Устройство электромеханического реле времени: назначение, принцип работы, схемы подключения

Содержание

назначение, принцип работы, схемы подключения

Для обеспечения выдержки защит или построения логических электронных схем в их состав включаются элементы, обеспечивающие задержку срабатывания. В качестве такого элемента большинство современных электрических цепей использует реле времени.

Назначение

Реле времени предназначено для формирования нормируемых временных задержек при работе каких-либо устройств. Такие логические элементы позволяют выстраивать определенную последовательность в переключениях и срабатывании приборов. Благодаря отложенной подаче напряжения производится автоматическое управление выдаваемыми с реле времени сигналами.

Реле времени устанавливают в цепях защит в качестве промежуточного элемента для обеспечения селективности, построения ступеней, сценарных переходов и т.д.

Устройство и принцип работы

Конструктивно реле времени состоит из нескольких элементов, число и функции которых могут существенно отличаться в зависимости от типа реле. Общими блоками являются измерительный, блок задержки и рабочий.

  • Первый из них представлен электромагнитными катушками, полупроводниковыми элементами, микросхемами, реагирующими на поступающие сигналы электрического тока.
  • Блок задержки выполняется часовым механизмом, мостом, электромагнитным или пневматическим демпфером.
  • Рабочий элемент представляет собой контакты или выход из аналоговой или цифровой схемы, контролирующих подачу напряжения в те или иные цепи.

В зависимости от конструктивных особенностей конкретной модели будет отличаться и принцип ее работы.

Принцип действия реле времени заключается в создании временного интервала от начала подачи сигнала на реле времени до получения этого сигнала потребителем. Дальнейшие операции и подача питания на рабочий элемент будет коренным образом отличаться в соответствии с типом устройства, поэтому рассматривать принцип действия следует для каждого вида реле времени отдельно.

С электромагнитным замедлением

Конструктивно такое реле времени состоит из электромагнитной катушки, магнитопровода (ярма), подвижного якоря, короткозамкнутой гильзы и блока отключения, которые представлены на рисунке ниже:

Рис. 1: конструкция электромагнитного реле

Принцип работы электромагнитного реле заключается в создании магнитного потока в магнитосердечнике, наводимого от катушки. Магнитный поток притягивает якорь с контактами. Но, в таком режиме работы устройство представляло бы собой обычное промежуточное реле, поэтому для задержки замыкания контактов используется гильза. Она и создает в короткозамкнутом контуре встречный по направленности электромагнитный поток, задерживающий нарастание основного и обуславливающий выдержку временного промежутка.

Как правило, в электромагнитных моделях задержка  составляет от 0,07 до 0,15 секунд, работа устройства осуществляется от цепей постоянного тока.

С пневматическим замедлением

Данный тип применяется в станочном оборудовании различных сфер промышленности, в частных случаях встречаются и гидравлические модели.  Такое реле времени состоит из рабочей катушки, посаженной на магнитопровод, контактов и пневматической мембраны или диафрагмы, выполняющей роль демпфера.

Рис. 2: конструкция пневматического реле

Принцип работы пневматического реле времени заключается в том, что при подаче напряжения на обмотку в сердечнике возникает магнитный поток, приводящий его в движение. Но моментальная переброска контактов не происходит за счет наличия воздушного промежутка под мембраной. Время задержки включения будет определяться количеством воздуха в демпфере и скоростью его удаления. Для регулировки этого параметра в пневматических моделях предусматривают винт, увеличивающий или уменьшающий объем камеры или ширину выпускного клапана.

С анкерным или часовым механизмом

Конструктивным отличием реле времени с часовым механизмом является наличие пружинного устройства, которое заводится за счет электрического привода или вручную. Замедление срабатывания для него определяется положением замыкающего флажка на циферблате.

Рис. 3: конструкция реле с часовым механизмом

При появлении управляющего сигнала отпускается механизм, и пружина медленно перемещает рабочий элемент, вращающийся по шкале циферблата. При достижении установленной отметки  происходит включение нагрузки путем замыкания пары контактов. Пределы выдержки времени можно выбрать специальными зажимами или установкой регулируемой ручки в определенное положение. Конкретный способ управления будет отличаться в зависимости от модели и производителя.

Моторных реле времени

Отличительной особенностью моторных реле является наличие собственного двигателя, который включается в работу вместе с катушкой. Принцип работы такого устройства приведен на рисунке ниже:

Рис. 4: конструкция моторного реле

Напряжение подается на электрическую схему, состоящую из катушки 1 и синхронного двигателя 2. После возбуждения обмоток статора в двигателе  его вал приводит в движение систему зубчатой передачи 3 и 4, состоящую, как правило, из нескольких шестеренок. Вращение шестерней моторного реле приводит к механическому нажатию на рычаг, прижимающий контакты. Регулировка диапазона выдержки производится за счет перемещения фиксатора 8.

Электронных реле времени

Современные электронные реле представляют собой автоматический выключатель, принцип подачи сигнала с выхода которого регулируется настройкой R – C цепочки, параметрами микросхем или полупроводниковых элементов. Наиболее простым вариантом является совместная работа конденсатора и резистора, приведенная на рисунке ниже:

Рис. 5: принцип логической цепочки электронного реле

В зависимости от соотношения омического сопротивления резистора и емкости конденсатора, время заряда последнего и будет определять подачу напряжения питания в электронном устройстве. В данном примере приведен простейший вариант времязадающей цепочки, современные модели могут содержать более сложные структуры, включающие несколько R – C ветвей или их комбинации с транзисторами, мостами и другими элементами. Электронные модели обладают рядом весомых преимуществ, в сравнении с другими типами реле:

  • Сравнительно меньшие размеры;
  • Высокая точность срабатывания;
  • Широкий диапазон регулировки – от десятых долей секунд до часов или суток;
  • Автоматическое управление – удобная система программирования и ее визуальное отображение на дисплее.

Эти преимущества обуславливают повсеместное вытеснение электронными реле других устаревших моделей.

Цикличных

Под цикличными реле времени подразумевают такие устройства, которые выдают управляющий сигнал через какой-либо заданный промежуток времени (для подогрева чайника, открытия окон сутра, включения сигнализации на ночь и т.д.). Такое автоматическое включение имеет определенный сценарий, повторяющийся через какой-либо промежуток времени, из-за чего эту группу устройств также называют сценарными выключателями.  Ранее  циклическое включение осуществлялось посредством механического пружинного устройства, сегодня эта функция перешла к микропроцессорным элементам. Электронные таймеры находят широкое применение в самых различных сферах, некоторые из которых приведены на рисунке:

Рис. 6: сфера применения цикличных реле

Как выбрать?

При выборе конкретной модели реле времени необходимо руководствоваться такими принципами относительно их параметров:

  • Род и величина рабочего напряжения – различные модели могут, как подключаться к бытовой сети в 220 В переменного тока, так и работать от пониженных управленческих цепей на 12, 42, 127 В и т.д.
  • Допустимый ток нагрузки – определяет пропускную способность контактов реле времени без их перегрева.
  • Диапазон времени срабатывания контактов и чувствительность регулировки этого параметра – определяет скорость включения реле времени, возможность его изменения в каких-либо пределах и возможный шаг регулировки.
  • Конструктивные особенности и принцип работы – если по местным условиям не допускается классическое переключение контактов по соображениям взрывоопасности, необходимо устанавливать бесконтактные модели.
  • Влагозащищенность и температурный диапазон – определяет допустимые параметры окружающей среды, в которых может эксплуатироваться данное реле времени.
  • Тип устройства (цикличные или промежуточные) – первый из них задает некую периодичность выдаваемого сигнала, а второй выступает в качестве промежуточного звена, обеспечивающего задержку времени в уже существующей цепи.

Примеры схем подключения

В зависимости от конкретной модели реле времени или поставленных задач, которое оно должно решать, схема подключения может коренным образом отличаться.

Рис. 7: пример схемы подключения

Посмотрите на рисунок 7, в данном примере приведен один из простейших вариантов управления осветительными приборами при помощи реле времени. Подача управляющего сигнала осуществляется на выводы 1 и 2, а к нагрузке от вывода 3 и нулевого провода. Клемма 4 получает питание от сети 220В. Данная схема широко используется для бытовых нужд и практически не применяется для промышленных целей, так как обеспечивает работу только с одним потребителем (прибором освещения, линией, сигнализацией и т.д.).

Рис. 8: Еще одна схема подключения реле времени

На рисунке 8 приведена схема включения реле времени, здесь способ питания аналогичен предыдущей схеме.  Но на выходе устройства реализовано подключение двух независимых групп потребителей от контактов 3 и 5, которые могут иметь индивидуальную логику работы. Такой способ подключения предоставляет куда больший функционал, за счет чего он применяется в местах, где требуется управление сразу несколькими приборами.

Рис. 9: схема включения реле через контактор

Как видите на рисунке 9, при подключении мощного оборудования, для которого реле времени не может осуществлять его электроснабжение из-за недостаточной проводимости собственных цепей, применяется подключение логического элемента через силовой контактор.  В данной схеме рабочим органом выступает контактор, управляющий сигнал на который подается с контактов реле времени. Основным преимуществом такой схемы подключения является возможность запитать потребитель любой мощности и принципа действия.

Видео в развитие темы

https://www.youtube.com/watch?v=swsDJITJZs8
https://www.youtube.com/watch?v=IYZCY1hXFdc

Список использованной литературы

  • Фигурнов Е. П. «Релейная защита» 2004
  • Игловский И. Г., Владимиров Г. В. «Справочник по слаботочным электрическим реле» 1984
  • Филипчеико И, П., Рыбин Г. Я. «Электромагнитные реле»  1968
  • Гуревич В.И. «Электрические реле. Устройство, принцип действия и применения. Настольная книга инженера» 2011
  • Андреев В.А. «Релейная защита систем электроснабжения в примерах и задачах» 2008
  • Басс Э.И., Дорогунцев В.Г. «Релейная защита электроэнергетических систем» 2002

Реле времени: устройство, виды, принцип работы

a:2:{s:4:»TEXT»;s:8112:»Устройство и виды реле времени

     https://techtrends.ru/catalog/taymery-i-rele-vremeni/» target=»_blank»>Реле времени состоит из воспринимающей, замедляющей и исполнительной частей, каждая из которых имеет определенную функцию. Воспринимающая часть запускает устройство после поступления на него управляющего сигнала, замедляющая отвечает за установленный интервал задержки, а исполнительная по прошествии заданного временного промежутка оказывает воздействие на управляемый прибор.


     Конструкция РВ представляет собой проволочную катушку, обернутую вокруг металлического сердечника. Кроме того, в состав устройства входит набор контактов, подвижная стрелка и якорь из железа. В разных видах реле используется различное количество подвижных контактов.


     Классификация реле времени производится по различным признакам. Так, по исполнению, РВ может быть:


    моноблочным. В этом случае устройство является полностью самостоятельным, имеет встроенное питание и входы для присоединения приборов;
    встраиваемым. Этот вид не имеет корпуса и собственного питания. Такое реле применяется для изготовления сложных устройств;
    модульным. Такое устройство похоже на моноблок, чаще всего применяется для установки на ДИН-рейку в электрощитки.


     Также РВ различаются и по методу, который используется для создания временного интервала:


    часовые или анкерные – самые первые РВ, которые считаются одними из самых надежных и широко применяются до настоящего времени;
    моторные – в состав этих устройств входят электрические контакты, редуктор и двигатель. Они помогают вовремя проводить плановые работы на оборудовании;
    реле с пневматическим и гидравлическим замедлением – регулирование интервалов в этих устройствах выполняется путем уменьшения/увеличения подачи жидкости или воздуха в рабочий объем;
    электромагнитные – используются только в цепях с постоянным током;
    электронные – самый распространенный вид реле, который способен обеспечить интервал от доли секунды до нескольких месяцев, а иногда и лет. Благодаря кварцевой стабилизации частоты и синхронизации времени по эталонным часам по радиоканалу или интернету, эти устройства чрезвычайно точные.


     Отдельно стоит заметить, что электронные РВ, за счет наличия входов и выходов для обратной связи, а также развитого программирования, задающего нужный алгоритм функционирования, относятся к микроконтроллерам. Реле времени с электронным замедлением обладают небольшими размерами, низким энергопотреблением и высокой автономностью.





     Сфера применения реле времени находится в прямой зависимости от его характеристик и принципа работы. Так, электромагнитное реле применяется для того, чтобы запускать мощные двигатели. Другие виды РВ могут использоваться для управления вентиляцией, поливом, освещением и обогревом помещений.

Принципы работы

     Принцип работы механического РВ заключается в том, что поворот регулятора таймера воздействует на положение контактов, которые смыкаются или размыкаются, в результате чего происходит замыкание или размыкание электрической цепи. В течение определенного времени контакты возвращаются в первоначальное положение. Временной интервал находится в прямой зависимости от того, на сколько градусов повернут регулятор.





     В электромагнитных устройствах имеется дополнительная короткозамкнутая обмотка с медной гильзой, создающая магнитный поток, который является препятствием для нарастания основного потока. Это приводит к тому, что реле включается спустя определенный промежуток времени.





     В электронных реле времени таймер представляет собой микросхему, программируемую разными импульсами, возникающими после нажатия клавиш на пульте управления устройства. Если схемой предусмотрен выход для подключения к компьютеру, то реле является интеллектуальным и может иметь около 40 групп, предназначенных для подключения различных устройств. Это расширяет возможности программирования режимов.





«;s:4:»TYPE»;s:4:»HTML»;}

принцип действия, виды реле, изготовление и монтаж своими руками

Где бы ни находился человек, его постоянно окружают те или иные электрические приборы. Благодаря им наша жизнь значительно упрощается и множество повседневных бытовых решений уже не требуют столько времени, как это было раньше.

Научно-технический прогресс не стоит на месте и поэтому сегодня нам доступна такая возможность, как автоматическая система управления. К одной из таких систем, относят реле времени. Именно его наличие в том или ином устройстве делает возможным автоматическое включение и выключение холодильника, установку циклов в стиральной машине, мигание поворотника в автомобиле, подсветку рекламных щитов, витрин, регулярный автополив на огороде т.п. Взять хотя бы обычный аквариум, где свет и воздух подается согласно определенному режиму.

Что такое реле времени

Если сказать совсем простым языком, то назначение реле времени — создавать временную задержку включения или выключения сигналов и осуществлять определенную последовательность в работе этих сигналов.

Обычно этот прибор используют, когда требуется выполнить определенное действие спустя установленный промежуток времени. И устанавливается оно в схемы автоматического управления.

Виды

По своему конструктивному исполнению реле времени подразделяют на:

Моноблок — полностью независимое устройство, с собственным корпусом, встроенным питанием и специальными гнездами для подключения какой-либо техники. Хорошо знакомы с этим типом реле те, кто занимается фотопечатью.

Встраиваемые— это упрощенный вариант моноблочных реле. У них нет собственного корпуса и питания, поскольку они нужны для того, чтобы создавать более сложные устройства. Они используются как дополнительные элементы и поэтому их помещают в один корпус с другими элементами изготовляемого прибора. Классический пример — таймер в стиральной машинке, микроволновой печи, духовке и пр.

Модульные (с управляющим контактом) — этот тип имеет стандартные размеры и устанавливается на DIN-рейку в распределительный щиток.

Помимо этого, реле времени также классифицируют в зависимости от принципа работы (как именно создается временной интервал):

  • Реле времени с часовым механизмом. Этот вид был изготовлен первым и до сих пор считается одним из самых надежных, так как по своим свойствам не уступает пневматическим приборам. Их работа практически не зависит ни от мощности напряжения, ни от того как часто оно подается, ни от изменения температуры. В быту такой тип реле встречается в механических будильниках, кухонных таймерах, в некоторых стиральных машинах также встречается механическое реле программ.
  • С электромагнитным замедлением. Используется в цепях, ориентированных на постоянное напряжение. Задержка осуществляется за счет создания вспомогательного магнитного потока, регулируемая изменением величины натяжения возвратной пружины. Регулируемое значение составляет до пяти секунд. Существенный минус этого типа реле в том, что задержка времени зависит от изменения температуры.

    Электро реле

  • Вакуумное (электромеханическое). Этот вид используется там, где требуется электрический или пневматический сигнал, контролирующий достижение уровня вакуума.
  • Моторные. Включает в себя двигатель с редуктором и электрическим контактом. Способность задержки времени составляет от 10 секунд и до десятков часов.
  • Реле с гидравлическим или с пневматическим замедлением. Временные интервалы здесь регулируются за счет увеличения или уменьшения подачи жидкости, воздуха в рабочий процесс. Из плюсов можно также выделить то, что замедление не зависит от величины напряжения, частоты питания и изменения температуры. Также регулировка задержки не составляет особого труда.
  • Электронное реле. Самый широко используемый вид реле времени, постепенно вытесняющий механические аналоги. Достоинствами такого вида считаются его небольшие размеры, вес, высокая точность работы, надежность и широкий выбор программ функционирования.

Между собой электронные реле подразделяют исходя из технологии отсчета срабатывания времени:

  • Цифровые— напряжение оказывается на блок питания, из-за чего запускается задающий генератор, который затем подает импульсы на счетчик. Последний, в свою очередь, высчитывает эти импульсы до тех пор, пока они не сравнятся с нужным числом импульсов, которое задано в системе. Затем, на контролирующий реле выходной усилитель, посылается сигнал и счетчик перестает подсчитывать импульсы. Как только с блока питания снимется напряжение, реле вернется в свое изначальное состояние. Такие РВ способны задерживать время на десятки часов при минимальной погрешности. Главный минус в высокой стоимости.
  • Аналоговые — для задержки времени используется конденсатор, на который при замыкании контактов подается напряжение. Следит за этим напряжением специальное устройство, которое сравнивает его и ранее указанное. В случае их совпадения, устройство подает сигнал, чтобы реле переключилось. Максимальная выдержка здесь равна 10 секунд. Этот тип превосходит цифровое в том, что он не требует точного программирования и проще в использовании.

Схема и принцип работы электромагнитного реле

Рассмотрим, как устроен этот механизм изнутри.

  1. В катушке индуктивности находится подвижный стальной якорь.
  2. Когда на катушку подается напряжение, вокруг нее образуется электромагнитное поле, которое притягивает этот якорь к катушке.
  3. Частота и время подачи напряжения регулируется электрическим или механическим способом.

Структура прибора состоит из трех основных элементов:

  1. Воспринимающий или первичный — по сути это обмотка катушки. Здесь импульс преобразуется в электромагнитную силу.
  2. Замедляющий или промежуточный — стальной якорь с возвратной пружиной и контактами. Здесь исполнительный механизм приводится в рабочее состояние.
  3. Исполнительный — в этой части контактной группой оказывается непосредственное воздействие на силовое оборудование.

Принцип работы

Теперь самое время по пунктам рассмотреть принцип работы данного устройства:

  • Подвижный стальной якорь, который находится в катушке индуктивности, отжат специальной возвратной пружиной.

С внешней стороны якоря закреплена группа контактов, с другой тоже находятся контакты, находящиеся на определенном расстоянии от первой в статичном состоянии.

  • Когда на катушку подается импульс, якорь, притягиваясь к ней, тем самым делает возможным соприкосновение также и контактов.
  • Как только напряжение прекращается, пружина возвращает якорь на место и контакты снова размыкаются.

Советы по монтажу и настройке

  • Перед тем как производить монтаж, заранее определитесь в какой сети вы будете работать (например, трехфазной или однофазной).
  • Немаловажно также точно знать, какая нагрузка будет требовать включения или отключения.
  • Уже после того, как вы будете точно знать, чего вы хотите, смело идите в магазин и покупайте соответствующий прибор.
  • Перед тем как вы установите прибор и обесточите освещение, проверьте правильно ли работает устройство: подключите к нему шнур с вилкой и выставьте минимальное время для срабатывания. Напряжение на контактах выхода проверьте тестером.
  • При установке к DIN-рейке плотно затягивайте болты, чтобы исключить нагревание прибора, его поломку или даже возникновение пожара.
  • Помните, что максимальная влажность, при которой прибор способен работать исправно — не более 80%, и температура от 10-50 градусов.

Настройка

  • Настройка таймера в приборе зависит от того, какой тип устройства перед нами. Если мы имеем дело с механическим реле, то его настройка состоит просто в переключении положений согласно надписи.
  • В электронном же, есть меню, через которое и осуществляются все настройки. Как правило ее начинают с установки дня недели и текущего времени, и затем уже программируют само устройство.
  • Если это электромеханическое реле, то настраивают его с помощью специальных измерительных приборов — потенциометров.

Схема подключения

Как правило, подключение реле исключает использование сложных схем. Главное, как было сказано, знать какая нагрузка будет требоваться.

Рассмотрим самую простую схему:

  1. Строго вертикально и достаточно плотно закрепите устройство на стене.
  2. Снимите крышку и заземлите реле.
  3. Подключите электрическую сеть к контактам (см. рисунок)
  4. Контакты 1 и 2 — предназначены для подачи напряжения в 220 Вольт.
  5. Обозначение 4 — используется для подачи фазы от электрического щита и способна коммутироваться с 3 и 5.
  6. 4 и 5 — нормально открытые, тогда как 3 и 4 — нормально замкнутые.

Электромеханические реле времени | Электрические аппараты | Обладнання

Сторінка 18 із 54

Глава десятая
ЭЛЕКТРОМЕХАНИЧЕСКИЕ РЕЛЕ ВРЕМЕНИ
10.1. ОБЩИЕ СВЕДЕНИЯ

В схемах защиты и автоматики часто требуется выдержка времени между срабатыванием двух или нескольких аппаратов. При автоматизации технологических процессов также может возникнуть необходимость в определенной временной последовательности операций. Для создания выдержки времени служат электрические аппараты, называемые реле времени.
Общими требованиями для реле времени являются:
а) стабильность выдержки времени при колебаниях напряжения, частоты питания, температуры окружающей среды и воздействии других факторов;
б) малые потребляемая мощность, масса и габариты. Возврат реле в исходное положение происходит, как правило, при его обесточивании. Поэтому коэффициент возврата может быть очень низким.
В зависимости от назначения к реле времени предъявляются различные специфические требования. Для схем автоматического управления электроприводом при большой частоте включений требуются реле с высокой механической износостойкостью — до (5-г-10) — 10е срабатываний. Требуемые выдержки времени находятся в пределах 0,25—10 с. К этим реле не предъявляются требования относительно высокой стабильности выдержки времени. Разброс времени срабатывания может достигать 10 %. Реле должны работать в производственных условиях при наличии интенсивных механических воздействий.
Реле для защиты энергосистем должны иметь большую точность выдержки времени. Эти реле работают относительно редко, поэтому к ним не предъявляются особые требования по износостойкости. Износостойкость реле времени защиты порядка (5ч-10) • 103 срабатываний. Выдержки времени таких реле составляют 0,1—20 с.
Для автоматизации технологических процессов необходимы реле с большой выдержкой времени — от нескольких минут до нескольких часов. В этом случае, как правило, используются моторные реле времени. В настоящее время созданы также полупроводниковые реле с таким же большим диапазоном выдержки времени (см. § 12.4).

10.2. РЕЛЕ ВРЕМЕНИ С ЭЛЕКТРОМАГНИТНЫМ ЗАМЕДЛЕНИЕМ

а) Устройство реле и влияние различных факторов на его работу. Принцип электромагнитного замедления рассмотрен в § 5.7. Конструкция реле с таким замедлением типа РЭВ-800 (рис. 10.1) содержит П-образный магнитопровод / и якорь 2 с немагнитной прокладкой 3. Магнитопровод укрепляется на плите 4 с помощью литого алюминиевого цоколя 5, на котором устанавливается контактная система 6.
На магнитопроводе установлена намагничивающая обмотка 7 и короткозамкнутая обмотка в виде овальной гильзы 8. Усилие возвратной пружины 9 изменяется с помощью регулировочной гайки 10, которая фиксируется шплинтом.
Для получения большой выдержки времени при отпускании необходима высокая магнитная проводимость рабочего и паразитного зазоров в замкнутом состоянии магнитной системы (см. § 5.7). С этой целью все соприкасающиеся детали магнитопровода и якоря тщательно шлифуются. Литой алюминиевый цоколь создает дополнительный короткозамкнутый виток, увеличивающий выдержку времени.
У реальных магнитных материалов после отключения намагничивающей обмотки поток спадает до Ф0сг, который определяется свойствами материала магнитопровода, геометрическими размерами магнитной цепи и магнитной проводимостью рабочего зазора (см. § 5.8). Чем меньше коэрцитивная сила магнитного материала при заданных размерах магнитной цепи и магнитной проводимости рабочего зазора, тем ниже остаточная индукция, а следовательно, и остаточный поток. При этом возрастает наибольшая выдержка времени, которая может быть получена от реле. Применение стали с низким значением Яс позволяет увеличить выдержку времени.


Рис. 10.1. Реле времени с электромагнитным замедлением


Рис. 10.2. Схемы включения реле с выдержкой времени

б) Схемы включения реле. Время срабатывания реле с электромагнитным замедлением очень мало, так как постоянная времени мала из-за большого начального рабочего зазора, и трогание реле происходит при малом значении МДС обмотки. МДС трогания значительно меньше установившегося значения. Это время составляет 0,05— 0,2 с при наличии короткозамкнутого витка и 0,02—0,05 с ври его отсутствии. Таким образом, возможности электромагнитного замедления при срабатывании весьма ограничены. Поэтому используются специальные схемы включения электромагнитных реле (рис. 10.2). Если необходима большая выдержка времени при замыкании контактов, то целесообразна схема с промежуточным реле К (рис. 10.2, а). Обмотка реле времени КТ все время подключена к напряжению через размыкающий контакт реле К. При подаче напряжения на обмотку К последнее размыкает свой контакт и обесточивает реле КТ. Якорь КТ отпадает, и его размыкающие контакты срабатывают с необходимой выдержкой времени, обусловленной временем срабатывания реле К и временем отпускания реле КТ. В схеме рис. 10.2, б роль короткозамкнутого витка играет сама намагничивающая обмотка, которая питается через резистор Рдоб. Напряжение, приложенное к обмотке, должно быть достаточным для насыщения магнитной цепи при притянутом якоре. При замыкании управляющего контакта S обмотка реле закорачивается и обеспечивается медленный спад потока в магнитной цепи. Отсутствие специальной короткозамкнутой обмотки позволяет все окно магнитопровода занять намагничивающей обмоткой и создать большой запас по МДС. При этом выдержка времени неизменна при снижении питающего напряжения на обмотке до 0,5(7ноМ. Такая схема широко применяется в электроприводе. Обмотка реле включается параллельно ступени пускового реостата в цепи якоря. При закорачивании этой ступени обмотка реле замыкается, а его контакты с выдержкой времени включают контактор, шунтирующий следующую ступень пускового реостата (рис. 7.18).
Применение полупроводникового вентиля также позволяет использовать реле без короткозамкнутого витка (рис. 10.2, е). При включении обмотки ток через вентиль практически равен нулю. При отключении управляющего контакта S поток в магнитной цепи спадает и в обмотке наводится ЭДС с полярностью, указанной на рис. 10.2, е. При этом через вентиль протекает ток, определяемый этой ЭДС, активным сопротивлением обмотки и вентиля и индуктивностью обмотки.
Для того чтобы прямое сопротивление вентиля не приводило к уменьшению выдержки времени (растет активное сопротивление короткозамкнутой цепи), оно должно быть на один-два порядка ниже сопротивления обмотки.
При любых схемах обмотки реле питаются от источника либо постоянного, либо переменного тока с мостовой схемой выпрямления.
в) Регулирование выдержки времени. Время срабатывания реле можно плавно регулировать с помощью возвратной пружины 9 (рис. 10.1). С увеличением сжатия этой пружины увеличивается электромагнитное усилие, необходимое для трогания якоря и определяемое потоком в магнитной цепи. При большем сжатии пружины поток трогания возрастает. Следовательно, возрастает время трогания.
При разомкнутой магнитной цепи постоянная времени обмотки мала и максимальная выдержка времени также незначительна (около 0,2 с). Выдержка времени значительно увеличивается, если поток трогания близок к установившемуся значению. Однако в этом случае реле работает на пологой части кривой Ф(0, что вызывает большие разбросы времени срабатывания.
Для получения выдержки времени 1 с и более, необходимо использовать отпускание якоря. Регулировка выдержки реле при отпускании может производиться плавно и ступенчато (грубо).
Плавное регулирование выдержки времени производится изменением усилия пружины 11 (рис. 10.1). Эта пружина верхним концом упирается в шайбу 14, которая удерживается шпилькой 15, ввернутой в якорь реле. Нижний конец пружины посредством специальной пластины 16 передает силу через два латунных штифта 12, которые могут свободно перемещаться в отверстиях якоря. Оси латунных штифтов 12 смещены относительно оси пружины. В притянутом положении якоря 2 штифты 12 перемещаются вверх и пружина 11 дополнительно сжимается. Пружина 11 создает основную силу, отрывающую якорь от сердечника. •Начальное сжатие пружины изменяется с помощью гайки 13. С увеличением силы пружины 11 электромагнитное усилие, при котором происходит отрыв якоря, увеличивается и возрастает поток отпускания ФОТп- При этом время отпускания уменьшается (рис. 10.3). Чем меньше сила пружины, тем больше выдержка времени. Следует отметить, что при ФОТп, близком к Ф0ст, якорь реле вообще может не отпадать от сердечника.
Возвратная пружина 9 регулируется так, чтобы обеспечить необходимое нажатие размыкающих контактов реле и четкий возврат якоря в положение, показанное на рис. 10 1 (после того как якорь оторвется от сердечника).
Грубое регулирование выдержки времени осуществляется изменением толщины немагнитной прокладки б. Поскольку при притянутом якоре магнитная цепь насыщена, толщина немагнитной прокладки мало сказывается на установившемся потоке. С уменьшением толщины немагнитной прокладки (6o<6i) растет индуктивность катушки при ненасыщенном магнитопроводе и уменьшается скорость спадания магнитного потока. В результате при неизменном усилии пружины 11 (рис. 10.1) выдержка времени увеличивается (рис. 10.4).

Рис. 10.3. Регулирование времени отпускания с помощью пружины  
Рис. 10.4. Регулирование времени отпускания изменением немагнитного зазора

Толщину немагнитной прокладки не рекомендуется брать менее 0,1 мм. В противном случае при повторно-кратковременном режиме работы якорь расклепывает немагнитную прокладку и толщина ее уменьшается, что ведет к изменению выдержки времени.0,1 мм этим явлением можно пренебречь.
Следует отметить, что электромеханические реле времени достаточно просты по конструкции и обладают большой ударо-, вибро- и износостойкостью. Допустимое число включений достигает 600 в час. Они могут использоваться в схемах автоматики и электропривода как реле тока, напряжения и промежуточные. Коэффициент возврата их низок и составляет 0,1—0,3. Короткозамкнутые витки создают электромагнитное замедление как при притяжении, так и при отпускании якоря. Поэтому токовые реле с короткозамкнутым витком не реагируют на кратковременные перегрузки. При кратковременных перегрузках МДС обмотки пропорциональна этим перегрузкам.
Поток в магнитопроводе нарастает с постоянной времени Тк, определяемой параметрами короткозамкнутого витка LJRK. Если перегрузка кратковременна и ее длительность гпер<Гср, то поток к моменту tnep не достигнет значения потока срабатывания и якорь останется неподвижным. Если Гпер>Гср, то реле сработает. Таким образом, предотвращается отключение нагрузки (двигателя) при больших, но кратковременных токовых перегрузках, не опасных для двигателя.
Промышленностью выпускаются многочисленные модификации реле с электромагнитным замедлением и выдержкой времени при отпускании 0,3—5 с. Современные реле имеют один или два унифицированных контактных узла. Каждый узел имеет один замыкающий и один размыкающий контакты с общей точкой. Постоянный ток включения контактов составляет 10 А при напряжении 110 В и 5 А при 220 В. Ток отключения для индуктивной нагрузки (катушки реле, контакторов) составляет 0,2, для активной 0,5 А.

Реле времени — назначение, схема и принцип работы, классификация

Жизнь современного человека насыщена электрическими приборами. Они дают нам необходимые свет и тепло, доносят информацию, существенно облегают выполнение множества повседневных бытовых задач, помогают в строительстве, ремонте, при работе на садовом участке. Без них не обходится ни выполнение домашних лечебно-оздоровительных процедур, ни организация семейного досуга. Естественно, вся эта техника требует соответствующего бережного отношения и умения обращаться с ней. Но и в этом вопросе научно-технический прогресс приходит на помощь человеку.

Для рациональной, экономичной эксплуатации электрических приборов широко используются автоматизированные системы управления. Они способны выполнять массу полезных функций, и в том числе — позволяют включать или выключать устройства именно тогда, когда это требуется, по заданным хозяевами алгоритмам.

Реле времени

Современные системы управления порой поражают широтой своей функциональности. Но иногда бывает достаточно и более простых в устройстве и эксплуатации приборов автоматизации. Так, одним из примеров несложных устройств автоматического управления, кстати, внедренных в быт человека уже довольно давно, является реле времени. Что это такое, для чего оно может использоваться, какие существуют разновидности и по какому принципу они работают – обо всем этом в настоящей публикации.

Что такое реле времени?

Надо полагать, что читатель этой статьи — не специалист в вопросах электротехники, а лишь пытливый пользователь, старающийся расширить свой кругозор и применить полученную информацию в повседневной жизни. Поэтому для начала будет полезно вспомнить, что же скрывается под общим термином «реле»?

Не будем приводить длинную «научную» формулировку этого понятия – она может быть не вполне понятна начинающему. А если говорить простыми словами, то реле – это электромеханическое или электронное устройство, которое производит коммутацию (соединение или разрыв) электрической цепи при получении внешнего управляющего сигнала. Если точнее, то срабатывание происходит, когда внешнее воздействие достигает какой-то заданной величины.

Первые реле были изобретены, изготовлены и применены еще в середине XIX века – они стали незаменимым компонентом аппаратов бурно развивающейся в те времена телеграфной связи. С тех пор, безусловно, эти устройства прошли длинный путь доработок и усовершенствований, повысилась их надежность, появились новые типы, способные работать в самых разных условиях эксплуатации. Но принцип остался неизменным – внешнее управляющее воздействие руководит замыканием, размыканием или переключением электрических цепей.

На схеме очень наглядно показан основной принцип работы электромеханического реле. Ну а количество контактов и схема их переключения при срабатывании устройства далеко не ограничивается этими двумя примерами.

По большей части реле управляются электрическими сигналами – когда показатели силы тока или напряжения достигают определенной величины. Но, кстати, управляющее воздействие вовсе не обязательно является электрическим. Существуют реле, срабатывание которых вызывается изменением давления в трубопроводе, температуры окружающей среды, освещенности объекта и другие. Все это открывает очень широкие возможности автоматизации и обеспечения безопасности эксплуатации разнообразной электрической техники.

Реле давления – в бытовых условиях обычно ставится в цепи питания насосного оборудования, что позволяет автоматизировать работу систем автономного водоснабжения или отопления.

Можно добавить, что в наше время наряду с электромеханическими реле все шире используются «твердотельные» — электронные ключи, в которых переключение контактов происходит за свет использования каскадов полупроводниковых элементов или интегральных микросхем.

Теперь – к вопросу о том, что же такое реле времени.

А подсказка кроется в самом названии. Это в принципе такое же реле, но срабатывание которого происходит с определенной задержкой после подачи (или снятия) управляющего сигнала. Или же коммутация цепей производится с определенным алгоритмом по времени.

Такие устройства нашли очень широкое применение в автоматизации промышленного оборудования. Но их широко используют и в бытовых условиях. Например, на них можно переложить часть забот по управлению осветительными приборами, климатическим оборудованием или системами вентиляции, с получением весьма впечатляющего эффекта экономии электроэнергии. Появляется возможность производить в заданное время необходимые действия с бытовыми электрическими приборами даже в отсутствие хозяев или без их вмешательства. Одним словом, реле времени способны значительно упростить жизнь владельцам дома.

Электромеханическое аналоговое реле времени в корпусе под установку на стандартную DIN-рейку. Даже внешне некоторые приборы такого предназначения напоминают обычные часы.

Это была, так сказать, общая информация. А теперь перейдем к более пристальному рассмотрению разнообразия этих устройств и алгоритмов их работы.

Алгоритмы работы реле времени, функциональные диаграммы, условные обозначения

По каким алгоритмам могут работать реле времени

Выше уже упоминалось, что любые реле могут работать на замыкание, размыкание и переключение контактов при необходимом управляющем воздействии. А в реле времени предусматривается или пауза после такого воздействия, или даже соблюдение определенной цикличности срабатывания.

Различают немало алгоритмов работы реле времени. Ниже на схемах будут рассмотрены наиболее часто применяемые.

На схемах верхним графиком (голубого цвета) показывается напряжение питания, подаваемое на реле. Нижний график – выходное напряжение, идущее от реле на исполнительное устройство (на нагрузку). Красными стрелками показываются диапазоны установленной задержки срабатывания.

Еще одно замечание. Управляющие сигналы для реле могут подаваться по разному.

— Это может быть общее напряжение питание, подаваемое на прибор. Такие реле так и называется – с управлением по питанию.

— Для управления используется отдельная цепь подачи внешнего сигнала.

На приведенных ниже схемах, просто для более понятного восприятия, будут в основном показаны (за одним исключением) алгоритмы для реле с управлением по питанию. Но и для второго варианта они, в принципе, такие же.

Алгоритм 1

Схема алгоритма №1

Реле времени с задержкой включения. После включения питания выходной сигнал будет передан на нагрузку по истечении установленной паузы Т.

Алгоритм 2

Схема алгоритма №2

Выходной сигнал в данном варианте передается на нагрузку сразу после включения питания. Но через установленный интервал Т – прерывается.

Алгоритм 3

Схема алгоритма №3

Включение нагрузки происходит одновременно с подачей общего питания. Но выключение производится после выдержки паузы Т с момента снятия напряжения питания реле.

Алгоритм 4

Схема алгоритма №4

Цикличная работа реле времени, с паузой на старте. После подачи напряжения питания выходной сигнал на нагрузку появляется через интервал Т1. Этот сигнал выдерживается в течение определенного установленного интервала Т2. Затем происходит размыкание, с повторной паузой Т1, после чего вновь включение нагрузки на время Т2и так далее до полного снятия напряжения питания.

Алгоритм 5

Схема алгоритма №5

Один из вариантов с постоянно подключенным питанием и управлением с помощью внешнего сигнала. При подаче управляющего импульса (или, наоборот, при его снятии – показано высветленным цветом и пунктиром) срабатывает реле и коммутирует питание на нагрузку. Питание подается в течение установленного периода Т1, после чего автоматически отключается, до поступления очередного управляющего импульса.

Эти алгоритмы можно назвать базовыми. А уже из них, как из «кирпичиков», могут выстраиваться куда более сложные схемы, реализованные в реле различных конструкций и моделей.

Одна из самых важных характеристик реле времени – функциональная диаграмма

Кстати, показанные выше графические схемы имеют название функциональных диаграмм реле, и обычно указываются на корпусе прибора или в его технической документации. То есть при выборе требуемого изделия для определенных нужд, умея читать такие диаграммы, можно отыскать подходящую модель.

Ниже на двух иллюстрациях будет продемонстрировано многообразие функциональных диаграмм реле времени, предлагаемых в продаже. Это показывается лишь в качестве примера, так как на самом деле выбор может быть намного шире. Обратите внимание и на то, что некоторые реле могут иметь несколько выходов на нагрузку, а также несколько каналов получения внешнего управляющего сигнала.

Примеры функциональных диаграмм реле времени с управлением по питанию.

Функциональные диаграммы реле времени – таблица А

Примеры функциональных диаграмм реле времени с управлением внешним сигналом.

Функциональные диаграммы реле времени – таблица Б

Значения временных интервалов Т, Т1, Т2 и т.д.  чаще всего имеет возможность устанавливать пользователь. Правда, существуют модели реле времени, в которых время срабатывания уже предустановлено и изменению не подлежит. Но это приборы специального предназначения, обычно устанавливаемые в схемах защит электрических приборов и установок. Естественно, величина задержки в таком случае указывается в техническом описании изделия.

В одном реле времени может быть реализовано несколько алгоритмов его работы, с возможностью выбора. А функциональные диаграммы и схемы контактов обычно изображены на корпусе изделия.

Обозначения контактов реле времени на схемах

При выборе реле времени необходимо уметь разбираться не только в функциональной диаграмме, но и в схеме расположения контактов. Обычно встречаются вот такие принятые обозначения:

А. Контакты, работающие на размыкание цепи.

Условные обозначения контактор реле времени, работающих на размыкание

1 — дуга обращена вниз: задержка срабатывания после подачи управляющего напряжения;

2 — дуга обращена вниз: задержка срабатывания после снятия управляющего напряжения;

3 — две противоположно направленные дуги: задержки и при подаче управляющего напряжения, и при его снятии.

Б. Контакты, работающие на замыкание цепи.

Условные обозначения контактор реле времени, работающих на замыкание

Условия срабатывания, понятно, можно не расписывать – они такие же, как в предыдущем примере.

Разновидности реле времени

Типы реле времени по общему конструктивному исполнению

Итак, выяснили, что переключение контактов в реле времени производится с определенной задержкой после подачи или снятия питающего или управляющего напряжения. Но прежде чем перейти к рассмотрению самих устройств, обеспечивающих работу по заданному алгоритму, заметим, что реле времени по своей компоновке или общему исполнению можно разделить на несколько типов.

  • Моноблочные реле времени. Это – совершенно независимые приборы с собственным корпусом, встроенным питанием или устройством для подключения питания, с выходом, к которому можно подключать стороннюю бытовую или иную технику. Такое реле можно устанавливать в практически в любом месте по необходимости, и подключать к нему тот прибор (систему) который требует подобного управления по времени. Классическим примером может служить реле времени, с которым хорошо знакомы те, кто занимался печатью фотографий.
Такое реле времени позволяло очень точно соблюдать выбранную экспозицию фотобумаги при печатании фотографий

К приборам более широкого использования можно отнести современные реле времени (таймеры) которые останавливаются в розетку и имеют гнездо для подключения сетевой вилки нагрузки. Самый простейший пример использования – можно с вечера запрограммировать, чтобы к утреннему подъему хозяев в электрическом чайнике была вскипячена вода.

Реле времени (или таймеры), подключаемые в розетку и сами становящиеся «управляемой розеткой» для подключенного к ним электрического прибора. Как видно, могут быть электромеханическими и электронными.
  • Встраиваемые реле времени. Они не имеют собственного корпуса, являются одним из узлов электрического прибора (или предназначены для такой установки), и автономно, как правило, не применяются. Классический пример такого реле времени – это механический или электронный таймер, руководящий режимами работы стиральной машины, микроволновки, электрической духовки и т.п.
Встраиваемое реле времени, как отдельный узел общего устройства крупного бытового прибора

Такие реле могут быть электромеханическими, имеющими блочное исполнение. Другой вариант – это реле электронного типа, собранное на печатной плате, которая коммутируется с общей схемой того или иного электрического прибора.

Электронное реле времени, выполненное в виде монтажной сборки на печатной плате
  • Модульные реле времени. Как понятно уже из названия, такие приборы имеют стандартизированные размеры и предназначаются для установки на DIN-рейку распределительного щита. Там же, в щите, производится и из стационарное подключение к источнику питания и нагрузке, работой которой они будут управлять. Например, таким образом можно подключить системы освещения, которые будут работать по определенному алгоритму времени, мощные приборы отопления, скажем, с тем расчетом, чтобы их основное функционирование приходилось на часы действия льготного тарифа, вентиляционные установки для обеспечения заданной периодичности проветривания и т.п. Возможно их использование и с другими крупными бытовыми приборами, если те в своей конструкции не имеют собственного встроенного таймера.
Модульные реле времени представлены в продаже широким разнообразием моделей различной степени сложности и функциональной оснащенности

Несмотря на единообразие размеров, модульные реле времени могут значительно различаться набором возможностей, количеством каналов и программируемых интервалов. В зависимости от степени сложности и, отчасти, от допустимой мощности подключаемого к ним оборудования, такие реле могут занимать одно, два, три и даже больше модуль-мест на DIN-рейке распределительного щита.

Такое электронное реле времени с возможностью настройки суточного цикла работы займет на DIN-рейке три модуль-места

Удобно – места такие приборы занимают совсем немного, находятся не на виду, детям недоступны. Многие позволяют задавать суточный, недельный месячный или даже годовой алгоритм работы, то есть не требуют частого вмешательства в управление. Но если и возникнет нужда внести корректировки, то удобное расположение реле времени на рейке, с расположением всех органов управления на фасадной панели, позволит это сделать безо всякого труда.

Типы реле времени по принципу работы 

Теперь стоит разобраться, что за механизмы обеспечивают задание необходимого временного интервала. По этому критерию реле времени можно подразделить на несколько типов – это электромагнитные приборы, устройства с пневматическим или гидравлическим замедлителем, моторные, реле с механическим часовым механизмом и электронные.

Цены на реле времени CRM

реле времени CRM

Рассмотрим их вкратце в перечисленном порядке

Электромагнитные реле времени

Они обычно применяются в каскадах пуска и остановки мощного оборудования – позволяют несколько разнести по времени запуск отдельных узлов (механизмов) во избежание резких скачков нагрузки на линию питания.

Принцип работы узла замедления срабатывания заключается в следующем. Конструктивно реле представляет собой электромагнитную катушку. Перемещение притягиваемого к сердечнику катушки якоря передается на механизм замыкания-размыкания контактов. Но на общий сердечник с катушкой надета гильза (чаще всего – медная), которая становится дополнительным короткозамкнутым контуром.

Принцип устройства электромагнитного реле времени

При подаче напряжения питания на катушку в этой дополнительной «обмотке» наводится ЭДС, создающая ток с таким направлением, что он получается в «противоходе» току в основной катушке. То есть своеобразно «гасит» скорость нарастания напряженности электромагнитного поля, необходимого для притягивания якоря реле. И в итоге срабатывание контактной группы происходит не мгновенно при включении питания, а с задержкой, длительность которой можно регулировать уровнем пожатия пружины якоря. Диапазон задержки обычно лежит в пределах о 0,07 до 0,15 секунд.

«Классический» пример электромагнитного реле времени – используемая в цепях питания мощного оборудования модель РЭВ 812

При выключении питания происходит обратная картина – за свет наличия дополнительной обмотки-гильзы наблюдается своеобразный эффект «инерции», и размыкание контактов тоже происходит с задержкой. Она может составлять от 0,5 до 1,5÷2 секунд.

Пневматические или гидравлические реле времени.

Вряд ли с ними придется иметь дело в бытовых условиях – они тоже ставились только на мощное обрабатывающее оборудование. Но с механизмом замедления познакомиться все же будет интересно, потому как он имеет довольно оригинальную конструкцию.

Реле времени РВП 72-3221 с пневматическим замедлителем срабатывания

Конструктивно такие реле обязательно включают камеру с диафрагмой, в которую упирается подвижный узел (колодка), вызывающая переключение контактов. При снятии напряжения с обмотки катушки колодка освобождается и под действием пружины начинает перемещаться. Но движение колодки тормозится диафрагмой — до выхода воздуха из пневмокамеры. А скорость выпуска воздуха зависит от сечения отверстия, которое, в свою очередь, регулируется специальной иглой.

Регулировки интервала замедления срабатывания могут проводиться в достаточно широком диапазоне и с высокой степенью точности.

Помимо пневматических, существуют и гидравлические замедлители, в которых через регулируемое отверстие между камерами перепускается жидкость (например, трансформаторное масло). Но принцип срабатывания при этом не меняется.

Моторные реле времени

Такие устройства тоже, похоже, уже становятся пережитками прошлого, хотя могут еще встречаться на старых образцах примышленного оборудования.

Принцип работы моторного реле времени

Характерная особенность таких приборов – это наличие, кроме присущей большинству реле катушки, еще и собственного электропривода. При включении питания оно подается и на катушку, и на электродвигатель, с которого вращение передаётся по системе зубчатых передач рабочим колесам. На этих колесах (имеющих градуировку по времени) есть специальные выступы, которые в определённый момент вызовут замыкание или размыкание контактов цепи питания катушки. Ну а включение или выключение питания на обмотке катушки, в свою очередь, обеспечивает необходимую коммутацию подключенных к реле времени силовых линий.

Цены на реле времени Feron

реле времени Feron

Время срабатывания устанавливается начальным положением рабочего колеса. Кстати, в одном реле таких колес может быть и несколько, что позволяет организовывать довольно сложные алгоритмы управления подключенной нагрузкой.

Моторное реле времени ВС-33
Реле времени с анкерным (часовым) механизмом

Самый простой и очень наглядный пример аналога подобных реле времени – это обычные настольные часы с будильником, работающие от батарейки. Время срабатывания устанавливается отдельной специальной стрелкой. И когда часовая стрелка сравняется с ней – произойдет замыкание контакта, и питание будет подано на генератор звукового сигнала.

Безусловно, сами реле времени устроены несколько сложнее, да и нагрузка к ним подключается куда более мощная, чем миниатюрный биппер. Но принцип действия – очень схожий. Механизм отсчета времени – практически полная аналогия с обычными часами. В некоторых реле старых образцов – даже пружина заводится вручную, по мере необходимости. В других – завод осуществляется автоматически при включении питания за сет перемещения электромагнитного якоря.

Реле времени с часовым механизмом РВ 235 УХЛ4. С производства давно сняты, но у некоторых хозяев продолжают верно служить

Реле с часовым механизмом в продаже представлены в широком разнообразии. Большой популярностью у пользователей пользуются модели с циферблатом, разделенным на 24 часа, а каждый час делится еще обычно на четыре отрезка по 15 минут. Каждому такому минимальному интервалу соответствует подвижный сектор (штырек, рычажок, в зависимости от модели).

При подключении реле к сети циферблат начинает вращаться с угловой скоростью один оборот в сутки. На циферблате выставляется текущее астрономическое время. Ну а затем несложно запрограммировать алгоритм срабатывания реле – нажатием (откидыванием или иным перемещением) подвижных секторов, соответствующих тем периодам времени, когда питание на нагрузку должно быть включено.

Программирование алгоритма срабатывания такого реле времени – несложное и интуитивно понятное

Подобные реле времени выпускаются в модульном или моноблочном исполнении, то есть или устанавливаются в распределительном шкафу, или напрямую подключатся в розетку. Невысокая стоимость и простота в эксплуатации снискали им широкую популярность. Точность выставления диапазона и срабатывания реле, безусловно, нельзя назвать высокой (минимальная градация в 15 минут), но для большинства бытовых приборов этого бывает вполне достаточно.

Ну а если требуются более точные настройки, вплоть до секундной градации, то лучше всего сразу приобрести электронное реле времени.

Узнайте, как подключить розетку, а также ознакомьтесь с пошаговыми примерами правильного подключения провода к розетке.

Электронные реле времени

Электронные реле времени в настоящее время все активнее вытесняют своих электромеханических «собратьев». Это понятно – привлекает высокая точность срабатывания, возможности программирования на длительный период: на неделю месяц и даже более, с учетом чередования выходных и праздничных дней, смены сезона, других факторов, влияющих на предполагаемый режим работы подключенных к реле электроприборов.

Электронное реле времени с богатым набором возможностей программирования алгоритма управления подключенными электрическими приборами или системами

В этой категории тоже есть свое подразделение по технологии отсчета времени срабатывания. Углубляться в тему не будем – этот вопрос, скорее, интересен специалистам-электронщикам.

Можно лишь вкратце пояснить, что самые простые электронные реле отсчитывают время с помощью RC-цепочек (резистор + конденсатор). Время зарядки конденсатора зависит от номинала самого конденсатора и включенного с ним в цепь резистора. То есть это легко просчитывается, и плавным изменением номиналов элементов схемы или сменой цепочек (в некоторых реле их несколько) можно установить нужный интервал задержки срабатывания.

Более сложные реле времени оснащены специальными микросхемами или каскадом полупроводниковых приборов, обеспечивающих необходимую задержку по времени. Ну а самые современные на сегодняшний день имеют микропроцессорные блоки и кварцевые генераторы опорной частоты. Так что отсчёт времени в них происходит с максимальной точностью, а энергонезависимая память позволяет проводить программирование алгоритма работы.

Электронное реле времени модульного исполнения с аналоговой настройкой параметров работы. Сравнительно недорого и очень часто – вполне достаточно.

Ассортимент электронных реле времени – очень широк. Вполне можно приобрести относительно недорогую модель с аналоговой настройкой параметров и обеспечивающее простейшие операции включения-выключения силовой линии с требуемой задержкой или по определённому алгоритму. Часто для реализации задуманной автоматизации того или иного процесса и такого прибора бывает вполне достаточно. Более совершенные реле времени оснащаются цифровыми жидкокристаллическими дисплеями и кнопочной (сенсорной) системой управления с точностью выставления параметров буквально до долей секунды. Удобно, но и стоимость, безусловно, растет пропорционально.

Можно еще добавить, что электронные реле времени могут выпускаться в любом из исполнений – как отдельные приборы-моноблоки (например – опять же, вариант «розетка с таймером»), в виде плат или блоков для установки в оборудование, или в модульной компоновке для размещения на DIN-рейке.

Видео: Пример использования электронного реле времени KEMOT URZ2001-1

*  *  *  *  *  *  *

К слову, немало «ломается копий» по поводу, как же правильнее называть подобные устройства – реле времени или таймерами. Приводятся доводы, что работа реле увязывается с астрономическим временем, а таймер лишь производит обратный отсчет заданного интервала. Или наоборот, что реле должно лишь обеспечивать задержку включения и выключения, а все что касается возможностей программирования (задания алгоритма работы) – это таймеры. Таким образом, утверждения прямо противоречат друг другу.

По мнению автора этой статьи, «граница» между этими типами приборов, если она и есть – весьма условная. И морочить себе голову тонкостями терминологии – вряд ли в данном случае имеет смысл. Главное – разобраться и суметь сформулировать: для чего вам требуется устройство управления и какими функциями оно должно обладать. И можете не сомневаться, что грамотный продавец-консультант прекрасно вас поймет и предложит оптимальную модель. А в паспорте у нее, кстати может быть указано и таймер, и реле времени. А нередко – и оба термина сразу, через тире или в скобках.

виды, принцип работы, устройство реле

Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. По факту, это автоматический выключатель, который соединяет или разъединяет электроцепи при достижении установленных значений или под внешним воздействием. Реле применяются в промышленности для автоматизации технологических процессов, в бытовой технике, которая есть в каждом доме, например в холодильниках и стиральных машинках, для защиты сети от слишком высоких или слишком низких параметров тока. Выбор нужного устройства упрощает классификация реле по различным признакам.

Содержание статьи

Общее описание конструкции

Понятие «реле» объединяет целое семейство устройств разной конструкции. Но в общем случае реле состоит из трех основных функциональных элементов:

  • Воспринимающий. Это первичный элемент, который воспринимает контролируемую величину и преобразует ее в другую физическую величину.
  • Промежуточный. Сравнивает полученное значение с заданным параметром. Если это значение выше или ниже заданного параметра, то на исполнительный элемент передается первичное воздействие.
  • Исполнительный. Этот элемент передает воздействие в цепи, управляемые реле. В результате такого воздействия может произойти: размыкание или соединение управляемой цепи, переключение параметров тока.

Исполнение и принцип действия первичного элемента зависят от того, какое назначение имеет реле и на какую физическую величину (сила тока, напряжение, свет, тепло и т.п.) оно настроено.

Основные характеристики реле

Независимо от вида и принципа действия реле, выделяют несколько параметров, на которые обращают внимание при выборе этого прибора:

  • Время срабатывания – промежуток времени между поступлением управляющего сигнала и воздействием на управляемые цепи.
  • Коммутируемая мощность – допустимая мощность электроцепи или электроустановки, которой будет управлять реле.
  • Уставка – обычно это регулируемый параметр, который определяет величину поступающего параметра (тока, напряжения, частоты, давления, температуры), при которой происходит срабатывание реле.

Виды реле: контактные и бесконтактные

По устройству исполнительного компонента реле делят на контактные и бесконтактные.

Контактные

Воздействуют на управляемую цепь с помощью электрических контактов. Их размыкание или замыкание полностью разъединяет или замыкает электроцепь. Для изготовления контактов используются: медь, серебро, вольфрам. Количество контактов – до 10 штук. Четырех- и пятиконтактные реле используются в электрических схемах автомобилей для включения и переключения цепей.

Бесконтактные

Такие реле воздействуют на управляемую цепь способом изменения электрических параметров выходных электроцепей – емкости, сопротивления, индуктивности, величины тока или напряжения.

Классификация реле по способу включения

Первичные

Эти устройства включаются непосредственно в цепь элемента, для защиты которого они предназначены. Их преимущества – не требуются измерительные трансформаторы, источники оперативного тока, контрольные кабели.

Вторичные

Подключаются в цепь с использованием вторичных трансформаторов. Это наиболее распространенный вид реле. Их преимущества – изоляция от высокого напряжения, возможность расположить устройство в месте, удобном для обслуживания. Вторичные реле выпускаются стандартными. Они рассчитаны на ток 5 (1) А и напряжение 100 В и могут устанавливаться в любые электроцепи, независимо от их тока и напряжения.

Виды реле по назначению

По назначению эти устройства бывают трех типов – управления, защиты, сигнализации.

Реле управления

Эти реле являются первичными. Монтируются непосредственно в электроцепь. Их роль – включение и выключение отдельных элементов схемы. Могут использоваться самостоятельно или в качестве комплектующих низковольтных комплектных устройств – ящиков, панелей, шкафов.

Реле защиты

Выполняют функции включения, отключения и защиты устройств, имеющих термические контакты – электродвигателей, вентиляторов. При превышении температуры термические контакты размыкаются. Оборудование может восстановить работу только после остывания термоконтактов до установленной температуры.

Сигнализации

Такие реле устанавливают в охранных системах автотранспорта, предприятий, придомовых территорий. Служат для формирования сигнала при достижении установленной величины параметра, который находится под контролем (ток, напряжение, частота, давление, температура, акустические параметры и другие).

Разновидности электромеханических реле

Наиболее распространенный вид электрических реле – электромеханические. К ним относятся: электромагнитные, индукционные, электротепловые устройства.

Электромагнитные

Один из видов электрических реле электромагнитное. В конструкции этого устройства имеются: обмотка со стальным сердечником, группа подвижных контактов, замыкающих и размыкающих управляемую электроцепь. Рассмотрим принцип их действия:

  • На катушку сердечника подается управляющий ток.
  • В сердечнике под воздействием электрического тока создается магнитное поле, притягивающее контактную группу.
  • В зависимости от типа реле, контакты замыкают или размыкают электрическую цепь.

Разновидность электромагнитных реле – поляризованные, которые отличаются от нейтральных способностью реагировать на полярность управляющего сигнала. Размыкание или замыкание контактов зависит от полярности подключения электромагнита. Обладают более высокой чувствительностью, по сравнению с нейтральными реле. Такие устройства могут использоваться только в цепях постоянного тока.

Электротепловые (термические)

Тепловые реле представляют собой комплекс биметаллических пластин, для изготовления которых используются металлы с разным коэффициентом расширения при нагреве. Такие реле могут использоваться в качестве защитных устройств: при превышении температуры, установленной регулятором, контакты разъединяются, и поступление тока на потребителя прекращается.

Обычно тепловые реле используются в бытовых одно- и трехфазных сетях при подключении электрических двигателей. При увеличении нагрузки на двигатель выше установленной величины происходит нагрев биметаллического реле, которое при достижении определенной температуры размыкает электрическую цепь. Двигатель прекращает работу. После остывания биметаллических пластин цепь замыкается и двигатель возобновляет работу. Термические устройства могут оснащаться колесиком, с помощью которого регулируется температура отключения двигателя, и кнопкой принудительного запуска.

Существует разновидность термических реле, в которых биметаллические пластины заменены легкоплавящимся сплавом. Они срабатывают практически мгновенно – при достижении определенной температуры металл расплавляется и цепь размыкается. Принцип действия таких устройств похож на принцип действия предохранителей. После срабатывания такое реле, установленное непосредственно на оборудовании в качестве последней защиты от перегорания, подлежит замене.

Индукционные

Принцип действия этих устройств основан на взаимодействии между переменными магнитными потоками и токами, которые формируют переменные магнитные потоки. Индукционные приборы рассчитаны только на использование в цепях переменного тока. Существуют три типа индукционных реле – с рамкой, диском, цилиндрическим ротором («стаканом»). Эти устройства широко востребованы в системах релейной защиты и автоматики.

Другие виды электрических реле

Твердотельные

Эти электронные устройства компактны и долговечны, благодаря отсутствию трущихся механических частей. Работу механики здесь выполняют полупроводниковые элементы – биполярные и МОП-транзисторы, тиристоры, симисторы. По сравнению с твердотельными, они имеют следующие преимущества:

  • Низкий уровень шума при работе.
  • Очень высокая наработка на отказ, которая в 100 раз и более превышает ресурс электромагнитных устройств.
  • Быстродействие, составляющее доли миллисекунд, у электромагнитных 50 мс – 1с.
  • Электропотребление ниже на 95 %.

Однако твердотельные реле имеют не только достоинства, но и недостатки. Одним из них является слабая устойчивость к импульсным перенапряжениям, которые электромагнитным реле практически не страшны. При использовании твердотельных реле необходимо предусмотреть схемотехническое решение, которое ограничивает эти импульсы. Есть и еще минусы – нагрев при работе, наличие токов утечки, приводящих к наличию напряжения на фазном проводе даже при отключенном реле.

Твердотельные реле применяют в системах регулирования температуры, в которых в качестве нагревателей используются ТЭНы, в промышленной автоматике, телеметрии, механизмах оборудования, используемого в металлургической и химической индустрии, в медоборудовании, военной электронике.

Герконовые

Реле этого типа представляют собой герконовую катушку. Это баллон, заполненный инертным газом, или внутри которого создан вакуум. Внутри баллона располагают соединительные элементы из пермаллоя – прецизионного сплава (сплава с точно заданным химическим составом), включающего железо и никель. Эти соединительные элементы имеют вид проволоки с контактами. Их покрывают серебряным или золотым напылением. Геркон размещают в середине электрического магнита или в пределах действия его поля. При подаче тока на обмотку электромагнита образуется магнитный поток, который запирает контакты. Герконовые реле могут выполнять функции: замыкающие, переключающие, размыкающие. Преимущества этих устройств – компактные габариты, доступная цена, отсутствие трущихся частей, что продлевает срок службы. Тот факт, что контактная группа располагается в инертном газе или вакууме и надежно защищена от влаги, повышает надежность реле.

При использовании герконовых реле следует избегать:

  • близкого присутствия источника ультразвука, который будет негативно влиять на работоспособность;
  • воздействия постороннего магнитного поля;
  • механических повреждений.

Колба изготавливается обычно из стекла, поэтому ее нужно всячески оберегать от механических воздействий. При разбитой колбе контактная группа срабатывать не будет. Герконовые реле можно использовать только в системах, в которых параметры электропитания находятся в пределах, установленных в технической документации. При подаче слишком высоких токов произойдет размыкание контактов. Нарушения в работе герконовых реле наблюдаются и в случаях подачи тока слишком низкой частоты.

Фотоэлектронные (фотореле)

Основой фотоэлектронного реле является полупроводниковый элемент – фоторезистор, сопротивление которого изменяется в зависимости от изменения освещенности. Фотореле – прибор, широко применяемый коммунальными службами. Он надежен в работе и обеспечивает существенную экономию электроэнергии и безопасность на улицах. При повышении освещенности все осветительное оборудование отключается, а при наступлении темноты – включается. Большинство таких приборов оснащено регулятором порога срабатывания и механическим выключателем.

Виды реле по типу поступающего параметра

По этому параметру разделяют реле: тока, мощности, частоты, напряжения, давления, акустических величин, количества газа. Устройства могут быть максимальными и минимальными. Реле, которые срабатывают при превышении заданной величины, называют «максимальными», а при ее падении ниже заданного уровня – «минимальными».

Реле тока

Реле тока реагируют на резкие перепады тока и при необходимости отключают отдельную нагрузку или всю систему электроснабжения. Величина максимального тока, при которой необходимо отключить потребителей, устанавливается регулятором.

Реле напряжения

Реле напряжения реагируют на величину напряжения и включаются через трансформаторы напряжения. Используются для контроля фаз напряжения в электросетях и защиты электроприборов. Основой такого реле является контроллер быстрого реагирования, отслеживающий отклонения напряжения за установленные пределы. Общепринятый стандарт срабатывания таких реле – ниже 170 В и выше 250 В.

Реле частоты

Служат для контроля частоты переменного тока, которая должна быть равна 50 или 60 Гц в одно- и трехфазных сетях. Обычно имеют фиксированные задержки срабатывания. Пороги размыкания цепи, которая находится под контролем, можно регулировать. Режим работы этого устройства может предусматривать наличие «памяти» аварии.

Реле мощности

Устройство, ограничивающее мощность, действует аналогично ограничителю тока нагрузки. При превышении установленного порога мощности происходит отключение потребителя. Реле ограничения мощности часто оснащаются функцией автоматического повторного включения. То есть, после снижения нагрузки работа оборудования возобновляется автоматически.

Реле давления

Реле давления – важнейший прибор, используемый в насосном оборудовании для контроля перепадов давления воды, масла, нефти, воздуха. Различают два основных типа таких приборов – электромеханические и электронные.

Электромеханические реле имеют в конструкции особый элемент, реагирующий на изменение давления в системе, – гибкую мембрану, которая изгибается под напором жидкости (воздуха) в системе. Она соединяется с двумя пружинами, одна из которых настраивается на минимально допустимый напор, а вторая – на разницу между верхней и нижней границами давления в системе. При снижении давления в системе ниже минимального порога реле включает насосное оборудование, при превышении верхнего порога – отключает. Это простые и надежные устройства, но не очень удобные в эксплуатации. Оператору приходится регулярно проверять настройки и при необходимости их корректировать.

Электронные устройства имеют более сложную конструкцию. Пределы можно устанавливать очень точно и при эксплуатации контролировать их не требуется. Электронные приборы чувствительны к гидроударам, поэтому их оснащают небольшими гидробаками (объем – примерно 400 мл). Электронное реле давления устанавливается между насосным оборудованием и первой точкой водоразбора.

Реле акустические

Акустические реле реагируют на изменение акустических величин – частоты звуковой волны, ее давления или акустических характеристик материалов – коэффициентов поглощения и отражения. Принцип действия может быть механическим или электрическим. В акустических приборах механического действия предусмотрена мембрана, которая прогибается под давлением звуковых волн, и при достижении определенной величины давления происходит замыкание контакта. В состав электрических акустических приборов входят: воспринимающий орган (микрофон, фильтр), усилитель, выходное электрическое реле.

Устройства, срабатывающие на любой шум, часто используются совместно с системой освещения. Они реагируют на любой возникающий шум в помещении и дают сигнал на включение света. Обычно их устанавливают в коридорах и на лестничных площадках. Также акустические реле широко используются в охранных системах, «интеллектуальных» игрушках.

Газовые реле

Эти приборы применяются для обеспечения газовой защиты. Они представляют собой металлический корпус, врезанный в маслопровод. Реле в нормальном состоянии заполнено маслом, а его контакты находятся в разомкнутом состоянии. При повышении содержания газов они заполняют верхнюю часть реле с одновременным вытеснением масла. Поплавок, имеющийся в конструкции, с понижением уровня масла опускается, поворачивается вокруг своей оси и вызывает замыкание контактов в сигнальной цепи. Сформированный сигнал предупреждает о высокой загазованности среды.

Промежуточные реле

«Промежуточным» называют реле, которое играет в цепи не главную, а вспомогательную роль. Рассчитано на установку в автоматических схемах и цепях управления. Его функции – увеличение числа контактов основного реле, когда необходимо замкнуть или разомкнуть несколько цепей, замкнуть одну и одновременно разомкнуть другую цепь, выполнить другие задачи. Они используются в схемах усиления и преобразования электрических сигналов, запоминания информации и программирования, распределения электрической энергии с управлением работой отдельных элементов, сопряжения элементов радиоэлектронной аппаратуры с разными принципами действия.

Часто функции промежуточных выполняют электромагнитные реле, в которых в зависимости от конструкции и области применения имеются контакты следующих типов:

  • Нормально разомкнутые (замыкающие). При отсутствии электропитания находятся в разомкнутом состоянии. При подаче напряжения происходит их замыкание.
  • Нормально замкнутые (размыкающие). В нормальном состоянии такие контакты находятся в замкнутом состоянии, а при поступлении электропитания контакты размыкаются.
  • Перекидные. В таких реле при отсутствии напряжения имеется средний контакт, замкнутый с одним из неподвижных контактов. При подаче тока средний контакт разрывает связь с первым неподвижным контактом и замыкается со вторым неподвижным контактом.

Обозначение реле на схеме

Обозначение реле на принципиальной схеме

На электрических схемах реле обозначается прямоугольником, от наибольших сторон которого показаны выводы питания. Функциональное назначение реле указывается на схеме буквами:

  • KA – тока;
  • KV – напряжения;
  • KB – блокировки;
  • KBS – блокировки от многократного включения;
  • KH – указательное;
  • KL – промежуточное;
  • KQ – фиксации положения выключателя;
  • KSV – контроля цепи напряжения;
  • KSP – контроля давления;
  • KSH – контроля напора;
  • KSL – контроля уровня жидкости;
  • KSR – скорости;
  • KSQ – состава вещества;
  • KW – мощности;
  • KZ – сопротивления.

Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Устройство и принцип действия электромагнитных реле. Их преимущества и недостатки | RuAut

Реле — называется электрическое устройство, которое предназначается для осуществления коммутации различных участков электрических схем  при изменении электрических или неэлектрических входных воздействий. Впервые, термин «реле» фигурирует в тексте патента на изобретение телеграфа за авторством С. Морзе в 1837 году. А само устройство электромагнитного реле было изобретено Джозефом Генри за два года до этого в 1835 году. Интересно также, что термин «реле» произошел от английского слова «relay», которое в те времена означало действие при передаче эстафеты спортсменами или же подмену почтовых лошадей на станциях, когда они начинают уставать.

Наиболее широкое применение в схемах автоматики и системах защиты электроустановок получили электромагнитные реле, благодаря своей высокой надежности и простоте принципа действия. Электромагнитные реле подразделяются на реле переменного и постоянного тока. Последние, в свою очередь, подразделяются на поляризованные (реагируют на полярность управляющего сигнала) и нейтральные (в одинаковой степени реагируют на протекающий по его обмотке постоянный ток любой полярности).

Принцип работы электромагнитных реле основан на применении электромагнитных сил, которые возникают в металлическом сердечнике во время прохождения электрического тока по виткам его катушки. Все детали будущего реле необходимо смонтировать на основание и закрыть крышкой, после чего над сердечником электромагнита устанавливается пластина (подвижный якорь), к которой крепятся от одного до нескольких контактов. Напротив закрепленных контактов устанавливают парные им неподвижные контакты.

Поддерживать якорь в исходном положении помогает закрепленная пружина. Во время подачи напряжения на электромагнит якорь начинает притягиваться, преодолевая сопротивление пружины, при этом, в зависимости от конструкции имеющегося реле, происходит размыкание или замыкание контактов. Если отключить напряжение – благодаря пружине якорь вернется в исходное положение. Иные модели реле могут содержать в себе электронные элементы. Примерами таких реле могут послужить резистор, который подключается к обмотке катушки, чтобы реле более четко срабатывало, и конденсатор, расположенный параллельно контактам, дабы снизить вероятность появления искр и помех.

У электромагнитного реле имеется ряд преимуществ, недоступных полупроводниковым конкурентам:

  • Возможность коммутации нагрузок общей мощностью не более 4 кВт в то время когда объем реле не превышает 10см3;
  • Проявление устойчивости к импульсам перенапряжения и способным оказать разрушительное воздействие помехам, возникающим во время разряда молнии или по причине протекания коммутационных процессов в высоковольтном оборудовании;
  • Наличие исключительной электрической изоляции, проложенной между катушкой (управляющей цепью) и группой контактов (требования последнего стандарта – 5 кВ) – недоступная мечта для большей части полупроводниковых ключей;
  • Малый уровень выделения тепла замкнутых контактов вследствие малого падения напряжения: во время коммутации тока 10 А малогабаритным реле суммарно рассеивается по катушке и контактам не более 0,5 Вт, при учете что симисторным реле отдается в атмосферу не менее 15 Вт, в результате чего приходится решать вопрос по интенсивному охлаждению, а попутно усугубляется проблема парникового эффекта на нашей планете;
  • В сравнении с полупроводниковыми ключами электромагнитные реле имеют более низкую стоимость.
  • Кроме достоинств электромагнитные электромеханические реле имеют и свои недостатки: не высокая скорость работы, ограниченность электрического и механического ресурса, возникновение радиопомех во время замыкания и размыкания контактов, и последнее, но наиболее неприятное свойство – возникновение серьезных проблем во время коммутации высоковольтных и индуктивных нагрузок на постоянном токе.

Как правило, электромагнитные реле применяются при коммутации нагрузок при переменном токе с напряжением 220В или при постоянном токе в диапазоне напряжений 5 – 24В и токами коммутации 10 – 16 А. Стандартными нагрузками для мощных реле являются – лампы накаливания, нагреватели, обогреватели, электромагниты, маломощные электродвигатели (к примеру, сервоприводы и вентиляторы), иные активные, индуктивные и емкостные потребители электрической энергии с диапазоном мощностей 1 Вт – 3 кВт.

Рабочее напряжение и сила тока в катушке реле не должны превышать предельно допустимых значений, поскольку уменьшение этих значений значительно снизит надежность контактирования, а их увеличение приведет к перегреву катушки, тем самым снизив надежность реле при предельно допустимых значения положительной температуры. Крайне нежелательно даже кратковременное воздействие повышенного напряжения, поскольку при этом возникают в деталях магнитопровода и в контактных группах механические перенапряжения, а электрическое перенапряжение обмотки катушки может привести к пробою изоляции во время размыкания цепи.

Во время выбора режима работы реле стоит учитывать характер воздействующих нагрузок, род и значение коммутируемого тока, частоту коммутации.

Во время коммутации индуктивных и активных нагрузок самым тяжелым является процесс размыкания цепи, поскольку образовывающийся дуговой разряд становится причиной основного износа контактов.

Реле с выдержкой времени — электромеханические

7012AC

57F1581

Реле с выдержкой времени, 1,5 с, 15 с, Серия 7000, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

1.5 с 15 с 7000 серии DPDT 10А Крепление на панель 240 В переменного тока Винт 120 В переменного тока Ручка
7022AC

57F1582

Реле с выдержкой времени, 1.5 с, 15 с, серия 7000, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

1.5 с 15 с 7000 серии DPDT 10А Крепление на панель 240 В переменного тока Быстрое соединение 120 В переменного тока Ручка
7022AK

28F1931

Реле с выдержкой времени, 1 с, 300 с, серия 7000, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

1 с 300 с 7000 серии DPDT 10А Крепление на панель 240 В переменного тока Винт 120 В переменного тока Ручка
7022ПК

50F3618

Реле с выдержкой времени, 1.5 с, 15 с, серия 7000, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

1.5 с 15 с 7000 серии DPDT 10А Крепление на панель 240 В переменного тока Быстрое соединение 125 В постоянного тока Ручка
7012AE

57F1583

Реле с выдержкой времени, 20 с, 200 с, серия 7000, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

20 с 200-е годы 7000 серии DPDT 10А Крепление на панель 240 В переменного тока Быстрое соединение 120 В переменного тока Ручка
RE17RMMW

82Y0344

Реле задержки времени, 0.1 с, 100 ч, Zelio RE17 Series, SPDT, 8 А

SCHNEIDER ELECTRIC

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

0.1 с 100ч Zelio RE17 серии SPDT 8A DIN-рейка 250 В Винт 240 В переменного тока Слот для отвертки
TR-6182U

01AC4290

Реле с выдержкой времени, универсальный вход, 30 В, 0.05 с, 100 ч, TIME RANGER Серия TR-6, DPDT, 10 А

МАКРОМАТИЧЕСКОЕ УПРАВЛЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

30 В 0.05с 100ч ТАЙМ РЕЙНДЖЕР серии TR-6 DPDT 10А 240 В Быстрое соединение 240 В переменного тока Ручка
7022BK

28F1932

Реле с выдержкой времени, 1 с, 300 с, серия 7000, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

1 с 300 с 7000 серии DPDT 10А Крепление на панель 240 В переменного тока Быстрое соединение 240 В переменного тока Ручка
RE17RAMU

58Y8211

Реле с выдержкой времени, IP50, IP40, IP20, 1 с, 100 ч, серия Zelio, SPDT, 8 А

SCHNEIDER ELECTRIC

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

1 с 100ч Zelio серии SPDT 8A DIN-рейка 250 В Винт 24В Поворотный переключатель
7022AF

57F1586

Реле с выдержкой времени, 1 мин., 10 мин., Серия 7000, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

1 минута 10 минут 7000 серии DPDT 10А Крепление на панель 240 В переменного тока Быстрое соединение 120 В переменного тока Ручка
7012PD

50F3839

Реле с выдержкой времени, 5 с, 50 ​​с, серия 7000, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

5 с 50-е годы 7000 серии DPDT 10А Крепление на панель 240 В переменного тока Быстрое соединение 125 В постоянного тока Ручка
7022AH

57F1558

Реле с выдержкой времени, 3 мин., 30 мин., Серия 7000, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

3мин 30 минут 7000 серии DPDT 10А Крепление на панель 240 В переменного тока Быстрое соединение 120 В переменного тока Ручка
RE22R1MYMR

81Y2329

Реле задержки времени, 0.05 с, 300 ч, Zelio Time RE22 Series, SPDT, 8 А

SCHNEIDER ELECTRIC

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

0.05с 300ч Zelio Time серии RE22 SPDT 8A DIN-рейка 250 В Винт 240 В Слот для отвертки
7012AK

28F1929

Реле с выдержкой времени, 1 с, 300 с, серия 7000, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

1 с 300 с 7000 серии DPDT 10А Крепление на панель 240 В переменного тока Быстрое соединение 120 В переменного тока Ручка
TR-6512U

01AC4293

Реле с выдержкой времени, универсальный вход, 30 В, 0.05 с, 100 ч, TIME RANGER Серия TR-6, DPDT, 10 А

МАКРОМАТИЧЕСКОЕ УПРАВЛЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

30 В 0.05с 100ч ТАЙМ РЕЙНДЖЕР серии TR-6 DPDT 10А 240 В Быстрое соединение 240 В переменного тока Ручка
TR-6022U

01AC4285

Реле с выдержкой времени, универсальный вход, 30 В, 0.05 с, 100 ч, TIME RANGER Серия TR-6, DPDT, 10 А

МАКРОМАТИЧЕСКОЕ УПРАВЛЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

30 В 0.05с 100ч ТАЙМ РЕЙНДЖЕР серии TR-6 DPDT 10А 240 В Быстрое соединение 240 В переменного тока Ручка
TD-78122

30М2626

Реле с выдержкой времени, многофункциональное, 30 В постоянного тока, 50 мс, 999 ч, DPDT, 10 А

МАКРОМАТИЧЕСКОЕ УПРАВЛЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

30 В постоянного тока 50 мс 999ч DPDT 10А 240 В переменного тока Быстрое соединение 120 В Кнопочный переключатель
TR-50222-05

48F5942

Реле задержки срабатывания, задержка включения, 30 В постоянного тока, 0.1 с, 10 с, серия TR-5, DPDT, 10 А

МАКРОМАТИЧЕСКОЕ УПРАВЛЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

30 В постоянного тока 0.1 с 10 с Серия TR-5 DPDT 10А 240 В переменного тока Быстрое соединение 120 В Ручка
RE22R2MYMR

75Y0086

Реле задержки времени, 0.05 с, 300 ч, Zelio Time RE22 Series, DPDT, 8 А

SCHNEIDER ELECTRIC

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

0.05с 300ч Zelio Time серии RE22 DPDT 8A DIN-рейка 250 В Винт 240 В Слот для отвертки
7012AH

57F1552

Реле с выдержкой времени, 3 мин., 30 мин., Серия 7000, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

3мин 30 минут 7000 серии DPDT 10А Крепление на панель 240 В переменного тока Быстрое соединение 120 В переменного тока Ручка
7012AD

57F1551

Реле с выдержкой времени, 5 с, 50 ​​с, серия 7000, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

5 с 50-е годы 7000 серии DPDT 10А Крепление на панель 240 В переменного тока Быстрое соединение 120 В переменного тока Ручка
7012PA

50F3836

Реле задержки времени, 0.1 с, 1 с, серия 7000, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

0.1 с 1 с 7000 серии DPDT 10А Крепление на панель 240 В переменного тока Быстрое соединение 125 В постоянного тока Ручка
RE22R2AMR

13AC7951

Реле задержки времени, 0.05 с, 300 ч, Zelio Time RE22 Series, DPDT, 8 А

SCHNEIDER ELECTRIC

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

0.05с 300ч Zelio Time серии RE22 DPDT 8A DIN-рейка 250 В Винт 240 В Слот для отвертки
SSC12ACA

28F1947

Реле с выдержкой времени, 28 В постоянного тока, 1 с, 30 с, серия SSC, DPDT, 10 А

AGASTAT — TE ПОДКЛЮЧЕНИЕ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

28 В постоянного тока 1 с 30-е годы Серия SSC DPDT 10А 120 В переменного тока Быстрое соединение 120 В Ручка
821TD10H-UNI

10M6579

Реле с выдержкой времени, 24 В постоянного тока, 0.1 с, 10 дней, серия 820, SPDT, 15 А

SCHNEIDER ЭЛЕКТРИЧЕСКОЕ / Устаревшее реле

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

24 В постоянного тока 0.1 с 10 дней 820 серии SPDT 15А DIN-рейка 240 В переменного тока Винт 240 В Слот для отвертки

5 способов реле с таймером помогают в коммутационных приложениях

Твердотельные таймеры, также известные как твердотельные реле или твердотельные реле времени, используются во многих электрических и электронных устройствах для управления широким спектром резистивных и индуктивных нагрузок.Рабочие характеристики и другие многочисленные преимущества твердотельных таймеров по сравнению с их электромеханическими аналогами делают их идеальными для более широкого спектра коммутационных приложений, таких как:

  • Обогреватели
  • Фары
  • Двигатели
  • Устройства управления движением

Что такое твердотельный таймер?

Общее представление о концепции реле поможет лучше понять твердотельные реле.Реле — это переключатели, которые размыкают или замыкают цепь при срабатывании электрического сигнала. Они используются в приложениях, где необходимо управлять одной или несколькими цепями с помощью более низкого и обычно изолированного сигнала питания. Традиционные реле управляются электромеханическими средствами. Небольшой ток используется для возбуждения катушки исполнительного механизма, которая, в свою очередь, создает магнитное поле для размыкания или замыкания переключателя с подвижными металлическими контактами.

Твердотельные таймеры и контроллеры выполняют аналогичную функцию, однако в этих устройствах нет движущихся частей.Вместо этого твердотельные таймеры используют электрические и оптические свойства полупроводниковых элементов, таких как тиристоры, симисторы, диоды и транзисторы, для выполнения функций изоляции и переключения. В типичном твердотельном таймере используются оптические полупроводники, известные как оптопары, для изоляции входных сигналов путем преобразования электрических сигналов в оптические.

К наиболее распространенным типам твердотельных таймеров относятся:

  • Переключение нуля
  • Мгновенный вызов
  • Пиковое переключение

Эти разные типы таймеров позволяют выполнять операции переключения в разное время — мгновенно или с задержкой — в зависимости от положения напряжения на синусоидальной волне переменного тока.

Реле с нулевым переключением — наиболее распространенный тип реле времени, используемых в настоящее время. Эти переключатели включают нагрузку, когда подается управляющее напряжение и напряжение пересекает нулевую точку синусоидального сигнала переменного тока, что приводит к небольшой задержке включения твердотельного таймера. Нагрузка отключается при снятии управляющего напряжения в реле.

Мгновенные переключатели, с другой стороны, включают нагрузку сразу после активации управляющего напряжения.Таким образом, нагрузка включается в любой точке синусоидальной волны, что делает его идеальным для приложений точного управления.

Реле с переключением пиковых значений, как следует из их названия, включают нагрузку, когда активируется управляющее напряжение, и напряжение нагрузки находится в пиковом положении на синусоиде. Как и другие реле, реле отключается при снятии управляющего напряжения.

Преимущества и ограничения твердотельных таймеров

Одним из главных преимуществ твердотельных таймеров является отсутствие в устройстве механических или движущихся частей.Так как контакты не размыкаются и не замыкаются, твердотельные таймеры не подвержены износу механизмов, например искрению и точечной коррозии. В результате твердотельные реле времени могут работать в течение бесчисленных циклов включения / выключения без ухудшения рабочих характеристик.

Кроме того, отсутствие движущихся частей устраняет шум. Бесшумная работа твердотельных таймеров особенно полезна в силовых шкафах, которые могут содержать десятки реле времени. Кроме того, отсутствие механических компонентов означает, что твердотельные таймеры предлагают значительно более быстрое время отклика, чем их электромеханические аналоги.Твердотельные устройства с мгновенным включением обычно могут передавать сигналы включения / выключения из схемы управления в схему нагрузки менее чем за 20 микросекунд, что делает их идеальными для быстродействующих электронных устройств.

Кроме того, большинству полупроводниковых таймеров требуется значительно меньше энергии, чем электромеханическим переключателям для активации цепей управления и нагрузки. Например, большинство полупроводниковых таймеров могут активировать цепи нагрузки всего с одним миллиампером в цепи управления с напряжением всего три вольта постоянного тока.

Недостатки твердотельных таймеров можно считать незначительными, в зависимости от конкретного применения. Некоторые из них включают:

  • Более высокое сопротивление и тепловыделение в закрытом состоянии, поэтому обычно требуются радиаторы или другие механизмы охлаждения
  • Меньшее сопротивление и возможность утечки тока при размыкании
  • Нелинейные вольт-амперные характеристики
  • Более высокое время переходного обратного восстановления из-за наличия диодов
  • Некоторые твердотельные реле также могут быть чувствительны к изменению полярности

Твердотельные таймеры обладают многочисленными преимуществами в производительности по сравнению с электромеханическими переключателями для многих приложений.Хотя у них есть некоторые ограничения, они намного перевешиваются преимуществами, которые предлагают эти таймеры.

Если вы хотите узнать больше о твердотельных таймерах Amperite и о том, как их можно использовать в электрических системах, свяжитесь с нами.

DARE Electronics, Inc. — Производитель электромеханических реле, твердотельных реле и реле с временной задержкой

DARE Electronics специализируется на разработке и производстве индивидуальных и стандартных реле с выдержкой времени, отвечающих требованиям mil-spec; датчики напряжения, фазы и частоты; мониторы мощности; мигалки; датчики тока; электромеханический и твердотельный реле; и другие электронные и электромеханические устройства для военной, авиационной и оборонной промышленности.

Реле с выдержкой времени
DARE производит широкий спектр реле задержки времени, включая фиксированную и регулируемую задержку срабатывания и задержку срабатывания, таймер повторного цикла и таймеры с моторным приводом.

Датчики напряжения переменного тока
Постоянно контролируйте одно- или трехфазные линии электропередач на предмет повышенного и / или пониженного напряжения с помощью датчиков и мониторов переменного напряжения DARE.

Датчики напряжения постоянного тока
Датчики напряжения постоянного тока контролируют входное напряжение в диапазоне от 3 до 500 вольт постоянного тока с точностью точки срабатывания до 1% и выходными контактами до 25 ампер 4PDT.


Фазовые датчики
Защитите бортовое оборудование и другие устройства от повреждений из-за потери или реверсирования фазы с помощью фазовых датчиков и мониторов DARE.

Датчики частоты
Датчики и мониторы частоты DARE доступны как в моделях с питанием от переменного тока, так и с питанием от постоянного тока, в большом количестве стандартных или нестандартных корпусов.

Датчики тока
Датчики тока, предназначенные для контроля наличия или отсутствия переменного или постоянного тока, доступны в ассортименте стандартных и нестандартных моделей.

Мониторы мощности
DARE предлагает полную линейку мониторов мощности 50 Гц, 60 Гц и 400 Гц, доступных в различных вариантах комплектации, включая модели с питанием от переменного или постоянного тока и внешние мониторы мощности самолета.

Мигалки
MIL-F-26301 и другие мигалки с полупроводниковыми или электромеханическими выходами доступны в DARE Electronics.

Электромеханическое реле
На протяжении многих лет DARE поддерживает военную, аэрокосмическую и наземную энергетику, предлагая индивидуальные и уникальные электромеханические реле.

Твердотельные реле
Твердотельные реле DARE Electronics основаны на передовой гибридной микроэлектронной технологии и доступны от низкого уровня до 50 ампер.

Продукты, разработанные по индивидуальному заказу
На протяжении многих лет компания DARE разрабатывала таймеры для защиты от обледенения лобового стекла, блоки управления, комплекты для электрических испытаний и многие другие продукты, разработанные по индивидуальному заказу.

Электромеханическое или электрическое реле »Примечания по электронике

Электромеханическое реле — это электрический переключатель, который обычно приводится в действие с помощью электромагнетизма для приведения в действие механического переключающего механизма.


Технология реле включает:
Основы реле Герконовое реле Характеристики герконового реле Релейные схемы Твердотельное реле


Электрическое реле — это электрический выключатель с электромагнитным управлением — электромеханический выключатель. Относительно небольшой ток используется для создания магнитного поля в катушке внутри магнитного сердечника, и он используется для управления переключателем, который может управлять гораздо большим током.

Таким образом, электромеханическое реле или электрическое реле может использовать небольшой ток для переключения гораздо большего тока и обеспечения электрической изоляции обеих цепей друг от друга.

Электрические реле бывают разных размеров и могут быть разных типов с использованием немного разных технологий, хотя все они используют одну и ту же базовую концепцию.

Хотя в некоторых отношениях электромеханические реле могут рассматриваться как использующие старую технологию, а твердотельные реле / ​​твердотельные переключатели могут считаться более эффективным средством переключения электрического тока.

Тем не менее, электромеханические реле обладают некоторыми уникальными свойствами, которые делают их идеальными для многих приложений, где другие типы могут быть не такими эффективными.Тем не менее, твердотельные переключатели, твердотельные реле или электронные переключатели широко используются и используются во многих областях, где электромеханические реле ранее использовались в качестве электрических переключателей.

Обозначение цепи реле

Обозначения схем электромеханических реле могут несколько отличаться — как и большинство обозначений схем. В наиболее распространенном формате катушка реле представлена ​​в виде коробки, а контакты расположены рядом, как показано ниже.

Условное обозначение цепи реле
Обратите внимание, что на этом символе показаны как нормально разомкнутые, так и нормально замкнутые контакты.Если один или несколько наборов контактов не используются, они часто не отображаются.

В других схемах, особенно новых, которые могут быть немного старше, катушка реле может отображаться как настоящая катушка. Хотя это не соответствует последним стандартам обозначений схем реле, тем не менее, это может быть замечено в некоторых случаях и хорошо описывает внутреннюю часть реле.

Условное обозначение цепи реле
Катушка реле в более старом стиле.

Возможно наличие дополнительных комплектов контактов электрического переключателя.Точно так же, как на переключателе может быть несколько полюсов, то же самое можно сделать и с реле. Можно использовать несколько наборов переключающих контактов для переключения нескольких цепей.

Условное обозначение цепи реле
Катушка реле в более старом стиле.

Основы релейного переключателя

Реле — это разновидность электрического переключателя, который приводится в действие электромагнитом, который переключает переключение при подаче тока на катушку.

Эти реле могут управляться цепями переключателя, где переключатель не может выдерживать высокий ток электрического реле, или они могут управляться электронными цепями и т. Д.В любом случае они предоставляют очень простое и привлекательное решение для электрического переключения.

Основная концепция работы переключателя электрического реле.

Реле состоит из нескольких основных частей, которые образуют реле.

  • Рама: Для удержания компонентов на месте требуется механическая рама. Эта рама обычно достаточно прочная, поэтому она может надежно удерживать дополнительные элементы электромеханического реле без относительного перемещения.
  • Катушка: Необходима катушка, намотанная на железный сердечник для увеличения магнитного притяжения.Катушка с проволокой создает электромагнитное поле при включении тока и притягивает якорь.
  • Якорь: Это подвижная часть реле. Этот элемент реле размыкает и замыкает контакты и имеет ферромагнитный металл, который притягивается электромагнитом. Узел имеет прикрепленную пружину, которая возвращает якорь в исходное положение.
  • Контакты: Контакты приводятся в действие движением якоря.Некоторые электрические переключающие контакты могут замкнуть цепь при срабатывании реле, тогда как другие могут разомкнуть цепь. Они известны как нормально открытые и нормально закрытые.

Конструкция реле включает несколько аспектов. Это ключевой элемент конструкции, позволяющий получить необходимый магнитный поток для достаточно быстрого притяжения якоря без чрезмерного потребления тока. Также необходимо убедиться, что реле может быстро размыкаться после снятия тока питания.Магнитное удержание в материалах должно быть низким.

Когда через катушку протекает ток, создается электромагнитное поле. Поле притягивает железный якорь, другой конец которого сближает контакты, замыкая цепь. Когда ток отключается, контакты снова размыкаются, отключая цепь.

При выборе электромеханических реле будет видно, что контакты электрического переключателя бывают разных форматов. Как и обычные электрические переключатели, электромеханические реле определяются с точки зрения разрывов, полюсов и бросков, которые имеет устройство.

  • Перерыв: Хотя некоторые термины, применяемые к электромеханическим реле, также применимы к электрическим переключателям малой мощности, этот термин больше применим к коммутации большей мощности. Это количество отдельных мест или контактов, где переключатель используется для размыкания или замыкания одной электрической цепи.

    Все реле либо одинарные, либо двойные. Одиночный разрыв, контакт SB разрывает электрическую цепь только в одном месте. Затем, как видно из названия, двойной разрыв, контакт DB разрывает цепь в двух местах.

    Одиночные размыкающие контакты обычно используются при коммутации устройств малой мощности, возможно, электронных схем или электрических коммутационных устройств малой мощности. Контакты с двойным разрывом используются для электрического переключения устройств большой мощности. Если один из контактов заедает, то другой, скорее всего, все равно переключится и разомкнет цепь.

  • Полюс: Число полюсов электрического переключателя — это количество различных наборов переключающих контактов, которые он имеет.Однополюсный переключатель может переключать только одну цепь, тогда как двухполюсный переключатель может переключать две разные изолированные цепи одновременно. Однополюсный переключатель часто обозначается буквами SP, а двухполюсный — DP. Реле могут иметь один, два или более полюса.
  • Бросок: Количество бросков электрического переключателя — это количество доступных положений. Для электромеханического реле обычно есть только один или два хода. Одинарное реле замыкает и разрывает цепь, тогда как двойное реле действует как переключающее, маршрутизирующее соединение от одной конечной точки к другой.Одиночный и двойной бросок часто обозначают буквами ST и DT.

Например, в спецификации электрического реле может указываться однополюсный, однополюсный: SPST, или одно может быть описано как двухполюсное, одинарное: DPST и т. Д. Эти термины определяют количество наборов переключающих контактов и то, являются ли они разомкнутыми / close или с функцией переключения.

Контакты электромеханического реле

Для обеспечения надежного обслуживания и увеличения срока службы реле.На контактах используются различные материалы, чтобы обеспечить их правильную работу по назначению.

Одна из проблем, возникающих с контактами, заключается в том, что происходит точечная коррозия — обычно материал имеет тенденцию накапливаться в центре одного контакта, в то время как происходит потеря материала из другого, где возникает «ямка». Это одна из основных причин выхода из строя контактов, особенно при возникновении искр.

В различных реле используются разные типы материалов для переключающих контактов в зависимости от области применения и требуемых характеристик.Есть много готовых изделий, которые можно использовать, некоторые из наиболее широко используемых перечислены ниже с их атрибутами.

  • Серебро: Во многих отношениях серебро является одним из лучших материалов общего назначения для контактов реле с высоким уровнем проводимости. Однако он подвержен процессу сульфидирования, который, очевидно, зависит от атмосферы, в которой работает реле — в городских районах он намного выше. В результате этого процесса на поверхности образуется тонкая пленка с пониженной проводимостью, хотя более сильное контактное воздействие при замыкании контактов реле может прорваться через это.Пленка также может вызвать напряжение интерфейса в несколько десятых вольта, что может повлиять на производительность для некоторых приложений
  • Никель-серебро: Этот тип контакта был разработан для уменьшения эффекта точечной коррозии. Серебряный контакт легирован никелем для придания ему мелкозернистой структуры, в результате чего перенос материала происходит более равномерно по всей поверхности контакта, что продлевает срок службы.
  • Серебро-кадмий оксид: Контакты, изготовленные из оксида серебра-кадмия, не могут сравниться с очень высокой проводимостью тонких серебряных контактов, но они действительно обеспечивают повышенное сопротивление переносу материала и потери контакта в результате дугового разряда.Это означает, что эти контакты обычно служат дольше, чем контакты из серебра при тех же условиях.
  • Золото: Высокая проводимость и отсутствие окисления означают, что золото идеально подходит для многих коммутационных приложений. Он используется только для коммутации слабых токов, так как не отличается особой надежностью. Обычно для снижения затрат используется оклейка золотом, и в результате низкого уровня сульфидирования контакты остаются в хорошем состоянии в течение длительных периодов времени.Одна проблема с реле заключается в том, что, если они не используются какое-то время, в то время как контактное сопротивление может увеличиваться — этого не происходит с золотом.
  • Вольфрам: Вольфрам используется в реле, предназначенных для высоковольтных устройств. Обладая высокой температурой плавления, превышающей 3380 ° C, он обладает превосходной стойкостью к дуговой эрозии, необходимой для этого типа переключения.
  • Ртуть: Ртуть используется в герконовом реле особого типа, которое называется герконовым реле с ртутным контактом.Он обладает хорошей электропроводностью, а так как он является жидкостью, то есть точечная коррозия, вызванная переносом материала между контактами. После размыкания контактов переключателя ртуть возвращается в резервуар ртути, необходимый для этого типа реле, и новая ртуть используется для следующего переключения. Это действие сводит на нет эффект переноса материала во время переключения.

Хотя используется много различных типов материалов и сплавов, это наиболее часто используемые материалы и отделки контактов.

Ограничение пускового тока для повышения надежности

Одна из ключевых проблем, с которой сталкиваются электрические коммутационные системы: электромеханические реле, а также твердотельные переключатели, — это пусковой ток.

Существует множество примеров того, насколько велики могут быть уровни пускового тока. Простая бытовая электрическая лампочка накаливания хорошо иллюстрирует это. В холодном состоянии нить накала имеет низкое сопротивление, и только когда лампа нагревается, ее сопротивление уменьшается.Обычно пусковой ток при включении может в десять-пятнадцать раз превышать ток в установившемся режиме. Хотя в настоящее время обычно используются твердотельные лампы, этот пример хорошо иллюстрирует суть дела.

Кроме того, индуктивные нагрузки, такие как двигатели и трансформаторы, которые часто переключаются с помощью электромеханических реле, имеют очень высокий пусковой ток. Часто пусковой ток может легко в десять раз превышать ток в установившемся режиме, поэтому контакты должны быть рассчитаны соответствующим образом.

Во многих областях делается поправка на пусковой ток.Используется коэффициент, на который умножается установившийся ток, чтобы получить номинал контакта. Таблица типичных коэффициентов умножения приведена ниже.

Общие умножители, используемые для компенсации пускового тока на реле
Коммутируемая нагрузка Множитель
Люминесцентные лампы (переменного тока) 10
Лампы накаливания 6
Двигатели 6
Резистивные нагреватели 1
Трансформаторы 20

Поэтому, используя приведенную ниже таблицу, если люминесцентные лампы должны быть включены и они обычно потребляют 1 А, тогда контакты реле должны быть рассчитаны на 20 А.

Другая проблема возникает при разрыве цепи. Обратная ЭДС, создаваемая индуктивной нагрузкой, может легко привести к искрообразованию, которое может быстро разрушить контакты реле.

Такие методы, как установка ограничителей броска тока на нагрузку, которые часто представляют собой резисторы с отрицательным температурным коэффициентом, могут помочь ограничить пусковой ток, а ограничители переходных процессов могут помочь ограничить обратную ЭДС.

Срок службы реле

Одним из ключевых вопросов, связанных с электромеханическими реле, является срок службы контактов.В отличие от твердотельных реле и электронных переключателей, механические контакты изнашиваются при переключении и имеют ограниченный срок службы.

Возможны две цифры срока службы электромеханического реле:

  • Ожидаемый электрический срок службы: Ожидаемый электрический срок службы — это количество переключений, которые выполняются, когда переключение, т. Е. Контакты, обеспечивают требуемый уровень проводимости. Это очень зависит от приложения, так как пусковой ток и обратная дуга, создаваемая обратной ЭДС и т. Д.Ожидаемый электрический срок службы многих силовых реле составляет, возможно, 100 000 срабатываний, хотя, как уже упоминалось, это очень зависит от нагрузки, которую они переключают.
  • Механический срок службы: Ожидаемый механический срок службы зависит от механических аспектов реле. Это количество механических переключений, которые могут быть выполнены независимо от электрических характеристик. Часто ожидаемый механический срок службы реле составляет около 10 000 000 срабатываний, а то и больше.

Истечение срока службы контактов обычно наступает, когда контакты прилипают или свариваются, или когда искрение и т. Д. Вызывало контактный ожог и перенос материала, что не позволяет достичь достаточного контактного сопротивления. Условия для этого будут зависеть от реле и его применения. Их характеристики обычно определяются в таблице данных реле.

Коаксиальное реле
См. Точки ввода коаксиального кабеля

Преимущества и недостатки реле

Как и у любой технологии, у использования электромеханических реле есть свои преимущества и недостатки.При проектировании схемы необходимо взвесить плюсы и минусы, чтобы выбрать правильную технологию для данной схемы.

Преимущества

  • Обеспечивает физическую изоляцию между цепями.
  • Обычно выдерживает высокое напряжение.
  • Может выдерживать кратковременные перегрузки, часто без вредных последствий или с небольшими побочными эффектами — переходные процессы часто могут непоправимо повредить твердотельные реле / ​​электронные переключатели.

Недостатки

  • Механический характер реле означает, что оно работает медленнее по сравнению с полупроводниковыми переключателями.
  • Имеет ограниченный срок службы из-за механической природы реле. Твердотельные переключатели, как правило, имеют более высокий уровень надежности при условии, что они не подвержены переходным процессам, выходящим за пределы их номинальных значений.
  • Страдает от дребезга контакта, когда контакты начинают соприкасаться, а затем физического отскока, замыкая и разрывая контакт и вызывая дугу в большей или меньшей степени.

Иногда другой вариант, который можно рассмотреть, когда требуется электрическая изоляция между двумя цепями, может быть оптоизолятор.Эти оптоизоляторы часто включаются в твердотельные переключатели, часто также называемые твердотельными реле, благодаря чему достигается высокий уровень изоляции. Использование оптоизоляторов в твердотельных переключателях / твердотельных реле обеспечивает полную изоляцию между входной и выходной цепями.

Электромеханические реле используются в качестве электрических переключателей в течение очень многих лет, и эта технология хорошо зарекомендовала себя. Эти электромеханические или электрические реле могут выдерживать некоторые злоупотребления, и они обычно относительно терпимы к переходным скачкам или скачкам напряжения.В этом отношении они лучше, чем твердотельные переключатели / твердотельные реле, и хотя они изнашиваются быстрее, особенно при переключении индуктивных нагрузок, они должны выдерживать скачки включения в своих нагрузках.

Поскольку твердотельные реле и переключатели теперь присутствуют на рынке и предлагают высокий уровень надежности, необходимо тщательно рассмотреть варианты электромеханических реле и твердотельных реле. В некоторых случаях старые реле заменяются твердотельными реле, но в других случаях электромеханические реле могут предложить лучший вариант..

Другие электронные компоненты: Резисторы
Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты». . .

Реле времени | Производитель реле задержки времени из Китая

1.Что такое реле?

Реле — это переключатели с электрическим управлением, которые позволяют одной электрической цепи управлять несколькими различными другими цепями, размыкая и закрывая свои вызовы в действии, чтобы активизировать или обесточить свою катушку.

Реле обычно используются для переключения пусковых катушек, горелки, контрольных ламп, а также звуковой сигнализации. Помимо посудомоечных машин, холодильников, систем отопления и кондиционирования, реле контролируют работу станков, промышленных производственных линий и промышленных устройств.

Защитные реле могут предотвратить повреждение оборудования, обнаруживая электрические проблемы, включая перегрузку по току, минимальный ток, перегрузки, а также обратные токи.

2. Что такое электромеханические реле?

Реле бывают электромеханические (EMR) или твердотельные (SSR).

Реле общего назначения — это электромеханические переключатели, которые обычно управляются магнитной катушкой. Они работают с кондиционером или постоянным током при типичных напряжениях, таких как 12 В, 24 В, 48 В, 120 В и 230 В, а также могут управлять токами от 2 до 30 А.

Эти реле экономичны, очень легко заменяются и допускают широкий диапазон конфигураций переключателей. Примеры включают вставку (между программируемыми контроллерами рассуждений, а также огромными партиями), а также простые логические схемы.

3. Компоненты электромеханического реле

  • Корпус — содержит и поддерживает части реле
  • Катушка — Проволока намотана на металлический сердечник. Катушка шнура создает электромагнитное поле.
  • Якорь — подвижная часть реле, которая размыкает и замыкает контакты.Присоединенная пружина возвращает якорь в исходное положение.
  • Контакты — проводящая часть переключателя, замыкающая или размыкающая цепь

4. Как это работает для реле?

Реле включает две цепи: активизирующую цепь, а также контактную цепь. Катушка попадает на сторону питания, а контакты реле — на сторону вызова.

Когда катушка реле стимулируется, существующее движение с катушкой создает магнитное поле.Будь то кондиционер или устройство постоянного тока, основная особенность остается неизменной — магнитная катушка притягивает железную пластину, которая является частью якоря.

Один конец якоря прикреплен к металлической раме, которая создана для обеспечения возможности поворота якоря, в то время как другой конец открывается, а также отключает вызовы.

5. Что такое реле таймера?

Реле времени дополнительно называется реле задержки времени или реле времени. Это своего рода электромеханическое управляющее реле со встроенной мертвой выдержкой.Его цель — управлять событием по времени. Реле таймера задерживает активность якоря при подаче напряжения на катушку, обесточивании или и том и другом. Он предназначен для запуска или отключения машины, цепи или системы.

6. Как работает реле таймера?

Когда напряжение питания подается на реле таймера, микропроцессор начинает загрузку. Микропроцессор проверяет информацию из пользовательского интерфейса. Интерфейс состоит из различных возможностей модификации на лицевой стороне таймера.Здесь необходимо установить момент, временной массив, а также точную модификацию предпочтительного времени задержки с помощью поворотных переключателей и потенциометров.

После этого микропроцессор считывает информацию управляющих входов, таких как управляющий вход для запуска задержки. Эта информация для таймера предназначена для запуска процедуры и называется «пусковым импульсом» или «триггером».

Теперь таймер работает. Когда выбранное мертвое время является полным, реле выхода срабатывает / обесточивается.После включения выходного реле большой ток питает подключенный инструмент как контактор.

7. Типы и функции реле таймера

Реле блокировки Perpetuity выполняют одиннадцать специфических функций. Они стандартизированы во всех торговых марках. Предпочтительная функция выбирается поворотом ручки или через какой-либо другой пользовательский интерфейс. В настоящее время сигнал от схемы управления подается прямо в реле, начиная работу реле. После этого изменяется электрическая мощность на входе реле в результат.

Реле таймера предлагают широкий спектр выбираемых функций, чтобы люди могли персонализировать свои операции производителя деталей. Для реле времени имеется множество функций синхронизации. Эти функции следует проверять по каталогам поставщиков.

Вот конкретные функции различных реле с временной задержкой

Код функции

Описание работы с временной задержкой (все временные задержки выполняют эти 11 функций)

1

ЗАДЕРЖКА ВКЛЮЧЕНИЯ:

Когда катушка включена, начинается период ЗАДЕРЖКИ ВКЛЮЧЕНИЯ, и в это время контакт не перемещается.По истечении времени ЗАДЕРЖКИ ВКЛЮЧЕНИЯ вызовы передаются либо на соединение (обычно открытое соприкасается с), либо на отключение (обычно закрытое соприкасается с) тонны. Вызовы остаются в подвижном состоянии до тех пор, пока с катушки не будет отключено питание. Они возвращаются в исходное состояние, а также блок ожидает нового цикла.

2

ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ I:
Питание подается на катушку в любое время. После замыкания начального переключателя («полностью сухой» внешний контакт), вызовы передаются, либо связывая (обычно открытые вызовы), либо разъединяя (обычно закрытые вступают в контакт) лоты.Когда кнопка пуска включена, запускается таймер ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ, и контакт остается в настройке передачи до истечения таймера ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ. После этого они возвращаются в исходное положение, и установка готова к новому циклу.

3

ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ II:
Питание подается на катушку в любое время. После включения, а также запуска кнопки пуска («полностью сухой» внешний контакт), начинается период ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ, а также вступление в контакт с переключением, либо присоединение (нормально разомкнутые контакты), либо разъединение (обычно замкнутые контакты) ) Загрузка.По окончании отсчета времени вызовы возвращаются в свое исходное положение, и система ожидает совершенно нового цикла.

4

ИНТЕРВАЛЬНАЯ ЗАДЕРЖКА:
Когда питание связано с катушкой (пусковой переключатель должен быть переключен в многофункциональные таймеры), начинается отсчет времени ИНТЕРВАЛ, а также переключение контактов, либо присоединение (обычно открытое соприкасается с) или отключение (обычно закрытое соприкасается с) тоннами.Когда период времени INTERVAL заканчивается, они выходят на связь и возвращаются на свое первоначальное размещение. Устройство перезагружается при отключении питания от катушки, делая устройство готовым к новому циклу.

5

ЦИКЛ 1 ВЫСТРЕЛ (РАВНОЕ ВРЕМЯ ВЫКЛ. / ВКЛ.):
При подаче питания на таймер начинается отсчет времени. Выходное реле выключено на установленное время, а затем включено на установленное время только на 1 цикл. Таймер сбрасывается при отключении питания или использовании входа сброса.

6

ЦИКЛ ПОВТОРЕНИЯ (РАВНЫЕ ПЕРИОДЫ ВРЕМЕНИ ЗАДЕРЖКИ ВКЛЮЧЕНИЯ И ВЫКЛЮЧЕНИЯ):
Когда питание связано с катушкой, начинается период времени ВЫКЛЮЧЕНИЯ; контакты не переносятся. В конце периода выключения начинается отсчет времени включения. Связывайтесь с передачей, либо соединяя (обычно разомкнутые контакты), либо разъединяя (обычно закрытые, контактирующие с) лоты. В конце продолжительности включения контакты переключаются, и цикл продолжается до тех пор, пока питание не будет отключено от катушки.

7

ПОВТОРНЫЙ ЦИКЛ (НЕЗАВИСИМЫЕ ВРЕМЯ ЗАДЕРЖКИ ВКЛЮЧЕНИЯ И ВЫКЛЮЧЕНИЯ):
Когда источник питания связан с катушкой, цикл ВКЛ инициируется переключением контакта (нормально открытый контакт замкнут, а нормально замкнутый контакт разомкнут). По окончании времени выключения контакты размыкаются, а также начинается период включения. Цикл продолжается до тех пор, пока с катушки не будет отключено питание.

8

ИНТЕРВАЛ СИГНАЛА / ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ:
Питание на катушку подается в любое время.При замыкании кнопки пуска («сухой» внешний контакт) запускается цикл ИНТЕРВАЛ; контакты передаются, либо соединяя (обычно открывающие вызовы), либо разъединяя (обычно замыкающие контакты) нагрузку. В конце периода интервала начинается период ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ, и контакт остается до конца периода ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ. Затем контакты возвращаются на свои первоначальные позиции, а устройство ожидает совершенно новый цикл.

9

ЗАДЕРЖКА ВКЛЮЧЕНИЯ / ЗАДЕРЖКА СИГНАЛА:
Мощность связана с катушкой в ​​любое время.При закрытии кнопки пуска («полностью высохший» посторонний контакт) начинается цикл ЗАДЕРЖКИ ВКЛЮЧЕНИЯ; контакты не переносятся. В конце цикла ЗАДЕРЖКИ ВКЛЮЧЕНИЯ они связываются с передачей, либо присоединяя (обычно открытые вызовы), либо отключая (обычно закрытые контакты) нагрузку. После отпускания пускового переключателя начинается цикл ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ; связаться с остаться переехал. В конце цикла ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ контакты возвращаются в исходное положение, а также устройство ожидает нового цикла.

10

ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ ПИТАНИЯ:
Когда питание связано с катушкой, они связываются с передачей, либо соединяя (обычно разомкнутые контакты), либо разъединяя (обычно замкнутые контакты) партии . Когда питание обмотки прекращается, начинается отсчет времени ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ; звонки остаются перемещенными. В конце цикла ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ вызовы возвращаются в свои исходные места размещения, а система ожидает совершенно нового цикла.

11

WATCHDOG (RE-TRIGGERABLE SINGLE SHOT):
При подаче входного напряжения реле задержки момента готовится принять триггерные сигналы.При подаче триггерного сигнала реле активируется, а также начинается заданное время. По истечении предварительно запрограммированного времени реле обесточивается, если сигнал запуска не срабатывает, а также размыкается до истечения времени ожидания (до истечения предварительно запрограммированного времени). Непрерывное переключение триггерного сигнала по цене, намного превышающей заданное время, заставит реле оставаться под напряжением.

8. Разница между реле таймера и электромеханическим реле

Принцип работы реле таймера немного отличается от реле управления. Различие между реле управления электромеханическим и реле таймера заключается в переключении выходных контактов. .Вызов электромеханического реле меняет положение так быстро, как напряжение подается или сбрасывается с катушки. Вызов реле таймера изменяет положение до или после предварительно выбранного временного интервала.

9. Различие между реле задержки включения и реле таймера задержки выключения.

Реле таймера задержки: когда подано напряжение питания, а время задержки истекло, выходной контакт изменяет настройку. (Например, начинает работать вентилятор) А при пропадании напряжения питания выходной сигнал возвращается в исходное положение.(И последователь уходит).

Реле таймера задержки выключения: Выход контактирует с изменением положения при подаче напряжения питания. (Например, повторитель начинает функционировать мгновенно). Но когда напряжение питания пропадает, выходной вызов возвращается к исходному положению на определенное время. (Последователь продолжает получать выгоду в указанное время).

10. Приложения реле таймера.

  • Они подходят для широкого спектра применений, включая:
  • Оборудование: отдельное оборудование, пуск двигателя звезда-треугольник, коммерческая автоматизация и процессы.
  • Конструкции: управление освещением, автоматические двери, ограждения парковок, рольставни.
  • Водный сегмент: управление насосами, а также системы полива.
  • ОТОПЛЕНИЕ И ОХЛАЖДЕНИЕ: вентиляторы, а также центральное водоснабжение.

11. Другие примеры приложений:

  • Циклическая смена оборудования, например, регулярный запуск ведомого устройства, чтобы избежать его прилипания, или промывка труб для поддержания их в чистоте.
  • Управление освещением, например, представляет собой отложенную замену нескольких рядов источников света в производственных центрах или теплицах.
  • Управляемый по времени запуск или остановка машинного оборудования, например, отложенное отключение конвейерных лент или последующая остановка завода.
  • Срабатывание сигнализации в случае обнаружения ошибки, например, для включения мигания лампы в коммерческих приложениях или подвижном составе.
  • Запуск электродвигателя со звезды на треугольник, например, для уменьшения пускового тока с задержкой переключения во избежание межфазных коротких замыканий.
  • Кнопка пешеходного перехода, например, когда вы нажимаете кнопку для сигнала ходьбы, световой сигнал изменяется с «не ходить» на «прогулку» после задержки.
  • Автомобильная прачечная. Например, автоматическая очистка длится 5 минут, когда в нее вставлены деньги.

12. Как правильно выбрать реле таймера?

При выборе реле таймера следует учитывать следующие характеристики:

  • Напряжение питания.
  • Функции времени. (например, многофункциональное реле задержки таймера, задержка включения, задержка выключения и т. д.).
  • Количество результатов, с которыми связываюсь.
  • Массивы таймингов. (Например: 0,05 с– 100 ч, 05 с– 10 минут).
  • Индикатор функциональных состояний. (Светодиодный знак).
  • Специальные функции, такие как запуск по напряжению, запуск без напряжения, подключение удаленного потенциометра.

Эти атрибуты, которые мы фактически отметили, являются основными. Характеристики могут отличаться от торговой марки к торговой марке. Перед выбором необходимо ознакомиться с журналами производителей и руководствами для клиентов.

13. Соответствующие технические определения.

  • Входное напряжение: Входное напряжение реле таймера — это управляющее напряжение, подаваемое на клеммы A1-A2.Входное напряжение обязательно либо запустит реле, либо подготовит его к запуску, как только будет использован сигнал запуска.
  • Триггерный сигнал: триггерный сигнал используется для запуска реле после того, как было использовано входное напряжение.
  • Результат: Каждое реле с задержкой времени имеет внутреннее реле (обычно механическое), которое контактирует с этим открытым и приближающимся для управления тоннами.

Есть три типа результатов, с которыми нужно связаться.

  • Ø Окись углерода: Когда катушка обесточена, она замыкает цепь между общим фактором C и NC-вызовом.Когда катушка находится под напряжением, она замыкает цепь между общим фактором C, а также замыкается NO.
  • Ø NC: Контакт с замкнутым без активации называется типично замкнутым контактом.

14. 10 ведущих мировых производителей и поставщиков реле времени

Какое реле времени лучше всего? Вот 10 ведущих мировых производителей реле времени.

Amperite Co.

Производитель обычных, а также индивидуальных электрических или электронных таймеров.Доступны в вариантах с задержкой включения, запуском с задержкой, отказом с задержкой, запуском с задержкой включения, а также конструкциями многофункционального реле с задержкой времени с различными настройками. Используется для приложений, включая двигатели, компрессоры, системы сигнализации, предупреждение об открытой двери, воспламенитель печки, ведомое устройство или управление телефонной цепью, взрывоопасные среды, системы охлаждения, отсечки газового контроля, электрические осушители и развлекательные полеты. Соответствие требованиям UL ®, CSA ®, а также cUL ® США.

NOARK Electric North America

Производитель реле задержки включения и выключения.Обслуживает отрасли отопления, вентиляции и кондиционирования, холодоснабжения, горнодобывающей промышленности, пищевого оборудования, а также сектора обработки продуктов. Сертифицирован RoHS. CSA одобрен. Сертификация IEC, а также CE. Внесен в список UL. Предоставляется минимальная гарантия 3 года.

AutomationDirect

Поставщик многофункциональных программируемых таймеров, а также реле задержки. Доступен с размерами 1/16 DIN и источником питания 24 В постоянного тока и 100/240 В переменного тока. Поставляется с панелью для установки зажимов и прокладок. Различные атрибуты включают двухстрочные, 6-значные двухцветные цифровые ЖК-экраны, доступные DIP-кнопки, блокируемые клавиатуры и утверждения напряжения, а также входы без напряжения от широкого диапазона NPN, PNP или сухого контакта с датчиками.Многие товары легко доступны в наличии. Предоставляются круглосуточные услуги. UL, а также cUL, отмечены. Имеет лицензию CE.

Alion Timer

Компания Alion, открытая в 1994 году, является ведущим поставщиком 3-х таймерных переключателей в городе Вэньчжоу, Китай, который более 25 лет концентрируется на текущем моменте, а также на отрасли управления освещением. Доступен с таймером, реле таймера, модульным таймером, счетчиками часов, счетчиками, а также переключателями с фотоэлементами. Поставщик реле таймера в Китае для нескольких брендов, включая ABB, Chint, Perry, Hager, Finder, PERRY, Hellermanntyton и т. Д.

c3controls

Производитель цифровых реле времени. Доступны шириной 17,5 мм, 22,5 мм, а также 45 мм с одиночными, двойными и многофункциональными креплениями, а также на DIN-рейку, панель, розетку и дверцу корпуса. Предлагает упаковку продукта, HVAC, сточные воды, а также рынки нефти и газа. UL подробно. CE сертифицирован. Соответствует RoHS. Доставка в тот же день.

Rockwell Automation

Производитель энергии, средств управления и информационных средств.Продукты, а также технологии состоят из схем, а также защиты нагрузки, компьютеров и операторских интерфейсов, инструментов подключения, приводов, а также двигателей, наблюдения за энергопотреблением, компонентов ввода / вывода, управления освещением, управления движением, сетей, а также коммуникаций, продукты питания, программируемые контроллеры, кнопки, а также сигнальные устройства, реле, а также таймеры, элементы безопасности, датчики, а также кнопки, преобразователи сигналов, варианты программного обеспечения, управление турбомашинным оборудованием.

Stephens Mfg. Co., Inc

Поставщик 8-контактных реле задержки с возможностью выбора времени до 180 секунд. Требования состоят из рабочего напряжения катушки до 120 и 10 А при вызовах 120 В переменного тока или 30 В постоянного тока. Сделано в США.

Электронная система защиты двигателя (MPE).

Поставщик полной линейки промышленных устройств управления, включая таймеры с реле задержки. Типы таймеров — с задержкой при срабатывании. Таймеры имеют рабочее напряжение 24 В переменного тока или 120 В переменного тока. Технические характеристики включают однофазное 50/60 Гц, реле типа DPDT, сопротивление 10 А и 3.6 Индуктивный результат при 240 В переменного тока, рассеиваемая мощность менее 1 Вт в помещении из белого материала Lexan® с фенольной основой. Задержки по времени варьируются от 1 секунды до 10 секунд. до 360 сек. до 3600 сек. Предлагаем секторы водоснабжения и водоотведения.

Wilmington Instrument Co

. Поставщик реле времени задержки. Различные типы состоят из подключаемых регулируемых AC / DC, доступных по цене, а также компьютерных таймеров с длительным сроком службы. Предлагается в различных аранжировках. Атрибуты различаются в зависимости от модели.Некоторые функции включают глобальный входной источник питания, светодиодные индикаторы, 8-контактные восьмеричные сменные базы, крепления на панели, индикацию хода цикла, несколько настроек времени, гибкие массивы, экраны VF с высокой освещенностью, высокую шумостойкость, а также пыль, влажность и т. Д. стойкость к воздействию построенных пластических ситуаций. Также предоставляются услуги по калибровке приборов и ремонту. Соответствует стандартам ANSI. Сертификат IEC 17025: 2005.

Phoenix Contact.

Международная штаб-квартира в Германии обсуждалась как ведущий поставщик в США в их североамериканском головном офисе в Пенсильвании.Они производят средства автоматизации для транспорта, автомобилей, водного хозяйства, нефти и газа, а также ветряной и солнечной энергетики.

Расположенная в США, IXYS Corporation специализируется на производстве силовых полупроводников, встроенных схем, а также радиочастотных систем, используемых для преобразования энергии и отслеживания электрического напряжения в транспортном, медицинском и телекоммуникационном секторах.

Как правильно выбрать реле

Электромеханические реле, пожалуй, сегодня наиболее широко используемые реле в приложениях ATE.Они состоят из катушки, якорного механизма и электрических контактов. Когда катушка находится под напряжением, индуцированное магнитное поле перемещает якорь, который размыкает или замыкает контакты. См. Рисунок 1.

Рисунок 1. Электромеханическое реле: Ток через катушку создает магнитное поле, которое перемещает якорь между контактами


Электромеханические реле поддерживают широкий диапазон характеристик сигнала, от низкого напряжения / тока до высокого напряжения / тока и от постоянного тока до частот ГГц.По этой причине почти всегда можно найти электромеханическое реле с характеристиками сигнала, соответствующими заданным системным требованиям. Схема привода в электромеханических реле гальванически изолирована от контактов реле, а сами контакты также изолированы друг от друга. Эта изоляция делает электромеханические реле отличным выбором для ситуаций, когда требуется гальваническая развязка.

Контакты электромеханических реле обычно больше и надежнее, чем у некоторых других типов реле.Более крупные контакты дают им возможность противостоять неожиданным импульсным токам, вызванным паразитными емкостями, присутствующими в вашей цепи, кабелях и т. Д. Однако досадный компромисс заключается в том, что для более крупных контактов требуется корпус большего размера, поэтому их нельзя так плотно разместить на коммутаторе. модуль.

Хотя механическая конструкция электромеханических реле обеспечивает большую гибкость при переключении, у них есть одно важное ограничение: скорость. По сравнению с другими реле электромеханические реле являются относительно медленными устройствами — типичные модели могут переключаться и устанавливаться за 5-15 мс.Эта рабочая скорость может быть слишком низкой для некоторых приложений.

Электромеханические реле обычно имеют меньший механический срок службы, чем другие типы. Достижения в технологии увеличили их механический срок службы, но электромеханические реле все еще не имеют такого количества возможных срабатываний, как сопоставимое герконовое реле. Как и в случае любого реле, количество коммутируемой мощности и другие системные соображения могут иметь значительное влияние на общий срок службы реле. Фактически, механический срок службы электромеханического реле может быть меньше, чем у герконового реле, но его электрический срок службы при аналогичной нагрузке (особенно емкостной) может уменьшаться гораздо медленнее, чем у герконового реле.Более крупные и прочные контакты электромеханического реле часто могут прослужить дольше сопоставимого герконового реле.

Электромеханические реле доступны как с фиксацией, так и без фиксации. Реле без фиксации требует постоянного протекания тока через катушку, чтобы реле оставалось включенным. Они часто используются в приложениях, где реле должно переключиться обратно в безопасное состояние в случае сбоя питания. Реле с фиксацией используют постоянные магниты для удержания якоря в его текущем положении даже после снятия управляющего тока с катушки.Для приложений с очень низким напряжением предпочтительны фиксирующие реле, поскольку отсутствие нагрева катушки сводит к минимуму тепловую электродвижущую силу (ЭДС), которая может повлиять на ваши измерения.

Электромеханические реле используются в самых разных модулях переключения. Их надежность делает их хорошо подходящими для многих приложений, особенно там, где скорость переключения не является главной проблемой, а их универсальность означает, что вы можете использовать их во всех типах конфигураций переключения, включая универсальные, мультиплексоры и матрицы.

Твердотельные и электромеханические реле

В зависимости от того, кого вы спросите, твердотельные реле являются лучшим решением для переключения мощности, но другие настаивают на том, что электромеханические реле являются очевидным выбором. Кто прав и по каким причинам? Чтобы ответить на эти вопросы, давайте исследуем различия между электромеханическими и твердотельными реле и способы их работы, а также сравним их рабочие характеристики на нескольких уровнях.

Что такое реле?

Реле — это решение для переключения мощности, которое можно использовать для распределения мощности без ручного размыкания и замыкания переключателя. Для включения и выключения реле просто требуется небольшой электрический сигнал. Этот сигнал является метафорическим «привратником» для гораздо большего электрического сигнала. Способность управлять сигналом большой мощности с низким энергопотреблением — вот что сделало реле столь заметными на протяжении всей истории электроники.

В чем разница между электромеханическими и твердотельными реле?

Электромеханическое реле (EMR)

В электромеханическом реле используется физическая движущаяся часть для соединения контактов в выходном компоненте реле. Движение этого контакта создается за счет электромагнитных сил входного сигнала малой мощности, что позволяет завершить цепь, содержащую сигнал большой мощности. Физический компонент в электромеханическом реле обычно издает звук «щелчка», который может быть полезен в некоторых ситуациях, хотя может привести к возникновению внутренней дуги и перемещению относительно большого количества времени.

Твердотельное реле (SSR)

Полупроводниковое реле может стать образцом полупроводниковой промышленности. SSR используют электрический сигнал малой мощности для генерации оптического полупроводникового сигнала, обычно с октопарой, которая передает и возбуждает выходной сигнал. При активации входной оптический сигнал действует как «переключатель», который позволяет сигналу высокого напряжения проходить через выходной компонент SSR. Есть несколько способов сделать это, но их объединяет отсутствие движущихся частей, что делает их твердотельными.

Рисунок 1 — Типичное EMR (электромеханическое реле) и блок-схема EMR, изображающая его движущиеся части.

Рисунок 2 — Твердотельное реле для монтажа на панели — из Crydom и схема, показывающая механизм оптотранзистора. Диаграмма любезно предоставлена ​​Википедией.

Обе технологии могут использоваться в системах отопления, освещения, управления движением и т. Д. Однако твердотельные реле превосходят электромеханические в большинстве сравнительных категорий .Электромеханические реле — это относительно старая технология, в которой используется простой подход к механической конструкции, тогда как твердотельные реле намного новее и усовершенствованы — и да, более сложны. Можно утверждать, что что-то сложное не обязательно лучше, чем сопоставимый более простой продукт, который выполняет ту же задачу. Однако более сложный SSR может просто подкупить вас, когда дело доходит до производительности.

Каковы преимущества использования твердотельного реле вместо электромеханического реле?

Твердотельные реле имеют довольно большую и, возможно, устрашающую начальную цену по сравнению с электромеханическими реле.Однако интеграция SSR, а не EMR, может привести к одинаковой или даже более низкой общей стоимости в зависимости от конкретного приложения, что мы обсудим немного позже. Кроме того, SSR часто превосходят EMR в нескольких областях. Давайте сравним два:

Как вы можете видеть, SSR в целом более динамичны по своей производительности и обладают функциями, которые они предлагают, по сравнению с EMR. Однако есть одна область, в которой ЭМИ часто имеют преимущество: управление температурой. SSR могут иметь рассеиваемую мощность на порядки больше, чем электромеханические реле, просто из-за используемых в них физических свойств.Как правило, это означает, что разработчики компонентов должны интегрировать радиаторы и вентиляторы в свои конструкции, что увеличивает общие первоначальные затраты, связанные с использованием SSR.

Однако, прежде чем списывать SSR только на основе первоначальной стоимости, давайте поговорим подробнее о совокупной стоимости владения, а также о людях, определяющих, что на самом деле означает «стоимость».

Сравнение затрат: как SSR могут по-прежнему окупаться в долгосрочной перспективе

Инженеры, как правило, сосредотачиваются на производительности, а лучшая производительность обычно означает более высокие затраты.С другой стороны, менеджеры по цепочке поставок гораздо больше озабочены начальными ценами на детали и сроками поставки, которые называются затратами на закупку. Менеджеры по бизнесу и маркетингу обращают внимание на гарантийные расходы, которые включают ожидаемый срок службы и сопутствующие расходы на техническое обслуживание, такие как время простоя, время в пути, время замены и ремонта, а также рабочую силу. Из всех этих затрат только начальная цена на детали может быть приравнена к вышеупомянутой «единовременной авансовой стоимости».

Следовательно, то, что электромеханические реле имеют более низкую начальную цену, не означает, что они «стоят меньше», учитывая совокупность всех других скрытых затрат, которые вступят в игру позже в будущем.Слишком часто в сегодняшних компаниях менеджеры требуют решений «быстрее — лучше — дешевле», которые часто являются конкурирующими приоритетами — дешевле не обязательно означает быстрее и / или лучше. Однако, используя твердотельные реле и контакторы Crydom, вы действительно можете добиться более быстрого, лучшего и дешевого, если учесть общую стоимость владения. Их твердотельные реле представляют собой надежные решения, которые способствуют долговечности приложений, поэтому вам редко придется беспокоиться об обслуживании, ремонте или замене их после их установки.

Полезный инструмент для сравнения совокупной стоимости владения

Чтобы помочь вам проанализировать общую стоимость владения (TCO) для SSR по сравнению с EMR, Crydom разработала простой в использовании калькулятор TCO, который можно найти на их веб-сайте во вкладке «Инструменты». Калькулятор учитывает информацию, относящуюся как к прямым, так и к косвенным затратам, а также предполагает, что оба коммутационных решения были выбраны так, чтобы соответствовать нагрузке и энергосистемам. Кроме того, калькулятор учитывает затраты, в основном связанные с технологиями, поскольку они распространены среди различных приложений.

Стоимость единицы в калькуляторе — это стоимость приобретения коммутационного решения. Есть также для добавления радиаторов (для SSR) и розеток (для EMR), если они необходимы. Ожидаемый срок службы, выраженный в количестве циклов или операций, также учитывается, как и особые требования для данного приложения. Сюда могут входить прогнозируемые циклы в минуту или тип нагрузки (например, резистивная, индуктивная, трансформатор / конденсатор или балласт).

Тип нагрузки требуется для оценки корректировок ожидаемого срока службы для ЭМИ, и калькулятор автоматически выбирает правильное снижение номинальных характеристик в зависимости от выбранной нагрузки: снижение номинальных характеристик на 80% для двигателей, катушек или соленоидов; 75% снижение номинальных характеристик трансформаторов или конденсаторов; и 70% для балластов.Гарантийный срок, также включенный в расчет, используется для привязки ко времени в расчетных результатах общей стоимости. Его можно настроить для отображения различных временных рамок, от одного месяца до года и более. Еще одна переменная — стоимость услуги — также должна быть принята во внимание, поскольку она меняется между приложениями или от одной бизнес-модели к другой. На рисунке 3 показан калькулятор совокупной стоимости владения Crydom.

Рисунок 3 — Калькулятор совокупной стоимости владения Crydom.

Когда вы выбираете между технологией электромеханического реле и твердотельной технологией, вам может быть трудно преодолеть первоначальную стоимость твердотельных реле.Однако, хотя начальная стоимость EMR меньше, чем SSR, по мере увеличения количества циклов увеличивается и стоимость обслуживания, ремонта и / или замены EMR. Следовательно, как только вы проработаете общую стоимость владения как SSR, так и EMR, вы скоро поймете, что стоимость жизни SSR во многих случаях такая же или меньше, чем у EMR. Учитывая преимущества SSR по сравнению с EMR в отношении функций и производительности, нетрудно оправдать интеграцию SSR в вашу конструкцию.

Посмотреть связанный продукт
D2425
Sensata Technologies Твердотельные реле — SSR Вид

Хотите узнать больше? Почему бы не прочитать о том, что внутри твердотельного реле?

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *