразитных радио-волновых помех (Отличия блоков питания от импульсных блоков питания, которые создают помехи в виде напряжений и токов синусоидальной формы, которые во много раз выше частоты электросети)
● Имеющиеся недостатки трансформаторных блоков питания
● Солидный вес и размеры, особенно высокомощные
● Для изготовления требуется много железа
● Компромиссное решение относительно уменьшения КПД и высокой стабильностью напряжения на выходе: для получения стабильного напряжения необходим стабилизатор, с применением которого появляются дополнительные потери.

Импульсные блоки питания

Отличия импульсного блока питания от обычного — импульсные источники питания это инверторное устройство и является составляющей частью аппаратов бесперебойного электрического питания. В импульсных блоках переменное напряжение на входе вначале выпрямляется, а потом формирует импульсы определенной частоты. Преобразованное выходное постоянное напряжение имеет импульсы прямоугольной формы высокой частоты поступающее на трансформатор или сразу на выходной фильтр нижних частот. В импульсных блоках питания часто используются небольшие по размерам трансформаторы — это вызвано тем, что при возрастании частоты увеличивается эффективность работы устройства, тем самым становятся меньше требования к размерам магнитопровода, необходимого для отдачи равнозначной мощности. В основном такой магнитопровод изготавливается из ферромагнитных материалов служащих проводниками магнитного потока.

Отличия источников питания в частности от сердечника трансформатора низкой частоты, для изготовления которых применяется электротехническая сталь.

Отличия импульсного блока питания от обычного — происходящая в импульсных источниках питания стабилизация напряжения возникает за счет цепи отрицательной обратной связи. ООС дает возможность обеспечивать выходное напряжение на достаточно устойчивом уровне не взирая на периодические скачки входящего напряжения и значение сопротивления нагрузки. Отрицательную обратную связь также можно создать иными способами. Относительно импульсных источников питания имеющих гальваническую развязку от электрической сети, наиболее применяемый в таких случаях способ — это образование связи с помощью выходной обмотки трансформатора либо воспользоваться оптроном. С учетом значения величины сигнала отрицательной обратной связи, которое зависит от напряжения на выходе, меняется скважность импульсных сигналов на выходном выводе ШИМ-контроллера. Если можно обойтись без гальванической развязки то, в таком случае, применяется обычный делитель напряжения собранный на постоянных резисторах. В конечном итоге, источник питания обеспечивает выходное напряжение стабильного характера.

Отличия источников питания-4Отличия источников питания-4

Принципиальная схема простейшего однотактного импульсного БП

Достоинства импульсных блоков питания

● Если сравнивать относительно выходной мощности линейный стабилизатор и импульсный, то последний имеет некоторые достоинства:
● Относительно небольшой вес, получившийся в следствии того, что с увеличением частоты можно применять трансформаторы малых габаритов имея аналогичную выдаваемую выходную мощность.

● Большой вес линейного стабилизатора получается за счет использования массивных силовых трансформаторов, а также тяжелых теплоотводов силовых компонентов.
● Высокий КПД, который составляет около 98% полученный в следствии того, что штатные потери происходящие в импульсных стабилизирующих устройствах зависят от переходных процессов на стадии переключения ключа.
● Поскольку больший отрезок времени ключи находятся в стабильном либо включенном или выключенном состоянии, то соответственно и энергетические потери ничтожны;
● Относительно небольшая стоимость, образовавшаяся в следствии выпуска большого количества необходимых электронных элементов, в частности появление на рынке электронных товаров высокомощных транзисторных ключей. ● Помимо всего этого необходимо заметить существенно малую стоимость импульсных трансформаторов при аналогичной отдаваемой в нагрузку мощности.
● Имеющиеся в подавляющем большинстве блоках питания установленных схем защиты от всевозможных нештатных ситуаций, таких как защита от короткого замыкания или если не подключена нагрузка на выходе устройства.

usilitelstabo.ru

Как работают импульсные блоки питания: 7 правил

Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.

Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.

Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.

Содержание статьи

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Схема трансформаторного блока питанияСтруктурная схема блока питания

Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.

Силовой трансформатор

Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.

Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение

Правило №1 всех ИБП: чем выше рабочая частота, тем лучше. Преобразование электроэнергии выполняется не на промышленных 50 герц, а на более высоких сигналах в пределах 1÷100кГц.

За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.

Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).

Структурная схема импульсного блока питания

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.

Импульсный блок питания

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

Разберем все эти части подробнее.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели фильтров

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы для ВЧ фильтров

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Как работает фильтр

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

Самодельный блок питания

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.

Фильтр ВЧ помех

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Фильтр ВЧ

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

Универсальный фильтр

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сложный фильтр

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Схема фильтра

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.

Ферритовый фильтр

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Ферритовый фильтр на кабеле

Сетевой выпрямитель напряжения: самая популярная конструкция

Правило №3: после выхода с фильтра напряжение подается на схему выпрямителя, состоящего в базовой версии из диодного моста и электролитического конденсатора.

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.

Схема выпрямителя

Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Правило №4: выпрямленный сигнал подвергается широтно-импульсной модуляции на силовом ключе под управлением ШИМ контроллера.

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

Схема управления силовым ключом

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

ШИМ импульсы

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.

Импульсный трансформатор: принцип работы одного импульса в 2 такта

Правило №5: импульсный трансформатор для блока питания передает каждый ШИМ импульс за счет двух преобразований электромагнитной энергии.

Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.

Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.

Его энергия расходуется:

  1. вначале на намагничивание сердечника магнитопровода;
  2. затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.
Как работает импульсный трансформатор

По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.

Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.

Однотактная схема импульсного блока питания: состав и принцип работы

На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.

Схема электронного генератора

Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.

В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.

При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.

Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.

Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.

Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.

Двухтактная схема импульсного блока питания: 3 варианта исполнения

Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.

Простейший вариант исполнения двухполупериодной методики показан на картинке.

Двухполупериодная схема

Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.

Двухполярная схема питания

Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.

Продлить ресурс работы электролитических конденсаторов в ИБП можно заменой одного большой мощности несколькими составными. Ток будет распределяться по всем, что вызовет меньший нагрев. А отвод тепла с каждого отдельного происходит лучше.

Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.

Прямоходовая схема блока питания

Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.

Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.

Как работает дроссель

Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.

В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:

  • уменьшенного падения напряжения на прямом включении;
  • и повышенного быстродействия во время обработки высокочастотных импульсов.

3 схемы силовых каскадов двухтактных ИБП

По порядку сложности их исполнения генераторы выполняют по:

  • полумостовому;
  • мостовому;
  • или пушпульному принципу построения выходного каскада.

Полумостовая схема импульсного блока питания: обзор

Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.

Полумостовая схема

К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.

Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.

Мостовая схема импульсного блока питания: краткое пояснение

Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).

Мостовая схема

Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.

Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.

Пушпульная схема: важные особенности

Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.

Пушпульная схема

Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.

Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.

К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.

Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.

Выходной выпрямитель: самое популярное устройство

Правило №6: сигнал, поступающий с выхода ИБП, выпрямляется и сглаживается.

Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.

Простая схема выпрямителя

Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.

Схема стабилизации напряжения: как работает

Правило №7: оптимальные условия для работы нагрузки при изменяющихся условиях эксплуатации обеспечивает принцип стабилизации вторичного напряжения.

Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.

Простая схема стабилизации напряжения

С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.

Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.

Схема импульсного блока питания

В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.

Как работает оптопара

Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.

Схема стабилизации

Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.

Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.

Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.

electrikblog.ru

Как устроен блок питания, часть 4

Как я уже сказал, речь сегодня пойдет о силовом трансформаторе, а также об узле, именуемом Снаббер.
И если трансформатор наверное знает большинство, то снаббер в основном те, кто занимается блоками питания более плотно.
Весь узел на фото выделен красным, а снаббер я обвел зеленым.

Также его можно увидеть в народном блоке питания. На фото я вычеркнул диод, не имеющий отношения к снабберу.

И в моем самодельном блоке питания. Здесь его схема отличается и об этом я расскажу немного позже.

Схема типового обратноходового блока питания думаю знакома многим, подобные схемы часто встречаются в моих обзорах.

Выделим из нее ту часть, о которой я и буду рассказывать.
В нее входит снаббер, трансформатор, входной конденсатор и высоковольтный транзистор.

Отсечем ту часть, которая не имеет отношения к теме разговора, останется совсем мало деталей, думаю что так будет проще для понимания процессов.

Что же происходит в импульсном блоке питания во время работы.
Сначала открывается силовой ключ, через цепь выделенную красным, течет ток, энергия в это время запасается в магнитопроводе трансформатора.

После закрытия ключа полярность на обмотках трансформатора меняется на противоположную и ток начинает течь в нагрузку.

Но так как трансформатор и выходные цепи неидеальны, то на первичной обмотке возникает выброс напряжения, который начинает течь через снаббер.

Если вы посмотрите внимательно, то увидите, что начала обмоток помеченные точками, одинаково сориентированы по отношению к диодам D1 и D2, потому во время открытого состояния силового ключа эти цепи не работают.
Функция снаббера поглотить паразитный выброс, который возникает в первичной обмотке и тем самым защитить высоковольтный транзистор. У некоторых совсем дешевых блоках питания снаббера нет вообще, и это весьма вредно, так как снижает надежность.

В типовом блоке питания данный участок схемы выглядит так. Номиналы подбираются в зависимости от индуктивности обмотки трансформатора, частоты работы и мощности блока питания. Я не буду рассказывать о методике расчета, это довольно долго, но скажу лишь что здесь не работает принцип — чем больше, тем лучше, цепь должна быть оптимальная для определенных условий.

Некоторые наверное увидели диод в схеме снаббера и подумали — что-то знакомое.
Да, так и есть, ближайший аналог, это цепь защиты транзистора, который коммутирует питание обмотки реле. В данном случае он выполняет похожую функцию, не допускает выброса напряжения на транзисторе при выключении. Кстати если диод в этой схеме заменить стабилитроном, то работать должно лучше.

Так как вариант с диодом неприменим в варианте с трансформатором, то последовательно с ним ставят либо резистор с конденсатором, либо супрессор, как на этой схеме.

Еще одно новое слово — супрессор. Не пугайтесь, супрессор это по сути просто стабилитрон, но если у стабилитрона функция обеспечить стабильное напряжение, то у супрессора акцент сделан на импульсный ток и рассеиваемую мощность, стабильность напряжения в данном случае не так важна.
Выглядит он как обычный диод, при этом бывает двунаправленным, но тогда катод не маркируется. Наиолее распространенные супрессоры серий P6KE и 1.5KE. Первый имеет импульсную мощность 600 Ватт, второй 1500 Ватт. Существуют и более мощные, но нас они не интересуют.

Я немного переверну схему так, чтобы было более понятно как работает эта схема. В подобных схемах чаще применяют супрессоры на напряжение в 200 Вольт, например P6KE200A.
Благодаря этому напряжение на обмотке трансформатора не может быть больше чем 200 Вольт. Напряжение на входном конденсаторе около 310 Вольт.
Получается что на транзисторе напряжение около 510 Вольт. На самом деле напряжение будет немного выше, так как детали неидеальны, а кроме того в сети может быть и более высокое напряжение.

В даташитах к микросхемам серии ТОР часто была показана именно такая схема включения супрессора.
Такая схема имеет более жесткую характеристику ограничения, так как до 200 Вольт не ограничивает совсем, а потом старается обрезать все что выше 200 Вольт. Схема с конденсатором имеет немного другую характеристику ограничения, но на самом деле это не критично.

Для уменьшения мощности, рассеиваемой на супрессоре, параллельно ему можно подключить конденсатор.

Или вообще сделать гибрид из двух схем, где есть все элементы обоих вариантов, такое часто применяется в мощных обратноходовых блоках питания.

Иногда применяется альтернативный вариант защиты транзистора, супрессор включенный параллельно ему. Такой вариант применяется довольно редко, чаще в блоках питания имеющих низкое входное напряжение.

Например такое включение супрессора можно увидеть в РоЕ блоке питания, входное напряжение здесь не 310 Вольт постоянного тока, а всего до 70 Вольт.

Теперь можно перейти к трансформатору.
Трансформатор состоит из магнитопровода и каркаса, иногда конструкция дополняется специальным скобами, которые фиксируют магнитопровод на каркасе.

Чаще всего для них используются Ш-образные магнитопроводы. Если блок питания обратноходовый, каким является подавляющее большинство недорогих маломощных блоков питания, то между половинками магнитопровода должен быть зазор. Зазор делается либо между половинками, либо используется специальный магнитопровод, где центральный керн уже имеет зазор, а этом случае ширина зазора должна быть в два раза больше.

Обычно в качестве материала магнитопровода используется феррит, у фирменных магнитопроводов может быть нанесена маркировка и по даташиту можно узнать его характеристики, у более дешевых магнитопроводом чаще маркировки нет.

Вначале мотаются обмотки трансформатора, а затем на этот магнитопровод устанавливается каркас.

Процесс намотки мелких трансформаторов довольно прост.
Сначала мотаем первичную обмотку.

Затем вторичную, иногда в два и более проводов.

Если есть третья обмотка, чаще всего это обмотка питания ШИМ контроллера, то мотаем и ее.

В целях безопасности изолируем всю конструкцию.

После этого берем подобранный магнитопровод, в данном случае здесь у одной половинки средний керн укорочен.

Собираем всю конструкцию вместе. Магнитопровод чаще всего склеивается, но я обычно дополнительно фиксирую скотчем.

В итоге получаем небольшой аккуратный трансформатор. На фото трансформатор мощностью около 25-30 Ватт.

Этот трансформатор уже имеет мощность до 80-100 Ватт. Мотаются они подобным образом, но с некоторыми отличиями.

У трансформаторов рассчитанных на низкое выходное напряжение и большой ток выходная обмотка может мотаться либо литцендратом, либо шиной.

Величина выбора с первичной обмотке напрямую зависит от правильности намотки трансформатора и если для маломощных трансформаторов это не очень критично, то неправильная намотка мощного трансформатора может привести к печальным последствиям.
Обычно наматывают обмотки в три слоя (если используется три обмотки), первичная, вторичная и вспомогательная.
Но связь между обмотками можно сильно улучшить если вторичную обмотку разместить между двумя половинами первичной.

Кроме того рекомендуется мотать провод не внавал, а виток к витку, равномерно заполняя всю площадь каркаса. Обмотки рассчитанные на большой ток мотать лучше несколькими тонкими проводами, а не одним толстым.

Проблемы, которые могут возникнуть в этом узле:
1. Межвитковое КЗ в случае выхода из строя высоковольтного транзистора.
2. Перегрев трансформатора, последующее резкое уменьшение его индуктивности и выход из строя транзистора инвертора
3. Пробой диода снаббера, крайне редко.
4. Частичный пробой супрессора, например супрессор на 200 Вольт превращается в супрессор на 100 Вольт, ничего не выгорает, но БП не работает.

www.kirich.blog

Почему гудит трансформатор в блоке питания, усилителе, люстре

Природа характерного звука, издаваемого трансформатором при работе, объясняется в школьном курсе физики (явление именуется магнитострикцией). Но влияние этого физического процесса на устройства, работающие в бытовых приборах ничтожно мало, поэтому причины гудения в большинстве случаев указывают на нештатную работу. Попробуем разобраться, почему гудит трансформатор в люстре, блоке питания или в усилителе, и как устранить это явление. Начнем с азов.

Природа магнитострикции

Для объяснения этого явления кратко напомним о принципе работы электромагнитных приборов, преобразовывающих переменное напряжение, то есть трансформаторов. Его упрощенное изображение показано на рисунке 1.

Устройство трансформатораРисунок 1. Устройство трансформатора

Представленное на рисунке устройство состоит из первичной обмотки «А», вторичной -«В» и проходящего через них сердечника — «С», выполненного из тонких наборных железных пластин или другого материала с ферримагнитными свойствами.

Прохождение переменного напряжения через обмотку «А», приводит к образованию переменного магнитного поля «D» в сердечнике, способствующего появлению электрического тока в катушке «В». При этом частота тока остается неизменной, а величина напряжения зависит от соотношения количества витков между катушками.

Теперь напомним, что представляет собой магнитострикция. Это физический эффект приводящий к изменению линейных размеров и объема тела, через которое проходит магнитный поток. Наибольшим изменениям подвергаются сильномагнитные материалы, именно из них, в большинстве случаев, изготавливают сердечники трансформаторов. На рисунке 2 показана периодичность растяжения-сжатия сердечника на протяжении одного цикла изменения магнитного потока.

Изменение линейных размеров сердечника на протяжении одного циклаРисунок 2. Изменение линейных размеров сердечника на протяжении одного цикла

Под воздействием линейных колебаний в прилегающем воздухе создаются звуковые волны соответствующей частоты. То есть, если в течение одного цикла сердечник растягивается-сжимается дважды, то при стандартной частоте сети переменного тока 50 Гц будут формироваться звуковые волны частотой 100 Гц. Это и есть характерный гул, который производит трансформатор при работе.

Учитывая вышесказанное можно объяснить, почему импульсный трансформатор неслышно при работе. Частота производимых звуковых колебаний этого устройства находится за границей восприятия человеческого уха.

Уровень шума напрямую зависит от следующих факторов:

  • габаритные размеры устройства;
  • величина нагрузки;
  • структура и физические характеристики материала сердечника.

Учитывая перечисленные факторы, можно констатировать, что для устройств, работающих в бытовых приборах, повышенный уровень шума, скорее, исключение, чем правило. Это указывает на нештатную работу трансформатора, следовательно, необходимо найти и устранить неисправность.

Сильно шумит силовой трансформатор, возможные причины

Если устройство свистит или гудит, хотя ранее работало нормально, то это может свидетельствовать о разошедшихся пластинах сердечника. В данном случае потребуется идеальный подгон железа, чтобы исключить зазоры, помимо этого обеспечить хорошую стяжку. Если трансформатор броневого типа, то сделать это можно при помощи обычного водопроводного хомута, затянув его по периметру сердечника, как показано на рисунке 3.

Стягивание сердечника при помощи червячного хомутаРисунок 3. Стягивание сердечника при помощи червячного хомута

Когда устройство не только шумит, а и значительно нагревается, то такие признаки характерны при большой нагрузке по току. Причина может крыться как в самом трансформаторе (межвитковое замыкание), так и в проблемах цепи, питающегося от него устройства (например, утечка в электролитических конденсаторах).

Необходимо сразу предупредить, что произвести диагностику на предмет межвиткового замыкания, используя только мультиметр, довольно затруднительно. Но, при поверхностном осмотре обнаружить дефект, вполне возможно. КЗ между витками вызывает местный нагрев. Следствием этого может быть почернение, подтеки, подпалины, вздутие заливки, характерный запах сгоревшей изоляции и т.д.

Характерные следы межвиткового замыканияХарактерные следы межвиткового замыкания

Если визуальный осмотр не дал результатов, а в наличии из измерительных приборов только мультиметр, то проверить работоспособность устройства можно двумя способами:

  1. Измерить сопротивление первичной и вторичной обмотки, переведя прибор в режим мегомметра. После чего сравнить полученные значения с указанными в справочнике (если определен тип устройства). Расхождение в показателях более 50% свидетельствуют о межвитковом замыкании.

В тех случаях, когда установить штатное сопротивление обмотки не представляется возможным, вычислить его можно по сечению, типу провода и количеству витков. Как правило, эти параметры указаны на трансформаторе.

Также можно провести диагностику, имея в наличии аналогичное, заведомо рабочее устройство. В этом случае достаточно измерить сопротивление обмоток и сравнить их, расхождение не должно превышать 20%.

  1. Понижающий трансформатор иногда тестируют, включением в сеть, после чего проверяют напряжение на кабеле (подключенным к вторичной обмотке). Если после включения слышится треск или появляется дым, устройство необходимо сразу обесточить, такие признаки характерны при неисправности первичной обмотки.

Проводя измерения, следует проявлять осторожность, чтобы избежать контакта с токоведущими частями. Показания прибора должны соответствовать ожидаемым. Если напряжение на вторичной обмотке меньше необходимого на 20%, то это свидетельствует о межвитковом замыкании.

Появление гула после перемотки

Если трансформатор перематывается в домашних условиях, то есть большая вероятность того, что при работе он будет издавать характерный шум. Это может быть связано со следующими причинами:

  • неправильно собран или не подогнан магнитопровод. Наиболее часто такая проблема возникает после разборки-сборки Ш-образного сердечника. Как правильно собрать такой магнитопровод чтобы устранить проблему, расскажем чуть ниже;
  • не закреплена катушка на сердечнике или неплотно намотаны обмотки. Исправить ситуацию можно плотно зафиксировав катушку, перемотав обмотку или пропитав ее парафином (парафиновая ванна). Последний вариант хорошо помогает в том случае, когда гудит тороидальный трансформатор;
  • неверно произведен расчет обмоток. Как правило, в этом случае нагруженный трансформатор не только гудит, но и ощутимо нагревается. Для исправления проблемы потребуется проверка расчетов и перемотка с учетом исправленных ошибок.

Как правильно собрать Ш-образный сердечник, чтобы минимизировать шум трансформатора

Магнитопровод такого устройства состоит из двух типов пластин, они показаны на рисунке 5. Это Ш-образная пластина «А» и торцевая – «В».

Пластины Ш-образного сердечникаРисунок 5. Пластины Ш-образного сердечника

Чтобы снизить потери на вихревые токи каждая из пластин изолируется с одной стороны. Для этой цели их покрывают лаком или производят отжиг до появления окисла. Для уменьшения магнитного зазора и, как следствие, потери на магнитный поток рассеяния, после перемотки пластины следует устанавливать поочередно с каждой стороны. Как это делать продемонстрировано на рисунке 6.

Поочередная установка пластинРисунок 6. Поочередная установка пластин

Собрав примерно половину сердечника, следует установить две Ш-пластины с одной стороны (без торцевых пластин) не задвигая их до конца. Далее продолжаем сборку, пока магнитопровод не будет набран на 2/3. В оставшейся части устанавливаем только Ш-пластины. В итоге останется около двух десятков торцевых вставок и несколько Ш-образных, которые уже не пролазят в каркас.

Оставшиеся вставки устанавливаем между двух выдвинутых на середине (см. рисунок 7) и осторожно забиваем их деревянной киянкой, стараясь не погнуть.

Рисунок 7. Установка в магнитопровод оставшихся пластинРисунок 7. Установка в магнитопровод оставшихся пластин

На завершающем этапе сборки вставляем торцевые пластины.

www.asutpp.ru

как он есть (часть 1) (страница 2)

Максимальное напряжение питания

У приведенных микросхем наличествует один и тот же предел по напряжению питания, что удивительно однообразно – а значит, и типично. Их максимальное рабочее напряжение — 18 вольт. Если вспомнить о том, что микросхемы усилителей разрабатывались для работы в автомобиле, то цифра «18 В» становится понятной. В блоке питания самое большое напряжение получается при минимальном токе нагрузки, что для перечисленных микросхем находится в диапазоне 80-190 мА.

При выполнении расчетов можно учитывать этот ток, но он более чем «на порядок» меньше номинального/максимального токов нагрузки, а потому про него можно забыть. В качестве выпрямительного узла будет применен мостовой выпрямитель, ведь требуется получить однополярный выход, поэтому «полумостовой» вариант рассмотрим несколько позже.

Итак, начинаем считать с конца цепочки — выходное напряжение не более 18 вольт, это четко определено в спецификации микросхем и нарушение чревато неприятными последствиями. Выпрямительный узел собран на «мосте», что означает удвоенное падение напряжения, по сравнению с одним диодом, они работают «парами». На обычном кремниевом диоде при небольшом токе падает порядка 0.6 вольта. Значит, до выпрямительного узла напряжение может быть на 0.6*2=1.2 вольта больше, или 18+1.2=19.2 В. Логика рассуждений понятна? В данном случае четко определено максимальное напряжение на выходе, ограниченное по микросхеме усилителя. Выходное напряжение получается после:

  • Выпрямительного узла.
  • Трансформатора.
Я умышленно пошел с «выхода» на «вход». Так вот, на каждой «ступени» теряется напряжение. Выпрямительный узел – падение на диодах, трансформатор – сопротивление обмоток. Это значит, что по пути от «выхода» к «входу» напряжение должно быть больше, на величину потерь в каждом узле.

Выходное напряжение трансформатора

Технические данные трансформатора нормируются для режима нормальной работы, следовательно, указание «12 вольт» соответствует выходному напряжению с током нагрузки номинальной величины. А что происходит без нагрузки? У обмоток трансформатора вполне конечное сопротивление и при подключении нагрузки на них начинает теряться мощность, что снижает выходное напряжение. Вполне понятно как влияет сопротивление вторичной обмотки – его легко измерить и на ней падает напряжение, пропорциональное току нагрузки. А первичная обмотка, разве ее сопротивление ничего не значит?

Увы, через обмотку течет ток и её внутреннее сопротивление снижает входное напряжение. При вычислениях проще всего перевести сопротивление первичной обмотки к выходной, пересчитав сопротивление обратно пропорционально квадрату коэффициента трансформации. Для данного примера входное напряжение трансформатора 220 вольт, выходное (без нагрузки) 13.8, что задает коэффициент трансформации 220/13.8=16. Сопротивление первичной обмотки 144 Ом, для перевода на вторичную обмотку это число надо поделить на квадрат коэффициента трансформации, или 144/(16*16)=0.56 Ом. Много или мало? Сопротивление вторичной обмотки 0.7 Ома, что немного выше «приведенного» сопротивления первичной обмотки (0.56 Ом), что правильно – чаще всего вторичная обмотка наматывается поверх первичной, увеличивая длину витка и приводя к небольшому возрастанию внутреннего сопротивления.

Итак, выходное напряжение трансформатора без нагрузки определяется из отношения числа витков первичной обмотки к вторичной. При подключении нагрузки напряжение уменьшается из-за эквивалентного сопротивления выходной обмотки (равное сумме сопротивлению вторичной и пересчитанного сопротивления первичной обмоток).

Максимальное выходное напряжение (без нагрузки) получается на пиках переменного напряжения, которое в «корень из двух» раз больше действующего напряжения, получаемого со вторичной обмотки. Поскольку расчеты ведутся «с конца», выполним обратный расчет – из максимального выпрямленного напряжения вычыслим действующее напряжение. Ранее была получена цифра 19.2 вольта, что должно получаться в пике переменного напряжения.

«Действующее» будет в «корень из двух» меньше, или: 19.2/1.41=13.6 В. Мой трансформатор на холостом ходу выдает напряжение 13.8 вольта, что на 0.2 вольта больше допустимой величины (13.6 В)! Если бы это была разработка для серийной продукции, то исправление нарушения спецификации потребовало бы либо изменить схемное решение, либо вводить демпфирующие элементы – в серьезных устройствах никакие «авось» не допустимы, даже столь незначительные. Но в домашнем применении 0.2 вольта погоды не сделают.

Впрочем, не стоит «забывать» о небольшом «фоновом» потреблении микросхемы усилителя. Для приведенного списка ток потребления в состоянии покоя находится в интервале 0.08-0.19 ампера. Эквивалентное выходное сопротивление трансформатора 0.7+0.56=1.26 Ом. При токе 0.08-0.19 А это снизит напряжение на 1.26*(0.08…0.19)=0.1…0.24 вольта, что практически нивелирует завышенное на 0.2 вольта напряжение с трансформатора. Итак, последний признан условно годным для работы совместно с перечисленным списком микросхем-усилителей при предельном рабочем напряжении питания 18 вольт. Коль скоро трансформатор не отвергнут, можно выполнить «прямые» расчеты и оценить, какую максимальную мощность с него можно получить.

Рассмотрим два случая работы устройства:

  • Блок питания не нагружен. Напряжение на выходе меньше пиковой величины переменного напряжения на величину падения двух диодов выпрямительного моста. А именно, 13.8*1.41 – 0.6*2 = 19.46 – 1.2 = 18.3 В. Микросхема потребляет небольшой ток в состоянии покоя, поэтому превышение на 0.3 вольта игнорируем.
  • Нагрузка подключена. Выходное напряжение с трансформатора уменьшается из-за падения на эквивалентном сопротивлении вторичной обмотки от тока нагрузки. Главное здесь пик-фактор – посмотрите вторую картинку статьи, форма тока вторичной обмотки трансформатора очень «острая», по величине в три-четыре раза больше тока нагрузки БП. Если особо точные расчеты не требуются, можно облегчить себе жизнь и считать по упрощенной методике – брать пиковое напряжение на выходе трансформатора и вычитать из него падение на сопротивлении потерь, умноженное на ток нагрузки и пик-фактор.

Сложно? Вовсе нет, на примере станет понятнее.

Выходное напряжение трансформатора 13.8*1.41=19.45 В, эквивалентное сопротивление обмоток 0.7+0.56=1.26 Ом, пик-фактор 3.5, ток нагрузки… А действительно, какой ток нагрузки?

Возьмем самую простую микросхему из ранее приведенного списка, одноканальный мостовой усилитель TDA2005. Для него определен ток потребления 3.5 ампера. Если усилитель ограничен в инфразвуковой части диапазона, то можно вышеприведенную цифру считать пиковым значением, действующее значение в «корень из двух» раз меньше, или 3.5/1.41=2.48 А. Итак, ток нагрузки определен, можно продолжить вычисления.

Потери напряжения на внутренних сопротивлениях обмоток трансформатора составит 1.26 Ом * 3.5 * 2.48 А = 11 вольт. Из 19 вольт потерять 11 – это просто неприемлемо! Подобный трансформатор не способен обеспечить полную мощность даже для самой «слабой» микросхемы усилителя, что уж говорить о прочих вариантах. С другой стороны, музыкальные композиции отнюдь не то же самое, что генератор низкой частоты, в них громкие звуки встречаются относительно редко и непродолжительное время.

Поэтому заведомую негодность приведенного трансформатора можно скомпенсировать увеличенной емкостью сглаживающих конденсаторов. Довольно сложно выбрать типичный пример музыкального фрагмента, очень уж разные направления и течения в музыке, ну пусть будет «роковый бит» (сэмпл взят со страницы wiki):

450x309  42 KB

В одной клетке 5 мс. Из этой картинки следует, что нагрузка на блок питания в среднем небольшая и только в течение небольшого интервала времени следует «всплеск» мощности. На фрагменте повышенное потребление продолжается семь клеток или 7*5=35 мс. Если установить сглаживающие конденсаторы такой емкости, чтобы они смогли удержать напряжение питания в допустимых рамках, то и из этого трансформатора может что-то получиться. Если «забыть» о локальном всплеске, то средняя величина потребления тока снижается в три и более раз.

Этот вывод совпадает с обычными рекомендациями – пик-фактор для музыки лежит в интервале 10-20 дб (3-10 раз). Коль скоро цифры совпадают, можно их и придерживаться. Значит, средний ток потребления усилителя будет в три раза меньше приведенной в документации на усилитель (3.5 ампера). Почему три, а не десять? Устройство собирается для себя, «кукурузный» усилитель делать не стоит, даже в качестве примера.

Возвращаемся к расчетам, использованный ранее «средний ток 2.48 А» зачеркиваем и подставляем вместо него 2.48/3=0.83 А. Падение на обмотках трансформатора составит 1.26 Ом * 3.5 * 0.83 А = 3.7 вольт, приемлемо.

Выпрямительный мост

Следующий этап – вычислить падение напряжения на выпрямительных диодах, при этом важно не забывать, что диоды работают «парами» и потери удваиваются. Но я несколько забежал вперед, вначале надо выбрать сами диоды или «диодный мост» как готовый элемент. И здесь краеугольный вопрос – можно ли использовать диоды Шоттки? Трудность в том, что этот класс обладает лучшими техническими характеристиками, но их не собирают в сборки типа «диодный мост».

Построение выпрямительного узла в виде «моста» означает, что максимальное напряжение на диодах немногим больше выходного напряжения, и в рассматриваемом случае диоды Шоттки использовать можно. Возьмем что-нибудь дешевое и доступное, например 1N5818 (1 А, 30 В). Его вольт-амперная характеристика выглядит следующим образом:

376x317  14 KB

Кстати, обратите внимание – по мере повышения предельного рабочего напряжения (1N5817 = 20 В, 1N5818 = 30 В, 1N5819 = 40 В) возрастает падение на диоде, поэтому запас карман «тянет», установка диодов Шоттки с излишним запасом рабочего напряжения ухудшает характеристики БП.

Для данного случая, 1N5818, при токе 1-3 ампера падение напряжения составит 0.5-0.6 вольта, вполне приемлемо, особенно с учетом того, что диоды в мосте работают попеременно и средняя величина рассеиваемой мощности на диоде в два раза ниже. А максимальный долговременный ток трансформатора (а значит и диодного моста) — 0.83 А, что определяет рассеиваемую мощность на каждом диоде 0.83*0.5/2=0.2 Вт. Мощность не большая, установки на радиатор не требуется.

Полученные цифры можно подставить в расчет, для чего соберем все найденные цифры вместе:

  • Напряжение холостого хода, пиковое значение 13.8*1.41=19.6 В.
  • Падение на внутреннем сопротивлении обмоток (0.7+0.56)*3.5*0.83=3.7 В.
  • Потери в диодном мосте 0.6 В * 2 шт.=1.2 В.
Из первой цифры вычитаем вторую и третью, получается 19.6-3.7-1.2=14.7 В, — пиковое напряжение на выходе выпрямительного моста. Однако сейчас самое время вспомнить, что напряжение на выходе трансформатора синусоидальной формы, что означает непостоянную амплитуду на выходе выпрямителя и обязательное использование конденсатора довольно большей емкости.

Сглаживающий конденсатор

Требования к конденсатору достаточно просты – он должен разрядиться не более «V» за время «T» при токе нагрузке «I». Время можно вычислить по картинке, приведенной в начале статьи – конденсатор сохраняет напряжение на выходе всё время, пока диоды не проводят, а это примерно 70 процентов полупериода (для частоты сети 50 Гц это 10 мс * 0.7 = 7 мс). Ток нагрузки зависит… от тока нагрузки :). Напряжение «V» — на сколько можно позволить уменьшиться напряжению питания.

Можно было бы подставить эти цифры и получить довольно низкую емкость конденсатора, но вот беда – рассматриваемый трансформатор слишком «хлипкий» и не может обеспечить достаточный ток на пиках нагрузки, придется его проблемы решать за счет увеличения емкости конденсаторов. Ранее оговаривалось время пиковой нагрузки в 35 мс при токе нагрузке 2.48 А. Сравните это с 7 мс и 0.83 А для «обычного» режима.

Емкость конденсатора считается по обычной формуле: C=I*T/V.

Ой, опять поторопился. Вначале надо решить, на сколько можно позволить уменьшиться напряжению при разряде конденсатора. Номинальное напряжение питания 12 вольт, «пиковое» выпрямленное уже 14.7 В. Не хотелось бы опускаться ниже 11 В, ну пусть будет 3 вольта.

Подставляем полученные значения, С=2.48*0.035/3= 29000 мкФ. Такой конденсатор потребовался бы в том случае, если бы блок питания вообще отключился на всё время, но трансформатор продолжает работать и частично подзаряжать конденсатор, поэтому полученную цифру стоит поделить на два.

С емкостью конденсатора определились, 12000-15000 мкФ, рабочее напряжение не меньше 25 вольт, можно перейти к выбору конкретной модели. Возьмем доступные модели фирмы Jamicon серии LP на напряжение 25 В. Например, устроили бы два варианта:

  • 12000 мкФ — диаметр 22 (35) мм, высота 50 (30) мм.
  • 15000 мкФ — диаметр 25 (35) мм, высота 45 (30) мм.

Оба варианта проходят по току, «Max ripple current» 3.74-3.89 ампер, в зависимости от исполнения. Габариты конденсатора приемлемы, остается уточнить расчеты на симуляторе – удастся ли вписаться с таким решением в требуемые характеристики блока питания. Моделирование в PSPICE представляет следующий переходной процесс для импульсной нагрузки (конденсатор 12000 мкФ):

347x205  3 KB Сносно, но сойдет, усилитель работать будет.

Блок питания рассчитан, но есть еще один момент, который я опустил в виду «домашнего» исполнения. Дело в том, что напряжение сети только считается 220 вольт, а на деле может быть в диапазоне +10/-15% от номинального значения. Это означает, что вполне вероятна ситуация, когда блок питания подключат к сети 242 вольта, что вызовет увеличение выходного напряжения в режиме простоя с относительно безопасных 18 В до 20 В, что повлечет за собой… думаю, объяснений не нужно.

Обратный случай, снижение на 15 процентов не вызовет деструктивных последствий, микросхема усилителя не разрушится, просто уменьшится максимальная мощность. Обычно цифра «-15%» рассматривается как «-10%» на общий уход среднего напряжения и «-5%» на непродолжительные изменения, поэтому снижение напряжения сети не так заметно для усилителя. Если же брать другую аппаратуру, то там эффект противоположный – даже непродолжительное снижение напряжения может нарушить нормальное функционирование устройства.

Выпрямительный мост или полумост?

Остался еще один вопрос, который стоит обсудить один раз и больше никогда не возвращаться – что лучше для трансформаторного блока питания, мост или полумост?

С точки зрения потерь на диодах «полумост» лучше – в выпрямительной цепи используется только один диод, в «мосте» их пара, а значит меньше падение напряжения. Но, экономия на диодах приводит к удвоению количества обмоток. Попробуем оценить эффективность этих вариантов для рассматриваемого блока питания, скажем, при токе нагрузки 1 ампер. В данном случае интересуют только потери на сопротивлении обмоток трансформатора и диодах выпрямительного узла. Емкость и другие параметры конденсатора от исполнения схемы выпрямления не зависят, а потому про него пока можно «забыть».

Вначале «мост» – потери на трансформаторе считаются как сопротивление выходной обмотки плюс приведенное сопротивление первичной обмотки, умноженные на 3.5 и ток 1 А. Это составит величину (0.7 + 0.56) * 3.5 * 1 = 4.41 В.

Потери на диодах 0.6 * 2 = 1.2 В.

Теперь «полумост» – первичная обмотка пересчитывается так же, а вот с вторичной небольшая заминка. Коль скоро их количество удвоилось, то во столько же раз уменьшилось место на трансформаторе под каждую из них. Как следствие, сопротивление одной обмотки возрастет в два раза. Итак, цифры: (1.4 + 0.56) * 3.5 * 1 = 6.86 В.

Падение на диоде… стоп-стоп! В данном схемном решении напряжение на диодах возрастает в два раза, а потому диод Шоттки 1N5818 (30 В) принципиально нельзя применять, только 1N5819 (40 В). Хотя, и 40 вольт мало – из-за дребезга и звона, свойственного построению с двумя обмотками, напряжение на диодах несколько больше, чем просто «выходное напряжение», умноженное на два. Здесь хорошо бы подумать о диодах на 45-60 вольт. Впрочем, ограничимся 1N5819. Переход на другой диод, с большим рабочим напряжением, повысил падение в прямом направлении с 0.5-0.6 до 0.6-0.8 вольта.

Результаты расчета соберем в таблицу, так нагляднее:
Тип выпрямительного узлаПадение на трансформаторе, ВПадение на диодах, ВСумма потерь, В
Мост4.411.25.61
Полумост6.860.87.66

Цифры вы видите, вопрос о выборе типа выпрямительного узла можно закрыть окончательно.

Предыдущий материал показал, что в трансформаторном блоке питания выходное напряжение не особо стабильно, да еще присутствуют пульсации частотой 100 Гц (удвоенная частота сети). Можно с этим мириться, но чаще всего аппаратура представляет довольно жесткие рамки по диапазону изменения напряжения и «банальным» увеличением емкости конденсатора не обойтись, придется устанавливать стабилизатор напряжения.

Существует множество реализаций такого элемента – полностью на транзисторах, с участием операционных усилителей или интегральные микросхемы, с или без каких-либо «внешних» силовых элементов. Довольно скучно изучать работу устройства, если оно выглядит как «черный ящик» с входом, выходом, лучше взять какой-нибудь пример. Ограничимся несложной схемой на двух транзисторах, например, такой: 241x190  2 KB

Входное напряжение подается на цепь «Vin», стабилизированное напряжение получается на выводе «Vout». Данная схема хоть и выглядит просто, но обладает неплохими техническими характеристиками и даже получила цепь защиты от перегрузки по току. Можно небольшую загадку? Попробуйте самостоятельно определить в данной схеме цепь и принцип работы схемы защиты. Пока вы размышляете, я попробую обсудить вопрос рациональности применения стабилизаторов напряжения в усилителях низкой частоты, оставив вам время подумать.

В рассматриваемом примере слабенький трансформатор формирует напряжение для работы усилителя. Его мощности явно недостаточно, но проблему удалось «обойти», переместив акцент на увеличение емкости сглаживающего конденсатора. Однако не стоит забывать о самой сети 220 вольт – вовсе не обязательно, что в вашей квартире напряжение именно 220 вольт и оно сохраняет свою величину в неизменном виде всё время.

Официально, советская электросеть может работать в диапазоне от 187 до 242 вольта (220 В +10/-15%). Что будет с блоком питания, если напряжение сети повысится? Вполне очевидно, что выходное напряжение БП так же возрастет.

Расчеты приводить не стоит, их уже производили… хотя, тут всё просто – повышение напряжения сети с 220 до 242 повысит выходное напряжение трансформатора с 13.8 В до 13.8 В +10% = 15.18 В. Если вычислить пиковое значение (15.18 * 1.41), получится 21.4 вольта. Вычитаем 1.2 В падение на выпрямительном мосте и получается 20 вольт. Гм, на микросхему усилителя TDA2005 (как и для прочих «автомобильных» усилителей) нормируется максимальное рабочее напряжение 18 В, а здесь — 20. К чему это приведет? Можно погадать на ромашке, а вдруг не сгорит? Это плохая идея и, увы, от повышения напряжения нельзя избавиться никакими простыми средствами типа «поставить резистор».

В данном случае есть только одно разумное решение – стабилизатор напряжения. Для работы усилителя надо 12 вольт, вот стабилизатор его и будет поддерживать, а всё, что выше 12 В погасится на регулирующем транзисторе.

Рассмотрим целесообразность применения стабилизатора, знаком «[+]» будут отмечаться достоинства, «[-]» — недостатки:

  • [+] Стабильное выходное напряжение.
  • [+] Ограничение по току нагрузки – защита усилителя от «дожигания» всей силовой части при выходе из строя отдельных элементов, снижается риск возгорания.
  • [+] Снижение уровня пульсаций.
  • [+] Перенос уровня земли.

  • [-] Увеличение количества деталей – повышение стоимости изготовления устройства.
  • [-] «Изоляция» цепи питания усилителя от сглаживающих конденсаторов повышенной емкости.
  • [-] Возможно снижение качества работы усилителя.

  • [?] Напряжение питания усилителя меньше, чем могло бы быть без стабилизатора.
  • [?] Тепло рассеивается не только на выходном каскаде усилителя, но и на стабилизаторе.

Разберем по пунктам.

Стабильное выходное напряжение

Если усилитель спроектирован правильно, то он довольно спокойно относится к небольшому изменению питающих напряжений. Единственная цепь, которая обладает повышенной чувствительностью к изменению напряжения питания – это схема стабилизации тока покоя выходного каскада. Поэтому для «интегральных» усилителей особой стабильности напряжения питания не требуется, а вот «самодельные» варианты лучше снабжать стабилизаторами, но это не «критичное» требование и его можно обойти некоторым усложнением схемотехники самого усилителя.

Ограничение по току нагрузки

В любом устройстве бывают или возможны нештатные ситуации. Сгорел транзистор или уронили провод – если в блоке питания нет защиты, то может выйти из строя очень много деталей. Понятное дело, что БП с защитой не гарантирует распространение поломки на разные узлы усилителя, но хоть снизит ущерб. Второй момент – трансформаторный блок питания содержит в себе такой громоздкий элемент, как трансформатор. Если БП перегрузить, то на нём будет выделяться большая тепловая мощность из-за значительного сопротивления обмоток, и вероятны неприятные последствия, догадываетесь, какие?

Для борьбы с этим злом в цепь первичной обмотки устанавливают предохранитель, но и такое решение далеко от идеала. Дело в том, что экстраток включения трансформатора не позволяет установить предохранитель правильной величины, приходится выбирать его с номинальным током в два-три раза больше. Что до самого предохранителя, то его время срабатывания зависит от степени превышения тока над номинальным значением предохранителя. Декларируются три цифры:

  • Ток нагрузки 100%, время срабатывания не менее четырех часов.
  • Ток нагрузки 135%, время срабатывания не более одного часа.
  • Ток нагрузки 200%, время срабатывания не больше 5-120 секунд (в зависимости от модели).

Как видите, это не самый хороший способ защиты, он спасает только в «тяжелых» ситуациях – короткое замыкание или пробой изоляции с большим током фаза-заземление. В остальных случаях он помогает очень слабо. Для низковольтового питания закорачивание выхода БП, как правило, не приводит к сгоранию сетевого предохранителя. Увы. Поэтому электронная защита в блоке питания такого типа — вещь необходимая.

Снижение уровня пульсаций

Трансформаторный блок питания создает на выходе небольшой уровень пульсаций частотой 100 Гц, что усложняет достижение низкого уровня «фона» на выходе усилителя. Стабилизатор помогает решить эту проблему. Выше приведена схема стабилизатора, она обеспечивает на выходе уровень пульсаций 20 мВ при изменении входного напряжения в диапазоне 12.5-16 В, для тока нагрузки 1 ампер. То есть стабилизатор уменьшает уровень пульсаций в 170 раз. Впрочем, это «мелочи», переход на интегральные микросхемы позволяет получить гораздо большую степень подавления.

Перенос уровня земли

Усилитель довольно сложное устройство, даже у такой простой вещи как «земля» есть несколько прочтений — «чистая» земля, «силовая», «грязная» — всё зависит от места ее расположения. Нельзя совмещать точку земли входного сигнала и питания, особенно при их «обратном» расположении – возрастут искажения, шумы и прочее, вплоть до самовозбуждения усилителя.

Прокладка цепи «земля» от входных каскадов до выходных и блока питания представляется сложной задачей и стабилизатор напряжения способен оказать реальную помощь – он может взять в качестве опорного уровня потенциал «чистой» земли и стабилизировать напряжения относительно него. Фактически, стабилизатор регулирует ток по цепям питания и уровень «земли» для него не является «силовым», поэтому затекания тока в эту цепь не происходит. При неудачной трассировке усилителя данное свойство может оказаться востребованным.

overclockers.ru

Как подобрать трансформатор для блока питания

Проще всего подобрать трансформатор для бока питания на радиорынке, если, конечно, он есть в вашем городе. Там же можно договориться о перемотке трансформатора. Но, и трансформаторы, и услуги по их перемотке достаточно дороги.

На радиорынке всегда,  можно подобрать и купить трансформатор как Б/у так и новый.

Если у Вас в сарае или на балконе валяется какая-нибудь ненужная техника, то наверняка в ней есть и трансформаторы. Любой разборный сетевой трансформатор очень легко переделать под свои нужды. Самое главное, чтобы хватило его габаритной мощности.

Если мощность трансформатора меньше требуемой, то под нагрузкой выходное напряжение трансформатора может существенно просесть. Но, это тоже не беда, так как микросхемы типа TDA2030, TDA2040 и TDA2050 могут работать при значительном снижении напряжения питания, а именно: ±6, ±2,5 и ±4,5 Вольт соответственно.

Маловероятно, что вторичные обмотки найденного трансформатора подойдут по току и напряжению, но первичная обмотка уже рассчитана на напряжение осветительной сети и это самое лучшее подспорье, так как перемотать вторичную обмотку намного проще, чем первичную.

Хорошо, если это будет стандартный унифицированный трансформатор, тогда можно по его наименованию точно определить напряжения и максимально допустимые токи вторичных обмоток. Такие трансформаторы не поддаются разборке, поэтому прежде чем его покупать, нужно сверить название с данными в справочнике.

В сайте есть ссылка на справочник, в котором можно найти подробную информацию о большинстве унифицированных трансформаторов советского и постсоветского производства.

старый трансформаторЕсли же это будет трансформатор без опознавательных знаков, то вероятность того, что его придётся перематывать, будет стремиться к 99%. За такой трансформатор много платить не стоит.

При покупке трансформатора на кольцевом магнитопроводе, следует иметь в виду, что не каждый трансформатор можно разобрать, не повредив первичной обмотки.

  • Годится для замены вторичной обмотки
  • Нужно мотать первичную обмотку
  • Нужно мотать первичную обмотку.

Видео: ГДЕ ВЗЯТЬ ИДЕАЛЬНЫЙ ТРАНСФОРМАТОР ДЛЯ ЛАБОРАТОРНОГО БЛОКА ПИТАНИЯ

В этом видео рассмотрен трансформатор от музыкального центра. На его основе можно сделать лабораторный блок питания. На выходе у него 35 вольт 20 ампер. Так же есть выход на 4,7 вольт 4 ампер для usb зарядников.

transformator220.ru

Импульсный блок питания из сгоревшей лампочки

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

Построить блок питания будет ненамного сложнее, чем прочитать эту статью. И уж точно, это будет проще, чем найти низкочастотный трансформатор подходящей мощности и перемотать его вторичные обмотки под свои нужды.

 

Оглавление статьи.

  1. Вступление.
  2. Отличие схемы КЛЛ от импульсного БП.
  3. Какой мощности блок питания можно изготовить из КЛЛ?
  4. Импульсный трансформатор для блока питания.
  5. Ёмкость входного фильтра и пульсации напряжения.
  6. Блок питания мощностю 20 Ватт.

     

  7. Блок питания мощностью 100 ватт
  8. Выпрямитель.
  9. Как правильно подключить импульсный блок питания к сети?
  10. Как наладить импульсный блок питания?
  11. Каково назначение элементов схемы импульсного блока питания?

 

Вступление.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

 

Вернуться наверх к меню

 

Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

 

Вернуться наверх к меню

 

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Вернуться наверх к меню

 

Импульсный трансформатор для блока питания.

 

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. 🙂 Проверено на практике.

Здесь подробно рассказано, как произвести самые простые расчёты импульсного трансформатора, а так же, как его правильно намотать… чтобы не пришлось подсчитывать витки. 🙂

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Вернуться наверх к меню

 

Ёмкость входного фильтра и пульсации напряжения.

 

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

 

Вернуться наверх к меню

 

Блок питания мощностью 20 Ватт.

 

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП.

Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС

 

Вернуться наверх к меню

 

Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

 

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

 

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.

 

  1. Винт М2,5.
  2. Шайба М2,5.
  3. Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
  4. Корпус транзистора.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – слюда, керамика, фторопласт и т.д.
  7. Радиатор охлаждения.

А это действующий стоваттный импульсный блок питания.

 

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.

 

Мощность, выделяемая на нагрузке – 100 Ватт.

Частота автоколебаний при максимальной нагрузке – 90 кГц.

Частота автоколебаний без нагрузки – 28,5 кГц.

Температура транзисторов – 75ºC.

Площадь радиаторов каждого транзистора – 27см².

Температура дросселя TV1 – 45ºC.

TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Вернуться наверх к меню

 

Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

 

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

 

1. Мостовая схема.

2. Схема с нулевой точкой.

 

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

 

Пример.

Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ватт.

 

100 / 5 * 0,4 = 8(Ватт)

 

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

 

100 / 5 * 0,8 * 2 = 32(Ватт).

 

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности. 🙂


 

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

 

Вернуться наверх к меню

 

Как правильно подключить импульсный блок питания к сети?

 

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

 

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку между исследуемым ИБП и осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

 

А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.

 

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

 

Будьте осторожны, берегитесь ожога!

 

Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!

То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Вернуться наверх к меню

 

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Вернуться наверх к меню

 

Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Вернуться наверх к меню

 

Источник http://oldoctober.com/

www.qrz.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *