Виды электрических схем: Типы и виды электрических схем, классификация, назначение

Содержание

Типы и виды электрических схем, классификация, назначение

Собой электрическая схема представляет обычный документ, в котором правила ГОСТ обозначаются в связи между собой составными частями устройств, работающие за счет протекания электроэнергии. Если говорить простыми словами, то схема – это чертеж, на котором электрик обозначает места установки розеток, проводов и выключателей. В этой статье мы поговорим с вами, какие бывают типы и виды электрических схем, покажем краткое описание и рассмотрим основные характеристики каждого вида по отдельности.

Типы и виды электрических схем: общая класификация

Можно выделить типы и виды электрических схем, вот именно о них мы и попробуем поговорить в этой статье. Итак, согласно ГОСТу бывают следующие виды схем:

  1. Пневматические (П).
  2. Гидравлические (Г).
  3. Электрические (Э).
  4. Газовые (Г).
  5. Вакуумные (В).
  6. Деления (Д).
  7. Комбинированные (К).
  8. Оптические (О).
  9. Кинематические (К).
  10. Энергетические (Р).

Вот такие существуют виды, теперь выделить основные типы электрических схем:

  1. Структурные (1).
  2. Функциональные (2).
  3. Принципиальные (полные) (3).
  4. Соединений (монтажные) (4).
  5. Подключения (5).
  6. Общие (6).
  7. Расположение (7).
  8. Объединенные (8).

Исходя из основных обозначений, вы сможете понять, чем отличается тип от вида. Чтобы вам было понятней, попытаемся рассмотреть на живом примере, есть схема Э3, вот так она выглядит. Узнайте о том, как сделать токопроводящий клей своими руками – эта статья будет полезной для вас. 

Как видите, особых проблем на этом этапе возникнуть не должно, все предельно ясно и понятно. Далее мы с вами рассмотрим типы и виды электрических схем их назначение, и разберем каждый вид по отдельности. Хочется сразу заметить, все знать совсем не обязательно, ведь в жизни каждого человека используются несколько.

Назначение электрических схем

Структурная схема

Ее можно назвать самой простой и понятной для восприятия. С помощью нее можно узнать, какие электроустановка работает и из каких основных компонентов она состоит. Вот так она выглядит на фото, как вы понимаете, работать с ней всегда просто и удобно. Да и во время ремонта она всегда будет выступать лучшим помощником для вас, ведь в любой момент можно все прочитать, даже если эта схема была составлена несколько десятков лет назад.

Функциональная

Такая схема по своему назначению практически ничем не отличается от представленной выше. Есть только одно существенное различие – в этой схеме более подробно описываются все составляющие любой цепи. Посмотрите, как выглядит схема функциональная на чертеже.

Принципиальная 

Чаще всего принципиальная электрическая схема применяется в сложных распределительных сетях. Только она способна дать самое полное объяснение тому, как работает то, или иное электрооборудование.

Она делится на два вида:

  • Однолинейная.
  • Полная.

Однолинейная дает понятие о том, как работают первичные или так называемые силовые сети, чертеж у нее довольно простой.

Полная принципиальная схема делится еще на два вида: развернутая и элементарная. В зависимости от сложности электромонтажных работ и делают определенные пояснения. Чтобы вы поняли всю сложность такой схемы, просто посмотрите на ее пример.

Монтажная схема

Ее можно обозначить, как самую популярную, только она может рассказать о том, как нужно делать проводку в доме и где находятся провода. На таком типе схемы обозначают точное расположение элементов цепи, основные способы их соединения и цветовую маркировку. Следующим образом она выглядит.

Предназначение у такой схемы одно – помочь человеку сделать ремонт в своем доме и указать место, где будут или уже проходят все провода.

Объеденная

Данная схема включает в себя сразу несколько типов (документов). Она используется только в крайних ситуациях, когда по-другому невозможно обозначить все важные особенности цепи. Как правило, она используется только на больших предприятиях профессиональными электриками. Так что, сильно в ее суть можете не вникать.

Вот мы с вами и рассмотрели основные типы и виды электрических схем, которые существуют на данный момент. Как вы понимаете, при составлении каждой схемы нужно читать дополнительную информацию, напомним, это только классификация, каждая из них наделена еще своими основными особенностями.

Похожая статья по теме: Защита кабелей и проводов от грызунов, кошек и собак.

Схемы электрические. Типы схем

Привет Хабр!
Чаще в статьях приводят вместо электрических схем красочные картинки, из-за этого возникают споры в комментариях.
В связи с этим, решил написать небольшую статью-ликбез по типам электрических схем, классифицируемых в Единой системе конструкторской документации (ЕСКД)

.

На протяжении всей статьи буду опираться на ЕСКД.
Рассмотрим ГОСТ 2.701-2008 Единая система конструкторской документации (ЕСКД). Схемы. Виды и типы. Общие требования к выполнению.
Данный ГОСТ вводит понятия:

  • вид схемы — классификационная группировка схем, выделяемая по признакам принципа действия, состава изделия и связей между его составными частями;
  • тип схемы — классификационная группировка, выделяемая по признаку их основного назначения.


Сразу договоримся, что вид схем у нас будет единственный — схема электрическая (Э).
Разберемся какие типы схем описаны в данном ГОСТе.

Далее рассмотрим каждый тип схем более подробно применительно для электрических схем.
Основной документ: ГОСТ 2.702-2011 Единая система конструкторской документации (ЕСКД). Правила выполнения электрических схем.
Так, что же такое и с чем «едят» эти схемы электрические?
Нам даст ответ ГОСТ 2. 702-2011: Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи
.

Схемы электрические в зависимости от основного назначения подразделяют на следующие типы:


Схема электрическая структурная (Э1)

На структурной схеме изображают все основные функциональные части изделия (элементы, устройства и функциональные группы) и основные взаимосвязи между ними. Графическое построение схемы должно обеспечивать наилучшее представление о последовательности взаимодействия функциональных частей в изделии. На линиях взаимосвязей рекомендуется стрелками обозначать направление хода процессов, происходящих в изделии.
Пример схемы электрической структурной:

Схема электрическая функциональная (Э2)

На функциональной схеме изображают функциональные части изделия (элементы, устройства и функциональные группы), участвующие в процессе, иллюстрируемом схемой, и связи между этими частями.
Графическое построение схемы должно давать наиболее наглядное представление о последовательности процессов, иллюстрируемых схемой.
Пример схемы электрической функциональной:

Схема электрическая принципиальная (полная) (Э3)

На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии установленных электрических процессов, все электрические взаимосвязи между ними, а также электрические элементы (соединители, зажимы и т.д.), которыми заканчиваются входные и выходные цепи. На схеме допускается изображать соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям. Схемы выполняют для изделий, находящихся в отключенном положении.
Пример схемы электрической принципиальной:

Схема электрическая соединений (монтажная) (Э4)

На схеме соединений следует изображать все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, зажимы и т. д.), а также соединения между этими устройствами и элементами. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии. Расположение изображений входных и выходных элементов или выводов внутри графических обозначений и устройств или элементов должно примерно соответствовать их действительному размещению в устройстве или элементе.
Пример схемы электрической соединений:


Схема электрическая подключения (Э5)

На схеме подключения должны быть изображены изделие, его входные и выходные элементы (соединители, зажимы и т.д.) и подводимые к ним концы проводов и кабелей (многожильных проводов, электрических шнуров) внешнего монтажа, около которых помещают данные о подключении изделия (характеристики внешних цепей и (или) адреса). Размещение изображений входных и выходных элементов внутри графического обозначения изделия должно примерно соответствовать их действительному размещению в изделии.
На схеме следует указывать позиционные обозначения входных и выходных элементов, присвоенные им на принципиальной схеме изделия.
Пример схемы электрической подключений:

Схема электрическая общая (Э6)

На общей схеме изображают устройства и элементы, входящие в комплекс, а также провода, жгуты и кабели (многожильные провода, электрические шнуры), соединяющие эти устройства и элементы. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии.
Пример схемы электрической общей:

Схема электрическая расположения (Э7)

На схеме расположения изображают составные части изделия, а при необходимости связи между ними — конструкцию, помещение или местность, на которых эти составные части будут расположены.
Пример схемы электрической расположения:

Схема электрическая объединенная (Э0)

На данном виде схем изображают различные типы, которые объединяются между собой на одном чертеже.
Пример схемы электрической объединенной:
PS

Это моя первая статья на Хабре не судите строго.

Виды электрических схем

Электрическая схема — это документ, в котором отображены конструктивные элементы и связи между ними в едином энергетическом контуре. Графическое изображение помогает специалистам при монтаже, ремонте или модернизации системы. Для оборудования или объекта создаются несколько специализированных чертежей, которые отображают принцип функционирования в конкретном направлении. Правила создания схем отражены в стандарте ЕСКД, регламентированы ГОСТ 2.701-84 и ГОСТ 2.702-75.

Общие положения по классификации

Наименование схемы электрики состоит из буквенного (Э) и цифрового (0-7) обозначения. Условные изображения устанавливаются федеральными и отраслевыми стандартами. При создании обязательно используются унифицированные формы, размеры, параметры, маркировки и другие спецификации.

По назначению схемы подразделяются на следующие типы:

  • структурные — 1;
  • функциональные — 2;
  • принципиальные — 3;
  • монтажные — 4;
  • подключений — 5;
  • общие — 6;
  • расположений — 7;
  • объединенные — 0.

Различия между типами связаны с применяемым функционалом, описанием принципа действия или привязкой к другим инженерным системам. Например, наименование Э3 присваивается электрической принципиальной схеме. В проект может входить таблица ТЭ3, содержащая дополнительные пояснения и важную информацию.

Назначение электрических схем

Структурная дает первоначальное представление об устройстве контура, без использования специальных терминов и обозначений. Графическое изображение выполняет ознакомительную функцию, принцип эксплуатации показан стрелочками и пояснениями для понимания процесса.


Функциональная предназначена для детального отображения последовательности действия цепи. На чертеже указаны позиции основных узлов в виде блоков, а также схематично показана взаимосвязь между ними.


Принципиальная содержит все используемые в цепи элементы с указанием соединений между ними. С помощью документа можно узнать режимы работы оборудования, предусмотренные проектом входы и выходы. На практике используются два варианта: однолинейная (первичная, с силовыми линиями) и полная (развернутая, элементная) схема.


Монтажная отображает точное место нахождения всех деталей и проводки не только в привязке к помещению, но и относительно друг друга. Проектируются и отображаются способы соединения, предоставляется расшифровка параметров элементов. Это полная инструкция для электриков при реализации проекта и выполнении ремонтных задач.


Схема подключений показывает способ подсоединения к внешней энергетической системе. На чертеже видно, как можно соединить в единую цепь несколько независимых блоков, расположенных на разных площадях или в пределах одного распределительного узла. Если количество подключений велико, то дополнительно используются таблицы с указанием выводов и вариантов ввода в систему.


Общая показывает позицию узлов и комплектующих, а также соединяющие их провода, кабели и жгуты в упрощенном виде. Обязательным требованием является соблюдение масштаба к реальным размерам разводки. асположений схема точно указывает расстановку элементов системы, привязку к местности и помещению. Например, отображается расстояние и положение относительно дверей, окон или щитка. Допускается дополнение в виде двухмерного или трехмерного рисунка, если проект достаточно сложен по исполнению.


Объединенная строится путем наложения нескольких профильных чертежей. Соединение позволяет проектировщикам и монтажникам получить расширенное представление о цепи. Такой вариант используется, если в результате не получается нагромождения данных, усложняющих чтение документа.

Умея читать электрические схемы, можно без проблем разобраться в устройстве установки, бытового прибора или контура.

Типы электрических схем — презентация на Slide-Share.ru 🎓

1

Первый слайд презентации: Типы электрических схем

Изображение слайда

2

Слайд 2

При разработке силовых, осветительных сетей и автоматических систем управления применяют различные виды и типы электрооборудования, проводок, приборов и средств автоматизации, соединяемые с объектом управления и между собой по определённым схемам. В зависимости от используемого оборудования. приборов и средств автоматизации (электрических, пневматических, гидравлических и т.п.) разрабатываются различные схемы их соединений.. В соответствии с ГОСТ 2.701-76 схемы разделяются на следующие виды и типы: Виды схем: Электрические – Э; Гидравлические – Г; Пневматические – П; Кинематические – К; Комбинированные – С. Типы схем: Структурные – 1; Функциональные – 2; Принципиальные – 3; Соединений – 4; Подключений – 5; Общие – 6; Расположения – 7.

Изображение слайда

3

Слайд 3

Электрической   схемой называют упрощённое наглядное изображение связей между отдельными элементами электрической цепи, выполненное с помощью условных графических обозначений и позволяющие понять принцип действия электрической установки. Структурные  – отражают укрупнённую структуру системы управления и взаимосвязи между пунктами контроля и управления объектов. Основные элементы изображаются в виде прямоугольников, связи между элементами показывают стрелками, направленными от воздействующего элемента на воздействующий. Функциональная  схема – отражает функционально-блочную структуру отдельных узлов автоматического контроля, сигнализации, управления и регулирования технологического процесса и определяющие оснащение объекта управления приборами и средствами автоматизации. Принципиальные  схемы – отражают с достаточной полнотой состав элементов, вспомогательной аппаратуры и связей между ними, входящих в отдельный узел автоматизации и дающих детальное представление о принципе его работы. На основание принципиальных схем разрабатывают схемы внешних и внутренних соединений. Схемы соединений  – показывает сведения о внутренних соединениях изделия. Схема подключения  – содержит сведения о соединениях между отдельными элементами электроустановок и рабочих механизмов. Схемы общие  – содержат общие и специальные сведения по проекту.

Изображение слайда

4

Слайд 4

Схема расположения  – поясняет расположение аппаратов в пространстве, содержит сведения о путях и способах прокладки электропроводки. Из 7 типов электрических схем основными являются  принципиальные схемы, отражающие с достаточной полнотой и наглядностью взаимные связи между отдельными элементами, входящими в состав установки и дающие исчерпывающие сведения о принципе ее работы. Принципиальные схемы служат основанием для разработки схем соединений и подключений, составления спецификации и заявок на оборудование, приборы и аппараты на стадии подготовки к монтажу. На стадии монтажа, наладки и эксплуатации установки принципиальная схема является основным руководящим техническим документом. Принципиальные электрические схемы управления электропроводами: а) совмещенные; б) разнесенные.

Изображение слайда

5

Слайд 5: Электрическая схема соединений

Изображение слайда

6

Последний слайд презентации: Типы электрических схем

Изображение слайда

Виды схем и их назначение

ВИДЫ СХЕМ И ИХ НАЗНАЧЕНИЕ

 

Главная схема электрических соединений электростанции (под­станции) это совокупность основного электрооборудования (гене­раторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями.

Выбор главной схемы является определяющим при проектиро­вании электрической части электростанции (подстанции), так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собствен­ных нужд, схем вторичных соединений, монтажных схем и т.д.

На чертеже главные схемы изображаются в однолинейном ис­полнении при отключенном положении всех элементов установ­ки. В некоторых случаях допускается изображать отдельные эле­менты схемы в рабочем положении.

Все элементы схемы и связи между ними изображаются в соот­ветствии со стандартами единой системы конструкторской доку­ментации (ЕСКД).

В условиях эксплуатации наряду с принципиальной, главной схемой, применяются упрощенные оперативные схемы, в которых указывается только основное оборудование. Дежурный персонал каждой смены заполняет оперативную схему и вносит в нее необходимые изменения в части положения выключателей и разъединителей, происходящие во время дежурства.

При проектировании электроустановки до разработки главной схемы составляется структурная схема выдачи электроэнер­гии (мощности), на которой показываются основные функцио­нальные части электроустановки (распределительные устройства, трансформаторы, генераторы) и связи между ними. Структурные схемы служат для дальнейшей разработки более подробных и пол­ных принципиальных схем, а также для общего ознакомления с ра­ботой электроустановки.

На чертежах лих схем функциональные части изображаются в виде прямоугольников или условных графических изображении (рис. 1, а). Никакой аппаратуры (выключателей, разъедините­лей, транс форматоров тока и т.д.) на схеме не показывают.


Рис. 1. Виды схем на примере подстанции 110/10 кВ: а – структурная; б – упрощенная принципиальная; в – полная принципиальная; г – оперативная.

 

На рис. 1, б показана главная схема этой же подстанции без некоторых аппаратов — трансформаторов тока, напряжения, раз­рядников. Такая схема является упрошенной принципиальной схемой электрических соединений. На полной принципиальной схеме (рис. 1, в) указывают все аппараты пер­вичной цепи, заземляющие ножи разъединителей и отделителей, указывают также типы применяемых аппаратов. В оперативной схеме (рис. 1, г) условно показаны разъединители и заземляющие ножи. Действительное положение этих аппаратов (включено, отклю­чено) показывается на схеме дежурным персоналом каждой смены.

Согласно ГОСТ 2.710—81 буквенно-цифровое обозначение в электрических схемах состоит из трех частей: 1-я указывает вид элемента, 2-я — его порядковый номер, 3-я — его функцию. Вид и номер являются обязательной частью условного буквенно-циф­рового обозначения и должны присваиваться всем элементам и устройствам объекта. Указание функции элемента (3-я часть обо­значения) необязательно.

В 1-й части записывают одну или несколько букв латинского алфавита, во 2-й части — одну или несколько арабских цифр, характеризующих порядковый номер элемента. Например, QS1 — разъединитель № 1; Q2— выключатель № 2; QKсекционный выключатель.

Чем отличается принципиальная схема от монтажной: разновидности электрических схем

Современное электрическое оборудование в своей работе использует многочисленные технологические процессы, протекающие по различным алгоритмам.

Электромонтёру, напомним, что это специалист, который занимается эксплуатацией, монтажом, наладкой и ремонтом электрооборудования, нужно иметь правильную информацию обо всех особенностях электрооборудования. Для этого создают специальные электрические схемы.

Электросхема представляет собой документ, в котором по определённым правилам обозначаются связи между составными частями устройств, которые работают за счёт протекания электроэнергии.

Проще говоря, электрическая схема – это чертёж или графическое изображение электрооборудования и цепей связи.

Самая простая электрическая цепь может содержать всего лишь три элемента: источник, нагрузку и соединительные провода.

Но в реальности электрические цепи намного сложнее. Они, помимо основных элементов, содержат различные выключатели, рубильники, пускатели, контакторы, предохранители, реле в автоматах, электроизмерительные приборы, розетки, вилки и другое.

Всё это и указывается в электрической схеме и даёт понимание электромонтёрам о том, как работает установка и из каких элементов она состоит.

Основное назначение электросхемы – помощь в подключении установок, а также в поиске неисправности в цепи.

Электрические схемы создаются для электриков всех специальностей. Но каждая отдельная схема имеет свои особенности оформления. Чаще всего электрические схемы делят на принципиальные и монтажные.

Оба типа этих схем очень взаимосвязаны. Они дополняют информацию друг у друга, выполняются по единым стандартам, понятным всем пользователям, но имеют отличия в своём назначении.

Итак, принципиальная электрическая схема представляет собой графическое изображение электрической цепи, на котором все её элементы изображают в виде условных знаков.

На экране вы видите таблицу с условными обозначениями элементов электрической цепи.

Принципиальные электрические схемы создают в первую очередь для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания.

На экране вы видите простейшую принципиальную электрическую схему цепи.

Обратите внимание, она состоит из источника электрической энергии в виде батареи гальванических элементов, нагрузки в виде лампы накаливания и выключателя.

Что касается монтажных электрических схем, то они представляют собой чертежи или эскизы частей электрооборудования, по которым выполняется сборка, монтаж электроустановки. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.

На экране вы видите пример монтажной электрической схемы.

По этой схеме электромонтёр увидит, что все элементы электрической цепи крепятся на монтажной плате. Источником электроэнергии служит батарея от карманного фонарика. Монтажные провода, которые идут к батарее, припаиваются непосредственно к её электродам. А малогабаритная лампочка вворачивается в ламповый патрон, который закреплён на плате. В свою очередь монтажные провода крепятся к клеммам лампового патрона с помощью пайки, как и провода к выключателю. А контакты выключателя также закреплены на монтажной плате.

По указанным примерам схем можно сделать вывод, что основным отличием принципиальной и монтажной электрических схем является то, что принципиальная схема показывает соединение только основных элементов цепи, без комплектующей арматуры (например, электророзеток, вилок, ламповых патронов), а вот монтажная электрическая схема показывает точное (реальное) расположение элементов относительно друг друга, комплектующую арматуру и места подключения проводов.

Получается, что все монтажные схемы создаются на основе принципиальных и содержат всю необходимую информацию по производству монтажа электроустановки, включая выполнение электрических соединений. Без их использования создать качественно, надёжно и понятно для всех специалистов электрические подключения современного оборудования невозможно.

Для того чтобы правильно вычертить электрическую схему нужно обязательно соблюдать размеры и пропорции условных графических обозначений.

Линии связей между элементами схемы обязательно нужно проводить параллельно или взаимно перпендикулярно, соблюдая условие замкнутости цепи, наклонные линии не применять.

Итоги урока

На этом уроке мы говорили об электрических схемах. Узнали, что электросхема – это чертёж или графическое изображение электрооборудования и цепей связи. Основное назначение электрической схемы – помощь в подключении установок, а также в поиске неисправности в цепи. Электрические схемы чаще всего делят на принципиальные и монтажные. Принципиальные электрические схемы создают для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.

Все электрические схемы подразделены на несколько типов и каждый уважающий себя электрик просто обязан уметь их читать — понимать для чего они нужны, чем они отличны друг от друга, какую информацию несут, какие условные обозначения применяются на различных типах электрических схем и т.д. Многие люди, даже специалисты в электрике, путают понятия — «виды» и «типы» электросхем.

Виды схем: электрические, пневматические, гидравлические и комбинированные.

Комбинированные электросхемы применяются в проектах автоматизации различных технологических процессов, когда в проектах вместе с различными электрическими двигателями, аппаратами, датчиками одновременно используются элементы пневмоавтоматики и гидравлики. Такие схемы называют комбинированные электропневматические, электропневмогидравлические или электрогидравлические.

Типы электрических схем: функциональные, структурные, принципиальные и монтажные. Также существуют специальные типы схем, например, схемы внешних электрических и трубных проводок, схемы прокладки кабелей. По ним выполняют монтаж и подключение проводок к электрооборудованию и средствам автоматизации.

Самым распространенным типом электрических схем являются схемы принципиальные. Они дают четкое представление о работе электроустановки, т. к. на данных схемах показывают все электрические цепи. На принципиальных схемах условными обозначениями изображаются все электрические элементы, аппараты и устройства с учетом реальной последовательности их работы.
Все элементы на принципиальных схемах имеют буквенно-цифровые обозначения, которые выполняются согласно ГОСТ.

Как правило, схемы имеют дополнения: различные диаграммами и таблицами переключения контактов, которые поясняют порядок срабатывания сложных элементов, например, многопозиционных переключателей.

Схемы электрические принципиальные могут быть выполнены совмещенным или разнесенным способом. Совмещенным способом обычно выполняют относительно несложные принципиальные схемы. Схемы, в которых имеется несколько двигателей и развитая схема управления, в большинстве случаев выполняют разнесенным способом.

Для чтения принципиальных схем необходимо знать алгоритм функционирования схемы, понимать принцип действия приборов, аппаратов и систем автоматизации, на базе которых построена принципиальная схема.

Используйте на своих сайтах и блогах или на YouTube кликер для adsense

Используя принципиальную схему, можно выполнить проверку правильности электрических соединений при монтаже и наладке электрооборудования. Данные схемы незаменимы в эксплуатации и поиске неисправностей при ремонте.

На основе электрических принципиальных схем разрабатываются монтажные схемы. На этих схемах показывается реальное расположение электродвигателей, электрических аппаратов и устройств. Все элементы на монтажных схемах выполняются аналогично по тем же ГОСТ, как и на схемах принципиальных.

Все провода на монтажной схеме имеют свой уникальный номер, который после монтажа наносится на электрический провод. На таких схемах провода идущие в одном направлении часто объединяют в жгуты или пучки и показывают одной толстой линией.

Если на принципиальных схемах отдельные элементы одного и того же аппарата могут находится в разных частях схемы, например, катушка пускателя — в цепях управления, а контакты в силовых цепях, то на монтажной схеме все элементы того же пускателя располагаются рядом. При этом выводы аппарата на схеме нумеруются таким же образом, как на реальном аппарате.

Существует несколько вариантов выполнения монтажных схем. Самый популярный из них — это адресный метод. В этом методе провода на схемах не показывают, а только обозначают номерами около выводов электрических аппаратов. Хотя такую схему и проще выполнить при использовании компьютерных программ, она получается существенно сложнее и часто приводит к ошибкам при монтаже.

Кроме электрических принципиальных и монтажных схем существуют еще структурные и функциональные схемы. Они помогают разобраться с общим принципом действия какого-либо сложного электроустройства или отдельного его элемента. Структурные схемы от функциональных отличаются тем, что в них определяются и обозначаются основные функциональные части устройства, а на на функциональных схемах объясняются процессы, которые в них протекают, т. е. разъясняется принцип работы устройства.

Например, такие схемы очень популярны при описании принципа работы сложных электронных устройств. В этом случае развернутая принципиальная схема может только запутать и испугать, особенно не опытных электриков, которые в большинстве своем очень бояться различной электроники. А так, разобравшись по структурной схеме из каких отдельных блоков состоит устройство, как эти блоки между собой взаимодействуют, поняв по функциональной схеме как работают конкретные блоки и элементы устройства и обратившись уже затем к проблемной части на принципиальной схеме, можно быстро решить любую возникшую проблему.

Существуют также объединенные схемы. На таких схемах может быть показаны схемы нескольких типов, например электрическая принципиальная и монтажная. Структурная схема может быть совмещена с функциональной. И т.д.

Электрическая схема представляет собой документ, в котором по правилам ГОСТ обозначаются связи между составными частями устройств, работающих за счет протекания электроэнергии. Как Вы понимаете, этот чертеж дает понимание электрикам о том, как работает установка и из каких элементов она состоит. Основное назначение электросхемы – помощь в подключении установок, а также поиске неисправности в цепи. Далее мы расскажем, какие бывают виды и типы электрических схем, предоставив краткое описание, характеристики и примеры каждой разновидности.

Общая классификация

Для начала следует разобраться, что подразумевают под типами, а что под видами документов. Итак, согласно ГОСТ 2.701-84, существуют следующие виды схем (в скобках краткое обозначение):

Что, касается типов, основными считаются:

Исходя из указанных обозначений, можно по наименованию электросхемы понять ее вид и тип. Как пример, документ с названием Э3 является принципиальной электрической схемой. С виду она выглядит так:

Далее мы подробно рассмотрим, назначение и состав каждой из перечисленных типов электросхем. Рекомендуем перед этим ознакомиться со стандартными условными обозначениями на схемах, чтобы было еще проще понять, что собой представляет каждый вариант чертежа.

Назначение каждой электросхемы

Этот тип документа является наиболее простым и дает понимание о том, как работает электроустановка и из чего она состоит. Графическое изображение всех элементов цепи позволяет изначально увидеть общую картину, чтобы переходить к более сложному процессу подключения или же ремонта. Порядок чтения обозначается стрелочками и поясняющими надписями, что позволяет разобраться в структурной электрической схеме даже начинающему электрику. Принцип построения Вы можете увидеть на примере ниже:

Функциональная электросхема установки, по сути, не слишком отличается от структурной. Единственное отличие – более подробное описание всех составляющих узлов цепи. Выглядит этот документ следующим образом:

Принципиальная электрическая схема чаще всего применяется в распределительных сетях, т.к. дает самое раскрытое пояснение о том, как работает рассматриваемое электрооборудование. На таком чертеже должны обязательно быть указаны все функциональные узлы цепи и вид связи между ними. В свою очередь, принципиальная электросхема может иметь две разновидности: однолинейная или полная. В первом случае на чертеже изображают только первичные сети, называемые также силовыми. Пример однолинейного изображения Вы можете увидеть ниже:

Полная принципиальная схема может быть развернутой или элементной. Если электроустановка несложная и на один главный чертеж можно нанести все пояснения, достаточно сделать развернутый план. Если же Вы имеете дело со сложной аппаратурой, которая имеет в составе цепь управления, автоматизации и измерения, лучше разнести все отдельные узлы на разные листы, чтобы не запутаться.

Существует также принципиальная электросхема изделия. Этот тип документа представляет собой своеобразную выкопировку из общего плана, на которой обозначено только, как работает и из чего состоит определенный узел.

Эту разновидность электрических схем мы чаще всего используем на сайте, когда рассказываем о том, как самостоятельно выполнить монтаж электропроводки. Дело в том, что на монтажной электросхеме можно показать точное расположение всех элементов цепи, способ их соединения, а также буквенно-цифровые характеристики составляющих чертеж установок. Если взять за пример схему электропроводки в однокомнатной квартире, на ней мы увидим, где нужно размещать розетки, выключатели, светильники и остальные изделия.

Основное назначение монтажной схемы – руководство для проведения электромонтажных работ. Согласно подготовленному чертежу можно понять, где, что и как нужно подключать.

Кстати, монтажной также считается электросхема соединений, которая предназначена для подключения электрооборудования, а также соединения установок между собой в пределах одной цепи. При подключении бытовой техники руководствуются именно монтажной схемой.

Ну и последней из применяемых в распределительных сетях электросхемой является объединенная, которая может включать в себя несколько видов и типов документов. Ее используют в том случае, если можно без сильного нагромождения чертежа обозначить все важные особенности цепи. Используют объединенный проект чаще всего на предприятиях. Домашним мастерам такой тип схемы вряд ли может встретиться. Пример Вы можете увидеть ниже:

Существует также схема кабельных трасс, которая представляет собой упрощенный план прокладки кабельной линии к распределительным пунктам и трансформаторным подстанциям. Ее назначение аналогично монтажной электросхеме – с помощью данного документа монтажники руководствуются как вести линию от точки А к точке Б.

Напоследок рекомендуем просмотреть полезное видео по теме:

Вот мы и рассмотрели основные виды и типы электрических схем, а также их назначение и характеристики. Зная условные обозначения и имея под рукой всю нужную документацию совсем не сложно разобраться в том, как работает та или иная установка.

Будет интересно прочитать:

  • Виды электрического теплого пола
  • Какие бывают кабель каналы
  • Программы для черчения схем

При эксплуатации электрического оборудования нередко приходится иметь дело со схематическим обозначением на всевозможных графических изображениях. В них иногда бывает тяжело разобраться даже бывалым электрикам из-за большого разнообразия их типов, которые отличаются назначением и принципом исполнения. Именно поэтому необходимо детально рассмотреть деление на виды электрических схем и особенности каждой из них.

Само понятие подразумевает под собой комплекс условных обозначений, которые предназначены для определения каких-либо конструктивных элементов или частей. В соответствии с правилами и требованиями ГОСТ 2.701-84 выделяют несколько видов, отличающихся как сферой применения, так и типом устанавливаемых обозначений.

Разделение по видам приведено в таблице ниже:

Таблица: разновидности схема

Вид схемы Буквенное обозначение
1Электрические Э
2Гидравлические Г
3Пневматические П
4Газовые (кроме пневматических) X
5Кинематические К
6Вакуумные В
7Оптические Л
8Энергетические Р
9Деления Е
10Комбинированные С

Так, для одного и того же устройства или объекта, при необходимости, могут разрабатываться сразу несколько схем, поясняющих принцип подключения, работы или реализации функций. Для электротехнического оборудования схемы подразделяются на несколько типов:

  • Принципиальные или полные – обозначаются цифрой 3;
  • Структурные – обозначаются цифрой 1;
  • Функциональные – обозначаются цифрой 2;
  • Общие – обозначаются цифрой 6;
  • Монтажные или схемы соединений – обозначаются цифрой 4;
  • Подключений – обозначаются цифрой 5;
  • Расположения и объединенные – обозначаются цифрой 7 и 0 соответственно.

При составлении конкретной схемы используется, как правило, буквенно-цифровые обозначения, к примеру, для электрической функциональной маркировка будет выглядеть как Э2, для газовой структурной Х1 и т.д.

Принципы графического обозначения каких-либо элементов на схемах определяются отраслевыми и государственными стандартами. Они же устанавливают требования к расположению составных частей, их размеры, нанесение шифров, наименований или маркировок.

Определение и назначение каждой электросхемы

Каждый вид электрической схемы реализуется в виде чертежа или графического изображения, выполненного вручную или посредством печатных приспособлений. Основные отличия обусловлены описанием тех или иных функций, указанием последовательности, принципа действия или привязкой к чему-либо.

Принцип построения схем регламентируется стандартом ЕСКД, который реализуется рядом нормативных документов, среди которых достаточно важными считаются ГОСТ 2.702-2011, а также ГОСТ 2.708-81.

Они устанавливают:

  • требования к изображениями;
  • принципам расположения компонентов;
  • оформления чертежей;
  • нанесению обозначений и технических характеристик.

Далее детально рассмотрим особенности каждого вида электрических схем.

Принципиальная (полная)

Принципиальная схема предназначена для пояснения принципа действия того или иного устройства. Наиболее часто ее применяют для различных распределительных устройств в силовых цепях, каких-либо приборов и т.д.

Пример принципиальной схемы

На принципиальных схемах обязательно указываются действующие электрические компоненты и проводимые связи между ними, силовые контакты и электрически узлы, соединяющие радиодетали. В свою очередь, такие электрические схемы подразделяются на два подвида: однолинейные и полные.

Однолинейные также называют первичными цепями, на них, как правило, обозначается силовая часть оборудования или электроустановки. С другой стороны однолинейная схема широко распространена для обозначения трехфазных цепей, где все оборудование на трех фазах имеет идентичное расположение и подключение. За счет чего в однолинейном варианте демонстрируется только одна фаза с некоторыми отступлениями в местах, где оборудование на разных фазах отличается.

Кроме силовых цепей существуют и слаботочные, для питания защит, средств измерительной техники и различных электронных устройств. Такие схемы вторичных цепей называются полными, так как показывают полную картину всего оборудования, выделяя даже состояние некоторых контактов и частей оборудования. Увы, из-за сложности современной аппаратуры, далеко не все устройства можно изобразить на одном листе, поэтому полные бывают элементными и развернутыми.

Полная схема

На структурных схемах осуществляется общее изображение устройства, все компоненты или отдельные узлы которого выполняются в виде блоков, обозначающих оборудование, а связи между блоками могут говорить о тех или иных операциях, связующих отдельные блоки между собой.

Структурная схема

Этот тип графического изображения призван дать общее представление об устройстве и принципе действия, поэтому на них часто проставлены стрелочки, имеются поясняющие надписи и прочие обозначения, упрощающие понимание процесса или поясняющие работу прибора. Для работы с таким изображением не нужно иметь электротехнического образования, так как ее обозначения будут понятны даже не искушенному в электричестве человеку.

Функциональная схема является более детальным вариантом структурной, на ней также все элементы изображаются отдельными блоками. Главное отличие в том, что каждый блок имеет уже индивидуальную форму обозначения в соответствии с его функциональным назначением. Возможно также выделение различных видов связей между частями, объединение деталей в блоки и т.д.

Функциональная схема

Общая

Общая схема предназначена для изображения мест расположения электрических аппаратов на местности или в пределах электроустановки. Определяет основные типы электрических соединений этих аппаратов, места их реализации и т.д. Данный тип является обязательным при разработке различных конструкторских документов на этапе проектирования. Но кроме общей, конструкторская документация включает в себя еще две не менее важные схемы – соединений и подключений.

Общая схема

Схема соединений (монтажная)

Схема соединения используется для графического изображения мест подключения электрооборудования. На ней указываются конкретная привязка к частям зданий, распредустановок, по отношению к которым и должен осуществляться монтаж электрооборудования, благодаря чему такой тип схем еще называют монтажными.

Наиболее часто монтажные схемы используются для обозначения разводки электрических цепей в здании, широко применяются во время ремонта, чтобы обозначить места прокладки проводки, установки распределительных коробок и вывода точек подключения к приборам и контактам аппаратов.

Монтажная схема

На рисунке выше приведен пример монтажной схемы, как видите, для каждого варианта могут устанавливаться свои условные обозначения, указываемые отдельно. Имеются привязки к каждой конкретной комнате и планируемому электрооборудованию, осветительным приборам и т.д. В дальнейшем она используется не только для монтажных работ, но может применяться и в процессе эксплуатации.

Подключений

Схема подключения используется для указания принципов соединения различных электрических или электронных блоков в единую систему. Иногда предполагается, что блоки имеют территориальное разделение, в других ситуациях они могут находиться в пределах одного распределительного устройства, шинной сборки или стойки. Ее пример приведен на рисунке ниже:

Схема подключения

В зависимости от сложности графического изображения и количества отображаемых подключений оно может дополняться таблицами соединений для пояснения порядка расположения выводов и подключения изделия.

Расположения

Также входит в состав проектной документации и помогает определить местоположения всех частей электроустановки относительно друг друга и других значимых объектов.

Схема расположения

На схеме расположения могут наноситься:

  • составные части всего объекта, а при необходимости и связи между всеми частями;
  • соединительные провода, кабели, шнуры и т.д. в упрощенном виде;
  • наименование каждого элемента, его тип и документ, на основании которого он применяется.

Такое изображение может выполняться как в двухмерном, так и в трехмерном пространстве. Но в любом случае изображение должно соблюдать масштаб по отношению к натурным размерам и расстояниям.

Трехмерная схема расположения Объединенная схема

Объединенная схема строиться на основании нескольких типов изображений, рассмотренных нами ранее. Такое построение призвано упростить работу электромонтажников или проектировщиков за счет объединения различной информации в единое целое. Но на практике далеко не всегда целесообразно объединять несколько типов графических элементов. Это связанно со сложностью некоторых приборов и устройств, в которых из-за нагромождения элементов довольно сложно объединять разные изображения.

Схемы электрические | Лаборатория Электронных Средств Обучения (ЛЭСО) СибГУТИ

6.1 Виды и типы схем, основные термины

6.1.1 Схема – документ, на котором показаны в виде условных графиче-ских изображений или обозначений составные части изделия и связи между ними. Схемы в зависимости от видов элементов и связей, входящих в состав изделия, подразделяют на виды. В зависимости от основного назначения схемы подразделяют на типы. Наименования видов и типов схем и их кодовое обозначение приведены в таблицах 6.1 и 6.2.

Таблица 6.1 – Виды схем
Наименование вида схемКод
ЭлектрическиеЭ
ГидравлическиеГ
ПневматическиеП
ГазовыеХ
КинематическиеК
ВакуумныеВ
ОптическиеЛ
ЭнергетическиеР
ДеленияЕ
КомбинированныеС
Таблица 6.2 – Типы схем
Наименование типа схемКод
Структурные1
Функциональные2
Принципиальные (полные)3
Соединений (монтажные)4
Подключения5
Общие6
Расположения7
Объединенные0

В таблице 6.2 в скобках приведены наименования для схем электрических энергетических сооружений.

Код схемы должен состоять из буквенной части, определяющей вид схе-мы, и цифровой части, определяющей тип схемы, например, схема электрическая принципиальная будет иметь код Э3.

6.1.2 Для изделия, состоящего из элементов разных видов, разрабатывают несколько схем соответствующих видов одного типа, например, схема электрическая принципиальная и схема гидравлическая принципиальная для передающего устройство с жидкостным охлаждением. Вместо двух схем возможна разработка одной схемы комбинированной, например, электрогидравлической для приведенного выше примера.

6.1.3 На схемах одного вида допускается изображать элементы схем другого вида, которые непосредственно влияют на работу изделия, а также элементы и устройства, не входящие в изделие, на которое разработана схема, но необходимые для разъяснения принципов работы изделия. Графическое обозначение таких элементов и устройств отделяют (или обводят) на схеме штрих-пунктирными линиями, равными по толщине линиям связи, и помещают надписи, указывающие местонахождение этих элементов и необходимые данные.

6.1.4 Схему деления изделия на составные части выпускают только для определения состава изделия.

6.1.5 К схемам или взамен схем в случаях, установленных правилами выполнения конкретных схем, выпускают в виде самостоятельных документов таблицы, которые содержат сведения о расположении устройств, соединениях, местах подключения и другую необходимую информацию. Таким документам присваивают код соответствующей схемы, перед которым проставляют букву Т. Например, код таблицы соединений к электрической схеме соединений будет иметь код ТЭ4.

В основной надписи (графа 1) данного документа после наименования изделия приводят наименование документа «Таблица соединений».

Таблицы соединений записывают в спецификацию изделия после схем, к которым они выпущены, или вместо них.

 

6.1.6 В необходимых случаях допускается выпускать схемы совмещенные, когда на схемах одного типа помещают сведения, характерные для схем другого типа. Например, на схеме расположения изделия показывают соединения его частей. При выполнении схем совмещенных должны быть соблюдены все правила, установленные для схем соответствующих типов.

Номенклатура, наименования и коды совмещенных схем устанавливаются отраслевыми стандартами.

6.1.7 В тех случаях, когда схемы установленных типов и видов не обеспечивают передачу необходимых сведений об изделии (в связи с его особенностями), допускается разрабатывать схемы прочих видов и типов, номенклатура, наименования и коды которых устанавливаются отраслевыми стандартами.

6.1.8 Допускается вместо схемы определенного вида и типа, выполненного на нескольких листах, выполнять совокупность схем того же вида и типа, но при этом каждая схема должна быть оформлена как самостоятельный документ.

В данном случае в наименовании схемы с целью наглядности допускается указывать наименование функциональной группы, например, схема электрическая принципиальная подмодулятора, схема электрическая принципиальная модулятора. Каждой схеме в этом случае присваивают обозначение как самостоятельному документу и, начиная со второй схемы, к коду схемы в обозначении добавляют через точку порядковый номер, например ХХХХ.ХХХХХХ.007Э3, ХХХХ.ХХХХХХ.007Э3.1, ХХХХ.ХХХХХХ.007Э3.2 и т.д.

6.1.9 В стандартах по правилам разработки схем использованы термины, пояснения которых приведены ниже.

Элемент схемы – составная часть схемы, которая выполняет определен-ную функцию в изделии и не может быть разделена на части, имеющие самостоятельное назначение и собственные условные графические и буквенно-цифровые обозначения (резистор, транзистор и т.п.).

Устройство – совокупность элементов, представляющая единую конструкцию (набор транзисторов, блок, плата и т.п.).

Функциональная группа – совокупность элементов, выполняющих в изделии определенную функцию и не объединенных в единую конструкцию.

Функциональная часть – элемент, устройство, функциональная группа.

Функциональная цепь – линия, канал, тракт определенного назначения (канал звука, видеоканал и т.п.).

Линия взаимосвязи – отрезок линии, указывающий на наличие связи между функциональными частями изделия.

Буквенные коды элементов схем электрических приведены в приложении Л, примеры выполнения схем – в приложении М данного пособия.

Основные электрические схемы-компоненты, типы

Что такое электрическая цепь?

Электрическая цепь — это замкнутый путь для передачи электрического тока через среду электрических и магнитных полей. Поток электронов через петлю составляет электрический ток. Электроны входят в цепь через «Источник», которым может быть батарея или генератор. Источник обеспечивает электроны энергией, создавая электрическое поле, которое обеспечивает электродвижущую силу.

Электроны покидают цепь через нагрузку на землю, замыкая тем самым замкнутый путь. Нагрузкой или выходом может быть любое простое бытовое устройство, такое как телевизор, лампа, холодильник, или сложная нагрузка, например, на гидроэлектростанции.

Простая электрическая цепь состоит из источника (например, батареи), проводов в качестве проводящей среды и нагрузки (например, лампочки). Батарея обеспечивает необходимую энергию для потока электронов к лампочке.

Основные элементы схемы

Как упоминалось выше во введении, схема представляет собой соединение элементов между собой. Эти элементы подразделяются на активные и пассивные в зависимости от их способности генерировать энергию.

Активные элементы схемы

Активные элементы — это элементы, которые могут генерировать энергию. Примеры включают батареи, генераторы, операционные усилители и диоды. Обратите внимание, что в электрической цепи элементы источника являются наиболее важными активными элементами.

Источники энергии, будь то источник напряжения или тока, бывают двух типов — независимые и зависимые источники. Примером независимого источника является батарея, которая обеспечивает постоянное напряжение в цепи, независимо от тока, протекающего через клеммы.

Примером зависимого источника является транзистор, который обеспечивает ток в цепи в зависимости от приложенного к нему напряжения. Другой пример — операционный усилитель, который выдает напряжение в зависимости от дифференциального входного напряжения, приложенного к его клеммам.

Пассивные элементы схемы

Пассивные элементы

можно определить как элементы, которые могут управлять потоком электронов через них. Они либо увеличивают, либо уменьшают напряжение. Вот несколько примеров пассивных элементов.

Резистор : резистор препятствует прохождению через него тока. Для линейной цепи применим закон Ома, который гласит, что напряжение на резисторе прямо пропорционально току, протекающему через него, а пропорциональная константа — это сопротивление.

Индуктор : Индуктор накапливает энергию в форме электромагнитного поля. Напряжение на катушке индуктивности пропорционально скорости изменения тока, протекающего через нее.

Конденсатор : Конденсатор накапливает энергию в виде электростатического поля. Напряжение на конденсаторе пропорционально заряду.

Типы электрических цепей

Цепи постоянного тока

В цепях постоянного тока применяемое возбуждение является постоянным источником.В зависимости от типа соединения активных и пассивных компонентов с источником цепь можно разделить на последовательные и параллельные цепи.

Цепи серии

Когда несколько пассивных элементов соединены последовательно с источником энергии, такая цепь называется последовательной цепью. В последовательной цепи через каждый элемент протекает одинаковое количество тока, и напряжение делится. В последовательной цепи, поскольку элементы соединены в линию, если среди них есть неисправный элемент, полная цепь действует как разомкнутая цепь.

  • Для резистора, подключенного в цепи постоянного тока, напряжение на его выводах прямо пропорционально току, проходящему через него, таким образом, сохраняется линейная зависимость между напряжением и током. Для резисторов, соединенных последовательно, общее сопротивление равно сумме всех значений сопротивлений.
  • Для конденсаторов, соединенных последовательно, общая емкость равна сумме обратных величин всех значений емкости.
  • Для катушек, соединенных последовательно, общая индуктивность равна сумме всех значений индуктивности.
Параллельные схемы

В параллельной схеме один вывод всех элементов подключен к одному выводу источника, а другой вывод всех элементов подключен к другому выводу источника.

В параллельных цепях напряжение в параллельных элементах остается неизменным, а ток изменяется. Если среди параллельных элементов есть неисправный элемент, это не повлияет на схему.

  • Для резисторов, соединенных параллельно, полное сопротивление равно сумме обратных величин всех значений сопротивлений.
  • Для конденсаторов, соединенных последовательно, общая емкость равна сумме всех значений емкости.
  • Для катушек, соединенных последовательно, общая индуктивность равна сумме всех обратных значений индуктивности.

Цепи переменного тока

Цепи переменного тока — это те цепи, в которых элементом возбуждения является источник переменного тока. В отличие от источника постоянного тока, который является постоянным, источник переменного тока имеет переменные ток и напряжение через равные промежутки времени. Как правило, для приложений с большой мощностью используются цепи переменного тока.

Простая схема переменного тока с использованием сопротивления

Для переменного тока, проходящего через резистор, соотношение тока и напряжения зависит от фазы и частоты источника питания. Приложенное напряжение будет постоянно меняться со временем, и закон Ома можно использовать для расчета тока, проходящего через резистор в любой момент времени.

Другими словами, если в момент времени t секунд значение напряжения равно v вольт, ток будет:

i = v / R

, где значение R всегда постоянно.

Приведенное выше уравнение показывает, что полярность тока зависит от полярности напряжения. Кроме того, как ток, так и напряжение достигают своей максимальной и нулевой точек одновременно. Таким образом, для резистора напряжение совпадает по фазе с приложенным током.

Рассмотрим схему ниже

Когда переключатель замкнут, ток проходит через резистор и определяется уравнением ниже

i = Im cos (ωt + Φ)

Напряжение, V = IR = RIm cos (ωt + Φ)

Для резистора значения напряжения и тока будут расти и падать одновременно.Следовательно, разность фаз между напряжением и током равна нулю.

Цепь переменного тока с использованием чистой индуктивности

Катушка из тонкой проволоки, намотанная на цилиндрический сердечник, известна как индуктор. Сердечник может быть воздушным сердечником (многослойным полым) или железным сердечником. Когда через индуктор протекает переменный ток, магнитное поле также изменяется. Это изменение магнитного поля приводит к индуцированному напряжению на катушке индуктивности. Согласно закону Ленца, индуцированное напряжение таково, что оно противодействует протеканию через него тока.

Во время первого полупериода напряжения источника индуктор накапливает энергию в виде магнитного поля, а в следующей половине он выделяет энергию.
Индуцированная ЭДС определяется следующим образом:

e = Ldi / dt

Здесь L — собственная индуктивность.

Теперь, приложенное входное напряжение переменного тока определяется как v (t) = Vm Sinωt

Ток через катушку индуктивности: I (t) = Im Sinωt

Таким образом, напряжение на катушке индуктивности будет

e = L di / dt = wLI_m cos⁡wt = wLI_m sin⁡ (wt + 90)

Таким образом, для катушки индуктивности напряжение опережает ток на 90 градусов.

Теперь сопротивление катушки индуктивности называется реактивным сопротивлением и выражается как

Таким образом, полное сопротивление или сопротивление пропорционально скорости изменения тока катушки индуктивности.

Схема переменного тока с конденсатором

При постоянном питании постоянного тока пластины конденсатора заряжаются до приложенного напряжения, временно накапливают этот заряд и затем начинают разряжаться. Когда конденсатор полностью заряжен, он блокирует ток, поскольку пластины насыщаются.


Когда на конденсатор подается напряжение переменного тока, скорость заряда и разряда зависит от частоты источника питания.Напряжение на конденсаторе отстает от протекающего через него тока на 90 градусов.

Ток через конденсатор определяется как

e = Ldi / dt

Емкостное реактивное сопротивление определяется как:

e = Ld / idt

Таким образом, полное сопротивление или реактивное сопротивление источника переменного тока обратно пропорционально частоте источника питания. .

Что такое короткое замыкание и обрыв?

Короткое замыкание

Соединение с низким или незначительным сопротивлением между двумя проводниками в электрической цепи называется коротким замыканием.Короткое замыкание приведет к выделению большего количества тепла и, в конечном итоге, к искрам, пламени или дыму.

Короткое замыкание может быть вызвано неплотными контактами, неисправной изоляцией, резким пережевыванием проводов вредителями и старыми приборами. Один из лучших и часто используемых методов предотвращения повреждений в результате короткого замыкания — это использование предохранителя или автоматического выключателя.

Обрыв цепи

Обрыв цепи вызван обрывом в электрической цепи. Когда какой-либо элемент в цепи остается неподключенным, создается разомкнутая цепь.В то время как напряжение на разомкнутой цепи имеет некоторое конечное значение, ток равен нулю.

Защита цепи

Преднамеренная установка слабого звена в электрической цепи называется защитой цепи. Целью этой установки является предотвращение повреждений из-за короткого замыкания, превышения температуры и других повреждений.
Устройство защиты цепи может быть предохранителем, автоматическим выключателем, тиристором или переключателем.

Виды электрических схем со схемами

Электрическая цепь — это токопроводящий путь для прохождения тока, называется электрической цепью.Проводящий провод используется для связи между источником напряжения и нагрузкой. Переключатель ВКЛ / ВЫКЛ также используется между источником и нагрузкой. В этой статье мы собираемся подробно объяснить типы электрических цепей.

Типы электрических цепей

Существует пять (5) основных типов электрических цепей: эти цепи делятся по своему характеру следующим образом

  • Замкнуть цепь
  • Обрыв цепи
  • Короткое замыкание
  • Последовательная цепь
  • Параллельная цепь

Открытый и закрытый Цепь: Типы электрических цепей

Поскольку цепь не завершена и переключатель находится в выключенном положении, это состояние называется разомкнутой цепью, а когда нагрузка работает сама по себе в цепи, это называется замкнутой цепью.в этом случае величина текущего расхода зависит от нагрузки. Оба условия показаны на приведенной ниже диаграмме:

Короткое замыкание

, когда (+ и -) точки подключения напряжения в цепи соединяются друг с другом по какой-либо причине, это называется коротким замыканием. В этой ситуации ток максимален.
В основном короткое замыкание происходит, когда электрические провода соединяются из-за короткого замыкания в нагрузке.

Последовательная цепь

Когда две или более нагрузки соединены друг с другом последовательно, это называется последовательной схемой.например, лампочка, светодиод, вентилятор и т. д. В последовательной цепи, если одна нагрузка получает предохранитель, то остальные не будут получать питание и не будут работать. Принципиальная схема последовательной и параллельной цепи приведена ниже.


Параллельная цепь

, когда две или более нагрузки соединены друг с другом бок о бок, это называется параллельной цепью. В этом случае или типе схемы допустимая нагрузка на входное напряжение у всех нагрузок одинакова, но мощность нагрузки может быть разной.В этой схеме, если одна нагрузка или лампочка перегорят, остальные все равно получат питание. Принципиальная схема последовательной и параллельной цепи приведена ниже.

Разница между последовательной и параллельной цепями

Основная разностная серия и параллельная цепь описаны на данной принципиальной схеме.

Основы электрических цепей: компоненты и типы — видео и стенограмма урока

Цепи серии

Когда я посетил магазин в день открытия, они все еще не наняли достаточно кассиров, поэтому был открыт только один кассовый аппарат.Каждый, кто стоял в очереди, должен был пройти через этот реестр, если хотел, чтобы его выписали. Осознавая тот факт, что очередь была длинной, каждый покупатель как можно быстрее спешил, чтобы разгрузить, оплатить и упаковать свои товары. Это оставило их совершенно истощенными и потерявшими всякую энергию к тому моменту, когда они собирались выходить на стоянку. Чтобы скоротать время, пока я ждал, я отслеживал, как быстро люди расплачиваются, и считал два клиента в минуту. Это означало, что каждую минуту уходили два человека, а очередь сокращалась на два человека.

Если бы мы построили электрическую цепь, представляющую контрольную линию, она выглядела бы как последовательная цепь , потому что она обеспечивает только один путь для электронов, проходящих через сопротивление. Электроны текут по цепи, потому что они пытаются попасть от отрицательного конца батареи к положительному. Это похоже на то, как клиенты пытаются выйти из торгового района на парковку, пройдя через кассу. Таким образом, лампочка похожа на кассовый регистр, потому что они оба действуют как сопротивление, препятствующее потоку.Как и покупатели в кассе, электроны проходят через сопротивление лампы так быстро, как только могут, и в результате они теряют почти всю свою энергию. Напряжение — это в основном измерение того, сколько энергии имеет электрон, поэтому, когда энергия падает, падает и напряжение. В этом случае электроны начинают с того же напряжения, что и батарея, и теряют почти все его, проходя через лампочку.

Когда электроны сталкиваются с сопротивлением колбы, они теряют почти всю свою энергию.

Вернувшись в магазин, моя удача повернулась к худшему. Как будто было недостаточно открыть только одну кассу, менеджер магазина решил установить контрольно-пропускной пункт у двери. Каждый покупатель должен был разгрузить свои сумки и позволить охраннику проверить каждый предмет в его квитанции, прежде чем они могли уйти. Излишне говорить, что это значительно замедлило ход событий. В результате этого дополнительного сопротивления произошла забавная вещь. Поскольку контрольно-пропускной пункт поддерживал ситуацию, клиенты на кассе больше не торопились, потому что знали, что в конечном итоге будут ждать на контрольно-пропускном пункте, если они пойдут слишком быстро.В результате замедления они не тратили всю свою энергию на кассу, и у них оставалось достаточно энергии, чтобы пройти через контрольно-пропускной пункт. Однако к тому времени, когда они прошли через КПП и вышли на стоянку, они снова были полностью измотаны. Столкнувшись с еще более длительным ожиданием, я снова подсчитал, как быстро люди двигались, и обнаружил, что дополнительное сопротивление контрольно-пропускного пункта замедлило работу до одного клиента в минуту.

Чтобы представить контрольно-пропускной пункт в нашей электрической цепи, мы могли бы сделать это, добавив вторую лампочку, которая добавляет еще одно сопротивление.Общее сопротивление цепи теперь становится суммой сопротивлений двух лампочек, которая определяет, насколько быстро электроны могут проходить через цепь. Каждый раз, когда к последовательной цепи добавляется сопротивление, общее сопротивление увеличивается, а это означает, что ток будет уменьшаться. В результате уменьшенного тока электроны, проходящие через первую лампочку, не теряют столько напряжения, сколько раньше. Это означает, что у них все еще остается какое-то напряжение, когда они добираются до второй лампочки. Однако при прохождении через лампочку расходуется оставшееся напряжение, и к тому времени, когда они возвращаются в батарею, они возвращаются к нулю.Количество потерянного напряжения в каждой лампочке будет зависеть от сопротивлений, но одно всегда можно сказать наверняка: сумма напряжений, потерянных на каждом сопротивлении, всегда будет равна напряжению батареи. Это верно независимо от того, сколько лампочек или сопротивлений добавлено в цепь.

Сумма сопротивлений будет равна общему сопротивлению цепи.

Важно отметить, что даже несмотря на то, что напряжение, теряемое в каждой лампочке, может быть разным, ток, протекающий через них, точно такой же.Фактически, ток одинаков во всех частях последовательной цепи. Точно так же, как следующий покупатель не мог перейти к регистру, пока не был сделан предыдущий, электроны не могут течь в лампочку, если другие электроны не вытекут. Именно это последовательное движение электронов дает название последовательной цепи.

Parallel Circuits

Не испугавшись моего первого опыта работы в Mega-Mart, я вернулся на следующей неделе и обнаружил, что теперь открыты два регистра и больше нет контрольно-пропускного пункта.Как и следовало ожидать, новый кассир оказался не таким быстрым, как другой. В то время как более опытный кассир мог звонить двум покупателям каждую минуту, новый кассир мог звонить только одному покупателю за минуту. Это означало, что каждую минуту трое клиентов уходили на стоянку, а очередь ожидания сокращалась на три человека. Таким образом, даже несмотря на то, что новая кассирша работала медленнее, клиентов было больше, чем если бы ее не было. Еще я заметил, что после того, как контрольно-пропускной пункт был удален, клиенты снова начали спешить по реестрам так быстро, как только могли, не желая задерживать всех.В свою очередь, они израсходовали всю свою энергию и шли на парковку совершенно измотанными.

Если мы изменим нашу электрическую схему, чтобы представить два открытых регистра, она стала бы параллельной схемой , которая обеспечивает несколько путей для электронов, проходящих через сопротивления. Поскольку на каждом пути есть только одно сопротивление, электроны будут проходить через лампочку так быстро, как только могут, и потеряют все свое напряжение. Это означает, что напряжение на каждом сопротивлении всегда будет равно напряжению батареи.

Ток, протекающий через каждую лампочку, будет зависеть от ее сопротивления. Как мы видели на кассах, больше клиентов проходило через кассу с кассиром, который оказывал наименьшее сопротивление. В нашей электрической цепи, даже если ток будет выше через лампочку с меньшим сопротивлением, ток все равно будет течь через обе лампы. Если мы сложим эти два тока, сумма будет равна величине тока, уходящего и возвращающегося в батарею. Другими словами, ток, идущий от отрицательного конца батареи, просто разделяется на разные пути в зависимости от того, какое сопротивление предлагает каждый путь.Затем эти отдельные токи соединяются на другой стороне и возвращаются в батарею. Это похоже на то, как все клиенты пришли с одной линии, разделились по разным регистрам, а затем снова присоединились к другой стороне, чтобы выйти на парковку.

Схема параллельной цепи

Общее сопротивление параллельной цепи немного сложно вычислить, но важно понимать, что общее сопротивление параллельной цепи всегда будет уменьшаться по мере добавления резисторов.Может показаться нелогичным, что добавление сопротивления в цепь на самом деле может снизить общее сопротивление, но, как мы видели в магазине, даже добавление медленного кассира увеличивало количество клиентов, проверяющих каждую минуту. Добавление резистора в параллельную цепь, независимо от того, насколько велико сопротивление, всегда увеличивает общий ток. Тот факт, что некоторые электроны могут течь по одному пути, а другие электроны одновременно проходят по другому пути, именно поэтому параллельная цепь получила свое название.

Резюме урока

Мы только что рассмотрели целый ряд новых идей, но мы можем суммировать их с точки зрения того, что происходит с напряжением, током и сопротивлением в цепях каждого типа. Последовательная цепь обеспечивает только один путь для электронов, чтобы пройти через резистивную часть цепи. Общее сопротивление последовательной цепи равно сумме всех отдельных сопротивлений, и добавление сопротивления всегда приводит к увеличению общего сопротивления. Ток через каждое сопротивление и через каждую часть цепи, если на то пошло, одинаков.Потери напряжения на каждом сопротивлении могут быть разными, но сумма напряжений всегда будет равна напряжению батареи.

Параллельная схема обеспечивает несколько путей, по которым электроны проходят через резистивную часть схемы. Каждый раз, когда в параллельную цепь добавляется новый путь, общее сопротивление будет уменьшаться независимо от того, насколько велико сопротивление нового пути. Если общее сопротивление уменьшается, то общий ток, уходящий и возвращающийся в батарею, увеличится.Ток через каждый путь может быть разным, но сумма всех токов всегда будет равна общему току. Наконец, напряжение на каждом сопротивлении всегда будет равно напряжению батареи.

Результат обучения

После этого урока вы сможете:

  • Описывать различия между параллельными и последовательными цепями
  • Объясните, как напряжение, общее сопротивление и ток зависят от каждого типа цепи при добавлении дополнительных сопротивлений

Автомобильные электрические цепи

Легковые автомобили и легкие грузовики имеют разветвленные электрические системы с большим количеством проводов. и сотни схем.Электрическая цепь — это в основном маршрут или путь через какие электроны текут. Электрическая цепь должна образовывать замкнутую петлю, чтобы ток продолжал течь. В электронам нужен обратный путь к их источнику (батарее или генератору), иначе им некуда идти.

По сути, существует два типа автомобильных электрических цепей:

* Последовательная цепь — это цепь, в которой все элементы цепи соединены встык в виде цепочки.У тока есть только один путь, поэтому количество тока, проходящего через него, будет одинаковым во всем. В общее сопротивление в последовательной цепи равно сумме отдельных сопротивлений в каждом элементе схемы. Если один элемент в последовательной цепи выходит из строя, непрерывность нарушается, и вся цепь выходит из строя, потому что ток не может завершиться его путешествие по цепи.

* Параллельная цепь — это цепь, в которой элементы схемы подключены рядом или параллельно друг другу.Этот создает несколько ответвлений или путей, по которым может течь ток. Сопротивление в любой данной отрасли будет определять падение напряжения и ток течет только через эту ветвь и только через эту ветвь. Одним из преимуществ параллельной схемы является то, что различные сегменты или пути цепи могут работать независимо друг от друга. Если один элемент открывается (ломается непрерывность), это не нарушит функции другого.

Некоторые схемы объединяют в себе элементы как последовательной, так и параллельной схемы.Они будут называться последовательно-параллельными электрическими цепями . схема . В этом типе цепи часть цепи может иметь нагрузки, включенные последовательно, в то время как в другой части нагрузки будут параллельно.

Поиск и устранение неисправностей в автомобильных электрических цепях часто требует измерения вольт, ампер или ом. Это три основных единицы измерения, которые используются для описания того, что происходит внутри электрической цепи.

ВОЛЬТ

Напряжение — это разность электрических потенциалов между двумя точками или величина «толчка», который заставляет электроны поток.Это также называется электродвижущей силой (ЭДС). Это похоже на давление, которое заставляет сжатый воздух проходить через шланг, но Вместо того, чтобы измеряться в фунтах на квадратный дюйм, напряжение измеряется в единицах, называемых вольтами.

Вы можете измерять напряжение с помощью цифрового или аналогового вольтметра. Для автомобилей последних моделей рекомендуется использовать цифровой вольтметр, поскольку уровни напряжения, которые вы измеряете, часто приходится измерять с точностью до десятых долей вольта (0,1 вольт).

Все электрические системы легковых автомобилей и легких грузовиков имеют напряжение 12 вольт с середины 1950-х годов.Электрический Все системы имеют отрицательное (-) заземление, при этом корпус обычно служит заземлением для многих электрических цепей. В Отрицательный кабель аккумулятора прикреплен к металлическому корпусу или шасси, а положительный кабель аккумулятора (+) подключен к источнику питания. сторона электрических цепей и системы зарядки автомобиля.

Многие датчики и цепи датчиков используют более низкое напряжение, обычно 5 В, в то время как катушки зажигания генерируют очень высокое напряжение. напряжение (от 5000 до 35000 вольт) для зажигания свечей зажигания.В гибридных автомобилях используется аккумулятор высокого напряжения (от 140 до 300 В), генератор. и электродвигатель для их систем пуска и останова и электропривода.


Измерение напряжения аккумуляторной батареи цифровым вольтметром.

Соблюдайте особую осторожность при работе с гибридными электрическими компонентами (которые обычно имеют цветовой код ОРАНЖЕВЫЙ ), и избегайте контакт с катушками зажигания или проводами свечей зажигания при работающем двигателе, чтобы снизить риск поражения электрическим током.Шок от Проволока свечи зажигания может быть болезненной, но не смертельной из-за низкого тока (силы тока). А вот шок от гибридной батареи может быть смертельный!

AMPS

Ток — это количество или объем электронов, которые проходят через проводник или цепь. Это мера объема, и указывается в единицах, называемых ампер или ампер . Аналогия с воздушным шлангом — количество кубических футов на минута прохождения воздуха через шланг.Один ампер равен 6,3 миллионам триллионов электронов (6,3 с 18 нулями после него). за одну секунду! Это много электронов, но относительно небольшой ток во многих автомобильных цепях. Стартер, например, может потреблять несколько сотен ампер при проворачивании двигателя.

А измеряется амперметром или мультиметром с функцией усилителя. Для измерения силы тока обычно требуется индуктивный датчик, который зажимается вокруг провода для измерения тока, протекающего через него, хотя очень малые токи (100 мА или меньше) могут часто измеряются непосредственно через сам измеритель без использования индуктивного датчика.

Предохранители используются для защиты электрических цепей от опасных перегрузок, которые могут привести к их перегреву, расплавлению или возгоранию. Номинальные характеристики предохранителей зависят от того, сколько ампер они могут выдержать, прежде чем предохранитель перегорит и остановит прохождение тока. через цепь. Таким образом, перегоревший предохранитель часто является признаком перегрузки цепи или неисправности. например, короткое замыкание, которое вызывает чрезмерный ток в цепи. Для получения дополнительной информации см. Соответствующую статью Силовые центры: реле и предохранители

Осторожно: Если перегорел предохранитель, замените его на тот, который имеет ТАКОЙ же номинал усилителя, что и оригинальный.НЕ заменяйте замену предохранитель с более высоким номинальным током, так как это может привести к перегреву цепи или ее повреждению. И НИКОГДА не заменяйте перегоревший предохранитель твердым. провод или провод, так как это вообще не докажет защиты от перегрузки.

Ом

Электрическое сопротивление — это противодействие потоку тока или ограничение, препятствующее потоку электронов. Сопротивление измеряется в единицах, называемых Ом . Поток воздуха через шланг можно уменьшить, защемив его, уменьшив диаметр шланга. шланг или удерживая палец над выпускным отверстием.Точно так же ток, протекающий через провод, можно замедлить или контролировать, добавив сопротивление. Сопротивление можно создать, изменив состав материала, уменьшив размер провод или провод (меньший провод имеет большее сопротивление, чем большой провод), или путем добавления тепла (тепло увеличивает сопротивление).

Сопротивление измеряется омметром или мультиметром с функцией измерения сопротивления.

Осторожно: НЕ ПЫТАЙТЕСЬ измерять сопротивление (Ом) в любой цепи, которая находится под напряжением или находится во включенном состоянии, так как это может повредить омметр.Сопротивление измеряется при отключенном токе.

ЗАКОН ОМ

Один вольт равен силе, необходимой для проталкивания тока в один ампер через цепь с сопротивлением в один Ом. Это Закон Ома назван в честь ученого, который первым его понял. Закон Ома можно выразить по-разному:

Понимание закона Ома и взаимосвязи между вольтами, омами и амперами является ключом к пониманию электрических токов и того, что происходит внутри автомобильной электрической цепи.Закон Ома объясняет, почему высокое сопротивление в цепи подавляет ток и вызывает падение напряжения. Это также объясняет, почему короткое замыкание может привести к быстрому перегреву и возгоранию провода из-за утечки тока.

Общие проблемы в автомобильных электрических цепях

Короткое замыкание — это тип неисправности, которая может возникнуть, если ток, проходящий через электрическую цепь, не проходит через компонент, питаемый цепью, а находит другой путь к земле.Это может произойти, если провод трется об острый край и замыкается на массу, или если изоляция соседних проводов протирается или повреждается, позволяя току в одном проводе перейти на соседний провод. Короткое замыкание может привести к утечке тока из-за пониженного сопротивления в цепи. Это может привести к быстрому перегреву провода, возможно, к расплавлению или возгоранию изоляции вокруг него и возникновению электрического пожара. Короткое замыкание обычно вызывает перегорание предохранителя цепи.

Примечание. Если в цепи сгорел предохранитель и новый предохранитель перегорел сразу после его замены, скорее всего, в цепи произошло короткое замыкание.

Короткое замыкание чаще всего возникает там, где проводка трется об острый металлический край, например, когда проводка проходит через переборку, брандмауэр между моторным отсеком и пассажирским отсеком, дверью или другой полостью тела. Резиновые втулки обычно используются для защиты проводки в местах, где она проходит через металлические панели. Но если втулка повреждена или отсутствует, проводка трутся об острый край и замыкаются.

Короткое замыкание также может возникнуть между соседними проводами, если изоляция вокруг проводов повреждена или треснута.Изоляция может стать хрупкой с возрастом и может потрескаться или отслоиться от проводки, позволяя оголенному металлу под ней вступать в электрический контакт с соседними проводами или телом.

Прерывистое короткое замыкание может возникать, когда провода периодически контактируют в результате изменений температуры, вызывающих расширение и сжатие металла, или в результате вибрации. Найти непостоянные шорты может быть сложно, потому что проблема возникает и исчезает. Шевеление и тряска проводов или обдув их горячим воздухом с помощью термофена может потребоваться для имитации условий, вызывающих короткое замыкание.

Короткое замыкание можно отремонтировать, обмотав оголенную или поврежденную проводку изолентой или заменив поврежденную проводку.

Обрыв — еще один тип неисправности, который может возникнуть в электрических цепях автомобиля. Обрыв — это именно то, что подразумевает название: разрыв в проводке, который останавливает ток и убивает цепь. Обрыв не приведет к срабатыванию предохранителя, но предотвратит работу цепи. Обрыв может произойти, если обрыв провода, разъем проводки ослаблен или отсоединен, или сильная коррозия внутри электрического разъема создала такое большое сопротивление, что ток не может течь через цепь.

Обрывы также могут возникать в электронных схемах, если образуются микротрещины в паяных соединениях или на печатных платах. Схема может нормально пропускать ток в холодном состоянии, но когда она нагревается и расширяется, микротрещины могут открываться, вызывая периодическое размыкание.

Перегрузки — это состояние, которое может возникать в цепи, когда электродвигатель или другое устройство находится в рабочих условиях, которые заставляют его потреблять больше тока, чем обычно. Примером может служить временная перегрузка в цепи электродвигателя стеклоочистителя, если дворники забиты льдом или сильным снегом.Перегрузка может вызвать перегорание предохранителя цепи.

Некоторые конкретные примеры неисправностей автомобильных электрических цепей

Типичный пример закона Ома, вызывающего электрическую проблему в вашем автомобиле или грузовике, — это ослабленный или корродированный кабель аккумулятора. Бедные соединение создает электрическое сопротивление, которое не позволяет аккумуляторной батарее подавать нормальный ток в электрическую систему автомобиля. Это, в свою очередь, может помешать стартеру проворачивать двигатель достаточно быстро, чтобы запустить его, или может вообще помешать стартеру работать.Ослабленное или корродированное соединение аккумулятора также может помешать генератору поддерживать аккумулятор полностью заряженным, что приведет к его разрядке. спуститься.

Другой пример действия закона Ома — цепь топливного насоса с плохим заземлением. Плохое заземление создает высокое сопротивление, уменьшающее ток, протекающий через топливный насос. Это приводит к тому, что насос вращается намного медленнее, чем обычно, что вызывает падение объема топлива и давления, которое может привести к потере мощности или нестабильной работе двигателя.

Низкое напряжение в системе из-за разряда батареи или низкого уровня заряда может нанести ущерб электронным модулям управления автомобиля. Множество модулей не будут нормально работать, если на них не будет подаваться напряжение 12 вольт. Это, в свою очередь, может вызвать различные виды управляемости или проблемы с производительностью.

Коррозия — частая причина высокого сопротивления электрических цепей. Коррозия может быть вызвана влагой и окислением, которое атакует электрические разъемы и клеммы в электрической системе.Это одна из причин, по которой страховые компании насчитывают много автомобилей с был затоплен. Попадание воды в проводку внутри автомобиля может вызвать коррозию и многочисленные проблемы с электричеством в будущем.

Вибрация также может вызывать высокое сопротивление электрических разъемов и проводки. Движение происходит при движении автомобиля. может вызвать трение и микроскопический износ электрических разъемов, которые не поддерживаются должным образом. Со временем это может привести к плохой проблемы с электрическим подключением и цепью из-за большого тока в этой цепи.

Измерение падения напряжения для поиска электрических проблем

Падение напряжения происходит, когда ток течет через компонент в цепи. Сопротивление, создаваемое устройством, вызывает соответствующее падение напряжения, которое можно рассчитать с помощью закона Ома, если вы знаете сопротивление компонента и ток.

ПАДЕНИЕ НАПРЯЖЕНИЯ = СОПРОТИВЛЕНИЕ x ТОК

Вы можете измерить падение напряжения в цепи или на соединении с помощью цифрового вольтметра.Выводы вольтметра подключены с обеих сторон проверяемого компонента схемы или соединения. Если соединение ослабло или корродировало, это создаст сопротивление в цепи и ограничит прохождение тока, вызывая чрезмерное падение напряжения.

Как показывает практика, падение напряжения БОЛЕЕ одной десятой вольта (0,1 В) на низковольтном или низковольтном соединении означает проблему. Цепи, которые работают с более высокими напряжениями или токами (например, цепь вывода напряжения для системы зарядки), могут выдерживать напряжение падает до полвольта (0.5 вольт), но лучше всего 0,1 вольт или меньше.

Измерение падения напряжения — эффективное средство для быстрого определения проблем с автомобильной электрической цепью, таких как ослабление или коррозия. разъемы, провода, переключатели и т. д. Это более точно, чем просто измерение напряжения в цепи или использование простой контрольной лампы, чтобы увидеть есть ли питание или нет, потому что он сообщает вам, есть ли чрезмерное сопротивление, которое может ограничить ток в цепи.


Автомобильные электрические схемы

Производители транспортных средств публикуют электрические схемы для всех различных электрических цепей в транспортных средствах. Они делают.Их можно получить на технических веб-сайтах производителей автомобилей или в автомобильной источник вторичного рынка, такой как AlldataDIY за небольшую платеж. Правильная электрическая схема абсолютно необходима для поиска и устранения неисправностей в электрических цепях.

На схемах подключения

используются символы (см. Ниже) для обозначения различных компонентов цепи. Отдельные цепи обычно пронумерованы, а провода в цепях имеют цветовую кодировку. облегчить идентификацию.Если для провода используется двухцветный код, это означает, что провод одного цвета и на том же проводе есть цветная полоса другого цвета.


Щелкните здесь, чтобы загрузить или распечатать эту статью.




Статьи по теме:

Тест самопроверки по основам электрической системы

Поиск и устранение неисправностей автоэлектрооборудования

Электрические нагрузки для автомобильных систем, освещения и аксессуаров

Испытание падения напряжения

Силовые центры: реле и предохранители

Устранение неисправностей в кластере электронных приборов

Безопасность аккумуляторной батареи и запуск от внешнего источника ( Прочтите в первую очередь !!!)

Диагностика разряженной батареи

Тестирование батареи

Поиск и устранение неисправностей в системе запуска и зарядки

Устранение неполадок с электрическими окнами

Устранение неполадок фар

Огни (фары и лампы)

Разряд высокой интенсивности (HID) Фары

Щелкните здесь, чтобы увидеть больше технических статей Carley Automotive

Электрические цепи

Эта основная идея исследуется через:

Противопоставление взглядов студентов и ученых

Ежедневный опыт студентов

Студенты имеют большой опыт использования бытовой техники, в работе которой используются электрические цепи (фонарики, мобильные телефоны, плееры iPod).Скорее всего, у них появилось ощущение, что вам нужно включить аккумулятор или выключатель питания, чтобы все «работало», и что батареи могут «разрядиться». Они склонны думать об электрических цепях как о том, что они называют «током», «энергией», «электричеством» или «напряжением», причем все эти названия они часто используют как синонимы. Это неудивительно, учитывая, что все эти ярлыки часто используются в повседневном языке с неясным значением. Какой бы ярлык ни использовали учащиеся, они, скорее всего, увидят в электрических цепях «поток» и что-то «хранимое», «израсходованное» или и то, и другое.Некоторые повседневные выражения, например о «зарядке батарей», также могут быть источником концептуальной путаницы для учащихся.

В частности, студенты часто видят, что ток равен напряжению, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, такую ​​как свет или тепло.

Есть четыре модели, которые обычно используются учениками для объяснения поведения простой схемы, содержащей батарею и лампочку. Они были описаны исследователями как:

В частности, студенты часто считают, что ток равен напряжению, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, например свет. или тепло.

Есть четыре модели, которые обычно используются учениками для объяснения поведения простой схемы, содержащей батарею и лампочку. Исследователи описали их как:

Четыре модели простых схем
  • «униполярная модель» — точка зрения, согласно которой на самом деле нужен только один провод между батареей и лампочкой, чтобы в цепи был ток.
  • «модель сталкивающихся токов» — представление о том, что ток «течет» с обеих клемм батареи и «сталкивается» в лампочке.
  • «модель потребляемого тока» — представление о том, что ток «расходуется» по мере «обхода» цепи, поэтому ток, «текущий к» лампочке, больше, чем ток, «утекающий» от нее обратно к лампочке. аккумулятор.
  • «научная модель» — точка зрения, что ток одинаков в обоих проводах.

Ежедневный опыт учеников с электрическими цепями часто приводит к путанице в мышлении. Студенты, которые знают, что вы можете получить удар электрическим током, если дотронетесь до клемм пустой розетки домашнего освещения, если выключатель включен, поэтому иногда считают, что в розетке есть ток, независимо от того, касаются ли они ее или нет. (Точно так же они могут полагать, что есть ток в любых проводах, подключенных к батарее или розетке, независимо от того, замкнут ли переключатель.)

Некоторые студенты думают, что пластиковая изоляция проводов, используемых в электрических цепях, содержит и направляет электрический ток так же, как водопроводные трубы удерживают и регулируют поток воды.

Исследования: Осборн (1980), Осборн и Фрейберг (1985), Шипстоун (1985), Шипстоун и Ганстон (1985), Уайт и Ганстон (1980)

Научная точка зрения

Термин «электричество» (например, «химия») ) относится к области науки.

Модели играют важную роль в понимании того, чего мы не видим, и поэтому они особенно полезны при попытке разобраться в электрических цепях.Модели ценятся как за их объяснительную способность, так и за их способность к прогнозированию. Однако модели также имеют ограничения.

Модель, используемая сегодня учеными для электрических цепей, использует идею о том, что все вещества содержат электрически заряженные частицы (см. Макроскопические свойства в сравнении с микроскопическими). Согласно этой модели, электрические проводники, такие как металлы, содержат заряженные частицы, которые могут относительно легко перемещаться от атома к атому, тогда как в плохих проводниках, изоляторах, таких как керамика, заряженные частицы перемещать гораздо труднее.

В научной модели электрический ток — это общее движение заряженных частиц в одном направлении. Причина этого движения — источник энергии, такой как батарея, который выталкивает заряженные частицы. Заряженные частицы могут двигаться только при наличии полного проводящего пути (называемого «контуром» или «петлей») от одного вывода батареи к другому.

Простая электрическая цепь может состоять из батареи (или другого источника энергии), электрической лампочки (или другого устройства, использующего энергию) и проводящих проводов, соединяющих две клеммы батареи с двумя концами лампочки.В научной модели такой простой схемы движущиеся заряженные частицы, которые уже присутствуют в проводах и в нити накала лампочки, являются электронами.

Электроны заряжены отрицательно. Батарея отталкивает электроны в цепи от отрицательной клеммы и притягивает их к положительной клемме (см. Электростатика — бесконтактная сила). Любой отдельный электрон перемещается только на небольшое расстояние. (Эти идеи получили дальнейшее развитие в основной идее «Разбираемся с напряжением»).Хотя фактическое направление движения электронов — от отрицательного к положительному полюсу батареи, по историческим причинам обычно описывают направление тока как от положительного к отрицательному полюсу (так называемый « обычный ток »). ‘).

Энергия батареи хранится в виде химической энергии (см. Главную идею преобразования энергии). Когда он подключен к замкнутой цепи, электроны перемещаются, и энергия передается от батареи к компонентам цепи.Большая часть энергии передается световому шару (или другому пользователю энергии), где она преобразуется в тепло и свет или в какую-либо другую форму энергии (например, звук в iPod). В соединительных проводах очень небольшое количество преобразуется в тепло.

Напряжение батареи говорит нам, сколько энергии она передает компонентам схемы. Это также говорит нам кое-что о том, как сильно батарея подталкивает электроны в цепи: чем больше напряжение, тем больше толчок (см. Идею фокусировки Используя энергию).

Критические идеи обучения

  • Электрический ток — это общее движение заряженных частиц в одном направлении.
  • Для получения электрического тока необходима непрерывная цепь от одного вывода батареи к другому.
  • Электрический ток в цепи передает энергию от батареи к компонентам цепи. В этом процессе ток не «расходуется».
  • В большинстве схем движущиеся заряженные частицы представляют собой отрицательно заряженные электроны, которые всегда присутствуют в проводах и других компонентах схемы.
  • Батарея выталкивает электроны в цепь.

Исследование: Loughran, Berry & Mulhall (2006)

Количественные подходы к обучению (например, с использованием закона Ома) могут препятствовать развитию концептуального понимания, и их лучше избегать на этом уровне.

Очень важен язык, на котором говорят учителя. Использование слова «электричество» следует ограничить, поскольку его значение неоднозначно. Говоря о «текущем» токе вместо движения заряженных частиц, можно усилить неверное представление о том, что ток — это то же самое, что и электрический заряд; поскольку «заряд» — это свойство веществ, например масса, лучше называть «заряженные частицы», чем «заряды».

Идея фокуса Введение в научный язык предоставляет дополнительную информацию о развитии научного языка со студентами.

Использование моделей, метафор и аналогий жизненно важно для развития понимания учащимися электрических цепей, потому что для объяснения того, что мы наблюдаем в цепи (например, зажигание лампочки), необходимо использовать научные идеи о вещах, которые мы не можем видеть, например об энергии. и электроны. Поскольку все модели / метафоры / аналогии имеют свои ограничения, важно использовать их множество.Не менее важно четко понимать сходства и различия между любой используемой моделью / метафорой / аналогией и рассматриваемым явлением. Общее ограничение физических моделей (в том числе приведенных ниже) состоит в том, что они подразумевают, что любой конкретный электрон перемещается по всей цепи.

Изучите взаимосвязь между идеями об электричестве и преимуществами и ограничениями моделей в Карты развития концепции — Электричество и магнетизм и модели

Вот некоторые полезные модели и аналогии:

  • аналог велосипедной цепи — это полезно для развития идеи потока энергии, для отличия этого потока энергии от тока и для демонстрации постоянства тока в данной цепи.Движение велосипедной цепи аналогично движению тока в замкнутой цепи. Движущаяся цепь передает энергию от педали (то есть «аккумулятор») к заднему колесу (то есть «компоненты схемы»), где энергия преобразуется. Эта модель имеет лишь ограниченную полезность и требует от учащегося осознать, что заднее колесо — это компонент, выполняющий преобразование энергии.
  • модель мармелада — это помогает развить идею о том, что движение электронов в цепи сопровождается передачей энергии.Студенты играют роль «электронов» в цепи. Каждый из них собирает фиксированное количество мармеладов, представляющих энергию, когда они проходят через «батарею», и отдают эту «энергию», когда достигают / проходят через «лампочку». Эти студенческие «электроны» затем возвращаются в «батарею» для получения дополнительной «энергии», которая включает получение большего количества мармеладов.

Еще одно описание этого вида деятельности представлено в виньетке PEEL. Ролевая игра с мармеладом. Эта модель может быть очень мощной, но важным ограничением является представление энергии как субстанции, а не как изобретенной человеческой конструкции.

  • модель веревки — эта модель помогает объяснить, почему в электрической цепи происходит нагрев. Учащиеся образуют круг и свободно держат непрерывную петлю из тонкой веревки горизонтально. Один ученик действует как «батарея» и тянет веревку так, чтобы она скользила через руки других учеников, «компоненты схемы». Студенты чувствуют, как их пальцы становятся более горячими, поскольку энергия преобразуется, когда веревка тянется студенческой батареей

Для получения дополнительной информации о развитии идей об энергии см. Фокусную идею Использование энергии.

  • модель водяного контура — это часто используется в учебниках, и на первый взгляд кажется моделью, которая легко понятна учащимся; однако важно, чтобы учителя знали о его ограничениях.

В этой модели используется насос для обозначения батареи, турбина для обозначения лампочки и водопроводные трубы для обозначения соединительных проводов. Важно указать учащимся, что этот водяной контур на самом деле отличается от бытового водоснабжения, потому что в противном случае они могут, опираясь на свой повседневный опыт, сделать неправильный вывод, например, что электрический ток может вытекать из проводов контура таким же образом, как и вода может вытечь из труб.

Исследование: Лофран, Берри и Малхолл (2006)

Преподавательская деятельность

Открытое обсуждение через обмен опытом

Упражнение POE (прогнозировать-наблюдать-объяснять) — полезный способ начать обсуждение. Дайте ученикам батарейку, лампочку фонарика (или другую лампочку с нитью накала) и соединительный провод. Попросите их угадать, как следует подключить цепь, чтобы лампочка загорелась. Примечание: НЕ предоставляйте патрон лампы. Это должно спровоцировать обсуждение необходимости создания полного контура для тока и пути тока в лампочке.Это задание можно расширить, поощряя студентов использовать другие материалы вместо проводов.

Испытайте некоторые существующие идеи

Ряд POE (Прогноз-Наблюдение-Объяснение) можно построить, изменив элементы существующей схемы и попросив учащихся дать прогноз и их обоснование этого прогноза. Например, попросите учащихся предсказать изменения, которые могут произойти в яркости лампочки, когда она подключена к батареям с разным напряжением.

Разъяснение и объединение идей для / путем общения с другими

Попросите учащихся изучить модели и аналогии для электрических цепей, представленных выше.Студенты должны оценить каждую модель на предмет ее полезности для разъяснения представлений об электрических цепях. Студентов также следует поощрять к выявлению ограничений моделей.

Сосредоточьте внимание студентов на недооцененной детали

Попросите студентов изучить работу фонаря и нарисовать картинку, чтобы показать путь тока, когда выключатель замкнут. Студенты должны обсудить или написать о том, что, по их мнению, происходит.

Поощряйте студентов определять явления, которые не объясняются (представленной в настоящее время) научной моделью или идеей.

Попросите студентов перечислить особенности электрической цепи, которые объясняются конкретной моделью / метафорой / аналогией, и особенности, которые не объясняются.

Содействовать размышлению и разъяснению существующих идей

Попросите студентов нарисовать концептуальную карту, используя такие термины, как «батарея», «электроны», «энергия», «соединительные провода», «лампочка», «электрический ток».

Электрическое короткое замыкание — типы, причины и профилактика

Короткое замыкание — это соединение с низким сопротивлением между двумя проводниками, которые подают электроэнергию в цепь. Это вызовет избыточное протекание напряжения и вызовет чрезмерное протекание тока в источнике питания.Электричество пройдет по «короткому» маршруту и ​​вызовет короткое замыкание.

Что такое Типы электрического короткого замыкания

1. Нормальное короткое замыкание

Это когда горячий провод, по которому проходит ток, касается нейтрального провода. Когда это произойдет, сопротивление мгновенно упадет, и большой ток пройдет неожиданным путем.

2. Короткое замыкание на землю

Короткое замыкание на землю. Короткое замыкание происходит, когда проводящий ток под напряжением контактирует с некоторой заземленной частью системы.Это может быть заземленная металлическая настенная коробка, оголенный провод заземления или заземленная часть прибора.

Каковы основные причины электрического короткого замыкания
  • Неисправность изоляции провода цепи

Если изоляция повреждена или устарела, горячие провода могут соприкасаться с нейтралью. Это вызовет короткое замыкание.

Возраст провода, гвоздей или шурупов может повредить изоляцию и привести к короткому замыканию.Есть риск, что вредители прогрызут изоляцию, а также оголят жилы проводов.

Если есть какие-либо незакрепленные соединения или крепления проводов, это позволит контактировать токоведущий и нейтральный провод. Если вы видите неисправные соединения проводов, не пытайтесь исправить это самостоятельно и немедленно обратитесь к специалисту.

Если вы подключаете прибор к розетке, его проводка становится продолжением цепи. Следовательно, если есть какие-либо проблемы в электропроводке прибора, это перерастет в проблемы цепи.

Короткое замыкание может произойти в шнурах питания, вилках или внутри устройства. Убедитесь, что у вас есть защита от короткого замыкания для всех приборов.

Как предотвратить короткое замыкание
  • Розетки для мониторов и бытовая техника

К каждой розетке подключена сеть проводов. Если есть неисправные провода, неплотные соединения коробки или розетка старше 15-25 лет, это может привести к короткому замыканию.Обратите внимание на возможные признаки неисправности розеток, в том числе:

  1. Ожоги на выходе или запах гари
  2. Искры, исходящие из розетки
  3. Жужжащий звук из розетки

Аналогичным образом проверьте бытовые приборы и их проводку. Неисправная проводка или трещины в приборе могут вызвать короткое замыкание. Отремонтируйте такие приборы или замените их полностью.

  • Меньше электроэнергии во время шторма

Короткое замыкание в результате удара молнии может быть чрезвычайно опасным, поскольку большое количество электричества может привести к повреждению.Уменьшите потребление электроэнергии во время шторма, так как это может помочь предотвратить короткое замыкание и уменьшить ущерб в случае скачка напряжения.

  • Пройдите ежегодный осмотр электрооборудования

Позвоните сертифицированному специалисту и проведите проверку электрической части не реже одного раза в год. Они могут выявить критические проблемы и решить их до того, как они станут опасными, потому что они знают, как исправить короткое замыкание.

  • Установить устройства, предотвращающие короткое замыкание
  1. Автоматические выключатели или предохранители: Автоматический выключатель — это коммутационное устройство в цепи, которое прерывает ненормальный ток.Он использует внутреннюю систему пружин или сжатого воздуха, чтобы определять любые изменения в текущем потоке. Он «разрывает» цепь и прерывает прохождение тока. Плавкий предохранитель — это устройство, обеспечивающее защиту от перегрузки по току. В нем есть металлическая полоса или проволока, которая плавится при прохождении через нее большого количества тока. Это прерывает цепь.
  1. Прерыватели цепи при замыкании на землю (GFCI): GFCI работает, сравнивая величину тока, протекающего в цепи и из нее. Если есть замыкание на землю или дисбаланс между входящими и выходящими токами, GFCI отключит электрическое питание.
  1. Прерыватели цепи при возникновении дугового замыкания (AFCI): AFCI размыкает цепь при обнаружении электрической дуги в цепи. Это помогает предотвратить электрические пожары.

Проверьте AFCI против GFCI и где вы должны их установить, чтобы получить дополнительную информацию о том, где вы должны установить AFCI и GFCI.

D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет. Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния.Он хранит обширный инвентарь электрических соединителей, фитингов, автоматических выключателей, распределительных коробок, проводов, предохранительных выключателей и т. Д. Он закупает электрические материалы у ведущих компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной электротехнической продукции и современных решений в области электрического освещения. Поскольку компания D&F закупает материалы оптом, она имеет уникальную возможность предложить конкурентоспособную структуру ценообразования. Кроме того, он может удовлетворить самые взыскательные запросы и отгрузить материал в тот же день.

Circuits Unit (Complete)

Цели:
Учащиеся смогут:
1) Описывать, как энергия передается от батарей по проводам в свет (в форме лампочки) и / или тепло.
2) Опишите части цепи (включая разомкнутый и замкнутый переключатель).
3) Опишите разницу между последовательным и параллельным подключением.
4) Создайте простую последовательную и параллельную цепь, используя такие компоненты, как провода, алюминиевая фольга, батареи и лампочки.
5) Опишите качества материалов, которые сделают их проводниками электричества или изоляторами, на основе их экспериментов.

Основные вопросы:
1) Что такое электричество?
2) Что такое проводник?
3) Что такое изолятор?
4) Что такое схема?
5) В чем разница между последовательной схемой и параллельной схемой?
6) В чем был бы недостаток разводки всего дома по последовательной схеме?

Вводная геологоразведочная деятельность (оценка предшествующих знаний):

Слияние слов об электричестве — Учащиеся определяют ЭЛЕКТРИЧЕСТВО, используя свои собственные слова.
1. Напишите на доске ЭЛЕКТРИЧЕСТВО и позвольте учащимся по очереди записывать, что, по их мнению, это означает.
2. Также попросите их назвать что-нибудь, что использует электричество.
3. Обсудите все, что думают об электричестве и устройствах, которые его используют.
4. Предложите им подумать об устройствах, использующих электроэнергию, которых они могут не ожидать, например, о часах в комнате, утренних объявлениях, кулере для напитков, освещенных указателях выхода и т. Д.

Электричество, ролевая игра

Цель: Продемонстрировать поведение электрического тока при его контакте с проводником по сравнению с его контактом с изолятором.Чтобы электрическая цепь
работала, она должна быть непрерывно проведена от источника питания
к устройству, которое питает его. Если цепь разорвана или
заблокирован изолятором, питание не может пройти.

Процедуры:
1. Попросите учащихся встать непрерывной линией бок о бок.
Студенты будут обнимать друг друга за плечи.

2. Первый человек в очереди начинает волну, наклоняясь, а затем снова вставая.Это последовательно подтянет и всех остальных в линии, имитируя электричество, протекающее через проводник .

4. Следующие студенты будут моделировать изолятор . Повторите линию учеников, обнимая друг друга за плечи, но на этот раз пусть один ученик посередине опускает руки по бокам. Они по-прежнему должны быть рядом с другими учениками, но не связаны с ними. Опять же, первый человек в очереди наклоняется в талии и встает. Что происходит?

4. Обсудите со студентами, что произошло на этот раз — как изгибная волна остановилась на незнакомом ученике. Это имитирует эффект изолятора (непривязанного ученика), который представляет собой материал, не позволяющий электричеству легко проходить через него.

5. Укажите, что хороший проводник — это плохой изолятор, а плохой проводник — хороший изолятор.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *