Назначение и устройство магнитных пускателей: Устройство и назначение магнитного пускателя | RuAut

Содержание

Пускатель электромагнитный (магнитный пускатель)

Пускатель электромагнитный (магнитный пускатель) — это низковольтное электромагнитное (электромеханическое) комбинированное устройство распределения и управления, предназначенное для пуска и разгона электродвигателя до номинальной скорости, обеспечения его непрерывной работы, отключения питания и защиты электродвигателя и подключенных цепей от рабочих перегрузок. Пускатель представляет собой контактор, комплектованный дополнительным оборудованием: тепловым реле, дополнительной контактной группой или автоматом для пуска электродвигателя, плавкими предохранителями.

Категории применения пускателей

a) Контакторы переменного тока

  • АС-1 – активная или малоиндуктивная нагрузка;
  • АС-2 – пуск электродвигателей с фазным ротором, торможение противовключением;
  • АС-3 – пуск электродвигателей с короткозамкнутым ротором. Отключение вращающихся двигателей при номинальной нагрузке;
  • АС-4 – пуск электродвигателей с короткозамкнутым ротором. Отключение неподвижных или медленно вращающихся электродвигателей. Торможение противовключением.

б) Контакторы постоянного тока

  • ДС-1 – активная или малоиндуктивная нагрузка;
  • ДС-2 – пуск электродвигателей постоянного тока с параллельным возбуждением и их отключение при номинальной частоте вращения;
  • ДС-3 – пуск электродвигателей с параллельным возбуждением и их отключение при неподвижном состоянии или медленном вращении ротора;
  • ДС-4 – пуск электродвигателей с последовательным возбуждением и их отключение при номинальной частоте вращения;
  • ДС-5 — пуск электродвигателей с последовательным возбуждением, отключение неподвижных или медленно вращающихся двигателей, торможение противотоком.

Схема подключения нереверсивного магнитного пускателя

На рис. 1 показана электрическая принципиальная схема включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором.

Рис 1. Схема включения нереверсивного магнитного пускателя

электрическая принципиальная

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт, что создаст параллельную цепь питания катушки магнитного пускателя. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис.2.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Полезные ссылки

назначение, устройство и принцип действия, защита и маркировка

Для человека, далекого от электротехники, бытовое устройство представляется каким-то черным ящиком, в котором что-то крутится. Про электродвигатель знают все, а вот как он связан с кнопками на панели — немногие. Между тем любая схема, в которой есть электродвигатель, содержит и устройство, замыкающее цепь и связывающее двигатель с той самой кнопкой включения. Называется это устройство магнитным пускателем, хотя правильное его название — электромагнитный пускатель.

Принцип работы

Чтобы электроприбор работал, необходимо обеспечить замкнутость цепи. Это обеспечивается не кнопкой, а коммутационным устройством, которое находится за ней. Видов таких устройств много, например:

  • контактор;
  • рубильник;
  • предохранитель;
  • реле.

Причем в одной цепи их может быть несколько. Так, предохранитель размыкает цепь при перегрузке, хотя после него в цепи стоят простые выключатели. Аварийное размыкание может быть обеспечено и тепловыми реле. А вот чтобы узнать, для чего нужен магнитный пускатель, стоит разобраться в его устройстве.

Внутреннее устройство

Такой коммутатор состоит из двух частей — подвижной и неподвижной. Неподвижная часть представляет собой катушку на якоре, стационарной половине сердечника, а также содержит неподвижные контакты. Подвижная часть — это вторая половина сердечника и подвижные контакты.

Когда вы нажимаете на кнопку, вы замыкаете цепь и ток проходит через катушку. Она притягивает к себе подвижную часть и кнопку можно отпустить: пока катушка под питанием, контакты будут сомкнуты.

Если цепь разомкнуть кнопкой выключения, то подвижная часть пускателя вернется в исходное положение благодаря встроенной пружине. Словом, принцип работы магнитного пускателя прост.

Схемы подключения

Самая простая схема подключения трехфазного электродвигателя по принципу «включить и выключить» выглядит так:

На этой схеме обозначены:

  1. Пуск — кнопка включения.
  2. КМ-1 — магнитный пускатель.
  3. Р — тепловое реле.
  4. С — кнопка выключения.
  5. ПР — предохранитель.

Из рисунка видно, что-то место, под которым написаны две буквы — «БК» — останется замкнутым после того, как вы отпустите кнопку. Обратите внимание и на то, что двигатель берегут: в схему включены предохранитель и тепловое реле. В случае перегрева или замыкания цепь разомкнется.

На практике чаще встречаются те схемы, которые обеспечивают вращение двигателя в разные стороны — то есть с реверсом. Такую схему можно укомплектовать как разными коммутационными устройствами, так и одним реверсивным пускателем. Схема с реверсом упрощенно выглядит так:

Если присмотреться внимательно, то можно заметить, что при вращении двигателя в одну сторону блокируется вторая цепь — это можно заметить по обозначению КМ-1 на цепи, где стоит КМ-2, и наоборот. В жаргоне электриков это называется защитой от дурака.

Если двигатель включается в простую однофазную цепь, которая есть в любой квартире, то коммутационные устройства ставятся на фазу, и к ним добавляется сопротивление.

Ассортимент и маркировка устройств

На рынке таких коммутаторов можно встретить различные их модификации. Это обусловлено как многообразием устройств, в которых есть электродвигатели, так и параметрами цепей, где они работают. Магнитные пускатели есть практически везде: в системах принудительной вентиляции и кондиционерах, стиральных машинах и электроплитах с грилем, лифтах, а в последнее время некоторые потребители электроэнергии стали ставить их в щитки — они куда удобнее простых рубильников.

Чтобы правильно выбрать пускатель, стоит обратить внимание на следующее:

  • какие максимальные токи есть в вашей цепи;
  • нужен ли вам реверс;
  • куда вы поставите ваше коммутационное устройство.

Последнее имеет значение в том случае, если вы собрались установить пускатель в щиток около дома. Сейчас в продаже есть изделия, пригодные к установке на DIN-рейки.

Комплектуются пускатели по-разному. Так, большинство из них подключает двигатель по схеме «треугольник», так можно уменьшить пусковой ток. Ряд изделий содержит в себе и тепловые реле. На них стоит обратить внимание, когда ваш электродвигатель будет работать долго и перегреваться. Чтобы избежать поломки, ставят именно тепловое реле. Это простая биметаллическая пластина, которая при нагревании гнется в сторону: металлы, нагреваясь, по-разному расширяются, и цепь размыкается.

Поскольку проводка греется от тока, реле подбирают так, чтобы ток в его маркировке был на 10% больше номинального. В паспорте последнего значение этого номинала должно быть указано, а иногда и проставлено на корпусе. Значение тока на магнитном пускателе тоже указывается.

Как правило, пускатели упакованы в корпус. Он может быть различным и это определяет степень его защиты. При работе пускателя в герметичном корпусе основного устройства этот параметр не так важен, а вот, если он находится в щитке, куда попадает пыль или осадки, стоит озаботиться хорошей защитой. Загрязнение может привести к неприятной ситуации — устройство будет гудеть, а то и вовсе выйдет из строя.

Некоторые пускатели оснащаются варисторами, которые не допускают скачков напряжения в сети. Их целесообразно ставить в цепи тогда, когда вы живете в частном доме и при грозе у вас может выйти из строя вся техника, в первую очередь ваш компьютер.

Маркировка

Электромагнитные пускатели отечественного производства маркируются по ГОСТ 50030–4 -1−2002. В первую очередь необходимо обратить внимание на его контакты. Обозначения L1, L2, L3 и т. д. подводятся к цепи управления, а Т1, Т2, Т3 и последующие — к нагрузке. Количество контактов может быть разным, а схема их соединения содержится в паспорте и иногда на корпусе. Контакты А1 и А2 идут от катушки, а NO — вспомогательные, которые ставят в устройство, что называется на всякий случай. Некоторые изделия можно даже наращивать: ряд производителей выпускает контактные приставки.

Чаще всего маркировка пускателя начинается с аббревиатуры ПМЛ и четырех цифр.

Если устройство может работать в цепи 380 В, то на нем ставится величина тока нагрузки. Это первая цифра после ПМЛ, хотя на корпусе может быть поставлено и значение тока в прямой форме.

  • 0 — 6,3 Ампера;
  • 1 — 10 Ампер;
  • 2 — 25;
  • 3 — 40;
  • 4 — 63;
  • 5 — 100;
  • 6 — 160;
  • 7 — 250.

Наличие реверса и теплового реле также указывается цифрой, она вторая:

  • 1 — без реверса и без ТЛ;
  • 2 — без реверса с ТЛ;
  • 3 — с реверсом без ТЛ;
  • 4 — с реверсом с ТЛ;

Степеней защиты у устройства четыре: IP00, IP20, IP40, IP54, при этом первая из них предполагает открытую конструкцию, а последнее — пылебрызгозащитное исполнение. В зависимости от степени защиты, наличия кнопок и индикации изделие маркируется третьей цифрой так:

  • 0 — IP00 без кнопок;
  • 1 — IP54 с кнопкой «реле» возврата в исходное состояние после срабатывания;
  • 2 — IP54, «пуск» и «стоп»;
  • 3 — то же, что и 2, но с индикаторной лампочкой;
  • 4 — IP40 без кнопок;
  • 5 — IP40 с кнопками «пуск» и «стоп»;
  • 6 — IP20.

Наконец, четвертая цифра указывает количество контактов:

  • 0 — 1 замыкающий и 1 размыкающий;
  • 1 — 2 замыкающих и 2 размыкающих;
  • 2 — 3 и 1;
  • 3 — 4 и 1;
  • 4 — 5 и 1.

Цифрами 5 и 6 маркируют устройства для цепей постоянного тока как 1 замыкающий и 1 размыкающий соответственно.

Некоторые заводы указывают возможность крепления на рейку, категорию размещения и износостойкость, но чаще можно встретить именно четыре цифры.

У пускателей типа ПМ первые две цифры — это номер серии, а следующие три — номинал тока в вольтах. Шестая цифра указывает наличие реверса и теплового реле: 1, 2, 5, 6 значат то же самое, что и 1, 2, 3, 4 для ПМЛ, а значение седьмой полностью совпадают.

ПМЕ маркируются тремя цифрами: величиной тока, степенью защиты и наличием реверса с реле. Обозначения на ПМА примерно аналогичны таковым у ПМЛ.

Такое разнообразие маркировок объясняется тем, что магнитные пускатели — давно применяемые устройства и на одних заводах применяют старую маркировку, а на других новую, при этом порядок цифр может различаться. Поэтому ориентироваться стоит не столько на нее, сколько на различные таблицы и указания на корпусе, а также посмотреть паспорт изделия. Особенно это актуально для продукции зарубежного производства.

Контакторы и пускатели

Эти устройства ничем принципиально не отличаются от пускателей. Назначение, устройство, принцип действия у них те же. Отличие заключается в том, что контакторы предназначены для работы в цепях с высокими значениями токов и напряжений, поэтому их габариты соответствующие.

Защитного корпуса они не имеют, поэтому ставят их в закрытых помещениях, защищенных от внешнего воздействия.

Контакторы снабжены более мощными силовыми контактами и дугогасителями; у пускателей их нет.

Этими устройствами снабжены электровозы, трамваи, троллейбусы и промышленные предприятия, где они замыкают и размыкают силовые цепи.

Магнитные пускатели. Виды и устройство. Работа и применение

Во время зарождения электротехники включение 3-фазных электродвигателей производилось с помощью обычных рубильников вручную. Рубильники не создавали безопасных условий, требовалось пульт управления соединять силовыми линиями. В течение дальнейшего прогресса развития процессов коммутации ученые изобрели такие устройства, как магнитные пускатели, которые не имели тех недостатков рубильника. Это коммутационное устройство обеспечивает подключение потребителя нагрузки дистанционно, дает возможность управления эксплуатацией оборудования.

Конструкция пускателя простая, так же, как и его принцип работы. Пускатель состоит из контактов двух видов: неподвижных и подвижных. При замыкании этих контактов электродвигатель запускается, а при разъединении контактов происходит остановка и выключение питания.

Разновидности

Магнитные пускатели предназначены в основном для управления работой 3-фазных электромоторов на дистанционном уровне. Основные операции, проводимые с помощью магнитных пускателей – это запуск, отключение или реверс.

Вспомогательной функцией пускателя вместе с тепловым реле является защита электродвигателя от излишних нагрузок. Имеются схемы пускателей с ограничителями напряжения на основе полупроводниковых элементов. По схемам подключения нагрузки бывают реверсивными и нереверсивными.

По типу расположения магнитные пускатели классифицируются:
  • Открытого типа. Располагают в защищенных шкафах, панелях, и других местах, не доступных для влаги, пыли и других вредных факторов.
  • Защищенного исполнения. Монтируются в помещениях с пониженным содержанием пыли в воздухе, исключающих доступ воды к устройству.
  • Влагонепроницаемого исполнения. Монтируются внутри зданий, снаружи под оборудованными навесами от воды и солнца.
Вспомогательная классификация:
  • Блок с кнопками на корпусе пускателя. Пускатели без реверса имеют две кнопки: Пуск и Стоп, устройства с реверсом оснащены тремя кнопками, две из них те же, что и в прошлом виде, добавлена кнопка Пуска назад. Некоторые исполнения устройств предусматривают лампу, сигнализирующую включение.
  • Устройства со вспомогательными контактами сигналов и блокировок. Применяются в различных сочетаниях, как замыкающие или разъединяющие. Контакты бывают встроенными, либо выполнены на отдельной подставке. Иногда вспомогательные контакты применяются в общем составе схемы пускателя. В устройствах с реверсом с помощью дополнительных контактов выполняется электрическая блокировка.
  • Значение напряжения и тока силовой обмотки.
  • Тепловое реле. Его свойство – это ток номинала, при котором реле не срабатывает на средних настройках. Это значение тока может регулироваться в некоторых пределах от номинального значения тока.

Некоторые магнитные пускатели комплектуются ограничителями напряжения и другими блокировками.

Конструктивные особенности

Все устройство пускателя делится на две половины: верхнюю и нижнюю. В верхней половине расположены двигающиеся контакты вместе с камерой гашения дуги. Там же расположена и подвижная часть магнита. Она действует на силовые контакты.

Катушка находится в нижней части вместе с возвратной пружиной. Свойством пружины возврата является возвращение верхней половины в исходное состояние после отключения питания на обмотке. Так осуществляется разъединение силовых контактов.

В устройство двух половин электромагнита включены пластины Ш-образной формы. Они изготовлены из электромагнитной стали. Для катушки используется медный провод с расчетным количеством витков, которые рассчитаны на эксплуатацию с напряжением питания определенных значений, начиная от 24 вольт и до 380 вольт. При поступлении напряжения в обмотке образуется магнитное поле. Две половины пытаются соединиться, образуется замкнутый контур. При отключении напряжения магнитное поле также исчезает, верхняя половина отходит на свое первоначальное место под действием пружины.

Принцип действия

Название устройства говорит о его способе работы. Он действует по принципу электромагнита, во время прохождения тока по катушке. После притягивания контактов электродвигатель запускается.

1 — Подвижные контакты
2 — Подвижный якорь
3 — Пружины
4 — Катушка
5 — Стационарный сердечник
6 — Подвижный сердечник
7 — Стационарные контакты

Общее устройство состоит из основной части и якоря, который двигается по направляющим. Проще сказать, что все магнитные пускатели выполнены в виде большой кнопки с клеммами силовых контактов, и неподвижных контактов.

Двигающаяся часть имеет мостик с контактами, который обеспечивает разрыв цепи в двух местах, для выключения напряжения. Также мостик служит для качественного соединения проводов во время подключения схемы в действие. Система проверяется вручную. Надавливают на якорь и чувствуют усилие пружин, которое при работе преодолевается электромагнитом. При отпускании якоря контакты возвращаются назад.

В работе подобное управление не требуется, оно нужно для контроля. Реально применяется дистанционная форма подключения электромагнитным полем, которое возникает в обмотке от электрического тока. Шихтованный магнитопровод обеспечивает хорошую проводимость тока.

Когда в цепи отсутствует электрический ток, то вокруг обмотки магнитное поле исчезает, что приводит к отходу якоря в первоначальное положение. При подаче напряжения происходит обратный процесс. Рабочее включенное положение якоря влияет на функционирование устройства. В таком положении должно быть качественное соединение контактов. При малейшем ослаблении пружин контакты начинают подгорать, нагреваться, происходит отгорание концов проводов.

Установка и подключение

Для возможности качественной эксплуатации пускателей, их установку проводят на ровной неподвижной поверхности, вертикально. Устройства с тепловым реле нужно ставить так, чтобы не было разницы температуры с внешней средой.

Монтаж с нарушением приводит к ложным срабатываниям. Поэтому нельзя устанавливать магнитные пускатели в местах с вибрацией, ударами. Устройства с током номинала более 150 ампер при запуске сильно вибрируют и сотрясаются.

Корпус теплового реле может нагреться от других устройств. Это отрицательно действует на правильность работы пускателя. Поэтому не рекомендуется размещать пускатели рядом с горячим оборудованием.

При соединении провода с контактом пускателя, его конец загибают в виде кольца. Это не дает возникнуть перекосу пружинных шайб в зажиме. При подключении двух проводов с одним сечением, их располагают по двум противоположным сторонам от винта.

Перед монтажом концы проводов лудят. В многожильных проводах перед тем, как проводить лужение, концы скручивают. Концы алюминиевых проводов чистят надфилем, покрываются специальной пастой. Подвижные контакты и части пускателя смазывать запрещается. Перед запуском магнитные пускатели осматривают снаружи и контролируют исправность частей. От руки двигающиеся части должны легко перемещаться. Схема соединения сверяется.

Техническое обслуживание

Для качественного ухода за пускателем нужно знать возможные признаки поломок устройства. Обычно это высокая температура корпуса, сильное гудение.

Высокая температура устройства чаще всего связана с замыканием обмотки между витками. При осмотре катушки не должно быть трещин, нагара, повреждений, оплавления. В таких случаях необходима замена катушки. Чрезмерный нагрев происходит из-за увеличения напряжения питания выше номинала, при перегрузке, плохое качество контактов, их сильном износе. Сильное гудение пускателя может возникнуть по нескольким причинам. Чаще всего нужно проверить плотность прилегания якоря. Неплотность может возникнуть из-за загрязнения поверхности. Еще одной причиной может стать недостаточное напряжение сети, снижение его более 15 процентов, а также заедание подвижных элементов.

Для предотвращения таких поломок нужен постоянный уход. В общем, магнитные пускатели не нуждаются в дорогостоящих работах. Нельзя допускать внутрь грязи, влаги и пыли. Необходимо регулярно контролировать плотность прилегания и качество контактов. Составляют перечень работ по техническому уходу и ремонту электромонтерами-ремонтниками.

Программа обслуживания
  • Внешний осмотр на повреждения, сколы корпуса, удаление грязи. Сколы и повреждения появляются от длительной вибрации, неправильного монтажа, дефектами. Если корпус поврежден настолько, что это препятствует его закреплению на поверхности, то корпус подлежит замене. Особое внимание уделяется контролю наличия всех пружинок и контактов.
  • Ревизия механических деталей. Контролю подвергается пружина для разрыва контактов. Она не должна быть мягкой и слишком сжатой. При проверке хода якоря не допускаются заклинивания. Контроль хода проводится от руки.
  • Чистка контактов – это мероприятие не должно проводиться, если магнитный пускатель исправен. Слой с хорошей проводимостью на контактах очень малой толщины. При каждой чистке надфилем контакты скоро сточатся. Чистка допускается лишь при возникновении нагара. При замыкании контактов должно быть плотное прилегание, без наклонов, смещений. Иначе нужна регулировка.
  • Если в корпусе пускателя есть детали из металла, то нужно проверить отсутствие соединения их с силовыми контактами. Необходимо также прозвонить все силовые контакты между собой на отсутствие замыканий. Для этого пользуются тестером. Сопротивление изоляции не должно быть менее 0,5 Мом.
Похожие темы:

устройство, принцип работы, назначение — ABC IMPORT

Содержание статьи:

Магнитные пускатели и контакторы — это устройства, предназначенные для коммутации силовых цепей. Кстати, о названии и характеристиках пускателей и контакторов: столь значительных отличий между устройством магнитного пускателя и контактором вы не найдете. Просто в Советском Союзе существовали пускатели, которые держали ток от 10 А до 400 А, и контакторы, которые держали ток от 100 А до 4 800 А. После магнитные пускатели стали классифицировать как маломощные и малогабаритные контакторы. Далее мы расскажем подробнее об устройстве и принципе действия магнитного пускателя.

Для чего используют магнитные пускатели?

Вам будет интересно:Что такое счетчик? Устройство, виды, применение

Смысл их применения бывает разный. К примеру, в станках в малярных цехах, насосных установках, перекачивающих топливо, и тому подобных помещениях располагать коммутирующую аппаратуру не рекомендуется. Опасность состоит в том, что каково бы ни было устройство и принцип работы магнитного пускателя, разрывая нагрузку, он создает искру и дуговые разряды, которые могут поджечь, подобно искре в зажигалке, легко воспламеняемые пары. Для этого все пускатели выносят в отдельное, практически герметично отгороженное помещение. Рабочее напряжение пускателей обычно ограничивают до 12 вольт, чтобы в кнопках, которые размещены в опасной зоне, не возникали искры. Также пускатели применяются в различных схемах защиты, взаимоблокировки, реверса и тому подобных. Ниже мы приведем примеры некоторых таких схем.

Устройство

Вам будет интересно:Расход воды в посудомоечной машине: сравнение по моделям

Разбирать устройство магнитного пускателя будем на примере модели ПМЕ-211. Этот тип хоть и морально устарел, но часто встречается в оборудовании и станках еще советского производства. Устройство магнитного пускателя ПМЕ довольно простое и для освоения — в самый раз. Снимая защитную крышку, мы видим контактные группы.

Они состоят из контактов, которые, в свою очередь, делятся на подвижные (установлены в подвижную раму с якорем) и неподвижные (установлены на головке контактора). Обратим внимание, что все контакты на подвижной части подпружинены. Это делается для наилучшего касания между контактными площадками, то есть термостойким наплавлением на контакте. Сняв головку контактора, мы видим, что внизу на ней расположен якорь прямо напротив магнитопровода с катушкой. Между ними установлена отбрасывающая пружина, которая необходима в устройстве магнитного пускателя для того, чтобы привести его в нормальное состояние. Эта пружина достаточно сильная, чтобы резко привести пускатель в такое состояние и разорвать нагрузку для уменьшения времени воздействия возникающей дуги. Она достаточно слаба, чтобы перегружать катушку, а также помешать магнитопроводу замкнуться и плотно прилегать друг к другу. Из-за неправильно подобранной пружины пускатель работает довольно шумно. При ремонте и обслуживании эту особенность стоит учитывать. На катушке обычно нанесена информация о ней, рабочее напряжение, род тока, количество витков, частота.

Вам будет интересно:Усилитель звуковых частот: типы, классы и классификация по категориям

Принцип действия

Устройство магнитного пускателя подразумевает работу по такому принципу: на катушку, которая установлена на магнитопроводе, подается питающее напряжение. Магнитопровод намагничивается, притягивая якорь, а тот, в свою очередь, тянет за собой раму, на которой закреплены контактные группы. Устройство и работа магнитного пускателя основаны на действии электромагнита. При втягивании якоря замыкаются контактные группы силовых контактов.

Вспомогательные контакты делятся на 2 типа:

  • нормально замкнутые, то есть те, которые при отсутствии напряжения на катушке размыкаются, отключая питание или же формируя отрицательный сигнал, смотря как и к чему подключено;
  • нормально разомкнутые, которые наоборот замыкаются, тем самым влияя на цепь управления или подавая положительный сигнал.

При снятии напряжения пускатель приходит в нормальное состояние, и контакты отбрасываются под действием возвратной пружины. Все контакты магнитного пускателя, установленные в диэлектрической раме, как правило, из термостойкого пластика, подпружинены для обеспечения наилучшего прилегания между подвижными и неподвижными контактами. Достаточно просто устроен магнитный пускатель, и принцип его работы основан на электромагните.

Как отличить нормально замкнутые от нормально разомкнутых контактов?

На пускателях ПМЕ они открыты и их видно. Но мы покажем на примере пускателя ПМЛ, как это сделать в случае, когда контакты закрыты.

Мультиметр устанавливается в режим прозвонки, а на пускатель не подается напряжение. Это его нормальное состояние. Затем поочередно прозваниваются контактные группы. Те, которые не звонятся, являются нормально разомкнутыми, а которые, наоборот, звонятся – нормально замкнутыми.

Вам будет интересно:Альтернативное электричество: методы получения энергии, необходимое оборудование

Обслуживание и ремонт

Устройство и принцип магнитного пускателя подразумевает регулярное обслуживание и ремонт. Стоит делать это планово, так как со временем на контактных площадках появляется нагар. В связи с этим магнитопровод может окисляться под действием сырой среды, а отслоившаяся ржавчина формирует абразивную пыль, которая, попадая в подвижные части, приводит к их чрезмерному износу.

Внешний осмотр

Он делается для того, чтобы обнаружить трещины, сколы, оплавленные места. Также со временем целостность оболочки, в которую был установлен пускатель, может нарушаться, а наличие излишней пыли или кристалловидные солевые наросты будут свидетельствовать об этом. Стоит понимать, что пускатель при включении и отключении немного подпрыгивает, а значит, элементы крепежа не должны быть потрескавшимися. В противном случае пускатель может просто отвалиться и включить нагрузку. Или же включить, к примеру, две фазы из трех, что непременно спалит двигатель.

Контактные группы

Вскрывая защитную крышку, мы можем увидеть контактные группы. В зависимости от назначения и устройства магнитного пускателя они могут быть разного размера и с напайками из разного металла. Незначительный нагар убирается ветошью или надфилем. Применять шкурку здесь нельзя, так как сложно уследить за углом наклона, плоскость не будет выдержана. Из-за этого контакт будет неплотным, а значит, контактные площадки будут нагреваться. Наплавления и раковины убирают с помощью напильника, а затем посредством мелкого надфиля.

Якорь, магнитопровод и катушка

Якорь и магнитопровод не должны иметь следов ржавчины, а пластины, из которых они собраны, должны быть надежно заклепаны. Катушка, в свою очередь, должна быть сухой и не иметь следов нагара (в случае использования в качестве внешней изоляции бумаги) или оплавлений, если она залита пластиком. При обнаружении подобных признаков лучше ее заменить.

Крепление подвижных частей, пазы

Пазы не должны иметь трещин, сколов и пыли. В противном случае это может стать причиной закусывания и медленного отброса подвижных контактов от неподвижных. Элементы, устанавливаемые в пазы, должны слегка люфтить и свободно перемещаться вдоль паза. Также стоит отметить, что якорь, как и магнитопровод, не установлен жестко. Это сделано с той целью, чтобы магнитопровод мог с легкостью примагнитить якорь плотно и надежно. Незначительное покачивание якоря в своем пазу — это нормально. Если покачивания нет, это значит, что там скопилось много пыли или крепление деформировано. Это непременно следует устранить в целях бесперебойного выполнения прибором функционального назначения.

Устройства магнитных пускателей по принципу действия, выполняемого в цепи

Обычно такая схема применяется в том случае, когда критична потеря напряжения в том или ином оборудовании. К примеру, бытовой однофазный насос с пусковой обмоткой. Если вдруг пропадет питание и через несколько секунд появится снова, то двигатель попросту сгорит. Для подобных защит и существует следующая схема.

Схема защиты от самовключения работает следующим образом: напряжение на катушку пускателя проходит через нормально замкнутый контакт кнопки «стоп», которая на схеме обозначена как КнС, на нормально разомкнутый контакт кнопки “пуск”. Между кнопками “стоп” и “пуск” выводится провод, который идет к нормально разомкнутому вспомогательному контакту на пускателе. С другой стороны контакта подводится 2 провода: выход после кнопки “пуск” и провод питания на катушку. При нажатии кнопки “пуск” питание поступает в обход нормально разомкнутого контакта на катушку, вследствие чего контакт замыкается. Когда мы отпускаем кнопку “пуск”, пускатель обеспечивает питанием сам себя через вспомогательный контакт. При нажатии кнопки “стоп” катушка теряет питание, из-за чего контакт размыкается.

Схема взаимоблокировки

Обычно эта схема применяется с двумя пускателями в паре для включения реверса двигателя или, к примеру, для ограничения работы одной функции, пока включена другая.

Питание на цепь управления подается на нормально замкнутый контакт кнопки “стоп” (КнС). Затем происходит разветвление на нормально разомкнутые контакты КнП “право” и КнП “лево”. Причем питание приходит на нормально разомкнутый контакт КнП “право” через нормально замкнутый контакт КнП “лево”. И наоборот. Сделано это во избежание одновременного включения обоих пускателей, как защита от случайных нажатий. Если пускатели включатся одновременно, то так как реверс работает из-за смены двух проводов, местами произойдет короткое замыкание, которое нанесет существенный вред контактным группам.

Затем провод, который подходит к нормально разомкнутому контакту КнП “право”, идет на вспомогательный нормально разомкнутый контакт пускателя. Затем с другой стороны этого пускателя подводится выход с КнП “право” и устанавливается перемычка, ведущая на контакт катушки. Второй контакт катушки пропускается через нормально замкнутый вспомогательный контакт второго пускателя. Делается это для перестраховки, чтобы исключить возможность одновременного включения пускателей. Питание второго пускателя устроено аналогичным образом. Прежде чем прийти на нормально разомкнутый контакт КнП “лево”, он пропущен через нормально замкнутый контакт КнП “право”. Затем похожим образом он подключается ко второму пускателю. С одной стороны нормально разомкнутой контактной группы подводится провод, идущий до КнП “лево”, а с противоположной стороны — который идет после КнП “лево”. Устанавливается перемычка, ведущая на контакт катушки. Второй контакт катушки пропущен через нормально замкнутый контакт первого пускателя.

В заключение можем сказать, что методов использования пускателей великое множество. Мы привели самые широко распространенные, которые используются на производствах, а также могут быть полезны в быту. В любом случае, как бы вы ни использовали устройство контактора, магнитного пускателя, перед покупкой следует рассчитать ток, который будет проходить через его силовые контакты, установить рабочее напряжение катушки, род тока. Также стоит предусмотреть пыле- и влагозащиту пускателя от вредных факторов окружающей среды. Обязательно необходимо осматривать пускатели планово и внепланово, когда оборудование, которое он питает, пришло в негодность. Иногда именно пускатель является причиной поломки оборудования.

Источник

Магнитный пускатель принцип действия , устройство, определение

Автор Alexey На чтение 6 мин. Просмотров 632 Опубликовано Обновлено

Ручные рубильники, которые использовались для коммутации трёхфазных электродвигателей на заре электротехники, отличаются низкой электробезопасностью и требуют прокладки силовых линий непосредственно к пульту управления.

Поэтому был изобретён магнитный пускатель, лишённый вышеописанных недостатков, позволяющий осуществлять включение нагрузки дистанционно, дающий возможность воплощать автоматическое управление работой мощного оборудования.

Часто в литературе и в каталогах применяют название «электромагнитный пускатель», или его сокращённый аналог: «эл. пускатель».

Предназначение устройства

Функцией магнитного пускателя является дистанционный запуск, поддержание работы, остановка (иногда принудительная) и реверс электродвигателей с короткозамкнутым ротором.

Существует некая двузначность в трактовке разницы между контактором и пускателем – очень часто в среде электриков эти два понятия являются идентичными и взаимозаменяемыми ввиду того, что выполняют одну и ту же функцию – коммутацию силовых цепей.

контактная группа пускателя

Не вдаваясь в технические подробности, стоит заметить, что контактор, коммутирующий постоянные или переменные токи с различным количеством фаз, является составной частью различного управляющего оборудования, тогда как магнитный пускатель – это законченное устройство, предназначенное для ручного и полуавтоматического управления трёхфазными электродвигателями.

Конструктивно магнитный пускатель состоит из контактора, кнопок управления, теплового реле, защитного пыле и влагозащищённого корпуса, систем индикации. Часто в комплектацию магнитного пускателя входит дополнительная контактная приставка.

Пускатели разделяются на различные величины по току

И пример обозначения ПМЛ каждой цифры :

Путаница в названиях

Несмотря на однозначное определение, данное в ГОСТ, на рынке и в каталогах можно встретить множество контакторов, обозначаемых производителями и менеджерами как магнитные пускатели.

контактор его же называют пускателем

Также в сети есть множество поисковых запросов типа «магнитные пускатели ПМЛ, ПМЕ, ПМА, ПМ12» и т. д., фактически являющиеся коммутационными аппаратами (контакторами), для работы которых требуется подключение как минимум кнопочного поста.

кнопки на пускатель

Например, ПМЛ 1100 не выглядит законченным устройством, но его серия, первые две буквы которой часто расшифровывают как «пускатель магнитный» означает, что данное коммутационное устройство можно использовать при компоновке эл. пускателя.

Исходя из этого, заказывая подобные устройства в сети интернет, следует внимательно изучать технические характеристики приобретаемого изделия, для уверенности в том, что в его комплектацию входит кнопочный пост управления, тепловое реле и корпус, чтобы не пришлось их приобретать дополнительно, получив в посылке один лишь контактор, являющийся главной составляющей электромагнитного пускателя.

Принцип действия и внутреннее устройство контактора

Благодаря знаниям из школьного курса физики на интуитивном уровне можно понять, как работает эл. пускатель, исходя из его названия.

Благодаря небольшому току, и зачастую неопасному для человека напряжению, в катушке создается магнитное поле, притягивающее сердечник с подвижными контактами, замыкающими силовую цепь, тем самым запуская двигатель.

Характерной отличительной чертой, отличающей контактор эл. пускателя от электромагнитного реле является то, что электрическая цепь разрывается одновременно в двух местах при помощи контактного мостика.

клеммы схематично магнитного пускателя

В реальности, изделия серий ПМЛ, ПМЕ состоят из двух блоков.

В нижней части, являющейся основанием, находится электромагнитная катушка с клеммами подключения, одетая на Ш-образный сердечник, и съёмная возвратная пружина.

Короткозамкнутые кольца на неподвижном сердечнике усиливают магнитный поток и предотвращают дребезг якоря. Силиконовая подкладка смягчает ударные воздействия на корпус пускателя.

В верхней части, именуемой также контактным блоком, имеются неподвижные контакты и подвижный магнитный якорь с жёстко прикреплёнными к нему подпружиненными контактными пластинами.

Принцип работы пускателя

Включение контактора осуществляется подачей с помощью кнопки «Пуск» напряжения на катушку, после чего происходит одновременное замыкание, как силовых контактных мостиков, так и дополнительного контакта, шунтирующего кнопку «Пуск» (подключаемого к ней параллельно).

Такое подключение с использованием дополнительного контакта, через который удерживающее напряжение подается на катушку, на сленге электриков называется «самоподхватом», позволяющим отпустить кнопку запуска.

Выключение контактора происходит при разрыве с помощью кнопки «Стоп» цепи управляющей катушки – магнитное поле исчезает и подвижный якорь возвращается в исходное состояние благодаря воздействию пружин.

Схема подключения и маркировка корпуса

подключение контактора на 22о в

Ниже, для наглядности приведена схема подключения контактора с катушкой, рассчитанной для работы от напряжения 220В.

Если применяется катушка, рассчитанная на напряжение 380В, то нулевой провод в таком магнитном пускателе не требуется – в этом случае вывод А1 подключается вместо ноля на входе питания к одной из двух фаз, незадействованных для подключения дополнительного контакта.

Наглядная схема подключения магнитного пускателя

Данный дополнительный контактный мостик обозначают буквами «NO», что означает нормально открытый (разомкнутый) контакт. На корпусе контактора всегда указывается схема устройства и маркировка контактов.

Предназначение данных клемм становится понятным исходя из рисунка ниже:

Также на корпусе контактора указывают величину пускателя, рабочие напряжения, коммутируемые токи, иногда мощность подключаемой нагрузки. Кроме этого, должен указываться завод – изготовитель и соответствие нормативным документам, типа ГОСТ, ТУ.

Обозначения характеристик на контакторе

Дополнительные устройства

Как уже говорилось выше, магнитный пускатель, помимо контактора, также комплектуется тепловым реле, включаемым последовательно в фазные цепи нагрузки.

Предназначением данного устройства является отключение контактора при длительных перегрузках, которое происходит при нагревании биметаллических пластин токами, превышающими допустимые параметры.

тепловые реле

При этом обеспечивается непродолжительное многократное превышение номинального тока при запуске, принудительной остановке или реверсе двигателя. Поскольку тепловые реле имеют регулировку времени отключения, данные устройства нельзя использовать для защиты от короткого замыкания.

Для подключения систем контроля и индикации, к контактору механическим способом присоединяют контактные приставки, размножающие контакты.

Для установки данной приставки на корпусе контактора, также как и на его подвижной части должны присутствовать крепления типа «ласточкин хвост«, в пазы которой вставляется данное дополнение.

Реверс электродвигателя

Для переключения направления вращения вала электрического двигателя с короткозамкнутым ротором необходимо изменить последовательность фаз. Поскольку при применении одного контактора невозможно осуществить подобное переключение (нереверсивный режим), то нужно использовать два контактора.

подключение двух магнитных пускателей для реверса двигателя

При этом обеспечивается возможность включения только одного контактора, исключающая срабатывание другого, что предотвращает междуфазное короткое замыкание.

реверсивный пускатель с кнопками включения

Для данной блокировки у контакторов должны присутствовать нормально замкнутые дополнительные контакты, через которые подключаются катушки управления смежных коммутаторов.

Магнитные пускатели с катушками управления

При включении одного устройства данный контакт окажется разомкнутым, поэтому, чтобы задействовать реверсивный контактор, сначала нужно нажать кнопку «Стоп», для возвращения нормально замкнутого контактного мостика в исходное состояние.

Если такой тип контактов отсутствует в контакторе, то собрать реверсивный магнитный пускатель можно применяя контактную приставку.

Магнитный пускатель: устройство, применение и электрические схемы

В этой статье мы рассмотрим магнитный пускатель, который позволяет нам управлять двигателями различных исполнительных механизмов, его устройство и принцип работы.

Сфера применения пускателей достаточно широка. Их применяют там, где нужно включить, отключить двигатель и защитить его от перегрузки. Это и сельское хозяйство, и промышленность, и вспомогательное обеспечение инфраструктурных объектов, и частные дома. Самым распространенным применением пускателей является: включение или отключение вентиляции, запуск различных насосов, открытие или закрытие дверей и ворот, управление малыми конвейерами.

Структура магнитного пускателя

Прежде чем рассматривать устройство магнитного пускателя, необходимо дать ему определение. Пускатель в соответствии с МЭС 441-14-38 – это комбинация всех коммутационных устройств, необходимых для пуска и остановки двигателя с защитой от перегрузок.

Всеми этими свойствами в полной мере обладают магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima.

Они состоят из:

  1. Корпуса
  2. Кнопочного поста
  3. Контактора КМЭ (электромагнитного реле)
  4. Теплового реле

Корпус магнитного пускателя обеспечивает защиту IP65. Для этого используются сальники, которые поставляются в комплекте с пускателем, на разъёме корпуса и в кнопках имеется специальный уплотнитель, не позволяющий влаге и пыли проникать внутрь прибора.

Корпуса пускателей КМЭ IP65 на токи до 32 А выполнены из пластика, на токи от 40 до 95 А – из железа.

Тепловое реле установлено непосредственно на контактор.

Как работает пускатель

Нажатие зеленой кнопки «Пуск» замыкает контактную группу и включает электромагнитный контактор. Происходит это почти мгновенно. После этого кнопка может быть отпущена. Дальше работу электромагнитного контактора обеспечивает встроенный нормально открытый контакт. Через него происходит «самоподхват» цепи питания катушки управления контактором. Также в его цепи питания задействовано тепловое реле своими дополнительными клеммами. В рабочем состоянии ток проходит через силовой контакт магнитного контактора, далее через тепловое реле перегрузки и поступает на нагрузку через кабель. При нажатии на кнопку «Стоп» толкатель нажимает на кнопку «остановка» теплового реле, которая прерывает питание.

Таким образом, исполнительным механизмом пускателей для включения и отключения нагрузки служит контактор. Тепловое реле играет роль защиты двигателя от перегрузок и неполнофазных режимов работ. Основным элементом, обеспечивающим защиту от перегрузки, в нем является биметалическая пластина. Эта пластина, как видно из названия, состоит из двух металлов с разным тепловым расширением, и при нагревании такая пластина изгибается в сторону металла с меньшим тепловым расширением. На этом эффекте и основана защита. Биметаллическая пластина находится рядом с проводником, по которому протекает рабочий ток, и, нагреваясь от него, изгибается. При определенном изгибе биметалическая пластина размыкает контакты теплового реле, а поскольку катушка магнитного пускателя запитана через эти контакты, то при их размыкании происходит отключение контактора. Тепловое реле имеет 2 контакта: нормально закрытый – он используется при подключении катушки – и нормально открытый. Этот контакт используется как сигнальный контакт для подачи сигнала о срабатывании теплового реле по схемам перегрузок.

В тепловом реле есть 2 режима работы – автоматический, когда после остывания тепловое реле включает контактор без участия человека, и ручной, когда оператор должен устранить причину срабатывания и вручную включить реле.

Тепловое реле срабатывает при повышении тока на любой из фаз свыше нормы. На этом и основана защита от неполнофазных режимов работы двигателя, ведь когда пропадает одна из фаз для работы двигателя, необходимо пропорционально увеличить ток на оставшихся фазах. Поскольку ток на оставшихся двух фазах будет увеличен, то происходит срабатывание теплового реле по перегрузке.

Магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima имеют в номенклатуре исполнения и с опцией индикации включения. Такая индикация осуществляется световым индикатором, который расположен на передней панели магнитного пускателя. Индикатор зажигается при подаче напряжения на катушку управления и гаснет при его снятии. Такая опция удобна, когда исполнительный механизм находится не в прямой видимости и слышимости от самого пускателя.

Область применения

Магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima могут быть применены везде, где необходимо управление и защита двигателя. Это и местная вентиляция, и открытие и закрытие ворот, различные электрические помпы от полива воды до включения погружного насоса, компрессоры.

Поскольку вся внутренняя схема управления магнитным аппаратом собрана, то это значительно экономит время для его подключения. Пользователю остаётся только подвести силовой кабель.

Электрические схемы

Магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima производятся с управляющим напряжением 400 В и 230 В переменного тока 50 Гц. Электрические схемы этих магнитных пускателей разные.

Электрическая схема пускателя КМЭ 9А-32А с катушками управления 400 В

Электрическая схема пускателя КМЭ 9А-32А с катушками управления 230 В

Если пускатель с управляющим напряжением 400 В может быть интегрирован в трехпроводную систему питания двигателя, то для инсталляции магнитного пускателя с управляющим напряжением 230 В необходима четырехпроводная система с нейтралью, при этом нейтральный провод при выключении контактора не разрывается.

Как видно из электрической схемы на тепловом реле остается не задействован один нормальнооткрытый дополнительный контакт. На схематическом изображении он обозначен 97-98. Этот контакт может быть использован для дистанционного подачи сигнала об аварийном отключении устройства, которым управляет пускатель.

Схемы передачи электричества магнитными пускателями собраны для ручного управления пускателем, но это не отменяет возможности и дистанционного управления пускателями КМЭ в корпусе IP65 EKF PROxima.

Для организации универсального – дистанционного и ручного управления подключением двух кнопок импульсного действия необходимо:

  1. К клеммам теплового реле 95 и катушки управления контактором А2 с помощью проводников подключить дистанционную кнопку управления на замыкание с контактом 1NO. Она будет дублировать кнопку «Пуск».
  2. В разрез линии питания контактора у клеммы 95 теплового реле необходимо установить кнопку на размыкание 1NC – она будет дублировать кнопку «Стоп».

Таким образом, магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima могут применяться как для ручного, так и для дистанционного пуска устройств, имеют функцию защиты двигателя по перегрузке, обратную связь по аварийной остановке магнитного пускателя и могут применяться в автоматизированных системах управления процессами.

Складская номенклатура пускателей КМЭ в корпусе IP65 EKF PROxima начинается с номинальных токов 9 А и заканчивается токами на 93 А. В 2017 году компания EKF открыла сборочный участок, и теперь доступны для заказа пускатели на номинальные токи от 0,4 до 7 А. Эти пускатели имеют в своём составе тепловые реле на малые токи и контакторы на 9 А. Срок изготовления пускателей КМЭ в оболочке на малые токи составляет около недели. И это значит, что заказчик, например, из Владивостока может получить свой заказ через 2–2,5 недели после его оформления.

33. Назначение и устройство магнитных пускателей. Их обозначение на электрических схемах.

Магнитный пускатель – это коммутационный аппарат, предназначенный для пуска, остановки, реверса и защиты электродвигателей без ограничения пускового тока.

Требования к установке пускателя : магнитные пускатели устанавливают на распределительных сборках, на распределительных щитах или отдельно на конструкциях и стенах, колонах о т.п. В шкафах управления агрегатами магнитные пускатели устанавливают на монтажных плитах. Пускатели устанавливают вертикально по отвесу, отклонения от вертикали допускается не более 50. После опробования пускателя под нагрузкой осматривают поверхность контактов и в случае появления на ней наплывов обрабатывают напильником. Смазывать контакты пускателя не допускается. Размеры раствора, провала, нажима контактов проверяют и регулируют в соответствии с указаниями завода – изготовителя. Если при включении пускателя слышно сильное гудение его магнитной системы, устраняют следующие возможные неисправности:

  1. Недостаточную затяжку винтов, крепящих сердечник.

  2. Повреждение короткозамкнутого витка.

  3. Неплотное прилегание якоря к сердечнику из-за загрязнения поверхности прилегания или наличие на них смазки.

Технические данные магнитного пускателя серии ПА

Iн ,A

40

40

40

40

Pдв ,Вт

5,5

10

17

17

Uн ,B

127

220

380

500

На токе до 25А используют магнитные пускатели серии ПМЕ

Износостойкость срабатываний

Магнитный пускатель-контактор предназначен для пуска в ход асинхронного электродвигателя с короткозамкнутым ротором.

Кроме групп контактов пускатель имеет тепловое реле для защиты двигателя от перегрузки. К пускателям предъявляются высокие требования в отношении надежности срабатывания для бесперебойной работы двигателя.

При пуске двигателя пускатель работает в критическом режиме, необходимо уменьшать вибрацию контактов, т.к. пусковой ток превышает номинальный в 6-7 раз. При отключении пускатель работает в облегченном режиме, т.к. напряжение на контактах равно разности напряжения сети и ЭДС двигателя, составляющей всего 15-20% от номинального.

При необходимости повышения срока службы пускателя, его выбирают с запасом по мощности. При уменьшении мощности двигателя, возрастает допустимое число включений.

34. Автоматический выключатель сети. Его назначение и основные параметры.

Автоматические выключатели обеспечивают одновременно функции

— коммутации силовых цепей

— защиты электроприёмника, а также сетей от перегрузки и коротких замыканий.

Аппараты имеют тепловой расцепитель и электродинамический расцепитель.

Автоматы, как правило, снабжают дугогосящими устройствами в виде фибровых пластин либо дугогосящих камер.

Автоматы используют для защиты и коммутации цепей электроустановок различного назначения электродвигателей. Они устанавливаются в шкафах отходящих линий.

Автоматы выбирают по их номинальному току. Уставки токов расцепителей определяются следующими соотношениями:

1 Для силовых одиночных приёмников:

ток уставки теплового расцепителя

ток уставки электродинамического расцепителя

2 Для группы силовых (двигательных) приёмников

где наибольший суммарный ток группы в номинальном режиме

Автоматы выпускаются на переменные напряжения от 220 до 660 В и постоянные – от 110 до 440В с ручным и электродвигательным приводом.

Наибольшее распространение получили автоматы серии :

1 «Электрон» для установки в распред устройствах на постоянное напряжение до 440 В и переменное до 660. Отключают ток от 50кА до 160кА

2 АЕ-1000, АЕ 2000 для защиты цепей и электроприемников от коротких замыканий и перегрузок U ~380, 660 В U =110, 220 В . Отключаемые токи от 1кА до 10кА

3 А-3000 – наиболее распространённая серия.

U ~380, 660 B постоянное до 440В. В этой серии выпускаются автоматы на повышенные частоты А-3123 U~380B f 400Гц А-3124 380 В 1500Гц.

Все о магнитных пускателях двигателей

Пускатели двигателей — это устройства, которые запускают и останавливают электродвигатели с помощью ручных или автоматических переключателей и обеспечивают защиту цепей двигателя от перегрузки. Основные характеристики включают предполагаемое применение, тип пускателя, электрические характеристики, включая количество фаз, ток, напряжение и номинальную мощность, а также характеристики. Пускатели двигателей используются везде, где работают электродвигатели с определенной мощностью. Существует несколько типов пускателей, в том числе ручные, магнитные, плавные, многоскоростные и пускатели полного напряжения. В этой статье рассматриваются магнитные пускатели двигателей и объясняется, как они работают, их применение и некоторые соображения по выбору пускателя двигателя.

Как работает магнитный пускатель двигателя?

Магнитные пускатели работают при помощи электромагнитов. Они имеют набор контактов с электромагнитным управлением, который запускает и останавливает подключенную нагрузку двигателя, и реле перегрузки. Реле перегрузки отключает управляющее напряжение на катушку стартера, если обнаруживает перегрузку двигателя.Схема управления с мгновенными контактными устройствами, подключенными к катушке, выполняет функцию пуска и останова.

Трехполюсный пускатель магнитного двигателя полного напряжения имеет следующие устройства: набор неподвижных контактов, набор подвижных контактов, катушка соленоида, неподвижный электромагнит, нажимные пружины, набор затеняющих магнитных катушек и подвижный якорь. . В магнитных пускателях используются управляющие устройства с мгновенным контактом (такие как переключатели и реле), которые требуют перезапуска после потери мощности или если из-за низкого напряжения контактор отключается. Их также можно подключить для автоматического перезапуска двигателей, если этого требует приложение.

Контактор магнитного пускателя похож на реле, но переключает большее количество электроэнергии и обрабатывает нагрузки с более высоким напряжением. Контактор имеет контактный носитель с электрическими контактами для подключения входящего сетевого силового контакта к контакту нагрузки. Он также состоит из электромагнита, который обеспечивает силу для замыкания контактов, и корпуса, изолирующего материала, который скрепляет детали и защищает компоненты.Контакторы обычно изготавливаются с контактами, которые остаются разомкнутыми, если не замкнуты принудительно, что означает, что мощность не поступает на нагрузку до тех пор, пока катушка не сработает, замыкая контактор.

Когда контактор замкнут, ток идет на электромагнит. Этот ток может иметь то же напряжение, что и мощность, проходящая через контакты, или может иметь более низкое «управляющее» напряжение, которое используется только для питания катушки. Когда катушка находится под напряжением, это создает магнитную связь между контактами и держателем контактов, позволяя им оставаться вместе, и ток течет к двигателю до тех пор, пока система не будет отключена путем обесточивания катушки.В обесточенном состоянии пружина заставляет контакты разъединяться и прекращать прохождение энергии через контакты, и двигатель выключается.

Некоторые общедоступные магнитные пускатели двигателей включают полное напряжение (линейное), пониженное напряжение и реверсирование. Как следует из названия, пускатель с магнитным пускателем полного напряжения или с параллельным подключением к сети подает на двигатель полное напряжение. Это означает, что он предназначен для правильной обработки уровней пускового тока, возникающего при запуске двигателя. Пускатели пониженного напряжения предназначены для ограничения воздействия пускового тока во время запуска двигателя и доступны в электромеханическом и электронном вариантах.Реверсивные стартеры переключают вращение вала трехфазного двигателя. Это происходит из-за того, что любые двухпроводные провода, питающие нагрузку двигателя, меняются местами. Реверсивный магнитный пускатель двигателя имеет пускатель прямого и обратного хода. Он также имеет электрические и механические блокировки, которые обеспечивают одновременное включение только переднего или заднего стартера.

Приложения и отрасли

Пускатели электродвигателей

— это специальные электрические устройства, предназначенные для работы с высоким электрическим током, который электродвигатели потребляют на мгновение при запуске из состояния покоя, при этом защищая электродвигатели от чрезмерного нагрева при перегрузках во время нормальной работы.Пусковой ток может в несколько раз превышать ток, потребляемый двигателем при его рабочей скорости. Если бы использовался только предохранитель или автоматический выключатель, это устройство сработало бы или отключилось при каждом запуске.

Вместо этого в двигателях используются магнитные реле перегрузки, чтобы ввести временную задержку во время запуска, когда двигатель подвергается сильному пусковому току. Если двигатель заклинивает — так называемый сценарий с заторможенным ротором — он будет постоянно потреблять такой же пусковой ток. В этом случае реле перегрузки будут нагреваться сверх времени, отведенного для нормальных мгновенных уровней броска тока, и отключат переключатель или контактор и, следовательно, двигатель.

Магнитные пускатели двигателей часто используются для двигателей мощностью несколько лошадиных сил и выше. Примеры включают деревообрабатывающие станки, такие как столярные пилы или формовщики. Машины с меньшими нагрузками, включая большинство ручных инструментов, обычно используют только выключатель вместо пускателя двигателя. Магнитные пускатели являются стандартными компонентами для многих машин, а стартеры послепродажного обслуживания также используются в качестве запасных компонентов или для модернизации старых машин. Они используются в линейных приложениях и в качестве пускателей пониженного напряжения для одно- и трехфазных двигателей.

Пускатели двигателей

доступны в открытых конфигурациях, которые устанавливаются в панели управления, или они могут быть автономными блоками с кожухами, сертифицированными NEMA или IEC. Стандартные размеры NEMA варьируются от 00 до 9, чтобы охватить диапазон типоразмеров двигателей, начиная с 1,5 л.с. и заканчивая 900 л.с.

Соображения

Большинство производителей стартеров предлагают продукцию как в соответствии с рейтингом NEMA, так и IEC. Пускатели NEMA, как правило, больше и дороже, чем пускатели IEC, но могут быть указаны на основе только мощности и напряжения, тогда как спецификации пускателей IEC более точно настроены.Как правило, североамериканские инженеры-конструкторы определяют применимость либо NEMA, либо IEC, а для новых закупок специалисты по спецификациям могут выбирать из соответствующих предложений поставщиков в этих двух диапазонах. Машиностроители в Северной Америке часто используют пускатели IEC в своих панелях управления из-за их способности более точно настраивать пускатель в соответствии с приложением, что необходимо в соответствии с более сложными критериями выбора IEC.

Сводка

В этой статье представлено понимание магнитных пускателей двигателей.Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Прочие изделия для стартеров двигателей

Больше от Machinery, Tools & Supplies

Что это такое, как это работает и многое другое

Главная »О нас» Новости »Магнитные пускатели двигателей: основы

Опубликовано: автором springercontrols

Магнитный пускатель двигателя — это устройство с электромагнитным управлением, которое запускает и останавливает подключенную нагрузку двигателя.Магнитные пускатели состоят из электрического контактора и устройства защиты от перегрузки, обеспечивающей защиту в случае внезапной потери мощности.

Контактор и реле

Контактор похож на реле, но предназначен для переключения большего количества электроэнергии и работы с нагрузками с более высоким напряжением. В отличие от реле, контактор не имеет общего полюса под напряжением, который переключается между нормально разомкнутым и нормально замкнутым полюсами. Контактор состоит из держателя контактов с электрическими контактами для подключения входящего сетевого силового контакта к контакту нагрузки, электромагнита (обычно называемого «катушкой»), который обеспечивает силу для замыкания контактов, позволяющую протекать току, и корпус, который представляет собой изолирующий материал, удерживающий детали вместе и обеспечивающий некоторую степень защиты от прикосновения человека к клеммам.Контакторы обычно изготавливаются с нормально разомкнутыми контактами, что означает, что мощность не будет поступать на нагрузку до тех пор, пока не будет активирована катушка, которая замыкает контактор. Активация катушки обычно выполняется оператором управления, либо вручную, то есть человеком, нажимающим кнопку / щелчком переключателя, либо автоматически с помощью датчика или таймера, который переключается при достижении определенного состояния. Контакторы могут быть снабжены вспомогательными контактами (нормально разомкнутыми или нормально замкнутыми) для выполнения дополнительных операций, когда контактор замкнут.

Когда контактор замкнут, это позволяет току проходить на «катушку» (электромагнит). Это может быть то же самое напряжение, что и мощность, проходящая через контакты, или часто более низкое «управляющее» напряжение используется только для подачи питания на катушку. Когда катушка находится под напряжением, это создает магнитную связь между контактами и держателем контактов, позволяя им оставаться вместе, и ток течет к двигателю или другой нагрузке до тех пор, пока система не будет отключена путем отключения питания катушки. В обесточенном состоянии пружина заставляет контакты разъединяться и останавливать поток энергии через контакты, тем самым выключая двигатель или нагрузку.

Реле тепловой перегрузки

: что это такое и как оно работает

Тепловое реле перегрузки предназначено для защиты двигателя или другой нагрузки от повреждения в случае короткого замыкания или перегрузки и перегрева. Простейшее реле перегрузки срабатывает за счет тепла, вызванного протеканием большого тока через перегрузку и по биметаллической полосе. Биметаллическая полоса — это лента из двух разных металлов, прикрепленных друг к другу, причем каждый металл имеет свой коэффициент теплового расширения.Когда эта биметаллическая полоса нагревается, один металл будет расширяться быстрее, чем другой, и приведет к изгибу сборки. Когда он станет достаточно горячим, кривизны будет достаточно, чтобы контакты в перегрузке разъединились. Поскольку перегрузка имеет контакт, подключенный к цепи управления контактора, это эффективно размыкает цепь и обесточивает систему. Как только биметаллическая полоса остынет, она выпрямится и позволит цепи снова замкнуться.

Режимы работы реле перегрузки

Реле перегрузки можно настроить на 4 различных режима работы.

  • Только ручной сброс — оператор должен нажать кнопку для перезапуска системы. Этот параметр обычно используется по соображениям безопасности, чтобы система не перезапустилась сама по себе.
  • Только автоматический сброс — когда биметаллическая полоса остывает, система автоматически перезагружается. Это полезно, когда система находится в удаленном месте, что затрудняет ручной перезапуск, а автоматический перезапуск вряд ли создаст опасное состояние.
  • Ручной сброс / остановка — Аналогичен только ручному сбросу, но позволяет использовать кнопку для ручной остановки системы. Это полезно для простых систем, где отдельный выключатель не требуется.
  • Автоматический отдых / остановка — Аналогичен только автоматическому сбросу, но позволяет использовать кнопку для остановки системы вручную. Это полезно для простых систем, где нет необходимости в отдельном переключателе включения / выключения.

Реле перегрузки обычно компенсируются по температуре окружающей среды, и уставка срабатывания часто регулируется в относительно узком диапазоне.Более старые реле перегрузки доступны с фиксированными точками срабатывания по температуре с использованием биметаллических полос. Их обычно называют «нагревателями», и они специфичны для каждой точки срабатывания (тока). Новые реле перегрузки доступны с электронным управлением и используются для различных функций двигателя.


Остались вопросы по магнитным пускателям двигателей?

Если у вас все еще есть вопросы о магнитных пускателях двигателей и их применении, специалисты Springer Controls всегда готовы помочь. Свяжитесь с нами сегодня, и мы будем рады вам помочь!

в рубрике: Новости Основы магнитного пускателя двигателя

| EC&M

NEC определяет контроллер несколькими способами. В ст. 100, контроллер описывается как «устройство или группа устройств, которые служат для управления некоторым заранее определенным образом электрической мощностью, подаваемой в устройство, к которому он подключен». Если говорить более конкретно, определение в ст.430.2 гласит: «Контроллер — это любой переключатель или устройство, которое обычно используется для запуска и остановки двигателя путем включения и отключения тока в цепи двигателя». В этой статье мы сконцентрируемся на контроллерах, в частности, на разнообразных контроллерах магнитных пускателей.

Магнитный пускатель двигателя представляет собой набор контактов с электромагнитным управлением, который запускает и останавливает подключенную нагрузку двигателя. Цепь управления с мгновенными контактными устройствами, подключенными к катушке магнитного пускателя двигателя, выполняет эту функцию пуска и останова.Трехполюсный пускатель магнитного двигателя полного напряжения состоит из следующих компонентов: набора неподвижных контактов, набора подвижных контактов, нажимных пружин, катушки соленоида, стационарного электромагнита, набора катушек магнитного затенения и подвижная арматура.

Также важно помнить, что магнитный пускатель двигателя — это контактор, который имеет дополнительный узел реле перегрузки, обеспечивающий защиту двигателя от перегрузки во время работы. Выбор теплового реле перегрузки осуществляется с помощью таблицы производителя, прилагаемой к пускателю магнитного двигателя.Кроме того, убедитесь, что вам известны ток полной нагрузки (FLC) двигателя, коэффициент обслуживания (SF) двигателя и температура окружающей среды, в которой работает оборудование. Тепловые единицы рассчитаны на температуру окружающей среды 40 ° C (104 ° F).

Типичные распространенные магнитные пускатели двигателей включают: полное напряжение (линейное), пониженное напряжение и реверсирование. Как следует из названия, магнитный пускатель двигателя с полным напряжением или с параллельным подключением ( Рис. 1 ) подает на двигатель полное напряжение.Это означает, что магнитный пускатель двигателя спроектирован так, чтобы должным образом справляться с уровнями пускового тока, который будет развиваться при запуске двигателя. Пускатели пониженного напряжения, разработанные для ограничения воздействия пускового тока при запуске двигателя, доступны в электромеханическом и электронном вариантах. См. «Руководство по стандартной цепи управления двигателем» в июньском выпуске EC&M на стр. 18 для более подробного обсуждения типов пускателей пониженного напряжения.

Реверсивные пускатели предназначены для реверсирования вала трехфазного двигателя.Это достигается путем замены любых двухлинейных проводов, питающих нагрузку двигателя. Реверсивный пускатель магнитного двигателя ( Рис. 2 ) включает в себя пускатель прямого и обратного хода как часть узла. Предусмотрены электрические и механические блокировки, гарантирующие, что в любой момент времени может быть задействован только прямой или обратный пускатель, но не одновременно.

Магнитные пускатели двигателей

NEMA доступны в различных номинальных значениях напряжения и мощности с обозначениями от размера 00 до размера 9.Эти размеры NEMA классифицируют пускатели магнитных двигателей по напряжению и максимальной мощности. Напряжения катушки обычно доступны в вариантах 24 В, 120 В, 208 В, 240 В, 277 В, 480 В и 600 В. Магнитный пускатель двигателя также предлагается в различных типах корпусов, в зависимости от среды, в которой будет работать оборудование. Типичные защитные кожухи: NEMA 1 (общего назначения), NEMA 4 (водонепроницаемые), NEMA 12 (пыленепроницаемые) и NEMA 7 (опасные зоны).

Магнитные пускатели двигателей

IEC обычно выпускаются в модульном формате с блоком питания и блоком управления.Трехфазные силовые базы доступны в вариантах 208 В, 230 В, 460 В и 575 В с соответствующими максимальными значениями мощности в лошадиных силах. Блок управления функционирует как регулируемый узел реле перегрузки, который отличается от фиксированного типа блока теплового перегрузки, применяемого в магнитных пускателях двигателя типа NEMA. Устройства IEC обычно меньше по размеру и дешевле, чем сопоставимые устройства типа NEMA. Магнитные пускатели двигателей IEC часто поставляются как часть оборудования OEM (производителя оригинального оборудования).

Если мы сравним пускатель магнитного двигателя NEMA и пускатель магнитного двигателя IEC, можно заметить следующие различия:

  1. Устройство IEC физически меньше сопоставимого устройства NEMA.

  2. Устройство IEC обычно дешевле, чем сопоставимое устройство NEMA.

  3. Жизненный цикл устройства IEC составляет приблизительно один миллион операций, в то время как жизненный цикл сопоставимого устройства NEMA почти в четыре раза больше.

  4. Устройство IEC имеет регулируемый узел реле перегрузки, в то время как сопоставимое устройство NEMA имеет фиксированный и съемный узел реле перегрузки.

  5. Устройство IEC обычно должно быть защищено быстродействующими токоограничивающими предохранителями, в то время как устройство NEMA может быть защищено обычными предохранителями с выдержкой времени.

Конечный пользователь должен внимательно рассмотреть все эти требования, прежде чем принимать решение об установке пускателя магнитного двигателя NEMA или пускателя магнитного двигателя IEC в конкретном приложении.Национальная ассоциация производителей электрооборудования (NEMA) и Международная электротехническая комиссия (IEC), два органа по стандартизации, которые классифицируют электрическое оборудование, также являются хорошими источниками дополнительной информации.

Видал — президент компании Joseph J. Vidal & Sons, Inc., Throop, Pa.

Примечание автора: Я хотел бы посвятить эту статью моему отцу Джо, который неожиданно скончался 10 июня 2007 года. Мой отец проработал в электромонтажной отрасли более 50 лет и проработал до двух дней до этого. его прохождение.Он познакомил меня с этим бизнесом в очень молодом возрасте, побудив меня продолжить свое образование в качестве инженера. Я действительно буду скучать по его руководству и вдохновению.

Как работает магнитный пускатель двигателя

Большинство людей не имеют технических знаний об электрических компонентах наших машин, особенно тех, которые не видны или работают внутри машины, как пускатели магнитных двигателей. Вы когда-нибудь задавали вопрос « как работает магнитный пускатель

Магнитный пускатель двигателя — это выключатель с электромагнитным управлением, который защищает ваш электродвигатель во время запуска.Он может выдерживать тяжелые нагрузки, такие как трехфазные большие двигатели и другое промышленное оборудование. Магнитные пускатели двигателей обеспечивают защиту от пониженного напряжения и перегрузки, а также автоматическое отключение в случае сбоя питания. Другой целью магнитного пускателя двигателя является защита двигателя, который не имеет защиты от тепловой перегрузки в самом двигателе. Магнитный пускатель двигателя представляет собой комбинацию контактора и реле перегрузки, которое откроет управляющее напряжение на катушку стартера, если обнаружит перегрузку от ваших двигателей во время использования.В тепловом типе используется устройство, установленное на реле перегрузки, называемое «нагревателем». Это биметаллический элемент, через который проходит каждая ножка мотора. Магнитный пускатель двигателя бывает разных номиналов в зависимости от силы тока полной нагрузки двигателя. Пока ваша машина работает, через нагреватель протекает ток. Если ток, потребляемый двигателем, превышает номинал нагревателя, нагревательный элемент нагревается и вызывает «срабатывание» реле, которое прерывает цепь катушки контактора и обесточивает контактор.Вот два типа магнитных пускателей, которые предлагает компания Meiji:

  1. Пускатели магнитного двигателя с полным напряжением (поперечно)

Пускатели магнитных двигателей обычно доступны как с полным напряжением, -line), пониженного напряжения и реверсивного . Полновольтный или линейный магнитный пускатель двигателя подает на двигатель полное напряжение, что означает, что он предназначен для правильного управления уровнями бросков тока, которые будут возникать при запуске двигателя.Пускатели пониженного напряжения предназначены для ограничения воздействия пускового тока при запуске двигателя. Они доступны в электромеханическом и электронном форматах.

  1. Реверсивный пускатель полного напряжения

Реверсивный пускатель предназначен для реверсирования вала трехфазного двигателя. Это достигается путем замены любых двухлинейных проводов, питающих нагрузку двигателя. Реверсивный магнитный пускатель двигателя включает в себя пускатель прямого и обратного хода как часть узла.Предусмотрены электрические и механические блокировки, чтобы гарантировать, что только пускатель прямого или обратного хода может быть включен в любой момент времени, но не одновременно. Магнитные пускатели двигателей обычно используются в деревообрабатывающем оборудовании, таком как столярные пилы или формовщики. Машины с меньшими нагрузками, такие как сверлильный станок или большинство ручных инструментов, обычно используют только переключатель. Магнитные пускатели являются стандартными компонентами для многих машин, и стартеры послепродажного обслуживания также доступны для использования в качестве замены или для модернизации старых машин.

«Национальная ассоциация противопожарной защиты (NFPA), торговая ассоциация США, заявляет, что всему оборудованию требуется магнитный пускатель для защиты от непреднамеренного перезапуска машины в случаях: восстановление напряжения ». — Стандарт 7.5.3 NFPA 79, Википедия.

Компания Meiji Electric производит высококачественные пускатели магнитных двигателей LS. У вас есть возможность вложить пускатель двигателя в комплект или оставить его как есть.Meiji поставляет магнитные пускатели двигателей мощностью от 1/8 до 300 л.с. Полновольтные нереверсивные и реверсивные пускатели, магнитные пускатели с пониженным напряжением, в частности пускатели электродвигателей звезда-треугольник, мощностью от 7 1/2 л.с. до 215 л.с. для напряжения сети 220 и 440, также доступны с управляющим напряжением в соответствии с потребностями клиентов.

Сделайте хороший старт для своих машин с Meiji Electric!

Бесплатные карточки о блоке 3

Вопрос Ответ
ПОДСКАЗКА: Что такое пускатель магнитного линейного напряжения? Электромагнитный выключатель с защитой от перегрузки
Сколько полюсов требуется на пускателях следующих двигателей: а.Однофазный асинхронный двигатель на 240 В б. Трехфазный асинхронный двигатель на 440 В a. 2 б. 3
Если пускатель двигателя установлен в соответствии с инструкциями, но не запускается, какова общая причина отказа при запуске? Нагреватели без перегрузки
УКАЗАНИЕ: Что вызывает гудение или дребезжание переменного тока в электромагнитных устройствах переменного тока?, потому что использовалось напряжение переменного тока с нулевым напряжением. когда он достигает 0, якорь не испытывает тяги, заставляя его опускаться под действием силы тяжести и втягиваться обратно по принципу соленоида.
ПОДСКАЗКА: Каково фазовое соотношение между потоком в главном полюсе магнита и потоком в заштрихованной части полюса? 90 градусов друг от друга
В каких устройствах переменного тока используется принцип заштрихованного полюса? Магнитные пускатели на контакторной секции Реле
Какой тип защитного корпуса используется чаще всего и каков его номер NEMA? NEMA 1 общего назначения
Магнитный пускатель удерживается закрытым а.механически б. на 15% понижения напряжения c. на 15% перенапряжения d. электрически магнитно d. электрически магнитно
, когда катушка пускателя двигателя обесточена, а. контакты остаются закрытыми б. закрывается механически c. открытые контакты под действием силы тяжести и натяжения пружины d. он должен остыть для перезапуска c. контакты размыкания под действием силы тяжести и натяжения пружины
Переменный ток Магнит переменного тока может чрезмерно гудеть из-за а.неправильное выравнивание б. посторонние предметы между контактными поверхностями c. неплотное ламинирование d. все эти д. все из этого
Магниты переменного тока изготовлены из ламинированного железа а. для лучшей индукции б. для уменьшения теплового эффекта c. для переменного и постоянного тока d. для предотвращения дребезга b. для уменьшения эффекта нагрева
Цель защиты двигателя от перегрузки — защитить а. двигатель от длительных сверхтоков б.провод от высоких токов c. двигатель от длительного перенапряжения d. двигатель от коротких замыканий а. двигатель от длительных сверхтоков
Число полюсов магнитного пускателя относится к а. количество силовых, моторных или нагрузочных контактов б. количество управляющих контактов c. количество северных и южных полюсов d. все эти а. количество силовых, моторных или нагрузочных контактов
Двигатели могут сгореть из-за а.перегрузка б. высокие температуры окружающей среды c. плохая вентиляция d. все вышеперечисленное d. все вышеперечисленное
Назначение затеняющей катушки на наконечнике электромагнитного полюса переменного тока состоит в том, чтобы а. предотвратить перегрев змеевика б. ограничить ток отключения c. ограничить ток включения d. предотвратить дребезжание d. предотвратить дребезжание
ПОДСКАЗКА: Какие преимущества дает использование комбинированных стартеров? у нас есть как размыкающий выключатель, так и защита от пуска
какую функцию безопасности обеспечивает комбинированный пускатель, чего нет в отдельных пусковых агрегатах двигателя? пусковая защита: предохранители и автоматические выключатели
СОВЕТ: перечислите возможные причины, по которым якорь не срабатывает после обесточивания магнитного пускателя. механическое переплетение; воздушный зазор в магните разрушен; липкое вещество на гранях магнита; слабое давление наконечника; сварка контактного наконечника
как размер нагревателей перегрузки выбирается для конкретной установки? Получите паспортную табличку в токе полной нагрузки (FLA) двигателя и посмотрите на заводскую крышку.
Ток, потребляемый двигателем, равен а. низкий при запуске б. точное измерение нагрузки двигателя c. неточное измерение нагрузки двигателя d.не из них б. точное измерение нагрузки двигателя
тепловые реле перегрузки реагируют на а. высокие температуры окружающей среды и чрезмерный нагрев из-за токов перегрузки б. тяжелые механические нагрузки c. из FLA двигателя и таблицы выбора производителя d. по температуре окружающей среды a. высокая температура окружающей среды и чрезмерный нагрев из-за токов перегрузки
когда кнопка сброса не восстанавливает цепь управления после перегрузки, вероятной причиной является а.нагреватель перегрузки слишком мал б. расцепитель перегрузки недостаточно остыл c. перегорел подогреватель перегрузки б. отключение по перегрузке недостаточно охладилось
, если оператор нажимает кнопку пуска на трехфазном асинхронном двигателе, и двигатель начинает гудеть, но не работает, вероятная неисправность а. один предохранитель перегорел и двигатель однофазный б. отключение по перегрузке требует сброса c. Вспомогательный контакт — ш а.один предохранитель перегорел и двигатель однофазный
комбинированный пускатель обеспечивает а. отключающие средства б. защита от перегрузки c. защита от короткого замыкания d. все эти д. все эти
что означает IEC? международная электротехническая комиссия

Пускатели двигателей | Через линию | Миннеаполис, Миннесота

ISC Companies является дистрибьютором деталей механической передачи энергии и компонентов промышленной автоматизации.Мы также гордимся тем, что являемся сертифицированным магазином панелей UL 508A / 698A. Для получения дополнительной информации о брендах, которые мы предлагаем, и / или ценах, свяжитесь с нами по телефону 763-559-0033, по электронной почте [email protected] или заполнив нашу онлайн-форму для связи.


Пускатель двигателя включает или выключает электродвигатель, обеспечивая защиту от перегрузки. Есть два основных типа пускателей: ручной и магнитный. В меньших размерах пускатель двигателя представляет собой выключатель с ручным управлением. Защита от низкого напряжения (LVP), которая предотвращает автоматический перезапуск после сбоя питания, обычно невозможна с ручным пускателем.В более крупных двигателях или в двигателях, требующих дистанционного или автоматического управления, используются магнитные контакторы. Очень большие двигатели, работающие от источников питания среднего напряжения, могут использовать силовые выключатели.

Пускатели магнитных двигателей переменного тока

для одно- и трехфазной работы состоят из двух основных частей; контактор (подключает двигатель к входящей мощности) и перегрузка (вызывает электрическое отключение контактора (срабатывание), когда он обнаруживает ток, превышающий нормальный).

Все пускатели двигателей имеют следующие функции:

  • Номинальный ток (амперы) или мощность (лошадиные силы)
  • Дистанционное управление ВКЛ / ВЫКЛ
  • Защита двигателя от перегрузки
  • Запуск и остановка (электрическая долговечность)
  • Заткание и толчковый режим (быстрый включающий и отключающий ток)

Пускатели полного напряжения

Пускатели полного напряжения

, также называемые линейными пускателями или пускателями прямого включения (DOL), являются нереверсивными (FVNR) при полном напряжении и подключают двигатель к линии питания.Ручные пускатели ограничены однофазными двигателями мощностью около 5 л.с. при 320 В переменного тока и трехфазными до 10 л.с. при 460 и 575 В переменного тока. Пускатели обычно разрабатываются в соответствии со стандартами NEMA (США) или IEC (Европа). Два типа пускателей различаются номиналами, сроком службы и типами перегрузки.

Номинальные параметры корпуса
Стандарты

NEMA определяют 11 размеров магнитных пускателей (00–9) для низковольтных пускателей и указывают номинальную мощность в лошадиных силах для каждого размера. Номинальные параметры пускателей IEC включают 15 размеров, при этом их физический размер может быть меньше.

Срок службы контактора
Стандарты

NEMA требуют, чтобы производители проектировали все контакторы для тяжелых условий эксплуатации; поэтому они обычно больше, чем соответствующие контакторы IEC. Стандарты IEC определяют различные уровни обслуживания, называемые категориями использования. Стартеры NEMA обычно имеют более длительный срок службы.

Реле перегрузки

Промышленность практически прекратила использование устройств защиты от перегрузок нагревательных элементов в пользу электронных полупроводниковых устройств защиты от перегрузок, которые обеспечивают большую защиту.Электронная система защиты от перегрузки контролирует фактический ток двигателя и отключает его за три секунды или меньше, если он превышает предварительно установленный номинал. Они также защищают от потери фазы, дисбаланса фаз и короткого замыкания.

Стандарты

NEMA требуют, чтобы реле перегрузки имели сменные нагреватели или электронные устройства защиты от перегрузки для обеспечения характеристик отключения класса 20 при 600% тока полной нагрузки. Большинство электронных перегрузок имеют выбираемые на месте классы срабатывания от 5 до 30.


Реверсивные пускатели

Двигатели с тремя фразами меняются местами путем переключения любых двух из трех силовых выводов на двигатель.Пускатели с реверсивным полным напряжением (FVR) имеют два контактора (прямой и обратный ход). Когда двигатель вращается в одном направлении, а контактор противоположного направления находится под напряжением, это называется заглушкой. Двигатель быстро замедляется и ускоряется в обратном направлении. Когда приложение требует быстрого замедления, но не последующего обратного вращения, двигатель может быть оборудован выключателем. Штекерный выключатель — это центробежный выключатель, который передает на двигатель противоположную мощность вращения для быстрого замедления, но полностью отключается, когда скорость двигателя приближается к нулю.


Пускатели пониженного напряжения

Пускатели пониженного напряжения (RVS) используются в приложениях с двигателями большой мощности. Они используются для уменьшения пускового тока, ограничения выходного крутящего момента и механической нагрузки на нагрузку.

Пускатель пониженного напряжения предотвращает броски тока, позволяя двигателю набирать скорость небольшими шагами за счет меньших приращений тока. Этот стартер не является регулятором скорости. Снижает шок только при запуске.

  • Пускатели с первичным резистором : В простейшем пускателе пониженного напряжения резисторы вставляются последовательно с двигателем во время фазы пуска.Система рассеивает мощность в виде тепла во время запуска. В приложениях, где потери недопустимы, часто используются реакторы, а не резисторы. Пускатели реакторов стоят дороже и имеют меньший коэффициент мощности при пуске.
  • Пускатели автотрансформатора : Во время разгона пониженное входное напряжение подается на двигатель через автотрансформатор, который ограничивает ток и предотвращает перенапряжение цепи двигателя. Когда достигается рабочая скорость, включается второй контактор, чтобы обойти трансформатор и подать полное напряжение на двигатель.Третий контактор используется для заполнения временного интервала во время переключения (пускатель с закрытым переходом). Если третий контактор не используется, это пускатель с открытым переходом.

Пускатели с пониженным пусковым током

  • Пускатели звезда-треугольник : Во время пуска пускатель звезда-треугольник последовательно соединяет три набора обмоток статора для увеличения электрического сопротивления и ограничения пускового тока. Когда достигается рабочая скорость, таймер подключает их параллельно, и все три набора обмоток получают одинаковое линейное напряжение.Они используются в устройствах с низким пусковым моментом, таких как воздуходувки или центробежные насосы.
  • Пускатели с частичной обмоткой : Для них требуются двигатели, которые имеют специальную проводку, чтобы пускатель мог подключаться только к части обмоток во время запуска. Во время разгона таймер заставляет второй контактор замыкаться, запитывая другие обмотки. Пускатель с частичной обмоткой является наименее дорогим, но пусковой ток выше и требуется специальная проводка.

Твердотельные пускатели

В твердотельных пускателях тиристоры используются в качестве клапанов переменного напряжения.Они включают в себя рампы ускорения и замедления с регулируемым напряжением для медленного увеличения напряжения и скорости двигателя, чтобы избежать ударных нагрузок и ограничить пусковой ток. Твердотельные пускатели могут использовать либо линейное изменение предела тока, либо обратную связь от тахометра. Твердотельные устройства плавного пуска доступны как автономные устройства, когда пускатель уже используется. Они популярны при перекачивании.


Пускатели комбинированные

Североамериканские электрические нормы и правила требуют, чтобы, если в ответвленной цепи есть двигатель, она также должна иметь устройство защиты от короткого замыкания и отключающее устройство в дополнение к пускателю двигателя.В случае короткого замыкания требуется дополнительная защита в виде предохранителя или автоматического выключателя. Когда отключающее устройство, устройство защиты от короткого замыкания и пускатель двигателя объединены как узел, он называется комбинированным пускателем.

  • Разъединители с предохранителями : Предохранители с выдержкой времени позволяют переносить тяжелые нагрузки в течение короткого времени и обеспечивают долгосрочную защиту от перегрузки. У них есть токоограничивающие возможности.
  • Автоматические выключатели : Удобнее, но по более высокой цене.Они служат средством отключения двигателя и пускателя от сети и защиты параллельной цепи от чрезмерного тока.

Существует три класса напряжения: низкий (менее 600 В), средний (от 600 до 15 000 В) и высокий (более 15 000 В). Три типа конструкции: литой корпус, изолированный корпус и низковольтный источник питания. Автоматические выключатели срабатывают или отключаются, когда ток превышает номинальное значение выключателя после выдержки времени.


Содержимое этой страницы было создано с использованием выдержек из Справочника по передаче электроэнергии (5 -е, издание) , которое написано и продается Ассоциацией дистрибьюторов силовой передачи (PTDA).

Закажите копию здесь

Магнитные линейные пускатели напряжения | электрооборудование

Объективы

После изучения данного раздела студент сможет:

• Определите распространенные магнитные пускатели двигателей и реле перегрузки

• Опишите конструкцию и принципы работы магнитного

переключатели

• Опишите принцип действия соленоида

• Поиск и устранение неисправностей магнитных переключателей

• Выбирайте защитные кожухи пускателя для конкретных применений

Магнитное управление означает использование электромагнитной энергии для включения переключателей.Магнитные пускатели с линейным напряжением (поперек линии) представляют собой электромеханические устройства, которые обеспечивают безопасное, удобное и экономичное средство запуска и остановки двигателей при полном напряжении. Кроме того, этими устройствами можно управлять удаленно. Они используются, когда пусковой крутящий момент при полном напряжении (см. Глоссарий) может быть безопасно применен к приводимому оборудованию, и когда броски тока, возникающие в результате запуска через линию, не являются нежелательными для энергосистемы. Управление этими пускателями обычно обеспечивается пилотными устройствами, такими как кнопки, поплавковые выключатели, реле времени и многое другое, как описано в разделе 3.Автоматическое управление достигается за счет использования некоторых из этих пилотных устройств.

МАГНИТНЫЙ И РУЧНОЙ СТАРТЕР

При использовании ручного управления стартер должен быть установлен так, чтобы он был легко доступен для оператора станка. При использовании магнитного управления станции с кнопками устанавливаются поблизости, но пилотные устройства с автоматическим управлением могут быть установлены практически в любом месте машины. Кнопки и устройства автопилота могут быть подключены с помощью управляющей проводки к цепи катушки удаленного пускателя, возможно, ближе к двигателю, чтобы сократить силовую цепь.

Операция

В конструкции магнитного регулятора якорь механически соединен с набором контактов, так что, когда якорь перемещается в свое закрытое положение, контакты также замыкаются. Существуют разные варианты и положения, но принцип работы тот же.

Простое движение трехполюсного магнитного переключателя с соленоидным приводом вверх и вниз показано на рисунке 13-1. Не показаны реле перегрузки двигателя, а также поддерживающий и вспомогательный электрические контакты.В пускателях этого типа используются контакты с двойным размыканием, чтобы наполовину снизить напряжение на каждом контакте, что обеспечивает высокую способность к разрыву дуги и более длительный срок службы контактов.

ЭЛЕКТРОМАГНИТЫ СТАРТЕРА

Принцип действия, который отличает магнитный пускатель от ручного стартера, заключается в использовании электромагнита. В электрооборудовании широко используется устройство, называемое леноидом. Это электромеханическое устройство используется для управления пускателями двигателей, контакторами, реле и клапанами.Помещая катушку из множества витков проволоки вокруг сердечника из мягкого железа, магнитный поток, создаваемый катушкой под напряжением, имеет тенденцию концентрироваться; поэтому эффект магнитного поля усиливается. Поскольку железный сердечник представляет собой путь наименьшего сопротивления магнитным силовым линиям, магнитное поле при растяжении концентрируется в соответствии с формой сердечника магнита.

Существует несколько различных вариантов конструкции основного магнитопровода и катушки соленоида. На рис. 13-2 показано несколько примеров.Как показано в конструкции соленоида на фиг. 13-2C, связь с узлом подвижных контактов обеспечивается через отверстие в подвижном плунжере. Плунжер показан в открытом обесточенном положении.

Центральная ножка каждого из сердечников E-образного магнита на рисунках 13-2B и C заземлена короче, чем внешние ножки, чтобы предотвратить случайное замыкание магнитного переключателя (из-за остаточного магнетизма) при отключении питания.

На рис. 13-3 показана конструкция изготовленного магнита и показано, как контакты пускателя устанавливаются на якорь.

Когда катушка пускателя магнитного двигателя находится под напряжением и якорь запломбирован, он плотно прижимается к узлу магнита. Небольшой воздушный зазор всегда намеренно помещается в центральную ножку, железный контур. Когда катушка обесточена, остается небольшое количество магнетизма. Если бы не этот зазор в железной цепи, остаточного магнетизма могло бы быть достаточно, чтобы удерживать подвижный якорь в запломбированном положении. Эти знания могут быть важны для электрика при поиске неисправностей двигателя, который не останавливается.

Положение ВЫКЛЮЧЕНО или ОТКРЫТО достигается обесточиванием катушки и позволяя силе тяжести или натяжению пружины высвободить плунжер из тела магнита, тем самым размыкая электрические контакты. Фактические контактные поверхности плунжера и корпуса сердечника отшлифованы на станке для обеспечения высокой степени плоскостности контактных поверхностей, так что работа на переменном токе происходит тише. Неправильное совмещение контактирующих поверхностей и посторонние предметы между поверхностями могут вызвать шум на магнитах переменного тока.

Еще один источник шума — неплотные ламели. Корпус магнита и плунжер (якорь) состоят из тонких листов железа, ламинированных и скрепленных вместе, чтобы уменьшить вихревые токи и гистерезис, потери в стали проявляются в виде тепла (см. Рисунок 13-4). Вихревые токи — это токи короткого замыкания, индуцируемые в металле трансформаторным действием катушки переменного тока. Хотя эти токи малы, они нагревают металл, вызывают потери в железе и снижают эффективность. Когда-то пластинки в магнитах были изолированы друг от друга тонкой немаркой

.

сетевое покрытие; однако было обнаружено, что нормальное окисление металлических пластин снижает влияние вихревых токов до удовлетворительной степени, тем самым устраняя необходимость в покрытии.

ПРИНЦИП ТЕНЕННОГО ПОЛЮСА

Принцип экранированного полюса используется для обеспечения временной задержки затухания потока в катушках, а также для предотвращения дребезга и износа движущихся частей магнитов переменного тока. На рисунке 13-5 показана медная полоса или короткозамкнутая катушка (затеняющая катушка) с низким сопротивлением, подключенная вокруг части полюсного наконечника магнита. Когда поток в полюсном наконечнике увеличивается слева направо, индуцированный ток в экранирующей катушке направлен по часовой стрелке.

Магнитный поток, создаваемый затеняющей катушкой, противоположен направлению потока основного поля. Следовательно, с установленной затеняющей катушкой плотность потока в затененной части магнита будет значительно меньше, а плотность потока в незатененной части магнита будет больше, чем если бы затененная катушка не была на месте.

На рис. 13-6 показан полюс магнита с направлением потока слева направо, но теперь значение потока уменьшается.Ток в катушке направлен против часовой стрелки. В результате

Магнитный поток

, создаваемый катушкой, направлен в том же направлении, что и поток основного поля. При установленной затеняющей катушке плотность потока в затененной части магнита будет больше, а в незатененной части будет меньше, чем если бы затененная катушка не использовалась.

Таким образом, когда электрическая цепь катушки размыкается, ток быстро уменьшается до нуля, но поток уменьшается гораздо медленнее из-за действия затеняющей катушки.Это обеспечивает более стабильное магнитное притяжение якоря, поскольку форма волны переменного тока изменяется от максимальных до минимальных значений и помогает предотвратить дребезжание и ахум.

Использование шторки для предотвращения износа и шума

Притяжение электромагнита, работающего на переменном токе, является пульсирующим и дважды равняется нулю в течение каждого цикла. Тяговое усилие магнита на его якоре также падает до нуля дважды в течение каждого цикла. В результате уплотняющие поверхности магнита имеют тенденцию разделяться каждый раз, когда ftux равен нулю, а затем снова контактировать, поскольку поток нарастает в противоположном направлении.Это постоянное замыкание и размыкание контакта приведет к шумному пуску и износу движущихся частей магнита. Шум и износ в магнитах переменного тока могут быть устранены за счет использования заштрихованных полюсов. Как показано ранее, заштриховав наконечник полюса, поток в заштрихованной части отстает от потока в незатененной части. На диаграмме показаны ванауоны потока во времени как в заштрихованных, так и в незатененных частях магнита.

Две магнитные волны разделены на 90 градусов друг от друга, насколько это возможно.Также показано усилие, создаваемое каждым потоком. Если магнитные волны разнесены точно на 90 °, тяги будут разнесены на 180 °, и результирующее притяжение будет постоянным. Однако, когда потоки разнесены почти на на 90 °, результирующее притяжение лишь на небольшую величину отличается от своего среднего значения и никогда не проходит через ноль. Напряжение, индуцированное в затеняющей катушке, вызывает наличие магнитного потока в электромагните, даже когда ток основной катушки мгновенно проходит через нулевую точку. В результате контакт между уплотнительными поверхностями магнита не нарушается, а вибрация и износ предотвращаются.

МАГНИТНАЯ КАТУШКА

Катушка магнита имеет много витков изолированного медного провода, плотно намотанного на катушку. Большинство катушек защищены прочным эпоксидным литьем, что делает их очень устойчивыми к механическим повреждениям, рис. 13-7.

Эффекты напряжения выше нормального

Производитель предлагает катушки практически любого желаемого управляющего напряжения. Некоторые пускатели имеют катушки с двойным напряжением.

Стандарты

NEMA требуют, чтобы магнитный переключатель работал должным образом при изменении управляющего напряжения от высокого 110% до минимального 85% от номинального напряжения катушки.Этот диапазон требуемых операций затем определяется производителем. Это гарантирует, что катушка выдержит повышенные температуры при напряжении до 10% выше номинального и что якорь сработает и запечатывается, даже если напряжение может упасть до 15% ниже номинального. Обычно рабочие напряжения энергокомпании очень надежны. Напряжение на заводе может изменяться из-за других нагруженных, работающих машин и других причин, влияющих на систему распределения электроэнергии. Если напряжение, приложенное к катушке, будет слишком высоким, катушка будет потреблять слишком большой ток.Будет произведено чрезмерное нагревание, что может привести к разрушению и возгоранию изоляции катушки. Магнитное притяжение будет слишком большим, и якорь будет врезаться со слишком большой силой. Поверхности полюсов магнита изнашиваются быстрее, что сокращает срок службы контроллера. Кроме того, сокращение срока службы контактов может быть следствием чрезмерного дребезга контакта.

Эффекты напряжения ниже нормального

Пониженное напряжение приводит к низким токам катушки, что снижает магнитное притяжение. На обычных пускателях магнит может подниматься (начинать движение), но не закрываться.Якорь должен прилегать к полюсным граням магнита для удовлетворительной работы. Без этого условия ток катушки не упадет до герметичного значения, потому что магнитная цепь разомкнута, что снижает импеданс (сопротивление переменному току). Поскольку катушка не предназначена для непрерывного протекания тока, превышающего ее герметичный ток, она быстро нагревается и перегорает. Арматура тоже будет дребезжать. Помимо шума, на поверхности полюсов магнита наблюдается чрезмерный износ. Если оболочка не закрывается, контакты могут соприкасаться, но не смыкаться с достаточным давлением, что создает другую проблему.Избыточный нагрев с возникновением дуги и возможной сваркой контактов будет происходить, поскольку контроллер пытается провести пусковой ток двигателя с недостаточным контактным давлением.

СИЛОВАЯ ЦЕПЬ (ИЛИ ДВИГАТЕЛЬ) МАГНИТНОГО СТАРТЕРА

Число полюсов относится к числу силовых контактов, определяемых службой электроснабжения. Например, в трехфазной трехпроводной системе требуется трехполюсный пускатель. В силовую цепь пускателя входят основные стационарные и подвижные контакты и тепловой блок или блок нагревателя блока реле перегрузки.Это можно увидеть на рис. 13-8 (и на рис. 13-1, без теплового реле перегрузки в сборе).

ПЕРЕГРЕВ ДВИГАТЕЛЯ

Электродвигатель не знает достаточно, чтобы отключиться, когда нагрузка становится для него слишком большой. Он продолжает работать, пока не перегорит. Если двигатель в течение определенного периода времени подвергается внутреннему или внешнему нагреву, который достаточно высок, чтобы разрушить изоляцию обмоток двигателя, он выйдет из строя.

Решение этой проблемы может заключаться в установке двигателя большего размера, мощность которого превышает требуемую нормальную мощность.Это не слишком практично, поскольку есть и другие причины перегрева двигателя, помимо чрезмерных нагрузок. В зимней снежной стране мотор будет работать прохладнее, чем в жаркую тропическую летнюю погоду. Высокая температура окружающего воздуха (температура окружающей среды) имеет тот же эффект, что и ток, превышающий нормальный, протекающий через двигатель, — она ​​имеет тенденцию к ухудшению изоляции обмоток двигателя.

Высокая температура окружающей среды также создается плохой вентиляцией двигателя.Двигатели должны избавляться от тепла, поэтому необходимо избегать любых препятствий для этого. Высокие пусковые токи при чрезмерном пуске вызывают нагрев внутри двигателя. То же самое и с стартовыми тяжелыми нагрузками. Есть несколько других связанных причин, которые выделяют тепло внутри двигателя, например, несимметрия напряжения , низкое напряжение, и однофазность. Кроме того, когда вращающийся элемент двигателя не вращается (состояние, называемое блокировкой ротора ), выделяется тепла.Должно быть невозможно спроектировать двигатель, который будет настраиваться на все различные изменения общего тепла, которые могут произойти. Некоторое устройство необходимо для защиты двигателя от ожидаемого перегрева.

Защита двигателя от перегрузки

Идеальная защита двигателя от перегрузки — это элемент, чувствительный к току, очень похожий на кривую нагрева двигателя. Это приведет к размыканию цепи двигателя при превышении полной нагрузки. Срабатывание защитного устройства является идеальным, если двигатель может выдерживать небольшие, короткие и безопасные перегрузки, но быстро отключается от сети, когда перегрузка сохраняется слишком долго.Двухэлементные предохранители или предохранители с выдержкой времени могут обеспечивать защиту двигателя от перегрузки, но их недостаток заключается в том, что они не подлежат замене.

Реле перегрузки добавлено к магнитному переключателю, показанному на рисунке 13-1. Теперь это называется стартером двигателя. Узел реле перегрузки является сердцем защиты двигателя. Типичное твердотельное реле перегрузки показано на рисунке 13-9. Двигатель не может выполнять больше работы, чем позволяет реле перегрузки. Как и двухэлементный предохранитель, реле перегрузки имеет характеристики, позволяющие удерживать его в течение периода разгона двигателя при потреблении пускового тока.Тем не менее, он по-прежнему обеспечивает защиту при небольших перегрузках, превышающих ток полной нагрузки, когда двигатель работает. В отличие от предохранителя, реле перегрузки можно сбросить. Он может выдерживать повторяющиеся циклы отключения и сброса без необходимости замены. Подчеркивается, что реле перегрузки не обеспечивает защиту от короткого замыкания. Это функция устройств защиты от сверхтоков, таких как предохранители и автоматические выключатели, которые обычно расположены в корпусе разъединителя.

Ток, потребляемый двигателем, является удобным и точным средством измерения нагрузки двигателя и нагрева двигателя.Поэтому устройство, используемое для защиты от перегрузки, реле перегрузки, обычно подключается к току двигателя. Поставляется в составе пускателя или контроллера. Поскольку реле передает ток двигателя, на него влияет этот ток. Если возникает опасная перегрузка по току, оно срабатывает или отключает реле для размыкания цепи управления магнитного пускателя и отключения двигателя от сети; это помогает обеспечить максимальный срок службы двигателя. В ручном пускателе перегрузка вызывает срабатывание механической защелки, заставляя контакты стартера размыкаться и отключать двигатель от сети.

Для обеспечения защиты от перегрузки , или , для защиты двигателя от перегрева, для предотвращения перегрева двигателя, на пускателях используются реле перегрузки для ограничения потребляемого тока до заданного значения. Нормы NEC и местные электрические нормы определяют размер реле защиты от перегрузки и нагревательных элементов, которые подходят по размеру к двигателю.

Контроллер обычно устанавливается в той же комнате или области, что и двигатель. Это делает его подверженным той же температуре окружающей среды, что и двигатель.Файл. Тогда на срабатывание соответствующего теплового реле перегрузки будет влиять комнатная температура точно так же, как и на двигатель. Это делается путем выбора элемента теплового реле (из таблицы, предоставленной производителем), который срабатывает при опасной температуре для обмоток двигателя. При чрезмерном потреблении тока реле обесточивает стартер и останавливает двигатель.

Реле перегрузки

можно разделить на тепловые, или магнитные. Магнитные реле перегрузки реагируют только на превышение тока и не зависят от температуры.Как следует из названия, тепловое реле реле нагрузки зависит от повышения температуры окружающей среды и температур, вызванных током перегрузки, чтобы отключить механизм перегрузки.

Реле тепловой перегрузки можно подразделить на два типа: плавящиеся сплавы и биметаллические.

Тепловые агрегаты для плавления сплавов

Узел из плавящегося сплава, состоящий из нагревательного элемента и ванны для припоя, показан на рисунке 13-10. Ванночка для припоя удерживает храповик в одном положении.Чрезмерный ток двигателя проходит через нагревательный элемент и плавит припой из сплава. Поскольку храповое колесо может свободно вращаться в ванне расплава, оно размыкает набор нормально замкнутых контактов, находящихся в цепи управления стартером; это останавливает двигатель, рис. 13-11. Период охлаждения необходим для того, чтобы припой снова затвердел, прежде чем можно будет сбросить реле перегрузки и восстановить работу двигателя.

Тепловые агрегаты для плавления сплавов взаимозаменяемые

в состоянии.Они имеют цельную конструкцию, которая обеспечивает постоянное соединение нагревательного элемента и ванны с припоем. В результате это устройство может быть откалибровано на заводе, чтобы сделать его практически защищенным от несанкционированного доступа в полевых условиях. Эти важные функции невозможны с любым другим типом конструкции реле перегрузки. Для получения подходящего тока отключения для двигателей разных размеров доступен широкий выбор сменных тепловых блоков (нагревателей). Они обеспечивают точную защиту от перегрузки для двигателей с различными номинальными токами полной нагрузки.Тепловые агрегаты указаны в амперах и выбираются исходя из тока полной нагрузки двигателя. Для наиболее точного выбора нагревателя перегрузки производитель публикует ряд номинальных таблиц, привязанных к контроллеру, в котором указана перегрузка

. Используется реле

. Блоки легко устанавливаются в блок реле перегрузки и удерживаются на месте двумя винтами. Находясь последовательно с цепью двигателя, двигатель не будет работать без этих нагревательных элементов, установленных в пускателе.

Биметаллические реле перегрузки

Биметаллические реле перегрузки

разработаны специально для двух основных типов применения: автоматический сброс и биметаллическое реле.Функция автоматического сброса означает, что устройства могут быть установлены в местах, труднодоступных для операции ручного сброса, и могут быть установлены в автоматическое положение электриком.

В положении автоматического сброса контакты реле после срабатывания автоматически снова замыкаются после того, как реле остынет. Это преимущество, когда до кнопки сброса трудно дотянуться. Реле перегрузки с автоматическим сбросом обычно не рекомендуется использовать с устройствами автоматического (двухпроводного) управления.При такой схеме управления, когда контакты реле перегрузки снова замыкаются после отключения по перегрузке, двигатель перезапускается. Если причина перегрузки не будет устранена, реле перегрузки снова сработает. Это событие повторится. Вскоре двигатель сгорит из-за накопленного тепла от многократных сильных бросков тока и тока перегрузки. (Можно установить световой индикатор перегрузки или сигнализацию, чтобы привлечь внимание до того, как это произойдет.) Осторожно: Более важным моментом, который следует учитывать, является возможная опасность для персонала.Этот неожиданный перезапуск машины может привести к опасной ситуации для оператора или электрика, поскольку предпринимаются попытки выяснить, почему машина остановилась. NEG pro отключает эту более позднюю установку.

Большинство биметаллических реле можно настроить на срабатывание в диапазоне от 85 до 115 процентов номинального срабатывания нагревателя. Эта функция полезна, когда рекомендуемый размер нагревателя может привести к ненужному срабатыванию, в то время как следующий больший размер не даст адекватной защиты.Окружающие температуры влияют на термические реле перегрузки.

Это биметаллическое реле перегрузки с компенсацией внешней нагрузки рекомендуется для установок, когда двигатель находится при температуре окружающей среды, отличной от температуры пускателя двигателя. Если контроллер находится в условиях изменяющейся температуры, реле перегрузки можно настроить для компенсации этих изменений температуры. На это реле тепловой перегрузки всегда влияет окружающая температура. Если бы использовалось стандартное тепловое реле перегрузки, оно не срабатывало бы постоянно при одном и том же уровне тока двигателя при изменении температуры контроллера.

Отключение цепи управления в биметаллическом реле происходит из-за разницы в расширении двух разнородных металлов, сплавленных вместе. Движение происходит, если один из металлов расширяется больше, чем другой под воздействием тепла. Биметаллическая полоса AU-формы используется для калибровки реле этого типа, рис. 13-12. U-образная полоса и нагревательный элемент, вставленные в центр U-образной формы, компенсируют возможный неравномерный нагрев из-за различий в месте установки нагревательного элемента.Поскольку пускатель двигателя устанавливается последовательно с нагрузкой, перед пуском двигателя в реле перегрузки должен быть установлен нагревательный элемент (биметаллический и припой).

Магнитные реле перегрузки

Катушка магнитного реле перегрузки соединена последовательно с двигателем напрямую или косвенно через трансформаторы тока (как в цепях с большими двигателями). В результате катушка магнитного реле должна быть намотана достаточно большим по размеру проводом, чтобы пропускать ток двигателя.Эти реле перегрузки работают по силе тока, а не по нагреву.

Магнитные реле перегрузки используются, когда электрический контакт должен размыкаться или замыкаться, когда ток срабатывания повышается до определенного значения. В некоторых случаях реле может также использоваться для срабатывания при падении тока до определенного значения. Магнитные реле перегрузки используются для защиты обмоток больших двигателей от продолжительного перегрузки по току. Типичные применения: для остановки конвейера материала, когда конвейеры впереди становятся перегруженными, и для ограничения крутящего момента, отражаемого током двигателя.

Реле перегрузки с ограничением времени

Реле перегрузки с выдержкой времени

, рис. 13-13, используют принцип масляного дросселя. Ток двигателя, проходящий через катушку реле, оказывает магнитное воздействие на поршень. Магнитный поток, создаваемый внутри катушки, стремится поднять плунжер, который прикреплен к поршню, погруженному в масло. По мере увеличения тока в катушке реле увеличивается и магнитный поток. Сила тяжести преодолевается, и плунжер и поршень движутся вверх. Во время этого движения вверх масло проталкивается через перепускные отверстия в поршне.В результате задерживается срабатывание контактов. Диск клапана поворачивается для открытия или закрытия перепускных отверстий различных размеров в поршне. Это действие изменяет скорость потока масла и, таким образом, регулирует коэффициент задержки по времени. Скорость перемещения сердечника и поршня вверх напрямую зависит от степени перегрузки. Чем больше текущая нагрузка, тем быстрее движение вверх. По мере того как скорость движения вверх увеличивается, время отключения при укладке уменьшается.

Эта обратнозависимая характеристика предотвращает срабатывание реле при нормальном пусковом токе или при безвредных кратковременных перегрузках.В этих случаях линейный ток падает до нормального значения до того, как рабочая катушка сможет поднять сердечник и поршень достаточно далеко, чтобы сработать контакты управления перегрузкой. Однако, если перегрузка по току продолжается в течение длительного периода, сердечник вытягивается достаточно далеко, чтобы сработать контакты. По мере увеличения линейного тока время срабатывания реле уменьшается. Регулировка тока отключения достигается регулировкой сердечника плунжера относительно катушки реле перегрузки. Быстрое срабатывание достигается за счет использования легкого масла для дроссельной заслонки и регулировки отверстий для перепуска масла.

Клапан в поршне позволяет практически мгновенно перезапустить цепь для перезапуска двигателя. Затем ток должен быть уменьшен до очень низкого значения, прежде чем реле вернется в исходное состояние. Это действие выполняется автоматически, когда срабатывание реле отключает двигатель от сети. Магнитные реле перегрузки доступны либо с контактами автоматического сброса, либо с контактами ручного сброса.

Реле мгновенного срабатывания

Реле мгновенного отключения тока используются для отключения двигателя от сети, как только достигается заданная нагрузка.Например, когда блокировка материала на деревообрабатывающем станке вызывает внезапный высокий ток, реле мгновенного отключения может быстро отключить двигатель. После устранения причины блокировки двигатель может быть немедленно перезапущен, поскольку реле сбрасывается, как только устраняется перегрузка. Этот тип реле также используется на конвейерах для остановки двигателя до того, как произойдет механическая поломка в результате блокировки.

Реле мгновенного отключения тока не имеет характеристики с обратнозависимой выдержкой времени.Таким образом, его нельзя использовать в обычных приложениях, требующих реле перегрузки. Мгновенное реле тока отключения следует рассматривать как реле специального назначения.

Привод реле отключения на рисунке 13-14 состоит из соленоидной катушки, через которую протекает ток двигателя. Внутри катушки есть подвижный железный сердечник. Сверху на раме соленоида установлен прецизионный переключатель мгновенного действия, который имеет соединения для нормально разомкнутого или нормально замкнутого контакта.Ток двигателя оказывает магнитное притяжение вверх на железный сердечник. Однако обычно тяги недостаточно для подъема активной зоны. Если из-за перегрузки по току сердечник поднимается, прецизионный переключатель мгновенного действия срабатывает для отключения управляющего контакта реле.

Величину срабатывания реле можно установить в широком диапазоне номинальных значений тока, перемещая стержень плунжера вверх и вниз по резьбовому штоку. В результате положение сердечника в соленоиде изменяется.При опускании сердечника магнитный поток ослабляется, и для подъема сердечника и срабатывания реле требуется более высокий ток.

Количество реле перегрузки, необходимых для защиты двигателя

Национальный электротехнический кодекс требует наличия трех реле перегрузки для трехфазных пускателей на новых установках. Это помогает поддерживать сбалансированное напряжение питания для установок с многофазной нагрузкой.

Однофазная нагрузка в трехфазной цепи может вызвать серьезные несимметричные токи двигателя.Большой трехфазный двигатель на том же фидере с небольшим трехфазным двигателем может не быть защищен, если возникает однофазное состояние, рисунок 13-15.

Неисправный линейный предохранитель, обрыв цепи в автоматическом выключателе, ослабленный или обрыв провода в любом месте системы кабелепровода или провода двигателя могут привести к однофазной работе. Это будет проявляться как вялый, сильно работающий двигатель. Двигатель вообще не запускается, но при подаче напряжения издает отчетливый магнитный гул. Трехфазный двигатель может продолжать работать (с пониженным крутящим моментом) при однофазном режиме.Но после остановки он не перезапускается. Это также признак однофазного состояния в трехфазном двигателе.

Следует избегать несбалансированных однофазных нагрузок на трехфазных щитах. Проблемы могут возникать в распределительных системах, где один или несколько больших двигателей могут возвращать мощность на меньшие двигатели в условиях обрыва фазы.

МАГНИТНЫЙ СТАРТЕР ПЕРЕМЕННОГО ТОКА

Трехфазный магнитный пускатель переменного тока показан на рисунке 13-16 (A).Его также называют пускателем полного напряжения или пускателем от сети.

Кнопка сброса перегрузки видна внизу по центру фотографии. Обычной практикой является создание контроллеров двигателей с реле перегрузки с ручным сбросом. Это побуждает оператора машины устранить причину перегрузки. Это также обеспечивает хотя бы небольшой период охлаждения после отключения.

В реле над кнопкой сброса установлены три нагревательных элемента для работы в трех фазах.Контакты находятся под изолирующей крышкой блока дугового разряда, доступ к которым легко получить, сняв два винта. Стартер должен быть установлен в кожухе для установки. Другой тип трехфазного магнитного пускателя двигателя переменного тока показан на рисунке 13-16 (B).

Размеры стартера

Магнитные пускатели

доступны во многих размерах, как показано в Таблице 13-1. Каждому размеру соответствует номинальная мощность в лошадиных силах, которая применяется, когда двигатель, используемый со стартером, работает в нормальном пусковом режиме.Все параметры пускателя соответствуют требованиям Национальной ассоциации производителей электрооборудования

.

Стандарты. Емкость пускателя определяется размером его контактов и сечением проводов. Размер силовых контактов уменьшается, когда напряжение увеличивается вдвое, потому что ток уменьшается вдвое при той же мощности (P = I x E). Контакты силовой цепи управляют нагрузкой двигателя.

Трехполюсные пускатели используются с двигателями, работающими от трехфазной трехпроводной сети переменного тока.Для однофазных двигателей используются двухполюсные пускатели.

Число полюсов относится к силовым контактам или контактам нагрузки двигателя и не включает контакты управления для проводки цепи управления.

КОМБИНИРОВАННЫЕ СТАРТЕРЫ ПЕРЕМЕННОГО ТОКА

Автоматические выключатели и предохранители фидеров двигателя и параллельных цепей обычно выбираются для защиты от перегрузки по току, короткого замыкания или замыкания на землю.

За небольшими исключениями, Национальный электротехнический кодекс и некоторые местные нормы также требуют, чтобы у каждого двигателя были средства отключения.Это может быть колпачок и розетка соединительного шнура, предохранительный выключатель с разъединителем с плавким предохранителем, выключатель двигателя с плавким предохранителем или комбинированный пускатель. Комбинированный пускатель (рисунок 13-17) состоит из пускателя, подключенного к сети, и средства отключения, соединенных проводом вместе в общем корпусе. Комбинированные пускатели могут иметь ножевой разъединитель, плавкий или неплавкий, или термо-магнитный размыкающий выключатель.

ТАБЛИЦА 13-1 Размеры и номинальные параметры пускателя двигателя

РАЗМЕР NEMA

НАПРЯЖЕНИЕ НАГРУЗКИ

МАКСИМАЛЬНАЯ НОМИНАЛЬНАЯ МОЩНОСТЬ — РЕЖИМ ОТКЛЮЧЕНИЯ ОТ ПИТАНИЯ И НЕИСПРАВНОСТИ

Одноместный Поли-

Фаза Фаза

РАЗМЕР NEMA

НАПРЯЖЕНИЕ НАГРУЗКИ

МАКСИМАЛЬНАЯ НОМИНАЛЬНАЯ МОЩНОСТЬ — РЕЖИМ ОТКЛЮЧЕНИЯ ОТ ПИТАНИЯ И НЕИСПРАВНОСТИ

Одноместный Поли-

Фаза Фаза

ll5

112

.. .

ll5

7 112

200

. . .

1 112

200

. . .

25

00

230

1

1 112

3

230

15

30

380

.. .

1 112

380

50

460

. . .

2

460

50

575

. . .

2

575

50

ll5

1

.. .

200

40

200

. . .

3

230

50

0

230

2

3

4

380

75

380

.. .

5

460

100

460

. . .

5

575

100

575

5

ll5

2

.. .

200

75

200

. . .

7 112

230

100

1

230

3

7 112

5

380

150

380

.. .

10

460

200

460

. . .

10

575

200

575

10

ll5

3

.. .

200

230

150

* 1П

230

5

. . .

6

380

460

300

575

400

ll5

3

.. .

230

300

200

. . .

10

7

460

600

2

230

7 112

15

575

600

380

25

230

450

460

.. .

25

8

460

900

575

. . .

25

575

900

Таблицы взяты из стандартов NEMA.(* 1 3/4, имеется 10 л.с.)

Стартером можно управлять дистанционно с помощью кнопок или селекторных переключателей, или эти устройства могут быть установлены в крышке корпуса стартера. Комбинированный пускатель занимает мало места для монтажа и делает возможным компактный электромонтаж.

Комбинированный пускатель обеспечивает безопасность оператора, поскольку крышка корпуса сцепляется с внешней рукояткой разъединителя.Дверь не может быть открыта, пока средство отключения закрыто. Когда отключающее средство открыто, все части стартера доступны; однако опасность снижается, поскольку легкодоступные части пускателя не подключены к линии электропередачи. Эта функция безопасности недоступна для отдельно включенных пускателей. Кроме того, кожух стартера снабжен средством для блокировки разъединителя в положении ВЫКЛ. Корпуса контроллеров доступны для любых целей и приложений.

Защитные кожухи

Выбор и установка правильного корпуса может способствовать полезному, безопасному обслуживанию и избавлению от проблем при эксплуатации оборудования электромагнитного управления.

Корпус — это окружающий корпус контроллера, шкаф или коробка. Обычно это электрическое оборудование закрывается по одной или нескольким из следующих причин:

(A) Для защиты и защиты рабочих и другого персонала от случайного контакта с токоведущими частями, тем самым предотвращая поражение электрическим током.

(B) Для предотвращения контакта другого токопроводящего оборудования с электрическими частями, находящимися под напряжением, тем самым предотвращая ненужные отключения электроэнергии и косвенно защищая персонал от электрического контакта.

(C) Для защиты электрического контроллера от вредных атмосферных условий или условий окружающей среды, таких как наличие пыли или влаги, для предотвращения коррозии и нарушения работы.

(D) Для сдерживания электрической дуги переключения внутри корпуса, чтобы предотвратить взрывы и пожары, которые могут возникнуть из-за горючих газов или паров в помещении.

Вы можете легко понять, почему необходимо и необходимо какое-то ограждение. Наиболее частым требованиям обычно удовлетворяет шкаф общего назначения из листовой стали. Трубопровод заглушен контргайками и втулками. Присутствие пыли, влаги или взрывоопасных газов часто требует использования специального корпуса для защиты контроллера от коррозии или окружающего оборудования от возможных взрывов. Доступ к кабелепроводу осуществляется через резьбовые отверстия, ступицы или фланцы.При выборе и установке устройства управления необходимо тщательно учитывать условия, в которых устройство должно работать. Есть много применений, в которых корпус из листовой стали общего назначения не обеспечивает достаточной защиты.

Герметичные и пыленепроницаемые корпуса используются для защиты аппаратуры управления. Грязь, масло или чрезмерная влажность разрушают изоляцию и часто образуют токопроводящие дорожки, которые приводят к коротким замыканиям или заземленным цепям.

Специальные корпуса для взрывоопасных зон используются для защиты жизни и имущества. Взрывоопасные пары или пыль присутствуют в некоторых отделах многих промышленных предприятий, а также в зерновых продуктах

.

ватора, нефтеперерабатывающих и химических заводов. Национальные правила установки электрооборудования и местные нормы и правила описывают опасные зоны. Лаборатории страховщиков определили требования к защитным ограждениям в соответствии с опасными условиями. Национальная ассоциация производителей электрооборудования (NEMA) разработала стандартные корпуса, соответствующие этим требованиям.Вот некоторые примеры.

Кожухи общего назначения {NEMA 1) Эти кожухи изготовлены из листовой стали и предназначены, прежде всего, для предотвращения случайного контакта с токоведущими частями. Крышки имеют защелки с возможностью запирания навесным замком, рисунок 13-18. Кожухи предназначены для использования внутри помещений, в местах, где нет необычных условий эксплуатации. Они действительно обеспечивают защиту от легких брызг, пыли и падающих предметов, таких как грязь.

Водонепроницаемые кожухи {NEMA 4) Эти кожухи изготовлены из литой конструкции или из листового металла соответствующей жесткости и предназначены для прохождения испытания шланга без утечки воды.Водонепроницаемые кожухи подходят для использования вне помещений, в доках судов, на молочных заводах, пивоварнях и в других местах, где устройство подвергается воздействию капель или брызг жидкости, рис. 13-19. Корпуса, отвечающие требованиям более чем одного типа NEMA, могут быть обозначены комбинацией номеров типов, например, тип 3-4, пыленепроницаемый и водонепроницаемый.

Пылезащищенные кожухи {NEMA 12) Эти кожухи изготовлены из листовой стали и снабжены прокладками крышки для защиты от пыли, ворса, грязи, волокон и летучих материалов.Пыленепроницаемые кожухи подходят для использования на сталелитейных и трикотажных заводах, коксохимических заводах и подобных местах, где присутствует неопасная пыль. Монтаж осуществляется с помощью боковых фланцев или монтажных ножек.

Опасные зоны {NEMA 7} Кожухи класса 1 предназначены для использования во взрывоопасных зонах, где присутствуют или могут встречаться среды, содержащие бензин, нефть, нафту, спирт, ацетон или пары растворителей лака. Кожухи представляют собой тяжелые отлитые из серого чугуна, обработанные на станке для обеспечения уплотнения металл-металл, рис. 13-20.

ПРИМЕЧАНИЕ. Для определения безопасного способа установки необходимо проконсультироваться с применимыми и обязательными национальными, государственными или местными электротехническими правилами и постановлениями.

ВОПРОСЫ НА ОБЗОР

1. Что такое пускатель двигателя с магнитным линейным напряжением?

2. Сколько полюсов требуется на пускателях следующих двигателей: (a) однофазный асинхронный двигатель на 240 В, (b) трехфазный асинхронный двигатель на 440 В?

3.Если стартер двигателя установлен в соответствии с указаниями, но не запускается, что

— это частая причина отказа запуска?

4. Используя реле перегрузки с ограничением по времени или реле перегрузки приборной панели, как достигается следующее: характеристики выдержки времени; срабатывает регулировка тока?

5. Что означает вибрация переменного магнита?

6. Каково фазовое соотношение между потоком в главном полюсе магнита и потоком в заштрихованной части полюса?

7.В каких устройствах используется принцип заштрихованного полюса?

8. Что ищет электрик для устранения следующих состояний: громкое или шумное гудение; болтовня?

9. Какой тип защитного кожуха используется чаще всего?

10. Почему с пускателем двигателя устанавливается размыкающий предохранитель или автоматический выключатель?

11. Какие меры безопасности обеспечивает тип узла, указанный в вопросе 10, по сравнению с отдельными узлами стартера?

12.Перечислите возможные причины, по которым якорь не срабатывает после обесточивания магнитного пускателя.

13. Каким образом подбирается размер подогревателей перегрузки для конкретной установки?

14. Какой тип кожуха стартера двигателя рекомендуется для установки, требующей безопасной работы с внешним насосом для заправки горючей краской?

Выберите лучший ответ для каждого из следующих ответов.

15. Магнитный пускатель удерживается закрытым

а.механически

г. на 15% понижения напряжения

г. на 15% перенапряжения

г. магнитно

16. При обесточивании катушки пускателя двигателя

а. контакты остаются закрытыми

г. закрывается механически

г. открытые контакты силы тяжести и натяжения пружины

г. он должен остыть для перезапуска

17. Магнит переменного тока может чрезмерно гудеть из-за

а. неправильное выравнивание

г.посторонний предмет между контактными поверхностями

90 РАЗДЕЛ 2 ПУСКАТЕЛИ ДВИГАТЕЛЕЙ И ПИЛОТНЫЕ УСТРОЙСТВА

г. рыхлые ламинаты

г. все эти

18. Магниты переменного тока изготовлены из ламинированного железа

а. для лучшей индукции

г. для уменьшения теплового эффекта

г. для ac и de use

г. для предотвращения болтовни

19. Защита двигателя от перегрузки предназначена для защиты

а.двигатель от длительных сверхтоков

г. провод от высоких токов

г. двигатель от длительного перенапряжения

г. двигатель от коротких замыканий

20. Число полюсов магнитного пускателя относится к

.

а. количество силовых контактов нагрузки

г. количество управляющих контактов

г. число северных и южных полюсов

г. все эти

21. Двигатели могут перегореть из-за

а.чрезмерное тепло изнутри и снаружи

г. перегрузки

г. высокие температуры окружающей среды

г. плохая вентиляция

22. Назначение затеняющей катушки на наконечнике электромагнитного полюса переменного тока —

а. предотвратить перегрев катушки

г. ограничить ток отключения

г. ограничить ток закрытия

г. предотвратить болтовню

23. Ток, потребляемый двигателем, равен

.

а. низкий при старте

г.точное измерение нагрузки двигателя

г. неточное измерение нагрузки двигателя

г. ни один из этих

24. Реле тепловой перегрузки в зависимости от

а. повышение температуры окружающей среды и температуры из-за перегрузки по току

г. тяжелые механические нагрузки

г. большие электрические нагрузки

г. нарастающие пусковые токи

25. Выбран нагревательный элемент теплового реле

а. 15% ниже напряжения

г.10% перенапряжения

г. из таблицы производителя

г. по температуре окружающей среды

26. Когда кнопка сброса не восстанавливает цепь управления после перегрузки, вероятная причина —

а. нагреватель перегрузки слишком мал

г. расцепитель перегрузки недостаточно остыл

г. вспомогательные контакты неисправны

г. перегорел подогреватель перегрузки

27. Если оператор нажимает кнопку пуска на трехфазном асинхронном двигателе, и двигатель начинает гудеть, но не работает, вероятная неисправность —

а.один предохранитель перегорел и двигатель однофазный

г. отключение по перегрузке требует сброса

г. замкнут вспомогательный контакт

г. одна фаза заземлена

28. Комбинированный стартер обеспечивает

а. отключающее средство

г. защита от перегрузки

г. защита от короткого замыкания

г. все эти

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *