Светодиодные светильники схема подключения: Подключение светодиодного светильника к сети 220В

Содержание

Подключение светодиодного светильника к сети 220В

Оглавление:

  1. Введение
  2. Меры предосторожности и инструменты
  3. Подключение светодиодного светильника к 220В
  4. Подключение светодиодного светильника с тремя контактами
  5. Подключение потолочного светодиодного светильника
  6. Видео

LED-лампы вошли в нашу жизнь прочно и неотвратимо – в отличие от старых добрых ртутных лампочек они более энегкоемки и работоспособны: потребляют меньше электроэнергии и не выходят из строя на протяжении десятков тысяч часов. Из других плюсов – привлекательный внешний вид и компактность. Они не образуют нагара, просты в установке, экологически безопасны. В этой статье постараемся разобраться, как подключить светодиодный светильник к 220В, и главное – как сделать это правильно и безопасно.

Меры предосторожности и инструменты

Несмотря на то, что с подключением может справиться каждый, необходимо помнить о соблюдении техники личной безопасности, иначе ваши действия могут быть чреваты опасными последствиями. Лучше не рисковать и придерживаться простых правил:

  1. Монтаж, обслуживание и демонтаж осветительных приборов производится при выключенной электрической сети, поэтому первым шагом необходимо обесточить помещение, в котором будут происходить работы.
  2. Если напряжение LED-светильника меньше 220 вольт, то подключать его к сети можно только через блок питания, который должен идти в комплекте. При этом запрещено использование БП для галогенных и люминесцентных ламп.
  3. Установка должна выполняться с учетом суммарного энергопотребления данной осветительной системы, которое указано в выданном Техническом условии. Напряжение тока можно проверить с помощью индикаторной отвертки.
  4. Сухие руки при монтаже – обязательное условие несмотря на использование перчаток.
  5. Необходимо обеспечить свободное пространство вокруг прибора, чтобы лампы не перегревались – в противном случае они будут быстрее выходить из строя, возможно возгорание.
  6. Ознакомьтесь с условиями допустимых температур и влажности перед установкой – особенно это касается монтажа в банях и саунах. Нельзя устанавливать светильники, предназначенные для использования в помещениях, на улице без защиты.
  7. Выбирайте место установки таким образом, чтобы светильник и осветительная система не могла быть затоплена или подвержена сильной вибрации.
  8. Не рискуйте устанавливать светильники и блоки питания если при осмотре вы заметили внешние признаки неисправностей.
  9. При неисправностях не нужно разбирать светильники и блоки питания самостоятельно – неисправимые поломки приведут к отказу от сервисного обслуживания со стороны производителя.

При установке LED-элемента бытового назначения вы можете обойтись минимальным набором инструментов. Вам понадобится набор отверток – плоская и крестообразная, инструмент для удаления изоляционного слоя – стриппер – и плоскогубцы. Для большей безопасности советуем использовать специальные перчатки с диэлектрическим слоем.

Подключение светодиодного светильника к 220В

Способы установки можно условно разделить на три вида. У каждого свои особенности, достоинства и недостатки.

Последовательное

Используется в помещениях, к освещению которых нет высоких требований, чтобы сэкономить длину кабеля. В монтаже используются несколько двойных или тройных проводов. Не следует в одну цепь соединять более шести светодиодных лампочек, в противном случае свет от них будет тусклым. Недостаток способа в том, что при поломке одной лампы, проверять придется каждую – только так можно определить и устранить поломку.

Как осуществить? Обратите внимание на схему подключения. Сложностей такое подключение вызвать не должно. От выключателя к первому светильнику проводится фаза, затем от первого переключателя кабель протягивается к следующему устройству. К последнему светильнику нужно будет проложить ноль, который пущен от распределительной коробки.

Будьте внимательны! Если перепутать питание и ноль местами, светильники будут под постоянным напряжением – это небезопасно.

Параллельное

Такое соединение используется чаще – оно практичнее. Каждый светильник будет ярким настолько, насколько это заявил производитель. Минус заключается в том, что проводника потратить придется намного больше.

Обращайте внимание на кабель ВВГ нг 2*1,5 или 3*1,5 – он негорючий, имеет качественный изоляционный ПВХ-слой. В помещениях с повышенным требованиями можно купить кабель с маркировкой ls, которая означает, что при воспламенении кабель не будет выделять много дыма.

Чтобы осуществить такое подключение, протяните кабель от распределительной коробки через выключатель, поочередно соедините с каждым светильником. Обрезайте кабель после первого и передавайте его к следующему до тех пор, пока все лампы не будут соединены в общую сеть. Плюс такого способа в том, что при поломке одной лампы, сеть остается работоспособной.

Лучевое

Наиболее трудоемкий и дорогой способ соединения. К каждому прибору кабель прокладывается индивидуально.

От распределительного щитка проводим проводник в центр комнаты, а оттуда – к каждому отдельному светильнику. Затем к нулю и фазе проведите одножильные провода, их также проводим к каждой лампе отдельно.

Подключение светодиодного светильника с тремя контактами

Постараемся разобраться, как подключить светодиодный светильник, если у него три провода. Перед началом монтажа, советуем прочитать инструкцию, паспорт устройства, в котором помечены значения трех контактов. Для удобства монтажа провода различаются цветами: нулевой обозначается синим, провод заземления — желтым. Фазный обозначается отличным от двух остальных цветов.

  1. Соединяем синий нулевой провод лампы с нулевым из распределительной коробки;
  2. Фазный провод из распределительной коробки соединяем с выключателем, проводим провод под ним и соединяем с фазным проводом светильника.

Соединять безопаснее при помощи специальных клеммных зажимов.

Будьте осторожны! Не применяйте для изоляции ПВХ-ленты – со временем они усыхают, качество изоляции ухудшается. Это чревато опасным последствиями, в том числе коротким замыканием.

Подключение потолочного светодиодного светильника

Расскажем, как установить LED-элемент на натяжное потолочное покрытие, выполненное из ПВХ. Так как материал достаточно пластичный, то в процессе необходимо установить дополнительное крепление, чтобы потолок не провисал под тяжестью светильников. Для этого используется специальный пандус из пластика в форме конуса. Чтобы подогнать размер, срежьте ножом или другим подручным инструментом лишние полоски с конуса. Крепится устройство стальной перфорированной лентой — она достаточно гибкая, поэтому проблем возникнуть не должно.

Монтаж ламп производим сразу после установки потолочного покрытия. В месте, которое вы выбрали вырезаем пленку и извлекаем патрон. Устанавливаем потолочный светильник на платформу, что защитит не только от провисания потолка, но и перегрева.

В деталях увидеть, как подключить светодиодный светильник к сети, можно на видео ниже.

Видео

Как подключить светодиодный светильник к 220 В: схема и правила

Осветительные лед-элементы прочно вошли в быт современного человека – их применяют и как подсветку, и как основные источники света в жилых помещениях.

В отличие от обычной лампочки накаливания они потребляют в разы меньше электроэнергии и при этом способны работать несколько десятков тысяч часов подряд.

Однако существуют некоторые нюансы в их установке.

Поэтому рассмотрим, как своими руками подключить стандартный светодиодный светильник к бытовой сети с напряжением в 220В, какие виды схем можно использовать, какие виды ламп применяются и каковы их особенности.

Подключение светильников на 220 В

В отличие от стандартной лампы накаливания, светодиодный светильник требует питания только постоянным током. Поэтому чтобы подключить его от бытовой сети в 220В требуется специальный преобразовательный блок. Приборы, выпускаемые современными производителями, рассчитанные на такой номинал, имеют в своем составе преобразователь, поэтому их можно включать напрямую в розетку.

Существуют три способа, как подключить светодиодный светильники к бытовой сети в 220 В:

  1. Последовательный.
  2. Параллельный.
  3. Лучевой.

У каждого из них есть свои особенности монтажа, плюсы и минусы в применении в различных условиях и технические параметры. Рассмотрим их подробно.

Последовательный

Последовательная схема подключения стандартных светодиодных ламп, предназначенных для сети в 220В, предполагает соединение всех светильников между собой одним проводником. Суть в том, что в начало этой цепочки подается фаза, а к ее концу – ноль. Таким способом она замыкается и каждый из приборов работает в общей системе.

Преимущество такого последовательного подключения заключается в возможности существенно сэкономить на проводке. Для соединения всех светильников требуется одножильный провод, а если в сети 220В используется заземление, то двухжильный, вместо трехжильного кабеля. Недостаток – если одна из люстр перегорит, выключится вся схема, и потребуется поиск вышедшего из строя элемента для его ремонта или замены.

Алгоритм последовательного подключения светодиодного светильника:

  1. Выполнить монтаж светильников в соответствии с планом.
  2. Подключить электроприборы освещения проводкой по последовательному способу.
  3. Подвести жилу с фазой от выключателя к первой люстре.
  4. Проложить и от распределительной коробки нулевой проводник к последнему осветительному прибору.
  5. Проверить надежность и правильность всех соединений проводки, завершить установку электрооборудования.
  6. Подключить напряжение сети 220В, проверить исправность приборов.

Фазный провод к выключателю и нулевой к последнему светильнику в схеме может подходить как напрямую от электрощитка, так и от ближайшей распределительной коробки.

При выборе последовательного метода следует учитывать общее распределение напряжения на каждый источник света. По этой причине в такую систему не ставят более шести светильников, так как яркость их будет значительно снижаться.

Важно! Нельзя путать правило подключения фазы и нуля в выше приведенном методе. Если подсоединить к последнему прибору фазу, а от выключателя ноль, то вся схема светильников будет находиться под напряжением 220В, что далеко не безопасно в бытовых условиях!

Параллельный

В отличие от вышеописанного случая, параллельная схема требует подключать к каждому светодиодному светильнику два проводника – фазу и ноль (или три, если есть заземление) от сети 220В. Недостатком этого способа является повышенный расход кабеля или провода. С другой стороны – каждый прибор освещения будет проявлять заявленную изготовителем световую силу.

Чтобы подключить светодиодный светильник по параллельной цепочке от 220В, нужно выполнять следующий ряд действий:

  1. Выполнить установку всех осветительных приборов по ранее разработанной планировке.
  2. Подвести к первому фонарю провод от выключателя с фазой, затем от этого проводника подвести к следующему и т. д. – до последнего.
  3. Аналогичным образом от распределительной коробки нужно подключить нулевую жилу и, если есть, заземляющий проводник.
  4. Фаза к выключателю и ноль и земля к светильникам подводятся либо от распредмодуля, либо от электрощитка.
  5. Завершить монтажные процедуры, проверить правильность и надежность собранной электросхемы.
  6. Включить сеть 220В и проверить работоспособность установленных приборов.

Если в одном помещении существует несколько функциональных областей, устанавливать светодиодные светильники лучше группами. Для этого необходимо подключить их через двух- или трехклавишный выключатель.

Лучевой

Лучевое подключение – это частная разновидность параллельной системы. Чтобы подключить светодиодные светильники этим способом, необходимо в центр расположения приборов (например, когда они размещены по периметру зала) подвести кабель. Далее от распредмодуля к каждой люстре или их группе подводится провод с фазой, нулем и, если требуется, землей.

В начале главного кабеля устанавливается выключатель для управления группой светильников. Если планируется управлять каждой из них отдельно, схема существенно усложняется – добавляются проводники, выключатели. В случае, когда необходимо менять яркость, время и цвет, в систему также можно монтировать диммеры.

Особенности подключения ламп на 12В

Чтобы правильно подключить светодиодные светильники с рабочим номиналом в 12В к сети с напряжением в 220В, необходимо учесть несколько факторов:

  1. Бытовой ток имеет переменное значение, для низковольтовых лед-элементов нужен постоянный. Поэтому в начале схемы потребуется установить специальный трансформатор.
  2. Перед покупкой модуля, понижающего напряжение, надо грамотно рассчитать его мощность. Для этого подсчитывается точное количество используемых 12-вольтовых светодиодных светильников и их суммарная мощность. Например, если их количество будет 5 по 10 Вт каждая, значит общая требуемая мощность равняется 50 Вт. При этом к расчетному значению обязательно добавляется 20%-ый буфер. В данном случае это 10 Вт. Таким образом, общая мощность трансформатора должна быть не менее 60 Вт.
  3. При отсутствии достаточно опыта не пытаться собрать понижающий модуль самостоятельно. Для максимальной безопасности и надежности лучше приобретать заводское устройство с гарантированными характеристиками и сроком службы.

Подключить светодиодные светильники на 12В в сеть 220В можно по вышеописанным механизмам – параллельным и последовательным. В первом случае нужно обязательно использовать понижающий и выпрямляющий трансформатор, так как на каждую лампу будет подаваться одинаковое постоянное напряжение. Другое дело, когда все приборы соединяются друг за другом.

Важно! Несмотря на то, что в низковольтовых лэд-элементах в последовательной схеме осуществляется распределение всего напряжения в сети 220В, значение тока остается переменным. Поэтому потребуется установка выпрямителя. С его помощью на один конец цепочки светодиодных светильников будет подаваться плюс, на другой – минус.

Для тех, кто имеет хороший опыт в радиотехнике, собрать понижающе-выпрямляющее устройство не представляет особой сложности. Для того чтобы подключить светодиодные светильники номиналом 12В к бытовой сети 220В, используются две схемы:

  1. Упрощенная на гасящем конденсаторе.
  2. Более стабильная с микросхемой.

Первая дешевая и простая. Ее основной недостаток – возможная пульсация светового потока и неточные параметры электронных компонентов. Вторая версия сводит недостатки вышеприведенной на нет. Однако она более сложна в устройстве и дороже, но при этом более стабильна и надежна.

При выборе места монтажа трансформатора, выпрямителя и других электротехнических устройств необходимо учитывать влажность окружающей среды. Если их контакта с водой не избежать, лучше приобретать модели с влагозащищенным, герметичным корпусом.

Основные выводы

Подключить светодиодные светильники к бытовой электросети с напряжением в 220В можно по трем вариантам:

  1. Последовательной.
  2. Параллельной.
  3. Лучевой.

Последовательный способ распределения ламп позволяет сэкономить на проводке и сократить монтажные работы по ее укладке и восстановлению поверхности стен. Его главный недостаток – зависимость всех приборов друг от друга – если один перегорит, выйдут из строя все. Параллельная схема лишена этого минуса. Однако платой за это является больший расход проводников и необходимость подключения к каждой люстре по две-три жилы.

Еще один плюс такого способа – возможность использовать полную заданную светосилу лэд-элемента, чего не дает последовательная схема, где напряжение распределяется между всеми светильниками поровну. Лучевой метод – это разновидность параллельного, где все подсоединяемые фонари находятся примерно на равном расположении от центра – распредмодуля. Применяется, когда, например, лампы нужно установить по периметру потолочной поверхности.

В бытовую сеть на 220В также можно подключить светодиодные светильники на 12В. Однако нужно учесть, что они рассчитаны на постоянный ток. Поэтому для последовательной цепочки потребуется выпрямитель, а для параллельной в добавок понижающий трансформатор.

Предыдущая

СветодиодыКак подобрать и установить светодиодный драйвер своими руками

Следующая

СветодиодыТаблица сравнения светового потока светодиодов и ламп накаливания и другие показатели эффективности освещения

Как подключить потолочные светильники — схема подключения

Современный рынок светотехники предлагает своим потребителям огромный выбор разнообразных встраиваемых осветительных приборов. Установить их можно абсолютно на любой потолок, из какого бы материала не был он создан. Современное освещение не только дает превосходную освещенность, но и способно преобразить интерьер, придав ему особый уют. Поток света при точечном освещении можно направлять в любую сторону, что создает интересные эффекты и делает интерьер комнаты оригинальным.

При монтаже можно добавить функцию  приглушения яркости света, что даст возможность все время экспериментировать с освещением.  В зависимости от интенсивности можно добиться очень необычных эффектов на потолке.

Подключение точечных светильников дело несложное, с которым можно справиться самостоятельно.

В этой статье мы рассмотрим, какие есть виды ламп, в чем отличие схем их подключения и монтажа, подробнее остановимся на нюансах их установки.

Какой тип светильника  выбрать?

В точечный светильник можно установить любой тип лампы –  светодиодную, галогенную, лампу накаливания.  Рассмотрим каждый тип подробней.

Потолочные светильники с галогенными лампами можно использовать в подвесных системах с небольшой высотой. Это безусловное преимущество, ведь такое освещение можно использовать практически во всех  конструкциях.  Галогенки дают интенсивный яркий свет, что весьма ценно, но зато замена их не так проста –  сначала нужно снять фиксирующее кольцо, и только тогда можно перейти к замене.

Внимание! Саму галогенную лампу нельзя трогать руками,  потому что потовые выделения с рук могут вызвать гидратогенез кварца,  из-за чего она потеряет герметичность и быстро перегорит.


При правильной установке, такой светильник будет служить раза в 2-3 дольше, чем обычный, еще и экономия электроэнергии при этом немалая.

Точечный светильник может быть оснащен и лампой  накаливания. Это конечно редкость в таком типе освещения, но изредка встречается. Использовать такое устройство можно только при высоких потолках, потому что лампы накаливания  сильно нагреваются. Подключение и замена таких ламп предельно проста и всем хорошо известна, но и срок ее службы совсем небольшой.

Светодиодные светильники – самый оптимальный выбор на данный момент. Светодиоды, использующиеся в данном устройстве, имеют массу преимуществ:

  • максимально экономны – меньше всего потребляют электроэнергии
  • долговечны– имеют самый долгий срок службы
  • обеспечивают  яркий, интенсивный свет.
  • компактны – могут использоваться тогда, когда расстояние между базовым и декоративным потолком небольшое.
  • не нагреваются при работе – поэтому не будут повреждать материалы потолочной конструкции.

Есть светодиодные лампы разного оттенка, потому подобрать освещение, максимально гармонирующее с вашим интерьером – не проблема.  Установка их имеет некоторые особенности, однако, без серьезных трудностей.

Как подключить потолочные светильники?

Чтобы предупредить перепады напряжения сети,  нужно  установить трансформатор, подающий напряжение равномерно, без перепадов.

Установка точечного освещения не так сложна, как может показаться на первый взгляд.  Подключение точечных потолочных светильников нужно производить строго по схеме. Все работы можно осуществлять одновременно с установкой любых потолочных систем.  Главное соблюдать некоторые условия, а именно –  между базовым потолком и корпусом светильника должно быть расстояние не менее10 см. Это позволит полностью спрятать внутри потолочной конструкции  корпус светильника, трансформатор, провода.

Для подключения потолочных светильников необходим трансформатор – это обязательный элемент схемы устройства, обеспечивающий бесперебойную подачу напряжения.

Для этих целей можно использовать трансформаторы нескольких типов:

  • Электронные. Они устанавливаются достаточно просто и легко. Благодаря своему легкому весу, не утяжеляют потолочную конструкцию. Однако у них есть свои минусы – довольно часто ломаются и требуют замены;
  • Индукционные трансформаторы стоят дешевле, но они довольно тяжелы – порядка 2 кг. Такие приборы служат гораздо дольше электрических, они надежны и практичны. Если вы решите использовать именно этот вид трансформатора, нужно, либо дополнительно усилить потолочную конструкцию, либо делать дополнительный крепеж для прибора от базового потолка.

Если вы решили своими руками смонтировать сеть точечных светильников, то вам необходимо приобрести сразу несколько трансформаторов. Каждый прибор будет обеспечивать напряжением определенную группу светильников, и если один сломается, то  другие поддержат рабочее напряжение в сети.

Подключение точечной системы освещения

Подключение точечной системы освещения можно осуществлять по нескольким различным схемам, а именно:

  • Схема последовательного подключения.  В этом случае подключение каждого элемента осуществляется на один провод, то есть  лампы подсоединяются друг за другом.  Монтаж тут предельно прост, но и минусов у схемы достаточно. В данном случае необходим выпрямитель цепи, а иначе ток будет подаваться неравномерно,  что вызовет перегорание ламп.
  • Второй вариант –  каждая лампа подключена к распределительной коробке персональным проводом.  Выпрямитель здесь также понадобиться, но в данном подключении безопасность и надежность в разы выше.

Для монтажа можно использовать специальный потолочный плинтус или  устанавливать прямо в потолочное  покрытие.

  • На начальном этапе, еще до установки навесной конструкции, нужно подготовить базовый потолок – произвести разметку будущего расположения всех элементов и  укрепить консоли.
  • После установки подвесной конструкции на ее поверхности проделывают отверстия под лампы.  Размеры  отверстия определить легко, ведь  диаметр обычно указан на упаковке. В среднем размеры составляют 6-7см.
  • Далее в каждое отверстие прокладывают кабели и подключают их к клеммам ламп.
  • Для установки светильника, его пружины нужно свести вместе, поместить в приготовленное отверстие, и только после этого отпустить. Благодаря таким манипуляциям светильник четко примет нужное положение и будет плотно прижат к поверхности потолка.  Все, монтаж окончен!

Подключение люстры по сложности мало чем отличается, с алгоритмом действий в этом случае, наверное, уже каждому знаком. Однако чаще всего в современном интерьере прибегают к точечному расположению освещения. Так можно сделать многочисленные источники света,  добиться лучшего освещения помещения, а также интересных световых эффектов.  Многих привлекает и то, что в данной системе освещения применяются экономичные лампы, что позволяет и комнату осветить ярко и не затратить много электроэнергии. Да и произвести своими руками подключение потолочных светильников– не проблема, главное не отходить от схемы, разработанной профессионалами.

Краткая суть статьи

  1. Точечная система освещения – оптимальное решение для любого помещения. Благодаря нему можно комнату равномерно наполнить ярким светом, а при желании добиться оригинальных эффектов с помощью мягкого освещения.
  2. Точечные светильники можно оснащать разными видами ламп – накаливания, галогенные светодиодные. Наиболее популярны последние два вида, а самым оптимальным по показателям практичности, экономичности и мощности являются светодиодные лампы.
  3. Смонтировать систему освещения вполне можно самостоятельно, если строго придерживаться схемы.
  4. Есть несколько видов подключения системы освещения, каждая из которых имеет свои нюансы,  подробнее о которых вы можете узнать в соответствующем разделе.

Устройство, схема подключения светодиодного светильника

Самым эффективным способом сокращения электропотребления в быту является переход на искусственное освещение помещений в доме или квартире с использованием светодиодов, которые из всех типов ламп являются самыми высокоэффективными. Например, по сравнению с обычной лампой накаливания их энергопотребление более чем в 10 раз меньше при одинаковом световом потоке.

А кроме того светодиодные лампы во много раз превосходят люминесцентные энергосберегающие по сроку службы. Устанавливая светодиодные светильники Вы содействуйте сохранению  окружающей среды благодаря тому, что сокращается выделение продуктов горения топлива  в атмосферу от работы электростанций.


К основным достоинствам светодиодов относятся: экономичность, компактность, простота установки и отсутствие вредного влияния как на человека, так и природу. Будущее именно за ними и Я уверен,  что они вскоре вытеснят популярные сегодня компактные энергосберегающие лампы, у которых КПД и срок службы гораздо меньше.

Главный недостаток, который сдерживает всеобщее применение светодиодных светильников- это их цена. В Минске качественный светодиодный светильник дешевле, чем за 50 у. е. не найти, но уже наметилась тенденция по снижению цен на светодиодную продукцию. На лампочки уже  значительно снизились цены и они приближаются к энергосберегающим. Например, месяц назад Я заказал на известном китайском аукционе светодиодные лампы по цене 6 у. е.  за штуку, которые светят как 75 Вт лампа накаливания, а потребляют всего 5 Ватт электроэнергии.

Устройство светодиодного светильника.

Светильник состоит из корпуса с отражателем и набора небольших светодиодов. Светодиоды сильно греются, поэтому для их охлаждения используются специальный радиатор. На место соприкосновения светодиода и радиатора наносится термопаста, улучшающая контакт между ними, а значит и отвод тепла. Перегрев приводит к преждевременной поломке светодиодов, поэтому всегда при установке своими руками учитывайте, что должно быть свободное место вокруг радиатора и желательно не замкнутое.

Не устанавливайте светодиодный светильник возле нагревающихся поверхностей, приборов  и т. п.

Сумма  мощностей всех светодиодов и будет составлять общую мощность светильника. Количество светодиодов может варьироваться от одного до нескольких десятков, которые включаются в одну общую электрическую цепь и управляемой специально собранной схемой, подключенной через блок питания.

Если Вам необходимо функция диммирования или изменение уровня яркости, то Вам понадобятся специальные регуляторы и лампы с функцией диммирования. Подробнее об этом читайте в следующей нашей статье.

При выборе светодиодного светильника необходимо учитывать доступность ламп для замены, особенно обращаем внимание на тип цоколя (патрона). Прежде чем отправляться за покупкой в магазин рекомендую прочитать нашу статью «Как правильно выбрать светильник или люстру для дома«.

Светодиодная лампа на 220 Вольт состоит, как правило из одного или нескольких сверхъярких светодиодов, которые защищает светорассеиватель или пластиковая колба. К патрону подключается драйвер или электронная схема преобразования электрического тока и питания светодиодов. За отвод тепла отвечает радиатор, который устанавливается под светодиодом.

Как подключить светодиодный светильник

Светодиоды работают на постоянном токе! Внимание! Обращайте внимание при покупке на рабочее напряжение светодиодной лампы, если рабочее напряжение равно 220 Вольт, то значит схема блока питания встроена в лампу и Вы можете напрямую подключить ее к электросети дома или квартиры по общей схеме подключения светильника или люстры.

А если светодиодный светильник или лампа на 12 или 24 Вольта, то  для нормальной его работы необходимо переменное напряжение 220 Вольт преобразовать в постоянное и уменьшить до необходимой величины, а для этого нужно собрать диодный мостик и установить гасящий резистор и емкость. Я рекомендую использовать вместо всего этого покупной блок питания заводской конструкции, который надежен, безопасен и долговечен.

При покупке блока питания главное, на что необходимо обратить внимание- это на величину выходного напряжения (12/24 В) и максимально допустимой величины тока (350 /  700 mA  и др. )

Необходимые данные Вы найдете в инструкции к светильнику или благодаря надписям на нем или лампе. Мощность блока питания лучше брать не меньше, чем с 20 процентным запасом. Для перевода в Ватты необходимо Миллиамперы умножить на 1000 для перевода в Амперы, а затем амперы умножить на рабочее напряжение, полученная величина и будет мощностью, потребляемой светильником или лампой.

Прежде, чем приступать к подключению светильника во избежание его поломки убедитесь, что блок питания не подключен к электросети.

Подключение производится к источнику питания со строгим соблюдением полярности «-» и «+».

Если необходимо подключить несколько светодиодных светильников к одному блоку питания, тогда соединяем их параллельно: плюсовые провода от всех светильников подключаются к  «плюсу» блока питания, а к «минусу»- минусовые выводы (как изображено на схеме).

 

Помните! Максимальное  количество  светильников, подключаемых к одному блоку питания в общей сумме не должно превышать его мощности! А сечение используемых электрических проводов или кабелей должно быть достаточным для прохождения соответствующей силы тока!

 Из своей многолетней практики электрика отмечу, что не стоит покупать светодиодные светильники или лампы на 12 или 24 В для дома. Гораздо проще купить и подключить своими руками обыкновенный накладной, встраиваемый светильник или люстру. Для них практически под все распространенные цоколи или патроны выпускаются светодиодные лампы на 220 Вольт, которым не нужен для подключения блок питания. Они подключаются на прямую к электропроводке, так же как и лампы накаливания или компактные энергосберегающие.

как подключить точечные, светодиодные светильники, слоты на подвесном потолке, схема подключения, как подсоединить, устройство, как сделать проводку, как провести

Содержание:

Самыми массово используемыми бытовыми светильниками являются потолочные люстры и плафоны. Они отличаются довольно легкой установкой. В этой статье мы расскажем о правилах подключения потолочных светильников, о и том, какими они бывают.


Как выбрать светильник для потолка и схему подключения

Выбор светильника должен основываться на ваших потребностях в освещении.

Потолочные светильники различаются между собой по ряду параметров:

  • Количество встроенных лампочек. Если их две и более, то целесообразнее будет организовать их в две группы, снабдив отдельным выключателем. Подойдет любой двухклавишный выключатель – в результате такой схемы подключения потолочных светильников, можно будет менять яркость освещения в зависимости от ситуации.
  • Тип патрона. Покупая лампочки, следует учитывать тип цоколя, иначе она попросту может не подойти к имеющемуся патрону.

Стоит отметить, что патроны с цоколями Е27 и Е14 оснащены винтовой резьбой, а иные – особыми пружинящими посадочными гнездами и контактными группами.

  • Предельная разрешенная мощность, зависящая от строения светильника и материала изготовления.

В настоящее время каждый при подключении светильников может без проблем подобрать любую лампочку по необходимости, главное при этом учитывать их мощность, а также внешний вид и количество входящих в светильник лампочек.

Рекомендации по подключению

Перед тем как подключить споты, прокладывают скрытую электропроводку для запитывания потолочных светильников. Концы проводов подводят, как правило, к центральной части каждой комнаты. Провод может быть трех- или четырехжильным, и будет зависеть от способа подключения – на выключатель с одной или двумя клавишами.

Перед тем как установить точечные светильники с разделенными лампами в разные группы, нужно две жилы подвести к выключателю, одну соединить с нейтралью, а последнюю – с заземлением.

При этом нужно понимать, что нейтраль (N) – это общий провод для всех ламп, к которому подсоединяются все нулевые контакты патронов.


Фазные провода от всех групп патронов подсоединяются к внутренней электропроводке светильника двумя отдельными проводами, идущими от клеммника к конкретной клавише выключателя, а позже – к фазе (L).

Обратите внимание, что если светильник оборудован заземляющим проводом, то определяется он по цвету – он всегда жёлто-зелёный.

Чтобы регулирование точечных светильников на потолке сделать как можно более плавным, в цепь можно встроить диммер. Он обеспечивает плавное регулирование уровня светового потока, причём не нужно будет ориентироваться на количество ламп, входящих в потолочный светильник. Это даст возможность упростить схему при подключении светодиодных светильников или любых других. Читайте также: «Какая схема подключения точечных светильников лучше – виды и способы монтажа».

В данном случае все фазные концы проводов от патронов соединяются в общий провод и подключаются к диммеру.

Имейте в виду, что при выборе диммера, нужно учитывать общую мощность лампочек светильника – мощность устройства обязательно должна быть с небольшим запасом.

Инструкция по установке потолочных светильников

Если вы уже изучили, как провести проводку для точечных светильников, можно приступать к монтажу светильников к потолку. Для этого разработано несколько типов крепления.

Независимо от устройства потолочного светодиодного светильника, их цепляют на особый крюк, тип которого определяется материалом потолка. Плиты перекрытия из железобетона, как правило, уже имеют технологическое отверстие с встроенным креплением. При его отсутствии закладывают анкерный болт с крюком.


Если вы решили закрепить светильник к подвесному потолку, то в данном случае нужен специальный крюк, или такой, который мог бы вкручиваться в закладные устройства.

В продаже можно встретить светильники, оснащенные специальной крепежной планкой, которую фиксируют к потолку при помощи дюбелей и саморезов. После этого осуществляют монтаж самой люстры непосредственно к планке. Для этого нужно лишь на потолке наметить места под отверстия, взять перфоратор и пробить отверстия под дюбели и произвести установку.

Светильники накладного типа привинчивают к потолку через отверстия, проделанные в основании корпуса.

Схема, как подключить светильники на подвесном потолке, обычно прилагается к осветительному прибору. Однако в любом случае перед началом работ необходимо отключить питание линии от электросети, после чего с питающего кабеля нужно снять 10-15 см изоляции. Будьте осторожными, так как изоляция самих проводов должна остаться неповрежденной.

Если все крепежные элементы установлены, а люстра подвешена, то теперь можно приступить к соединению соответствующих проводов друг с другом с помощью клеммной колодки.


Последовательность соединения будет таковой:

  1. Заземляющий желто-зеленый провод подводят к клеммному отсеку «земля». Если такового обозначения не имеется, то подключение следует производить в третье гнездо.
  2. Коричневый провод, соответствующий фазе, крепят к клемме L (фаза), а синий – на клемму N (ноль).

Зачастую окрас питающего провода и проводов светильника соответствуют друг другу (если проектирование электропроводки осуществлялось профессионалами), поэтому сделать ошибку в данном случае будет крайне сложно.

После того как все провода будут соединены, их собирают вместе, и вместе с клеммником прячут в декоративный элемент светильника, в котором также спрятаны и разные крепежные детали.

В завершение

В статье выше мы подробно рассмотрели, как подсоединить точечные светильники на потолке, как их выбрать, и как осуществить все работы своими руками, чтобы в итоге освещение получилось предельно функциональным. Главное, придерживаться всех рекомендаций, приобретать только качественную продукцию и быть очень аккуратным. Однако если вы все еще по каким-либо причинам боитесь повесить люстру собственноручно, пригласите специалиста, который всю работу выполнит быстро и качественно. 


Подключаем точечные светильники своими руками

Точечные светильники могут подключаться двумя вариантами:

  • Подключение через 220 в,
  • Подключение через 12 в.
Каждый из этих вариантов имеет свои достоинства и недостатки и подбирается индивидуально для каждого объекта.

Схема подключения точечных светильников через 220 в

Эта схема считается оптимальной в России и выглядит так: ток проходит через счетчик и защитную автоматику и попадает распределительную коробку. Здесь защитный ноль и рабочий ноль напрямую идут к точечному светильнику. Фазный провод подключается к выключателю. Из него выходят провода в количестве, соответствующем типу выключателя. Ниже приведена схема подключения точечного светильника 220 в к одноклавишному выключателю.


Схема подключения точечного светильника к двухклавишному выключателю:


Схема подключения точечных светильников 220 в имеет ряд достоинств:

  • Простота и надежность,
  • Любые значения длины цепи, т.е. светильники могут располагаться на большом расстоянии друг от друга, но эффективность освещения при этом не пострадает,
  • Возможность использования кабеля меньшего сечения

Но есть и минусы в этой схеме:

  • Благодаря высокому напряжению источник является опасным и требует квалифицированного обслуживания,
  • Требует дополнительных защитных устройств.

Схема подключения точечных светильников 12 в

Если в схеме подключения светильников 220 в все проблемы заключаются в высоком напряжении, то подключение светильников 12 в полностью исключает эти недостатки. Более того при напряжении 12 в кабель имеет больший диаметр сечения, что делает срок службы электроприборов дольше. Этот вариант подключения идеально подходит для светильников арте ламп.

Схема подключения светильников на 12 в отличается от 220 в наличием трансформатора, который преобразует стандартное напряжение сети в 12 в. Наибольшей популярностью пользуются сегодня электронные трансформаторы, которые имеют ряд достоинств:

  • Компактные размеры,
  • Встроенная защитная система,
  • Плавный пуск,
  • Постоянный показатель напряжения на выходе,
  • Бесшумность и пр.

Подключение через трансформатор подойдет для светильников favourite.

Схема подключения точечных светильников на 12 в через трансформатор


Оптимальным вариантом считается подключение точечных светильников на 12 в, при котором на каждой точке устанавливается индивидуальный трансформатор. Стоимость такого комплекта несколько дороже, но она быстро себя оправдывает, т.к. при перегорании одного трансформатора остальные лампы продолжают работать в прежнем режиме. Но можно купить светильник в СПб недорого и получить двойную выгоду. Схема такого подключения приведена ниже.


Обе схемы на 12 в подходят и для постоянного, и для переменного тока.

Схемы подключения светодиодов к 220В и 12В

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

Содержание

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10. Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

  1. светодиодный драйвер со стабилизированным током;
  2. блок питания со стабилизированным напряжением.

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную  мощность.

Подключение к постоянному напряжению

..

Далее будут рассмотрены  схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный  полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие.  Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении  желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа  рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.  В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление.  Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов  белого света, поэтому имеет 6 ножек.  То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

 

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Описание серии

и параллельных цепей

Надеюсь, те, кто ищет практическую информацию об электрических схемах и подключении светодиодных компонентов, первыми нашли это руководство. Вполне вероятно, что вы уже читали здесь в Википедии страницу о последовательных и параллельных схемах, возможно, несколько других результатов поиска Google по этой теме, но все еще неясны или желаете получить более конкретную информацию о светодиодах. За годы обучения, обучения и разъяснения клиентам концепции электронных схем мы собрали и подготовили всю важную информацию, которая поможет вам понять концепцию электрических цепей и их связь со светодиодами.

Перво-наперво, не позволяйте, чтобы электрические схемы и компоненты проводки светодиодов казались устрашающими или сбивающими с толку — правильное подключение светодиодов может быть простым и понятным, если вы следите за этим постом. Давайте начнем с самого основного вопроса…

Какой тип цепи мне следует использовать?
Один лучше другого… Последовательный, Параллельный или Последовательный / Параллельный?

Требования к освещению часто диктуют, какой тип схемы можно использовать, но если есть выбор, наиболее эффективным способом использования светодиодов высокой мощности является использование последовательной схемы с драйвером светодиодов постоянного тока.Последовательная схема помогает обеспечить одинаковое количество тока для каждого светодиода. Это означает, что каждый светодиод в цепи будет иметь одинаковую яркость и не позволит одному светодиоду потреблять больше тока, чем другому. Когда каждый светодиод получает одинаковый ток, это помогает устранить такие проблемы, как тепловой выход из строя.

Не волнуйтесь, параллельная схема по-прежнему является жизнеспособным вариантом и часто используется; позже мы обрисуем этот тип схемы.

Но сначала давайте рассмотрим схему серии :

Часто называемый «гирляндным» или «замкнутым» током в последовательной цепи следует один путь от начала до конца, при этом анод (положительный) второго светодиода соединен с катодом (отрицательным) первого.На изображении справа показан пример: для подключения последовательной цепи, подобной показанной, положительный выход драйвера подключается к положительному выводу первого светодиода, а от этого светодиода выполняется соединение от отрицательного к положительному полюсу второго. Светодиод и так далее, до последнего светодиода в цепи. Наконец, последнее соединение светодиода идет от отрицательного вывода светодиода к отрицательному выходу драйвера постоянного тока, создавая непрерывную петлю или гирляндную цепь.

Вот несколько пунктов для справки о последовательной цепи:

  1. Одинаковый ток течет через каждый светодиод
  2. Полное напряжение цепи — это сумма напряжений на каждом светодиоде
  3. При выходе из строя одного светодиода вся схема не работает.
  4. Цепи серии
  5. проще подключать и устранять неисправности
  6. Различное напряжение на каждом светодиоде — это нормально

Питание последовательной цепи:

Концепция петли к настоящему времени не проблема, и вы определенно можете понять, как ее подключить, но как насчет питания последовательной цепи.

Второй маркер выше гласит: «Общее напряжение цепи — это сумма напряжений на каждом светодиоде». Это означает, что вы должны подать как минимум сумму прямых напряжений каждого светодиода. Давайте посмотрим на это, снова используя приведенную выше схему в качестве примера, и предположим, что светодиод представляет собой Cree XP-L, работающий на 1050 мА с прямым напряжением 2,95 В. Сумма трех из этих прямых напряжений светодиодов равна 8,85 В, постоянного тока, . Таким образом, теоретически 8,85 В — это минимально необходимое входное напряжение для управления этой схемой.

В начале мы упоминали об использовании драйвера светодиода с постоянным током, потому что эти силовые модули могут изменять свое выходное напряжение в соответствии с последовательной схемой. Поскольку светодиоды нагреваются, их прямое напряжение изменяется, поэтому важно использовать драйвер, который может изменять свое выходное напряжение, но сохранять тот же выходной ток. Чтобы получить более полное представление о драйверах светодиодов, загляните сюда. Но в целом важно убедиться, что ваше входное напряжение в драйвере может обеспечивать выходное напряжение, равное или превышающее 8.85V мы рассчитали выше. Некоторым драйверам требуется вводить немного больше, чтобы учесть питание внутренней схемы драйвера (драйвер BuckBlock требует накладных расходов 2 В), в то время как другие имеют функции повышения (FlexBlock), которые позволяют вводить меньше.

Надеюсь, вы сможете найти драйвер, который сможет дополнить вашу светодиодную схему последовательно включенными диодами, однако существуют обстоятельства, которые могут сделать это невозможным. Иногда входного напряжения может быть недостаточно для питания нескольких светодиодов последовательно, или, может быть, слишком много светодиодов для подключения последовательно, или вы просто хотите ограничить стоимость драйверов светодиодов.Какой бы ни была причина, вот как понять и настроить параллельную схему светодиодов.

Параллельная цепь:

Если последовательная схема получает одинаковый ток к каждому светодиоду, параллельная схема получает одинаковое напряжение на каждый светодиод, а общий ток на каждый светодиод представляет собой общий выходной ток драйвера, деленный на количество параллельных светодиодов.

Опять же, не волнуйтесь, здесь мы увидим, как подключить параллельную светодиодную схему, и это должно помочь связать идеи воедино.

В параллельной схеме все положительные соединения связаны вместе и обратно к положительному выходу драйвера светодиода, а все отрицательные соединения связаны вместе и обратно к отрицательному выходу драйвера.Давайте посмотрим на это на изображении справа.

В примере, показанном с выходным драйвером 1000 мА, каждый светодиод будет получать 333 мА; общий выход драйвера (1000 мА), деленный на количество параллельных цепочек (3).

Вот несколько пунктов для справки о параллельной цепи:

  1. Напряжение на каждом светодиоде одинаковое
  2. Полный ток — это сумма токов, протекающих через каждый светодиод.
  3. Общий выходной ток распределяется через каждую параллельную цепочку
  4. Требуется точное напряжение в каждой параллельной цепочке, чтобы избежать перегрузки по току

А теперь давайте немного повеселимся, объединим их вместе и наметим серию / параллельную цепь :

Как следует из названия, последовательная / параллельная цепь объединяет элементы каждой цепи.Начнем с последовательной части схемы. Допустим, мы хотим запустить в общей сложности 9 светодиодов Cree XP-L при 700 мА каждый с напряжением 12 В постоянного тока ; прямое напряжение каждого светодиода при 700 мА составляет 2,98 В постоянного тока . Правило номер 2 из маркированного списка последовательной цепи доказывает, что 12 В постоянного тока недостаточно для последовательной работы всех 9 светодиодов (9 x 2,98 = 26,82 В, постоянного тока, ). Тем не менее, 12 В постоянного тока достаточно для работы трех последовательно соединенных (3 x 2,98 = 8,94 В постоянного тока ). И из правила № 3 параллельной схемы мы знаем, что общий выходной ток делится на количество параллельных цепочек.Итак, если бы мы использовали BuckBlock на 2100 мА и три параллельных ряда по 3 последовательно соединенных светодиода, то 2100 мА было бы разделено на три, и каждая серия получила бы 700 мА. На изображении в качестве примера показана эта установка.

Если вы пытаетесь настроить светодиодную матрицу, этот инструмент планирования светодиодных схем поможет вам решить, какую схему использовать. На самом деле он дает вам несколько различных вариантов различных последовательных и последовательных / параллельных цепей, которые будут работать. Все, что вам нужно знать, это ваше входное напряжение, прямое напряжение светодиодов и количество светодиодов, которые вы хотите использовать.

Падение нескольких светодиодных цепочек:

При работе с параллельными и последовательными / параллельными цепями следует помнить, что если цепочка или светодиод перегорят, светодиод / цепочка будет отключена из цепи, так что дополнительная токовая нагрузка, которая шла на этот светодиод, будет раздать остальным. Это не большая проблема для массивов большего размера, поскольку ток будет рассеиваться в меньших количествах, но как насчет схемы с двумя светодиодами на цепочку? Затем ток будет удвоен для оставшегося светодиода / цепочки, что может быть более высокой нагрузкой, чем светодиод может выдержать, что приведет к перегоранию и разрушению вашего светодиода! Обязательно помните об этом и постарайтесь создать такую ​​настройку, которая не испортит все ваши светодиоды, если один из них перегорит.

Другая потенциальная проблема заключается в том, что даже когда светодиоды поступают из одной производственной партии (одного бункера), прямое напряжение все еще может иметь допуск 20%. Варьирование напряжений в отдельных цепочках приводит к тому, что ток не делится поровну. Когда одна струна потребляет больше тока, чем другая, перегруженные светодиоды нагреваются, и их прямое напряжение будет больше изменяться, что приведет к более неравномерному распределению тока; это называется тепловым разгоном. Мы видели, как многие схемы, настроенные таким образом, работают хорошо, но требуется осторожность.Для получения дополнительной информации об этой концепции и способах ее избежать (текущее зеркало) есть отличная статья на сайте LEDmagazine.com.

Общие сведения о драйверах светодиодов от LEDSupply

Драйверы светодиодов

могут сбивать с толку светодиодную технологию. Существует так много разных типов и вариаций, что временами это может показаться немного подавляющим. Вот почему я хотел написать небольшой пост с объяснением разновидностей, их различий и вещей, на которые следует обратить внимание при выборе драйвера (ов) светодиодов для вашего освещения.

Что такое драйвер светодиода, спросите вы? Драйвер светодиода — это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов. Это важная часть светодиодной цепи, и работа без нее приведет к отказу системы.

Использование одного из них очень важно для предотвращения повреждения светодиодов, поскольку прямое напряжение (V f ) мощного светодиода изменяется в зависимости от температуры. Прямое напряжение — это количество вольт, которое светоизлучающий диод требует для проведения электричества и зажигания.По мере увеличения температуры прямое напряжение светодиода уменьшается, в результате чего светодиод потребляет больше тока. Светодиод будет продолжать нагреваться и потреблять больше тока до тех пор, пока светодиод не перегорит сам себя, это также известно как тепловой побег. Драйвер светодиода — это автономный источник питания, выходы которого соответствуют электрическим характеристикам светодиода (-ов). Это помогает избежать теплового разгона, поскольку драйвер светодиода с постоянным током компенсирует изменения прямого напряжения, обеспечивая при этом постоянный ток к светодиоду.

На что следует обратить внимание перед выбором драйвера светодиода

  • Какие типы светодиодов используются и сколько?
    • Узнать прямое напряжение, рекомендуемый ток возбуждения и т. Д.
  • Нужен ли мне драйвер светодиода постоянного тока или драйвер светодиода постоянного напряжения?
    • Здесь мы сравниваем постоянный ток с постоянным напряжением.
  • Какой тип энергии будет использоваться? (Постоянный ток, переменный ток, батареи и т. Д.)
  • Какие ограничения по месту?
    • Работаете в ограниченном пространстве? Не слишком много напряжения для работы?
  • Каковы основные цели приложения?
    • Размер, стоимость, эффективность, производительность и т. Д.
  • Нужны какие-то специальные функции?
    • Диммирование, импульсное, микропроцессорное управление и т. Д.

Прежде всего, вы должны знать…

Существует два основных типа драйверов: те, которые используют входное питание постоянного тока низкого напряжения (обычно 5–36 В постоянного тока), и те, которые используют входное питание переменного тока высокого напряжения (обычно 90–277 В переменного тока). Драйверы светодиодов, которые используют высокое напряжение переменного тока, называются автономными драйверами или драйверами светодиодов переменного тока. В большинстве приложений рекомендуется использовать драйвер светодиода с низким напряжением постоянного тока.Даже если ваш вход представляет собой переменный ток высокого напряжения, использование дополнительного импульсного источника питания позволит использовать входной драйвер постоянного тока. Рекомендуются низковольтные драйверы постоянного тока, поскольку они чрезвычайно эффективны и надежны. Для небольших приложений доступно больше опций регулирования яркости и вывода по сравнению с высоковольтными драйверами переменного тока, поэтому у вас есть больше возможностей для работы в вашем приложении. Однако, если у вас есть большой проект общего освещения для жилого или коммерческого освещения, вы должны увидеть, какие драйверы переменного тока могут быть лучше для этого типа работы.

Вторая вещь, которую вы должны знать

Во-вторых, вам нужно знать ток возбуждения, который вы хотите подать на светодиод. Более высокие токи возбуждения приведут к большему количеству света от светодиода, а также потребуют большей мощности для освещения. Важно знать характеристики своего светодиода, чтобы знать рекомендуемые токи возбуждения и требования к радиатору, чтобы не сжечь светодиод слишком большим током или избыточным нагревом. Наконец, хорошо знать, что вы ищете от своего осветительного приложения.Например, если вы хотите регулировать яркость, вам нужно выбрать драйвер с возможностью регулировки яркости.

Немного о затемнении

Регулировка яркости светодиодов зависит от используемой мощности; поэтому я рассмотрю варианты диммирования как постоянного, так и переменного тока, чтобы мы могли лучше понять, как регулировать яркость всех приложений, будь то постоянный или переменный ток.

Регулировка яркости постоянного тока

Низковольтные драйверы с питанием от постоянного тока можно легко уменьшить несколькими способами. Самым простым решением для этого является использование потенциометра.Это дает полный диапазон затемнения от 0 до 100%.

Потенциометр 20 кОм

Обычно это рекомендуется, когда у вас есть только один драйвер в вашей цепи, но если несколько драйверов диммируются от одного потенциометра, значение потенциометра можно найти из — KΩ / N — где K — значение вашего потенциометра, а N количество используемых вами драйверов. У нас есть подключенные BuckPucks, которые поставляются с потенциометром с поворотной ручкой 5K для регулирования яркости, но у нас также есть потенциометр 20K, который можно легко использовать с нашими драйверами BuckBlock и FlexBlock.Просто подключите провод заземления затемнения к центральному штырю, а провод затемнения к одной или другой стороне (выбор стороны просто определяет, каким образом вы поворачиваете ручку, чтобы уменьшить яркость).

Второй вариант регулировки яркости — использование настенного светорегулятора 0–10 В, например, нашего низковольтного регулятора яркости A019. Это лучший способ диммирования, если у вас несколько устройств, поскольку диммер 0-10 В может работать с несколькими драйверами одновременно. Просто подключите диммерные провода прямо ко входу драйвера, и все готово.

Диммирование переменного тока

Для высоковольтных драйверов переменного тока существует несколько вариантов регулировки яркости в зависимости от вашего драйвера. Многие драйверы переменного тока работают с регулировкой яркости 0-10 В, как мы уже говорили выше. У нас также есть светодиодные драйверы Mean Well и Phihong, которые предлагают диммирование TRIAC, поэтому они работают со многими передними и задними диммерами. Это полезно, поскольку позволяет светодиодам работать с очень популярными системами затемнения в жилых помещениях, такими как Lutron и Leviton.

Сколько светодиодов можно запустить с драйвером?

Максимальное количество светодиодов, которые вы можете запустить от одного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов.При использовании драйверов LuxDrive максимальное выходное напряжение определяется путем вычитания 2 вольт из входного напряжения. Это необходимо, потому что драйверы нуждаются в накладных расходах 2 вольта для питания внутренней схемы. Например, при использовании драйвера Wired 1000mA BuckPuck со входом 24 В у вас будет максимальное выходное напряжение 22 В.

Что мне нужно для питания?

Это приводит нас к определению того, какое входное напряжение нам нужно для наших светодиодов. В конце концов, входное напряжение равно нашему максимальному выходному напряжению для нашего драйвера после того, как мы учтем служебное напряжение схемы драйвера.Убедитесь, что вы знаете минимальное и максимальное входное напряжение для драйверов светодиодов. В качестве примера мы возьмем Wired 1000mA BuckPuck, который может принимать входное напряжение от 7 до 32 В постоянного тока. Чтобы определить, каким должно быть ваше входное напряжение для приложения, вы можете использовать эту простую формулу.

V o + (V f x LED n ) = V дюйм

Где:

В o = Накладные расходы по напряжению для драйверов — 2, если вы используете драйвер DC LuxDrive или 4, если вы используете драйвер AC LuxDrive

В f = прямое напряжение светодиодов, которые вы хотите запитать

LED n = количество светодиодов, которые вы хотите запитать

В в = Входное напряжение на драйвер

Технические характеристики продукта со страницы продукта Cree XPG2

Например, если вам нужно запитать 6 светодиодов Cree XPG2 от источника постоянного тока и вы используете проводную шайбу BuckPuck, указанную выше, то V в должно быть не менее 20 В постоянного тока на основе следующего расчета.

2 + (3,0 х 6) = 20

Определяет минимальное необходимое входное напряжение. Нет никакого вреда в использовании более высокого напряжения вплоть до максимального номинального входного напряжения драйвера, поэтому, поскольку у нас нет источника питания на 20 В постоянного тока, вы, вероятно, будете использовать источники питания 24 В постоянного тока для работы этих светодиодов.

Теперь это помогает нам убедиться, что напряжение работает, но для того, чтобы найти правильный источник питания, нам также необходимо определить мощность всей цепи светодиода.Расчет мощности светодиода:

В f x Управляющий ток (в амперах)

Используя 6 светодиодов XPG2 сверху, мы можем определить наши ватты.

3,0 В x 1 А = 3 Вт на светодиод

Общая мощность цепи = 6 x 3 = 18 Вт

При расчете мощности источника питания, подходящей для вашего проекта, важно предусмотреть 20% «амортизации» при расчете мощности. Добавление этой 20% -ной подушки предотвратит перегрузку источника питания.Перегрузка блока питания может привести к мерцанию светодиодов или преждевременному отказу блока питания. Просто рассчитайте подушку, умножив общую мощность на 1,2. Таким образом, для нашего примера выше нам потребуется не менее 21,6 Вт (18 x 1,2 = 21,6). Ближайший общий размер блока питания будет 25 Вт, поэтому в ваших интересах получить блок питания на 25 Вт и выходное напряжение 24 В.

Что делать, если у меня недостаточно напряжения?

Использование LED Boost Driver (FlexBlock)

Драйверы светодиодов FlexBlock — это повышающие драйверы, что означает, что они могут выдавать более высокое напряжение, чем то, что на них подается.Это позволяет подключать больше светодиодов последовательно с одним драйвером светодиода. Это чрезвычайно полезно в приложениях, где ваше входное напряжение ограничено, и вам нужно получить

FlexBlock На

больше мощности для светодиодов. Как и в случае с драйвером BuckPuck, максимальное количество светодиодов, которое вы можете подключить с помощью одного последовательно подключенного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. FlexBlock может быть подключен в двух различных конфигурациях и может варьироваться в зависимости от входного напряжения.В режиме Buck-Boost (стандартный) FlexBlock может обрабатывать светодиодные нагрузки, которые находятся выше, ниже или равны напряжению источника питания. Вы найдете максимальное выходное напряжение драйвера в этом режиме по следующей формуле:

48 В постоянного тока — В в

Итак, при использовании источника питания 12 В постоянного тока и светодиодов XPG2 сверху, сколько мы могли бы работать с 700 мА FlexBlock? Максимальное выходное напряжение составляет 36 В постоянного тока (48-12), а прямое напряжение XPG2, работающего при 700 мА, составляет 2,9, поэтому, разделив 36 В постоянного тока на это, мы видим, что этот драйвер может питать 12 светодиодов.В режиме Boost-Only FlexBlock может выдавать до 48 В постоянного тока от всего лишь 10 В постоянного тока. Таким образом, если вы были в режиме Boost-Only, вы могли включить до 16 светодиодов (48 / 2,9). Здесь мы рассмотрим использование повышающего драйвера FlexBlock для более глубокого питания ваших светодиодов.

Проверка мощности для входных драйверов переменного тока большой мощности

Теперь с драйверами входа переменного тока они выделяют определенное количество ватт для работы, поэтому вам нужно определить мощность ваших светодиодов. Вы можете сделать это по следующей формуле:

[Vf x ток (в амперах)] x LEDn = мощность

Итак, если мы пытаемся запитать те же 6 светодиодов Cree XPG2 на 700 мА, ваша мощность будет…

[2.9 x 0,7] x 6 = 12,18

Это означает, что вам нужно найти драйвер переменного тока, который может работать до 13 Вт, как наш светодиодный драйвер Phihong 15 Вт.

ПРИМЕЧАНИЕ: При разработке приложения важно учитывать минимальное выходное напряжение автономных драйверов. Например, приведенный выше драйвер имеет минимальное выходное напряжение 15 вольт. Поскольку минимальное выходное напряжение больше, чем у нашего одиночного светодиода XPG2 (2,9 В), для работы с этим конкретным драйвером вам потребуется соединить не менее 6 из них последовательно.

Инструменты для понимания и поиска правильного драйвера светодиода

Итак, теперь у вас должно быть довольно хорошее представление о том, что такое драйвер светодиода и на что нужно обращать внимание при выборе драйвера с источником питания, достаточным для вашего приложения. Я знаю, что вопросы по-прежнему будут, и для этого вы можете связаться с нами по телефону (802) 728-6031 или [email protected].

У нас также есть этот инструмент выбора драйверов, который помогает рассчитать, какой драйвер будет лучше всего, введя спецификации вашей схемы.

Если ваше приложение требует нестандартного размера и вывода, обратитесь в LEDdynamics. Их подразделение LUXdrive быстро разработает и изготовит нестандартные светодиодные драйверы прямо здесь, в Соединенных Штатах.

Спасибо за внимание, и я надеюсь, что этот пост поможет всем, кто интересуется, что такое светодиодные драйверы.

Как работает светодиод 5 мм?

Светоизлучающие диоды (светодиоды) повсюду вокруг нас. Они есть в наших домах, в наших машинах, даже в наших телефонах. Светодиоды бывают разных форм и размеров, что дает дизайнерам возможность адаптировать их к своему продукту.Каждый раз, когда загорается что-то электронное, есть большая вероятность, что за ним находится светодиод. Их низкое энергопотребление и небольшие размеры делают их отличным выбором для многих различных продуктов, поскольку их можно более плавно интегрировать в дизайн, чтобы сделать его в целом лучшим устройством.

Раньше мы обсуждали светодиоды высокой яркости, но в этом посте мы сосредоточим наше внимание на светодиодах диаметром 5 мм или светодиодах со сквозными отверстиями. Это типы светодиодов, которые, вероятно, будут использоваться в вашей небольшой электронике в качестве светового индикатора или чего-то в этом роде.5-миллиметровые светодиоды потребляют гораздо меньше тока, чем светодиоды высокой яркости, 20 мА по сравнению с минимум 350 мА для мощных светодиодов. Если вы читали нашу оригинальную публикацию Mastering LEDs, вы должны знать: больше тока = больше света. Очевидно, что эти 5-миллиметровые светодиоды будут скорее акцентным светом для очень маленьких помещений. Именно для этого предназначены 5-миллиметровые светодиоды, их можно использовать вместе в большом массиве для создания знака или какой-то матрицы, или их можно использовать сами по себе, чтобы сделать небольшой индикатор или один из этих крошечных фонариков на цепочке для ключей. .

5-миллиметровые светодиоды

очень полезны, так как они легко питаются от небольшого источника питания и служат долгое время. Это позволяет легко встраивать их во многие электронные устройства или размещать фонари там, где они обычно не могут находиться. Название 5-миллиметрового светодиода связано с их размерами: эпоксидный корпус наверху имеет диаметр около 5 мм. Эти сверхмалые источники света просты в использовании, но мы не можем упускать из виду некоторые этапы настройки нашей светодиодной схемы.

, 5 мм, основные светодиоды

Светодиод — это вариант основного диода.Диод — это электронный компонент, который проводит электричество только в одном направлении. Диоды имеют так называемое номинальное прямое напряжение, которое определяет минимальную разницу напряжений между анодом (+) и катодом (-), чтобы позволить электронам течь (аххх..сладкое электричество). Светодиод в основном такой же, как диод, с ключевым отличием, что он генерирует свет, когда течет электричество.

5-миллиметровые светодиоды

— это светодиоды, которые удерживают матрицу на опоре наковальни, которая для защиты заключена в эпоксидный купол.Затем соединения выполняются через две ножки или штыри, выходящие из нижней части. Как мы уже упоминали, диод пропускает поток только в одном направлении. Это делает очень важным различать положительную сторону (анод) и отрицательную сторону (катод). Со светодиодами 5мм это просто, заметили, что ножки разной длины? Более длинная ветвь — это анод, а более короткая из двух — катод. Если ваши ноги подрезаны или у вас есть производитель, который делает их такого же размера, обычно есть плоское пятно вокруг обода 5-миллиметрового корпуса со стороны катода (см. Ниже).

Убедитесь, что вы всегда подключаете положительный полюс батареи / источника питания к аноду, а отрицательный или заземляющий — к катоду. Это обеспечит совпадение полярности и прохождение электричества, если у вас достаточно входного напряжения, и ваш 5-миллиметровый светодиод загорится. Если вы подключите его в обратном направлении, ничего не произойдет, и цепь останется замкнутой. Чтобы убедиться, что у вас достаточно мощности для вашего светоизлучающего диода, есть два основных параметра, на которые вы должны обратить внимание при рассмотрении технических характеристик светодиодов: прямое напряжение и прямой ток.

Напряжение светодиода 5 мм

Для каждого светодиода должно быть указано «прямое напряжение», которое определяет величину напряжения, необходимого для проведения электричества и получения света. Если вы попытаетесь подать что-либо меньшее, чем это количество, светодиод останется открытым и непроводящим. Как только напряжение, падающее на светодиоде, достигнет прямого напряжения, ваш светодиод загорится. Если у вас несколько светодиодов последовательно, вы должны учитывать сумму их номинальных напряжений в прямом направлении.

Давайте взглянем на один из наших стандартных синих светодиодов 5 мм.Теперь мы можем легко увидеть в технических характеристиках на странице продукта, что светодиод имеет прямое напряжение около 3,4 В. Итак, мы берем этот светодиод и пытаемся подключить его к батарее АА, светодиод что-нибудь сделает? Батарейки AA имеют номинальное напряжение 1,5 В, поэтому нет, у нас недостаточно напряжения для проведения электричества. Однако, если мы последовательно добавим еще одну батарею AA, наше напряжение будет 3 В, и мы сможем запустить 5-миллиметровый светодиод. «Но вы сказали, что для светодиода требуется 3,4 В!» Да, я знаю, но когда вы говорите с точностью до нескольких знаков после запятой, все будет в порядке.

5 мм светодиодный ток

Теперь некоторые люди думают, что им нужно позаботиться только о напряжении светодиода, и все будет в порядке. Это упускает из виду очень важную часть светодиодов — ток. Светодиоды будут потреблять столько тока, сколько они могут в цепи, в свою очередь, вызывая повышение температуры светодиода, пока он не перегорит. Поэтому, чтобы уменьшить количество выходящих из строя светодиодов, обратите внимание на номинальный ток светодиодов.

Приведенный выше пример, когда входное напряжение и прямое напряжение настолько близки, — это единственный пример, когда вам не нужно сильно беспокоиться о токе.Как показывает практика на нашем сайте, когда ваше входное напряжение составляет 3 В, вы можете включить любой из 5-миллиметровых светодиодов, кроме красного и желтого, не беспокоясь об отслеживании тока. Это связано с тем, что в источнике питания недостаточно тока для того, чтобы 5 мм потреблял и сгорал.

В любом другом случае вам нужно ограничить количество тока, протекающего через светодиод. С помощью мощных светодиодов
это делается с помощью драйвера постоянного тока. Номинальный ток 5-миллиметровых светодиодов намного ниже, обычно около 15-30 мА, и мы можем контролировать ток, подключив резистор последовательно со светодиодом.Именно здесь вы часто будете слышать термин «резистор ограничения тока», поскольку резистор обеспечивает значительное ограничение тока, протекающего по цепи.

5-миллиметровые светодиоды обычно тестируются при 20 мА, они могут потреблять ток до 30 мА, но, на мой взгляд, я обычно стараюсь поддерживать 5-миллиметровые светодиоды на 20 мА, что рекомендуется во всех их спецификациях. Теперь нам нужно выяснить, как подобрать резистор подходящего размера для вашей схемы, чтобы ваши светодиоды были в безопасности!

Поиск резистора подходящего размера для светодиодов

Резисторы

бывают самых разных размеров, и чтобы найти правильный размер для вашей системы, требуется математика.Не волнуйтесь, с этим калькулятором сопротивления, который рассчитывает размер резистора, который вам нужен, будет очень просто. Это отличный инструмент, но он всегда помогает узнать, как производятся расчеты, поэтому следите за ним. Чтобы найти токоограничивающий резистор правильного размера, мы должны знать два свойства светодиода: прямой ток и прямое напряжение.

Давайте использовать тот же синий светодиод, что и в примере выше. На странице продукта вы увидите таблицу, изображенную справа. В кружке показано прямое напряжение (Vf) при заданном испытательном токе.Таким образом, вы можете видеть, что для этого светодиода при постоянном токе 20 мА на светодиодах падает 3,2-3,6 В. Мы возьмем золотую середину и предположим, что этот светодиод упадет на 3,4 В.

В этом примере я буду использовать 3 последовательно соединенных элемента питания AA в качестве источника питания. Каждая батарея AA имеет напряжение около 1,5 В, поэтому в общей сложности у нас есть 4,5 В питания для нашего светодиода. Мы должны использовать закон Ома, чтобы найти предел резистора, но сначала мы должны найти напряжение, проходящее через него. Резистор и светодиод будут размещены последовательно, что означает, что падение напряжения на них будет суммироваться, чтобы равняться входному напряжению.Это означает, что мы можем легко найти напряжение, которое будет падать на резисторе, поскольку мы уже знаем, что светодиоды составляют 3,4 В.

Входное напряжение = LED В f + Напряжение резистора

Напряжение резистора = Входное напряжение — светодиод В f

Напряжение на резисторе = 4,5–3,4 В

Таким образом, на резисторе будет падать около 1,1 В. Теперь, когда у нас есть это, мы можем использовать закон Ома для расчета необходимого сопротивления!

Сопротивление = напряжение / ток (в амперах)

Сопротивление = 1.1 / 0,02 (20 мА)

Сопротивление = 55 Ом

В зависимости от светодиода резистор будет меняться. В этом примере мы можем предположить, что необходим резистор на 55 Ом, ближайший размер, который у нас есть, — 60,4, поэтому мы бы выбрали его. Если вы сомневаетесь в значении или у вас есть одно среднее между предложенными значениями сопротивления, выберите размер немного большего размера.

Последнее, что нужно проверить с вашими светодиодами и резисторами, — это мощность резистора. Все наши резисторы Вт. Требуемая мощность резистора — это разница между мощностью светодиода и общей мощностью схемы.Итак, в приведенном выше примере мы найдем требуемую мощность резистора.

Мощность светодиода = 3,4 В x 0,02 A = 0,068 Вт

Общая мощность = 4,5 В x 0,02 A = 0,09 Вт

Мощность, рассеиваемая на резисторе = 0,09 — 0,068 = 0,022 Вт

Резистор

¼ Вт (0,25) может легко выдержать 0,022 Вт, так что все готово! Установите резистор последовательно со светодиодом (на положительной стороне соединения), и ваш свет будет готов.

Не хотите ломать голову над поиском резистора и работать с несколькими резисторами в одной цепи? Оцените DynaOhm от LuxDrive. Это полностью залитый полупроводниковый переменный резистор, который оптимизирован для замены резисторов в 5-миллиметровых светодиодных устройствах. Этот блок будет включаться последовательно, как и резистор. Разница в том, что он уже рассчитан на определенный номинальный ток, поэтому все, о чем вам нужно беспокоиться, — это напряжение. DynaOhm может принимать от 2,6 В до 50 В постоянного тока, поэтому вводите все, что вам нужно для светодиодов.

Теперь, когда мы закончили все эти забавные разговоры о напряжении и токе, мы можем погрузиться в то, что действительно волнует людей, — на свет, который излучают эти крошечные лампочки. Цвет и яркость измеряются несколькими способами. На нашем сайте они всегда хорошо перечислены и систематизированы, но давайте узнаем, как эти диоды создают тот свет, который они создают.

Длина волны светодиода

Длина волны светодиода

— это, по сути, очень точный способ объяснить цвет света. Для светодиодов будет различаться цвет, так как производственный процесс интенсивен, а иногда и длины волн немного отличаются.На листе технических характеристик светодиода 5 мм вы фактически увидите минимальную и максимальную длину волны. Вариации всегда находятся в пределах одного и того же спектра, просто если вы покупаете светодиоды одного цвета в разных партиях, вероятно, будут небольшие отклонения (даже если наши глаза их не замечают).

Эта длина волны фактически определяется типом полупроводникового материала, из которого изготовлен диод внутри этого 5-миллиметрового корпуса. Структура энергетических зон полупроводников различается в зависимости от материала, поэтому фотоны излучаются с разными частотами, что влияет на видимый нами свет.Ниже представлена ​​полная таблица наших светодиодов и вариантов длины волны. Некоторые из наиболее популярных цветов, которые мы продаем, — это Deep Red 660 нм и Pink 440 нм.

Есть также 5-миллиметровые белые светодиоды теплого и холодного белого цвета.

Яркость светодиода

Таким образом, длина волны зависит от материала полупроводника, но интенсивность света зависит от тока, подаваемого на диод. Следовательно, чем выше ток возбуждения, тем ярче будет ваш светодиод. Яркость 5-миллиметровых светодиодов обычно измеряется в милликанделах (мкд), но это гораздо больше, чем просто установка определенного количества яркости на любой светодиод.

Самое интересное в этом измерении света, канделе, заключается в том, что это не мера количества световой энергии, как измеряется большинство других форм света, а скорее фактическая яркость. Это число определяется путем определения мощности, излучаемой в определенном направлении, и взвешивания этого числа с помощью функции яркости света. В основном это означает, что угол луча, который мы обсудим ниже, может влиять на свет, но также влияет на длину волны. Человеческий глаз более чувствителен к некоторым длинам волн, чем к другим, и эта модель яркости учитывает это.Вот почему ИК-светодиоды 5 мм не будут иметь выхода, потому что мы не можем видеть эту длину волны. То же самое для УФ и даже синего и других распространенных цветов.

Эта сила света (яркость) варьируется от светодиода к светодиоду, как вы увидите. Цвета обычно ниже, от десятков до сотен, тогда как белые (и некоторые цвета, которые мы видим лучше, например, зеленый) могут достигать 20 000 мкд. Мы перечисляем световой поток всех 5-миллиметровых светодиодов при испытательном токе 20 мА.

Угол обзора 5 мм

5мм светодиода на нашем сайте будут маркированы по цвету и углу луча.5-миллиметровые светодиоды показывают график, подобный приведенному справа, который показывает угол, под которым будет идти луч, и интенсивность при определенных углах. Чтобы прочитать график, представьте, что светодиод вертикально стоит под ним. «Спицы» на графике — это углы, а линии, похожие на радугу, — это интенсивность в процентах от максимальной интенсивности. Ниже мы расскажем, как определить угол обзора и яркость любого 5-миллиметрового светодиода под этим углом.

Рассеянный светодиод 5 мм

Часто рекомендуется иметь какой-нибудь рассеиватель или матовое покрытие, если на светодиоды будут смотреть непосредственно человеческий глаз.Некоторые 5-миллиметровые светодиоды имеют эпоксидную отделку купола, которая делает световой поток более мягким. У нас есть один белый 5-миллиметровый светодиод, в котором используется эта отделка, поэтому она приятна для глаз. Это снизит яркость, но сделает свет лучше.

Go Explore со светодиодами 5 мм

Светодиоды

5 мм очень доступны по цене и просты в разработке. Посмотрите, что вы можете с ними сделать, варианты безграничны. Теперь вы знаете, как запитать 5-миллиметровые светодиоды, определить их цвет и яркость, а также убедиться, что свет распространяется туда, где он вам нужен.Удачи!

Основы мощного светодиодного освещения

Светодиоды

подходят для многих систем освещения, они предназначены для получения большого количества света за счет малого форм-фактора при сохранении фантастической эффективности. Здесь, в LEDSupply, есть множество светодиодов для всевозможных осветительных приборов, главное — знать, как их использовать. Светодиодная технология немного отличается от другого освещения, с которым знакомо большинство людей. Этот пост здесь, чтобы объяснить все, что вам нужно знать о светодиодном освещении: как безопасно подключать светодиоды, чтобы получить как можно больше света и как можно более длительный срок службы.

Что такое светодиод?

Светодиод — это диод, преобразующий электрическую энергию в свет. Для тех, кто не знает, диод — это электрический компонент, который работает только в одном направлении. По сути, светодиод — это электрический компонент, который излучает свет, когда электричество проходит в одном направлении, от анода (положительная сторона) к катоду (отрицательная сторона). Светодиод — это аббревиатура, обозначающая ‘ L ight E mitting D iode ‘. По сути, светодиоды похожи на крошечные лампочки, им просто требуется намного меньше энергии для освещения и они гораздо более эффективны в производстве высокой светоотдачи.

Типы светодиодов

В целом мы предлагаем два разных типа светодиодов:

Сквозное отверстие 5 мм и поверхностное крепление.

5мм светодиоды

5-миллиметровые светодиоды — это диоды внутри линзы диаметром 5 мм с двумя тонкими металлическими ножками внизу. Они используются там, где требуется меньшее количество света. 5-миллиметровые светодиоды также работают при гораздо более низких токах возбуждения, максимальных около 30 мА, тогда как светодиоды для поверхностного монтажа требуют минимум 350 мА. Все наши 5-миллиметровые светодиоды от ведущих производителей доступны в различных цветах, интенсивности и схемах освещения.Светодиоды со сквозным отверстием отлично подходят для небольших фонарей, вывесок и всего, где вы используете макетную плату, поскольку их можно легко использовать с их проводами. Ознакомьтесь с нашим руководством по настройке 5-миллиметровых светодиодов, чтобы узнать больше об этих крошечных источниках света.

Светодиоды для поверхностного монтажа (SMD)

Рисунок 1 — Эмиттер без покрытия

Светодиоды для поверхностного монтажа — это диоды, которые могут быть размещены на подложке (печатной плате) с кремниевым куполом над диодом для его защиты (см. Рис. 1). Мы поставляем мощные светодиоды для поверхностного монтажа от лидеров отрасли Cree и Luxeon.Оба на наш взгляд отличные, поэтому мы их все-таки носим. Некоторые предпочитают одно другому, но это приходит с опытом и знанием того, что искать. Cree, как правило, имеет более высокие показатели мощности Lumen и является лидером на рынке светодиодов высокой мощности. Luxeon, с другой стороны, имеет отличные цвета и терморегулятор.

Светодиоды высокой мощности

поставляются в виде неизолированных эмиттеров (как показано на рис. 1) или устанавливаются на печатную плату с металлическим сердечником (MCPCB). Платы изолированы и содержат токопроводящие дорожки для упрощения подключения цепей.Наши 20-миллиметровые платы со звездообразным расположением 1 и 3 являются бестселлерами. Мы также предлагаем QuadPod, которые могут содержать 4 светодиода высокой мощности на плате, немного превышающей размеры 20-миллиметровых звезд (см. Рис. 2). Все наши варианты светодиодов высокой мощности также могут быть построены на линейной конструкции. LuxStrip вмещает 6 светодиодов на фут и легко подключается до 10 футов в длину.

Рисунок 2 — Опции MCPCB

Полярность имеет значение: светодиоды подключения

Электронная полярность указывает, является ли схема симметричной или нет.Светодиоды представляют собой диоды, поэтому ток может течь только в одном направлении. Когда нет тока, не будет света. К счастью, это означает, что если мы подключим светодиод в обратном направлении, он не сожжет всю систему, он просто не загорится.

Положительная сторона светодиода — это анод, а отрицательная сторона — катод. Ток течет от анода к катоду и никогда не течет в другом направлении, поэтому важно знать, как отличить анод от катода. Для светодиодов для поверхностного монтажа это просто, поскольку соединения промаркированы, но для 5-миллиметровых светодиодов нужен более длинный провод, который является анодом (положительным), посмотрите на Рисунок 3 ниже.

Рисунок 3 — Поиск анода и катода светодиода

Варианты цвета

Одна из замечательных особенностей светодиодов — это различные варианты и виды света, которые вы можете получить от них.

Белые светодиоды

Коррелированная цветовая температура (CCT) — это процесс создания разного белого света при разных температурах. Цветовая температура указывается в градусах Кельвина (K), что представляет собой шкалу температур, в которой ноль соответствует абсолютному нулю, а каждый градус равен одному Кельвину.При более низких температурах от 3000K до 4500K белый цвет становится более теплым или нейтральным. Более высокие температуры 5 000K + — это холодные белые цвета, также известные как «дневной белый».

Цветные светодиоды

Для цветов на самом деле важна длина волны в нанометрах (нм). Для некоторых применений цвета необходимы для визуального эффекта, но иногда для таких применений, как лечение, выращивание, освещение рифовых аквариумов и многое другое, необходимы определенные длины волн. См. Рис. 4, где показано, при каких длинах волн и при каких температурах получаются определенные цвета.

Рисунок 4 — Цвета светодиодов и цветовая температура

Мы стараемся обеспечить одинаковую цветовую температуру и длину волны для каждой марки и типа светодиодов. Вы всегда можете найти цвет или длину волны наших светодиодов в подразделе страницы продукта и даже можете выполнить поиск по цвету в раскрывающемся меню светодиодов на главной странице. В белом цвете мы несем 3000K, 4000K, 5000K и 6500K. Что касается цветов, мы работаем от 400 до 660 нм.

Яркость светодиода

Светодиоды

известны не только своими цветами, но и намного ярче, чем другие источники света.Иногда трудно сказать, насколько ярким будет светодиод, потому что он измеряется в люменах. Люмен — это научная единица измерения светового потока или общего количества видимого света от источника. Обратите внимание, что светодиоды диаметром 5 мм обычно указываются в милликанделах (мкд). Угол обзора 5-миллиметровых светодиодов также влияет на световой поток, который они излучают, подробнее об этом см. Здесь.

Зачем нужен ток…

Количество света (люмен), излучаемого светодиодом, зависит от величины подаваемого тока.Ток измеряется в миллиамперах (мА) или амперах (А). Мощные светодиоды выдерживают ток от 350 мА до 3000 мА. Светодиоды различаются в зависимости от их текущих характеристик, поэтому обязательно следите за этим при выборе светодиода и драйвера.

Определение яркости

А теперь самое сложное — выбрать комбинацию светодиода и драйвера, которая будет выдавать необходимый свет. Мы проделали большую работу здесь, в посте, измеряющем яркость каждого светодиода высокой мощности при разных токах возбуждения.Обратите внимание, что это меры для звезд 1-Up, поэтому, если вы хотите больше света, светодиоды 3-Up — хороший вариант, поскольку они в три раза больше света в том же месте.

Указанный выше ресурс всегда можно использовать для определения светоотдачи светодиода, но найти его вручную не очень сложно.

Для этого необходима информация из технического паспорта светодиода. На всех наших светодиодных страницах мы ссылаемся на технические данные производителя в нижней части страницы.

Пример: определение яркости Cree XP-L при 2100 мА

В этом примере мы используем Cree XP-L.Сначала найдите таблицу характеристик потока (рисунок 5). Мы коснемся группировки позже, которая помечена в столбце «Группа», но предположим, что мы собираемся использовать холодный белый XP-L из самого верхнего контейнера (v5). Выделенное число — это типичный поток при 1050 мА, который является током, при котором измеряется XP-L. Справа от него указаны типичные значения люменов для управляющих токов 1500, 2000 и 3000 мА.

Рисунок 5 — Таблица светового потока светодиода

Для этого примера предположим, что мы хотим запустить этот светодиод с драйвером светодиода BuckBlock 2100 мА, и нам нужно определить, какой будет световой поток.При управлении промежуточным приводным током, которого нет в списке, найдите график относительного потока в зависимости от тока в таблице данных, который выглядит как график справа.

Стрелка — проверенный (базовый) выход (при относительном потоке 100%). Следуя кривой до 2100 мА (?), Мы видим, что это увеличение освещенности на 75%. Взяв 460 люмен сверху и умножив его на 1,75, мы увидим, что холодный белый XP-L при 2100 мА дает около 805 люмен.

При переходе на светодиоды может быть трудно найти светодиоды и световой поток, необходимый для этого.Это связано с тем, что свет всегда измерялся мощностью лампочки. Светодиоды имеют гораздо лучшую эффективность, что делает практически невозможным измерение таким образом, поскольку светодиод на 50 Вт будет значительно ярче, чем лампа накаливания на 50 Вт. На рисунке 7 показаны различные лампы накаливания и количество люменов, которые они дают. Это помогает лучше понять, какое количество света ожидать от светодиода и будет ли оно таким же ярким, как и старое освещение.

Рисунок 6 — Мощность лампы накаливания в люменах

Угол обзора и оптика

У наших 5-миллиметровых светодиодов указаны углы обзора для каждого, поэтому просто найдите тот, который вам подойдет.Что касается светодиодов для поверхностного монтажа, большинство из них излучают очень широкий угол в 125 градусов! К счастью, светодиодные звездообразные платы совместимы и просты в использовании со светодиодной оптикой. Эта вторичная оптика используется для фокусировки света, они могут отражать свет от светодиода в пятно, среднее пятно, широкое пятно или эллиптические и овальные узоры.

Как видно на Рисунке 8, оптика 1-Up имеет форму конуса и требует держателя оптики. В случае наших светодиодных панелей держатели оптики имеют четыре ножки, которые входят в пазы звезды.Тройные светодиодные звезды также совместимы с оптикой Carclo, в плате которой есть три отверстия для ножек оптики.

Рисунок 7 — Светодиодная оптика и держатели

Как подключить светодиоды

Светодиоды

известны своей лучшей эффективностью из всех других источников света. Эффективность — это мера того, насколько хорошо источник света излучает видимый свет, также называемый люменами на ватт. Другими словами, сколько света мы получаем на наш ватт мощности. Чтобы найти это, сначала выясните мощность используемого светодиода.Чтобы найти ватты, вам нужно умножить прямое напряжение (напряжение, при котором ток начинает течь в нормальном направлении) на ток возбуждения в амперах (обратите внимание, что он ДОЛЖЕН быть в амперах… а не в миллиамперах). Давайте посмотрим на светодиод Cree XP-L 1-up в качестве примера.

Рисунок 8 — Прямое напряжение светодиода

Допустим, мы используем Cree XP-L при 2000 мА. Из рисунка 8 видно, что при таком токе возбуждения прямое напряжение составляет 3,15. Итак, чтобы найти ватт, мы умножаем 3,15 (прямое напряжение) на 2 А (2000 мА = 2 А), что дает 6.3 Вт.

Итак, теперь, чтобы определить эффективность, нам просто нужно разделить 742 люмен (проверенное количество люмен для этого светодиода при 2000 мА) на 6,3 Вт. Таким образом, эффективность (люмен / ватт) этого Cree XP-L составляет 117,8. Это большая эффективность, но также следует отметить, что Cree может похвастаться тем, что светодиод XLamp XP-L имеет прорывную эффективность 200 люмен / ватт при токе 350 мА. Приятно знать, что эффективность снижается по мере того, как вы пропускаете больший ток на светодиод, поскольку это увеличивает нагрев, что делает светодиод немного менее эффективным. Иногда вам нужно смириться с этим, если вам нужно, чтобы светодиод был очень ярким, но если вы хотите получить максимальную эффективность, вам следует использовать светодиоды с более низким током.Все это помогает определить, сколько энергии потребуется вашим приложениям, а также сэкономить энергию в будущем.

Подробнее о драйверах светодиодов

Это означает, что вам нужно найти драйвер светодиода, который может управлять светодиодами с током, который вам нужен, чтобы получить желаемое количество люменов. Драйвер светодиодов — это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов. Драйвер реагирует на меняющиеся потребности светодиода, подавая на светодиод постоянное количество энергии, поскольку его электрические свойства меняются с температурой.Хорошая аналогия для понимания этого — автомобиль с круиз-контролем. Когда автомобиль (светодиод) движется по холмам и долинам (изменения температуры), круиз-контроль (водитель) следит за тем, чтобы он оставался на постоянной скорости (свет), регулируя при этом газ (мощность), необходимый для этого. Драйвер так важен, потому что светодиоды требуют очень специфической электроэнергии для правильной работы. Если напряжение, подаваемое на светодиод, ниже требуемого, через переход проходит очень небольшой ток, что приводит к слабой освещенности и плохой работе.С другой стороны, если напряжение слишком велико, к светодиоду течет слишком большой ток, и он может перегреться и получить серьезное повреждение или полностью выйти из строя (тепловой разгон). Всегда проверяйте таблицу светодиодов, чтобы знать, какой ток рекомендуется, чтобы избежать этих проблем.

Какое напряжение мне нужно, чтобы загорелся светодиод?

Это часто задаваемый вопрос, и на самом деле его довольно легко понять. Все, что вам нужно знать, это прямое напряжение ваших светодиодов. Если у вас несколько светодиодов, подключенных последовательно, вам нужно учитывать все прямые напряжения вместе взятые, если у вас параллельная цепь, вам нужно только учитывать прямое напряжение того количества светодиодов, которое у вас есть на цепочку.Подробнее о настройке проводки см. Здесь. Рекомендуется поддерживать как минимум 2-вольтовые накладные расходы, поскольку некоторые драйверы (например, драйверы LuxDrive) требуют этого для правильной работы драйвера. Так что, если ваше общее прямое напряжение для последовательной цепи составляет 9,55, вы должны быть в безопасности с источником питания 12 В. Для автономных драйверов (вход переменного тока) просто знайте выходное напряжение, на которое они рассчитаны, и убедитесь, что вы защищены, поэтому драйвер входа переменного тока с выходным диапазоном 3-12 В постоянного тока также подойдет для этого приложения.

Контроль нагрева

Определение мощности вашей системы также поможет вам узнать больше о необходимом вам регуляторе нагрева.Поскольку эти светодиоды обладают большой мощностью, они выделяют тепло, что может быть очень плохим, как вы можете узнать здесь. Слишком большое количество тепла приведет к тому, что светодиоды будут излучать меньше света, а также сократят срок службы. Мы всегда рекомендуем использовать радиатор и говорим, что на каждый ватт светодиодов приходится около 3 квадратных дюймов. Для большей мощности я бы порекомендовал поискать радиатор, который рекомендован для той мощности, которую вы используете.

Светодиодный биннинг и качество

Сейчас, когда индустрия светодиодов растет довольно быстрыми темпами, важно понимать разницу в светодиодах.Это частый вопрос, поскольку светодиоды могут варьироваться от очень дешевых до очень дорогих. Я был бы осторожен при покупке дешевых светодиодов, так как вы всегда получаете то, за что платите. Да, светодиоды могут сначала работать отлично, но обычно они не работают так долго или быстро перегорают из-за плохого тестирования.

Все светодиоды, представленные здесь, на LEDSupply, тщательно отобраны. У нас есть только лучшие марки и цветовые температуры. Наш обширный опыт в отрасли помог нам понять важность качественного производства и сборки светодиодов.При производстве светодиодов характеристики могут отличаться от средних значений, указанных в технических паспортах. По этой причине производители разделяют светодиоды по световому потоку, цвету и прямому напряжению. Мы выбираем бункеры с самым высоким световым потоком (видимый свет) и самым низким прямым напряжением, так как это гарантирует, что у нас есть светодиоды с максимальной эффективностью. Большое количество светодиодной продукции производится дешево и не документируется должным образом, что приводит ко многим неудачным проектам и заставляет людей думать, что светодиоды на самом деле не служат так долго, как говорят.Благодаря нашему опыту и покупательной способности мы можем предложить лучшие продукты по разумным ценам.

Это должно дать вам хорошее начало для понимания светодиодов и того, что искать, но если у вас есть дополнительные вопросы или вы хотите получить дополнительную информацию об определенном продукте и о том, подойдет ли он для вас, мы здесь, чтобы помочь. Просто напишите нам по адресу [email protected] или позвоните по телефону (802) 728-6031, чтобы поговорить с нашей очень хорошо осведомленной командой технической поддержки.

Двухсторонние светодиодные трубчатые лампы с прямым проводом 2 лампы, электрические 101

У светодиодов с прямым проводом с двойным концом линия подключается к патронам на одном конце светильника, а на другом — к нейтрали.С этими светодиодными трубками можно использовать шунтированные или не шунтированные патроны . При использовании шунтированных патронов, отличных от , провода обычно нужно подключать только к одной стороне патрона с большинством светодиодных трубок (см. Инструкции по подключению).

Осторожно! Прямая проводка приведет к тому, что патроны будут запитаны линейным напряжением при включении выключателя света. Всегда отключайте питание светильника при установке или замене трубок в светильниках с прямым подключением.

Табличка с модификацией приспособления должна поставляться с трубкой. Поместите его на крышку балласта в соответствии с инструкциями.

Балласт мгновенного пуска 2 лампы

Заводская проводка

Светодиодный прямой провод с двойным проводом-

Схема подключения 2 лампы Устройство мгновенного пуска

Отрежьте провода от балласта. Снимите балласт с приспособления (или оставьте его на месте). Используя оранжевые соединители для проводов, обрежьте провода примерно до 1/2 дюйма.Можно использовать соединители для проводов аналогичного размера.

Отдельные провода патронов (синие) подключены к линии.

Общие провода (красные) подключены к нейтрали.

Эти соединения можно поменять местами. Индивидуальный к нейтральному и общий к линии.

Балласты для быстрого пуска 2 лампы

Заводская проводка

Светодиодный прямой провод с двойным проводом —

Схема электрических соединений с двумя лампами Крепление для быстрого пуска

Отрежьте провода от балласта.Снимите балласт с приспособления (или оставьте его на месте). Используйте разъем желто-коричневого провода для линии и разъем оранжевого провода для нейтрали. Обрежьте провода примерно до 1/2 дюйма для нейтрали и от 5/8 до 3/4 дюйма для линии. Можно использовать соединители для проводов аналогичного размера.

Отдельные провода патронов (синий и красный) подключены к линии.

Общие провода (желтые) подключены к нейтрали.

Эти соединения можно поменять местами. Индивидуальный к нейтральному и общий к линии.

Светодиодные трубчатые лампы

Direct- Wire Dual- Светодиодные лампы с концами 4 лампы Мгновенный запуск

Direct- Wire Dual- Светодиодные трубчатые лампы с закругленными углами 4 лампы Rapid Start

Прямой провод, одинарный- Светодиодные трубчатые лампы с концом

Простая схема светодиодной лампы из лома.Использует 5 светодиодов и потребляет всего 50 мА

Энергосберегающая светодиодная лампа из вашего мусорного бака.

Эта схема разработана г-ном Ситараманом Субраманианом, и мы очень рады опубликовать ее здесь. В этой статье он показывает метод преобразования сломанной / неработающей КЛЛ в энергосберегающую светодиодную лампу.

Это просто схема светодиодной лампы, которая может работать от сетевого напряжения. Цепочка из пяти светодиодов управляется емкостным источником питания без трансформатора. В цепи 0.Полиэфирный конденсатор C1 47 мкФ / 400 В снижает напряжение в сети. R1 — это спускной резистор, который выводит накопленный заряд из C1, когда вход переменного тока выключен. Резисторы R2 и R3 ограничивают бросок тока при включении цепи. Диоды D1 – D4 образуют мостовой выпрямитель, который выпрямляет пониженное напряжение переменного тока, а C2 действует как конденсатор фильтра. Наконец, стабилитрон D1 обеспечивает регулировку, а светодиоды возбуждаются.

Фото.

Принципиальная схема.

Слова Ситхарамана о схеме : Я посылаю вам настольную лампу, сделанную из неработающей энергосберегающей лампы с разбитыми трубками.КЛЛ переделали в светодиодную лампу. Большинство компонентов будет доступно в одной коробке для лома. Также можно использовать несколько компонентов, имеющихся в печатной плате CFL.

Процедура

1. Осторожно снимите разбитые очки

2. Осторожно откройте сборку

3. Снять и утилизировать электронику

4. Соберите схему в матричном ПК или на листе ламината толщиной 1 мм.

5.Вырежьте круглый лист ламината (ножницами)

6. Отметьте положение 6 круглых отверстий на листе

7. Просверлите отверстия, чтобы светодиоды встали заподлицо с шестью отверстиями

8. Нанесите немного клея, чтобы удерживать светодиодный узел в положении

9. Закройте сборку

10. Убедитесь, что внутренние провода не касаются друг друга

11. Теперь проверьте на 230 В переменного тока

Ваша красивая компактная настольная лампа / комнатная лампа для пуджи / проходная лампа готова к использованию.

Устранение неисправностей светодиода

— Проблемы с проводкой и проводкой

DO

МОЖНО использовать многожильный провод

Многожильный провод обеспечивает более плотный контакт, что снижает падение напряжения и потери мощности. Плохое соединение может лишить систему значительной части производимой энергии. Многожильный провод будет сжиматься и расплющиваться, что увеличивает площадь контакта. Это снижает падение напряжения и сводит к минимуму нагрев в месте подключения.

НЕОБХОДИМО использовать чистые прямые выводы

Наличие чистых и прямых проводов важно для любой установки светодиодов.Если ваши провода чистые и прямые, вы получите наилучшее соединение и уменьшите падение напряжения. Если вы хотите, вы можете припаять концы проводов, чтобы они оставались вместе и были уверены, что вы получаете достаточный контакт на ваших соединениях.

DO Термоусадочный или используйте соединители

При соединении двух проводов вместе всегда лучше использовать подходящие соединители для проводов или спаять провод вместе и применить термоусадку для защиты. Существует множество соединителей для разных типов проводов, поэтому очень важно, чтобы ваши соединители были сделаны для того провода, который вы используете, и надежно закреплены.

НЕОБХОДИМО использовать разветвители проводов

Распространенная ошибка, которую делают люди при подключении светодиодных осветительных приборов, — это упростить установку, вставляя 10 проводов в гайку для проводов или соединитель типа «феникс». Вместо этого лучше использовать несколько разветвителей проводов, клеммные колодки или спаять провода вместе, чтобы разделить ваши провода, а не пытаться перегрузить соединитель, что может стать серьезной опасностью возгорания.

DO Использовать параллельные соединения

При установке больших светодиодных установок или установок с большим количеством проводов, идущих в разные места, необходимо подключить ваши светильники параллельно к контроллеру или источнику питания, чтобы уменьшить падение напряжения.Подумайте о параллельном подключении, как о том, что ваши светодиодные фонари работают независимо от источника питания, или проложите домашний провод к источнику питания и соедините его в разных местах проводки. Проверьте с помощью мультиметра, чтобы проверить падение напряжения.

НЕ

НЕ ИСПОЛЬЗУЙТЕ сплошной провод

При использовании одножильного провода в низковольтной системе вы в лучшем случае заметите, что у вас будут три небольшие контактные площадки между сплошным проводом и соединением устройства при использовании типичной винтовой клеммы.Это также относится к блокам распределения питания или проволочным гайкам, у которых есть только две контактные площадки, которые могут вызвать нагревание.

Не портите провода

Когда ваши провода изношены и расходятся во всех направлениях, вы рискуете столкнуться с множеством проблем с проводкой. Во-первых, вы заметите падение напряжения, если только несколько пар многожильного провода будут контактировать с электрическим током, во-вторых, вы подвергаете свою установку риску короткого замыкания и потенциальной опасности возгорания.

НЕ оставляйте сращивания неизолированных проводов

При подключении вашего проекта светодиодного освещения очень важно не оставлять оголенными сращивания проводов. Оставление оголенных стыков проводов подвергает вашу установку опасности короткого замыкания и потенциальной опасности возгорания. Всегда используйте подходящие соединители для проводов и никогда не оставляйте оголенные стыки проводов.

НЕ ПЕРЕГРУЖАЙТЕ соединители проводов

Перегрузка разъемов проводов — наиболее частая ошибка при установке светодиодной осветительной продукции.Когда в разъеме, предназначенном для одного провода, слишком много проводов, это может вызвать серьезные проблемы с пожароопасностью в случае короткого замыкания или возникновения дуги в проводах. Это также может вызвать проблемы с падением напряжения, если некоторые провода имеют более безопасное соединение, чем другие.

НЕ ИСПОЛЬЗУЙТЕ последовательные соединения

Для тех, кто впервые установил светодиодные светильники, последовательные соединения кажутся здравым смыслом при подключении светодиодных фонарей. Чего люди не понимают, так это того, что каждый маленький светодиод и его компоненты забирают немного напряжения от следующего в серии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *