Магнитный пускатель — устройство, отвечающее за бесперебойную и соответствующую требованиям стандартов работу оборудования. С его помощью осуществляют распределение питающего напряжения и управляют работой подключенных нагрузок.
Чаще всего через него подают питание на электродвигатели. И через него же осуществляют реверс двигателя, его остановку. Все эти манипуляции позволит осуществить правильная схема подключения магнитного пускателя, которую можно собрать и самостоятельно.
В этом материале мы расскажем об устройстве и принципах работы магнитного пускателя, а также разберемся в тонкостях подключения устройства.
Содержание статьи:
Отличие магнитного пускателя от контактора
Часто при подборе коммутационного устройства возникает путаница между магнитными пускателями (МП) и контакторами. Эти устройства, несмотря на свою схожесть во многих характеристиках, все же разные понятия. Магнитный пускатель объединяет в себе ряд приборов, они соединены в одном управляющем узле.
В МП может быть включено несколько контакторов, плюс защитные устройства, специальные приставки, управляющие элементы. Все это заключено в корпус, имеющий какую-то степень влаго- и пылезащиты. С помощью этих устройств в основном управляют работой асинхронных двигателей.
Предельное напряжение, с которым работает магнитный пускатель, зависит от электромагнитной катушки индуктивности. Бывают МП небольших номиналов — 12, 24, 110 В, но наиболее часто применяют на 220 и 380 В
Контактор — моноблочный прибор с набором функций, предусмотренных конкретной конструкцией. Тогда как пускатели применяют в схемах достаточно сложных, контакторы в основном присутствуют в простых схемах.
Устройство и назначение прибора
Сравнив подключение МП и контактора, можно сделать заключение, что первое устройство отличается от второго тем, что его применяют для запуска электродвигателя. Можно даже сказать, что МП — тот же контактор, с помощью которого управляют электродвигателем.
Отличие это настолько условно, что в последнее время многие производители называют МП контакторами переменного тока, но с малыми габаритами. Да и постоянное усовершенствование контакторов сделало их универсальными, потому они стали многофункциональными.
Назначение магнитного пускателя
Встраивают МП и контакторы в силовые сети, транспортирующие ток с переменным или постоянным напряжением. Действие их базируется на электромагнитной индукции.
Устройство оснащено контактами сигнальными и теми, через которые питание подается. Первые названы вспомогательными, вторые — рабочими.
Стартовые кнопки, которыми оснащают схему, обеспечивают удобную эксплуатацию. Если нужно отключить нагрузку, достаточно задействовать клавишу «Стоп». При этом поступление напряжения на катушку пускателя закончится и цепь разорвется
МП дистанционно управляют электроустановками, в том числе и электродвигателями. Их роль, как защиты, нулевая — только исчезает напряжение или хотя бы падает до предела ниже 50%, силовые контакты размыкаются.
После остановки оборудования, в схему которого вмонтирован контактор, оно никогда не включится самостоятельно. Для этого придется нажать клавишу «Пуск».
Для безопасности это очень важный момент, поскольку полностью исключены аварии, спровоцированные самопроизвольным включением электроустановки.
Пускатели, в схему которых включены , охраняют электродвигатель или другую установку от длительных перегрузок. Эти реле могут быть двухполюсными (ТРН) либо однополюсными (ТРП). Срабатывание наступает под воздействием тока перегрузки двигателя, протекающего по ним.
Конструкция и функционирование прибора
Для корректной работы МП необходимо придерживаться определенных правил монтажа, иметь понятие об основах релейной техники, грамотно выбрать схему питания оборудования.
Поскольку устройства предназначены для функционирования на протяжении небольшого временного промежутка, наиболее популярными являются МП с обычно разомкнутыми контактами. Наибольшим спросом пользуются МП серий ПМЕ, ПАЕ.
Первые встраивают в сигнальные цепи для электродвигателей мощностью 0,27 – 10 кВт. Вторые — мощностью 4 – 75 кВт. Рассчитаны они на напряжение 220, 380 В.
Вариантов исполнения четыре:
- открытый;
- защищенный;
- пылеводозащищенный;
- пылебрызгонепроницаемый.
Пускатели ПМЕ включают в свою конструкцию двухфазное реле ТРН. В пускателе серии ПАЕ количество встраиваемых реле зависит от величины.
Буквы обозначают тип устройства, следующие за ними цифры — от 1 до 6 —величину. Вторая цифра — исполнение. Единица указывает на нереверсивный МП без тепловой защиты, двойка — то же, но с тепловой защитой, три — реверсивный, не имеющий тепловой защиты, четыре — с тепловой защитой, реверсивный
При напряжении около 95% от номинального катушка пускателя способна обеспечить надежную работу.
Состоит МП из следующих основных узлов:
- сердечника;
- электромагнитной катушки;
- якоря;
- каркаса;
- механических датчиков работы;
- групп контакторов — центральной и дополнительной.
Также в конструкцию могут включать в качестве дополнительных элементов, защитное реле, электропредохранители, добавочный комплект клемм, пусковое устройство.
МП включает в свою конструкцию основание (1), контакты неподвижные (2), пружину (3), сердечник (4), дроссель (5), якорь (6), пружину (7), контактный мостик (8), пружину (9), дугогасительную камеру (10), нагревательный элемент (11)
По сути, это реле, но отключающее гораздо больший ток. Поскольку электромагниты у этого устройства довольно мощные, оно отличается большой скоростью срабатывания.
Электромагнит в виде катушки с большим числом витков рассчитан на напряжение 24 – 660 В. Которая размещена на сердечнике, большая мощность нужна для преодоления усилия пружины.
Последняя предназначена для быстрого рассоединения контактов, от скорости которого зависит величина электрической дуги. Чем быстрее произойдет размыкание, тем меньше дуга и в тем лучшем состоянии будут сами контакты.
Нормальное состояние, когда контакты разомкнуты. Пружина при этом удерживает в приподнятом состоянии верхний участок магнитопровода.
Когда на магнитный пускатель поступает питание, через катушку проходит ток и формирует электромагнитное поле. Оно привлекает мобильную часть магнитопровода посредством сжатия пружины. Контакты замыкаются, на нагрузку поступает питание, в результате, она включается в работу.
В случае отключения питания МП электромагнитное поле исчезает. Выпрямляясь, пружина делает толчок, и верхняя часть магнитопровода оказывается вверху. Как следствие, расходятся контакты, и пропадает питание на нагрузку.
Некоторые модели пускателей оснащены ограничителями перенапряжений, которые применяют в полупроводниковых управляющих системах.
Можно вручную проконтролировать работу системы путем нажатия на якорь с целью почувствовать силу сокращения пружины. Как раз усилие сокращения справляется с магнитным полем. При полном опускании якоря, контакты, отбрасываемые пружиной, отключаются
Питание катушки управления после подключения магнитного пускателя реализуется от переменного тока, но для этого устройства род тока не имеет значения.
Пускатели, как правило, оснащены двумя видами контактов: силовыми и блокировочными. Посредством первых подключается нагрузка, а вторые предохраняют от неправильных действий при подключении.
Силовых МП может быть 3 или 4 пары, все зависит от конструкции устройства. В каждой из пар есть как мобильные, так и неподвижные контакты, соединенные с клеммами, находящимися на корпусе, посредством металлических пластин.
Первые отличаются тем, что на нагрузку постоянно поступает питание. Вывод из рабочего состояния происходит только после срабатывания пускателя.
На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.
Различают два вида контактов блокировки: нормально закрытые, нормально разомкнутые. Первого вида контакт имеет кнопка «Стоп», а нормально открытый — «Пуск»
Нормально замкнутые отличаются тем, что на нагрузку постоянно поступает питание, а отсоединение наступает исключительно после срабатывания пускателя. На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.
Особенности монтажа пускателя
Неправильный монтаж магнитного пускателя, может иметь последствия в виде ложных срабатываний. Чтобы избежать этого, нельзя выбирать участки, подверженные вибрации, ударам, толчкам.
Конструкционно МП устроен так, что его можно монтировать в электрощите, но с соблюдением правил. Устройство будет работать надежно, если местом его установки будет поверхность прямая, плоская и расположенная вертикально.
Тепловые реле не должны подвергаться подогреву от посторонних источников тепла, что отрицательно скажется на функционировании устройства. По этой причине их нельзя размещать в местах, подверженных нагреву.
Устанавливать магнитный пускатель в помещении, где смонтированы устройства с током от 150 А, категорически нельзя. Включение и выключение таких устройств провоцирует быстрый удар.
Провода из меди до подключения нужно залудить. Если они многожильные, их концы перед лужением скручивают. У алюминиевых проводов концы зачищают надфилем, затем покрывают пастой или техническим вазелином
Чтобы не допустить перекоса пружинных шайб, находящихся в контактном зажиме пускателя, конец проводника загибают П-образно или в кольцо. Когда нужно подключить 2 проводника к зажиму, нужно чтобы их концы были прямыми и находились по две стороны зажимного винта.
Включению в работу пускателя должен предшествовать осмотр, проверка исправности всех элементов. Подвижные детали должны перемещаться от руки. Электрические соединения нужно сверить со схемой.
Популярные схемы подключения МП
Наиболее часто используют монтажную схему с одним устройством. Чтобы соединить ее основные элементы используют 3-жильный и два разомкнутых контакта в случае, если устройство выключено.
Это предельно простая схема. Она собирается, когда замыкается выключатель автоматический QF. От КЗ (короткого замыкания) схему управления защищает предохранитель PU
В нормальных обстоятельствах контакт реле Р замкнут. При нажатии клавиши «Пуск» цепь замыкается. Нажатие кнопки «Стоп» разбирает схему. В случае перегрузки тепловой датчик Р сработает и разорвет контакт Р, машина остановится.
При этой схеме большое значение имеет номинальное напряжение катушки. Когда усилие на ней 220 В, двигателя 380 В, в случае соединения в звезду, такая схема не подходит.
Для этого применяют схему с нейтральным проводником. Применять ее целесообразно в случае соединения обмоток двигателя треугольником.
Тонкости подключения устройства на 220 В
Независимо от того, как решено подключить магнитный пускатель, в проекте обязательно присутствуют две цепи — силовая и сигнальная. Через первую подают напряжение, посредством второй управляют работой оборудования.
Особенности силовой цепи
Питание для МП подключают через контакты, обычно обозначаемые символами А1 и А2. На них попадает напряжение 220 В, если сама катушка рассчитана на такое напряжение.
Удобнее «фазу» подключать к А2, хотя принципиальной разницы в подключении нет. Источник питания подключают к контактам, находящимся ниже на корпусе.
Тип напряжения не имеет значения, главное, чтобы номинал не выходил за пределы 220 В.
Через магнитный пускатель, оснащенный катушкой 220 В, возможна подача напряжения от дизель- и ветрогератора, аккумулятора, других источников. Съем его происходит с клемм Т1, Т2, Т3
Минусом этого варианта подключения является тот момент, что для ее включения или отключения нужно совершать манипуляции с вилкой. Схему можно усовершенствовать путем установки перед МП автомата. С его помощью включают и отключают питание.
Изменение цепи управления
Эти изменения не касаются силовой цепи, модернизируется в этом случае лишь цепь управления. Вся схема в целом претерпевает незначительные изменения.
Когда клавиши находятся в одном кожухе, узел называется «кнопочным постом». Любая из них обладает парой входов и парой выходов. У клавиши «Пуск» клеммы нормально разомкнутые (НЗ), у прямо противоположной — нормально замкнутые (NC)
Клавиши встраивают последовательно перед МП. Первая — «Пуск», за ней идет «Стоп». Контактами магнитного пускателя манипулируют посредством управляющего импульса.
Источником его является нажатая пусковая кнопка, открывающая путь для подачи напряжения к управляющей катушке. «Пуск» не обязательно удерживать во включенном состоянии.
Оно поддерживается по принципу самозахвата. Заключается он в том, что параллельно кнопке «Пуск» подключаются добавочные самоблокирующиеся контакты. Они и снабжают напряжением катушку.
После их замыкания, катушка самоподпитывается. Разрыв этой цепи приводит к отключению МП.
Отключающая клавиша «Стоп» обычно красная. Стартовая кнопка может иметь не только надпись «Пуск», но и «Вперед», «Назад». Чаще всего она зеленого цвета, хотя может быть и черного.
Подсоединение к 3-фазной сети
Возможно подключение 3-фазного питания через катушку МП, функционирующей от 220 В. Обычно схему применяют с асинхронным двигателем. Сигнальная цепь при этом не изменяется.
Одну фазу и «ноль» подключают к соответствующим контактам. Проводник фазный прокладывают через стартовую и выключающую клавиши. На контакты NO13, NO14 ставят перемычку между замкнутым и разомкнутым контактами
Силовая цепь имеет отличия, но не очень существенные. Три фазы подают на входы, обозначенные на плане, как L1, L2, L3. Трехфазную нагрузку подключают к T1, T2, T3.
Ввод в схему теплового реле
В промежутке между магнитным пускателем и асинхронным электродвигателем последовательно подсоединяют тепловое реле. Выбор его осуществляют в зависимости от типа мотора.
Тепловое реле обезопасит электрический двигатель от неисправностей и аварийных ситуаций, которые могут возникнуть при пропадании одной из фаз
Подключают реле к выводу с магнитным пускателем. Ток в нем проходит к мотору последовательно, попутно нагревая реле. Верх реле оснащен придаточными контактами, объединенными с катушкой.
Нагреватели реле рассчитывают на предельную величину тока, протекающего через них. Делают это для того, чтобы, когда двигатель окажется в опасности из-за перегрева, реле смогло бы отключить пускатель.
Также рекомендуем прочесть другую нашу статью где мы рассказали о том как выбрать и подключить электромагнитный пускатель на 380 В. Подробнее – переходите по .
Запуск мотора с реверсным ходом
Для функционирования отдельного оборудование необходимо, чтобы двигатель мог вращаться как влево, так и вправо.
Схема подключения для такого варианта содержит два МП, кнопочный пост либо отдельные три клавиши — две стартовые «Вперед», «Назад» и «Стоп».
Для реализации этого варианта в схему с одним МП добавляют еще одну сигнальную цепь. В нее входит клавиша SB3, МП КМ2. Немного изменена и силовая часть
От к.з. силовую цепь защищают контакты нормально замкнутые КМ1.2, КМ2.2.
Подготовку схемы к работе осуществляют следующим образом:
- Включают АВ QF1.
- На силовые контакты МП КМ1, КМ2 поступают фазы А, В, С.
- Фаза, которая снабжает цепь управления (А) через SF1 (автомат защиты сигнальных цепей) и клавишу SB1 «Стоп» подается на контакт 3 (клавиши SB2, SB3), контакт 13НО (МП КМ1, КМ2).
Далее схема работает по алгоритму, зависящему от направления вращения мотора.
Управление реверсом двигателя
Вращение начинается при задействовании клавиши SB2. При этом фаза А через КМ2.2 подается на катушку МП КМ1. Начинается включение пускателя с замыканием нормально разомкнутых контактов и размыканием нормально замкнутых.
Замыкание КМ1.1 провоцирует самоподхват, а за смыканием контактов КМ1 следует подача фаз А, В, С на идентичные контакты обмоток двигателя и он начинает вращение.
Перед запуском мотора в противоположном направлении необходимо остановить заданное прежде вращение посредством кнопки «Стоп». Для кручения в обратном направлении стоит только при помощи пускателя КМ2 поменять дислокацию каких-то двух питающих фаз
Предпринятое действие разъединит цепь, на дроссель КМ1 перестанет подаваться управляющая фаза А, а сердечник с контактами, посредством возвратной пружины, восстановится в исходном положении.
Контакты разъединятся, на двигатель М прекратится подача напряжения. Схема будет пребывать в ждущем режиме.
Запускают ее путем нажатия на кнопку SB3. Фаза А через КМ1.2 поступит на КМ2, МП, сработает и через КМ2.1 окажется на самоподхвате.
Далее, МП посредством контактов КМ2 поменяет фазы местами. В результате двигатель М изменит направление вращения. В это время соединение КМ2.2, находящееся в цепи, питающей МП КМ1, рассоединится, не допуская включения КМ1 пока функционирует КМ2.
Работа силовой схемы
Ответственность за переключение фаз для перенаправления вращения двигателя возложена на силовую схему.
Провод белого цвета заводит фазу А на левый контакт МП КМ1, затем через перемычку заходит на левый контакт КМ2. Выходы пускателей также объединены перекрестной перемычкой и далее через КМ1 на первую обмотку поступает фаза А двигателя
При срабатывании контактов МП КМ1 на первую обмотку поступает фаза А, на вторую обмотку — фаза В, а на третью — фаза С. При этом мотор вращается влево.
Когда срабатывает КМ2, передислоцируются фазы В и С. Первая попадает на третью обмотку, вторая — на вторую. Изменений по фазе А не происходит. Двигатель начнет вращаться вправо.
Выводы и полезное видео по теме
Подробности об устройстве и подключении контактора:
Практическая помощь в подключении МП:
По приведенным схемам можно подключить магнитный пускатель своими руками как к сети 220, так и 380 В.
Необходимо помнить, что сборка не отличается сложностью, но для реверсивной схемы важно наличие двухсторонней защиты, делающей невозможным встречное включение. При этом блокировка может быть как механической, так и посредством блокировочных контактов.
Если у вас появились вопросы по теме статьи, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке. Там же вы можете сообщить интересную информацию или дать совет по подключению магнитных пускателей посетителям нашего сайта.
Схема подключения магнитного пускателя (малогабаритного контактора «КМ») не представляет сложности для опытных электриков, но для новичков может вызвать немало трудностей. Поэтому это статья для них.
Цель статьи максимально просто и наглядно показать сам принцип действия (работы) магнитного пускателя (далее МП) и малогабаритного контактора (далее КМ). Поехали.
МП и КМ являются коммутационными аппаратами, которые осуществляют управление и распределение рабочих токов по подключенным к ним цепям.
МП и КМ в основном используются для подключения и отключения асинхронных электродвигателей, а также их реверсивного переключения используя дистанционное управление. Они применяются для дистанционного управления группами освещения, нагревательными цепями и другими нагрузками.
Компрессоры, насосы и кондиционеры, тепловые печи, ленточные конвейера, цепи освещения вот где и не только можно встретить МП и КМ в системах их управления.
Чем отличаются магнитный пускатель и малогабаритный контактор, по принципу действия — ничем. По сути, это электромагнитные реле.
Найденное различие у контактора – мощность — определяется габаритами, а у пускателя величинами, а предельная мощность МП бывает больше чем у контактора.
Наглядные схемы МП и КМ
Рис. 1
Условно МП (или КМ) можно разделить на две части.
В одной части силовые контакты, которые выполняют свою работу, а в другой части электромагнитная катушка, которая включает и отключает эти контакты.
- В первой части находятся силовые контакты (подвижные на диэлектрической траверсе и неподвижные на диэлектрическом корпусе), они то и осуществляют подключение силовых линий.
Траверса с силовыми контактами прикреплена к подвижному сердечнику (якорю).
В нормальном состояние эти контакты разомкнуты и по ним не протекает ток, нагрузка (в данном случае лампы) находится в состоянии покоя.
Удерживает их в таком состоянии возвратная пружина. Которая изображена змейкой во второй части (2)
- Во второй части мы видим электромагнитную катушку, на которую не подается ее рабочее напряжение, вследствие чего, она находится в состоянии покоя.
При подаче напряжения на обмотку катушки в ее контуре создается электромагнитное поле, образуя ЭДС (электродвижущую силу), которая притягивает к себе подвижный сердечник (подвижная часть магнитопровода — якорь) с закреплёнными на нем силовыми контактами. Они, соответственно, замыкают подключенные через них цепи, включая нагрузку (рис. 2).
Рис. 2
Естественно, если прекратить подачу напряжения на катушку, то пропадет электромагнитное поле (ЭДС), якорь перестаёт удерживаться и под действием пружины (вместе с закрепленными к нему подвижными контактами) возвращается в исходное состояние, размыкая цепи силовых контактов (рис. 1).
Из этого видно, что пускатель (и контактор) управляются подачей и отключением напряжения на их электромагнитной катушке.
к оглавлению ↑Схема МП
Рис. 3 Увеличить рис. 3
- Силовые контакты МП
- Катушка, возвратная пружина, дополнительные контакты МП
- Кнопочный пост (кнопки пуск и стоп)
Принципиальная схема подключения МП
Рис. 4 Увеличить рис. 4
к оглавлению ↑Схема привязки основных элементов принципиальной схемы с МП
Рис. 5 Увеличить рис. 5
Как видно из рисунка 5 со схемой в состав МП входят и дополнительные блок контакты, которые бывают нормально разомкнутыми и нормально замкнутыми они могут использоваться для управления подачи напряжения на катушку, а также для других действий. Например, включать (или выключать) схему сигнальной индикации, которая будет показывать режим работы МП в целом.
Схема подключения по факту с привязкой контактных групп к принципиальной схеме МП
Рис. 6 Увеличить рис. 6 Фазное подключение (220 В; ноль — фаза)
На схеме (рис. 6) через перемычки мы берем напряжение, подаваемое на силовые контакты МП для дальнейшего его использования в управлении катушкой через кнопочный пост.
Данный кнопочный пост имеет две клавиши: «Пуск» (контакты которой нормально разомкнуты) и клавиши «Стоп» (контакты которой нормально замкнуты).
При нажатии кнопки «Пуск» питание попадает на катушку напрямую, при этом она срабатывает, притягивая якорь с траверсой, на котором расположены силовые контакты, цепи силовых контактов замыкаются.
А также замыкается дополнительный блок контакт, к которому подключена катушка.
На другой стороне дополнительного контакта подключен провод, который соединен с контактом кнопки «Стоп» (контакты которой нормально замкнуты).
После возвращения кнопки «Пуск» в исходное положение (нормально разомкнутая), через нее перестает подаваться напряжение на катушку, но оно (это же напряжение) начинает дублироваться через замкнутый дополнительный контакт и подключенный нему провод, который подключен к кнопке «Стоп».
И только после нажатия кнопки «Стоп» цепь с питающим напряжением на катушку МП разрывается и полностью обесточивает катушку. Вследствие чего пропадает её электромагнитное поле, якорь перестает удерживаться и под воздействием возвратной пружины размыкает силовые контакты, а также дополнительный (нормально разомкнутый) контакт.
Схема КМ
Рис. 7 Увеличить рис. 7
- Силовые контакты МП
- Катушка, возвратная пружина, дополнительные контакты МП
- Кнопочный пост (кнопки пуск и стоп)
Принципиальная схема подключения КМ
Рис. 8 Увеличить рис. 8
к оглавлению ↑Схема привязки основных элементов принципиальной схемы с КМ
Рис. 9 Увеличить рис. 9
к оглавлению ↑Схема подключения по факту с привязкой контактных групп к принципиальной схеме КМ
Рис. 10 Увеличить рис. 10 Фазное подключение (220 В; ноль — фаза)
Принцип действия КМ и его катушки (на данной схеме рис. 10) аналогичный описанному выше. Одно из конструктивных отличий то, что дополнительный контакт расположен на траверсе в одном ряду с силовыми контактами.
Катушки – важно!
Обратите внимание, что напряжение катушек на схемах — 220 и 380 вольт. Это значит, что катушки должны быть подключены согласно их номинальному напряжению.
Фазное подключение (фаза, нейтраль — проще ноль) соответствует 220 В, линейное подключение (фаза, фаза) 380 В.
Есть также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.
Наглядные электрические схемы подключения электродвигателя с использованием магнитного пускателя (либо малогабаритного контактора)
Схема подключения МП (или КМ) с катушкой на 380 В
Увеличить рис.
- Кн «СТОП» – кнопка «Стоп»
- Кн «ПУСК» – кнопка «Пуск»
- КМП – катушка МП (магнитного пускателя)
- Кн МП – силовые контакты МП
- БК – блок контакт МП
- Тр – нагревательный элемент теплового реле
- КТР – контакт теплового реле
- М – электродвигатель
Схемы подключения МП (или КМ) с катушкой на 220 В
Увеличить рис.
- Кн «СТОП» – кнопка «Стоп»
- Кн «ПУСК» – кнопка «Пуск»
- КМП – катушка МП (магнитного пускателя)
- Кн МП – силовые контакты МП
- БК – блок контакт МП
- Тр – нагревательный элемент теплового реле
- КТР – контакт теплового реле
- М – электродвигатель
Увеличить рис.
Схема подключения электродвигателя (рекомендуемый тип подключения обмоток треугольник) на 220 В
Обозначение элементов аналогично на сх. Выше
Обратите внимание, в схеме участвует тепловое реле, которое через свой дополнительный контакт (нормально замкнутый) дублирует функцию кнопки «Стоп» в кнопочном посте.
к оглавлению ↑Принцип действия магнитного пускателя и малогабаритного контактора + Видео пояснение
Важно, на схемах для наглядности магнитный пускатель показан без дугогасящей крышки, без которой его эксплуатация – запрещена!
Иногда возникает вопрос, зачем вообще использовать МП или КМ, почему просто не использовать трехполюсной автомат?
- Автомат рассчитан до 10 тысяч отключений – включений, а у МП и КМ этот показатель измеряется миллионами
- При скачках напряжений МП (КМ) отключит линию, сыграв роль защиты
- Автоматом невозможно управлять, дистанционно применяя небольшое напряжение
- Автомат не сможет выполнять дополнительные функции включения и отключения дополнительных цепей (например, сигнальных) из–за отсутствия у него дополнительных контактов
Одним словом автомат отлично справляется со своей основной функцией защиты от коротких замыканий и перенапряжений, а МП и ПМ со своей.
На этом все, думаю, что принцип действия МП и КМ понятен, более наглядное пояснение смотрите в видео.
Также, можете просмотреть: Подключение магнитного пускателя (контактора) с двух мест
Удачного и безопасного вам монтажа!
В дополнение к статье прилагаю техническую документацию контакторов серии КМИ
к оглавлению ↑Контакторы серии КМИ
к оглавлению ↑Нормативная и техническая документация
По своим конструктивным и техническим характеристикам контакторы серии КМИ соответствуют требованиям российских и международных стандартов ГОСТ Р 50030.4.1,2002, МЭК60947,4,1,2000 и имеют сертификат соответствия РОСС CN.ME86.B00144. Контакторам серии КМИ по Обще- российскому классификатору продукции присвоен код 342600.
к оглавлению ↑Условия эксплуатации
Категории применения: АС,1, АС,3, АС,4. Температура окружающей среды
– при эксплуатации: от –25 до +50 °С (нижняя предельная температура –40 °С);
– при хранении: от –45 до +50 °С.
Высота над уровнем моря, не более: 3000 м.
Рабочее положение: вертикальное, с отклонением ±30°.
Вид климатического исполнения по ГОСТ 15150,96: УХЛ4.
Степень защиты по ГОСТ 14254,96: IP20.
Структура обозначения
При подборе контакторов КМИ обращайте внимание на структуру условного обозначения
к оглавлению ↑Основные технические характеристики
Технические характеристики силовой цепи
Технические характеристики цепи управления
Присоединение силовой цепи
Присоединение цепи управления
Параметры | Значения |
Гибкий кабель, мм2 | 1—4 |
Жесткий кабель, мм2 | 1—4 |
Крутящий момент при затягивании, Нм | 1,2 |
Технические характеристики встроенных дополнительных контактов
Параметры | Значения | |
Номинальное напряжение Uе , В | перем. тока | до 660 |
пост. тока | ||
Номинальное напряжение изоляции Ui , В | 660 | |
Ток термической стойкости (t°≤40°) Ith , А | 10 | |
Минимальная включающая способность | Umin , В | 24 |
Imin , мА | 10 | |
Защита от сверхтоков — предохранитель gG, А | 10 | |
Максимальная кратковременная нагрузка (t ≤1 с), А | 100 | |
Сопротивление изоляции, не менее, МОм | 10 |
Электрические схемы
к оглавлению ↑Типовые электрические схемы
Контакторы серии КМИ могут применяться для создания типовых электрических схем.
Электрическая схема реверсирования
Данная схема собирается из двух контакторов и механизма блокировки МБ 09,32 или МБ 40,95 (в зависимости от типоисполнения), предназначенного для исключения одновременного включения контакторов.
Электрическая схема «звезда — треугольник»
Данный способ пуска предназначен для двигателей, номинальное напряжение которых соответствует соединению обмоток в «треугольник». Пуск «звезда — треугольник» может быть использован для двигателей, пускающихся без нагрузки, или с пониженным моментом нагрузки (не более 50% от номинального момента). При этом пусковой ток при соединении в «звезду» составит 1,8–2,6 А от номинального тока. Переключение со «звезды» на «треугольник» должно производиться после того, как двигатель выйдет на номинальную частоту вращения.
Особенности конструкции и монтажа
Присоединительные зажимы обеспечивают надежное фиксирование проводников:
– для габаритов 1 и 2 – с закаленными тарельчатыми шайбами;
– для габаритов 3 и 4 – с зажимной скобой, позволяющей подсоединить контакт большего сечения.
Существуют два способа монтажа контакторов:
- Быстрая установка на DIN,рейку:
КМИ от 9 до 32 А (габариты 1 и 2) – 35 мм;
КМИ от 40 до 95 А (габариты 3 и 4) – 35 и 75 мм.
- Монтаж при помощи винтов.
Контакторы серии КМИ 3,го и 4,го габарита позволяют осуществлять крепление на 75 мм DIN рейку.
Контакторы серии КМИ 3,го и 4,го габарита снабжены отверстием для заземляющего болта.
к оглавлению ↑Габаритные размеры
Типоисполнение | Размер, мм | ||
В | С | D | |
КМИ 10910. КМИ 10911 | 74 | 79 | 45 |
КМИ 11210, КМИ 11211 | 74 | 81 | 45 |
КМИ 11810, КМИ 11811 | 74 | 81 | 45 |
КМИ 22510, КМИ 22511 | 74 | 93 | 55 |
Размеры
КМИ 23210, КМИ 23211
КМИ 34010, МИ 34011, КМИ 35012, КМИ 46512
КМИ 48012, КМИ 49512
к оглавлению ↑Установочные размеры
Габаритные и установочные размеры контакторов КМИ при монтаже на 35 мм DIN рейку
Типоисполнение | Размер, мм | ||
С | B | D | |
КМИ 10910, КМИ 10911 | 82 | 74 | 45 |
КМИ 11210, КМИ 11211 | 82 | 74 | 45 |
КМИ 11810, КМИ 11811 | 87 | 74 | 45 |
КМИ 22510, КМИ 22511 | 95 | 74 | 55 |
КМИ 23210, КМИ 23211 | 100 | 83 | 55 |
ТипоисполнениеРазмер, ммСDКМИ 34010, КМИ 3401113174КМИ 3501213174КМИ 4651213174КМИ 4801214284КМИ 4951214284
Габаритные и установочные размеры контакторов КМИ при установке на монтажную панель или монтажный профиль
Типоисполнение | Размер, мм | |
С | G | |
КМИ 10910, КМИ 10911 | 80 | 35 |
КМИ 11210, КМИ 11211 | 80 | 35 |
КМИ 11810, КМИ 11811 | 85 | 35 |
КМИ 22510, КМИ 22511 | 93 | 93 |
КМИ 23210, КМИ 23211 | 98 | 98 |
Типоисполнение | Размер С, мм |
КМИ 34010, КМИ 34011 | 114 |
КМИ 35012 | 114 |
КМИ 46512 | 114 |
КМИ 48012 | 125 |
КМИ 49512 | 125 |
Схема подключения магнитного пускателя от А до Я — советы экспертов по выбору и пошаговая инструкция по монтажу и подключению (145 фото и видео)
Подача электропитания на двигатели осуществляется либо через контактор, либо через магнитный пускатель. По выполняемым функциям эти устройства очень схожи между собой, и нередко в прайс-листах их даже путают. Между ними, тем не менее, существуют и серьезные различия. Виды магнитных пускателей, с фото и примерами, а также схема их подключения будут разобраны в рамках статьи.
Краткое содержимое статьи:
Сходство и различие контакторов и пускателей
Оба устройства служат, чтобы замыкать и размыкать цепь по мере надобности. В основу их конструкции заложен электромагнит, работают они и от переменного, и от постоянного тока. Оснащены силовыми, или основными, а также сигнальными, или вспомогательными, контактами.
Разница заключается в степенях защиты устройств. Контакторы оснащаются камерой для гашения дуги. Благодаря этой особенности они применяются в цепях с большей мощностью, чем пускатели. Кроме того, само устройство более массивное за счет дугогасящих камер. Максимально допустимая сила тока для пускателей составляет до 10 ампер.
Пускатели изготавливают в пластмассовом корпусе и оснащены восемью контактами – шесть для питания трехфазного двигателя, и два для его обеспечения электропитанием после прекращения нажатия кнопки «пуск». Применяют их как для питания электродвигателей, так и приборов, для которых подходит данная схема.
Контакторы нередко изготавливаются без корпуса, поэтому в процессе эксплуатации для них необходимо предусмотреть защитный кожух, предохраняющий его от влаги и загрязнения, и поражения людей током.
Как работает пускатель
Главными частями прибора являются индуктивная катушка и магнитопровод, состоящий из статической и динамической частей Ш-образной формы. Они расположены выводами один к другому. Стационарная часть закреплена на корпусе, а подвижная – не закреплена. Внизу магнитопровода в специальную прорезь вводится катушка индуктивности.
В зависимости от ее параметров, меняется номинальное напряжение работы устройства – от 12 до 380 вольт. Вверху магнитопровода находится две пары контактов – статичные и динамичные.
Когда питания нет, то пружинка удерживает контакты разомкнутыми. Когда питание появляется, в катушке наводится магнитное поле, и верхний сердечник притягивается к нижнему. Контакты в результате замыкаются. После снятия питания, исчезает и электромагнитное поле, а пружина разжимает контакты.
Устройство может работать от источника постоянного тока, и при одно- и трехфазном переменном токе, главное, чтобы его значения не превышали номинал, указанный заводом-изготовителем.
Сеть на 220 вольт
При питании от сети 220 вольт с одной фазой, подключение осуществляется через выводы, которые, как правило, обозначают А1 и А2. Расположены они в верху корпуса пускателя. При подсоединении к ним провода с вилкой, прибор включается в сеть. На выводы, маркированные L1, L2, L3 подается любое напряжение, снимаемое с контактов Т1, Т2 и Т3.
Ноль и фазу при подсоединении к устройству возможно спокойно перебрасывать, это не принципиально. Обычно питание подается через датчик температуры или степени освещения, например, при подсоединении пускателя к автономному отоплению или уличному освещению.
Кнопки «пуск» и «стоп»
При запуске и выключении двигателя при помощи пускателя удобно подключение устройства с кнопками, включенными последовательно с прибором.
Чтобы по окончанию нажатия на кнопку «пуск» работа двигателя не прекратилась, в цепь вводят самоподхват за счет запараллеленных с «пуском» выводов. Благодаря им двигатель работает после того, как на «пуск» уже не нажимают, до того момента, пока не нажмут на кнопку остановки.
На двигатель подают напряжение через любой маркированный буквой L контакт, и снимают его с соответствующего контакта под литерой Т. Данная схема подключения справедлива для однофазной сети.
Трехфазная сеть на 380 В
При подключении к трехфазной сети, задействуется три группы контактов L и Т. Одна из фаз подключается к контакту А1 или А2, ко второму из них подсоединяют «ноль». Для защиты асинхронного двигателя от перегрева в цепь вводится тепловое реле. Больше никаких принципиальных отличий в подключении нет.
СХЕМА ПОДКЛЮЧЕНИЯ МАГНИТНОГО ПУСКАТЕЛЯ
Прежде чем приступить к практическому подключению пускателя — напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.
Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом. Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)
Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп» и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск», «Вперёд», «Назад».
Если катушка рассчитана на срабатывание от 220 В, то цепь управления коммутирует нейтраль. Если рабочее напряжение электромагнитной катушки 380 В, то в цепи управления протекает ток, «снятый» с другой питающей клеммы пускателя.
Схема подключения магнитного пускателя на 220 В
Здесь ток на магнитную катушку КМ 1 подается через тепловое реле и клеммы, соединенных в цепь кнопок SB2 для включения — «пуск» и SB1 для остановки — «стоп». Когда мы нажимаем «пуск» электрический ток поступает на катушку. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку. При отпускании «пуск» не происходит размыкание цепи, поскольку параллельно этой кнопке выполнено подключение блок-контакта КМ1 с замкнутыми магнитными контактами. Благодаря этому на катушку поступает фазное напряжение L3. При нажатии «стоп» питание отключается, подвижные контакты приходят в исходное положение, что приводит к обесточиванию нагрузки. Те же процессы происходят при работе теплового реле Р – обеспечивается разрыв ноля N, питающего катушку.
Схема подключения магнитного пускателя на 380 В
Подключение к 380 В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки. В данном случае питание осуществляется с использованием двух фаз L2 и L3, тогда как в первом случае — L3 и ноль.
На схеме видно, что катушка пускателя (5) питается от фаз L1 и L2 при напряжении 380 В. Фаза L1 присоединяется напрямую к ней, а фаза L2 – через кнопку 2 «стоп», кнопку 6 «пуск» и кнопку 4 теплового реле, соединенные последовательно между собой. Принцип действия такой схемы следующий: После нажатия кнопки 6 «пуск» через включенную кнопку 4 теплового реле напряжение фазы L2 попадает на катушку магнитного пускателя 5. Происходит втягивание сердечника, замыкающее контактную группу 7 на определенную нагрузку (электродвигатель М), при этом подается ток, напряжением 380 В. В случае выключения «пуск» цепь не прерывается, ток проходит через контакт 3 – подвижный блок, замыкающийся при втягивании сердечника.
При аварии в обязательном порядке должно сработать теплового реле 1, его контакт 4 разрывается, отключается катушка и возвратные пружины приводят сердечник в исходное положение. Контактная группа размыкается, снимая напряжение с аварийного участка.
Подключение магнитного пускателя через кнопочный пост
В данную схему включены дополнительные кнопки включения и остановки. Обе кнопки «Стоп» подключены в цепь управления последовательно, а кнопки «Пуск» соединяются параллельно.Такое подключение позволяет производить коммутацию кнопками с любого поста.
Вот ещё вариант. Схема состоит из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220 В. Питание кнопок взято с клеммы силовых контактов пускателя, цифра 1. Напряжение подходит до кнопки “Стоп” цифра 2. Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра 3.
Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра 4. Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.
Вспомогательный блок контакт 6 шунтирует контакт кнопки “пуск” 4, для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился. Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра 7, снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.
Подключение двигателя через пускатели
Нереверсивный магнитный пускатель
Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая – «Пуск», другая замкнутая – «Стоп». Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов – одну нормально разомкнутую, другую замкнутую. Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.
Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп». Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй – подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.
Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода – «прямой» и «блокирующий».
Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.
Реверсивный магнитный пускатель
Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1–3–5, а те, к которым подключен двигатель как 2–4–6.
Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.
При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом – через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.
Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.
Советы и хитрости установки
- Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
- Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 – значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
- Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
- Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.
А ещё вам понадобится полезный прибор — пробник электрика, который легко можно сделать самому.
Схемы подключения трехфазных электродвигателей
ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.
Условные обозначения на схемах
Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.
У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.
Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.
В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).
Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.
Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».
Схема прямого включения электродвигателя
Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.
Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.
Схема подключения электродвигателя через магнитный пускатель
Эту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.
При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.
Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)
Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:
При необходимости частой смены направления вращения электродвигателя применяется реверсивная схема подключения электродвигателя:
В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.
При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.
Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели.
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
{SOURCE}
Для чего нужен магнитный пускатель (ПМ)? Данное электромеханическое устройство предназначено для пуска и остановки асинхронных двигателей с дистанционного поста управления. Благодаря технической простоте и высокой эксплуатационной надежности этого изделия практически никто не задумывается над тем, почему при легком нажатии на пусковую или стоповую кнопку происходит включение и, соответственно, выключение электропривода. Вопросы по устройству и принципу действия пускателя возникают только тогда, когда он выходит из строя.
В повседневной жизнедеятельности человеку приходится сталкиваться с обслуживанием механизмов, имеющих привод от асинхронных двигателей небольшой мощности. Это могут быть маломощные компрессорные установки, метало или деревообрабатывающие станки для домашнего пользования, как правило, в схемах управления которых, используется магнитный пускатель серии ПМ12. Так как изделие этого типа имеет наиболее частое применение на практике, дальнейшее рассмотрение устройства и принципа действия пускателя будет рассматриваться на его примере.
Технические характеристики и маркировка
Несмотря на то, что принцип работы всех магнитных пускателей одинаков, отдельные виды этого устройства, имеют ряд технических различий. Для идентификации конструктивных особенностей и рабочих характеристик существует система условных обозначений данных изделий. Для примера можно взять конкретную маркировку ПМ.
ПМ12-025 2 4 1 УХЛ 2 Б
ПМ12 – серия изделия. Все изделия этой серии имеют одинаковую конструкцию корпуса и исполнительного устройства. Габариты корпуса могут отличаться в зависимости от величины токовой нагрузки. Чем мощнее пусковое устройство, тем больше его размеры.
ПМ12-025 _ _ _ УХЛ _ _ (первые три цифры), 025 – номинальная нагрузка на силовых контактах – до 25 Ампер. ПМ с такой токовой характеристикой классифицируется, как магнитный пускатель 2 величины. ПМ12 в зависимости от величины могут обеспечивать работу электрических двигателей, токовый диапазон которых находится в пределах от 10 до 250 Ампер.
Таблица соответствия маркировки рабочей токовой нагрузке ПМ
ПМ12 ___ 2 _ _ УХЛ _ _ (четвертая цифра), 2 пускатель нереверсивный, снабжен тепловым реле для защиты электродвигателя от длительных токовых перегрузок при обрыве одной фазы, а также в случае заклинивания привода или приводного механизма. Назначение пускателей и наличие тепловой защиты определяется следующей системой маркировки:
ПМ12 ___ _ 5 _ УХЛ _ _ (пятая цифра), 5 степень защиты IР20, открытого исполнения, без оболочки. Исключает попадание внутрь устройства посторонних механических предметов и случайное соприкосновение человека с действующими и токоведущими частями. Магнитный пускатель, выполненный с данной степенью защиты не защищен от попадания в него воды или другой жидкости, поэтому, как правило, размещаются в закрывающихся электрических щитах на дин рейках. Основная масса электрических приборов, которые находят наиболее широкое применение, обладает степенью защиты IP20.
ПМ12 ___ _ _ 1 УХЛ _ _ (шестая цифра) исполнение по количеству блок-контактов, 1 – 2 нормально открытых (разомкнутых) и 2 нормально закрытых (замкнутых).
Маркировка на магнитном пускателе ПМ12
ПМ12 ___ _ _ _ УХЛ 2 _ (УХЛ) исполнение электроаппаратуры для умеренно-холодного климата, УХЛ 2 – предназначения для работы в помещениях без отопления или под навесом.
ПМ12 ___ _ _ _ УХЛ _ Б (Б) характеристика исполнения по износостойкости. А – 320 тыс. циклов, Б – 100 тыс. циклов, В – 30 тыс. циклов.
Для удобства среднестатистического потребителя производитель зачастую в маркировке, установленной требованиями стандартизации, дополнительно указывает номинальные токовые характеристики пускателя, вид тока, а также рабочее напряжение магнитной катушки. Ниже выделенным текстом указана нагрузочная характеристика – 25А, напряжение – 380В и переменный ток – АС.
ПМ12-025 2 4 1-25А-380АС-УХЛ2-Б
Переменный ток обозначается символом AC, постоянный – DC. Втягивающие катушки пускателей ПМ12, в большинстве случаев рассчитаны для работы на переменном токе с напряжением 24В, 220В или 380В.
Устройство и принцип действия
На сегодняшний день производителями налажено производство магнитных пускателей, которые находят применения во всех сферах промышленности, транспорте, повседневной деятельности человека. Они различаются по конструкции исполнения, сложности схемы управления, габаритным размерам, величине токовых нагрузок, степени защиты от воздействия внешней среды, но всех их объединяет то, что в основу их работы заложен один принцип.
Рисунок 1 Устройство магнитного пускателя серии ПМ12
Пластиковый корпус магнитного пускателя состоит из двух частей (2) и (3). В нижней части (3) располагается главный рабочий орган – магнитная система пускового устройства, состоящая из втягивающей катушки (6), якоря (4) и сердечника (7), набранных из Ш-образных пластин, изготовленных из электротехнической стали.
На средний керн неподвижного сердечника (7), который крепится к корпусу (3) пластиной (8), одевается втягивающая катушка (6) и возвращающая пружина (11). Для того чтобы смягчить динамическую нагрузку, между ней и железом сердечника устанавливается амортизатор (8).
В корпусе выполнены специальные направляющие пазы, по которым совершает возвратно-поступательные движения траверса (1). К траверсе жестко крепится подвижная часть магнитной системы (якорь) и мостик контактов пускателя (12)
На крайних кернах сердечника в специальных пазах крепится короткозамкнутый виток (5), обеспечивающий щадящий режим работы катушки.
При прохождении через витки катушки тока создается поле, под воздействием которого происходит втягивание в нее подвижной части магнитной системы исполнительного механизма. Перемещение якоря в сторону катушки увлекает за собой траверсу вместе с устройством замыкания-размыкания силовых, а также вспомогательных контактов пускателя. При обесточивании ПМ, возвратная пружина возвращает якорь на исходную позицию, что вызовет размыкание контактов.
В основании корпуса предусмотрен фиксатор, предназначенный для быстросъемного крепления пускателя к дин рейке.
Основные схемы подключения пускателей
На практике, используется три основных вида схем подключения пускателей: прямая, реверсивная и звезда-треугольник. Каждая из них в свою очередь может быть разделена на подвиды в зависимости от напряжения.
Нереверсивная схема
Эта методика применяется, если нет необходимости менять в процессе работы направление вращения двигателя. В базовом исполнении, для 220 вольтовых катушек подобные схемы будут иметь вид:
Та же схема, но для 380 вольтовых катушек:
В состав каждой из них входят следующие элементы:
- Автомат включения (QF),
- Магнитный пускатель (KM1),
- Блокирующие контакты (БК),
- Реле тепловой защиты (P),
- Двигатель асинхронного типа (M),
- Предохранительный элемент (ПР),
- Органы управления или кнопки (Пуск, Стоп).
После подключения питания через автоматический выключатель QF, нажимается кнопка Пуск, которая замыкает контакты и подает напряжение на КМ1 Он осуществляет ввод в работу двигателя. После этого, кнопку Пуск можно отпустить, так как сработает блокировка на контактах БК. Отключение питания в автоматическом режиме происходит при падении напряжения (размыкаются удерживающие контакты БК) или перегрузке (срабатывает тепловое реле или предохранитель). Также можно остановить подачу напряжения вручную, через кнопку Стоп.
Реверсивная схема
Когда есть необходимость менять направление вращения электродвигателя, используют реверс, который базируется на блоке пускателей. Схемы подключения устройств для 220 и 380 вольт будут иметь следующий вид:
Реверсивная схема схема №1
Реверсивная схема схема №2
Как можно видеть, здесь присутствуют те же элементы, что и в нереверсивных схемах, но добавлен еще один пускатель (КМ2) и кнопка для его запуска (Пуск2). Изменение направления вращения происходит за счет смены фаз. Но необходимо учесть ряд ключевых моментов, в частности предотвращение одновременного включения двух коммутаторов во избежание короткого замыкания. При подаче напряжения через автомат QF, включается пусковая кнопка на первый контактор (Пуск1, КМ1). В это же время происходит расщепление нормально замкнутых контактов БК1 перед реверсной кнопкой. Обратный ход включается аналогично, через Пуск 2, но перед этим необходимо отключить питание – Стоп (С).
Схема комбинации звезды и треугольника
Схемы «звезда» и «треугольник» являются наиболее распространенными при подключении двигателя к электрической линии. В первом случае он будет работать плавно, но не сможет развить полную мощность. Соединение треугольником, в свою очередь, не дает столь ровных оборотов, но позволяет развить полную мощность, вплоть до полуторакратной паспортной.
В двигателях большой мощности часто используют интересный ход: первоначальный плавный ввод организовывается по звезде, а после выхода на необходимые обороты, автоматически переходят на треугольник. Это позволяет в том числе значительно снизить потребляемые пусковые токи. Примерная схема включения пускателя и реле времени в таком режиме будет иметь следующий вид:
Специфические виды пускателей и схемы их работы
Помимо типичных задач, эти устройства, в силу своего функционала, могут использоваться и в более специфических условиях. Рассмотрим их кратко на примере тиристорного пускателя, взрывозащищенных коммутаторов типа ПВР-125р и ПВИ-250 В, подключения через контакторы терморегуляторов и организация АВР.
Тиристорные пускатели и схема их включения
Особенность данного типа пусковых реле состоит в том, что в них не используется метод прямого физического разрыва цепи. То есть, они являются бесконтактными и в принципе лишены ключевых недостатков привычных устройств (механического износа контактов, образования дуги и т.д.). Правильно включить электродвигатель можно на тиристорных устройствах ПТ, схема подключения которых выглядит следующим образом:
В цепи задействованы следующие элементы:
- L1, L2, L3 – фазные провода (полюса),
- ТА1, ТА 2 – трансформаторы тока,
- R1, R 2 – резисторы,
- VD1, VD 2 – транзисторы,
- VS1…VS6 – тиристоры,
- БУ – блок управления,
- SB1, SB2 – кнопки «Пуск» и «Стоп».
Пускатели типа ПВР-125р и ПВИ-250 В
Электродвигатели используются не только в более-менее привычных нам условиях: к примеру, на различных горнодобывающих предприятиях, шахтах и т.п., где сохраняется потенциальная взрывоопасная обстановка, запыленность и прочие негативные факторы. Следовательно, исполнение пусковых устройств должно предусматривать подобные ситуации. В таких условиях находят применение релейные модули ПВР-125р и ПВИ-250 В(БТ).
Пускатель типа ПВР является реверсивным модульным блоком, который монтируется во взрывозащищенном корпусе. Он используется для ввода в работу трехфазных электродвигателей различно горнодобывающей техники, работающей в выработке угольных шахт. К ПВР предъявляются особые требования в части противодействия метану и пыли.
Пускатель ПВР-125р
Пускатель ПВИ-250 В (БТ, Д) используется в таких же условиях, как и ПВР, но исходя из маркировки обладает еще и искрозащитой. Предназначен для включения и выключения двигателей шахтной техники. Через ПВИ-250 обеспечивается дополнительная защита от возможных коротких замыканий или перегрузок в сети.
Пускатель ПВИ-250 В
Подключение терморегуляторов посредством пусковых реле
Теплый пол или обогреватель инфракрасного типа дополнительно комплектуются терморегуляторами, для поддержки необходимого температурного фона. Использовать их можно не только в бытовых, но и в промышленных масштабах. Примерная схема подключения такой системы, когда терморегулятор цепи подключают не напрямую, а через контактор, выглядит следующим образом:
Формирование АВР на пускателях
Еще одним случаем, когда востребовано использование коммутаторов, является обустройство систем АВР (аварийного ввода резерва). Таким образом повышается надежность электроснабжения, поскольку существует как минимум два его источника. Правильно организовать узел ввода на АВР можно по такой схеме:
Здесь можно видеть два источника питания (1 и 2), автоматические выключатели на каждой из линий (АВ1, АВ2), пускатели и их контактные узлы (ПМ1 и ПМ2). На случай, если источники электроэнергии не являются полностью независимыми (например, одна из линий идет от условного соседа), в схеме предусмотрено реле контроля напряжения РКН, которое выбирает гарантированную линию ввода.
Пусковые магнитные устройства являются одними из важнейших элементов для правильного ввода в работу электрооборудования, в частности, двигателей синхронного типа, в том числе и в опасных условиях шахт (речь идет о контакторах ПВР и ПВИ). Подключение может быть организовано по прямой, реверсивной и комбинированной схеме (звезда-треугольник). Кроме того, пускатели находят широкое применение и в других областях, где нет необходимости использования двигателей, например, для организации подвода питания к домовым сетям или к системам обогрева по терморегуляторам, по прямому или резервному источнику (АВР).
Применение дин-реек для крепления
Зачастую подключение пускателя осуществляется посредством дин-рейки. В данном случае вместе с ней применяется устройство специального модульного типа. Дин-рейка являет собой металлический профиль, который используется для подключения модульного оборудования. Оборудование крепится в шкафах, специальных установочных коробках, а также на электрических щитах.
В промышленности используются дин-рейки различной ширины. Расстояния между их крепежными отверстиями также могут отличаться.
Цены пускателей
В нашей стране производится большое количество пускателей различных серий. Многие из них рассчитаны на питание 220В. Их цена варьируется в достаточно широком диапазоне. Она зависит от конструктивного исполнения устройства и его технических характеристик.
Наибольшее влияние на цену оказывает величина (мощность) ПМ. Для домашнего целесообразно приобрести пускатель с токовой нагрузкой 25 А, и степенью защиты IP54, обеспечивающей полную защиту от случайного прикосновения к действующим частям и попадания в него пыли, влаги и жидкости.
Заключение
Как было указано выше, наиболее широкое применение находят магнитные пускатели серии ПМ12 различных типов и видов. Это связано с их простотой в обслуживании, высокой надежностью. На усмотрение потребителя предлагаются изделия как открытого, так и закрытого исполнения, рассчитанные на широкий диапазон характеристик по току и напряжению. Конструкция ПМ12 может размещаться в оболочке, оснащенной кнопками управления, предусматривает крепление при помощи быстросъемных фиксаторов на рейки в щитах или на стенах помещения.
Если суммарная мощность светильников составляет несколько киловатт, часто используют схему управления освещением через контакторы либо пускатели. Данная схема управления освещением рассмотрена в […]
Освещение – одна из основ любого помещения. Без него нельзя ни работать, ни безопасно передвигаться. Особенно остро этот вопрос стоит в больших производственных помещениях и на открытом пространстве. Чтобы оперативно включать освещение, можно использовать мощный автомат, но кто имел дело – тот знает, что не у всех хватит сил просто включить большой советский автомат на 200 и более Ампер. Поэтому можно организовать управление освещением через контактор или магнитный пускатель, вручную, либо подключив схему к различным датчикам. Содержание:
Основы
Для включения магнитных пускателей и контакторов используют кнопочные посты. Это устройства, в которых есть 2 или 3 кнопки типа «Пуск» и «СТОП» или «Вперёд», «Назад» и «СТОП», есть и другие менее распространённые варианты. Кнопки эти представляют собой кнопку без фиксации с нормально-замкнутой и нормально разомкнутой парой контактов.
Пускатели и контакторы – это электромагнитные коммутационные приборы. Чтобы его силовые контакты замкнулись, нужно подать напряжение на катушку. Она притянет сердечник (якорь) на котором закреплены контакты (конструкция может различаться). Когда вы снимите напряжение с катушки – прибор отключится, и его силовые контакты разомкнуться.
Кроме силовых в этих приборах есть блок-контакты (обычно несколько их групп). Они не способны выдерживать большую нагрузку, а предназначены для реализации схемы самоподхвата и индикаций. Дело в том, что если просто через кнопочный пост подать напряжение на катушку – аппарат включится, но когда вы отпустите кнопку – сразу же отключится. Это нужно, например, в лебёдках и других грузоподъемных механизмах, но не в цепях, которые работают длительное время без остановок, как свет и электродвигатели вентиляционных систем.
Чтобы этого избежать и нужна схема самоподхвата – нормально-разомкнутый блок контакт подключают параллельно кнопкам «ПУСК» на кнопочном посту.
Обычно такие коммутационные аппараты используют для подключения к сети электроприборов большой мощности: тэнов, двигателей или как в нашем случае больших осветительных установок.
Схема подключения кнопочного поста и её принцип работы
Чтобы подключить контактор или пускатель для управления светом с двух кнопок (как и любой другой системой) нам понадобится:
- Кнопочный пост.
- Контактор или пускатель с количеством силовых контактов (полюсов) равным количеству фаз.
- Три жилы провода.
Подключение контактора к кнопочному посту выполняется так:
- Определяют напряжение катушки аппарата (обычно 220 или 380).
- Фазу берут с силовых контактов (если катушка на 380 – берём две разноименных фазы, если 220 – фазу и ноль).
- Подключают фазный провод на нормально-замкнутые контакты кнопки «СТОП».
- Последовательно с кнопкой «СТОП» подключают кнопку «ПУСК».
- От нормально-разомкнутой пары блок-контактов контактора или пускателя прокладывают два провода к кнопочному посту (от двух контактов соответственно) и подключают их к «ПУСКу», так чтобы её нормально-разомкнутая пара и разомкнутые блок-контакты были подключены параллельно. При этом контакты, на которые теперь пришла фаза, назовем условно «1», а на которые фаза подастся после нажатия на клавишу и срабатывания блок-контактов «2». Важное примечание: к этому шагу у нас уже есть приходящая фаза через нормально-замкнутый «СТОП» на разомкнутый «ПУСК», к этой же цепи подключены и блок-контакты пускателя или контактора.
- К блок-контакту «2» подключаем вывод катушки (часто на современных контакторах они обозначаются как A1 и A2).
- Второй вывод катушки подключаем к нулю, если она рассчитана на напряжение 220В или к другой фазе – если на 380В соответственно.
- Подключаем силовые питающие провода, с этих же клемм обычно берут фазу на кнопочный пост.
- Подключают провода от системы освещения (самих осветительных установок).
Всё что описано выше, но в графическом виде вы можете увидеть на этой схеме.
На рисунке дополнительно установлена индикация включения – лампочка в цепи управляющих кнопок и блок-контактов. Она позволит понять, включен ли контактор и наружный свет, не отходя от кнопочного поста.
Примечание: схема управления светом с помощью пускателей также хороша и тем, что можно легко организовать управление светом из двух и более мест – нужно просто добавить кнопочные посты параллельно имеющимся.
Дополнительные датчики
Как уже было сказано выше, управление освещением с помощью контакторов и пускателей часто используется в паре со средствами автоматики, такими как датчик освещенности и датчик движения. Обычно такие устройства содержат в себе небольшое реле или симистор, но максимальная мощность подключаемой активной нагрузки, как правило, ограничена 1-2 кВт. А о нагрузке с электромагнитными пускорегулирующими аппаратами и речи не стоит вести. Контакты таких реле не предназначены для их питания. К такой нагрузке можно отнести мощные лампы типа ДНаТ, ДРЛ, МГЛ и прочие, которые активно используются в уличных фонарях и прожекторах.
Для этого схема включения освещения контактором или пускателем с помощью датчиков отличается от схемы с кнопочным постом лишь тем, что вместо кнопочного поста мы соединяем катушку коммутационного аппарата с контактом выходного сигнала датчика. Ниже вы видите схему подключения датчика движения и фотореле к контактору на примере однофазной сети:
Схемы можно совместить, организовав принудительное включение освещения, для этого параллельно сигналу с датчика устанавливаем тумблер, который будет подавать фазу на катушку.
Если вы собираетесь использовать датчики в чистом виде – учтите, что они не предназначены для оперирования сигналом напряжением в 220В переменного тока. Поэтому такие устройства как фотореле семейства ФР, которые столь распространены в быту, содержат схему питания датчиков, триггеры или другие пороговые элементы, схемотехнику которых мы в этой статье рассматривать не будем! Если вам интересна эта тема – пишите в комментариях и мы подробно о ней расскажем. Надеемся, вам стало понятно, как производится управление освещением через контактор и магнитный пускатель. Как вы видите, схема не сложная, главное разобраться с особенностями ее работы.
Напоследок рекомендуем посмотреть видео, на котором наглядно демонстрируется применение такой схемы в быту:
Наверняка вы не знаете:
- Чем отличается контактор от магнитного пускателя
- Дистанционное управление освещением
- Что такое импульсное реле
% PDF-1.3 % 436 0 объектов > endobj Xref 436 96 0000000016 00000 n 0000002271 00000 n 0000002962 00000 n 0000003357 00000 n 0000003441 00000 n 0000003575 00000 n 0000003669 00000 n 0000003834 00000 n 0000003906 00000 n 0000004075 00000 n 0000004136 00000 n 0000004252 00000 n 0000004361 00000 n 0000004471 00000 n 0000004532 00000 n 0000004593 00000 n 0000004738 00000 n 0000004868 00000 n 0000004929 00000 n 0000004990 00000 n 0000005126 00000 n 0000005187 00000 n 0000005248 00000 n 0000005418 00000 n 0000005479 00000 n 0000005589 00000 n 0000005702 00000 n 0000005763 00000 n 0000005824 00000 n 0000005994 00000 n 0000006055 00000 n 0000006165 00000 n 0000006282 00000 n 0000006343 00000 n 0000006404 00000 n 0000006520 00000 n 0000006580 00000 n 0000006697 00000 n 0000006811 00000 n 0000006918 00000 n 0000006979 00000 n 0000007040 00000 n 0000007181 00000 n 0000007323 00000 n 0000007384 00000 n 0000007445 00000 n 0000007569 00000 n 0000007693 00000 n 0000007754 00000 n 0000007814 00000 n 0000007874 00000 n 0000007988 00000 n 0000008048 00000 n 0000008165 00000 n 0000008225 00000 n 0000008340 00000 n 0000008400 00000 n 0000008523 00000 n 0000008583 00000 n 0000008696 00000 n 0000008756 00000 n 0000008867 00000 n 0000008926 00000 n 0000008985 00000 n 0000009046 00000 n 0000010880 00000 n 0000010903 00000 n 0000011191 00000 n 0000012305 00000 n 0000013422 00000 n 0000013714 00000 n 0000013999 00000 n 0000015114 00000 n 0000016218 00000 n 0000016492 00000 n 0000017600 00000 n 0000017889 00000 n 0000017913 00000 n 0000037932 00000 n 0000037955 00000 n 0000048007 00000 n 0000048031 00000 n 0000090752 00000 n 0000090774 00000 n 0000091544 00000 n 0000091568 00000 n 0000151496 00000 n 0000151520 00000 n 0000163177 00000 n 0000163200 00000 n 0000172543 00000 n 0000172567 00000 n 0000231871 00000 n 0000231895 00000 n 0000002371 00000 n 0000002940 00000 n прицеп ] >> startxref 0 %% EOF 437 0 объектов > endobj 530 0 объектов > поток Hc«`f`tf`g` ^ ̀
.Принцип работыи его применение
Подключение небольших двигателей к источнику питания с помощью вилок и переключателей не требует каких-либо дополнительных шагов для запуска двигателя. Однако асинхронные двигатели большой мощности требуют подходящего устройства для запуска, поскольку они потребляют чрезмерное количество пускового тока. Существуют различные методы запуска, используемые для запуска асинхронных двигателей, поскольку асинхронные двигатели потребляют очень высокий пусковой ток (в 5-7 раз больше) по сравнению с током полной нагрузки двигателя, когда он запускается.Поэтому, чтобы избежать выгорания и нагрева двигателя из-за высокого значения пускового тока, для запуска асинхронных двигателей используются различные типы пускателей. Тип устройства, используемого для запуска асинхронного двигателя, называется Direct ON Line Line Starter (DOL) . Стартер Direct ON Line — это самый простой вид пускателя, который подключает двигатель напрямую к источнику питания через трехфазный контактор. Прямой включенный пускатель обычно состоит из контактора , выключателя и реле перегрузки для защиты от любого повреждения.
Пускатель DOL в основном состоит из двух основных защитных частей
- Защита от перегрузки по току
- Защита от перегрузки
Используется электромагнитный контактор, который может размыкаться с помощью реле тепловой перегрузки при возникновении неисправности. Контакторы, как правило, будут управляться отдельными кнопками пуска и останова, и на контакторе также имеется дополнительный контакт, который используется через кнопку пуска в качестве удерживающего контакта.Например, используемый контактор имеет электрическую блокировку и замыкается при работающем двигателе.
Защита от перегрузки по току:
Отказы от перегрузки по току возникают в основном и в основном из-за замыканий на землю и короткого замыкания. Когда такой тип неисправности возникает в любом месте, из цепи начинает течь большое количество тока утечки, что может привести к огромным повреждениям не только в системе, но и чьей-либо жизни. Поэтому используются плавкие предохранители и автоматические выключатели, которые показывают быструю реакцию на неисправность, когда ток такого типа (большой) неисправности проходит через систему.Вот почему для защиты системы от короткого замыкания, а также от тока перегрузки мы используем MCCB или предохранители определенных номиналов.
Когда величина тока, превышающая номинальный ток устройства, прошедшего через систему, такие устройства работают и размыкают цепь, пока неисправность не будет устранена из системы. Можно также сказать, что, когда немного больший ток превышает номинальное значение частоты прохождения двигателя , защита от перегрузки начинает работать и предотвращает какую-либо опасность для машины.Если ток перегрузки сохраняется в течение длительного периода времени, то вещи и машины могут быть повреждены. Защита от перегрузки не срабатывает, даже если высокое значение тока протекает в течение короткого промежутка времени, например, при запуске двигателя. Степень защиты от перегрузки по току всегда выбирается с такой тщательностью, что она должна обеспечивать достаточную защиту от сильного тока, а также она должна обеспечивать достаточный ток без срабатывания защиты от перегрузки по току для работы двигателя при большой механической нагрузке.
Защита от перегрузки:
Всякий раз, когда двигатель потребляет слишком большое количество тока для удовлетворения требования нагрузки и если нагрузка превышает допустимый предел, такое состояние или ситуация называется перегрузкой.Электрическая перегрузка возникает, когда чрезмерное количество тока проходит через электрические провода или от обмоток двигателя. Провода или обмотки могут нагреваться и плавиться с риском возникновения пожара . Поэтому в нем используется защита от перегрузки. В основном это тип защиты, когда двигатель потребляет слишком большой ток или ток перегрузки и вызывает перегрев электрической машины. Вот почему мы используем реле перегрузки другого типа, чтобы избежать перегрева системы или машины из-за чрезмерного количества тока, потребляемого в течение слишком длительного периода.Иногда пускатели двигателей поставляются со встроенным реле перегрузки.
Реле перегрузки классифицируются на основе различных классов отключения. Класс отключения — это термин, используемый в конструкции реле перегрузки, который означает, сколько секунд реле реле перегрузки срабатывает. Защита от перегрузки обеспечивается с помощью реле перегрузки.
Используемые здесь реле перегрузки имеют различные типы.
- Электронное реле: Перегрузка может быть полупроводниковым устройством с упомянутой на них регулируемой уставкой отключения, также называемой электронным реле.
- Тепловое реле: Если они связаны с датчиками температуры, оно называется тепловым реле.
- Магнитное реле: И если они работают только для большого количества тока, оно называется магнитным реле. Максимальный номинал устройства защиты от перегрузки составляет 125% от номинального тока полной нагрузки для максимальных двигателей.
DOL Motor Starter
Конструкция DOL Starter:
DOL Starter в основном состоит только из двух кнопок, одна из которых «зеленая», а другая «красная».‘Зеленая кнопка используется для запуска, а« Красная »кнопка используется для остановки двигателя. Устройство Direct ON Line Line Starter фактически состоит из контактора, MCCB или автоматического выключателя и реле перегрузки для защиты в случае возникновения неисправности. Вышеупомянутые две кнопки «Стоп» и «Старт» или также называемые «Красные» и «Зеленые» кнопки используются для управления контактами. Для запуска двигателя мы нажимаем зеленую кнопку, и контакт замыкается и, следовательно, на двигателе начинает появляться напряжение полной линии.Контактор может состоять из 3 или 4 полюсов, в зависимости от конструкции. В нашем случае используемый контактор четырехполюсный. Есть три «нормально разомкнутых» контакта, с которых двигатель подключен к линиям питания, а четвертый контакт называется «удерживающим контактом», который является дополнительным контактом, и этот контакт подает напряжение на катушку контактора после пуска или зеленой кнопки. выпущен. Дополнительная катушка обесточивается, если возникает какая-либо неисправность, и затем пускатель отключает двигатель от питающей сети.
DOl Схема управления стартером (трехфазная):
Схема подключения стартера цепи управления Direct ON Line следующая:
Главный контакт:
Соединение контактора может быть выполнено между катушкой реле , напряжение питания, а также тепловая перегрузка.
- Контактор L1 подключается от нормально разомкнутого (NO) к R-фазе с помощью MCCB.
- Контактор L2 подключается от нормально разомкнутого (NO) к Y-фазе с помощью MCCB.
- Контактор L2 подключается от нормально разомкнутой (NO) к фазе с помощью MCCB.
нормально замкнутый контакт:
- Контакт- (95-96) является нормально замкнутым (NC) контактом, который он размыкает только при отключении по тепловой перегрузке
нормально разомкнутый контакт:
- Контакт- (13, 14) и (53, 54) является нормально разомкнутым (НО) контактом, и они замыкаются только при включении реле.
- Точка контакта (53) подключается к точке кнопки пуска (94), а точка (54) контактора подключается к общему проводу кнопки пуска / останова.
Подключение реле тепловой перегрузки:
- Тепловые реле перегрузки подключены к T1, T2 и T3 соответственно.
- Между главным контактором и реле перегрузки двигателя подключено.
- Нормально закрытое соединение — (95, 96) реле тепловой перегрузки соединяется с кнопкой «Стоп» и общим соединением кнопки «Старт / Стоп».
Подключение релейной катушки:
- Точка А1 релейной катушки подключается к любому источнику питания, а точка A2 подключается к нормально замкнутому соединению реле тепловой защиты от перегрузки (95).
Схема цепи стартера DOL (трехфазная):
Схема цепи прямого стартера онлайн
Схема цепи стартера DOL (однофазная):
Схемасхема
DOL20009
Работа:
(i) Подключение проводки стартера DOL с помощью кнопок запуска и останова показано на рисунке выше (1). Между клеммами сетевого питания и клеммами двигателя соединены главные клеммы стартера DOL, а с двумя клеммами трехфазного источника питания, как описано на рисунке (1), цепь управления находится под напряжением.
(ii) При нажатии кнопки запуска ток будет проходить через одну фазу в цепь управления и катушку контактора в другую фазу. Катушка контактора получает питание благодаря этому току, который замыкает контакты контактора и в результате этого трехфазное питание подключается к двигателю. Кнопка запуска иногда называется кнопкой, потому что когда эта кнопка отпущена, схема управления стартера DOL все еще обеспечивает питание через удерживающий контакт.Путь тока через катушку контактора обрывается при нажатии кнопки останова, и из-за этого контакты контактора выпадают, что приводит к отключению питания двигателя. Можно также сказать, что катушка реле перегрузки работает.
(iii) В зависимости от эффекта нагрева тока нагрузки тепловое реле защиты от перегрузки срабатывает, поскольку эффект нагрева прямо пропорционален току нагрузки. Чем больше ток нагрузки, тем больше нагревательный эффект. Подпружиненный контакт в цепи управления отключается только тогда, когда биметаллическая полоса, используемая внутри, расширяется из-за нагрева.Все это происходит, когда величина тока нагрузки слишком велика, чтобы он мог нагревать тепловую катушку. Рабочая скорость реле определяется настройкой тока. Обычно он должен быть в 3-5 раз больше номинального тока двигателя.
(iv) Дистанционные пускатели DOL также используются для управления переключением двигателя в любом месте. Но существует условие для переключения на основе дистанционного управления, при котором следует знать, что все удаленные кнопки «ВЫКЛ» всегда подключены последовательно с кнопками «ВЫКЛ» стартера и наоборот (все удаленные кнопки «ВКЛ» всегда подключать параллельно к кнопке «ВКЛ» стартера).
Преимущества:
- Очень дешевый и экономичный стартер.
- Более удобный, простой в управлении и управлении.
- Схема управления намного проще.
- Очень легко устранять неисправности и легко понять.
- Стартер прямого включения обеспечивает 100% крутящего момента при запуске.
- От стартера к двигателю требуется только один комплект кабелей.
- Он подключает питание к обмотке треугольника двигателя.
- Размер DOL настолько компактен, что занимает очень мало места.
Недостатки:
- Пусковой ток двигателя не уменьшается.
- Стартер Direct ON Line имеет очень высокий пусковой ток или слишком большой ток в 6-8 раз больше тока полной нагрузки.
- Из-за огромных тепловых нагрузок на двигатель срок службы машины уменьшается.
- В электроустановке наблюдается значительный провал напряжения из-за слишком большого пускового тока и из-за этого другой клиент подключается к тем же линиям, на которые влияют, поэтому это подходит только для небольших двигателей.
- Механическая нагрузка на механические системы увеличивается из-за ненужного высокого пускового момента, даже когда нагрузка не требуется, и это очень опасно для срока службы машины.
- DOL стартер подходит только для двигателей мощностью менее 10 кВт. Недостаток стартера
- состоит в том, что он дает максимально возможный пусковой ток.
Применения:
- Запуск DOL иногда используется для запуска небольших водяных насосов, компрессоров, вентиляторов и конвейерных лент, где высокие пусковые токи не причиняют вреда
- Если высокий пусковой ток двигателя не вызывает чрезмерное напряжение Отключение в цепи питания позволяет использовать прямой онлайн-стартер.
Автоматический стартер Star / Delta с таймером для трехфазных двигателей переменного тока
В этом руководстве мы покажем Star-Delta (Y) -Δ) Метод запуска трехфазного асинхронного электродвигателя переменного тока с помощью автоматического стартера звезда-треугольник с таймером со схемой, схемой питания, управления и схемы подключения, а также принцип работы стартера звезда-треугольник и их применение с преимуществами и недостатками.
Автоматический стартер Star Delta с таймером и монтажной схемой
Автоматический стартер Star Delta с таймером для трехфазного двигателяОбъяснение работы и работы Автоматический стартер Star Delta с таймером Монтаж:
Из Если у вас есть главный контактор с пневматическим таймером, потому что ваш главный контактор всегда находится под напряжением, в середине у вас есть контактор Delta с тепловой перегрузкой для защиты двигателя, если двигатель превышает номинальное значение тока, установленное на тепловой перегрузке, справа у вас есть контактор «звезда», который является первым контактором, на который подается питание с главным контактором, затем, когда таймер достигает своего ограничения по времени, контактор «звезда» обесточивается, а контактор «дельта» включается, и двигатель работает с полной нагрузкой.
Схемы управления и питания двигателя:
Эксплуатация и работа автоматического пускового устройства Delta
от L1 Фазный ток течет к контакту тепловой перегрузки через предохранитель, затем к кнопке ВЫКЛ, к кнопке включения, к контакту блокировки 2, а затем C3. Таким образом, схема завершена, в результате;
- Катушка контактора C3 и катушка таймера (I1) включаются сразу, а обмотка двигателя затем подключается в звезду. Когда C3 находится под напряжением, его вспомогательные открытые связи будут закрыты, и наоборот (т.е.е. закрытые ссылки будут открыты). Таким образом, контактор C1 также находится под напряжением, и трехфазный источник питания достигнет двигателя. Поскольку обмотка подключена в звезду, следовательно, каждая фаза будет в √3 раза меньше, чем линейное напряжение, то есть 230 В. Следовательно, мотор запускается безопасно.
- Разомкнутый контакт C3 в линии Delta открывается, из-за чего не было бы никакой возможности активировать контактор 2 (C2).
- После выхода из кнопки, катушка таймера и катушка 3 будут получать питание через контакт таймера (Ia), удерживающий контакт 3 и замыкающий контакт 2 на С2.
- Когда на контактор 1 (C1) подается напряжение, два разомкнутых контакта в линии C1 и C2 будут замкнуты.
- В течение определенного времени (обычно 5-10 секунд), в течение которого двигатель будет подключен в звезду, после этого контакт таймера (Ia) будет разомкнут (мы можем измениться, повернув ручку таймера, чтобы снова настроить время), и в следствии;
- Контактор 3 (C3) будет отключен, из-за чего разомкнутая связь C3 (которая находится на линии C2), таким образом, C2 также будет под напряжением.Точно так же, когда C3 выключен, тогда соединение звезды обмотки также откроется. И С2 будет закрыт. Поэтому обмотка двигателя будет подключена в дельте. Кроме того, откроется контакт 2 (который находится в линии C3), при котором не будет никакой возможности активировать катушку 3 (C3)
- . Поскольку теперь двигатель подключен в треугольник, следовательно, каждая фаза двигатель получит полное линейное напряжение (400 В), и двигатель начнет работать в полном движении.
Похожие сообщения:
Схема питания Star Delta Starter
Нажмите на изображение, чтобы увеличить
Схема цепи Star Star Delta StarterСхема управления Star Star Delta Starter с таймером
Нажмите, чтобы увеличить
Пусковое устройство Star Delta с управляющей схемойЭлектрическая схема пускового устройства Star Delta с таймером
Нажмите для увеличения изображения
Автоматический пускатель Star Delta (Y-Δ) с таймером для 3-фазного асинхронного двигателяСокращения : (FOR Управляющая проводка трехфазного звездообразного треугольного стартера с таймером)
- R, Y, B = красный, желтый, синий (3 фазы)
- C.B = Главный выключатель
- Главный = Главный источник
- Y = Звезда
- Δ = Дельта
- 1a = Таймер
- C1, C2, C3 = Контроллеры (для питания и Схема управления)
- O / L = реле перегрузки
- NO = нормально разомкнутый
- NC = нормально замкнутый
- K1 = контактор (катушка контактора)
- K1 / NO = контактор Удерживающая катушка (нормально разомкнутая)
Похожие сообщения:
Преимущества и недостатки Star Delta Starter с таймером
Преимущества:
- Простой дизайн и эксплуатация
- Сравнительно дешевле, чем другие методы контроля напряжения
- Крутящий момент и ток производительность Star Delta Starter хорошо.
- Дважды потребляет пусковой ток FLA (Ампер полной нагрузки) подключенного двигателя.
- Он уменьшил пусковой ток до одной трети (приблизительно) по сравнению с DOL (прямой пускатель линии ON)
Также читайте:
Недостатки
- Пусковой момент также уменьшается до одной трети, поскольку стартер уменьшается пусковой ток до одной трети номинального тока [напряжение сети также снижено до 57% (1 / √3)]
- Требуется шесть выводов или клемм Двигатель (Delta Connected)
- Для подключения Delta напряжение питания должно соответствовать номинальному напряжению двигателя.
- Во время переключения (со звезды на треугольник), если двигатель не достигает, по крайней мере, 90% от его номинальной скорости, то пиковый ток может быть таким же высоким, как и в пускателе прямого включения (DOL), что может привести к воздействует на контакты контакторов, поэтому не будет надежным.
- Мы не вправе использовать стартер звезда-треугольник, если требуемый крутящий момент (приложения или нагрузки) превышает 50% номинального крутящего момента трехфазных асинхронных двигателей. И схемы управления
Характеристики и особенности Star-Delta Starter
- Пусковой ток составляет 33% от тока полной нагрузки для звездо-дельта-стартера.
- Пиковый пусковой момент составляет 33% от момента полной нагрузки.
- Пиковый пусковой ток составляет от 1,3 до 2,6 от тока полной нагрузки.
- Star-Delta Starter может использоваться только для трехфазных асинхронных двигателей малой и большой мощности.
- Это уменьшило пусковой ток и крутящий момент.
- Для клеммной коробки двигателя необходимы 6 соединительных кабелей.
- В Star Star Delta, пиковый ток и механическая нагрузка при переключении от Star Delta
Применение Star Delta Starter
Как мы знаем, главная цель Star Delta Starter — запустить трехфазный асинхронный двигатель в соединении звезда пока работает в Delta Connection.
Имейте в виду, что стартер Star Delta можно использовать только для асинхронных двигателей с низким и средним напряжением и легким пусковым моментом. В случае прямого пуска от сети (D.O.L), принимаемый ток на двигателе составляет около 33%, в то время как пусковой крутящий момент уменьшается на 25-30%. Таким образом, Star Delta Starter может использоваться только для легкой нагрузки при запуске двигателя. В противном случае двигатель с большой нагрузкой не запустится из-за низкого крутящего момента, который необходим для ускорения двигателя до номинальной скорости при переходе на соединение Delta.
Вы также можете прочитать другие схемы питания и управления ниже:
.Что такое Direct On Line Starter? его теория начала
Прямой включенный пускатель Метод является распространенным методом запуска асинхронного двигателя клетки. Двигатель подключен через стартер через полное напряжение питания. Прямой стартовый метод показан ниже. Он состоит из контактора C, управляемого катушкой, который управляется кнопкой запуска и остановки, как показано на схеме подключения ниже.
Кнопки, которые можно установить в удобном месте вдали от стартера.Кнопка запуска удерживается открытой пружиной. При нажатии кнопки START S 1 на контактор C подается питание от двух линейных проводников L 1 и L 2 .
Три главных контакта M и вспомогательный контакт A замкнуты. Клеммы А и В замкнуты накоротко. Затем двигатель подключается к электросети. Кнопка S 1 возвращается назад под действием пружины, как только давление сбрасывается. Катушка C остается под напряжением через ab.
Таким образом, главный контакт М остается замкнутым, а двигатель продолжает получать питание. Поэтому контакт A известен как удержание контакта. Кнопка останова S 2 обычно удерживается закрытой пружиной. Если кнопка S 2 нажата для STOP двигателя, питание через катушку контактора C отключается. Когда обмотка C обесточена, главные контакты M и вспомогательный контакт A размыкаются. Питание к двигателю отключено, и двигатель остановлен.
Защита от пониженного напряжения
Когда напряжение падает ниже определенного значения или когда происходит сбой или прерывание питания во время работы двигателя, катушка C обесточивается. Следовательно, двигатель отключен от питания защиты от перегрузки
Двигатель перегружен, одна или все перегрузочные катушки (O.L.C) находятся под напряжением. Нормально замкнутый контакт D размыкается, и обмотка C контактора обесточивается, чтобы отключить питание от двигателя. Предохранители предусмотрены в цепи для защиты от короткого замыкания.
В режиме прямого запуска пусковой ток может в десять раз превышать ток полной нагрузки, а пусковой момент равен моменту полной нагрузки. Такой большой пусковой ток вызывает чрезмерное падение напряжения в линии, которая подает питание на двигатель.
Теория прямого запуска асинхронного двигателя в режиме онлайн
лет,
- I st — пусковой ток, потребляемый от сети питания на фазу.
- I fl — это ток полной нагрузки, потребляемой от сети питания на фазу.
- Ʈ est — начальный крутящий момент.
- S fl — скольжение при полной нагрузке.
Как мы знаем, что потери в меди ротора = s x вход ротора
При запуске s = 1, I 2 = I 2-й , e = Est
Следовательно,
При полной нагрузке = s fl , I 2 = I 2fl , e = efl
Если током холостого хода пренебрегают
Приравнивая вышеприведенные уравнения (6) и (7), получим
Из уравнения (5) и (8) получаем
Если V 1 — напряжение статора на фазу, эквивалентное
Z e10 — это сопротивление покоя на фазу двигателя, относящегося к статору, тогда ток при запуске определяется уравнением, показанным ниже.
Пусковой ток равен току короткого замыкания.
Объединяя уравнения (9) и (10), получаем
Метод прямого запуска — самый дешевый и простой способ запуска асинхронного двигателя.
,