Полупроводниковый диод устройство: Полупроводниковый диод

Содержание

Полупроводниковый диод

Полупроводниковый диод — это полупроводниковый элемент, пропускающий ток только в одном направлении. Принцип работы диода основан на свойствах проводимости полупроводников, а именно на электронно-дырочном переходе.

На принципиальной электрической схеме диоды изображаются следующим образом:

 

Диоды изготавливают в основном методами сплавления и методом диффузии. Метод сплавления заключается в сплавлении пластин p и n – типов, а метод диффузии состоит во внедрении примесных атомов в полупроводниковую пластину. Благодаря этим способам изготавливаются большие площади p – n переходов – до 1000 мм2. А чем больше площадь перехода, тем больший ток можно через него пропускать.

Существуют также точечные (высокочастотные) диоды, площадь их p – n перехода меньше 0,1 мм2. Такие диоды изготавливаются с помощью соединения металлической иглы с полупроводником. Применяются точечные диоды в аппаратуре сверхвысоких частот при значении тока 10-20 мА.

Основные виды полупроводниковых диодов по функциональному назначению: выпрямительные, стабилитроны, импульсные, светодиоды, фотодиоды и т.д.

Выпрямительными называют полупроводниковые диоды, предназначенные для преобразования переменного тока в постоянный. Такие диоды изготавливают методами сплавки и диффузии, для того чтобы создать большую площадь p-n перехода, так как через них протекают большие токи. Сам процесс выпрямления переменного тока заключается в свойстве диода хорошо проводить ток в одном направлении и практически не проводить его в другом.

Ниже изображена схема простейшего однополупериодного выпрямителя. Работает он следующим образом: положительный полупериод напряжения Uвх, диод V пропускает практически без изменения, и напряжение Ur практически равно Uвх. Но в момент времени, когда полупериод напряжения отрицательный, диод включен в обратном направлении и все напряжение Uвх падает на диоде, а напряжение на резисторе практически равно нулю

 

 На рисунке схематично изображен график напряжения на резисторе.

 

Стабилитронами (опорными диодами) называются полупроводниковые диоды предназначенные для стабилизации постоянного напряжения. Для стабилизации напряжения в стабилитронах используют обратную ветвь вольт-амперной характеристики в области электрического пробоя, для этого их включают в обратном направлении. При изменении тока протекающего через стабилитрон от значения Iстmin до Iстmax напряжение на нем почти не изменяется.

 

Стабилитроны стабилизируют напряжение от 3,5 В, а для стабилизации меньшего напряжения используют стабисторы. В стабисторах используют прямую ветвь вольт-амперной характеристики, поэтому их включают в прямом направлении.

Импульсным называется диод, который предназначен для работы в импульсных схемах. В прямом направлении импульсный диод хорошо проводит электрический ток. При обратном включении такого диода, обратный ток в нем резко увеличивается, а через короткий промежуток времени исчезает. Таким образом получается электрический импульс.

 

  • Просмотров:
  • Принцип работы полупроводникового диода

    Полупроводниковые диоды: виды,  характеристики, принцип работы

    Для контроля направления электрического тока необходимо применять разные радио и электро детали.

    В частности, современная электроника использует с такой целью полупроводниковый диод, его применение обеспечивает ровный ток.

    Устройство

    Полупроводниковый электрический диод или диодный вентиль – это устройство, которое выполнено из полупроводниковых материалов (как правило, из кремния) и работает только с односторонним потоком заряженных частиц.

    Основным компонентом является кристаллическая часть, с p-n переходом, которая подключена к двум электрическими контактами.

    Трубки вакуумного диода имеют два электрода: пластину (анод) и нагретый катод.

    Принцип работы диодов

    Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

    Принцип работы:

    1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
    2. Между двумя электродами происходит образование электрического поля.
    3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
    4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
    5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
    6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

    //www.youtube.com/embed/NqCaJhS0HGU?feature=oembed&wmode=opaque

    Устройство

    Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

    1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
    2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
    3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
    4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
    5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
    6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

    Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

    Назначение

    Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

    1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
    2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
    3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
    4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
    5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

    Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

    Прямое включение диода

    На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

    Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

    1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
    2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
    3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
    4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
    5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
    6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
    7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

    Обратное включение диода

    Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

    1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
    2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
    3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
    4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

    Прямое и обратное напряжение

    Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

    1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
    2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

    Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

    Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

    Работа диода и его вольт-амперная характеристика

    Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

    Подобный график можно описать следующим образом:

    1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
    2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
    3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
    4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
    5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
    6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
    7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

    Принцип работы

    Понять принцип действия полупроводникового диода несложно. Все, что для этого понадобится — разбираться в базовых законах физики и знать, как происходят некоторые электрические процессы.

    Изначально электроток действует на катод, что вызывает накаливание подогревательного элемента. В свою очередь, электродом испускаются электроны, а между двумя частями появляется электрическое поле.

    Аноды с положительным зарядом воздействуют на электроны и притягивают их, а образованное поле выступает в качестве катализатора такой реакции. Также в этот момент формируется эмиссионный ток.

    В двух электродах начинается формирование пространственно-отрицательного заряда, который может препятствовать протеканию электронов. Однако случается это лишь при снижении потенциала анода, в результате чего масса электронов не способна справиться с отрицательными элементами, что заставляет их перемещаться в обратном порядке, то есть электроны снова возвращаются к катоду.

    Нередко показатели катодного тока держатся нулевой отметки — происходит это при воздействии частиц с зарядом минус. В результате образованное поле не заставляет электроны двигаться быстрее, а вызывает обратную реакцию — притормаживает их и заставляет вернуться обратно к катоду. В конечном итоге цепь размыкается, так как диод остается в запертом состоянии.

    Конструкция диода

    Одна из возможных конструкций диода показана ниже:

    Рассмотрим одну из возможных конструкций прибора. Кристалл полупроводника 1 (например, с электронной проводимостью) размещен на металлической основе 3. На верхней части кристалла размещена примесь 2 (например индий), который обеспечивает наличие дырочной проводимости. Кристалл закрыт корпусом 4 во избежание различных механических повреждений p-n перехода.

    С индиевой наплавки сделан изолированный вывод через стеклянный изолятор 5 – это анод прибора. Выводом же катода будет металлический корпус 3, которая также обеспечивает отвод тепла при работе устройства, чем защищает его от теплового пробоя и перегрева.

    В свою очередь полупроводниковые элементы делят на:

    • Малая мощность – ток до 0,3 А;
    • Средняя – от 0,3 до 10 А;
    • Мощные – от 10 А;

    Схемы включения диодов

    Если возникнет необходимость пропускать через полупроводники токи, которые больше их номинальных, соединяют их параллельно, что позволит пропустить больший ток, но возникает необходимость использовать индуктивные делители, для выравнивания токов элементов, схема ниже:

    При больших напряжениях – соединяют последовательно. Но для таких соединений необходимо применять специальных схемы коммутации, чтоб не допустить выход элементов из строя, они показаны ниже:

    Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

    Проголосовавших: 1 чел.
    Средний рейтинг: 5 из 5.

    Устройство и принцип работы полупроводниковых диодов | Electrotechnical Laboratory

    Всем привет мои дорогие друзья, подписчики и коллеги.

    Сегодня я хочу рассказать про то как устроены и работают полупроводниковые диоды.

    Полупроводниковый диод, это электронный прибор, который способен пропускать электрический ток, только в одном направлении. Такие приборы как правило применяются в выпрямительных устройствах, а также в электрических и электронных схемах, где нужно конкретное направление тока.

    Схема однофазного мостового выпрямителя

    Схема однофазного мостового выпрямителя

    Основным элементом диода, являются полупроводники, как правило это кремний или германий. Но сами полупроводники обладают высокими сопротивлениями и низкой проводимостью, из-за того, что эти элименты являются четырехвалентными, и каждый его электрон на внешней орбите атома имеет связь с другим электроном другого атома. Для того, чтобы полупроводники могли проводить электрический ток, в них добавляют примеси, в виде доноров и акцепторов.

    Кристаллическое строение атома кремния

    Кристаллическое строение атома кремния

    Диод имеет две зоны проводимости это р — зона и n — зона. В зону p — типа добавляют акцепторы, в виде трехвалентных химических элементов, которые образуют дырки, а в зону n — типа — доноры — пятивалентные химические элементы, которые образуют свободные электроны.

    Пример примесей доноров и акцепторов

    Пример примесей доноров и акцепторов

    Две эти зоны соединены на кристаллическом уровне. Сам диод имеет два вывода, анод и катод.

    При подачи на диод прямое напряжение, (к аноду — плюс, к катоду — минус) свободные электроны начнут переходить из области — n, в область — p, а дырки начнут перемещаться из области — p в область — n. При этом его сопротивление уменьшится и диод будет проводить электрический ток.

    При подачи на диод обратного напряжения, (к аноду — минус, к катоду — плюс) свободные электроны сместиться к выводу катода, а дырки к выводу анода, в зоне p-n перехода образуется запирающий слой, который увеличит сопротивление диода, который не позволит диоду пропускать электрический ток. А точнее ток будет протекать очень слабый, который называется обратным током.

    Вольт-Амперная характеристика полупроводникового диода и прямая — обратная подача напряжения на диод

    Вольт-Амперная характеристика полупроводникового диода и прямая — обратная подача напряжения на диод

    Если вам понравился это материал, то поставьте ему лайк, а также не забудьте подписаться на наш канал и нажать на колокольчик, чтобы не пропускать новые выпуски. Всем пока.

    Полупроводниковые диоды. 1. Классификация, УГО, маркировка

    варикапы, стабилитроны и др.

    2.1. ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ Полупроводниковыми диодами называют полупроводниковые приборы с одним электрическим переходом и двумя выводами. Они применяются для выпрямления переменного тока, детектирования

    Подробнее

    Дисциплина «Твердотельная электроника»

    Дисциплина «Твердотельная электроника» ТЕМА 3: «Полупроводниковые диоды» Легостаев Николай Степанович, профессор кафедры «Промышленная электроника» Классификация диодов. Полупроводниковым диодом называют

    Подробнее

    ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

    ФИЗИКА ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ Лектор: ст. преподаватель Баевич Г.А. Лекция 4 ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ 1. Назначение, классификация и параметры диодов. 2. Устройство диодов малой, средней и большой мощности.

    Подробнее

    ) j 1 и j з — j 2 — j2 — j 2. V2. j2 —

    ТИРИСТОРЫ ПЛАН 1. Общие сведения: классификация, маркировка, УГО. 2. Динистор: устройство, принцип работы, ВАХ, параметры и применение. 3. Тринистор. 4. Симистор. Тиристор — это полупроводниковый прибор

    Подробнее

    ПРАКТИЧЕСКАЯ РАБОТА 1

    ПРАКТИЧЕСКАЯ РАБОТА 1 Тема: Работа с полупроводниковыми ми Рабочее место: аудитория. Время проведения занятия: 80мин Цель: Научиться работать с полупроводниковыми ми, определять их маркировку по справочным

    Подробнее

    к изучению дисциплины

    МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. С.Г.Камзолова ПОСОБИЕ к изучению дисциплины «Общая электротехника и электроника», раздел «Электронные приборы» Часть 1. для студентов

    Подробнее

    Полупроводниковые диоды

    Полупроводниковые диоды Электроника Полупроводниковые диоды приборы с одним p-n-переходом и двумя выводами, обладающие односторонней проводимостью тока. Вольт-амперная характеристика диода ВАХ диода —

    Подробнее

    5.1. Физические основы полупроводников

    5.1. Физические основы полупроводников Тонкий слой между двумя частями полупроводникового кристалла, в котором одна часть имеет электронную (N), а другая дырочную (Р) проводимость, называется электронно-дырочным

    Подробнее

    Контрольная работа рейтинг 1

    Контрольная работа рейтинг 1 ЗАДАНИЕ 1 1. Дать определение потенциального барьера n-p перехода, от чего зависит его величина и толщина перехода. Их влияние на параметры диода. 2. Определить внутреннее

    Подробнее

    Лекция 2 ЦЕПИ С ДИОДАМИ И ИХ ПРИМЕНЕНИЕ

    109 Лекция ЦЕПИ С ДИОДАМИ И ИХ ПРИМЕНЕНИЕ План 1. Анализ цепей с диодами.. Источники вторичного электропитания. 3. Выпрямители. 4. Сглаживающие фильтры. 5. Стабилизаторы напряжения. 6. Выводы. 1. Анализ

    Подробнее

    2.4. ПОЛЕВЫЕ ТРАНЗИСТОРЫ

    2.4. ПОЛЕВЫЕ ТРАНЗИСТОРЫ Полевой транзистор (ПТ) это полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей заряда одного знака, протекающим через проводящий канал,

    Подробнее

    СБОРНИК ТЕСТОВЫХ ЗАДАНИЙ

    ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСТЕТ им. А.Н. ТУПОЛЕВА-КАИ» Кафедра радиоэлектроники

    Подробнее

    1. Назначение и устройство выпрямителей

    Тема 16. Выпрямители 1. Назначение и устройство выпрямителей Выпрямители это устройства, служащие для преобразования переменного тока в постоянный. На рис. 1 представлена структурная схема выпрямителя,

    Подробнее

    Основы электроники 1/45

    Основы электроники 1/45 Планетарная модель атома (Бор, Резерфорд) предусматривает наличие ядра и вращающихся на определенных (разрешенных) орбитах вокруг него электронов. Под действием внешних факторов

    Подробнее

    Нелинейные сопротивления «на ладони»

    Нелинейные сопротивления «на ладони» Структурой, лежащей в основе функционирования большинства полупроводниковых электронных приборов, является т.н. «p-n переход». Он представляет собой границу между двумя

    Подробнее

    ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

    ФИЗИКА ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ Лектор:. преподаватель Баевич Г.А. Лекция 5 ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ 1. Последовательное и параллельное соединение диодов. 2. Выпрямитель переменного тока на одном диоде.

    Подробнее

    Собственный полупроводник

    Собственный полупроводник Для изготовления полупроводников применяют в основном германий и кремний, а также некоторые соединения галлия, индия и пр. Для полупроводников характерен отрицательный температурный

    Подробнее

    Изучение работы p-n перехода

    НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ НИЛ техники эксперимента МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОМУ ПРАКТИКУМУ ПО КУРСУ «ФИЗИКА» www.rib.ru e-mail: [email protected] 010804. Изучение работы —

    Подробнее

    Порядок выполнения задания

    Целью лабораторной работы является закрепление теоретических знаний о физических принципах работы и определяемых ими характеристиках и параметрах полупроводниковых стабилитронов путем их экспериментального

    Подробнее

    Оглавление. Дшпература… 44

    Оглавление Предисловие редактора Ю. А. Парменова…11 Глава I. Основные сведения из физики полупроводников… 13 1.1. Элементы зонной теории… 13 1.2. Собственные и примесные полупроводники… 18 1.3.

    Подробнее

    ИЗМЕРЕНИЕ ВРЕМЕНИ ЖИЗНИ И

    Нижегородский государственный университет им. Н. И. Лобачевского Радиофизический факультет Кафедра электроники Отчет по лабораторной работе: ИЗМЕРЕНИЕ ВРЕМЕНИ ЖИЗНИ И ДИФФУЗИОННОЙ ДЛИНЫ НЕРАВНОВЕСНЫХ НОСИТЕЛЕЙ

    Подробнее

    ОБЩАЯ ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

    МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ С.Г. Камзолова ОБЩАЯ ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА Пособие по выполнению контрольных домашних заданий для студентов II курса специальности

    Подробнее

    ДИОДЫ СВЧ 2А551А-3 2А551Г-3

    2А551А-3 2А551Г-3 Диоды 2А551А-3, 2А551Б-3, 2А551В-3, 2А551Г-3 бескорпусные кремниевые диффузионные СВЧ переключательные p-i-n предназначены для управления фазой и уровнем СВЧ сигнала. Диоды поставляют

    Подробнее

    АНАЛИЗ ЛИНЕЙНЫЙ ЦЕПЕЙ ПО ПОСТОЯННОМУ ТОКУ

    Вопросы для подготовки к экзамену по курсу «Основы теории цепей» 1 АНАЛИЗ ЛИНЕЙНЫЙ ЦЕПЕЙ ПО ПОСТОЯННОМУ ТОКУ 1. Понятие напряжения, тока, мощности, энергии. 2. Модели элементов цепи, вольт-амперная характеристика

    Подробнее

    Составитель: Н.Н. Муравлева

    ИССЛЕДОВАНИЕ ВЫПРЯМИТЕЛЬНОГО ДИОДА. ПРИНЦИП ДЕЙСТВИЯ P-N ПЕРЕХОДА. Методические указания к самостоятельной виртуальной практической работе по дисциплине «Электротехника и электроника» для студентов всех

    Подробнее

    ИМПУЛЬСНЫЕ РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ

    95 Лекция 0 ИМПУЛЬСНЫЕ РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ План. Введение. Понижающие импульсные регуляторы 3. Повышающие импульсные регуляторы 4. Инвертирующий импульсный регулятор 5. Потери и КПД импульсных регуляторов

    Подробнее

    Полупроводниковые приборы

    Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Кафедра «Электротехника»

    Подробнее

    idt sin tdt 0,32I T R R R R

    Лабораторная работа 1 Выпрямитель переменного тока Цель: изучение работы однополупериодного и двухполупериодного выпрямителей и их характеристик. Выпрямителем называется устройство для преобразования напряжения

    Подробнее

    Типы полупроводниковых диодов

    Полупроводниковый прибор с одним электрическим переходом, работа которого заключается в преобразования одних электрических значений в другие, называют диодом. В конструкции данного изделия предусматривается два вывода для монтажа.

    Диоды полупроводниковые

    На принципиальных электрических схемах полупроводниковые диоды изображаются в виде треугольника и отрезка, расположенного на одной из его вершин и находящегося параллельно противолежащей стороне.

    В зависимости от разработки диода его обозначение может включать дополнительные символы. В любом случае вершина треугольника, примыкающая к осевой линии диода, указывает на направление протекания тока.

     

    В той части обозначения, где располагается треугольник, находится p-область, которую ещё называют анодом или эмиттером, а со стороны, где к треугольнику примыкает отрезок, находится n-область, которую соответственно называют катодом, или базой.

    Полупроводниковые диоды, назначение которых заключается в преобразовании переменного тока в постоянный ток, называются выпрямительными. Выпрямление переменного тока с использованием полупроводникового диода построено на основе его односторонней электропроводности, которая заключается в том, что диод создаёт очень малое сопротивление току, текущему в прямом направлении, и достаточно большое сопротивление обратному току.

    Для того чтобы выпрямить ток большой силы не опасаясь теплового пробоя, конструкция диодов должна предусматривать значительную площадь pn-перехода. В связи, с чем в выпрямительных полупроводниковых диодах задействуют специальные pn-переходы соответствующие последнему слову науки и техники.

    Технология создания pn-перехода получается, за счёт ввода в полупроводник p-или n-типа примеси, которая создаёт в нем область с противоположным значением электропроводности. Примеси можно добавлять методом сплавления или диффузии.

    Диоды, получаемые методом сплавления, называют «сплавными», а изготавливаемые методом диффузии «диффузионными».

    Простейший выпрямитель

     

     

    В ходе положительного полупериода входного напряжения U1 диод V работает в прямом направлении, его сопротивление маленькое и на нагрузке RH напряжение U2 практически равно входящему напряжению.

    График напряжения на входе и выходе простейшего однополупериодного выпрямителя

    При отрицательном полупериоде данного входного напряжения диод включен в направлении обратно, где его сопротивление формируется значительно больше, чем сопротивление на нагрузке, и почти все входящее напряжение падает на диоде, а напряжение на нагрузке приближается к нулю. В такой схеме для получения выпрямленного напряжения используется всего лишь один полупериод входящего напряжения, поэтому такой тип выпрямителей называется однополупериодным.

    Полупроводниковые диоды, которые используются для стабилизации постоянного напряжения на нагрузке, называют стабилитронами. В стабилитронах задействован участок обратной участка вольтамперной характеристики в поле электрического пробоя.

    Схема простейшего стабилизатора напряжения

     

     

    В данном случае при изменении тока, проходящего через стабилитрон, от Iст. мин. до Iст. макс. напряжение на нем практически не изменяется. Если нагрузка RH включена параллельно стабилитрону, уровень напряжения на ней также будет оставаться неизменным в указанных пределах изменения тока, проходящего через стабилитрон.

    График стабилитрона

     

     

    Такими диодами стабилизируют уровень напряжения примерно от 3,5 В и выше. Для стабилизации постоянного напряжения до 1 вольта применяют стабисторы. У стабисторов работает не обратная, а прямая часть вольтамперной характеристики. Поэтому их подсоединяют не в обратном, как делают со стабилитронами, а в прямом направлении. Электронные компоненты, такие как стабисторы и стабилитроны, как правило, изготовляются, из кремния.

    Вольтамперная характеристика стабистора

     

    Плоскостные диоды обладают с высокими ёмкостными характеристиками. С увеличением частоты емкостное сопротивление понижается, что приводит к нарастанию его обратного тока. На больших частотах вследствие того в диоде есть ёмкость, величина его обратного тока может достичь значения прямого тока, и этот диод, таким образом, утратит свое основное свойство односторонней электропроводности. Для сохранения своих функциональных качеств необходимо снизить емкость диода. Это достигается с помощью всевозможных технологических и конструктивных методов, направленных на сокращения площади pn-перехода.

    В диодах, используемых в схемах, работающих с высокочастотным током, применяют изделия с точечными и микросплавными pn-переходами. Нужный точечный pn-переход, получается в месте контакта заостренного окончания специальной металлической иглы с полупроводником. При этом применяют способ электроформования, заключающемся в том, что через соединение проволоки и кристалла полупроводники протекают импульсы электрического тока, формирующие в месте их контакта pn-переход. Микросплавными называются такие диоды, у которых pn-переход создаётся при электроформовании контакта между пластинкой полупроводника и металлическим предметом с плоским торцом.

    Точечный полупроводниковый диод — Большая Энциклопедия Нефти и Газа, статья, страница 1

    Точечный полупроводниковый диод

    Cтраница 1


    Точечный полупроводниковый диод представляет собой пластинку германия с электронной проводимостью; к ней приварен конец вольфрамовой пружинки.  [2]

    Точечные полупроводниковые диоды, предназначенные для работы в диапазоне СВЧ, имеют некоторые конструктивные особенности, сводящие до минимума паразитные индуктивность и проходную емкость.  [4]

    Точечные полупроводниковые диоды применяют в качестве детекторов, кольцевых модуляторов, преобразователей частоты, в счетных схемах, а также в схемах маломощных выпрямителей и измерительной аппаратуре.  [5]

    Основными параметрами точечных полупроводниковых диодов являются: наименьший прямой ток, наибольший обратный ток, выпрямленный ток, наибольшая амплитуда обратного напряжения и наименьшее обратное пробивное напряжение.  [7]

    Почему для детектирования применяются точечные полупроводниковые диоды.  [8]

    В качестве детектора применяется только точечный полупроводниковый диод, так как плоскостные диоды обладают значительной междуэлектродной емкостью и не могут нормально работать на высоких частотах.  [9]

    Для выпрямления слабых высокочастотных токов применяют точечные полупроводниковые диоды. Схематическое устройство точечного германиевого диода дано на рис. 17.6. Внутри керамической трубки / на металлических втулках укреплена пластинка германия 2 и контактная металлическая проволочка 3, упирающаяся в германиевую пластинку. В месте контакта металлической проволоки с кристаллом полупроводника образуется р-га-переход.  [10]

    В зависимости от оформления / 7-и-перехода различают плоскостные и точечные полупроводниковые диоды. Плоскостные можно получить методами вплавления, диффузии и выращивания. При изготовлении точечных диодов в хорошо отполированную пластину полупроводникового материала упирают металлическую иглу. В месте соприкосновения иглы с полупроводником образуется выпрямляющий переход.  [12]

    В зависимости от оформления / — л-перехода различают плоскостные и точечные полупроводниковые диоды. Плоскостные можно получить методами вплавления, диффузии и выращивания. При изготовлении, точечных диодов в хорошо отполированную пластину полупроводникового материала упирают металлическую иглу. В месте соприкосновения иглы с полупроводником образуется выпрямляющий переход.  [14]

    Наряду с плоскостными полупроводниковыми диодами в радиоэлектронике широко применяются точечные полупроводниковые диоды.  [15]

    Страницы:      1    2    3

    Полупроводниковые диоды

    Полупроводниковый диод — это полупроводниковый прибор с одним электронно-дырочным переходом (основная часть) и двумя выводами. Примеры внешнего вида диодов приведены на рис. 1.

    Рис. 1. Полупроводниковые диоды.

    По конструкции полупроводниковые диоды могут быть плоскостными и точечными. Устройство плоскостного диода показано на рис. 2. К кристаллодержателю припаивается пластинка полупроводника n-типа. Кристалложержатель – это металлическое основание плоскостного диода. Сверху в пластинку полупроводника вплавляется капля трёхвалентного металла, обычно индия. Атомы индия диффундируют (проникают) в полупроводниковую пластинку и образуют у её поверхности слой р-типа. Между слоями р- и n-типов образуется электронно-дырочный переход (ЭДП). К кристаллодержателю и индию припаиваются проводники, которые служат выводами диода. Для предохранения диода от механических повреждений, попадания света, пыли и влаги на полупроводник, его помещают в герметичный корпус.

    На рис. 2 позиция 1 – это вывод р-области, позиция 2 – вывод n-области.

    Рис. 2. Устройство плоскостного диода.

    Точечный полупроводниковый диод состоит из пластинки полупроводника n-типа и заострённой пружинки из вольфрама или фосфористой бронзы диаметром около 0,1 мм. Через прижатую к полупроводниковой пластинке пружинку пропускают электрический ток большой силы, в результате чего металлическая пружинка сваривается с полупроводниковой пластинкой, образуя под своим остриём р-область. Между р-областью и полупроводником n-типа возникает электронно-дырочный переход.

    На рис. 3 приведены условные графические обозначения (УГО) различных диодов. Острая вершина треугольника в УГО указывает на направление протекания прямого тока через диод. То есть для того, чтобы диод пропускал ток, включать его нужно так, чтобы на основание треугольника подавался «плюс» (или на прямолинейный отрезок подавался «минус»). Если включить диод в обратном направлении, то он не будет пропускать ток (потому и называется полупроводником – пропускает ток только в одном направлении). Пример включения диода показан на рис. 4. Пример применения диода можно увидеть на рис. 5.

    Рис. 3. Условное графическое обозначение (УГО) диодов.

    р-область диода (то есть вывод, на который в прямом направлении подаётся «плюс») носит название анод. Противоположный вод называется катод.

    Рис. 4. Включение диода.


    Полупроводниковый прибор | электроника | Britannica

    Полупроводниковые материалы

    Твердотельные материалы обычно делятся на три класса: изоляторы, полупроводники и проводники. (При низких температурах некоторые проводники, полупроводники и изоляторы могут стать сверхпроводниками.) На рисунке 1 показаны удельные проводимости σ (и соответствующие удельные сопротивления ρ = 1 / σ), которые связаны с некоторыми важными материалами каждого из трех классов. Изоляторы, такие как плавленый кварц и стекло, имеют очень низкую проводимость, порядка от 10 −18 до 10 −10 сименс на сантиметр; а проводники, такие как алюминий, имеют высокую проводимость, обычно от 10 4 до 10 6 сименс на сантиметр.Электропроводность полупроводников находится между этими крайними значениями.

    проводимости

    Типичный диапазон проводимости изоляторов, полупроводников и проводников.

    Британская энциклопедия, Inc.

    Проводимость полупроводника обычно чувствительна к температуре, освещению, магнитным полям и незначительным количествам примесных атомов. Например, добавление менее 0,01 процента примеси определенного типа может увеличить электрическую проводимость полупроводника на четыре или более порядков величины ( i.е., 10000 раз). Диапазоны проводимости полупроводников за счет примесных атомов для пяти распространенных полупроводников приведены на рисунке 1.

    Изучение полупроводниковых материалов началось в начале 19 века. За прошедшие годы было исследовано множество полупроводников. В таблице показана часть периодической таблицы, относящаяся к полупроводникам. Элементарные полупроводники состоят из отдельных видов атомов, таких как кремний (Si), германий (Ge) и серое олово (Sn) в столбце IV и селен (Se) и теллур (Te) в столбце VI.Однако существует множество сложных полупроводников, состоящих из двух или более элементов. Например, арсенид галлия (GaAs) представляет собой бинарное соединение III-V, которое представляет собой комбинацию галлия (Ga) из колонки III и мышьяка (As) из колонки V.

    Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас
    Часть периодической таблицы элементов, относящихся к полупроводникам
    период столбец
    II III IV V VI
    2 бор
    B
    углерод
    C
    азот
    N
    3 магний
    мг
    алюминий
    Al
    кремний
    Si
    фосфор
    P
    сера
    S
    4 цинк
    Zn
    галлий
    Ga
    германий
    Ge
    мышьяк
    As
    селен
    Se
    5 кадмий
    Cd
    индий
    В
    олово
    Sn
    сурьма
    Sb
    теллур
    Te
    6 ртуть
    Hg
    свинец
    Pb

    Тройные соединения могут быть образованы элементами из трех разных колонок, как, например, теллурид ртути и индия (HgIn 2 Te 4 ), соединение II-III-VI.Они также могут быть образованы элементами из двух столбцов, такими как арсенид алюминия-галлия (Al x Ga 1 — x As), который представляет собой тройное соединение III-V, где как Al, так и Ga происходят из столбец III и нижний индекс x относятся к составу двух элементов от 100 процентов Al ( x = 1) до 100 процентов Ga ( x = 0). Чистый кремний является наиболее важным материалом для применения в интегральных схемах, а бинарные и тройные соединения III-V являются наиболее важными для излучения света.

    До изобретения биполярного транзистора в 1947 году полупроводники использовались только как двухполюсные устройства, такие как выпрямители и фотодиоды. В начале 1950-х годов германий был основным полупроводниковым материалом. Однако он оказался непригодным для многих применений, поскольку устройства, изготовленные из этого материала, демонстрируют высокие токи утечки только при умеренно повышенных температурах. С начала 1960-х годов кремний стал практическим заменителем, фактически вытеснив германий в качестве материала для производства полупроводников.Для этого есть две основные причины: (1) кремниевые устройства демонстрируют гораздо более низкие токи утечки и (2) высококачественный диоксид кремния (SiO 2 ), который является изолятором, легко производить. Кремниевая технология в настоящее время является самой передовой среди всех полупроводниковых технологий, а устройства на основе кремния составляют более 95 процентов всего полупроводникового оборудования, продаваемого во всем мире.

    Многие сложные полупроводники обладают электрическими и оптическими свойствами, отсутствующими в кремнии.Эти полупроводники, особенно арсенид галлия, используются в основном для высокоскоростных и оптоэлектронных приложений.

    Электронные свойства

    Полупроводниковые материалы, рассматриваемые здесь, представляют собой монокристаллы — т. Е. атомы расположены в трехмерном периодическом порядке. На рис. 2А показано упрощенное двумерное представление кристалла собственного кремния, который очень чистый и содержит пренебрежимо малое количество примесей. Каждый атом кремния в кристалле окружен четырьмя ближайшими соседями.Каждый атом имеет четыре электрона на своей внешней орбите и делит эти электроны со своими четырьмя соседями. Каждая общая электронная пара представляет собой ковалентную связь. Сила притяжения электронов обоими ядрами удерживает два атома вместе.

    При низких температурах электроны связаны в своих соответствующих положениях в кристалле; следовательно, они недоступны для электропроводности. При более высоких температурах тепловая вибрация может разрушить некоторые ковалентные связи. Разрыв связи дает свободный электрон, который может участвовать в проводимости тока.Как только электрон удаляется от ковалентной связи, в этой связи возникает недостаток электронов. Этот недостаток может быть восполнен одним из соседних электронов, что приводит к смещению местоположения недостатка с одного сайта на другой. Таким образом, этот недостаток можно рассматривать как частицу, подобную электрону. Эта фиктивная частица, названная дыркой, несет положительный заряд и движется под действием приложенного электрического поля в направлении, противоположном направлению движения электрона.

    Для изолированного атома электроны атома могут иметь только дискретные уровни энергии.Когда большое количество атомов объединяется, чтобы сформировать кристалл, взаимодействие между атомами заставляет дискретные уровни энергии расширяться в энергетические зоны. Когда нет тепловой вибрации (, то есть при низкой температуре), электроны в полупроводнике полностью заполняют ряд энергетических зон, оставляя остальные энергетические зоны пустыми. Полоса с самым высоким заполнением называется валентной полосой. Следующая более высокая зона — это зона проводимости, которая отделена от валентной зоны запрещенной зоной.Эта запрещенная зона, также называемая запрещенной зоной, представляет собой область, обозначающую энергии, которыми электроны в полупроводнике не могут обладать. Большинство важных полупроводников имеют ширину запрещенной зоны от 0,25 до 2,5 эВ. Ширина запрещенной зоны кремния, например, составляет 1,12 эВ, а ширина запрещенной зоны арсенида галлия — 1,42 эВ.

    Как обсуждалось выше, при конечных температурах тепловые колебания разрывают некоторые связи. Когда связь разрывается, свободный электрон вместе со свободной дыркой дает , то есть : электрон обладает достаточной тепловой энергией, чтобы пересечь запрещенную зону в зону проводимости, оставляя дырку в валентной зоне.Когда к полупроводнику прикладывают электрическое поле, как электроны в зоне проводимости, так и дырки в валентной зоне получают кинетическую энергию и проводят электричество. Электропроводность материала зависит от количества носителей заряда (, т. Е. свободных электронов и свободных дырок) в единице объема и от скорости, с которой эти носители перемещаются под действием электрического поля. В собственном полупроводнике существует равное количество свободных электронов и свободных дырок.Однако электроны и дырки обладают разной подвижностью, то есть они движутся с разными скоростями в электрическом поле. Например, для собственного кремния при комнатной температуре подвижность электронов составляет 1500 квадратных сантиметров на вольт-секунду (см 2 / В · с) — , то есть электрон будет двигаться со скоростью 1500 сантиметров в секунду под электрическим током. поле в один вольт на сантиметр — при подвижности дырок 500 см 2 / В · с. Подвижности данного полупроводника обычно уменьшаются с повышением температуры или с увеличением концентрации примесей.

    Электрическая проводимость в собственных полупроводниках довольно низкая при комнатной температуре. Чтобы добиться более высокой проводимости, можно намеренно ввести примеси (обычно до концентрации одной части на миллион атомов хозяина). Это так называемый процесс допинга. Например, когда атом кремния заменяется атомом с пятью внешними электронами, такими как мышьяк (рис. 2C), четыре электрона образуют ковалентные связи с четырьмя соседними атомами кремния. Пятый электрон становится электроном проводимости, который «дарится» зоне проводимости.Кремний становится полупроводником типа n из-за добавления электрона. Атом мышьяка является донором. Точно так же на рисунке 2C показано, что, когда атом с тремя внешними электронами, такими как бор, заменяется атомом кремния, дополнительный электрон «принимается» для образования четырех ковалентных связей вокруг атома бора, и в атоме бора создается положительно заряженная дырка. валентная полоса. Это полупроводник типа p , в котором бор является акцептором.

    P-N переходный полупроводниковый диод — диод

    Что такое полупроводниковый диод с p-n переходом?


    А диод с p-n переходом — двухполюсный или двухэлектродный полупроводниковый прибор, который пропускает электрический ток только в одном направлении в то время как блокирует электрический ток в обратном или обратном направлении направление.Если диод смещен в прямом направлении, это позволяет электрический ток. С другой стороны, если диод с обратным смещением, он блокирует прохождение электрического тока. P-N переходный полупроводниковый диод также называется p-n переходом полупроводниковый прибор.

    В n-тип полупроводники, бесплатно электроны являются основными носителями заряда, тогда как в р-тип полупроводники, отверстия являются основными носителями заряда.Когда n-тип полупроводник соединен с полупроводником p-типа, p-n стык образуется. P-n переход, который образуется при соединении полупроводников p-типа и n-типа называется p-n переходным диодом.

    П-П переходной диод изготовлен из полупроводниковых материалов. такие как кремний, германий и арсенид галлия.Для при разработке диодов кремний более предпочтителен, чем германий. Диоды на p-n-переходе из кремния полупроводники работают при более высоких температурах по сравнению с с диодами p-n-перехода из германия полупроводники.

    основной символ p-n-переходного диода при прямом смещении и Обратное смещение показано на рисунке

    ниже.

    В На рисунке выше стрелка диода указывает на условное направление электрического тока, когда диод смещен в прямом направлении (от положительной клеммы к отрицательная клемма).Отверстия, которые движутся от положительного клемма (анод) к отрицательной клемме (катод) условное направление тока.

    Свободные электроны, движущиеся от отрицательной клеммы (катод) к положительной клемме (анод) на самом деле переносят электрический ток. Однако из-за условию мы должны предположить, что текущее направление от положительной клеммы к отрицательной.

    Смещение полупроводниковый диод p-n переход

    процесс подачи внешнего напряжения на p-n переход полупроводниковый диод называется подмагничивающим. Внешнее напряжение на диод с p-n переходом применяется любым из двух способов: прямое смещение или обратное смещение.

    Если диод p-n-перехода смещен в прямом направлении, это позволяет электрический ток.В условиях прямого смещения Полупроводник p-типа подключается к положительной клемме батареи тогда как; полупроводник n-типа подключен к отрицательный полюс аккумуляторной батареи.

    Если диод p-n перехода имеет обратное смещение, он блокирует электрический ток. В условиях обратного смещения Полупроводник p-типа подключается к отрицательной клемме батареи тогда как; полупроводник n-типа подключен к положительный полюс аккумуляторной батареи.

    Клеммы pn переходного диода

    Как правило, Терминал относится к точке или месту, в котором любой объект начинается или заканчивается. Например, автовокзал или конечная остановка — это место, в котором все автобусы начинаются или заканчиваются. Точно так же в диод с p-n переходом, клемма означает точку, в которой носители заряда начинается или заканчивается.

    П-н переходной диод состоит из двух выводов: положительного и отрицательный.В положительный полюс, все свободные электроны закончатся, и все отверстия начнутся, тогда как на отрицательной клемме все свободные электроны начнутся, и все дырки закончатся.

    • Клеммы диода прямого смещения


    В диод с прямым смещением p-n перехода (p-тип подключен к положительный терминал и n-тип подключен к отрицательному клемма), клемма анода является положительной клеммой, тогда как катодная клемма — отрицательная клемма.

    Анод клемма — положительно заряженный электрод или проводник, который поставляет отверстия в p-n переход. Другими словами, анодный или анодный вывод или положительный вывод является источником положительных носителей заряда (дырок) положительный заряд носители (отверстия) начинают свой путь от анодного терминала и проходит через диод и заканчивается на катодном выводе.


    Катод отрицательно заряженный электрод или проводник, который поставляет свободные электроны в p-n переход. Другими словами, катодный вывод или отрицательный вывод является источником свободного электроны, отрицательные носители заряда (свободные электроны) начинает свое путешествие с катодного терминала и проходит через диод и заканчивается на анодном выводе.

    свободные электроны притягиваются к анодному выводу или положительный вывод, а отверстия притягиваются к катодный вывод или отрицательный вывод.

    • Клеммы диода при обратном смещении


    Если диод с обратным смещением (p-тип подключен к отрицательному клемма и n-тип, подключенный к положительной клемме), клемма анода становится отрицательной клеммой, тогда как катодная клемма становится положительной клеммой.

    Анод клемма или отрицательная клемма поставляет свободные электроны на p-n переход. Другими словами, анодный вывод — это источник свободных электронов, свободные электроны начинают свой путь на отрицательном или анодном выводе и заполняет большое количество дырки в полупроводнике p-типа. Отверстия в р-образном полупроводник притягивается к отрицательному выводу.Свободные электроны с отрицательной клеммы не могут двигаться к положительной клемме, потому что широкое истощение область на p-n-переходе сопротивляется или противодействует потоку свободные электроны.

    Катод терминал или положительный терминал обеспечивает отверстия для p-n соединение. Другими словами, катодный вывод является источником дыры, дыры начинают свой путь на положительном или катодном терминал и занимает позицию электронов в n-типе полупроводник.Свободные электроны в n-типе полупроводник притягивается к положительному выводу. Отверстия от положительной клеммы не могут двигаться в сторону отрицательная клемма, потому что широкая область истощения на p-n переход препятствует потоку дырок.

    Кремний и германиевые полупроводниковые диоды


    • Для при разработке диодов кремний более предпочтителен, чем германий.
    • Диоды с p-n переходом из кремниевых полупроводников работают при более высокой температуре, чем германиевый полупроводник диоды.
    • Нападающий напряжение смещения для кремниевого полупроводникового диода составляет примерно 0,7 вольт, тогда как для германия полупроводниковый диод примерно 0.3 вольта.
    • Кремний полупроводниковые диоды не пропускают электрический ток расход, если напряжение на кремниевом диоде меньше чем 0,7 вольт.
    • Кремний полупроводник диоды начинают пропускать ток, если напряжение приложенный на диоде достигает 0,7 вольт.
    • Германий полупроводниковые диоды не пропускают электрический ток потока, если напряжение, приложенное к германиевому диоду, равно меньше 0.3 вольта.
    • Германий полупроводниковые диоды начинают пропускать ток, если напряжение на германиевом диоде достигает 0,3 вольт.
    • Стоимость кремниевых полупроводников невысока по сравнению с германиевые полупроводники.

    Преимущества диода p-n перехода

    П-н переходный диод — самая простая форма из всех полупроводниковых устройств.Однако диоды играют важную роль во многих электронные устройства.

    Введение в диоды

    • Раздел 2.0 Введение в диоды.
    • • Обозначения диодных схем.
    • • Ток через диоды.
    • • Конструкция диодов.
    • • PN-переход.
    • • Прямое и обратное смещение.
    • • Характеристики диода.
    • Раздел 2.1 Кремниевые выпрямители.
    • • Маркировка полярности.
    • • Параметры выпрямителя.
    • Раздел 2.2 Диоды Шоттки.
    • • Конструкция диода Шоттки.
    • • Потенциал соединения Шоттки.
    • • Высокоскоростное переключение.
    • • Выпрямители мощности Шоттки.
    • • Ограничения по току Шоттки.
    • • Защита от перенапряжения.
    • Раздел 2.3 Малосигнальные диоды.
    • • Конструкция малосигнального диода.
    • • Формирование волны.
    • • Обрезка.
    • • Зажим / восстановление постоянного тока.
    • • Приложения HF.
    • • Защитные диоды.
    • Раздел 2.4 Стабилитроны.
    • • Конструкция стабилитрона.
    • • Обозначения схем Зенера.
    • • Эффект Зенера.
    • • Эффект лавины.
    • • Практические стабилитроны.
    • Раздел 2.5 Светодиоды.
    • • Работа светодиода.
    • • Световое излучение.
    • • Цвета светодиодов.
    • • Расчеты цепей светодиодов.
    • • Светодиодные матрицы.
    • • Тестирование светодиодов.
    • Раздел 2.6 Лазерные диоды.
    • • Лазерный луч.
    • • Основы атома.
    • • Конструкция лазерного диода.
    • • Лазерная накачка.
    • • Управление лазерным диодом.
    • • Лазерные модули.
    • • Лазерная оптика.
    • • Классы лазерных диодов.
    • Раздел 2.7 Фотодиоды.
    • • Основы фотодиодов.
    • • Приложения.
    • • Конструкция лазерного диода.
    • • Лазерная накачка.
    • • Управление лазерным диодом.
    • • Лазерные модули.
    • • Лазерная оптика.
    • • Классы лазерных диодов.
    • Раздел 2.8 Проверка диодов.
    • • Неисправности диодов.
    • • Проверка диодов с помощью омметра.
    • • Определение соединений диодов.
    • • Выявление неисправных диодов.
    • Раздел 2.9 Тест диодов.
    • • Проверьте свои знания о диодах.

    Рисунок 2.0.1. Диоды

    Введение

    Диоды — одни из самых простых, но наиболее полезных из всех полупроводниковых устройств. Многие типы диодов используются в широком спектре приложений. Выпрямительные диоды — жизненно важный компонент в источниках питания, где они используются для преобразования сетевого напряжения переменного тока в постоянное. Стабилитроны используются для стабилизации напряжения, предотвращения нежелательных изменений в подаче постоянного тока в цепи и для подачи точных опорных напряжений для многих схем.Диоды также можно использовать для предотвращения катастрофического повреждения оборудования с батарейным питанием, когда батареи подключены с неправильной полярностью.

    Сигнальные диоды также широко используются при обработке сигналов в электронном оборудовании; они используются для получения аудио- и видеосигналов из передаваемых радиочастотных сигналов (демодуляция), а также могут использоваться для формирования и изменения форм сигналов переменного тока (ограничение, ограничение и восстановление постоянного тока). Диоды также встроены во многие цифровые интегральные схемы, чтобы защитить их от опасных скачков напряжения.

    Рис. 2.0.2 Обозначения диодных цепей

    Светодиоды

    излучают многоцветный свет в очень широком спектре оборудования от простых индикаторных ламп до огромных и сложных видеодисплеев. Фотодиоды также производят электрический ток из света.

    Диоды изготавливаются из полупроводниковых материалов, в основном кремния, с добавлением различных соединений (комбинаций более чем одного элемента) и металлов в зависимости от функции диода. Ранние типы полупроводниковых диодов были сделаны из селена и германия, но эти типы диодов были почти полностью заменены более современными конструкциями кремния.

    На рис. 2.0.1 показаны следующие диоды с общим проводом на концах:

    1. Три силовых выпрямителя (мостовой выпрямитель для использования с сетевым (линейным) напряжением и два выпрямительных диода сетевого напряжения).

    2. Точечный диод (в стеклянной капсуле) и диод Шоттки.

    3. Кремниевый малосигнальный диод.

    4. Стабилитроны в корпусе из стекла или черной смолы.

    5. Подборка светодиодов. Против часовой стрелки от красного: желтый и зеленый светодиоды, инфракрасный фотодиод, теплый белый светодиод 5 мм и синий светодиод высокой яркости 10 мм.

    Обозначения диодных цепей

    Диод — односторонний провод. Он имеет два вывода: анод или положительный вывод и катод или отрицательный вывод. В идеале диод будет пропускать ток, когда его анод сделан более положительным, чем его катод, но предотвращать протекание тока, когда его анод более отрицательный, чем его катод. В условных обозначениях схем, показанных на рис. 2.0.2, катод показан в виде стержня, а анод — в виде треугольника. На некоторых принципиальных схемах анод диода может также обозначаться буквой «а», а катод — буквой «к».

    В каком направлении течет диодный ток?

    Обратите внимание на рис. 2.0.2, что обычный ток течет от положительной (анодной) клеммы к отрицательной (катодной) клемме, хотя движение электронов (электронный поток) происходит в противоположном направлении, от катода к аноду.

    Конструкция кремниевого диода

    Рис. 2.0.3 Кремниевый планарный диод

    Современные кремниевые диоды обычно производятся с использованием одной из различных версий планарного процесса, который также используется для изготовления транзисторов и интегральных схем.Многослойная конструкция, используемая в методах Silicon Planar, дает ряд преимуществ, таких как предсказуемые характеристики и надежность, а также является преимуществом для массового производства.

    Упрощенный планарный кремниевый диод показан на рис. 2.0.3. Использование этого процесса для кремниевых диодов позволяет получить два слоя кремния с различным легированием, которые образуют «PN переход». Нелегированный или «собственный» кремний имеет решеточную структуру из атомов, каждый из которых имеет четыре валентных электрона, но кремний P-типа и кремний N-типа легируют путем добавления относительно очень небольшого количества материала, имеющего атомную структуру с тремя валентными электронами (например,грамм. Бор или алюминий), чтобы получить кремний P-типа, или пять валентных электронов (например, мышьяк или фосфор), чтобы получить кремний N-типа. Эти легированные версии кремния известны как «примесный» кремний. Кремний P-типа теперь имеет нехватку валентных электронов в своей структуре, что также можно рассматривать как избыток «дырок» или носителей положительного заряда, тогда как слой N-типа легирован атомами, имеющими пять электронов в его валентной оболочке и поэтому имеет избыток электронов, которые являются носителями отрицательного заряда.

    Диод PN Junction

    Рис. 2.0.4 Слой истощения диода

    Когда кремний P- и N-типа объединяются во время производства, создается переход, где встречаются материалы P-типа и N-типа, и отверстия, расположенные рядом с переходом в кремнии P-типа, притягиваются к отрицательно заряженному материалу N-типа на другой стороне. перехода. Кроме того, электроны, расположенные рядом с переходом в кремнии N-типа, притягиваются к положительно заряженному кремнию P-типа. Следовательно, вдоль перехода между кремнием P- и N-типа создается небольшой естественный потенциал между полупроводниковым материалом P и N с отрицательно заряженными электронами, которые теперь находятся на стороне P-типа перехода, и положительно заряженными дырками на стороне N. соединение.Этот слой носителей заряда противоположной полярности накапливается до тех пор, пока его не станет достаточно, чтобы предотвратить свободное движение любых дальнейших дырок или электронов. Из-за этого естественного электрического потенциала в переходе между слоями P и N в PN-переходе образовался очень тонкий слой, который теперь обеднен носителями заряда и поэтому называется обедненным слоем. Поэтому, когда диод подключен к цепи, ток не может течь между анодом и катодом, пока анод не станет более положительным, чем катод, прямым потенциалом или напряжением (V F ), по крайней мере, достаточным для преодоления естественного обратного потенциала соединение.Это значение зависит в основном от материалов, из которых сделаны слои P и N диода, и от количества используемого легирования. Различные типы диодов имеют естественный обратный потенциал в диапазоне примерно от 0,1 В до 2 или 3 В. Кремниевые диоды с PN-переходом имеют потенциал перехода от 0,6 до 0,7 В.

    Диод прямой проводимости

    Рис. 2.0.5 Диод вперед


    Проводимость

    Как только напряжение, приложенное к аноду, становится более положительным, чем на катоде, на величину, превышающую потенциал обедненного слоя, начинается прямая проводимость от анода к обычному катоду, как показано на рис.2.0.5.

    Когда напряжение, приложенное между анодом и катодом, увеличивается, прямой ток сначала увеличивается медленно, поскольку носители заряда начинают пересекать обедненный слой, а затем быстро возрастает примерно по экспоненте. Следовательно, сопротивление диода, когда он «включен» или проводит в режиме «прямого смещения», не равно нулю, а очень мало. Поскольку прямая проводимость увеличивается после преодоления потенциала истощения по примерно следующей экспоненциальной кривой, прямое сопротивление (V / I) незначительно изменяется в зависимости от приложенного напряжения.

    Диод с обратным смещением

    Рис. 2.0.6 Обратный диод


    Смещенный

    Когда диод смещен в обратном направлении (анод подключен к отрицательному напряжению, а катод — к положительному напряжению), как показано на рис. 2.0.6, положительные отверстия притягиваются к отрицательному напряжению на аноде и от перехода. Точно так же отрицательные электроны притягиваются от перехода к положительному напряжению, приложенному к катоду. Это действие оставляет большую площадь на стыке без каких-либо носителей заряда (положительных дырок или отрицательных электронов) по мере расширения обедненного слоя.Поскольку область перехода теперь обеднена носителями заряда, она действует как изолятор, и по мере того, как более высокие напряжения применяются с обратной полярностью, обедненный слой становится еще шире, чем больше носителей заряда удаляется от перехода. Диод не будет проводить при приложенном обратном напряжении (обратном смещении), за исключением очень небольшого «обратного тока утечки» (I R ), который в кремниевых диодах обычно меньше 25 нА. Однако, если приложенное напряжение достигает значения, называемого «обратным напряжением пробоя» (V RRM ), ток в обратном направлении резко возрастает до точки, где, если ток не ограничен каким-либо образом, диод будет разрушен.

    Вольт-амперные характеристики диода

    Рис. 2.0.7. Типовой диод I / V


    Характеристика

    Работа диодов, описанная выше, также может быть описана специальным графиком, называемым «характеристической кривой». Эти графики показывают взаимосвязь между фактическими токами и напряжениями, связанными с различными клеммами устройства. Понимание этих графиков помогает понять, как работает устройство.

    Для диодов характеристическая кривая называется ВАХ, потому что она показывает взаимосвязь между напряжением, приложенным между анодом и катодом, и результирующим током, протекающим через диод.Типичная ВАХ показана на рис. 2.0.7.

    Оси графика показывают как положительные, так и отрицательные значения и поэтому пересекаются в центре. Пересечение имеет нулевое значение как для тока (ось Y), так и для напряжения (ось X). Оси + I и + V (верхняя правая область графика) показывают круто возрастающий ток после области начального нулевого тока. Это прямая проводимость диода, когда анод положительный, а катод отрицательный. Первоначально ток не течет, пока приложенное напряжение не превысит потенциал прямого перехода.После этого ток резко возрастает примерно по экспоненте.

    Оси -V и -I показывают состояние обратного смещения (нижняя левая область графика). Здесь видно, что очень небольшой ток утечки увеличивается с увеличением обратного напряжения. Однако, как только достигается обратное напряжение пробоя, обратный ток (-I) резко возрастает.

    Начало страницы

    различных типов полупроводниковых устройств

    В этой статье мы немного поговорим о полупроводниковых устройствах в целом, о некоторых наиболее известных типах полупроводниковых устройств и многих других аспектах полупроводников.

    Введение

    За последние 70 лет полупроводники стали ключевым элементом в производстве электроники. С момента изобретения транзистора мир электроники всегда находился на экспоненциальной кривой с точки зрения исследований, разработок, производства, создания новых устройств и технологий.

    Электронные устройства предназначены для обработки информации, то есть для высокоскоростной передачи, сбора и обработки информации в областях промышленности и производства, связи, искусства, медицины и даже военного дела.

    Но все это можно связать с сердцем современной электроники и ее производства: полупроводниковыми приборами.

    Несмотря на то, что электронная система изготавливается с использованием металлов, диэлектриков и полупроводников (подробнее об этом позже), полупроводники считаются основой электроники.

    Что такое полупроводник?

    Прежде чем перейти к обсуждению различных типов полупроводниковых устройств, важно иметь представление о том, что такое полупроводник.

    Проще говоря, полупроводники — это материалы, которые не являются ни проводниками, ни изоляторами. Если немного подробнее остановиться на этом, материалы классифицируются на проводники, изоляторы и полупроводники в зависимости от их способности проводить электричество.

    Проводники — это материалы с очень хорошей электрической проводимостью. Обычно металлы обладают хорошей электропроводностью, и вы можете найти медь или алюминий в электропроводке вашего дома.

    Напротив, изоляторы — это материалы с очень плохой электропроводностью.Стекло, дерево и бумага — хорошие примеры изоляторов.

    Теперь давайте поговорим о важной категории материалов для нашего обсуждения, то есть о полупроводниках. При комнатной температуре полупроводники представляют собой материалы с более низкой электропроводностью, чем проводники, но с более высокой электропроводностью, чем изоляторы.

    ПРИМЕЧАНИЕ: Для более детального понимания полупроводников, вы должны углубиться в красиво сложную квантовую механику, которая «определенно» выходит за рамки этого обсуждения.

    Полупроводниковые материалы

    Если говорить об электропроводности в единицах Ом –1 см –1 , полупроводниковыми материалами являются материалы с удельной электропроводностью между 10 –9 Ом –1 см –1 и 10 2 Ом -1 см -1 .

    Традиционно элементы IV группы, такие как кремний (Si) и германий (Ge), считаются элементарными полупроводниковыми материалами, то есть полупроводниками, состоящими только из одного атома.

    Существуют и другие типы полупроводниковых материалов, которые могут быть образованы путем объединения элементов из группы III с элементами группы V, и они известны как составные полупроводники. Арсенид галлия (GaAs) — самый известный полупроводниковый материал в этой категории и фактически второй после кремния как наиболее часто используемый полупроводниковый материал.

    Что такое полупроводниковые приборы?

    Проще говоря, полупроводниковые устройства — это тип электронных компонентов, которые спроектированы, разработаны и изготовлены на основе таких полупроводниковых материалов, как кремний (Si), германий (Ge) и арсенид галлия (GaAs).

    С момента своего использования в конце 1940-х (или начале 1950-х) полупроводники стали основным материалом при производстве электроники и ее разновидностей, таких как оптоэлектроника и термоэлектроника.

    До использования полупроводниковых материалов в электронных устройствах, вакуумные лампы использовались в конструкции электронных компонентов. Основное различие между электронными лампами и полупроводниковыми устройствами состоит в том, что в электронных лампах проводимость электронов происходит в газообразном состоянии, тогда как в случае полупроводниковых устройств это происходит в «твердом состоянии».

    Полупроводниковые устройства можно найти как в виде дискретных компонентов, так и в виде интегральных схем.

    Почему полупроводники?

    Основная причина использования полупроводниковых устройств (и, следовательно, лежащих в основе полупроводниковых материалов) в производстве электронных устройств и компонентов — это возможность легко управлять проводимостью носителей заряда, то есть электронов и дырок.

    Как упоминалось ранее, электропроводность полупроводниковых материалов находится между проводниками и изоляторами.Даже эта проводимость может контролироваться внешними или внутренними факторами, такими как электрическое поле, магнитное поле, свет, температура и механические искажения.

    На данный момент игнорируя внешние факторы, такие как температура и свет, процесс, называемый легированием, обычно применяется к полупроводниковым материалам, когда в его структуру вводятся примеси для изменения структурных, а также электрических свойств.

    Чистый полупроводник известен как внутренний полупроводник, в то время как нечистый или легированный полупроводник известен как внешний полупроводник.

    Когда количество свободных электронов в полупроводниковой структуре увеличивается после легирования, полупроводник известен как полупроводник n-типа. Точно так же, если дырки увеличены, он известен как полупроводник p-типа.

    Различные типы полупроводниковых устройств

    Ниже приводится небольшой список некоторых из наиболее часто используемых полупроводниковых устройств. В зависимости от физической структуры устройства следующий список подразделяется на устройства с двумя терминалами и устройства с тремя терминалами.

    Двухконтактные полупроводниковые приборы
    • Диод
    • Диод Шоттки
    • Светоизлучающий диод (светодиод)
    • DIAC
    • Стабилитрон
    • Фотодиод (фототранзистор)
    • Диод Туннельный диод 9022
    • Фотоэлемент
    • Солнечный элемент
    • Диод Ганна
    • Диод IMPATT
    • Диод TVS (диод подавления переходного напряжения)
    • VCSEL (Лазер с вертикальной полостью, излучающий поверхность)
    Трехполюсный полупроводниковый полупроводниковый преобразователь
    • Полевой транзистор
    • Биполярный транзистор с изолированным затвором (IGBT)
    • Транзистор Дарлингтона
    • Кремниевый управляемый выпрямитель (SCR)
    • TRIAC
    • Тиристор
    • Однопереходный транзистор

    Оптопару) и датчик на эффекте Холла.

    Для получения дополнительной информации о некоторых из вышеупомянутых полупроводниковых устройств прочтите « P-N Junction Diode », « Transistor », « Thyristor ».

    Применение полупроводниковых приборов

    Как упоминалось ранее, полупроводниковые приборы являются основой почти всех электронных устройств. Некоторые из применений полупроводниковых устройств:

    • Транзисторы являются основными компонентами в различных интегральных схемах, таких как микропроцессоры.
    • Фактически, они являются основными компонентами в конструкции логических вентилей и других цифровых схем.
    • Транзисторы также используются в аналоговых схемах, таких как усилители и генераторы.

    Что такое диод и для чего он нужен?

    ОСНОВНЫЕ ЗНАНИЯ — ДИОД Что такое диод и для чего он используется?

    Автор / Редактор: Люк Джеймс / Erika Granath

    Диод может быть самым простым из всех полупроводниковых компонентов, однако он выполняет множество важных функций, включая управление потоком электрического тока.Вот краткий обзор простого диода и того, для чего он обычно используется.

    Связанные компании

    Диод — это устройство, которое позволяет току течь в одном направлении, но не в другом. Это достигается за счет встроенного электрического поля.

    (Bild: Public Domain)

    Диод — это устройство, которое позволяет току течь в одном направлении, но не в другом. Это достигается за счет встроенного электрического поля.Хотя самые ранние диоды состояли из раскаленных проволок, проходящих через середину металлического цилиндра, который сам находился внутри стеклянной вакуумной трубки, современные диоды являются полупроводниковыми диодами. Как следует из названия, они сделаны из полупроводниковых материалов, в основном из легированного кремния.

    Проведение электрического тока в одном направлении

    ВАХ (зависимость тока от напряжения) диода с p – n переходом.

    (Bild: CC BY-SA 4.0)

    Несмотря на то, что диоды являются не более чем простыми двухконтактными полупроводниковыми приборами, они жизненно важны для современной электроники.
    Некоторые из их наиболее распространенных приложений включают преобразование переменного тока в постоянный, изоляцию сигналов от источника питания и микширование сигналов. Диод имеет две «стороны», и каждая сторона легирована по-разному. Одна сторона — это «сторона p», она имеет положительный заряд.
    Другая сторона — это «n-сторона», она имеет отрицательный заряд. Обе эти стороны наслоены вместе, образуя так называемое «n-p соединение», где они встречаются.

    Когда отрицательный заряд прикладывается к n-стороне и положительный к p-стороне, электроны «перепрыгивают» через этот переход, и ток течет только в одном направлении.Это свойство сердечника диода; обычный ток течет от положительной стороны к отрицательной только в этом направлении. В то же время электроны текут в одном направлении только с отрицательной стороны на положительную. Это потому, что электроны заряжены отрицательно и притягиваются к положительному полюсу батареи.

    Для чего используются диоды?

    Диоды — чрезвычайно полезные компоненты и широко используются в современной технике.

    Светодиоды (LED)

    Возможно, наиболее широко известное современное применение диодов — это светодиоды.В них используется особый вид легирования, так что, когда электрон пересекает n-p переход, испускается фотон, который создает свет. Это связано с тем, что светодиоды светятся при наличии положительного напряжения. Тип легирования может быть изменен так, что может излучаться свет любой частоты (цвета), от инфракрасного до ультрафиолетового.

    Преобразование мощности

    Хотя светодиоды могут быть наиболее широко известным приложением для обычного человека, наиболее распространенным применением на сегодняшний день является использование диодов для преобразования мощности переменного тока в мощность постоянного тока.Используя диоды, можно создавать различные типы выпрямительных схем, самые простые из которых — это полуволновые, полнополупериодные выпрямители с центральным ответвлением и полные мостовые выпрямители. Они чрезвычайно важны в источниках питания для электроники — например, в зарядном устройстве портативного компьютера — где переменный ток, исходящий от источника питания, должен быть преобразован в постоянный ток, который затем может быть сохранен.

    Защита от перенапряжения

    Чувствительные электронные устройства необходимо защитить от скачков напряжения, и диод идеально подходит для этого.При использовании в качестве устройств защиты по напряжению диоды не проводят ток, однако они немедленно замыкают любой всплеск высокого напряжения, отправляя его на землю, где он не может повредить чувствительные интегральные схемы. Для этого разработаны специальные диоды, известные как «ограничители переходных напряжений». Они могут справляться с резкими скачками мощности в течение коротких периодов времени, которые обычно приводят к повреждению чувствительных компонентов.

    (ID: 46381408)

    Как работают полупроводники | HowStuffWorks

    Устройство, которое блокирует ток в одном направлении, позволяя току течь в другом направлении, называется диодом .Диоды можно использовать по-разному. Например, устройство, которое использует батареи, часто содержит диод, который защищает устройство, если вы вставляете батареи назад. Диод просто блокирует выход любого тока из батареи, если он перевернут — это защищает чувствительную электронику в устройстве.

    Поведение полупроводникового диода неидеально, как показано на этом графике:

    Когда имеет обратное смещение , идеальный диод будет блокировать весь ток. Настоящий диод пропускает около 10 микроампер — немного, но все же не идеально.И если вы приложите достаточное обратное напряжение (В), соединение разорвется и пропустит ток. Обычно напряжение пробоя намного больше напряжения, чем когда-либо увидит схема, поэтому это не имеет значения.

    Когда смещен в прямом направлении , для работы диода требуется небольшое напряжение. В кремнии это напряжение составляет около 0,7 вольт. Это напряжение необходимо для запуска процесса комбинации дырка-электрон на переходе.

    Другой важной технологией, связанной с диодом, является транзистор.У транзисторов и диодов много общего.

    Транзисторы

    Транзистор создается с использованием трех слоев , а не двух слоев, используемых в диоде. Вы можете создать сэндвич NPN или PNP. Транзистор может действовать как переключатель или усилитель.

    Транзистор выглядит как два последовательно соединенных диода. Вы можете представить, что через транзистор не может протекать ток, потому что диоды, соединенные спиной к спине, блокируют ток в обоих направлениях. И это правда. Однако, когда вы прикладываете небольшой ток к центральному слою сэндвича, через сэндвич в целом может протекать гораздо больший ток.Это дает транзистору поведение при переключении . Небольшой ток может включать и выключать больший ток.

    Кремниевый чип — это кусок кремния, который может содержать тысячи транзисторов. С транзисторами, действующими как переключатели, вы можете создавать логические вентили, а с логическими вентилями вы можете создавать микропроцессорные микросхемы.

    Естественный переход от кремния к легированному кремнию, транзисторам и микросхемам — вот что сделало микропроцессоры и другие электронные устройства такими недорогими и повсеместными в современном обществе.Основные принципы удивительно просты. Чудо — это постоянное совершенствование этих принципов до такой степени, что сегодня десятки миллионов транзисторов можно без больших затрат собрать на одном кристалле.

    Для получения дополнительной информации о полупроводниках, диодах, микросхемах и многом другом перейдите по ссылкам на следующей странице.

    Первоначально опубликовано: 25 апреля 2001 г.

    Термоэлектронные и полупроводниковые диоды

    Диоды — это небольшие электрические устройства, которые используются для передачи электрического тока в одном направлении и для предотвращения движения встречного тока в противоположном.У них есть два вывода, каждый с электродом — один электрод заряжен положительно, а другой — отрицательно. Способность диода передавать ток только в одном направлении также называется выпрямляющим свойством. Когда диод пропускает ток в одном направлении, это называется состоянием прямого смещения; состояние обратного смещения возникает, когда диод блокирует движение тока в противоположном направлении. Однако способность диода быть однонаправленной зависит от типа диода и используемой технологии.Различные типы диодов, такие как термоэлектронные и различные типы полупроводниковых диодов, используют разные технологии для передачи тока.

    Термоэлектронные диоды, также называемые вакуумными трубками, представляют собой диоды, которые закрывают электроды в стеклянном вакууме — ранние модели выглядели как миниатюрные лампочки. Нить накала нагревателя используется для передачи тепла, которое вызывает тепловую эмиссию электронов в вакууме и нагревает катод. В этом случае анод становится положительным и притягивает электроны, передавая ток в одном направлении.Поскольку анод не будет выпускать электроны даже при понижении температуры, электроны могут двигаться только в одном направлении, и процесс не может изменить направление.

    Хотя термоэлектронные диоды были распространенной ранней формой диодов, большинство современных диодов являются полупроводниковыми диодами определенного типа. Такие материалы, как кремний и германий, часто используются, потому что в них нет свободных электронов, а это означает, что они не могут легко передавать электричество и, как правило, служат изоляторами. Однако путем легирования этих материалов их химические свойства могут быть изменены.При легировании кремния есть два типа примесей, которые могут быть добавлены для превращения кремния в полупроводящий материал: N-тип и P-тип.

    Примесь N-типа представляет собой фосфор или мышьяк. Каждый из них имеет пять внешних электронов, тогда как кремний имеет четыре, поэтому лишнему электрону фосфора или мышьяка не с чем связываться. Вместо этого дополнительный электрон служит средством передачи энергии. Только небольшое количество фосфора или мышьяка необходимо, чтобы генерировать достаточно свободных электронов для передачи тока через кремний.Поскольку электроны несут отрицательный заряд, этот тип примеси известен как N-тип.

    При легировании P-типа используется одна из двух различных примесей: бор или галлий. Каждая из этих примесей имеет только три внешних электрона, поэтому при добавлении к кремнию они образуют дырки, в которых отсутствует электрон, а также положительный заряд. Положительный заряд позволяет бору или галлию принимать соседние электроны, что, по сути, выталкивает дырку внутри решетки электронов. Наличие дырок — это то, что позволяет передавать токи и движение электронов, что делает кремний с примесью P-типа проводящим материалом.Название P-тип происходит от положительного заряда материала. Легирование как N-типа, так и P-типа превращает кремний в проводник, но не в очень прочный — поэтому легированный кремний называется полупроводником.

    Кремний P-типа и N-типа используются вместе в полупроводниковых диодах. Чтобы создать диод P-N, кремниевый материал P-типа составляет анод и передает ток на катод N-типа. Из-за зарядов и свойств материалов ток не может передаваться в обратном направлении.В других типах полупроводниковых диодов для создания одного контакта используется металл, а в качестве другого контакта используется полупроводник P-типа или N-типа.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *