Запуск двигателя звезда треугольник схема: Как подключить электродвигатель в схему звезда-треугольник – СамЭлектрик.ру

Содержание

Пуск «Звезда — Треугольник»

Если асинхронный двигатель Вашего насоса (или другого механизма) запускается в режиме «
Звезда — треугольник«, то: 

— на первом этапе пуска обмотки двигателя, ротор которого еще неподвижен, коммутируются на питающую сеть таким образом, чтобы получить конфигурацию «Звезда»;
— затем, через небольшой временной интервал, автоматически производится переключение обмоток в конфигурацию «треугольник».

Это наиболее часто применяемый способ снижения пусковых токов. При пуске в положении «звезда», у двигателя, специально используемого для таких пусков, ток на треть ниже, чем при пуске путем прямого включения общепромышленного двигателя. Такой метод относительно дешев, прост и надежен.

Для механизмов с небольшим моментом инерции, например погружных насосов, пуск по методу «звезда-треугольник» не очень эффективен либо даже неэкономичен. Дело в том, что диаметр погружных насосов и их приводных электродвигателей невелик. Поэтому масса рабочего колеса насоса мала, вследствие чего мал и момент инерции. В результате погружным насосам для разгона от 0 до номинальной скорости об/мин. требуется не более пары десятков периодов напряжения сети. Это означает также, что насос при отключении конфигурации «

звезда» и перед переходом к «треугольнику» (переключении тока) очень быстро, практически сразу же, останавливается.
Сравнение пусковых токов, возникающих при прямом включении и при включении по методу «звезда-треугольник», на первом этапе показывает заметное уменьшение величины тока. При переключении со «звезды» на «треугольник» механизм быстро останавливается, ЭДС вращения исчезает и во второй раз должен запускаться напрямую.
Из диаграммы на рисунке видно, что на втором этапе значительного сокращения амплитуды пускового тока уже не происходит. Уменьшается лишь длительность этой перегрузки. Поэтому можно заключить, что пуск «Звезда-треугольник» неэффективен для механизмов с малыми моментами инерции.


Несколько иначе складывается ситуация у центробежных насосов, имеющих больший диаметр и большую массу и обладающих соответственно более продолжительным моментом инерции. У электродвигателей мощностью свыше 45 кВт можно, как правило, достигнуть значительного снижения второго пика тока. Следует отметить, что слишком долгая эксплуатация электродвигателя в режиме «треугольник» приводит к его перегреву (вспоминаем курс «Электрические машины» и «ТОЭ», циркуляцию паразитной третьей и кратных ей гармоник внутри «треугольника» никому еще отменить не удалось) и, следовательно, сокращает срок службы.

Установки, содержащие погружные насосы с электродвигателями, включаемыми по этому методу, часто бывают дороже, чем с общепромышленными, поскольку для электродвигателя требуется два соединительных кабеля (вместо обычно необходимого одного).


Плавный пуск электродвигателя.

Устройство для плавного пуска электродвигателя представляет собой электронный прибор, снижающий напряжение и соответственно пусковой ток путем фазового управления тиристорными или симисторными сборками, включаемыми последовательно со статорными обмотками. Электронный прибор УПП содержит регулировочный блок, где настраиваются различные эксплуатационные и защитные параметры, и силовой блок с встречно-параллельно включенными тиристорами/симисторами. С его помощью пусковой ток ограничивают, как правило, величиной, в 2–3 раза превышающей номинальный ток.  Наличие значительного момента инерции в процессе пуска может привести к увеличению теплообразования в электродвигателе и, тем самым, к снижению его срока службы.

Поэтому рекомендуется заменять схемы пуска «звезда-треугольник» на плавные электронные пускатели.

Тем более, что технически эта задача не представляет никакой сложности и асинхронный двигатель менять не нужно! При проведении такой замены,  рекомендуется соблюдать  в первую очередь «Правила облаштування електроустановок» приведенные здесь времена ускорения/ замедления для плавного пуска. В том случае, если требуется особенно высокий пусковой момент, пусковое напряжение можно повысить на 50%. Однако при нормальных условиях эксплуатации для электродвигателей, которыми оснащают насосы ведущие фирмы, этого не требуется .

При плавном пуске электродвигателя тиристорный силовой блок обеспечивает подачу тока несинусоидальной формы и создает высшие гармоники. В связи с очень коротким временем ускорения/торможения с практической точки зрения (и в нормах, касающихся высших гармоник) это не имеет продолжительного отрицательного влияния на питающую сеть. Однако может вносить помехи в работу контроллеров. Для исключения влияния помех желательна установка противопомеховых фильтров** на входе устройства плавного пуска.
Как показано, устройство плавного пуска рекомендуется устанавливать вместе с обходным контактором, чтобы электродвигатель в процессе эксплуатации работал в режиме прямого присоединения к питающей сети. Тем самым обеспечивается минимальный износ и потеря мощности в устройстве для плавного пуска.

 

 

** этому вопросу вскоре будет посвящен отдельный раздел, хотя вопрос сам по себе дискуссионный!

Схема переключателя звезда треугольник

Паспортные данные, приведенные на шильдике трехфазного асинхронного электродвигателя (АД) содержат все важные эксплуатационные технические данные машины, среди которых обязательно указывается и номинальный рабочий ток.

Два его значения, указанные через дробь означают потребляемый ток двигателя при схемах соединения его статорных обмоток: треугольником (имеет большее значение) и звездой.

Включение и пуск АД с обмотками, включенными по схеме треугольник сопровождается очень высокими пусковыми токами, которые могут быть причинами падения напряжения электросети, что, в свою очередь может вызвать различные неисправности электрооборудования, питаемого этой-же электросетью.

Для минимизации нагрузочных стартовых токов АД и во избежание подобных последствий представляется рациональным используемая для двигателей большой мощности практика пуска АД с соединением обмоток в звезду с последующим переключением на схему треугольник.

Схема звезда — треугольник

Данная схема реализована на релейно-контактной логике, в ее состав входят два магнитных пускателя К2, К3 и реле времени, совмещенное с контактором К1. Пуск АД производится при помощи магнитного пускателя К3, коммутирующего его обмотки в звезду.

Далее, по окончанию определенного промежутка времени, достаточного для выхода двигателя на номинальную частоту вращения и снижения пускового тока до номинального значения происходит срабатывание реле К1.

Как видно из схемы, сработка реле отключит разомкнет питающую цепь контактора К3 и замкнет цепь питания К2, коммутирующего обмотки АД в треугольник, вызвав его сработку. Таким образом, обмотки работающего двигателя окажутся включенными по схеме треугольник.

По сути, снижение пускового тока двигателя предложенным здесь способом реализуется включением его статорных обмоток при пуске на пониженное напряжение 220 В — звездой, с последующим переключением обмоток на рабочее напряжение 380 В — треугольником.

Обратите внимание, что данный способ снижения пусковых токов может быть использован для электродвигателей с вариантом рабочего напряжения 380/660 В (указывается на шильдике). Подключении обмоток АД, на табличке которого указано рабочее напряжение 220/380 В в треугольник вызовет его выход из строя.

Двигатель попросту сгорит, так как при подключении обмоток в треугольник окажется запитанным повышенным напряжением: его рабочее фазное фазное напряжение составляет 220 В, а линейное 380 В.

Переключение схемы обмоток может быть осуществлено не только управляющим сигналом реле времени. В качестве контролируемой величины может быть потребляемый ток; тогда вместо реле времени в схеме должно использоваться токовое реле.

  • Главная
  • Электрические схемы
  • Схема переключения звезда треугольник

Информация

Данный сайт создан исключительно в ознакомительных целях. Материалы ресурса носят справочный характер.

При цитировании материалов сайта активная гиперссылка на l220.ru обязательна.

Документ, определяющий правила устройства, регламентирующий принципы построения и требования как к отдельным системам, так и к их элементам, узлам и коммуникациям ЭУ, условиям размещения и монтажа.

ПТЭЭП

Требования и обязанности потребителей, ответственность за выполнение, требования к персоналу, осуществляющему эксплуатацию ЭУ, управление, ремонт, модернизацию, ввод в эксплуатацию ЭУ, подготовке персонала.

ПОТЭУ

Правила по охране труда при эксплуатации электроустановок — документ, созданный на основе недействующих в настоящее время Межотраслевых правил по охране труда (ПОТ Р М-016-2001, РД 153-34.0-03.150).

Необходимость применения данной схемы пуска асинхронного электродвигателя вызвана высокими пусковыми токами. Для снижения этих самых токов, применяется пуск звезда-треугольник. Фактически, запуск двигателя происходит по схеме «звезда», для которой в начальный момент токи низкие. По истечению времени, заданному на реле KT1, происходит переключение в схему «треугольник», в которой стартовые токи были бы больше.

Рисунок 1 – Схема пуска звезда-треугольник

Один из вариантов временной диаграммы реле KT1 для реализации вышеприведенной схемы:

Рисунок 2 – Временная диаграмма реле времени

Описание принципа работы пуска двигателя «звездой», с переходом на «треугольник»

После нажатия кнопки “Start” SB2, запитывается катушка контактора KM1, в результате чего, замыкаются силовые контакты KM1 и доп. контактом КМ1.1 реализуется самоподхват кнопки пуска. Так же подаётся напряжение на реле времени KТ1, и замыкается контактор KM3. Таким образом, происходит запуск двигателя по схеме «звезда». А по истечении времени реле t1 контакт KТ1.1 мгновенно разомкнётся, пройдет задержка времени t2 в 50 мс, и замкнется контакт KТ1.2. В следствии, сработает контактор KM2, который осуществляет переключение на «треугольник».

Контакты НЗ (нормально замкнутые) KM2.1 и KM3.1 существуют для предотвращения одновременного включения контакторов KM1 и KM2.

Чтобы защитить двигатель от перегрузки, в силовой цепи должно быть установлено тепловое реле. Как мы можем видеть на схеме, оно уже включено в автоматический выключатель, и в случае чрезмерной нагрузки, теплушка разомкнёт силовую цепь и цепь управления через контакт QF1.1.

Рисунок 3 — Наглядный пример соединения обмоток в звезду

Рисунок 4 — Наглядный пример соединения обмоток в треугольник

Если Вы нашли ошибку на нашем сайте, выделите текст и нажмите Ctrl+Enter

Запуск асинхронного электродвигателя по схеме «Звезда-треугольник» номиналом 30 кВт с использованием реле времени Finder 80.82

Практически любое производство в наши дни не обходится без мощного асинхронного электродвигателя. При запуске такого двигателя пусковой ток в 3-8 раз превышает значение номинального тока, необходимого для работы в нормально-устойчивом режиме.

Большой пусковой ток необходим для того, чтобы раскрутить ротор из состояния покоя. Для этого необходимо приложить гораздо больше усилий, чем для дальнейшего поддержания постоянного числа оборотов в заданный промежуток времени.

Значительные величины пусковых токов у асинхронных двигателей являются весьма нежелательным явлением, поскольку это может приводить к кратковременной нехватке энергии для другого подключенного к этой же сети оборудования (падению напряжения). Масса примеров такого влияния встречается как на производстве, так и в быту. Первое, что вспоминается — это «мигание» электрической лампочки при работе сварочного аппарата, но бывают случаи серьезнее: просадка напряжения может стать причиной бракованной партии товара на производстве, что ведет к большим финансовым и трудовым затратам. Большой пусковой ток также может вызвать ощутимые тепловые перегрузки обмотки электродвигателя, в результате чего происходит старение изоляции, ее повреждение и в конечном итоге может произойти сгорание двигателя.

Все это послужило мотивом для поиска решения по минимизации токов пуска. Одним из таких решений является метод запуска двигателя по схеме «звезда-треугольник». Для начала разберемся что же такое «звезда», а что — «треугольник», и чем они отличаются друг от друга. Звезда и треугольник являются самыми распространенными и применяемыми на практике схемами подключения трехфазных электродвигателей. При включении трехфазного электродвигателя «звездой» (см. Рисунок 1) концы обмоток статора соединяются вместе, соединение происходит в одной точке, называемой нулевой точкой или нейтралью. Трехфазное напряжение подается на начало обмоток.


Рисунок 1 — Схема подключения «звезда»

При соединении обмоток статора «звездой», соотношение между линейным и фазным напряжениями выражается формулой:


где Uл — напряжение между двумя фазами, Uф — напряжение между фазой и нейтральным проводом

Значения линейного и фазного токов совпадают, т. е. Iл = Iф.

При включении трехфазного электродвигателя по схеме «треугольник» (см. Рисунок 2) обмотки статора электродвигателя соединяются последовательно. Таким образом, конец одной обмотки соединяется с началом следующей, напряжение в этом случае подается на точки соединения обмоток. При соединеии обмоток статора «треугольником» напряжение на фазе равно линейному напряжению между двумя проводами: Uл = Uф.
Рисунок 2 — Схема подключения «треугольник»

Однако ток в линии (сети) больше, чем ток в фазе, что описывается формулой:


где Iл — линейный ток, Iф — фазный ток

Получается, что соединяя обмотки «звездой», мы уменьшаем линейный ток, чего изначально и добивались. Но есть и обратная сторона этой схемы: как мы видим из формулы, пусковой момент двигателя прямо пропорционален фазному напряжению:


где U — фазное напряжение обмотки статора, r1 — активное сопротивление фазы обмотки статора, r2 — приведенное значение активного сопротивления фазы обмотки ротора,
x1 — индуктивное сопротивление фазы обмотки статора, x2 — приведенное значение индуктивного сопротивления фазы обмотки неподвижного ротора,
m — количество фаз, p — число пар полюсов

Чтобы было нагляднее, давайте рассмотрим пример: предположим, что рабочей схемой обмотки асинхронного электродвигателя является «треугольник», а линейное напряжение питающей сети равно 380 В, сопротивление обмотки статора Z = 10 Ом. Если обмотки во время пуска подключены «звездой», то уменьшатся напряжение и ток в фазах:

Фазный ток равен линейному току и равен:

После того, как двигатель набрал необходимые обороты, т. е. разогнался, переключаем обмотки со «звезды» на «треугольник», в этом случае получаем совершенно другие значения тока и напряжения:

Соответственно, при пуске двигателя по схеме «звезда», фазное напряжение в √3 раз меньше линейного, а по схеме «треугольник» — они равны. Отсюда следует, что момент при пуске по схеме «звезда» в 3 раза меньше, а значит, запуская двигатель по этой схеме, мы не сможем добиться выхода двигателя на номинальную мощность. Решая одну проблему возникает вторая, не менее острая, чем повышенные пусковые токи. Но единое решение все-таки есть: необходимо скомбинировать схемы подключения двигателя так, чтобы при пуске мощного двигателя не было больших токов в сети, а после того, как двигатель выйдет на необходимые для его работы обороты, происходит переключение на схему «треугольник», что позволяет работать со 100% нагрузкой без каких-либо проблем.

С поставленной задачей прекрасно справляется реле времени Finder 80.82. При подаче питания на реле, мгновенно замыкается контакт, который отвечает за подключение по схеме «звезда». После заданного промежутка времени, на котором обороты двигателя достигают рабочей частоты, контакт схемы «звезда» размыкается и замыкается контакт, который отвечает за подключение по схеме «треугольник». Контакты останутся в таком положении до снятия питания с реле. Наглядная диаграмма работы данного реле представлена на Рисунке 3.


Рисунок 3 — Временная диаграмма реле времени 80.82

Рассмотрим более подробно реализацию данной схемы на практике. Она применима только для двигателей, у которых на шильдике указано «Δ/Y 380/660В». На Рисунке 4 представлена силовая часть схемы «звезда-треугольник», в которой используется три электромагнитных пускателя.


Рисунок 4 — Силовая часть схемы «звезда-треугольник»

Как было описано ранее, для управления переключением со схемы «звезда» на схему «треугольник» необходимо воспользоваться реле Finder 80.82. На Рисунке 5 представлена схема управления с помощью данного реле.


Рисунок 5 — Управление схемой «звезда-треугольник»

Разберем алгоритм работы данной схемы:

После нажатия кнопки S1.1, запитывается катушка пускателя КМ1, в результате чего, замыкаются силовые контакты КМ1 и при помощи дополнительного контакта КМ1.1 реализуется самоподхват пускателя. Одновременно подается напряжение на реле времени U1. Замыкаются контакты реле времени 17-18 и включается пускатель КМ2. Таким образом, происходит запуск двигателя по схеме «звезда». По истечении времени Т (см. Рисунок 3), контакт реле времени 17-18 мгновенно разомкнется, пройдет задержка времени Tu, и замкнется контакт 17-28. Вследствие чего, сработает пускатель КМ3, который осуществляет переключение на схему «треугольник». Нормально замкнутые контакты пускателей КМ2.2 и КМ3.2 используется для предотвращения одновременного включения пускателей КМ2 и КМ3. Чтобы защитить двигатель от перегрузки, в силовой цепи установлено тепловое реле КК1. В случае перегрузки, тепловое реле разомкнет силовую цепь и цепь управления через контакт КК1.1. Остановка двигателя происходит при нажатии кнопки S1.2, которая разрывает цепь самоподхвата и обесточит катушку пускателя КМ1.

Обобщая написанное, можно сделать вывод, что для облегчения пуска мощного электродвигателя, рекомендуется изначально запускать его по схеме «звезда», что позволяет значительно снизить пусковые токи, уменьшить просадку напряжения в сети, но не позволяет двигателю выйти на номинальный режим работы. Для выхода двигателя на номинальный режим необходимо осуществить переключение обмоток статора на схему «треугольник». Схема переключения обмоток со «звезды» в «треугольник» реализована с помощью реле времени Finder 80.82, в котором устанавливается время разгона электродвигателя.

    Список используемой литературы:
  1. ГОСТ 11828-86 «Определение вращающих моментов и пусковых токов».
  2. Вешеневский С. Н. Характеристики двигателей в электроприводе. // Издание 6-е, исправленное — Москва, Издательство «Энергия», 1977
  3. Войнаровский П. Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.) — СПб., 1890—1907

Запуск асинхронного двигателя способом «звезда-треугольник»

Огромное разнообразие электродвигателей, применяемых во всех сферах хозяйственного назначения, отличается огромным разнообразием: трехфазные и однофазные двигатели, тормозные и асинхронные двигатели, односкоростные и многоскоростные моторы, электродвигатели, собранные по спецзаказу и т.д. Любой вид двигателя отличается уникальными характеристиками, а также видами монтажа и охлаждения. Характеристики двигателя отвечают за его эксплуатационные свойства. Большое распространение получили электродвигатели асинхронного типа с короткозамкнутым ротором. Эти двигатели отличаются экономичностью и высокоэффективными моторами, которые отлично себя показали в работе в различных средах, при этом они отличаются низким шумовым порогом. Тем не менее, и асинхронные двигатели обладают некоторыми недостатками, которые связаны с высоким крутящим моментом и большими пусковыми значениями тока, возникающими во время прямого запуска двигателя от сетевого напряжения. Этими недостатками страдают многополюсные моторы, так как они отличаются высоким стартовым моментом, большим, чем, например, у пускового момента двухполюсного электродвигателя. Данные проблемы могут иметь несколько путей решения. Установка ЧП на электропривод оправдана тогда, когда он нуждается в регулировании частоты вращения вала. В иных случаях, когда имеется необходимость устранения недостатков связанных с запуском двигателя при помощи прямой подачи напряжения, необходимо применять приборы, обеспечивающие плавность пуска, которые способны регулировать фазовое напряжение сети, которое подается на двигатель. Есть мнение, что проблемы во время старта двигателя можно исключить обычным неаппаратным методом, пуском привода способом «звезда-треугольник», в данном контексте речь идет об электродвигателях, которые имеют соединение «треугольник» в нормальном режиме. Такой вид подключения осуществляется двумя этапами: во время старта обмотки электродвигателя контактируют с сетью по типу «звезда», а затем происходит переключение обмоток в автоматическом режиме на конфигурацию «треугольник». Это достаточно экономичный вид подключения, при этом очень простой, но в этом случае снижение пускового тока доходит до 70%, по сравнению с прямым пуском электродвигателя. Метод «звезда-треугольник» обладает рядом ограничений и недостатков, включая величину нагрузки приводного механизма. Во время небольших нагрузок этот способ включения допустим, но сильно нагруженные привода во время стартового момента не дают возможности в полной мере обеспечить разгон электродвигателя до скорости, которая гарантирует переключение обмоток на тип «треугольника». Время коммутации обмоток и масса двигателя также имеют большое значение. К примеру, маломощный погружной насос, который обладает незначительной массой рабочего колеса, момент коммутации очень мал для того, чтобы схема могла переключиться на конфигурацию «звезда-треугольник» и электродвигатель останавливается. Для того, чтобы включить двигатель вновь, требуется прямое его включение в сеть, что приводит к появлению начальной проблемы – высокого пускового тока. К существенным недостаткам конфигурации «звезда-треугольник» можно отнести появление пиковых нагрузок и токов в трансмиссии в период перехода обмоток к типу «звезда/треугольник». Иногда пиковые токи могут даже превысить величину пускового тока во время прямого подключения двигателя к сети.
< Предыдущая   Следующая >

Схема включения электродвигателя звезда треугольник

Главная страница » Электродвигатель асинхронный: схемы звезда треугольник

Электродвигатель асинхронный – электромеханическое оборудование, широко распространённое в различных сферах деятельности, а потому знакомое многим. Между тем, даже учитывая тесную связь асинхронного электродвигателя с народом, редкий «сам себе электрик» способен раскрыть всю подноготную этих приборов. Например, далеко не каждый «держатель пассатижей» может дать точный совет: как соединить обмотки электродвигателя «треугольником»? Или как ставить перемычки схемы соединения обмоток двигателя «звездой»? Попробуем раскрыть эти два простых и одновременно сложных вопроса.

Электродвигатель асинхронный: устройство

Как говаривал Антон Павлович Чехов:

Начать повторение темы электрических асинхронных двигателей логично детальным обзором конструкции. Двигатели стандартного исполнения построены на базе следующих конструктивных элементов:

  • алюминиевый корпус с элементами охлаждения и крепёжным шасси;
  • статор – три катушки, намотанные медным проводом на кольцевой основе внутри корпуса и размещённые противоположно одна другой под угловым радиусом 120º;
  • ротор – металлическая болванка, жёстко закреплённая на валу, вставляемая внутрь кольцевой основы статора;
  • подшипники упорные для вала ротора – передний и задний;
  • крышки корпуса – передняя и задняя, плюс крыльчатка для охлаждения;
  • БРНО – верхняя часть корпуса в виде небольшой прямоугольной ниши с крышкой, где размещается клеммник крепления выводов обмоток статора.

Структура мотора: 1 – БРНО, где размещается клеммник; 2 – вал ротора; 3 – часть общих статорных обмоток; 4 – крепёжное шасси; 5 – тело ротора; 6 – корпус алюминиевый с рёбрами охлаждения; 7 – крыльчатка пластиковая или алюминиевая

Вот, собственно, вся конструкция. Большая часть асинхронных электродвигателей являются прообразом именно такого исполнения. Правда, встречаются иногда экземпляры несколько иной конфигурации. Но это уже исключение из правил.

Обозначение и разводка статорных обмоток

Остаются в эксплуатации ещё достаточно большое число асинхронных электродвигателей, где обозначение статорных обмоток выполнено по устаревшему стандарту.

Таким стандартом предусматривалась маркировка символом «С» и добавлением к нему цифры — номера вывода обмотки, обозначающего её начало либо конец.

При этом цифры 1, 2, 3 – всегда относятся к началу, а цифры 4, 5, 6, соответственно, обозначают концы. Например, маркеры «С1» и «С4» обозначают начало и конец первой статорной обмотки.

Маркировка концевых частей проводников, выводимых на клеммник БРНО: А – устаревшее обозначение, но всё ещё встречающееся на практике; В – современное обозначение, традиционно присутствующее на маркерах проводников новых моторов

Современные стандарты изменили эту маркировку. Теперь отмеченные выше символы заменены другими, соответствующими международному образцу (U1, V1, W1 – начальные точки, U2, V2, W2 – концевые точки) и традиционно встречаются при работе с асинхронными движками нового поколения.

Проводники, исходящие от каждой из обмоток статора, выводятся в область клеммной коробки, что находится на корпусе электродвигателя и подключаются к индивидуальной клемме.

В общей сложности количество индивидуальных клемм равно числу выведенных начальных и конечных проводов общей намотки. Обычно это 6 проводников и такое же число клемм.

Таким выглядит клеммник движка стандартной конфигурации. Шесть выводов соединяются латунными (медными) перемычками перед подключением мотора под соответствующее напряжение

Между тем, встречаются также вариации развода проводников (редко и обычно на старых моторах), когда в область БРНО выведены 3 провода и присутствуют только 3 клеммы.

Как подключать «звезду» и «треугольник»?

Подключение асинхронного электродвигателя с выведенными на клеммную коробку шестью проводниками, выполняется стандартной методикой с помощью перемычек.

Размещая должным образом перемычки между индивидуальными клеммами, легко и просто установить необходимую схемную конфигурацию.

Так, чтобы создать интерфейс для подключения «звездой», следует начальные проводники обмоток (U1, V1, W1) оставить на индивидуальных клеммах одиночными, а клеммы концевых проводников (U2, V2, W3) соединить между собой перемычками.

Схема соединения «звезда». Отличается высокой потребностью линейного напряжения. Даёт плавный ход ротора в режиме запуска

Если же потребуется создать схему соединения «треугольник», вариант размещения перемычек изменяется. Для соединения статорных обмоток треугольником нужно соединить начальные и концевые проводники обмоток по следующей схеме:

  • начальная U1 – концевая W2
  • начальная V1 – концевая U2
  • начальная W1 – концевая V2

Схема соединения «треугольник». Отличительная черта – высокие пусковые токи. Поэтому зачастую моторы по этой схеме предварительно запускаются на «звезде» с последующим переводом в рабочий режим

Подключение для обеих схем, конечно же, предполагается в трёхфазную сеть с напряжением 380 вольт. Особой разницы при выборе того или иного схемного варианта нет.

Однако следует учитывать большую потребность в линейном напряжении для схемы «звезда». Эту разницу, собственно, показывает маркировка «220/380» на технической пластине моторов.

Вариант последовательного соединения «звезда-треугольник» в рабочем режиме видится оптимальным пусковым методом 3-фазного асинхронного электродвигателя переменного тока. Этот вариант часто используется для плавного пуска мотора при малых начальных токах.

Первоначально подключение организуется по схеме «звезды». Затем, через некоторый промежуток времени, моментальным переключением выполняется соединение на «треугольник».

Подключение с учётом технической информации

Каждый асинхронный электродвигатель обязательно оснащается металлической пластиной, которая закреплена на боковине корпуса.

Такая пластина является своего рода панелью-идентификатором оборудования. Здесь размещается вся необходимая информация, требуемая для корректной установки изделия в сеть переменного тока.

Техническая пластина на боковине корпуса движка. Здесь отмечаются все важные параметры, требуемые для обеспечения нормальной работы электродвигателя

Этими сведениями не следует пренебрегать, включая мотор в цепь питания электрическим током. Нарушения условий, отмеченных на информационной пластине – это всегда первые причины выхода моторов из строя.

Что указывается на технической пластине асинхронного электродвигателя?

  1. Тип мотора (в данном случае – асинхронный).
  2. Число фаз и рабочая частота (3Ф / 50 Гц).
  3. Схема включения обмоток и напряжение (треугольник/звезда, 220/380).
  4. Рабочий ток (на «треугольнике» / на «звезде»)
  5. Мощность и число оборотов (кВт / об. мин).
  6. КПД и COS φ (% / коэффициент).
  7. Режим и класс изоляции (S1 – S10 / А, В, F, H).
  8. Производитель и год выпуска.

Обращаясь к технической пластине, электрик уже предварительно знает на каких условиях допустимо включать мотор в сеть.

С точки зрения подключения «звездой» или «треугольником», как правило, существующая информация даёт электрику знать, что в сеть 220В корректно подключение «треугольником», а на линию 380В асинхронный электродвигатель следует включать «звездой».

Испытывать мотор либо эксплуатировать следует только при условии разводки через защитный автоматический выключатель. При этом внедряемый в цепь асинхронного электродвигателя автомат следует корректно подбирать по току отсечки.

Трёхфазный асинхронный электродвигатель в сети 220В

Теоретически и практически тоже, асинхронный электродвигатель, рассчитанный на подключение к сети через три фазы, может работать в однофазной сети 220В.

Как правило, этот вариант актуален лишь для моторов мощностью не выше 1,5 кВт. Объясняется сие ограничение банальным дефицитом ёмкости дополнительного конденсатора. На большие мощности требуется ёмкость под высокие напряжения, измеряемая сотнями мкФ.

Применяя конденсатор, можно организовать работу трёхфазного двигателя в сети 220 вольт. Однако при этом теряется практически половина полезной мощности. Уровень КПД снижается до 25-30%

Действительно, самый простой способ запуска трёхфазного асинхронного электродвигателя в однофазной сети 220-230В, это исполнение соединения через так называемый пусковой конденсатор.

То есть из трёх существующих клемм две объединяются в одну включением между ними конденсатора. Образованные таким образом две сетевых клеммы присоединяются к сети 220В.

Переключением сетевого провода на клеммах с подключенным конденсатором можно изменять направление вращения вала мотора.

Включением в трёхфазный клеммник конденсатора, схема подключения трансформируется в двухфазную. Но для чёткой работоспособности двигателя требуется мощный конденсатор

Номинальная ёмкость конденсатора рассчитывается по формулам:

Сзв = 2800 * I / U

C тр = 4800 * I / U

где: C – искомая ёмкость; I – пусковой ток; U – напряжение.

Однако простота требует жертв. Так и здесь. При подходе к решению задачи пуска с помощью конденсаторов отмечается существенная потеря мощности мотора.

Чтобы компенсировать потери, приходится изыскивать конденсатор большой ёмкости (50-100 мкФ) с рабочим напряжением не менее 400-450В. Но даже в этом случае удаётся набрать мощность не более 50% от номинала.

Поскольку подобные решения используются чаще всего для асинхронных электродвигателей, которые предполагается запускать и отключать с частой периодичностью, логично применять схему, несколько доработанную по сравнению с традиционным упрощённым вариантом.

Схема для организации работы в сети 220 вольт с учётом частых включений и отключений. Применение нескольких конденсаторов позволяет в какой-то степени компенсировать потери мощности

Минимум потерь мощности даёт схема включения «треугольником» в отличие от схемы «звезды». Собственно, на этот вариант указывает и техническая информация, что размещается на технических пластинах асинхронных движков.

Как правило, на бирке именно схема «треугольника» соответствует рабочему напряжению 220В. Поэтому на случай выбора способа соединения, прежде всего, следует взглянуть на табличку технических параметров.

Нестандартные клеммники БРНО

Изредка встречаются конструкции асинхронных электродвигателей, где БРНО содержит клеммник на 3 вывода. Для таких моторов применяется схема разводки внутреннего исполнения.

То есть, та же «звезда» либо «треугольник» схематично выстраиваются соединениями непосредственно в области расположения статорных обмоток, куда доступ затруднён.

Вид нестандартного клеммника, какие могут встречаться на практике. При такой разводке следует руководствоваться исключительно сведениями, указанными на технической пластине

Конфигурировать такие движки как-то иначе, в бытовых условиях не представляется возможным. Информация на технических табличках движков с нестандартными клеммниками обычно указывает схему внутреннего развода «звезда» и напряжение, при котором допустимо эксплуатировать электродвигатель асинхронного типа.

Видео включения мотора 380В на 220В

Видеороликом ниже демонстрируется, каким образом допустимо включить электрический двигатель с обмоткой под напряжение 380 вольт к сети с напряжением 220 вольт (бытовая сеть). Такая потребность — частое явление в бытовой практике.

Необходимость применения данной схемы пуска асинхронного электродвигателя вызвана высокими пусковыми токами. Для снижения этих самых токов, применяется пуск звезда-треугольник. Фактически, запуск двигателя происходит по схеме «звезда», для которой в начальный момент токи низкие. По истечению времени, заданному на реле KT1, происходит переключение в схему «треугольник», в которой стартовые токи были бы больше.

Рисунок 1 – Схема пуска звезда-треугольник

Один из вариантов временной диаграммы реле KT1 для реализации вышеприведенной схемы:

Рисунок 2 – Временная диаграмма реле времени

Описание принципа работы пуска двигателя «звездой», с переходом на «треугольник»

После нажатия кнопки “Start” SB2, запитывается катушка контактора KM1, в результате чего, замыкаются силовые контакты KM1 и доп. контактом КМ1.1 реализуется самоподхват кнопки пуска. Так же подаётся напряжение на реле времени KТ1, и замыкается контактор KM3. Таким образом, происходит запуск двигателя по схеме «звезда». А по истечении времени реле t1 контакт KТ1.1 мгновенно разомкнётся, пройдет задержка времени t2 в 50 мс, и замкнется контакт KТ1.2. В следствии, сработает контактор KM2, который осуществляет переключение на «треугольник».

Контакты НЗ (нормально замкнутые) KM2.1 и KM3.1 существуют для предотвращения одновременного включения контакторов KM1 и KM2.

Чтобы защитить двигатель от перегрузки, в силовой цепи должно быть установлено тепловое реле. Как мы можем видеть на схеме, оно уже включено в автоматический выключатель, и в случае чрезмерной нагрузки, теплушка разомкнёт силовую цепь и цепь управления через контакт QF1.1.

Рисунок 3 – Наглядный пример соединения обмоток в звезду

Рисунок 4 – Наглядный пример соединения обмоток в треугольник

Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник применяют для снижения пускового тока. Пусковой ток при запуске может превышать рабочий ток электродвигателя в 5-7 раз. У двигателей большой мощности пусковой ток бывает настолько велик, что может вызвать перегорание различных предохранителей, отключение автоматического выключателя и привести к значительному снижению напряжения. Уменьшение напряжения снижает накал ламп, уменьшает вращающий момент электродвигателей, может вызвать отключение контакторов и магнитных пускателей. Поэтому многие стремятся уменьшить пусковой ток. Это достигается несколькими способами, но все они в итоге сводятся к понижению напряжения в цепи статора электродвигателя на период пуска . Для этого в цепь статора на период пуска вводят реостат, дроссель, автотрансформатор, либо переключают обмотку со звезды в треугольник.


Действительно, перед пуском и в первый период пуска обмотки соединены в звезду, поэтому к каждой из них подводится напряжение, в 1,73 раза меньшее номинального, и, следовательно, ток будет значительно меньше, чем при включении обмоток на полное напряжение сети. В процессе пуска электродвигатель увеличивает частоту вращения и ток снижается. После этого обмотки переключают в треугольник.

Схема управления


Подключение оперативного напряжения, через контакт реле времени К1 и контакт К2, в цепи катушки контактора К3. Включение контактора К3, размыкает контакт К3 в цепи катушки контактора К2 (блокировка ошибочного включения), замыкается контакт К3, в цепи катушки контактора К1 совмещенного с пневматическим реле времени.

Включение контактора К1, замыкает контакт К1 в цепи катушки контактора К1 (самоподпитка), одновременно включается пневматическое реле времени, которое размыкает через определенное время свой контакт К1 в цепи катушки контактора К3, а также замыкает свой контакт К1 в цепи катушки контактора К2. Отключение контактора К3, замыкается контакт К3 в цепи катушки контактора К2. Включение контактора К2, размыкает контакт К2 в цепи катушки контактора К3 (блокировка ошибочного включения).

Схема питания


На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.

Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

Предупреждения

  1. Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят пусковой реостат.
  2. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, т. е. имеющие обмотки, рассчитанные на линейное напряжение сети.

Переключение с треугольника в звезду

Известно, что недогруженные электродвигатели работают с очень низким коэффициентом мощности cos§. Поэтому рекомендуется недогруженные электродвигатели заменять менее мощными. Если, однако, выполнить замену нельзя, а запас мощности велик, то не исключено повышение cos? переключением с треугольника в звезду. Нужно при этом измерить ток в цепи статора и убедиться в том, что он при соединении в звезду не превышает при нагрузке номинального тока, в противном случае электродвигатель перегреется.

Инструкции | Пуск звезда-треугольник трехфазного электродвигателя

Главная
Инструкции
Информация
Таблицы
Безопасность
Заземление
УЗО
Стандарты
Книги

Услуги
Контакты
Прайс

Загрузить
Сайты
Форум

При использвании электродвигателей больших мощностей с высокими пусковыми токами, для снижения пускового тока применяется схема управления электродвигателя «звезда-треугольник», в которой запуск происходит с низкими пусковыми токами «схема подключения звезда» и через определенное время переключение в нормальный режим работы «схема подключения треугольник». Рассмотрим эту схему подробнее.

Схема управления

Подключение оперативного напряжения, через контакт реле времени К1 и контакт К2, в цепи катушки контактора К3.
Включение контактора К3, размыкает контакт К3 в цепи катушки контактора К2 (блокировка ошибочного включения), замыкается контакт К3, в цепи катушки контактора К1 совмещенного с контактами реле времени.
Включение контактора К1, замыкает контакт К1 в цепи катушки контактора К1 (самоподпитка), одновременно включается реле времени, размыкает контакт реле времени К1 в цепи катушки контактора К3, замыкает контакт реле времени К1 в цепи катушки контактора К2.
Отключение контактора К3, замыкается контакт К3 в цепи катушки контактора К2.
Включение контактора К2, размыкает контакт К2 в цепи катушки контактора К3 (блокировка ошибочного включения).

Схема питания

Схема подключения ЗВЕЗДА
Включение контактора К3, замыкает силовые контакты К3, замыкаются концы обмоток на барно электродвигателя W2 U2 V2.
Включение контактора К1, замыкает силовые контаткы К1, подается питание на концы обмоток на барно электродвигателя U1 V1 W1.
Схема подключения ТРЕУГОЛЬНИК
Сработка реле времени, отключается контактор К3, включается контактор К2, замыкает силовыеконтакты К2, подается питание на концы обмоток на барно электродвигателя W2 U2 V2.

Схемы подключения электрических трехфазных двигателей к однофазной сети: Инструкция +Фото и Видео

На приусадебных или дачных участках использование электродвигателя не редкое явление,  основными характеристиками которого считается его мощность и напряжение сети, от которой он  работает. В основном все электрические двигатели осуществляют свою работу от трехфазной сети на 380 Вольт.

Если у вас имеется подведение трех фаз, то здесь проблем не возникнет. А вот как  подключить двигатель 380 на 220 В, если  однофазное подключение, т. е. подведение 2 проводов — нуля и фазы.

Для решения данного вопроса существуют различные схемы подключения.

Общие сведения

Заметка: При любом вторжении в устройство агрегата, появляется риск снижения качества  работы.

Выделяют следующие схемы:

  • звезда-треугольник;
  • с помощью конденсатора.

Как правило, подключение к однофазной сети выполняется с помощью схем звезда или треугольник.

Схема «треугольник»

Наиболее эффективная схема треугольник, т. к. выходная мощность в этом варианте будет  отличаться от трехфазного  на пятьдесят процентов. Многие отечественные электрические моторы уже имеют схему звезда, вам остается только  собрать треугольник, т. е. подключить три фазы и сделать звезду из 6 оставшихся обмоток.

Это  соединение отличается максимальной выработкой мощности двигателя. На больших  производствах ее используют крайне редко. Потому, что эта схема является сложной и в большом  производстве нет необходимости создавать такие трудные соединения. Для введения схемы в работу необходимо будет наличие трех пускателей.

Устройство схемы:
  • 1 пускатель подключают к источнику тока и к статору;
  • К свободным концам статора будут подключаться 2 и 3 пускатель;
  • Обмотки второго пускателя подключают к другим фазам, образовывая треугольник;
  • При подсоединении третьего пускателя к фазе, другие концы следует немного укоротить, тем самым делая схему звезда.

Важно: Не рекомендуется подключать одновременно 3 и 2 пускатели на магнитах, что может создать короткое замыкание и как следствие аварийное отключение автомата.

Для избежания таких ситуаций делают своеобразную электроблокировку. Суть работы которой  заключается в том, что когда включается один пускатель, происходит автоматическое выключение  второго, то есть размыкание цепи контактов.

Принцип работы
  • При запуске 1 пускателя, действием реле времени электрического двигателя включается
  • После этого происходит пуск двигателя по схеме звезда и начинается более мощная работа.
  • Через определенное время отключается 3 пускатель и включается  Теперь работа двигателя происходит по схеме треугольник с немного сниженной скоростью.
  • Если необходимо отключить питание, происходит включение 1 пускателя, затем схема  периодически повторяется.

Второй тип схемы

Электродвигатель имеет три выходящих провода. К одному подключают фазу питающего  провода, ко второму — ноль, а подключение третьего происходит к сети с помощью конденсатора. Направление движения электрического двигателя будет определяться проводом, с которым  соединен конденсатор. Для изменения направления вращательного элемента нужно просто  изменить подключение проводов.

Третьим показателем считается значение частоты вращения, которое будет равно номинальному.  Например, при подключении через трехфазную сеть вращение мотора составляет 1300 об. мин , то  при однофазном подключении значение вращения будет аналогичным.

О конденсаторах

Значение конденсатора в сети

Вполне возможно подключить трехфазный асинхронный мотор через однофазную сеть.  Движение вала будет производиться, но не с той силой как при трехфазном. В статоре происходит  накладывание электромагнитных полей трех обмоток, помимо того, что там происходит вращение  магнитного тока. Ими и определяется значение силы и крутящего момента вала.

В штатном режиме подключение через трехфазную сеть может быть осуществлено только одним из вариантов схем, т. е звезда или треугольник. Именно поэтому режим электросети подключенный по схеме треугольник допускает напряжение 380 как номинальное. В случае однофазного его  величиной будет 220 вольт. Эта величина будет ниже, чем в схеме треугольник и поэтому считается безопасным для электрического режима. Однако при уменьшении напряжения происходит  снижение таких показателей, как электрическая мощность и мощность вала движка.

Так одна из обмоток должна подсоединяться напрямую к электрической сети. Чтобы от  остальных обмоток была максимальная отдача, их нужно использовать совмещенно при  подключении с использованием конденсатора, который образует сдвиги фазы напряжения на них. И как результат мы получаем подключение как по схеме треугольник, но с однофазной цепью.

Также здесь не маленькое значение будет играть значение емкости конденсатора, т. к. им создается перемещение магнитного поля для вращения ротора.

 

На заметку: Движек с тремя фазами способен к перемещению максимального магнитного поля  до120гр. А с помощью конденсатора перемещение будет не более девяносто градусов.

Так при запускании движка может не хватить емкости конденсатора. Для увеличения пускового  момента необходимо увеличить его емкость. Но в процессе возможно, что эта добавленная емкость лишняя и при наименьшем значении работа проходила эффективнее. Поэтому для оптимизации  этих показателей лучше использовать 2 теплообменника. Один должен быть постоянно подключен к сети, а второй подсоединяется тогда, когда электрический двигатель запускается.

Еще одна особенность конденсатора при подключении к трехфазной сети это  его отношение к обмоткам, фазному и нулевому проводам. Его можно подключить или к нулевой фазе и обмотке  или к фазе и обмотке. В зависимости от того, какое подключение было использовано, зависит в  какую сторону вращается ротор. Так при добавлении в цепь всего одного переключателя, вы  можете управлять движением вала.

Такой параметр электросети, как индуктивность, также имеет отношение к фазовому сдвигу.  Индуктивность создается другим соотношением показателей напряжения и тока. Однако, если на  месте конденсатора будет подключен дроссель. То он будет способствовать значительному  уменьшению действия тока в пусковой обмотке, чем создастся слабое магнитное поле обмотками и запуск двигателя не состоится.

Поэтому конденсатор является единственным элементом пригодным для эффективного  перемещения магнитных полей статора в двигателе, подключенного к однофазной сети.

Виды конденсаторов

Для подключения электрических агрегатов 380 на 220 Вольт в основном используют  следующие бумажного типа конденсаторы с металлическим корпусом — МБГО, КБП, МБГП. Однако все эти виды очень габаритного размера и обладают небольшой емкостью.

Еще существует такой вид, как электролитические конденсаторы. Они имеют совершенно иную  схему подключения. Здесь добавлены, усложняющие схему элементы — диоды и резисторы. Если  диод выходит из строя, то появляется возможность взрыва конденсатора, т. е. в этот момент им  начинается перемещение тока с большой силой.

Есть и третий вид — конденсаторы СВВ. Они бывают круглые и пластинчатые. Обладают высокими  качествами, имеют большую емкость, по размеру не большие. Именно этот вид и рекомендуется специалистами использовать при подключении электро-двигателя 380 на 220.

Подключение двигателя звезда треугольник. Схемы подключения электродвигателя к электропитанию. Переключение с треугольника в звезду

Переключение двигателя со звезды на треугольник применяют для защиты электрических цепей от перегрузок. В основном переключают со звезды на треугольник мощные трехфазные асинхронные двигатели от 30-50 кВт, и высокооборотные ~3000 об/мин, иногда 1500 об/мин.

Известно, что в момент запуска электродвигателя его ток увеличивается до 7 раз. Асинхронный двигатель с короткозамкнутым ротором напоминает трансформатор с замкнутой накоротко вторичной обмоткой.

Если двигатель соединен в звезду то на каждую его обмотку подается напряжение 220 Вольт, а если двигатель соединен в треугольник, то на каждую его обмотку приходиться напряжение 380 Вольт. Здесь в действие вступает закон Ома «I=U/R» чем выше напряжение, тем выше ток, а сопротивление не изменяется.

Проще говоря, при подключении в треугольник (380) ток будет выше, чем при подключении в звезду(220).

Когда электродвигатель разгоняется и набирает полные обороты, картина полностью меняется. Дело в том что двигатель имеет мощность которая не зависит от того подключен он в звезду или на треугольник. Мощность двигателя зависит в большей степени от железа и сечения провода. Здесь действует другой закон электротехники «W=I*U»

Мощность равна сила тока, умноженная на напряжение, то есть чем выше напряжение, тем ниже ток. При подключении в треугольник(380), ток будет ниже, чем в звезду (220).

Прейдем к практике

В двигателе концы обмоток выведены на «клеммник» таким образом что в зависимости от того каким образом поставить перемычки получится подключение в звезду или в треугольник как это показано на рисунке. Такая схема обычно на рисована на крышке.

Для того чтобы производить переключения со звезды на треугольник, мы вместо перемычек будем использовать контакты магнитных пускателей.

Рассмотрим схему силовую часть, показана жирными линиями.

Комментарии и отзывы

Звезда-Треугольник : 133 комментария

  1. Grumm

    Ошибка с треугольником!
    Но это ладно…
    Как осуществляется (настраивается) фазировка?

  2. Электрик

    Содержимое статьи не соответствует действительности.
    При переключении двигателя с звезды на треугольник соответственно изменится напряжение питания с 380/220 на 220/127.
    Двигатель включенный треугольником включается на напряжение 220/127 В.
    Если его включить на 380/220 он сгорит.

    1. Roman

      Речь идет о двигателе 380/660 Y/A. Вы не правы.

      1. Roman

        Перепутал – правильно: 380/660 A/Y

  3. admin Автор записи

    По схеме двигатель будет вращаться в одну сторону, если поменять местами фазы на пускателе P1 то вращение двигателя изменится. Самое главное в этой схеме не перепутать подключение магнитного пускателя P2 его контакты выполняют функции ПЕРЕМЫЧЕК для подключения в ТРЕУГОЛЬНИК.

  4. admin Автор записи

    Содержимое статьи вполне соответствует действительности. При подключении двигателя в треугольник на каждую обмотку подается напряжение 380 Вольт, А если при этом подключить двигатель в звезду то на каждую обмотку подастся напряжение 220 Вольт. По схеме мы временно на 10-15 секунд подаем пониженное напряжение 220В, чтобы снизить пусковой ток и уменьшить рывок двигателя в момент запуска. После этого двигатель включается в нормальный режим работы.

  5. admin Автор записи

    Да стоит указать что напряжение двигателя должно соответствовать напряжению сети, при таком напряжении он должен работать подключенным в треугольник.

    Кстати эту схему я подсмотрел на японском оборудовании.

  6. admin Автор записи

    Электрик, откуда ты взял 220/127. Если напряжение сети 380/220, то это значит когда двигатель включается в треугольник каждая его обмотка работает на 380 вольт, а когда двигатель включен в звезду то на обмотки подается 220 вольт.

  7. Евгений

    Ребята,подобная схема уже используется на практике. Называется”теплый пуск” в насосных
    станциях и т.п.в высотном строительстве.

    1. Евгений

      Простите, какой пуск? теплый?А почему не горячий?Данный способ пуска называется “комбинированный” в насосных станциях. Есть пуск “прямой” (звезда либо треугольник).
      Однако более часто нынче встречается в высотном строительстве (при использовании станций Хоз.пит. водоснабжения-и это важно) пуск частотный либо частотно-сетевой.
      Теперь о сабже. Данный пуск звезда-треугольник обеспечивает более плавный разгон на мощных двигателях, для минимизации просадки сети.
      Однако, как все знают, при звезде мы имеем “недобор” по мощности.
      Не фатально при переходе. На треугольнике максимум мощности. Кстати данный способ используют при использовании мощных насосов станций пожаротушения.
      Единственное, что в схеме не соответствует действительности (практике)-это подключение в самой клеммной коробке двигат
      еля.
      Пример-насосы Грундфосс. Соединение очень простое- U1-W2. V1-U2. W1-V2

      1. Александр

        Не недобор по мощности, а по крутящему моменту. Момент двигателя зависит от квадрата напряжения и при включении в треугольник момент почти в 3 раза выше. Схему звезды при запуске двигателя используют для уменьшения пусковых токов.

  8. Дмитрий

    Схема абсолютно правильная, и все правильно описано.

  9. Мегавольт

    Никто не заметил, что реле РТ и Р3 подключены минуя кнопку “Пуск” ?
    Они сработают как только Вы подсоедините схему в сеть.

  10. admin Автор записи

    Мегавольт, Вы правы спасибо за замечание. Их нужно подключать по другую сторону кнопки пуск или через дополнительный нормально разомкнутый контакт Р1

  11. admin Автор записи

    Схема исправлена. Если кликнуть по схеме можно увидеть старую схему.

    На схеме В верху с лева пунктирными линиями показана возможность подключения катушек пускателя и реле времени на 220 и 380 Вольт. Этот общий провод подключается к фазе 380 вольт, либо к нулю 220В. Одновременно подключать по пунктирной линии и на фазу и на ноль не желательно может получится “коротыш”.

  12. Михаил

    Спасибо за схему. Пожалуйста, если есть возможность, дайте схему когда катушки пускателей рассчитаны на разное напряжение Например Р2 на 220В а Р3 на 380В Кнопка СТОП в этом случае почему то не работает Спасибо.

  13. admin Автор записи

    Если катушки пускателей на разное напряжение, то вместо соединения с общим проводом, катушки на 220В соединяют с нулем, а катушки на 380В с фазой. Остальная схема без изменений.

  14. Михаил

    Кнопка Стоп в таком варианте не работает. Установил двух контактную кнопку Стоп. Разрываю две фазы.

  15. admin Автор записи

    А эта кнопка точно две фазы размыкает. У нас стоят кнопки двух-контактные один контакт размыкает цепь, другой замыкает, включая сигнальные лампочки.
    Как не работает, не включает или не выключает.

  16. Полное сопротивление

    Благодорю admina за краткое, правильное, объяснение принципа действия этой схемы!!!

  17. Баха

    Есть пускатели вмести с реле временним.сними легко соеденят

  18. Евгений
  19. admin Автор записи

    Евгений, закон Ома справедлив для активной нагрузки.
    Закон ома сохраняется, только на вращающемся двигателе, помимо активного сопротивления обмоток появляется индуктивное сопротивление. А индуктивная нагрузка при повышении напряжения увеличивается индуктивное сопротивление, соответственно ток снижается

    Да, для надежной работы схемы следует брать двигатель 660/380, если напряжение в сети 380/220

  20. Памир

    Почему никого не смутило заявление, что “При подключении в треугольник(380), ток будет ниже, чем в звезду (220)”, прямо противоречащее написанному несколькими абзацами выше.
    С какого перепуга, спрашивается, мощности в звезде и в треугольнике равны, смысл тогда переключаться на треугольник если и в звезде двигатель будет работать на номинальной мощности?
    admin, индуктивное(реактивное)сопротивление зависит только от частоты и никак от напряжения. И закон Ома в этом случае тоже работает, чем больше напряжение тем больше ток.

  21. admin Автор записи

    Схема, снижает пусковой ток, двигатель включается, на короткое время, на время запуска в звезду. Также снижается рывок который делает двигатель при запуске, особенно это актуально если двигатель под нагрузкой.
    А в треугольнике меньше ток больше мощность, при работающем двигателе.

    Мощность двигателя не зависит от того включен двигатель в звезду или в треугольник. Мощность двигателя зависит в большей степени от нагрузки

  22. Памир

    Мощность которую может развить двигатель, написана на шильдике, и она определяется параметрами двигателя и способом подключения, а от нагрузки зависит лишь потребляемая в данный момент мощность и она не может превысить заявленную.
    При подключении в звезду к обмоткам двигателя прикладывается меньшее напряжение(не линейное 380 а фазное 220), соответственно и меньший пусковой и рабочий ток(закон Ома). Отсюда понятно что в звезде мощность которую способен развить двигатель будет меньше номинальной.
    Admin, вы путаете источники(генераторы, трансформаторы) с нагрузкой. Это для генератора или трансформатора мощность будет одинакова при любом типе подключения, а фазный ток в треугольнике меньше чем в звезде. Для нагрузки, типа двигателя, все будет так как я описал выше.

    1. Евгений

      “если посмотреть в телескоп”… аеще лучше, на Шильду движка, то можно увидеть …что? праааавильно.. ответы на вопросы… и написаны они в виде In=…
      Пример- P=1.5 кВт. тогда I(380)=1500/380*1.732=2.3 (Упрощенно, без коэф-тов)
      Для I(220)=1500/220=6.8.
      Закон Ома-это здорово. U=IхR. Упрощенно, Напряжение прямо пропорционально току.
      Соответственно мощность прямо пропорциональна…напряжению…и току….Вывод- меньше напряжение (или ток, что пропорционально) на обмотке- меньше мощность.И тут возникает суть… НЕ ПЕРЕГРУЖАЕМ СЕТЬ. НО в моще теряем.
      Ну и, как следствие, вопрос заказчика “а почему паспортные данные 3 куба в час, а это г**но перекачивает всего 1 куб?”

  23. Костантин

    переключение со звезды на треугольник обеспечивает плавный пуск.при нажатии на кнопку пуск обмотки включаются в звезду(для нашего напряжения 380\220)а в звезде он работает на 660,после определенного времени обмотки переключаются на треугольник и уже работает на номинальном напряжении в 380 вольт.

  24. ЕВген

    Двигатель АИР132 М2 11 Kw/3000 об. Можно ли подключить такой двигатель звезда-треугольник?

  25. admin Автор записи

    ЕВген, да если он 660/380

  26. Дмитрий

    Добрый день!
    Я начинающий, помогите разобраться вот с этим: “Если двигатель соединен в звезду то на каждую его обмотку подается напряжение 220 Вольт, а если двигатель соединен в треугольник, то на каждую его обмотку приходиться напряжение 380 Вольт.”
    Как я слышал, то подключением обмоток «на звезду» – 380 В, а «треугольник» – на 220 В.
    Может я чего не правильно понял, или опечатка в статье?

  27. admin Автор записи

    Дмитрий, Все правильно в статье написано про напряжение на обмотках двигателя. Вы слышали про межфазное напряжение в сети.
    Если между фазами в сети 380В и двигатель подключен “в звезду”, то на каждую обмотку двигателя будет подано напряжение 220В.

    Берем двигатель 660/380, в таком двигателе каждая обмотка рассчитана на 380Вольт, то есть надо подключать в треугольник.
    А мы в момент запуска подключаем в звезду, подаем на обмотки пониженное напряжение 220В. Соответственно пусковой ток будет меньше.
    А когда двигатель разгонится переключаем его в треугольник.

  28. виталя
  29. admin Автор записи
  30. Юрий

    Интересно читать.
    Переключение со звезды на треугольник используется а) для снижения пусковых токов; б) для увеличения коэффициента мощности электродвигателя и его степени загрузки. В первом случае, для сети 380/220 В, необходимо брать электродвигатель у которого на паспорте написано напряжение 660/380 В. Во втором случае, момент на валу двигателя, кроме сказанного, не должен превышать 30%. Что касается схемы то ее надо юыло приводить в соответствии с ГОСТом на обозначения, а так приведена смесь действующих и давно не используемых обозначений.

  31. vik

    Здравствуйте всем! Скажу сразу – для меня понятия фазный и линейный ток трудноуловимы. Вообщем буду благодарен тому, кто объяснит годится ли данная схема для (и какие у меня есть варианты)подключения электродвигателя АИР90L2У3(3квт.,прим. 3000 об., 380v.). Сеть трехфазная – в дом входит четыре провода. На щитке нейтраль соединена с контуром заземления.
    Заранее спасибо.

  32. vik

    Предупреждая вопросы, касательно 220/380 и 380/660 сразу скажу – на шильде написано просто 380v.(без дробей)

  33. admin Автор записи

    vik, двигатель маломощный его можно подключать и без этой схемы.
    Просто через один пускатель и кнопки пуск стоп.

  34. vik

    спасибо, там под крышкой три провода, это значит только звезда? Мне еще нужен реверс.

  35. admin Автор записи

    vik, Если под крышкой три провода значит звезда.
    Для реверса нужно две фазы поменять местами. Ставят два пускателя с блокировкой одновременного включения (обязательно электрической и дополнительно механической).

    Сейчас готовится статья со схемами про подключение двигателей, скоро появится на сайте.

  36. vik

    admin, подскажите пожалуйста, подойдет ли для моего двигателя(и насколько оно необходимо) тепловое реле ТРН-10У3?
    Спасибо.

  37. admin Автор записи

    vik, Какой марки тепловое реле не важно, главное на какой ток.
    Если на двигатель ставится отдельный автомат, то особой нужды в тепловом реле нет, так как в автомате уже есть тепловая защита.
    Но защита лишней не бывает по этому лучше поставить тепловое реле.

  38. vik

    А как узнать на какой оно ток? Там с одной стороны контакта выбита марка(ТРН-10У3), с другой цифра 10.
    Или ток регулируется плавным регулятором?
    Спасибо.

    1. admin Автор записи

      Наверно он на 10 ампер. Регулятором можно плавно подобрать ток. Попробуй поставь будет часто срабатывать значит не подойдет.

  39. vik

    У меня реверсивный МП с тремя нормально разомкнутыми контактами и одним нормально замкнутым. Не понимаю, как его подключить. Если нормально замкнутые контакты использовать для блокировки(для дублирования механической), тогда как зафиксировать три силовых? Получается, если отпустить кнопку “пуск”, двигатель перестанет вращаться, так?

  40. admin Автор записи

    vik, маловато контактов должно быть четыре нормально разомкнутых и один нормально замкнутый контакты.

    Через нормально замкнутый контакт подключается катушка второго пускателя, для блокировки.

    Один нормально разомкнутый контакт используется для блокировки кнопки “Пуск”, и три силовых контакта.

    На пускатели нужно поставить дополнительные контакты.

  41. vik

    admin, спасибо за помощь. Контакты добавить не получится. Вижу решение в следующем: основную секцию пускателя переделать на четыре нормально разомкнутых, реверс осуществлять удерживанием кнопки(мои нужды это вполне закрывает). Блокировка остается только механическая. Насколько это критично?
    Еще раз спасибо.

  42. vik

    Да, еще же остается пара нормально замкнутых контактов на втором пускателе. Она же принесет пользу, если будет размыкать главную секцию при удерживании кнопки реверса?

  43. vik

    И еще вопрос: с одной стороны где то было, что с точки зрения техники безопастности лучше изолировать двигатель от металлической конструкции, а в схеме нейтраль заземляется на металлический корпус, в котором собрана. Как целесообразнее?
    Спасибо.

  44. admin Автор записи

    vik, механическая блокировка не очень надежна, со временем может сломаться и ее придется удалить. Ну если другого выхода нет можно и так.

    Не было такого никогда, чтобы изолировать двигатель от металлической конструкции. Эту конструкцию и сам двигатель нужно заземлить.
    Нейтраль заземляется на металлический корпус как раз для безопасности. В случае пробоя изоляции на корпус, произойдет короткое замыкание и автомат отключит двигатель.

  45. vik

    admin, огромное спасибо за помощь.
    Устройство, которое я пытаюсь собрать – садовый измельчитель. 99% времени двигатель будет работать в одном направлении. Реверс будет включаться лишь в случае, если измельчаемую массу намотает на режущий узел, поэтому удерживаемая кнопка будет даже предпочтительней.
    Не думаю, что это устройсто(если оно получится)кто то будет использовать еще кроме меня. Ну а я постараюсь воздерживаться от одновременного нажатия двух кнопок, поэтому есть надежда, что нагрузка на механическую блокировку будет не очень ударная.
    Еще раз спасибо.

  46. Андрей

    ЗДРАВСТВУЙТЕ,ХОЧУ УЗНАТЬ,ПОДОЙДЕТ ЭТА СХЕМА В МОЕМ СЛУЧАЕ:АСИНХРОННЫЙ ДВИГАТЕЛЬ 130 KW.,ПУСКАТЕЛИ 5 ВЕЛ.,”ХЛОПУШКИ”,ДУМАЮ ВЫДЕРЖАТ.

  47. admin Автор записи

    Андрей, да если по напряжению подходит.

  48. Запутался полностью…

    На всех сайтах по разному. Есть двигатель(вакуумный, водяное охлаждение), на шильдике 380 вольт, 5,5 КВт. Клемник на неём соединён в треугольник.
    http://s018.radikal.ru/i516/1203/44/1f6335630318.jpg

    Если я подключу 380 это будет правильно, или правильно будет переключить клеммы на звезду?

    Заранее спасибо!

  49. admin Автор записи

    Обычно, пишут 380/220 или 660/380. Если написано только 380 то правильно подключать в звезду.

    В звезду безопаснее можно попробовать подключить посмотреть как будет работать, будет ли выдавать нужную мощность, замерить ток.
    Если что-то не так можно будет переключить в треугольник.

  50. vik

    2admin:
    Добрый день, хочу подключить вот это устройство для защиты от пропадания фазы:
    http://www.kriwan.com/en/Protection_and_Controls-Products–25,productID__182.htm
    Непонятно то, что контакты, разрывающие цепь(М2,М1) не звоняться. Это нормально? Возможно они замкнуться когда подастся напряжение?
    Спасибо.

  51. admin Автор записи

    vik, наверно контакты разомкнуты, если подать напряжение то они должны замкнуться.
    Оно же должно отключаться при пропадании хотя бы одной фазы, а здесь всех трех фаз нет.

  52. vik

    Логично, спасибо.

  53. Слава

    А такой вопрос. Асинхронный двигатель подключённый звездой(три вывода), нужно подключить в однофазную сеть, существует схема запуска с сопротивлением или ёмкостью, причём ёмкость пусковая и рабочая, или только пусковая или только рабочая. Если ёмкость только рабочая двигатель с кнопки запустится или нет? Если в пуске использовать нихром, то двигатель запустился и сопротивление отбрасывается. Вопрос можно ли в одной схеме использовать нихром для разгона, а ёмкость(рабочую) для увеличения мощности двигателя в работе? Если да, то какова схема? Надеюсь не сильно запутал. Зараннее большое спасибо!

  54. admin Автор записи
  55. Слава

    admin
    Спасибо, буду пробовать, но двигатель разбирать не хочу, чтобы добавить четвертый провод.

  56. vik

    2admin:
    добрый день, купил на рынке б/у трехфазный электродвигатель как 1.5 квт(на шильдике неразборчиво), залез в интернет, и похоже он 0.75квт. Собирался применить его в устройстве, где стоял 1.1 квт однофазный. Насколько критична разница и что можно придумать? Может подключить его в треугольник?
    Спасибо большое заранее.

  57. vik

    2admin:
    По прежнему жду вашего ответа…

  58. admin Автор записи

    vik, ну если уже купил то ставь разница не очень критична. Он просто будет выдавать меньше мощности.
    Например, если поставить его на насос то двигатель 0.75кВт будет перекачивать меньший объем воды за единицу времени чем двигатель на 1.5 кВт. И будет сильнее греться.
    Подключать в треугольник не стоит он может сгореть.

  59. vik
  60. vik

    2admin:
    Христос воскресе!
    Заранее извиняюсь, что беспокою в такой день – надо ли при подключении в звезду соединять общую точку с корпусом двигателя или только нейтраль?

  61. admin Автор записи

    vik, при подключении в звезду общую точку можно вообще не соединять ни с чем. А ноль соединить с корпусом двигателя, а в другом месте двигатель еще соединяется с заземлением. У нас обычно так делают.
    Если есть желание можно и среднюю точку соединить с корпусом.

  62. vik

    Благодарю.

  63. Dimon

    Добрый день!щас заканчиваю универ, у меня спец вопрос в дипломе, регулирование асинхронных двигателей путем смены схем соединения обмотки со звезы на триугольник,необходимо посчитать потери при различной нагрузке и схемы соединении. двигатель 4а315s6 110квт,380/660.может кто поможет???

  64. admin Автор записи

    Dimon, двигатель включается в звезду только при запуске всего на несколько секунд. Потом он переключается в треугольник.

    Даже интересно стало, что если двигатель при низкой нагрузке переключать в звезду, а при увеличении нагрузки в треугольник.
    Может ли это сократить потери.
    Думаю нет, иначе такие бы схемы применяли повсеместно.

  65. PASS

    подскажите пожалуста если трех фазный двигатель 220в подключить на 380в он несгорит? и как это правильно сделать
    admin пишет:
    31 Янв 2012 в 20:08

    виталя, Такой двигатель нужно подключать только в звезду, а при подключении в треугольник он сгорит.

    Оборжался!!! Он сгорит в любом случае! Админ, ты где учился?!
    Трехфазное напряжение 380V(линейное!) и трехфазное напряжение 220V(линейное!) – это разные величины!!!
    Трехфазные моторы 220V проще подключать через преобразователь. Самый простой – трехфазный мотор, включенный в однофазную сеть 220V.

    1. Евгений

      Извините, а где вы видели 220В трехфазные?)В доме? Пардон, межфазка 380 при линейке 220…
      Не, ну если 127 В рассматривать линейные, тогда даааа.
      Так что, Админ не настолько неправ, насколько не спросил полные параметры. Что имел ввиду Виталя? 220/380 ? Или 127/220 ?

      1. admin Автор записи

        Евгений,
        Линейное напряжение это напряжение между фазами. А Фазное напряжение это напряжение между фазой и нолем.
        Хотя я согласен надо уточнить что это за двигатель.

        И еще часто бывает что у двигателя всего три вывода в звезду или треугольник он спаян внутри. и рассчитан только на одно напряжение, например, 380В или 220В

        Двигатель 220/380 для сети напряжением 220/380 подключается в звезду. А для сети 220/127 в треугольник.

        Мне двигатели 127/220 не попадались, да и зачем такой двигатель везде сеть 220/380.

  66. admin Автор записи

    PASS, а трехфазное напряжение 380V(линейное!) и трехфазное напряжение 220V(фазное!) – это почти одинаковые величины величины.
    Если двигатель 220/127. То его проще всего перемотать.

  67. PASS

    Там же чётко написано “трехфазный двигатель 220в” У меня таких три и прекрасно работают от мотора преобразователя.И не надо лишний гемор с перемоткой!
    А разницу между фазным и линейным напряжениями я и САМ знаю.

  68. DIMA

    SHEMA RABOTAET MALAKA

  69. Чума

    “Переключение двигателя со звезды на треугольник применяют для защиты электрических цепей от перегрузок.” М-де…Вообще-то весь сыр-бор из-за повышенного пускового момента,который трудно назвать плавным,”теплым” и пушистым.Т.е.мы сознательно перегружаем движок по току на короткое время по треугольнику и после набора оборотов переходим на долгосрочный режим по звезде.

  70. admin Автор записи

    Чума, если нужен плавный пуск применяют переключение со звезды на треугольник, а нужен пусковой момент то наоборот.
    Я на практике не сталкивался со схемами переключения с треугольника на звезду, чаще применяется схема со звезды на треугольник.

  71. Don Migeli

    Почему двигатель

  72. Don Migeli

    380/220 660/380 – это значит если треугольник то первое значение дроби, а если звездой то второе?

    Почему посхеме звезда треугольник можно только 660/380 подключать?

  73. admin Автор записи

    Don Migeli,
    Меньше напряжение в дроби фазное а большее линейное.

    Потому что электродвигатель лишь на момент пуска в несколько секунд включается на низкое напряжение, а после запуска переключается в нормальный режим работы.

    Для двигателя 220/380 обычная схема подключения звезда, если его подключить в треугольник он сгорит.
    А для двигателя 380/660 обычная схема треугольник.
    Это при напряжении в сети 220/380

  74. Don Migeli

    спасибо за ответ, а с выбором кабеля подскажете? от чего отталкиваться от тока на шильдике или расчет нужен?

    1. admin Автор записи

      Don Migeli, от тока на шильдике или мощности

  75. Don Migeli

    если 22 квт, 46.2 А – тут как получается на каждой фазе по 46А или 46 надо делить на 3 фазы, можно подробнее?

    1. admin Автор записи

      Don Migeli, на каждой фазе по 46А.

  76. Don Migeli
  77. Андрон

    Добрый день.Подскажите как можно узнать какое подключение обмоток у двигателя “звезда” или “треугольник”?? С него выходит три провода, а как в нём подключение неизвестно?? Хочу его запустить, а какой конденсатор ставить не знаю??

  78. ник

    на шильдике 220/380 треугольник только 220.звезда 380 можно 220 с уменьшением крутящего момента.всё зависит от того что вы хотите получить,высокий крутящий момент или ограничить пусковой ток.не жгите двигатели.

  79. Сергей

    Добрый день, у меня такая проблема на шильдике двигателя написано 380/660, но при переключении со звезды в треугольник выбивает автомат моментально. Двигатель после перемотки, до перемотки работал нормально, возможно ли что перемотали его не правильно и как это проверить?

    1. admin Автор записи

      Может его перемотали 220/380, но это сложнее, проще сосчитать количество витков на сгоревшем двигателе и столько же на мотать.
      Надо замерить ток в звезду и сравнить с током на шильдике, сильно ли отличается.

  80. Сергей

    Попробовал запустить без нагрузки схема работает нормально, токи ниже номинала. Изменил размер шкива чтоб уменьшить нагрузку, теперь не выбивает и токи в норме. Спасибо за помощь весьма благодарен.

  81. сергей

    Компрессор с двигателем 7,5 кв.
    Сильно садит линию и не разгоняется в полной мере движок.
    Предполагаю изменить диаметр шкива двигателя, увеличить сечение кабеля от счётчика к компрессору, и включить в звезду.
    Достаточно ли будет этих мер, и Что можно ещё предпринять.

    1. admin Автор записи

      сергей, В первую очередь увеличить сечение кабеля.

  82. сергей

    С этого и думал начинать.
    Но тут ещё интерес, с какой целью установили для компрессора трёх тысячник.
    Обычно раньше встречались компрессора с моторами на 900 или полтора тысячники, а это???

    1. admin Автор записи

      Может с ним давление выше

  83. Artur

    старый мотор 75 кв пускался со звезды на треугольник,на новом почему то указали подклучение треугольником D-D.Можно ли его пускать как старый мотор?

    1. admin Автор записи

      Да, можно

  84. Александр

    Помогите разобраться купили по дешевке двигатель по габаритным размерам АИР 180М но внутри 6 концов, таблички нет. Как разобраться со схемой его подключения треугольник или звезда и сколько он нам даст оборотов и какой мощности?


Одним из весомых недостатков мощных асинхронных электродвигателей является их «тяжелый» пуск, который сопровождается огромными начальными токами в этот момент. В результате чего в сети появляется большой скачек напряжения. Такие «провалы» могут негативно сказаться на работу электроники или других электроагрегатов работающих на этой же линии.
Для плавного пуска используют схему включения «звезда-треугольник». При которой в начале запуска двигатель включается звездой, а когда вал мотора раскрутиться до рабочих оборотов электроника переключит его в схему треугольником.
Я покажу как собрать пусковой и управляющий блок, который будет не только управлять запуском и остановкой двигателя, но и при пуске будет менять схемы его включения.

Понадобится

Для подключения нам понадобятся:
  • 3 пускателя, для управления силовой частью;
  • приставка с выдержкой времени — реле времени регулируемое;
  • 2 приставки с нормально открытыми и замкнутыми контактами;
  • кнопки «Пуск» и «Стоп»;
  • 3 лампочки, для наглядного вида работы пускателя;
  • автоматический выключатель однополюсной.

Схема

Подключение проводится по заранее нарисованной схеме.


На схеме представлена силовая часть и цепи управления. В силовую часть входят:
  • вводной автоматический выключатель;
  • 3 мощных пускателя, управляющие силовой цепью включения «звезда-треугольник»;
  • электродвигатель.


При включении по схеме «звезда» работают первый и третий пускатели, при включении по схеме «треугольник» работают первый и второй пускатели. В силу отсутствия возможности подключения к сети 380 В ограничимся визуальным рассмотрением работы системы без двигателей. К цепям управления относятся:
  • автоматический выключатель однополюсный;
  • кнопки «Пуск» и «Стоп»;
  • три катушки пускателя;
  • нормально замкнутый контакт;
  • нормально открытый контакт;
  • контакты реле времени.


Собираем схему для демонстрации работы автоматической системы.


Параллельно катушкам пускателя подключены сигнальные лампы, чтобы вы наглядно увидели работу.

Проверка системы

Включаем автоматический выключатель, тем самым подаем питание на всю схему. Нажимаем кнопку «Пуск» для запуска электродвигателя. И у нас притянулись первый и третий пускатели, загорелись лампочки 1 и 3 – означающие, что двигатель включен по схеме «звезда».


Через некоторое время срабатывает таймер, притягиваются первый и второй пускатели, загорелись лампочки 1 и 2 – что значит двигатель подключен по схеме «треугольник».

Время на приставке можно регулировать от 100 миллисекунд до 40 секунд. в зависимости от того, как быстро двигатель набирает обороты.


Нажимаем кнопку «Стоп» и все останавливается.
При подключении двигателя надо учитывать подключение фаз мотора. В данном случае на начало обмотки приходит фаза А, на конец обмотки фаза B. На начало второй обмотки должна приходить фаза В, на конец – фаза С. На начало третьей обмотки должна приходить фаза С, на конец – фаза А. Обязательно посмотрите видео, где более подробно и наглядно изложен процесс работы и подключения всей схемы.

Ротор турбинного компрессора

Как известно, трехфазные асинхронные электрические (эл.) двигатели, имеющие короткозамкнутый ротор, подключаются по схеме звезда или треугольник в зависимости от линейного напряжения, на которое рассчитана каждая обмотка.

При пуске особенно мощных эл. двигателей, подключённых по схеме треугольника, наблюдаются повышенные пусковые токи, которые в перегруженных сетях создают временное падение напряжения ниже допустимого предела.

Данное явление обусловлено конструктивными особенностями асинхронных эл. двигателей, у которых массивный ротор имеет достаточно большую инерционность, и при его раскрутке мотор работает в режиме перегрузки. Пуск электродвигателя усложняется, если на валу находится нагрузка с большой массой – роторы турбинных компрессоров, центробежных насосов или механизмы различных станков.

Способ уменьшения пусковых токов электродвигателя

Чтобы уменьшить токовые перегрузки и падение напряжения в сети, применяют особый способ подключения трехфазного эл. двигателя, при котором происходит переключение со звезды на треугольник по мере набора оборотов.


Подключение обмоток двигателя: звездой (слева) и треугольником (справа)

При подключении соединенных звездой обмоток двигателя, рассчитанного на подключение треугольником в трехфазную сеть, напряжение, приведённое к каждой обмотке на 70% меньше от номинала. Соответственно, ток при пуске эл. двигателя будет меньшим, но следует помнить, что стартовый момент вращения также будет меньшим.

Поэтому переключение режимов звезда-треугольник нельзя применять для электродвигателей, изначально имеющих на валу неинерционную нагрузку, такую как вес груза лебедки или сопротивление поршневого компрессора.


Недопустимо переключение режимов у электродвигателя, стоящего на поршневом компрессоре

Для работы в составе таких агрегатов, имеющих большую нагрузку в момент пуска, применяют особые трехфазные эл. двигатели с фазным ротором, в которых пусковые токи регулируются с помощью реостатов.

Переключение звезда треугольник можно применять только для электродвигателей, имеющих на валу свободно вращающуюся нагрузку – вентиляторы, центробежные насосы, валы станков, центрифуг и другого подобного оборудования.


Центробежный насос с асинхронным электродвигателем

Реализация смены режимов подключения обмоток двигателя

Очевидно, что для осуществления пуска трехфазного электромотора в режиме звезды с последующим переключением на соединение обмоток треугольником, необходимо применение нескольких трехфазных контакторов в пускателе.


Набор контакторов в пускателе для переключения звезда-треугольник

При этом нужно обеспечивать блокировку одномоментного срабатывания данных контакторов, а также должна быть обеспечена кратковременная задержка переключения, чтобы соединение звездой гарантированно отключилось прежде, чем включится треугольник, иначе произойдет трехфазное короткое замыкание.

Поэтому реле времени (РВ), которое используется в схеме для установки интервала переключения, также должно обеспечивать задержку 50-100 мс, чтобы не происходило короткого замыкания.

Способы осуществления задержки переключения


Диаграмма времени переключения режимов

Существует несколько принципов осуществления задержки при помощи:



Ручной переключатель режимов

Классическая схема

Данная система достаточно проста, неприхотлива и надежна, но имеет существенный недостаток, который будет описан ниже и требует применения громоздкого и морально устаревшего реле времени.

Данное РВ обеспечивает задержку отключения из-за намагниченного сердечника, на размагничивание которого требуется некоторое время.


Электромагнитное реле времени задержки

Необходимо мысленно пройтись по цепях прохождения тока, чтобы понять работу данной схемы.


Классическая схема переключения режимов с реле тока и времени

После включения трехфазного автоматического выключателя АВ пускатель готов к работе. Через нормально замкнутые контакты кнопки «Стоп», и замыкаемый оператором контакт кнопки «Пуск» ток протекает через катушку контактора КМ. Силовые контакты КМ удерживаются во включенном состоянии «самоподхватом», благодаря контакту БКМ.


На фрагменте приведенной выше схемы красной стрелкой указан шунтирующий контакт

Реле КМ необходимо для обеспечения возможности отключения двигателя кнопкой «Стоп». Импульс от кнопки «Пуск» также проходит через нормально замкнутые БКМ1 и РВ, запуская контактор КМ2, основные контакты которого обеспечивают подачу напряжения на соединение обмоток по типу звезда – осуществляется раскрутка ротора.

Поскольку в момент пуска КМ2 контакт БКМ2 размыкается, то КМ1, обеспечивающий включения соединения обмоток треугольником, никак не может сработать.


Контакторы, обеспечивающие подключение звездой (КМ2) и треугольником (КМ1)

Пусковые токовые перегрузки эл. двигателя заставляют практически мгновенно сработать РТ, включенное в цепи трансформаторов тока ТТ1, ТТ2. При этом цепь управления катушкой КМ2 шунтируется контактом РТ, блокируя работу РВ.

Одновременно с запуском КМ2 при помощи его дополнительного нормально разомкнутого контакта БКМ2 запускается реле времени, контакты которого переключаются, но срабатывания КМ1 не происходит, так как БКМ2 в цепи катушки КМ1 разомкнут.


Включение реле времени — зеленая стрелка, переключающие контакты — красные стрелки

По мере набора оборотов пусковые токи уменьшаются и контакт РТ в цепи управления КМ2 размыкается. Одновременно с отключением силовых контактов, обеспечивающих питанием соединение обмоток звездой, происходит замыкание БКМ2 в цепи управления КМ1 и размыкание БКМ2 в цепи питания РВ.

Но, поскольку РВ отключается с запаздыванием, этого времени достаточно, чтобы его нормально разомкнутый контакт в цепи КМ1 оставался замкнутым, благодаря чему происходит самоподхват КМ1,подключающий соединение обмоток треугольником.


Нормально разомкнутый контакт самоподхвата КМ1

Недостаток классической схемы

Если по причине неправильного расчета нагрузки на валу он не сможет набрать обороты, то и реле тока в этом случае не позволит схеме переключиться в режим треугольника. Длительная эксплуатация эл. асинхронного двигателя в таком режиме стартовой перегрузки крайне нежелательна, обмотки будут перегреваться.


Перегретые обмотки двигателя

Поэтому, для предотвращения последствий непредвиденного увеличения нагрузки при пуске трехфазного эл. двигателя (изношенный подшипник или попадание посторонних предметов в вентилятор, загрязнение крыльчатки насоса), следует также подключить тепловое реле в цепь питания эл. двигателя после контактора КМ (на схеме не указано) и установить датчик температуры на кожух.


Внешний вид и основные узлы теплового реле

Если используется таймер (современное РВ) для переключения режимов, которое происходит в установленном интервале времени, то при включении обмоток двигателя треугольником, происходит набор номинальных оборотов, при условии, что нагрузка на валу соответствует техническим условиям работы электромотора.


Переключение режимов при помощи современного реле времени CRM-2T

Работа самого таймера достаточно проста – вначале осуществляется включение контактора звезды, а по истечении регулируемого времени, происходит отключение данного контактора, и с некоторой также регулируемой задержкой осуществляется включения контактора треугольника.

Правильные технические условия для использования переключения соединений обмоток.

При пуске любого трехфазного эл. двигателя должно соблюдаться важнейшее условие – момент сопротивления нагрузки всегда должен быть меньше чем стартовый момент вращения, иначе электромотор попросту не запустится, а его обмотки перегреются и перегорят, даже если используется стартовый режим звезды, при котором напряжение ниже номинального.

Даже если на валу свободно вращающаяся нагрузка, стартового момента при подключении звездой может не хватить и эл. двигатель не наберет обороты, при которых должно осуществляться переключение в режим треугольника, так как сопротивление среды, в котором вращаются механизмы агрегатов, (лопасти вентилятора или крыльчатка наноса) будет увеличиваться по мере набора скорости вращения.

В таком случае, если из схемы исключено токовое реле, и переключение режимов осуществляется по уставке таймера, то в момент перехода на треугольник будут наблюдаться всё те же броски тока почти такой же продолжительности, как и при пуске с неподвижного состояния ротора.


Сравнительные характеристики прямого и переходного запусков двигателя с нагрузкой на валу

Очевидно, что такое подключение звезда-треугольник не даст никаких положительных результатов при неправильно рассчитанном стартовом моменте. Но в момент отключения контактора, обеспечивающего подключение звездой, при недостаточных оборотах двигателя, вследствие самоиндукции будет наблюдаться бросок повышенного напряжения в сеть, которое может повредить другое оборудование.

Поэтому, используя переключение звезда-треугольник, необходимо убедиться в целесообразности такого подключения трехфазного асинхронного эл. двигателя и перепроверить расчеты по нагрузке.

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме «звезда» (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или «треугольник» (концы одной обмотки соединены с началом другой).

В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой — подключение третьего контакта через фазосдвигающий конденсатор.

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети — 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220 — для «треугольника). Большее напряжение для «звезды», меньшее — для «треугольника». В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой».

Табличка Б информирует, что обмотки двигателя подсоединены по схеме «звезда», и в распределительной коробке не предусмотрена возможность переключить их на «треугольник» (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме «звезда», или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме «треугольник».

Если рабочее напряжение двигателя составляет 220/127В, то к однофазной сети на 220В двигатель можно подключить только по схеме «звезда». При подключении 220В по схеме «треугольник», двигатель сгорит.

Начала и концы обмоток (различные варианты)

Пожалуй, основная сложность подключения трехфазного двигателя в однофазную сеть заключается в том, чтобы разобраться в проводах, выходящих в распределительную коробку или, при отсутствии последней, просто выведенных наружу двигателя.

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены «звездой», и имеется возможность изменить ее на «треугольник», то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток . Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается «прозваниванием» всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

К концам одной обмотки (например, A ) подключается батарейка, к концам другой (например, B ) — стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В . Таким же образом проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C или B .

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по необходимой схеме — «треугольник» или «звезда» (если напряжение двигателя 220/127В).

Извлечение недостающих концов . Пожалуй, самый сложный случай — когда двигатель имеет соединение обмоток по схеме «звезда», и нет возможности переключить ее на «треугольник» (в распределительную коробку выведено всего лишь три провода — начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме «треугольник», подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме «звезда», смирившись со значительной потерей мощности.

Схемы подключения трехфазного двигателя в однофазную сеть

Подключение по схеме «треугольник» . В случае бытовой сети, с точки зрения получения большей выходной мощности наиболее целесообразным является однофазное подключение трехфазных двигателей по схеме «треугольник». При этом их мощность может достигать 70% от номинальной. Два контакта в распределительной коробке подсоединяются непосредственно к проводам однофазной сети (220В), а третий — через рабочий конденсатор Ср к любому из двух первых контактов или проводам сети.

Обеспечение пуска . Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.


Подключение трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором Сп

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока не будет нажата кнопка «стоп».

Реверс . Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Подключение по схеме «звезда» . Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения «звездой» емкость рассчитывается по формуле:

Для соединения «треугольником»:

Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

I = P/(1.73 U n cosф)

Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении «треугольником» можно посчитать по упрощенной формуле C = 70 Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: C общ = C 1 + C 1 + … + С n .

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Типичные случаи соединений в звезду и треугольник генераторов, трансформаторов и электроприемников рассмотрены в статьях «Схема соединения «Звезда » и «Схема соединения «Треугольник «. Остановимся теперь на важнейшем вопросе о мощности при соединениях в звезду и треугольник, так как для работы каждого механизма, приводимого в действие электродвигателем или получающего питание от генератора или трансформатора, в конечном итоге важна именно мощность .

5. Как объяснено выше, при переключении электродвигателя с треугольника в звезду мощность его снижается примерно втрое. И наоборот, если электродвигатель переключить со звезды в треугольник , мощность резко возрастает, но при этом электродвигатель, если он не предназначен для работы при данном напряжении и соединении в треугольник, сгорит .

Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник

применяют для снижения пускового тока, который в 5 – 7 раз превышает рабочий ток двигателя. У двигателей сравнительно большой мощности пусковой ток настолько велик, что может вызвать перегорание , отключение автомата и привести к значительному снижению напряжения. Уменьшение напряжения снижает накал ламп, уменьшает вращающий момент электродвигателей 2 , может вызвать отключение контакторов и магнитных пускателей. Поэтому стремятся уменьшить пусковой ток, что достигается несколькими способами. Все они в итоге сводятся к понижению напряжения в цепи статора на пуска. Для этого в цепь статора на период пуска вводят реостат, дроссель, автотрансформатор либо переключают обмотку со звезды в треугольник. Действительно, перед пуском и в первый период пуска обмотки соединены в звезду. Поэтому к каждой из них подводится напряжение, в 1,73 раза меньшее номинального, и, следовательно, ток будет значительно меньше, чем при включении обмоток на полное напряжение сети. В процессе пуска электродвигатель увеличивает вращения и ток снижается. Тогда обмотки переключают в треугольник.

Предупреждения:
1. Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят .
2. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, то есть имеющие, обмотки, рассчитанные на линейное напряжение сети.

Переключение с треугольника в звезду

Известно, что недогруженные электродвигатели работают с очень низким коэффициентом мощности cos φ . Поэтому рекомендуется недогруженные электродвигатели заменять менее мощными. Если, однако, выполнить замену нельзя, а запас мощности велик, то не исключено повышение cos φ переключением с треугольника в звезду. Нужно при этом измерить ток в цепи статора и убедиться в том, что он при соединении в звезду не превышает при нагрузке номинального тока; в противном случае электродвигатель перегреется.

1 Активная мощность измеряется в ваттах (Вт), реактивная – в вольт-амперах реактивных (вар), полная – в вольт-амперах (В×А). Величины в 1000 раз большие соответственно называют киловатт (кВт), киловар (квар), киловольт-ампер (кВ×А).
2 Вращающий момент электродвигателя пропорционален квадрату напряжения. Следовательно, при снижении напряжения на 20% вращающий момент снижается не на 20, а на 36% (1² — 0,82² = 0,36).

Разъяснение по пускателям со звездой-треугольником

— Инженерное мышление

Стартеры звезда-треугольник. В этом руководстве мы собираемся обсудить, как пускатели со звезды на треугольник работают с трехфазными асинхронными двигателями. Затем мы рассмотрим, почему и где они используются, и, наконец, расскажем о том, как они работают, чтобы помочь вам понять.

Прокрутите вниз, чтобы просмотреть обучающее видео на YouTube о том, как работают стартеры Star-Delta.

ПРЕДУПРЕЖДЕНИЕ:

Помните, что электричество опасно и может быть смертельным, вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ.

Ниже приведены два примера схем подключения пускателей со звезды на треугольник от промышленных поставщиков. К концу этого урока вы поймете, как это работает.

Всегда уточняйте у производителя, как и можно ли подключить двигатель к пускателю со звездой-треугольником.

Схема подключения звезда-треугольник от Siemens

Я собираюсь использовать старую цветовую кодировку красный желтый синий для фаз просто потому, что я думаю, что это легче увидеть. Однако мы кратко рассмотрим другие цветовые коды позже в статье.

Трехфазные двигатели используются почти во всех коммерческих и промышленных зданиях. Внутри трехфазного асинхронного двигателя есть 3 отдельные катушки, которые используются для создания вращающегося магнитного поля. Когда мы пропускаем переменный ток через каждую катушку, каждая катушка создает магнитное поле, интенсивность и полярность которого изменяется по мере изменения направления электронов.

через GIPHY

Если мы подключим каждую катушку к разной фазе, электроны на каждой фазе будет менять направление между вперед и назад на разных раз по сравнению с другими фазами, поэтому магнитное поле изменится в интенсивность и полярность в другое время по сравнению с другими фазами.

Затем мы поворачиваем катушки на 120 градусов относительно предыдущей, затем объединяем их в статор двигателя, чтобы создать вращающееся магнитное поле. Это вращающееся магнитное поле заставляет вращаться ротор, который мы используем для привода вентиляторов, насосов и т. Д.

На верхней или иногда боковой стороне двигателя есть электрическая клеммная коробка. Внутри этого электрического ящика есть 6 клемм. Каждому соответствует буква и номер U1, V1, W1 и W2, U2 V2.

Наша катушка фазы 1 подключена к двум клеммам U, катушка фазы 2 подключена к двум клеммам V, а катушка фазы 3 подключена к двум клеммам W.Клеммы катушки расположены по-другому сверху вниз. Через мгновение мы поймем, почему мы это делаем.

Мы всегда подключаем сторону питания к клеммам U1, V1 и W1.

Чтобы двигатель заработал, нам нужно замкнуть цепь. Там есть два способа сделать это.

Дельта-конфигурация

Первое — соединение по схеме «треугольник». Для этого подключаем через клеммы от U1 до W2, от V1 до U2 и от W1 до V2. Это даст нам наша дельта-конфигурация.

Когда мы пропускаем ток через фазы, электричество перетекает из одной фазы в другую, поскольку направление мощности переменного тока в каждой фазе меняется.Вот почему у нас есть клеммы в разных положениях, потому что мы можем подключаться и позволять электричеству течь между фазами, поскольку электроны меняют направление в разное время.

Узнайте, как работает электричество здесь и узнайте, как работает трехфазное электричество здесь

Звездная конфигурация

Другой способ подключения клемм — использование звездообразной конфигурации. В этом методе мы подключаемся между W2, U2 и V2 только на одной стороне клемм двигателя.Это дает нам наш звездный эквивалент дизайна.

Когда мы пропускаем ток через катушки, электроны распределяются между фазами на выводах.

Два только что рассмотренных способа настройки двигателя по схеме звезды или треугольника являются фиксированными. Чтобы изменить их, мы должны физически отключить питание, открыть клеммы двигателя и переставить их. Это непрактично.

Как это автоматизировать?

Чтобы автоматизировать это, нам нужно использовать некоторые контакторы. Они бывают разных конструкций, но основная операция — это переключатель, который может активироваться, чтобы включить или отключить цепь для управления потоком электричества во всех трех фазах одновременно.

Мы берем наш главный контактор и подключаем трехфазное питание к одной стороне, а затем подключаем другую сторону к соответствующим клеммам в электрической коробке асинхронных двигателей.

Затем мы берем второй контактор, который будет использоваться для схемы треугольника, и подаем на него наши три фазы. Отсюда мы подключаем нашу фазу 1 к клемме V2, которая является катушкой фазы 2. Затем мы подключаем нашу фазу 2 к клемме W2, которая является катушкой фазы 3. Наконец, мы подключаем наш провод фазы 3 к клемме U2, которая является катушкой фазы 1.

Теперь мы берем еще один контактор, который будет использоваться для нашей схемы звезды, и подключаем к нему наши три фазы. Сверху просто соединяем все три фазы вместе.

Запуск двигателя

Мы запускаем соединение звездой и делаем это, активируя клеммы главного контактора и контактора звезды, чтобы они замыкались, замыкая цепь.

via GIPHY

Теперь, когда мы пропускаем электричество через цепь, электричество проходит через каждую фазу и катушку, а затем выходит через клеммы двигателя и попадает в звездообразный контактор, где пути электронов разделяются.Это позволяет электронам переходить в другую фазу или выходить из нее при изменении их направления.

Это будет продолжаться несколько секунд перед переключением на дельту. Для соединения треугольником мы отключаем контактор звезды, а затем замыкаем соединение треугольником.

via GIPHY

Теперь у нас есть электричество, текущее и разделяющееся. Он протекает как в основной колодец, так и в контактор треугольника. Электричество в цепи главного контактора будет течь в катушки двигателей, а электричество, которое прошло по схеме контактора треугольником, будет течь к противоположной стороне клемм двигателя и в другую фазу.Каждый будет течь между различными фазами, поскольку они меняют направление.

Элементы управления

Для управления переключением контакторов со звезды на треугольник мы просто используйте таймер, чтобы контролировать это. Он автоматически изменит конфигурация закончится через установленный промежуток времени. Дополнительно более продвинутый версия будет контролировать ток или скорость двигателя.

США

Если вы находитесь в США, вы можете найти эти цвета, это для трехфазного источника питания 208 В, но цвета будут другими, если с использованием трехфазного источника питания 480 В.

Европа

В Великобритании и ЕС эти цвета используются для фаз. Хотя в Великобритании вы, скорее всего, все еще встретите старые установки, в которых используются красно-желто-синие цвета.

Австралия

Почему мы используем звездную дельту?

Мы используем звезду-треугольник, которую в Северной Америке также называют звездой-треугольником, чтобы уменьшить пусковой ток при запуске двигателя. Когда большие асинхронные двигатели запускаются по схеме треугольника, их пусковой ток может быть более чем в 5 раз выше, чем ток полной нагрузки, который возникает, когда двигатель стабилизируется и работает нормально.

Этот огромный скачок тока может вызвать множество проблем. В Этот внезапно большой спрос ударит по электрической системе зданий. В электрическая инфраструктура будет быстро нагреваться, что приведет к отказ компонентов и даже электрические пожары. Внезапный спрос также вызывает падение напряжения во всей электрической системе здания, что мы можем визуально видеть, потому что свет будет падать, это может вызвать много проблем для таких вещей, как как компьютеры, так и серверы.

Итак, чтобы уменьшить пусковой ток, нам просто нужно уменьшить пусковое напряжение.

Конфигурация звезды снижает напряжение катушки примерно до 58% по сравнению с конфигурацией треугольника. Более низкое напряжение приведет к более низкому току. Ток в катушке при конфигурации звезды будет составлять около 33% от конфигурации треугольника. Это также приведет к снижению крутящего момента, крутящий момент в звездообразной конфигурации также будет около 33% по сравнению с треугольником.

Базовый пример того, что происходит внутри

Допустим, у нас есть двигатель, подключенный по схеме треугольника с типичным Европейское напряжение питания 400В.

Это означает, что когда мы используем мультиметр для измерения напряжения между любыми двумя фазами, мы получим значение 400 В. Мы называем это нашим линейным напряжением.

Между прочим, если у вас нет мультиметра, я настоятельно рекомендую вам приобрести его для своего набора инструментов, он необходим для поиска неисправностей в электрической сети и поможет вам лучше понять электричество. Лично я использую этот счетчик , здесь .

Если мы измеряем на двух концах катушки, мы снова измеряем межфазное напряжение 400 В.Допустим, каждая катушка имеет сопротивление или импеданс, поскольку это мощность переменного тока, равная 20 Ом. Это означает, что мы получим ток на катушке 20 ампер. Мы можем рассчитать это из 400 В / 20 Ом = 20 А. Но ток в линии будет другим, он будет 34,6 А, и мы получим это из 20 А x sqr3 = 34,6 А

Если мы затем посмотрим на соединение звездой. У нас снова есть межфазное напряжение 400 В, если мы измеряем между любыми двумя фазами. Но при соединении звездой все наши катушки встречаются в точке звезды или нейтрали.С этой точки мы можем провести нейтральную линию. Поэтому, когда мы измеряем напряжение на концах катушки, мы получаем более низкое значение 230 В, потому что катушка не подключена напрямую между двумя фазами, как в дельта-версии. Один конец подключен к фазе, другой конец подключен к общей точке, поэтому напряжение распределяется и будет меньше, потому что одна из фаз всегда обратная.

Мы можем увидеть показание 230 В, разделив 400 В на sqr3 = 230 В. Поскольку напряжение меньше, ток тоже будет.Если сопротивление катушки снова составляет 20 Ом, то ток рассчитывается по 230 В / 20 Ом, что составляет 11,5 А. Сила тока в линии тоже будет 11,5А.

Таким образом, при соединении треугольником катушка подвергается полной нагрузке. 400В между двумя фазами. Но соединение звездой подвергается только 230 В. между фазой и нейтралью. Итак, мы видим, что звезда потребляет меньше напряжения. и, следовательно, менее актуален по сравнению с дельта-версией, поэтому мы используем это первое.


Стартер звезда-треугольник? Принцип работы, теория, электрическая схема

Пускатель звезда-треугольник — это простейший метод пуска для снижения пускового тока асинхронного двигателя.Пускатель может использоваться со всеми асинхронными двигателями с короткозамкнутым ротором, которые соединены треугольником для нормальной работы.

Уменьшение высокого тока двигателя вызывает уменьшение пускового момента двигателя. Поэтому пуск со звезды на треугольник особенно подходит для приводов, которые не нагружаются до момента пуска. Время пуска больше, чем при прямом пуске, что особенно заметно при движении с большими инерционными массами.

Типы пускателей звезда-треугольник

1) Ручной пускатель со звезды на треугольник

2) Полуавтоматический пускатель со звезды на треугольник

3) Полностью автоматический звезда-треугольник стартер (звезда-треугольник)

Принцип работы стартера звезда-треугольник (звезда-треугольник):

Стартер звезда-треугольник работает в трех состояниях:


а) Состояние соединения звездой
Клеммы двигателя с соединением звездой

ток и напряжение при соединении звездой

Во время пуска пускателя звезда-треугольник , главный контактор и контактор звезды остаются в замкнутом состоянии и замыкают цепь питания.

Во время пуска двигатель подключается звездой. В состоянии , подключенного звездой, Напряжение, подаваемое на обмотку двигателя, снижается до 1 / √3 линейного напряжения.

Когда двигатель достигает достаточной скорости, например, 90% от полной скорости вращения, включается таймер, подключенный к цепи. он сначала отключает контактор звезды и подключает контактор треугольника в цепь, что означает замкнутый контактор треугольника.
б) Открытое состояние:
Между переключением со звезды на треугольник цепь размыкается, и двигатель не остается ни в звездном, ни в треугольном состоянии .Это состояние называется открытым переходным состоянием.
c) Дельта-состояние:
обмотка двигателя, соединенная треугольником

Ток и напряжение в состоянии треугольника

После активации таймера двигатель переключился со звезды на треугольник. В состоянии соединения треугольником фазное напряжение равно линейному напряжению. Следовательно, на обмотку двигателя подается полное линейное напряжение, и двигатель работает на своей номинальной полной скорости.На рисунке показана обмотка двигателя, соединенная треугольником.

Схема управления стартером звезда-треугольник:


Схема управления пускателем со звезды на треугольник
Схема соединений цепи управления пускателем со звезды на треугольник состоит из таймера, кнопки запуска и остановки.

Во время пуска, после нажатия кнопки пуска, однофазное питание активирует таймер , контакт таймера 17-18 замыкается, а замыкающий контакт 17-28 размыкается.эта запитанная звезда , катушка контактора и двигатель соединяются звездой.

Через некоторое время двигатель достигает 90% номинальной скорости, и схема таймера переключает стартер из состояния перехода звезды в состояние треугольника , полное линейное напряжение подается на двигатель, и двигатель продолжает вращаться на полной скорости.

Схема и теория питания стартера звезда-треугольник:

Схема силовая :


схема питания пускателя звезда-треугольник
Теория работы объясняется следующим образом:

1) Во время работы пускателя, два контактора остаются замкнутыми.Эти два контактора являются главным контактором и контактором треугольником.

2) Третий контактор — это , контактор звезды , и он участвует только во время пуска двигателя и передает ток звезды, когда двигатель находится в звездном состоянии.

3) Ток в звездообразном состоянии составляет 1/3 тока в треугольном состоянии. Следовательно, номинальный ток контактора составляет одну треть номинального тока двигателя.

4) Во время запуска главного контактора KM3 и контактора звезды KM1 сначала замыкаются.

5) Через некоторое время срабатывает таймер в цепи, он размыкает контактор звезды и замыкает контактор треугольником.

6) Переключение состояния звезды на состояние треугольник выполняется с помощью таймера, который подключен к схеме управления пускателем звезда-треугольник.

Компоненты пускателя двигателя Y-

Δ
1) Контактор:

В пускателе звезда-треугольник используются 3 контактора. Главный контактор, контактор звезды и контактор треугольник.Контактор — это сверхмощное реле с высоким номинальным током, используемое для питания электродвигателя . Номинальный ток контактора варьируется от 10 до нескольких сотен ампер. Сильноточный контактор изготовлен из сплава, содержащего серебро. Возникновение дуги во время переключения контактора вызывает окисление контакта. Однако оксид серебра по-прежнему является хорошим проводником.

Защита от перегрузки предоставляется вместе с контакторами для запуска двигателя. Контактор не используется для прерывания тока короткого замыкания, в отличие от используемого автоматического выключателя.Размер контактора варьируется от маленького до большого для сильноточных приборов.

2) Реле перегрузки (OLR)

Большинство отказов обмотки происходит из-за перегрузки, работы при несимметричном напряжении питания или однофазной сети из-за потери фазы, что приводит к чрезмерному нагреву и ухудшению изоляции обмотки, поскольку для этого электродвигателя требуется защита от перегрузки, чтобы предотвратить повреждение от перегрузки двигателя, или для защиты от цепи сортировки или неисправности внутренней обмотки электродвигателя .Все эти условия предотвращаются с помощью теплового реле перегрузки .

3) Таймер

Функция таймера в пускателе со звезды на треугольник заключается в переключении контактора со звезды на треугольник после достижения достаточной скорости до 90% полной скорости двигателя.

4) Блок предохранителей

Основное назначение предохранителя — защита двигателя, он состоит из сплава с низкой температурой плавления. Полоса предохранителя подключается последовательно к цепи двигателя.Принцип работы заключается в том, что при превышении тока полоса плавится, разрывает цепь и изолирует двигатель от источника питания.

5) MCB

Автоматический выключатель — это автоматический выключатель, предназначенный для защиты электрической цепи от повреждений, вызванных избыточным током в результате перегрузки / короткого замыкания. Его основная функция — прервать прохождение тока после обнаружения неисправности. С другой стороны, предохранитель, который срабатывает один раз, а затем подлежит замене, автоматический выключатель может быть сброшен, чтобы начать нормальную работу.

Для защиты двигателя от короткого замыкания и предотвращения повреждения обмотки двигателя MCB используется в цепи стартера двигателя звезда-треугольник.

6) Кнопка пуска (НЕТ)

Это кнопка нормально разомкнутого (НО) типа, используемая для запуска двигателя.

7) Кнопка остановки (NC)

Это кнопка типа NC и используется для остановки двигателя.

Преимущества стартера звезда-треугольник

1) Пускатели типа «звезда-треугольник» популярны благодаря своей невысокой цене.
2) Нет ограничений на количество раз, которое они могут использовать.
3) Пусковой ток снижается примерно до 1/3 номинального тока двигателя.
4) Обеспечьте высокий крутящий момент на ампер линейного тока.

Недостатки пускателя звезда-треугольник

1) Пускатель со звезды на треугольник может использоваться только для двигателей, у которых есть доступ к шести клеммам двигателя.
2) Напряжение питания должно соответствовать номинальному напряжению двигателя для соединения треугольником.
3) Поскольку пусковой ток снижается примерно до 1/3 номинального тока, пусковой момент также снижается до 1/3.

Как работает стартер звезда-треугольник? Принципиальная схема и программа ПЛК

Как пускатель звезда-треугольник работает с асинхронным двигателем?

Большинство асинхронных двигателей запускаются с помощью стартера DOL (Direct On-Line) , но когда асинхронный двигатель очень большой мощности запускается с помощью стартера DOL. Тогда это может вызвать нарушения в питающих линиях из-за больших скачков пускового тока.

Для ограничения пускового тока большие асинхронные двигатели запускаются методом пониженного напряжения.Пускатель звезда-треугольник — популярный метод пуска большого асинхронного двигателя при пониженном напряжении.

Пускатель со звезды на треугольник означает два отдельных состояния запуска. Во-первых, двигатель запускается по схеме «звезда», и когда она достигает скорости от 75% до 85% от полной скорости нагрузки, двигатель работает по схеме «треугольник».

Когда двигатель запускается без пускателя со звезды на треугольник

⇒ Пусковой ток в 4-6 раз превышает ток полной нагрузки.

⇒ Для работы с начальным высоким пусковым током требуется кабель повышенной мощности.


Принцип работы пускателя звезда-треугольник Пускатель

звезда-треугольник является наиболее распространенным и широко используемым для пуска асинхронных двигателей. Это наиболее распространенный пускатель пониженного напряжения. Чтобы понять принцип работы первого, мы должны понять 3-фазное соединение в конфигурации звезды и треугольника.

При пуске со звезды на треугольник сначала двигатель запускается в конфигурации ЗВЕЗДА. Напряжение на каждой фазе уменьшается в √3 раза. Через некоторое время двигатель достигает 75-80% скорости полной нагрузки, затем двигатель работает в конфигурации ТРЕУГОЛЬНИК.

Когда двигатель подключен по схеме звезды, обмотка статора подключается, как показано на рисунке ниже. Напряжение на каждой фазе уменьшается на 1/3. В звездообразной конфигурации напряжение на линии равно √3-кратному напряжению на фазе. Здесь линейный ток равен фазному току.

Когда двигатель подключен по схеме треугольника, обмотка статора показана ниже. Напряжение на линии равно напряжению на фазе.Ток в линии равен √3-кратному току в фазе.


Схема подключения стартера звезда-треугольник

Пускатель со звезды на треугольник состоит из трех контакторов, таймера и теплового реле перегрузки. На изображении ниже представлены силовая и управляющая проводка пускателя со звезды на треугольник.

В стартере звезда-треугольник в основном четыре характеристики:

1. Состояние выключения ⇒ Это состояние выключения пускателя, все контакторы находятся в положении ВЫКЛ.

2. Статус ЗВЕЗДЫ ⇒ В этом статусе главный и звездообразный контакторы замкнуты, а контактор треугольник разомкнут. Двигатель подключен к ЗВЕЗДЕ.

3. СТАТУС ОТКРЫТИЯ ⇒ Этот стат представляет собой переход от ЗВЕЗДЫ к ДЕЛЬТА. Замкнут только главный контактор, контакторы звезда и треугольник разомкнуты. Напряжение есть только на одном конце обмотки двигателя. Ротор все еще вращается.

3. Стат. Треугольник ⇒ Главный и треугольный контакторы замкнуты, а контактор звезды разомкнут.Двигатель работает с полным линейным напряжением и полной скоростью нагрузки.

Звезда и треугольник электрически связаны, как показано на схеме ниже.


Плюсы и минусы стартера Star Delta
Преимущества пускателя со звезды на треугольник

⇒ Низкая стоимость.

⇒ Компоненты требуют очень мало места для сборки стартера.

⇒ Ограничьте пусковой ток на 1/3 от прямого пускателя.

Недостатки пускателя со звезды на треугольник

⇒ Требуется специальный двигатель с шестью выводами.

⇒ Пусковой момент также снижен на 1/3.

⇒ Напряжение питания должно соответствовать номинальному напряжению при соединении треугольником.


Релейная логика ПЛК для пускателя звезда-треугольник

Здесь вы можете найти релейную логику программы ПЛК для пускателя со звезды на треугольник.


Если вам нравится этот блог, поделитесь им со своими друзьями и коллегами и оставьте свой отзыв в разделе комментариев ниже.

Вы можете прочитать больше статей об электричестве, а также найти книги, которые расширят ваши знания в области контрольно-измерительной аппаратуры ⇒

Спасибо за чтение!

Связанные

Программа ПЛК для пускателя двигателя звезда-треугольник

При запуске электродвигателя он потребляет сильный ток, обычно в 5-6 раз превышающий нормальный ток.

В двигателях постоянного тока при пуске нет обратной ЭДС, поэтому начальный ток очень высок по сравнению с нормальным током.

Для защиты двигателя от высоких пусковых токов мы используем пускатель со звезды на треугольник.

Просто при соединении звездой напряжение питания двигателя будет меньше. поэтому мы используем соединение звездой во время запуска двигателя, после запуска двигателя мы изменим соединение со звезды на треугольник, чтобы получить полную скорость двигателя.

Читать статью полностью: Как работает стартер со звездообразным треугольником?

Стартер двигателя звезда-треугольник

На следующем рисунке последовательно показаны соединения обмоток в конфигурации звезды и треугольника.

Видно, что при соединении звездой один конец всех трех обмоток закорочен, чтобы образовать точку звезды, в то время как другой конец каждой обмотки подключен к источнику питания.

В конфигурации «треугольник» обмотки соединены таким образом, чтобы образовалась замкнутая петля.

Подключение каждой обмотки показано на рисунке выше. В реальном двигателе трехфазные соединения предоставляются в следующем порядке, как показано на рисунке

.

Итак, чтобы в практическом двигателе выполнить соединение обмоток звездой и треугольником, соединение показано выше.

Главный подрядчик обеспечивает питание обмоток. Его нужно постоянно включать. Первоначально контактор звезды замкнут, а контактор треугольника разомкнут. Это переводит обмотки двигателя в звезду.

Когда двигатель набирает скорость, контактор звезды размыкается, а контактор треугольник замыкается, переводя обмотки двигателя в треугольную конфигурацию.

Контакторы управляются с помощью ПЛК. В следующем разделе учебного пособия по ПЛК будет объяснено лестничное программирование для пускателя двигателя по схеме звезда-треугольник.

Программа ПЛК для пускателя двигателя звезда-треугольник:

Релейная логика ПЛК

Ступень 1 Главный контактор:

Главный контактор зависит от нормально разомкнутой входной пусковой кнопки (I1), нормально замкнутой кнопки останова (I2) и нормально замкнутого реле перегрузки.

Это означает, что главный контактор будет включен только при нажатии кнопки пуска, в то время как останов не нажат и реле перегрузки не сработает. Нормально открытый вход с именем (Q1) добавляется параллельно кнопке пуска I1.

При этом создается кнопка, что означает, что после запуска двигателя он будет продолжать работать, даже если кнопка запуска будет отпущена.

Контактор ступени 2 звезды:

Контактор звезды зависит от главного контактора, нормально замкнутых контактов таймера (T1) и нормально замкнутых контактов выходного контактора треугольника (Q3).

Таким образом, контактор звезды будет активирован, только если главный контактор включен, выходной сигнал времени не активирован и контактор треугольник не включен.

Таймер T1:

Таймер T1 измеряет время, по истечении которого необходимо изменить соединение обмотки пускателя со звезды на треугольник. Отсчет времени начнется после включения главного контактора.

Контактор звена 3 треугольник:

Контактор

Дельта будет включен, когда главный контактор (Q1) включен, таймер T1 активирован, а контактор звезды (Q3) обесточен.

См. Также Программирование кнопки и другие требования для простого пускателя двигателя, которые описаны в Учебном пособии по ПЛК: Пускатель двигателя

Примечание: этот пост предназначен только для образовательных или справочных целей.Для цепи под напряжением будут некоторые дополнения к указанной выше цепи, например, связанные с безопасностью, в соответствии с приложением, некоторые блокировки и т. Д.

Если вам понравилась эта статья, то подпишитесь на наш канал YouTube с видеоуроками по ПЛК и SCADA.

Вы также можете подписаться на нас в Facebook и Twitter, чтобы получать ежедневные обновления.

Читать дальше:

Масштабирование датчика ПЛК

Релейный шум в системах ПЛК

Вопросы для собеседования с PLC

Поиск и устранение неисправностей в системе ПЛК

Методы аналогового подключения ПЛК

Промышленный пускатель звезда треугольник для 3-фазного асинхронного двигателя

Освоение электрических схем, схем защиты, автоматизации, инженеров подстанций

Содержание курса

• Введение в асинхронный двигатель

• Конструкция асинхронного двигателя

• Трехмерное моделирование, показывающее работу асинхронного двигателя

• Какие проблемы возникают при запуске асинхронного двигателя

• Прямой онлайн-пуск асинхронного двигателя

• Преимущества и недостатки DOL

• Какие бывают различные типы методов пуска

• Просмотр кривой пуска асинхронного двигателя

• Пускатель со звезды на треугольник

• Назначение пускателя с треугольником

• Преимущества и недостатки пускателя со звезды на треугольник

• Понимание схемы управления пускателя со звезды на треугольник

• Компонент пускателя со звезды на треугольник

• Общие сведения о силовой цепи пускателя звезда-треугольник

• Чтение схематических чертежей пускателя звезда-треугольник

• Сравнение различных кривых пускового тока при использовании разных пускателей

Введение в асинхронный двигатель

Асинхронный двигатель или асинхронный двигатель — это электродвигатель переменного тока, в котором электрический ток в роторе необходим для крутящий момент создается за счет электромагнитной индукции от магнитного поля обмотки статора.

Таким образом, асинхронный двигатель может быть изготовлен без электрических соединений с ротором. Ротор асинхронного двигателя может быть как с обмоткой, так и с короткозамкнутым ротором.

Трехфазный асинхронный двигатель запускается автоматически, поскольку поток движется с синхронной скоростью.

Если однофазный асинхронный двигатель не запускается самостоятельно, для создания вращающегося поля используется конденсатор.

• Трехфазные асинхронные двигатели с короткозамкнутым ротором широко используются в качестве промышленных приводов, поскольку они самозапускаются, надежны и экономичны.Однофазные асинхронные двигатели широко используются для небольших нагрузок, таких как бытовые приборы, такие как вентиляторы. Хотя асинхронные двигатели традиционно используются для работы с фиксированной скоростью, они все чаще используются с частотно-регулируемыми приводами (VFD) в условиях регулируемой скорости. ЧРП предлагают особенно важные возможности экономии энергии для существующих и перспективных асинхронных двигателей в центробежных вентиляторах с регулируемым крутящим моментом, насосах и компрессорах. Асинхронные двигатели с короткозамкнутым ротором очень широко используются в приводах как с фиксированной скоростью, так и с частотно-регулируемым приводом.

Вид в разрезе статора асинхронного двигателя, показывающий ротор с лопатками внутренней циркуляции воздуха.

• Трехфазный асинхронный двигатель состоит из статора. Ø Он содержит 3-фазную обмотку, подключенную к 3-фазному источнику переменного тока. Ø Обмотка устроена так, чтобы создавать вращающееся магнитное поле. Ø Ротор асинхронного двигателя содержит цилиндрический сердечник с параллельными пазами, в которых расположены проводники.

Промышленный пускатель звезда-треугольник для трехфазного асинхронного двигателя Какие проблемы могут возникнуть при запуске двигателя?

• Во время периода самозапуска двигателя крутящий момент увеличивается, и в роторе протекает большой ток.

• Ø Для этого статор потребляет большой ток, и к тому времени, когда двигатель достигает своей полной скорости

• Ø Потребляется большой ток, и катушки нагреваются, что приводит к повреждению двигателя. Ø Следовательно, необходимо контролировать запуск двигателя.

ØОдин из способов — уменьшить приложенное напряжение, что, в свою очередь, снижает крутящий момент.

Пусковой ток асинхронного двигателя

• Пусковой ток асинхронного двигателя в 5-7 раз превышает нормальный ток полной нагрузки.Поэтому используются различные методы пуска асинхронного двигателя, такие как (пускатель со звезды на треугольник, пускатель автотрансформатора и другие методы пуска), чтобы уменьшить высокие пусковые токи асинхронного двигателя.

НАЗНАЧЕНИЕ ПУСКАТЕЛЯ

Если номинальное напряжение статора приложено к двигателю во время пуска, то двигатель
будет потреблять сильный пусковой ток.
Это приведет к чрезмерным потерям i2R в обмотке, что приведет к перегреву двигателя.
Во-вторых, из-за сильного тока, потребляемого от источника переменного тока, снизится напряжение.
Сильный пусковой ток может повредить обмотки двигателя.
Чтобы избежать этих проблем, мы можем использовать какой-нибудь стартер для безопасного запуска асинхронного двигателя
.

Чтобы избежать этой ситуации, мы используем пускатель звезда-треугольник. Во время пуска соединения двигателя (соединения статора

) выполняются в режиме звезды, поэтому подаваемое напряжение уменьшается на 1 / √3 (фазовое напряжение = напряжение линии

/ √3), что снижает пусковой ток.

Некоторые методы, используемые для уменьшения пускового тока асинхронного двигателя с короткозамкнутым ротором:

• Мягкий запуск (контроль напряжения)

• Частотно-регулируемые приводы (регулирование напряжения и частоты)

• Звезда / треугольник Начиная с .

• Импеданс и / или сопротивление статора , пуск .

• Автотрансформатор Пуск

Direct Online БАЗОВАЯ ЦЕПЬ СТАРТЕРА

ПРЕИМУЩЕСТВА DOL STARTER

1. Самый экономичный и самый дешевый стартер.

2. Простота установки, эксплуатации и обслуживания.

3. Простая схема управления.

4. Легко понять и устранить неисправности.

5. Обеспечивает 100% крутящий момент во время пуска.

6. От пускателя к двигателю требуется только один комплект кабеля.

7. Двигатель соединен треугольником на клеммах двигателя.

НЕДОСТАТКИ DOL STARTER

• 1. Пусковой ток: — Не снижает пусковой ток двигателя.

• 2. Высокий пусковой ток: — Очень высокий пусковой ток (обычно в 6-8 раз больше FLC двигателя).

• 3. Механически жесткие: — Тепловая нагрузка на двигатель, сокращающая срок его службы.

• 4.Падение напряжения: — В электроустановке наблюдается большой провал напряжения из-за высокого пускового тока

• влияет на других потребителей, подключенных к тем же линиям, и поэтому не подходит для более крупных размеров

• Двигатели с короткозамкнутым ротором

• 5. Высокий пусковой крутящий момент: — Излишне высокий пусковой крутящий момент, даже если он не требуется нагрузкой, таким образом

• повышенная механическая нагрузка на механические системы, такие как вал ротора, подшипники, редуктор, муфта

, цепной привод, подключенное оборудование и т.приводящий к преждевременному выходу из строя и простоям установки

Промышленный пускатель со звездой-треугольником для трехфазного асинхронного двигателя

• Основное преимущество использования пускателя со звезды на треугольник — снижение тока во время пуска двигателя . Пусковой ток снижен до 3-4 раз от тока прямого пуска. (2). Следовательно, пусковой ток уменьшается, падения напряжения во время пуска двигателя в системах уменьшаются.

• Преимущества стартера звезда-треугольник Недорого.Тепло не выделяется, или необходимо использовать устройство переключения ответвлений, что увеличивает эффективность. Пусковой ток снижен до 1/3 от постоянного пускового тока. Обеспечивает высокий крутящий момент на ампер линейного тока.

Пускатель звезда-треугольник

При пуске звезда-треугольник двигатель подключается в режиме «звезда-треугольник» в течение всего периода пуска. Когда двигатель достигает требуемой скорости, двигатель подключается в режиме ТРЕУГОЛЬНИКА

НАЗНАЧЕНИЕ СТАРТЕРА ЗВЕЗДА ТРЕУГОЛЬНИК

Во время пуска двигателя ротор находится в состоянии покоя и проскальзывает (между магнитным полем статора и ротором

) является большим, что вызывает большой бросок тока якоря (который в 6–7 раз превышает номинальное значение).

Этот большой ток может повредить обмотки статора и вызвать ожог двигателя.

2. Чтобы избежать этой ситуации, мы используем пускатель звезда-треугольник. Во время пуска соединения двигателя (соединения статора

) выполняются в режиме звезды, поэтому подаваемое напряжение уменьшается на 1 / √3 (фазовое напряжение = напряжение линии

/ √3), что снижает пусковой ток.

3. Когда ротор достигает скорости 80–90%, центробежный переключатель срабатывает, меняя соединения со звезды на

треугольник (подается полное линейное напряжение).

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ STAR DELTA STARTER

ПРЕИМУЩЕСТВА STAR DELTA STARTER:

• a) Стартеры Star-Delta широко используются из-за их относительно низкой цены.
b) Нет никаких ограничений на количество раз, которое они могут использовать.
c) Компоненты занимают очень мало места.
d) Пусковой ток снижен примерно до одной трети.

НЕДОСТАТКИ STAR DELTA STARTER:

• a) Пускатель можно применять только к двигателям, у которых есть доступ к шести выводам или клеммам.
b) Напряжение питания должно соответствовать номинальному напряжению двигателя для соединения треугольником.
c) Поскольку пусковой ток снижается примерно до одной трети номинального тока, пусковой момент также уменьшается до одной трети.
d) Если двигатель не достигает по крайней мере 90% своей номинальной скорости во время переключения со звезды на треугольник, пик тока будет таким же высоким, как и в режиме D.O.L. запускается, тем самым вызывая вредное воздействие на контакты контакторов, и система соединений не приносит пользы для электрической системы.

Изучите схематические чертежи пускателя со звездой-треугольником.

Принципиальная схема, работа и ее применение

Пуск асинхронного двигателя связан с большим пусковым током (намагничивание и нагрузка). Этот бросок тока, который в четыре-пять раз превышает ток полной нагрузки (FLC) двигателя, создает проблемы в системе питания и в самом двигателе. Для ограничения броска тока необходимо использовать подходящее пусковое устройство, понижающее напряжение. Стартер звезда-треугольник является одним из таких устройств.Можно добавить, что с улучшением системы питания и конструкции двигателя резко сократилось использование этих пускателей, эта тема теперь представляет больше академический интерес, чем практический.

Что такое пускатель звезда-треугольник?

Поскольку мы знаем, что трехфазный асинхронный двигатель имеет три обмотки, по одной на каждую фазу, и поскольку начало и конец каждой обмотки выведены, мы можем подключить их к источнику питания либо по схеме звезды, либо по схеме треугольника. Напряжение, приложенное к обмотке при соединении звездой, меньше напряжения на обмотке при соединении треугольником, поэтому, если двигатель запускается по схеме звезды, а затем преобразуется в треугольник через пускатель, это называется пускателем со звезды на треугольник.

пускатель звезда-треугольник

Схема пускателя звезда-треугольник

Подключение клемм двигателя в случае звезды и треугольника показано на рисунке выше, где U1 V1 W1 — пусковая клемма каждой обмотки, а U2 V2 W2 — отделка каждой обмотки. L1, L2 и L3 — клеммы подключения трехфазной линии. В этой конфигурации мы сделали эти подключения извне, для чего мы используем контакторы звезды и треугольника. Для этого также используются два кабеля. Работа пускателя со звезды на треугольник обсуждается ниже.

цепь пускового устройства звезда-треугольник

Вышеупомянутая схема управления пускателем звезда-треугольник, показывающая различные элементы цепи питания, будет использована для объяснения его работы.

При подаче управляющего напряжения на стартер, то оно включается через автоматический выключатель (автоматический выключатель), оно поступает на индикаторную лампу и однофазный предохранитель. При нажатии кнопки «Вкл», когда главный контактор получает питание, он одновременно включает контактор звезды, заставляя двигатель работать звездой.

Контактор звезды также подает питание на предварительно установленный таймер, который начинает отсчет. Когда таймер достигает установленного времени, он выключает контактор звезды и одновременно включает контактор треугольника. После этого двигатель продолжает работать по схеме треугольника до тех пор, пока он не будет выключен кнопкой Off.

Показанная схема представляет собой автоматический пускатель со звезды на треугольник, использующий таймер и контакторы, в недорогом приложении мы можем переключаться вручную с помощью переключателя.

Принцип работы

Для достижения пуска с пониженным напряжением двигатель сначала запускается по схеме звезды, что снижает фазное напряжение, поскольку VL делится на тройной корень.Ток, потребляемый двигателем, составляет почти треть. Уменьшение броска тока. Одновременно снижается крутящий момент двигателя. Но в случае треугольника, когда фазное напряжение равно линейному напряжению, линейный ток увеличивается на корень три, давая дополнительный крутящий момент двигателю.

При работе будет замечено, что на этапе перехода со звезды на треугольник в какой-то момент двигатель находится в состоянии разомкнутой цепи, т.е. когда контактор звезды разомкнулся, а контактор треугольник не замкнулся.В этот момент, поскольку магнитное поле все еще присутствует и двигатель находится в движении, он работает как генератор. Замыкание контактора треугольником вызывает сильный всплеск тока, что нежелательно. Чтобы уменьшить выброс, двигатель должен достичь примерно 80% своей скорости, прежде чем контактор треугольника будет включен. Для этого требуется настройка таймера, которая может варьироваться от приложения к приложению.

Преимущества и недостатки пускателя со звезды на треугольник

Преимущества

  • Метод пуска снижает пусковой ток почти в 2–3 раза по сравнению с FLC.в то время как в случае прямого пуска в сети по треугольнику пусковой ток почти в 6-8 раз превышает FLC.
  • Это сравнительно более дешевый метод пуска двигателя пониженным напряжением.
  • Они также используются в промышленности в качестве энергосберегающих устройств. Переключение со звезды на треугольник и наоборот выполняется в соответствии с требованиями к крутящему моменту двигателя. Если установлен большой двигатель и нагрузка составляет одну треть от мощности двигателя, то двигатель может работать звездой, уменьшая ток намагничивания двигателя, тем самым экономя мощность.

Недостатки

  • Иногда из-за низкого пускового момента двигатель может не набирать скорость. Крутящий момент составляет около 33% от момента полной нагрузки.
  • Переход со звезды на треугольник приведет к переходному процессу тока, который не подходит ни для двигателя, ни для системы питания.
  • Для перехода со звезды на треугольник начало и конец каждой обмотки должны быть выведены на клемму двигателя, в противном случае достаточно трех клемм.
  • Поскольку в пускателе происходит переход со звезды на треугольник, необходимы два отдельных кабеля от клеммы двигателя к пускателю.
  • Требуется более серьезное обслуживание по сравнению с прямым онлайн-запуском.

Применения стартера звезда-треугольник

Области применения:

  • Для очень ограниченного применения, например, небольших насосов мощностью 7,5 л.с., малых мельниц и т. Д., Где система питания не допускает сильных скачков тока из-за плохого регулирования.
  • Можно добавить, что промышленность находит новое применение этого стартера в качестве энергосберегающего устройства, выбирая между звездой и треугольником в соответствии с требованиями крутящего момента.

Часто задаваемые вопросы

1) Где используется пускатель со звезды на треугольник?

Как указывалось ранее, пускатель со звезды на треугольник остается очень ограниченным в использовании, когда регулирование системы очень плохое и требования к пусковому крутящему моменту низкие.

2) Что произойдет, если двигатель, подключенный по схеме треугольника, будет работать звездой?

Если электродвигатель, подключенный по схеме треугольника, работает по схеме звезды, он будет потреблять почти треть тока, который он потреблял по схеме треугольника, крутящий момент будет уменьшаться, поэтому, если требуемый крутящий момент высокий, он может вообще не работать.

3) Зачем нужен стартер?

Нам нужен стартер для запуска двигателя в соответствии с нашими требованиями, чтобы защитить и контролировать двигатель и систему питания, к которой он подключен.

4) Почему используется пускатель со звезды на треугольник?

Требуется ограничить пусковой ток двигателя, который может нанести вред двигателю и системе питания.

5) Какие бывают типы стартеров?

Ниже приведены различные пускатели пониженного напряжения

  • Пускатель с автотрансформатором
  • Устройство плавного пуска с электронным управлением
  • Пускатель с частотно-регулируемым приводом
  • Химические пускатели.
  • Чаще всего используется пускатель прямого включения.

Итак, это все о пускателе со звезды на треугольник. Можно сделать вывод, что, хотя область применения этого стартера сокращается, его изучение имеет первостепенное значение. Благодаря недавно найденному применению в качестве энергосберегающего устройства в отрасли, где требования к крутящему моменту сильно различаются. Это вызвало новый интерес к его исследованиям. Вот вам вопрос, какова функция пускателя со звезды на треугольник?

Пускатели для асинхронных двигателей с открытым и закрытым переходом звезда-треугольник (звезда-треугольник)

Пускатели звезда / треугольник, вероятно, являются наиболее распространенными стартеры напряжения в мире 50 Гц.(Известные как стартеры Уай / Дельта в Мир 60 Гц). Они используются для уменьшения приложенного пускового тока. двигателю во время запуска, чтобы уменьшить помехи и помехи в электроснабжении.
Во многих, если не в большинстве случаев, пускатель звезда / треугольник мало снижает проблемы, на самом деле это обычно их усугубляет.

Традиционно во многих регионах поставок требование установки пускателя пониженного напряжения на все двигатели с мощностью более 5 л.с. (4 кВт).Это положение было введено для того, чтобы уменьшить пуск текущее, но, к сожалению, решение было указано, а не результат.
Пускатель звезда / треугольник (или звезда / треугольник) — один из самых дешевых электромеханических пускатели пониженного напряжения, которые могут быть применены, и поэтому так популярно. Стартер звезда / треугольник соответствует требованиям, но не достигли желаемых результатов.

Пускатель звезда / треугольник состоит из трех контакторов, таймер и тепловая перегрузка.Контакторы меньше одиночных контактор, используемый в пускателях Direct On Line, поскольку они управляют обмоткой только токи. Ток через обмотку составляет 1 / корень 3 (58%) от ток в линии.
Есть два контактора, которые замкнуты во время работы, часто называемые как главный контактор и контактор треугольника. Это AC3 с рейтингом 58% от номинального тока двигателя. Третий контактор — звезда контактор, который пропускает только звездный ток, когда двигатель подключен в звезде.Ток в звездочке составляет одну треть тока в дельте, поэтому этот контактор может быть рассчитан на AC3 на одну треть номинальной мощности двигателя.

Операция

В работе главный контактор (KM3) и контактор звезды (KM1) сначала закрываются, а затем через некоторое время звезда контактор размыкается, а затем замыкается контактор треугольника (KM2). В управление контакторами осуществляется таймером (К1Т), встроенным в пускатель.Звездочка и Дельта электрически взаимосвязаны и предпочтительно механически. также заблокированы.
Фактически, есть четыре состояния:

  1. ВЫКЛ. Все контакторы разомкнуты
  2. Звездное государство. Контакторы Main и Star замкнуты, а треугольник контактор открыт. Двигатель соединен звездой и произведет один треть крутящего момента прямого впрыска при одной трети тока прямого впрыска.
  3. Открытое государство. Главный контактор замкнут, а контакторы треугольником и звездой открыты.На одном конце обмотки двигателя есть напряжение, но другой конец открыт, поэтому ток не может течь. Мотор имеет вращающийся ротор. и ведет себя как генератор.
  4. Delta State. Контакторы Main и Delta замкнуты. Звезда контактор разомкнут. Двигатель подключен к полному сетевому напряжению и полному напряжению. мощность и крутящий момент доступны.

Этот тип операции называется переключением с открытым переходом. потому что существует открытое состояние между состоянием звезды и состоянием треугольника.

Стартеры с открытым переходом.

Когда двигатель приводится в движение источником питания, либо на полной скорости или при частичной скорости в статоре возникает вращающееся магнитное поле. Этот поле вращается с линейной частотой. Поток от поля статора индуцирует ток в роторе, что, в свою очередь, приводит к возникновению магнитного поля ротора.
При отключении двигателя от питания (открытый переход) нет это вращающийся ротор внутри статора, и ротор имеет магнитное поле.Из-за низкого импеданса цепи ротора постоянная времени довольно долго, и действие поля вращающегося ротора в статоре таково, что генератора, который генерирует напряжение с частотой, определяемой скорость ротора. Когда двигатель снова подключается к источнику питания, он повторное включение на несинхронизированный генератор, и это приводит к очень высокий ток и переходный момент. Величина переходного процесса зависит от от соотношения фаз между генерируемым напряжением и линейным напряжением в момент закрытия, но обычно может быть намного выше, чем ток прямого включения и крутящий момент, что может привести к электрическим и механическим повреждениям.

Стартер с замкнутым переходом звезда / треугольник.

Есть методика уменьшения величины переключения переходные процессы. Это требует использования четвертого контактора и набора из трех резисторы. Резисторы должны быть такого размера, чтобы может течь по обмоткам двигателя, пока они находятся в цепи.
Вспомогательный контактор и резисторы подключаются через контактор треугольника. Во время работы, непосредственно перед размыканием контактора звезды, вспомогательный контактор замыкается, что приводит к протеканию тока через резисторы в звезду.Как только контактор звезды размыкается, ток может проходить через обмотки двигателя к питанию через резисторы. Эти резисторы затем закорочен контактором треугольника. Если сопротивление резисторов равно слишком высокие, они не будут поглощать напряжение, генерируемое двигателем, и будут бесполезно.

Фактически существует пять состояний:

  1. ВЫКЛ. Все контакторы разомкнуты
  2. Звездное государство.Контакторы Main [KM3] и Star [KM1] замкнуты. и контактор треугольник [KM2] разомкнут. Двигатель подключен звездой и будет производить одну треть крутящего момента прямого впрыска при одной трети тока прямого впрыска.
  3. Переходное состояние звезды. Двигатель подключен звездой, а резисторы подключаются через контактор треугольника через вспомогательный контактор [KM4].
  4. Закрытое переходное состояние. Главный контактор [KM3] замкнут, а Контакторы Дельта [KM2] и Звезда [KM1] разомкнуты.Ток течет через обмотки двигателя и переходные резисторы через КМ4.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Весь товар подлежит гарантии и сертифицирован!Все права защищены .RU