Из чего состоит импульсный блок питания часть 3. Инвертор блока питания. Из чего состоит инвертор импульсного блока питания
Что вообще такое — инвертор.Данный узел предназначен для преобразования постоянного тока в переменный. В данном случае мы имеем на входе 310 Вольт постоянного тока, которые надо подать на трансформатор. Но так как трансформаторы не хотят работать на постоянном токе, то и нужен инвертор.
Инвертор состоит из двух основных узлов.
ШИМ контроллера.
А также выходных высоковольтных транзисторов. Попутно весьма кстати попал в кадр трансформатор управления этими транзисторами.
Впрочем инвертор может выглядеть заметно проще, например у известного блока питания.
Микросхема, жменька деталей, вот и весь ШИМ контроллер.
В данном случае схемотехника блока питания, а также его мощность заметно отличаются от предыдущего варианта, потому транзистор всего один.
Еще один вариант, слева конденсаторы входного фильтра, справа трансформатор, между ними инвертор.
Так как на силовом транзисторе выделяется значительная мощность, то чаще всего он устанавливается на радиатор.
Но давайте немного отвлечемся на историю, с чего собственно все начиналось. Возможно конечно начиналось не с этого, потому точнее будет сказать, с чего начинал я.
Как вы понимаете, раньше не было ШИМ контроллеров, а иногда и обычную «кренку» купить была проблема, но прогресс не стоял на месте и радиолюбители пытались заменить большие трансформаторы на импульсные блоки питания.
На схеме показан типичный автогенератор, но были схемы и с простой логикой в качестве генератора импульсов.
Тогда схемы подобных блоков питания часто встречались в журнале Радио в контексте усилителей мощности. Но мое знакомство было на примере блока питания для Синклера. Кстати на фото один из них, который я оставил себе на память 🙂
Схема с автогенератором считается самой простой, в данном примере она даже не имеет стабилизации выходного напряжения.
При всем современном разнообразии микросхем показанная выше схема также нашла себя в современном мире, в качестве «электронного трансформатора» для галогенных ламп.
Правда постепенно такие лампы заменяют на светодиоды, но все равно электронные трансформаторы довольно популярны, в основном из-за свой простоты и дешевизны.
Уже через довольно большое время подобные схемы получили второе дыхание. Известная фирма International Rectifier выпустила весьма простую микросхему для электронного балласта люминесцентных ламп. Но выяснилось, что данная микросхема отлично работает в качестве задающей для импульсного БП. К ним относятся микросхемы IR2151, IR2153 и подобные.
По сути для этой микросхемы надо только несколько мелких деталей и пара полевиков, вот и вся схема инвертора. Именно с применением этой микросхемы я делал первичный блок питания для своего лабораторного.
Кстати, именно эту микросхему я рекомендую для питания усилителей мощности, как неприхотливую и довольно надежную. А также хочу сказать, что нерегулируемые БП лучше себя ведут в плане шумов.
Так выглядит трехканальный блок питания с мощностью в 300 Ватт и ШИМ регулировкой вентилятора. Более полная информация есть в обзоре лабораторника.
Также довольно часто можно встретить и однотактные блоки питания на основе автогенератора. Особенно часто они попадались в АТХ боках в качестве дежурки.
Также они могут попасться и в очень бюджетных зарядных для телефонов. Автогенератор является самым простым типом инвертора.
Хотя бывают и исключения, например блок питания довольно дорогого фирменного кондиционера также имел в своем составе автогенератор, правда сделан довольно качественно и имеет стабилизацию напряжения.
В следующий раз мне попались импульсные блоки питания в новых тогда телевизорах. После больших и тяжелых трансформаторов это был прогресс.
Схемотехника правда была жуткая, ремонтопригодность слабая, да и габарит я не назвал маленьким. На фото блок питания мощностью 80 Ватт.
Сначала они также делались по схеме с автогенератором, но потом начали ставить микросхему, правда особо ничего это не изменило.
Вот и подошли мы к теме более современных инверторов, так как на этом этапе блоки питания вышли на тот схемотехнический уровень, который мы сейчас наблюдаем в современных блоках.
Да, поднимали частоту, расширяли диапазон работы, мощность, но суть осталась той же что и была 30 лет назад. Правда так как тогда интегральные ШИМ контроллеры были слабо развиты, то делали их в виде сборок.
Впрочем и в современных блоках питания не стесняются применять такие вот унифицированные модули, по своему это даже удобно.
Типовая блок схема распространенных моделей инверторов состоит из пяти узлов.
1. Узел контроля напряжения питания, защита от работы при пониженном и повышенном напряжении.
2. Вспомогательное питания или цепь запуска.
3. Силовой элемент и датчик тока. Этот узел может заметно отличаться в зависимости от топологии блока питания.
4. Собственно ШИМ контроллер, мозги блока питания.
5. Узел основного питания ШИМ контроллера.
Рассмотрим как происходит запуск большинства блоков питания, эта информация может помочь в поиске неисправностей.
После того как подали высокое напряжение, оно через резистор попадает в цепь питания ШИМ контроллера.
Как только напряжение достигнет порога включения ШИМ контроллер запускается, питаясь в это время от конденсатора в цепи питания.
Если ваш блок питания не подает признаков жизни, проверьте, есть ли питание на входе ШИМ контроллера, иногда эти резисторы уходят в обрыв.
Затем ШИМ контроллер проверяет, в порядке ли питающее напряжение. Эта цепь есть далеко не у всех инверторов, потому если ее нет, то можно сразу перейти к следующему шагу.
Если с питанием все отлично, то контроллер начинает выдавать управляющие импульсы силовому транзистору. попутно при этом контролируется ток в цепи этого транзистора и если он превышен, то ШИМ контроллер переходит в режим защиты.
Если все нормально, то буквально после нескольких тактов на выходе цепи основного питания появляется рабочее напряжение, которое и питает контроллер. Кстати это один из узлов отказа, если питания нет, то блок питания будет работать в старт-стоп режиме.
Если все этапы запуска прошли корректно, то дальше вступает в дело ШИМ стабилизация. В данном случае я всегда сравниваю ее с бочкой, в которую мы порциями подаем воду и сливая ее через другой кран с разным напором. Задача контроллера поддерживать всегда один и тот же уровень воды в бочке при том, что вводной кран может быть только в двух состояниях, открыто и закрыто.
Для примера ширина импульсов при небольшой нагрузке.
Если увеличить нагрузку, то ШИМ контроллер увеличит подачу энергии в трансформатор, а через него в нагрузку.
Даже если к примеру нагрузить блок питания на полную, то ширина импульсов не будет полной.
Запас необходим для компенсации снижения входного напряжения.
Если снизить входное напряжение еще больше, то ШИМ контроллер просто выставит максимальную ширину импульса. Кстати, ШИМ контроллеры блоков питания не формируют 100% заполнение, так как всегда необходимо «мертвое» время для защиты выходных транзисторов. В это время выходные транзисторы закрыты.
Для обратноходовых однотактных блоков питания, а именно они используются в качестве блоков питания небольшой мощности, максимальное заполнение составляет 50%.
Самым первым ШИМ контроллером, с которым я познакомился, была легендарная TL494. Микросхема очень старая, но так получилось, что у разработчика дешевый и очень универсальный контроллер и даже спустя много лет и при наличии современных решений он еще весьма широко применяется в блоках питания.
На первый взгляд его внутреннее устройство может показаться довольно сложным, но на самом деле таковым не является.
Если немного упростить картинку, то будет примерно так:
1 и 2, стабилизатор питания и источник опорного напряжения.
3. Генератор импульсов, задает частоту работы контроллера.
4. Два компаратора, один обычно используется для стабилизации тока, второй — напряжения.
5. Задатчик мертвого времени, т.е. минимальной паузы между открытым состоянием выходов.
6. Узел сложения всех сигналов.
Микросхема выполнена в корпусе с 16 выводами. Сама по себе надежна, но иногда в блоках питания АТХ, где ее питание идет от источника дежурного напряжения, выходит из строя после его ухода в разнос, когда высыхал конденсатор по выходу 5 Вольт. Пробивало стабилизатор опорного напряжения и на выходе БП запросто могло появиться высокое напряжение. Потому при проверке прежде всего смотреть наличие 5 Вольт на выводе 14.
В блоках питания АТ, а потом в распространенных китайских БП в кожухе она питается от своего же силового трансформатора. Запуск происходит за счет резисторов в базовых цепях силовых ключей. При включении они сначала входят в автогенераторный режим, на выходе трансформатора появляется небольшое напряжение, микросхема начинает работать и перехватывает управление на себя. Потому если БП не запускается, то в первую очередь проверяем резисторы выделенные на схеме резисторы.
Вторым, не менее легендарным ШИМ контроллером является семейство однотактных UC384х.
Думаю что вы могли из встречать раньше в блоках питания и преобразователях напряжения.
Внутреннее устройство весьма похоже на TL494, но немного отличается. Для начала у микросхемы только один выход, а не два.
Кроме того компараторы привязаны к определенному напряжению, заданному внутри микросхемы, а не универсальные.
Ну и конечно ключевая особенность, микротоковый старт. пока микросхема не начнет работать, он потребляет очень маленький ток, потому запустить ее можно прямо от входного напряжения через резистор, TL494 так не умеет.
Чтобы запуск проходил корректно, у микросхемы есть пороговая схема определяющая напряжение включения и выключения микросхемы. Существует два варианта, около 9 и 15 Вольт.
Кроме того микросхема может иметь 50 и 100% рабочий цикл, первая идет в блоки питания, вторая в преобразователи напряжения.
Так получается четыре варианта исполнения этого контроллера.
Микросхема выпускается в разных корпусах, но наиболее распространен корпус с восемью выводами.
Типовая схема блока питания с этой микросхемой выглядит примерно так.
Сейчас на рынке есть много блоков питания с другими микросхемами, но если посмотреть на их схему, то вы увидите очень много общего, все те же узлы и элементы. Отличия если и есть, то они минимальны.
Инверторы блоков питания могут иметь разную топологию, и об этом я обязательно расскажу отдельно, но большинство выполнено по схемотехнике флайбек или полумост, две верхние схемы на чертеже. Собственно все описанные сегодня блоки питания работают именно так.
Но вернемся к ШИМ контроллерам. Перед этим я описывал варианты, когда ШИМ контроллер отдельно, а силовой узел отдельно. но также получили распространение и полностью интегрированные контроллеры, например серии TOP от Power integrations где практически все собрано в одном корпусе.
Не так давно мне даже попалась подделка, причем что интересно, она слева, с лазерной маркировкой, справа оригинал.
Распространение они получили благодаря простейшей схемотехнике, где в простом варианте блок питания состоит буквально из нескольких деталей.
Потом появились более продвинутые контроллеры, где можно задавать напряжение включения и отключения, а также ограничение выходной мощности. Но при желании их можно перевести в трехвыводный режим, соединив выводы как было на фото раньше.
Но в любом случае данные контроллеры гораздо умнее и имеют комплекс защит от разных проблем, например они выдерживали напряжение более 300 Вольт по входу просто блокируя свою работу.
Но секрет их популярности был также и в удобной программе расчета, которую предоставлял производитель. Она позволяла рассчитать все, вплоть до укладки обмоток трансформатора. А при обнаружении проблем в расчетах, выдавала подсказки.
Производитель предоставлял варианты применения своих микросхем в виде примеров. Был даже вариант компьютерного блока питания, но как-то не пошло.
Зато в небольших блоках питания, например мониторов, он встречаются весьма часто.
Кроме того я и сам их очень активно использую уже наверное лет 15.
Китайские производители также не отстают, выпуская свои варианты подобных микросхем.
Которые довольно успешно применяют в небольших блоках питания
Кстати, при желании можно использовать ШИМ контроллеры и без обратной связи от выходного напряжения, используя обмотку питания самого контроллера. Схема упрощается, но стабильность конечно будет немного ниже чем при правильной обратной связи.
В общих чертах на этом все. Вообще мне иногда кажется, что чем больше я рассказываю, тем больше остается за кадром, что еще хотелось бы рассказать более подробно, но не успеваешь. Потому скорее всего будут еще выпуски по отдельным узлам и принципам работы.
Видео получилось слишком длинным, даже сам не ожидал, и это при том, что еще почти ничего не сказал за ключевые транзисторы и часть даже вырезал, наверное болтаю слишком много 🙁
Несколько ссылок, на полезные обзоры, которые упоминались в видео.
Неплохой модуль DC-DC ZXY6005S или лабораторный блок питания своими руками
12 Вольт 6-8 Ампер блок питания, который приятно удивил
12 Вольт 5 Ампер блок питания или как это могло быть сделано
DC-DC преобразователь, как это иногда бывает
S-180-12 180W 12V / 15A блок питания в непривычном формфакторе
36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
48 Вольт, 5 Ампер и 240 Ватт или блок питания который смог удивить
Блоки питания, маленькие и очень маленькие
САМОДЕЛЬНЫЕ КОЛОНКИ ДЛЯ ТЕЛЕФОНА |
ПОКУПКА КИТАЙСКИХ СВЕТОДИОДНЫХ ЛАМП | ТРАНЗИСТОРЫ ДЛЯ РАДИОЖУЧКОВ |
АМн ·
ФМн ·
КАМ ·
ЧМн ·
GMSK OFDM · COFDM · TCM |
Импульсная модуляция |
---|
АИМ · ДМ · ИКМ · ΣΔ · ШИМ · ЧИМ · ФИМ |
Расширение спектра |
FHSS · DSSS |
См. также: Демодуляция |
Sg6848 схема блока питания — Вместе мастерим
Микросхема SG6848 – это экономичный ШИМ-контроллер для обратноходовых преобразователей. На рисунке ниже показан внешний вид ШИМ-контроллера SG 6848 в корпусе ДИП-8.
Рис. 1. Возможный внешний вид SG6848
Рис. 2. Условное обозначение SG6848 для разных корпусов
ШИМ контроллер SG6841 фирмы System General рассчитана для применения в блоках питания до 60 Вт. Микросхема выполнена по довольно нестандартной логике, для ШИМ контроллеров. У микросхемы помимо обратной связи по току и напряжению, есть обратная связь для термозащиты. Кроме того, ШИМ контроллер SG6841 имеет режим энергосбережения (Green mode), в котором частота внутреннего генератора составляет 10кГц.
Рис. 1. Блок схема, ШИМ SG6841.
Рис. 2. Логика работы, ШИМ SG6841.
Рис. 3. Cхема блока питания, ШИМ SG6841.
Включение ШИМ SG6841.
При запуске потребление составляет до 30 мкА (нога 3, VIN). При работающем ШИМ – 3мА (нога 7, VDD). Конденсатор С9 заряжается через резистор R12 до напряжения более 16В, напряжение включения микросхемы (нога 7, VDD) составляет 16В, выключение 10В – UVLO. Такой гистерезис позволяет добиться стабильной работы при случайных падениях напряжения.
Генерация
От внутреннего опорного источника тока заряжается внутренний конденсатор тактового генератора, R9 является времязадающим для внутреннего генератора ШИМ SG6841 (нога 4, RI) . Рабочая частота составляет 50 – 90кГц.
Контроль тока (нога 6, Sense) через силовой ключ осуществляется при помощи датчика тока R8, в цепи истока силового ключа.
Контроль по напряжению (нога 2, FB) идет по стандартной схеме, U3(TL431) и оптопара U2(PC817)
Контроль по температуре (нога 5, RT) осуществляется при помощи терморезистора THER2, при изменении номинала срабатывает защита, и ШИМ контроллер блокирует выходной сигнал на силовой ключ.
Особенности работы блока питания.
В режиме Green mode, на выходе ненагруженного блока питания, из за пониженной частоты, наблюдается некоторая релаксация, под нагрузкой выходное напряжение держится стабильно.
Микросхема довольно критично относится к повышенному напряжению, и как правило выходит из строя, а точнее внутренний стабилитрон, поломка которого, приводит к тому, что микросхема не может запуститься. Напряжение на VIN (3 нога) после выхода из строя внутреннего стабилитрона (на рис. 1 обведен красным кружком) составляет 4-6 В, что фактически блокирует работу по UVLO (16В включение, 10 выключение).
Применяется в ультразвуковых увлажнителях воздуха модели «Vitek» и других. Приведена схема, рассмотрено устройство и последовательность ремонта.
Блок питания КV-3150 собран на ШИМ микросхеме SG6848 (корпус SOT-26, SMD 6 ног).
Datasheet на SG6848 доступна в интернете, там же есть типовая схема включения и параметры (напряжение питания, токи, рекомендуемые полевики).
Схема блока питания КV-3150 немного отличается от типовой, поэтому при проверке деталей я зарисовал первичную цепь, связанную с сетью. Вторичная, включая обратную связь с микросхемой TL431 и оптопарой PC817 целая и легко прослеживается по печатной плате.
Очень удобно то, что на самой печатной плате нанесены номера и номиналы деталей.
На самой микросхеме надпись может быть другой. В моем случае написано S11S.
Блок питания КV-3150 до меня уже побывал у мастера, который рекомендовал купить новый. Но его цена необоснованно завышена 20$, в то время, как типичный ремкомплект стоит около 2$.
Мне пришлось заменить:
Диодный мост – 4 диода 1N4007
ШИМ микросхему — SG6848
Полевой транзистор — STP4NK60ZF
Резистор R2 — 2Вт 0,5 Ом
Резисторы R13, R9, R14 SMD (или 0,125Вт) — 47 Ом, 470 Ом, 10 кОм
Предохранитель 2А 250В – запаял калиброванную перемычку. Как это делать показано здесь.
Как известно, ремонт импульсных блоков питания нужно выполнять постепенно и осторожно. Если пропустить дефект то при первом же включении все замененные детали могут снова сгореть.
Я сначала проверяю все детали и печатную плату. Все неисправные детали выпаиваю.
Затем, начиная от сетевого разъема ставлю детали – предохранитель, диоды, резисторы. Включаю через лампу 220В мощностью около 75Вт и проверяю напряжения после диодного моста и на конденсаторе 10мкФ (это питание микросхемы SG6848). Так как микросхемы пока нет и потребления тока не будет, параллельно электролиту 10 мкф я ставлю стабилитрон на напряжение чуть ниже предельного напряжения электролита. Иначе напряжение может вырасти выше чем у электролита и повредить его.
Если все в норме, а у меня после диодного моста 310В, на конденсаторе 10мкф напряжение 24В (как у временного стабилитрона) то от сети отключаю, разряжаю при необходимости сетевой электролит и запаиваю микросхему.
Снова включаю, так же через лампу, измеряю напряжение питания микросхемы SG6848 на 5 ноге (около 12В)
Далее осциллографом смотрю управляющие импульсы на контакте куда будет припаян затвор полевого транзистора (полевик пока не ставлю). Эти импульсы не такие как при работе, но обязательно должны быть. Их частота заметно ниже, фактически это скачки напряжения, амплитуда чуть меньше напряжения питания микросхемы.
Если все так, выключаю, разряжаю сетевой электролит и запаиваю полевик, отпаиваю временный стабилитрон от конденсатора 10мкф, он уже не нужен.
Снова включаю в сеть через лампу, пробую температуру полевика, если не горячий, проверяю выходные напряжения. Так как в схеме есть обратная связь через оптопару, выходные напряжения и без нагрузки должны быть близки к норме (в этом блоке питания 35В и 12,5В). Земля общая, средний вывод выходного разъема.
Далее, если проверена схема нагрузки и в ней нет замыканий, можно отключить блок питания, подключить нагрузку и снова включить через лампу в сеть. Лампа при включении может вспыхнуть и чуть тлеть.
Теперь можно отключить, убрать лампу и включать блок питания КV-3150 в сеть напрямую. Проверить напряжения под нагрузкой. Как правило, при исправной нагрузке (подключаемом устройстве, в моем случае увлажнитель) все в норме.
Если что-то в нагрузке не заладится, сработает защита блока питания. Для этого в его схеме стоит резистор 2Вт 0,5 Ом в цепи истока полевика.
В принципе, порядок ремонта других импульсных блоков питания аналогичный.
Материал статьи продублирован ан видео:
ШИМ-РЕГУЛЯТОР ДЛЯ ЭЛЕКТРОВЕЛОСИПЕДА
Данный модуль предназначен для установки в электровелосипеды — в качестве блока управления электрическим приводом. Он работает с двигателем постоянного тока и аккумуляторной батареей на 15 — 95 В (любая в указанном диапазоне соответствующая двигателю).
Контроллер является элементом, необходимым для управления скоростью двигателя. Он ограничивает количество энергии идущей на двигатель, чтобы контролировать его скорость вращения. К сожалению, большинство доступных на рынке контроллеров не могут работать при таком высоком напряжении (либо ограничение по мощности). Поэтому решено было спроектировать и построить свой собственный ШИМ-контроллер, который мог бы работать с двигателем более высокого напряжения и тока.
Поскольку нужно контролировать скорость вращения двигателя постоянного тока, можем использовать две технологии:
- понижающий преобразователь который уменьшит напряжение, подаваемое на обмотку двигателя,
- ШИМ-управление (широтно-импульсная модуляция).
Конструкция инвертора довольно сложна, поэтому применим ШИМ. Этот метод относительно прост, может с высокой частотой контролировать скорость, с которой аккумулятор подключается и отключается от двигателя. Для изменения скорости изменяется время переключения между нагрузкой (двигателем) и АКБ.
Принципиальная схема мощного ШИМ регулятора
Переключение напряжения не может быть реализовано с помощью механического переключателя — ни один из них не выдержит такие большие и постоянные нагрузки, поэтому правильный выбор для таких схем — транзистор полевой MOSFET с N-каналом. Необходимо выбрать подходящую модель для этих требований — частота переключения, напряжение и ток.
Для управления транзисторами в схеме необходим сигнал ШИМ. Сгенерируем его используя классическую микросхему 555. Это простой универсальный таймер, который позволяет создавать множество устройств, в том числе управляемый генератор сигналов ШИМ. В такой схеме частота переключения постоянна, а изменение положения потенциометра изменяет скважность.
М/с NE555 может питаться постоянным напряжением до 15 В. Она не может питаться непосредственно от аккумулятора электровелосипеда. Именно поэтому добавлен модуль импульсного питания на основе интегральной микросхемы LM5008. Это понижающий преобразователь, который снижает напряжение с 80 В до 10 В, используемых для питания таймера 555 и охлаждающих вентиляторов.
Из-за высокого тока протекающего в схеме, использовались 4 транзистора MOSFET IRFPC60LC, соединенных параллельно. Каждый элемент может работать с напряжением Vds до 600 В и током стока до 16 А. Объединенные четыре таких транзистора позволяет достичь 64 А тока контроллера, что при напряжении питания 80 В дает более 5 кВт — намного больше, чем необходимо для управления двигателем в данном электровелосипеде.
Печатная плата ШИМ-регулятора
Разработка отдельной печатной платы поможет не только компактно объединить все элементы, но также позволит использовать этот готовый ШИМ-модуль в других проектах — и не только с двигателями постоянного тока, ШИМ-модуляция идеально подходит, например, для управления нагревателями.
Идея проектирования печатной платы может показаться сложной, но стоит иметь свои собственные печатные платы. Имея это в виду, автор спроектировал печатную плату для модуля регулятора скорости.
При проектировании печатной платы самое важное, что нужно помнить, это обеспечить правильную ширину токовых путей. Высокий ток, который должен проходить через транзисторы к двигателю, также будет проходить через фольгу платы и нагревать её.
На печатной плате добавлены монтажные отверстия, которые облегчат установку модуля в готовый электробайк, а также место для установки радиатора и вентилятора, который будет охлаждать работающие транзисторы.
Чтобы облегчить сборку нужно начать с самых маленьких элементов на печатной плате: в нашем случае это преобразователь LM5008 и компоненты SMD. После пайки дискретных компонентов инвертора LM5008 можем припаять большую катушку по источнику питания и начать пайку более крупных компонентов. В конце установить таймер 555, а затем силовые транзисторы.
При таком огромном количестве энергии, с которым имеет дело создаваемый контроллер, будет выделяться много тепла. Полевые транзисторы будут в основном нагреваться, поэтому надо обеспечить их достаточным охлаждением. Это делается с помощью радиатора с вентилятором.
После установки радиатора схема готова к настройке и дальнейшей работе.
Тестирование ШИМ контроллера
Для тестирования контроллера будем использовать набор ячеек литиевых батарей с номинальным напряжением 80 В, которые применяются для данного электрического велосипеда. Контроллер временно подключен к аккумулятору и мотору, который прикреплен к велосипеду, чтобы приводить в движение заднее колесо. Поворачивая потенциометр по часовой стрелке, двигатель должен начать вращаться постепенно и увеличивать скорость, пропорциональную вращению ручки.
Чтобы проверить регулятор скорости на реальной нагрузке, надо смонтировать все на своем месте. Посмотреть как он держит нагрузку, вес, долгое время работы и воздействие атмосферной влажности (лучше покрыть плату лаком).
Двухтактный ШИМ – контроллер TL494, TL494CN, описание на русском, схема включения, аналоги, применение — Зарубежные микросхемы — Микросхемы — Справочник Радиокомпонентов — РадиоДом
Двухтактный ШИМ – контроллер TL494, TL494CN, TL494CDОсновные технические характеристики:Полный набор функций ШИМ-управления
Выходной втекающий или вытекающий ток каждого выхода …..200 мАмпер
Встроенная схема подавления сдвоенных импульсов
Широкий диапазон регулировки выходного сигнала
Выходное опорное напряжение…………………………………….5 вольт (+-0,5 %)
Специально созданная структура микросхемы серии TL494 обеспечивают радиолюбителю широкие возможности при конструировании схем управления. TL494 включают в себя усилитель ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный ИОН на 5 вольт и схему управления выходным каскадом. Усилитель ошибки выдает синфазное напряжение в диапазоне от – 0,3…(Vcc-2) вольт. Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%.
Приборы, имеющие индекс L, гарантируют нормальную работу в диапазоне температур –5…85 С, с индексом С гарантируют стабильную работу в диапазоне температур 0…70 С.
Структурная схема микросхемы TL494CN:Предельные значения основных параметров микросхем серии TL494CN:
Напряжение питания……………………………………………………………..41 вольт
Входное напряжение усилителя……………………………………..(Vcc+0.3) вольт
Выходное напряжение коллектора……………………………………………41 вольт
Выходной ток коллектора…………………………………………………..250 мАмпер
Мощность рассеивания в непрерывном режиме……………………………1 Ватт
Рабочий диапазон температур окружающей среды:
С индексом L………………………………………………………………….. от -25 до 85
С индексом С…………………………………………………………………..от 0 до 70 С
Диапазон температур хранения ……………………………………..от -65 до +150 С
Полное функциональное описание на русском:
Микросхема TL494 представляет собой ШИМ-контролер для импульсного источника питания, работающий на фиксированной частоте, и включает в себя все нужные для этого готовые блоки. Встроенный собственный генератор пилообразного напряжения требует для установки частоты только двух внешних компонентов R и С.
Модуляция ширины выходных импульсов достигается сравнением положительного пилообразного напряжения, получаемого на конденсаторе С, с двумя управляющими сигналами. Логический элементы ИЛИ-НЕ возбуждает выходные транзисторы Q1 и Q2 только тогда, когда линия тактов встроенного триггера находится в НИЗКОМ логическом состоянии. Это происходит только в течение того времени, когда амплитуда пилообразного напряжения выше амплитуды управляющих сигналов. Следовательно, повышение амплитуды управляющих сигналов вызывает соответствующее линейное уменьшение ширины выходных импульсов. Под управляющими сигналами понимаются напряжения производимые схемой регулировки мёртвого времени (вывод 4), усилители ошибки (выводы 1, 2, 15, 16) и цепью обратной связи(вывод 3).
Применяется в основном для управления мощных силовых устройств, такие как импульсный блок питания (ИПБ), повышающие преобразователи напряжения (инвертор) 12 в 220 в, зарядные устройства для автомобильных аккумуляторов, генераторы разнообразных регулируемых сигналов.
Вход компаратора регулировки мертвого времени имеет смещение 0,12 вольт, что ограничивает минимальное мертвое время на выходе первыми 4 % длительности цикла пилообразного напряжения. В результате максимальная длительность рабочего цикла составляет 96 % в том случае, если вывод 13 заземлен, и 48 % в том случае, если на вывод 13 подано опорное напряжение.
Контроллер заряда АКБ с использованием технологии ШИМ (PWM)
Контроллер заряда является неотъемлемой частью любой солнечной электростанции. Нам часто задают вопрос: «Можно ли подсоединить солнечную батарею напрямую к АКБ?», ответ однозначно НЕТ! Все дело в том, что АКБ любого типа расчитана на определенный алгоритм заряда.
Соединение солнечных батарей напрямую к АКБ приведет к её перезаряду и закипанию электролита.
Таким образом основной задачей контроллера заряда, является управление зарядом АКБ с использованием мощности вырабатываемой солнечными батареями.
На сегодняшний день, в основном, используются два типа контроллеров ШИМ (PWM) и MPPT контроллеры. В ШИМ (PWM — англ. pulse-width modulation) контроллерах, используется технология широтно-импульсной модуляции для заряда АКБ на завершающей стадии. Это позволяет зарядить АКБ полностью.
Несмотря на то, что ШИМ контроллеры прекрасно справляются с задачей корректного заряда АКБ, их использование рационально в системах небольшой мощностью или регионах с высокой солнечной активностью. Для крупных солнечных станций используют MPPT контроллеры, т.к. их эффективность значительно выше.
ШИМ контроллеры различаются:
- по напряжению системы. Контроллеры выпускаются для работы с системами 12, 24 и 48 В. Многие контроллеры расчитаны на работу в различных системах — при подключении АКБ произойдет автоматическое определение напряжения системы.
- по току заряда.
- наличию дисплея
- наличию USB выходов
- способу управления сенсорные/кнопочные
- наличию дополнительных функций
Как выбрать ШИМ контроллер?
Для правильного выбора контроллера нужно учитывать следующие параметры:
- Ток заряда АКБ. При выборе контроллера, нужно учитывать, что оптимальный ток заряда свинцово-кислотных АКБ составляет 0,1С (т.е. 10% от емкости батареи), превышение этого значения может привести к закипанию электролита и как следствие, к снижению ресурса или полному выходу из строя АКБ.
- Входное напряжение. Для каждого контроллера, производителем указано максимальное входное напряжение. Напряжение холостого хода солнечной батареи или сумма напряжений холостого хода последовательно подключенных батарей не должно превышать это значение. При выборе контроллера, обязательно, необходимо учитывать, что в яркую, солнечную погоду значение напряжения холостого хода солнечной батареи может превысить указанное в технических характеристиках.
- Мощность СБ. Суммарная мощность солнечных батарей подключаемых к контроллеру, должна соответствовать его техническим характеристикам, указанным производителем.
Самые популярные ШИМ контроллеры:
Контроллер заряда
Epsolar LS2024EU
Uном = 12/24В
Uном = 20А
Umax = вход 50В
Контроллер заряда
Epsolar VS1024A
Uном = 12/24В
Uном = 10А
Umax = вход 50В
Контроллер заряда
DELTA PWM 2430
Uном = 12/24В
Uном = 20А
Umax = вход 30В
Контроллер заряда
Epsolar LS2024B
Uном = 12/24В
Uном = 20А
Umax = вход 30В
Сообщения не найдены
Написать отзыв12V NE555 PWM Controller Менее 3 $
При изготовлении моей мини-настольной пилы я купил модуль контроллера скорости двигателя 12 В на eBay. Я подумал, что справедливо … это было более легкое и прямое решение. Но потом я решил сделать свою.
Я немного покопался в сети и нашел довольно хорошую отправную точку в Circuits Today, но затем мне потребовалось внести некоторые изменения и настройки схемы. Я хотел добавить в конструкцию тумблер, розетку постоянного тока и 2-контактный винтовой зажим, чтобы упростить его изготовление и использование.
Были и другие незначительные изменения, которые я внес в дизайн по ходу работы, для удобства и для удовлетворения моих конкретных потребностей.
Еще хочу отметить, что эта схема не просто контроллер скорости двигателя, а ШИМ-контроллер. С одной стороны, это означает, что он может гораздо больше, чем просто изменять скорость двигателя постоянного тока. Эта схема будет выдавать ток 12 В с изменяющимся рабочим циклом. Его можно использовать как 12 В постоянного тока:
- Регулятор скорости двигателя;
- Светодиодный диммер;
- Терморегулятор для устройства для резки горячей проволоки для полистирола;
- регулятор напряжения электролитического травителя; и
- и т. д.
Область применения этой схемы ограничена только ее характером 12 В постоянного тока. Как вы это примените, зависит от вашего воображения и экспериментов. Например, я подумываю использовать эту схему для создания вибрационной платформы для перемешивания моей кислотной ванны для производства печатных плат …
Необходимые детали
Все детали были куплены на eBay.
- 1 керамический конденсатор 0,01 мкФ
- 1 керамический конденсатор 0,1 мкФ
- 2 выпрямительных диода 1N4001
- 1 выпрямительный диод 1N4004
- 1 x IRF530 100 В 14 A TO-200AB MOSFET
- 1 x TO- 220 радиатор
- 1 x 2-контактный винтовой зажим
- 1 x цилиндрический разъем постоянного тока (гнездо)
- 1 резистор 100 Ом
- 1 резистор 1 кОм
- 1 тумблер SPDT
- 1 x NE555 таймер IC
- 1 x 8-контактный разъем DIL
- 1 потенциометр 100 кОм
- 1 x 70 x 100 односторонняя печатная плата
- какой-то соединительный провод
Все это обошлось мне примерно в 2 доллара.90 AUD
Цепь управления скоростью двигателя PWM со схемой для двигателя постоянного тока
В этом руководстве по проекту мы создаем схему ШИМ-управления скоростью двигателя с использованием двух цифровых ИС. Мы опубликовали различные типы схем ШИМ, скажем, от базового ШИМ с использованием микросхемы NE 555 до значительно продвинутого ШИМ с использованием микроконтроллеров, таких как AVR , 8051 и платы Arduino .
ШИМ — это в основном широтно-импульсная модуляция, и если вы новичок в этом, просмотрите наши основные руководства — Широтно-импульсная модуляция и другие статьи о ШИМ .
ОписаниеH Это простая схема ШИМ-контроллера скорости двигателя , которую можно использовать для изменения скорости двигателей постоянного тока малой мощности. Изменение скорости достигается за счет изменения рабочего цикла импульса, подаваемого для привода двигателя. Из двух затворов IC CD40106B, N1 подключен как инвертирующий нестабильный мультивибратор триггера Шмитта для генерации импульсов, а N2 как инвертирующий буфер для управления транзистором во время положительных циклов на базе.Рабочий цикл устанавливается резистором R2. R1 ограничивает базовый ток транзистора SL 100. Схема идеальна для управления игрушечными двигателями, ручными мини-вентиляторами, небольшими воздуходувками и т. Д.
Схема цепи управления скоростью двигателя PWM со списком деталей. Принципиальная схема управления скоростью двигателя с ШИМ Примечания.- Изменяя коэффициент заполнения R2, можно изменять от 0% до 100%.
- Для идентификации штырей SL 100 штифт, который соединен с корпусом, является коллектором, штифт рядом с выемкой — эмиттером, а оставшийся штифт — базой.
У нас есть другие схемы управления двигателем, которые вы можете прочитать, пожалуйста, посмотрите ниже:
1. Цепь ШИМ-регулятора скорости двигателя
2. Контроллер шагового двигателя
3. Вентилятор с регулируемой температурой
4. Двунаправленный двигатель
5. Цепь драйвера шагового двигателя
12V-24V PWM Схема контроллера двигателя с использованием TL494-IRF1405
Если вы ищете высококачественные схемы контроллера двигателя 24V PWM.У нас есть для вас много схем. Но сегодня я вам покажу. Возможно, вам лучше использовать TL494 и IRF1405.
Почему он особенный. Представьте, что в схеме есть система проверки низковольтной батареи, работающая с плавным пуском, регулирующая частоту импульсов и использующая батарею 12 В или 24 В при токе до 20 А.
А он маленький и простой. Не нужно программировать программное обеспечение (без микроконтроллера).
Он использует TL494, HEXFET и LM2940 в качестве основных.
Ниже представлены 3 схемы !
Схема ШИМ управления скоростью двигателя постоянного тока 12 В с использованием TL494
Это схема ШИМ управления скоростью двигателя постоянного тока 12 В.Которая с использованием TL494 (ИС управления широтно-импульсной модуляцией в импульсном режиме) является базой для управления двигателем постоянного тока с помощью импульса.
Подробная информация:
— Для управления скоростью двигателя 12 В, 150 Вт, макс. 15 А.
— R6 регулирует скорость двигателя.
— Драйвер двигателя Mosfet IRFZ48.x 2шт.
— Управление на частоте 100 Гц
— Регулировка рабочего цикла ШИМ от 0 до 100%
— Время нарастания и спада = 10 мкс
— Имеется ток перегрузки 15 А или ограничение тока с протекающим током бросок R11 и Q1 работают для остановки IC1
12 В -24V PWM Схема контроллера двигателя с использованием TL494 и IRF1405
Работа схемы
Рис: 1 Принципиальная схема этого проекта.
Характеристики проекта
— Диапазон питания: от 12 В до 30 В
— Потребляемый ток: максимум при 20 А
— Токовый выход: максимум при 20 А
— Ток в режиме ожидания: 20 мА
— Контроллер двигателя: от 0 до 100%
— Отключение Работа при более низком напряжении батареи: как настройка 11,5 В для 12 В и 23 В для батареи 24 В.
— Регулировка частоты импульсов: от 100 Гц до 1,1 кГц (от 129 Гц до 1,28 кГц в этом проекте)
— Плавный запуск: от 0 до 100% в диапазоне менее 1 секунды
Нарастающий и спадающий фронт импульса на затворе МОП-транзистор: 1.5uS и 1.6uS
-VR1: регулировка скорости
-VR4: защита выхода низкого напряжения
-VR3-регулировка выхода частоты импульсов
-VR2-sub контроллер скорости
Рис. 2 Схема медной печатной платы
Рис: Схема 3-х компонентов этого проекта.
Примечание:
Мой друг прислал мне эту схему. Он сказал, что это очень хороший контроллер двигателя постоянного тока с высоким током. Но это полная статья, а не четкое фото.
Детали, которые вам понадобятся
- IC1: TL494, широтно-импульсная модуляция (ШИМ)
- REG1: LM2940CT-12, регулятор
- Q1, Q2: IRF1405, N-канальный MOSFET
- Q3: BC327, 45 В, 800 мА PNP-транзистор
- Q4: 2N5484, N-канальный полевой транзистор
- D1: MBR20100CT, высокочастотный диод
- D2-D6: 1N4148, 75 В 0.15A Диоды
- ZD1, ZD2: 1N4744, стабилитрон
Конденсаторы
- C5: 22 мкФ 16 В, электролитические
- C3, C6, C7, C10: 10 мкФ 16 В, электролитические
- C4: 1 мкФ 6312 В
- C1: 470nF 63V, полиэстер
- C2, C8: 100nF 63V, полиэстер
- C9: 56nF 63V, полиэстер
0,25W Допуск резисторов: 1%
- R1, R4, R10: 100K
- R3 , R5: 10K
- R6, R7: 2.2K
- R2: 1K
- R8, R9: 47 Ом
- VR1: Подстроечный резистор 10K
- VR2: Подстроечные потенциометры 10K
- VR3, VR4: Подстроечные потенциометры 100K
- 10K Потенциометр
- Прочие детали, печатная плата, радиатор и многое другое.
Управление двигателем 24 В с защитой от короткого замыкания 20 А
Это контроллер двигателя 24 В постоянного тока при токе 20 Ампер. По нему используется управление IC SG3526B в символьном ШИМ, которое получает очень много и приводной двигатель с мощностью Mosfet номер IRFP7410 x 2 шт. Затем можно применить к двигателю постоянного тока при использовании 20 ампер, удобнее и по-прежнему иметь схему защиты от выстрела. Вы видите, как детализация добавляется на изображенной схеме.
Вращение скорости ШИМ вперед-назад и рекуперативное торможение
Это цепь вращения двигателя постоянного тока скорости ШИМ.Он может работать в прямом и обратном направлении и с функцией рекуперативного торможения. По этой схеме используется сигнал ШИМ управления скоростью двигателя постоянного тока 12 В с силовым полевым МОП-транзистором IRF150.
Реле RY1 использует управление реверсом с цифровой сигнализацией, изменением, Q10. Реле RY2 работает как функциональный тормозной резистор. С помощью управления Запуск или остановка с помощью цифрового сигнала тревоги с помощью. F1, используйте защиту через цепь.
D1 используется для защиты обратного тока от двигателя постоянного тока. Детали другие, пожалуйста, смотрите в схеме.
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
4QD-TEC: ШИМ-регулятор скорости
Содержание этой страницы
Введение
4QD производит ШИМ-регуляторы скорости для электродвигателей, поэтому вы вряд ли ожидаете, что мы дадим вам все наши собственные уникальные схемы и технические ноу-хау, но есть много всего, что является общественным достоянием, и есть также способы сделать ШИМ, которые мы опробовали. и отклонено (по любой причине). Эта страница должна дать вам хорошее представление о задействованных принципах и о том, что делать, а также о том, чего не следует делать!
Эта страница фактически первая из длинной серии, посвященной управлению двигателями, но остальные страницы доступны только членам 4QD-TEC.
Коммерческий контроллер двигателя — это больше, чем просто схема для изменения скорости двигателя, и у нас есть «экскурсия» по функциям контроллера, которая просто объясняет большинство функций, встроенных в современные контроллеры, и почему они необходимы.
Принципы
Для управления скоростью постоянного тока. двигателю нам понадобится переменное напряжение постоянного тока. источник питания. Однако, если вы возьмете двигатель 12 В и включите питание, двигатель начнет ускоряться: двигатели не реагируют немедленно, поэтому для достижения полной скорости потребуется небольшое время.Если мы отключим питание до того, как двигатель достигнет полной скорости, он начнет замедляться. Если мы включим и выключим питание достаточно быстро, двигатель будет работать с некоторой скоростью между нулевой и полной скоростью. Это именно то, что p.w.m. контроллер делает: он включает двигатель серией импульсов. Для управления скоростью двигателя он изменяет (модулирует) ширину импульсов — отсюда и широтно-импульсная модуляция.
Рассмотрим сигнал выше. Если двигатель соединен одним концом с плюсом батареи, а другим концом с минусом батареи через переключатель (полевой МОП-транзистор, силовой транзистор или аналогичный), то, если полевой МОП-транзистор включен на короткий период и выключен на длительное время, как в A выше, двигатель будет вращаться только медленно.В точке B переключатель находится в положении 50%, а выключении — 50%. В точке C двигатель работает большую часть времени и выключен только на короткое время, поэтому скорость близка к максимальной. В практическом контроллере низкого напряжения переключатель открывается и закрывается с частотой 20 кГц (20 тысяч раз в секунду). Это слишком быстро для бедного старого двигателя, чтобы даже понять, что он включается и выключается: он думает, что питается от чистого постоянного тока. Напряжение. Это также частота выше слышимого диапазона, поэтому любой шум, издаваемый двигателем, будет неслышным. Он также достаточно медленный, чтобы полевые МОП-транзисторы могли легко переключаться на этой частоте.Однако у двигателя есть индуктивность. Индуктивность не любит изменений тока. Если двигатель потребляет какой-либо ток, то этот ток течет через переключающий MOSFET, когда он включен — но куда он будет течь, когда MOSFET выключится? Читайте и узнайте!
Рассмотрим схему выше: на ней показаны полевой МОП-транзистор привода и двигатель. Когда ведущий полевой МОП-транзистор проводит ток, ток течет от положительного полюса батареи, через двигатель и полевой МОП-транзистор (стрелка A) и обратно к отрицательному полюсу батареи. Когда полевой МОП-транзистор выключается, ток двигателя продолжает течь из-за его индуктивности.К двигателю подключен второй полевой МОП-транзистор: полевые МОП-транзисторы действуют как диоды для обратного тока, а это обратный ток, проходящий через полевой МОП-транзистор, поэтому он проводит. Вы можете использовать такой полевой МОП-транзистор (закоротить его затвор до источника) или использовать силовой диод. Однако не так широко понятный факт о полевых МОП-транзисторах заключается в том, что, когда они включены, они проводят ток в любом направлении. Проводящий МОП-транзистор является резистивным по отношению к току в любом направлении, а на МОП-транзисторе с проводящей мощностью на самом деле падает меньше напряжения, чем на прямом смещенном диоде, поэтому МОП-транзистор требует меньше радиатора и расходует меньше энергии батареи.
Из приведенного выше вы должны увидеть, что если приводной MOSFET включен в течение 50% рабочего цикла, напряжение двигателя составляет 50% напряжения батареи, и, поскольку ток батареи течет только при включенном MOSFET, ток батареи течет только в течение 50% времени, поэтому средний ток батареи составляет только 50% тока двигателя!
Главный конденсатор
Однако существует проблема: когда полевой МОП-транзистор выключается, он не только прерывает ток двигателя, но также прерывает ток, текущий от батареи.Провода от батареи имеют индуктивность (как и батарея), поэтому, когда этот ток прерывается, эта индуктивность вызывает всплеск напряжения: в цепи основной конденсатор поглощает (большую часть) этот всплеск. Когда приводной полевой МОП-транзистор снова включается, аккумуляторный ток должен течь быстро, чего он не может. Главный конденсатор подает ток во время восстановления тока батареи. В контроллере, способном выдавать 120 ампер, этот конденсатор работает очень тяжело, и, если большой ток потребляется слишком долго (в зависимости от длины провода аккумулятора), главный конденсатор может взорваться! На ранних этапах разработки мы когда-то использовали стандартные конденсаторы с проволочным концом и расплавляли провода конденсатора! Конденсаторы имеют провода с медным покрытием из стали , и в системах управления двигателями эти провода могут сильно нагреваться!
Из вышесказанного очевидно, что работа этого конденсатора в значительной степени зависит от индуктивности контура проводов батареи.Длинные провода будут иметь высокую индуктивность. Скручивание проводов аккумулятора снижает их индуктивность.
Само собой разумеется, что сопротивление в выводах батареи будет иметь эффект, аналогичный индуктивности, поэтому эти провода должны быть толстыми.
Также некоторые люди хотят вставить амперметр в провода аккумулятора. Следует устоять перед соблазном: в частности, простые автомобильные амперметры обладают высокой индуктивностью!
Простые контроллеры (например, используемые для моторизованных сумок для гольфа) обычно не имеют дорогостоящего главного конденсатора и зависят от емкости батареи.Вам это может сойти с рук — и Eagle и Egret — такие контроллеры. Однако краткое объяснение эффектов необходимо. Чтобы проиллюстрировать это, приведен график напряжения батареи, который можно увидеть с помощью осциллографа, подключенного непосредственно к источнику питания батареи на клеммах контроллера. Заземление осциллографа находится на отрицательной шине.
Вверху показан положительный полюс аккумуляторной батареи, вид сверху, внизу — отрицательный полюс двигателя (который переключается контроллером).Осциллограммы были сильно очищены, чтобы проиллюстрировать: на практике на осциллограмме много «грязного» звона. Показано напряжение питания 12 В.
Мы соединяем кривую в точке, где нет тока батареи: выход двигателя высокий, и ток повторно циркулирует в маховике. В точке A включается полевой МОП-транзистор привода контроллера, отвлекая ток двигателя от батареи. Но выводы батареи имеют индуктивность! Ток батареи не может начаться немедленно, поэтому провода батареи упадут до 12 В, и напряжение контроллера гаснет до тех пор, пока индуктивность свинца не сможет зарядиться, что происходит в пункте B.Время A-B зависит от тока и индуктивности контура батареи и может составлять значительную часть времени цикла!
Затем, в точке C, нижний полевой МОП-транзистор резко выключается, прерывая ток. Ток двигателя — это не проблема, он продолжает течь, и устройство маховика должно быть здесь, чтобы убедиться, что это так! Но вы не можете внезапно остановить ток батареи — поэтому он выступает в виде большого скачка напряжения. Этот всплеск нарастает до тех пор, пока что-то не сработает: в этом случае он достигает напряжения лавинного пробоя полевого МОП-транзистора, и полевой МОП-транзистор фиксирует его.Вы можете легко увидеть напряжение зажима с плоской вершиной с помощью осциллографа. МОП-транзисторы рассчитаны на повторяющуюся энергию лавины, и вы должны быть уверены, что 1 / 2Li², хранящийся в индуктивности контура батареи, намного ниже безопасной повторяемой энергии лавины.
Это проблема: вычислить индуктивность контура батареи практически невозможно — даже для инженера. Игроку это сделать — ну, сложно. Таким образом, производитель просто поставляет контроллеры известной группе клиентов, которые используют их стандартными способами, и решает проблемы по мере их возникновения на эмпирической основе.Это всегда вопрос нетехнического покупателя, пытающегося получить что-то даром: нужен главный конденсатор. Для некоторых приложений вы действительно можете обойтись без! Но это определенно «сходит с рук»!
В контроллерах с главным конденсатором большая часть (но не все) нарушения питания сглаживаются конденсатором. Тем не менее, вы увидите положительный выброс и звон при прерывании тока батареи.
Рекуперативное торможение
Вы можете захотеть вернуться к этому биту после того, как изучите две схемы ниже.«Очень простой контроллер» не включает рекуперативного торможения, в отличие от «более сложного контроллера». Это описание необходимо читать вместе со второй схемой, но оно также относится к приведенной выше схеме, поэтому оно вставлено в этот момент, чтобы избежать повторной загрузки схемы.
Похоже, что одним из тщательно охраняемых секретов управления двигателем является рекуперативное торможение. Тем не менее, это на самом деле не секрет: схемы, обеспечивающие рекуперативное торможение, не редкость, но, похоже, мало кто понимает, что происходит.Итак, начнем.
В первой схеме (выше) показана выходная пара полевых МОП-транзисторов с приводом двигателя. Также было указано, что для двигателя выходной сигнал контроллера является чистым постоянным током. напряжение (поскольку индуктивность двигателя поддерживает постоянный ток в течение цикла переключения). Теперь двигатель будет генерировать обратную ЭДС. который пропорционален его скорости вращения. При нулевой нагрузке это задняя э.д.с. поднимется до уровня выходного сигнала контроллера.
Мы уже видели, что полевой МОП-транзистор представляет собой двунаправленный переключатель, который резистивно проводит (когда он включен) для обоих направлений тока. Итак, рассмотрим ситуацию, когда ток равен нулю, а мощность контроллера теперь уменьшена. Мотор задний э.д.с. теперь выше, чем выходное напряжение контроллера, поэтому двигатель будет пытаться подавать ток обратно в контроллер. Если это удастся, мотор затормозится — у нас будет рекуперативное торможение.
Этот тип схемы (где верхняя сторона включается, когда нижняя сторона выключена) может подавать ток или понижать его .Это работает следующим образом: обратный ток двигателя теперь является прямым током к полевому МОП-транзистору маховика, поэтому, когда он включен, он замыкает двигатель, тормозной ток которого возрастает в течение этого периода (стрелка B, перевернутая). Теперь полевой МОП-транзистор с маховиком отключается, но этот ток должен продолжать течь — из-за индуктивности двигателя. Таким образом, он течет как обратный ток через приводной полевой МОП-транзистор, при этом заряжая батарею. Дополнительное напряжение для этого получается из энергии, запасенной в индуктивности двигателя.Процесс переключения с привода на торможение полностью автоматический. Более того, это полностью достигается за счет того, что скорость двигателя превышает напряжение привода, и без каких-либо изменений состояния или переключений в контроллере. Регенеративное торможение — это, если хотите, побочный продукт конструкции контроллера и почти полная авария.
Очень простой контроллер
Схема ниже описывает простейший контроллер мотора. Для пользы всех, кто хоть что-нибудь знает о контроллерах моторов — компания 4QD не разрабатывала эту схему, и мы полностью от нее отказываемся, так что смело смейтесь или плачьте, не веря своим глазам.Если вы решили сделать это — да, работает, но раз уж мы это не проектировали и не нравится — извините, но вы сами по себе!
Тем не менее, это схема, которую мы собирали за один раз для заказчика, а сделали несколько тысяч! Многие из них все еще разъезжают по полям для гольфа в Великобритании — так что это работает! Он также показывает, чего не следует делать!
Первые три секции 4049 скомпонованы с общей обратной связью через резистор 220 кОм и конденсатор 22 нм на входе для сдвига фазы в качестве генератора.Выходной сигнал представляет собой прямоугольный сигнал, который буферизируется другими тремя каскадами 4049 для управления затворами MOSFET. Когда потенциометр на входе изменяется, среднее напряжение на 22n изменяется, и это изменяет отношение метки к пространству (рабочий цикл) генератора. Когда потенциометр установлен на минимум, генератор останавливается с низким уровнем на выходе (т. Е. Полевые МОП-транзисторы не имеют управления затвором и полностью выключены), а с максимальным потенциалом генератор останавливается с высоким выходом — полевые МОП-транзисторы включены все время.Есть несколько проблем: во-первых, такое «вытягивание» осциллятора меняет его частоту. Это не слишком сильно влияет на работу, за исключением того, что если частота становится слишком высокой, полевые МОП-транзисторы включаются и выключаются слишком быстро и становятся слишком горячими. Если он слишком низкий, становится слышна частота генератора и двигатели воют. Другая проблема заключается в том, что практически невозможно вывести осциллятор так, чтобы оно варьировалось от очень высокого до очень низкого отношения метки к пространству! 82K и 2n2 помогают в этом отношении, вводя отрицательную обратную связь для уменьшения усиления в контуре положительной обратной связи, так что генератор только колеблется: это добавление 4QD в схему, и до того, как это было сделано, у контроллера был неприятный скачок от От 80% до 100% полной скорости.Обратите внимание, что IC — это 4049UB (без буферизации), буферизованная версия работать не будет. Кроме того, некоторые модели 4049UB не работают должным образом (кто-нибудь использовал излишки Toshiba 4049UB?), Потому что они слишком хороши!
Другая неприятная вещь заключается в том, что горшок изменяет осциллятор только примерно в 1/3 своего полезного диапазона: в данном случае это было нормально, потому что горшок использовался в поворотной рукоятке с ходом только на 90 градусов! Но необходимо было отрегулировать ручку, чтобы диапазон был правильным.
Вот вам и генератор / модулятор.Но поднимите руку всем, кто заметил отсутствие главного конденсатора, о котором я упоминал выше. Это дорогие компоненты: кейди для гольфа, как правило, не используют их по этой причине. Что происходит, так это то, что когда полевые МОП-транзисторы выключают индуктивность контура батареи, возникает большой скачок напряжения на полевом МОП-транзисторе привода (который выключен — помните, что ток двигателя теперь (в основном) протекает через диод). Но между плюсом батареи и затвором MOSFET есть стабилитрон на 36 В. На нем присутствует скачок напряжения, поэтому он проводит, и старый бедный МОП-транзистор снова включается.Фактически стабилитрон ограничивает частоту выключения полевого МОП-транзистора до уровня, необходимого для поддержания импульса 40 В. МОП-транзисторы — очень прочные устройства, и они выдержат такое злоупотребление (но есть более элегантные способы сделать это). Когда MOSFET снова включается, батарея пытается протолкнуть ток через индуктивность контура батареи, но не может, поэтому напряжение на контроллере падает при попытке. Но на затворе MOSFET присутствует напряжение, и если бы не было диода, включенного последовательно с стабилитроном, стабилитрон был бы смещен в прямом направлении, закорачивая затвор на положительную шину (теперь при нулевом напряжении из-за обрыва питания).
Обратите внимание на диод питания как на обратный ход. Если вы посмотрите спецификации на STP60N06 и 25JPF40, вы увидите, что это некоторый перебор (грубая сила и много невежества), но эта комбинация была достигнута заказчиком, просто использовав более толстое устройство, пока он не перестал отказываться. ! Никакой утонченности! Чтобы усугубить травму, контроллер практически не имел радиатора и был помещен в пластиковый корпус. С точки зрения разработчика электроники, в схеме было очень мало правильного — кроме того, что она работала, и заказчик был ей вполне доволен! Я должен признать, что это на самом деле два важнейших критерия!
Также нет ничего, что могло бы ограничить ток, протекающий через полевые МОП-транзисторы, за исключением того, что полевые МОП-транзисторы представляют собой устройства 2 x 60 ампер, а ток заторможенного двигателя составлял около 60 ампер.
Чуть более сложный контроллер
Вторая цепь как бы связана с первой. Когда я увидел первую схему, она мне не понравилась, и я быстро собрал вторую схему, чтобы показать заказчику, что можно сделать. На самом деле он работает неплохо, но мы сделали всего несколько прототипов. Выпуск 2 стал первой производственной версией нашей серии 2QD. Вы можете смело предположить, что нынешние контроллеры значительно продвинулись дальше этого раннего контроллера! Тем не менее, это простая схема, которая хорошо справляется со своей задачей (в пределах своих ограничений).Это хорошо иллюстрирует принципы.
В схеме используется 3524, «регулирующий широтно-импульсный модулятор», поэтому краткое описание ИС, кажется, уместно. Чип предназначен для источников питания и имеет два чередующихся выхода (контакты 11 и 14), каждый из которых может работать от 0% до 45% времени цикла. Но эти выходы можно соединить вместе, как мы это сделали здесь. Подключенный таким образом выход представляет собой обычный выход ШИМ (как описано в верхней части этой страницы) с фиксированной частотой и переменной времени включения от 0% до 90%.Что, кстати, является одним из основных недостатков чипа — 90% своевременности означает, что вы можете получить только 90% полной скорости, а не 100%. Это основная причина, по которой 4QD перестал его использовать.
Осциллятор
Частота генератора контролируется резистором и конденсатором, подключенными к контактам 6 и 7. Выход генератора, а также внутреннее соединение, доступен на контакте 3. Выход генератора используется для управления удвоителем напряжения для верхней стороны. Поставка ворот MOSFET. Подробнее об этом позже.
Регулятор
Также имеется встроенный стабилизатор: питание подается на контакт 15 (контакт 8 — 0 В), контакт 16 — это выход регулируемого опорного напряжения 5 В. Он используется для управления потенциометром скорости (3-контактный разъем). Он также используется для отключения при понижении напряжения на контакте 10. Подробнее об этом позже!
Компаратор
Рампа генератора внутренне связана с компаратором, который сравнивает его с сигналом управления скоростью. Выходом этого компаратора является ШИМ-сигнал.
Вход требуемой скорости от ползунка потенциометра подается на контакт 2. Это вход обычного операционного усилителя, выход с контакта 9 и отрицательная обратная связь поступает через предустановку на вывод 1: затем предустановка регулирует усиление. . Однако этот операционный усилитель необычен тем, что его выход также подключен ко второму «операционному усилителю» таким образом, что второй может перекрыть первый и снизить его выход. Второй используется для ограничения тока. Его положительный вход находится на контакте 4, а его инвертирующий вход — это контакт 5 (который подключен к 0 В).
Выходной сигнал ШИМ от 3524 подается на пару эмиттерных повторителей, чтобы обеспечить соответствующее управление затвором. Резисторы затвора 47R замедляют время нарастания (включения), а диоды обеспечивают быстрое отключение. 150pf также замедляет время нарастания. Однако эти же 150 пФ также ускоряют выключение верхнего привода (маховика). Hiside следует включать только тогда, когда полевой МОП-транзистор (управляющий) выключен, и, в идеале, должен быть небольшой «нижний слой» — период во время переключения (как при включении, так и при выключении), когда ни один из полевых МОП-транзисторов не имеет напряжения затвора.Если оба работают одновременно, возникает сильный ток, который вызывает нагрев и, в крайнем случае, может быть разрушительным.
МОП-транзисторы
Поскольку в нем используются полевые МОП-транзисторы для измерения собственного тока, он может работать с широким спектром полевых МОП-транзисторов. Однако — он предназначен для стандартных полевых МОП-транзисторов. В частности, высокий уровень вряд ли будет правильно работать с полевыми МОП-транзисторами логического уровня, если вы не измените значения несколько.
Имейте в виду, что затворы MOSFET управляются от линии батареи.Это старая схема, и когда она была спроектирована, у полевых МОП-транзисторов напряжение пробоя затвора составляло около 30 В. С современными полевыми МОП-транзисторами это напряжение становится ниже, и если вы используете полевой МОП-транзистор с максимальным напряжением затвора 20 В — работа привода от батареи 24 В может привести к появлению дыма!
Привод верхнего калитки
Верхний полевой МОП-транзистор требует, чтобы его затвор был поднят над положительной шиной питания, поскольку, когда он проводит, и его затвор и исток, по сути, замкнуты друг на друга и на шину питания.Для этого его затвор должен быть как минимум на 7 вольт выше источника и, следовательно, выше источника питания.
Для этого выходной сигнал генератора 3524 используется для управления схемой накачки. Три транзистора слева усиливают генератор до прямоугольной формы, которая подается на конденсатор накачки 100 нМ и на два диода в конфигурации удвоителя напряжения. Выход удвоителя подается на стабилитрон 12в. Теперь, когда включен МОП-транзистор с обратной стороны, нижняя часть стабилитрона подключена к отрицательной шине питания, так что будет путь постоянного тока от +24 через оба диода и стабилитрон.Резистор 470R, включенный последовательно с диодами накачки, ограничивает ток через этот путь.
Это поднимает еще один вопрос о насосах высокого давления. Помимо удвоителя напряжения существует также схема «самозагрузки». Не обращайте внимания на цепь насоса. Когда полевой МОП-транзистор с обратной стороны проводит ток, через стабилитрон (как мы видели) будет протекать ток, поэтому конденсатор на стабилитроне будет заряжаться. Когда включается верхняя сторона, этот конденсатор будет сохранять этот заряд, который будет обеспечивать управление затвором верхней стороны.Поэтому нам действительно не нужна насосная схема. Подача энергии на этом конденсаторе прекратится, когда выход перестанет переключаться с отключенной стороной низкого напряжения. Это происходит при очень низких скоростях двигателя, когда (или после) двигатель останавливается, поэтому отсутствие привода не является проблемой. Единственная причина, по которой 2QD имеет гистидиновый насос, заключается в том, что можно использовать два из них, подключенные друг к другу, в мостовой конфигурации. В этой конкретной конфигурации шестигранный привод не должен разрушаться, когда выход перестает переключаться.
Снижение пониженного напряжения.
Если вы слишком сильно разряжаете свинцово-кислотную батарею, вы навсегда сокращаете ее срок службы. Таким образом, эта схема измеряет питание и сравнивает его с эталонным источником питания 5 В. Если напряжение батареи падает слишком низко, транзистор блокирует схему ШИМ, подавая сигнал на контакт 10.
На самом деле эта функция не так необходима, как некоторые думают: с каждой такой «функцией», как эта, есть компромиссы. См. Наше руководство по функциям контроллера для получения дополнительной информации.
Ограничение тока
Я рассмотрел измерение тока зеркала MOSFET в другом месте.Вот приложение. Вход считывания 3524 разработан для этого типа измерения тока: он имеет встроенное смещение 200 мВ, поэтому, когда сигнал на выводе 4 превышает 200 мВ, 3524 сокращает время включения, уменьшая скорость двигателя. 330R и 100R определяют напряжения полевого МОП-транзистора, поэтому с этими значениями предел будет около 800 мВ на полевом МОП-транзисторе. Отрегулируйте 100R для разных полевых МОП-транзисторов. Это определение тока довольно хорошо работает с 3524, но сама микросхема обеспечивает регулируемое ограничение тока в зависимости от длительности импульса включения, поэтому измеряемый ток в некоторой степени зависит от характеристик двигателя.
Недостатки
Хотя эта схема работает и является практичным контроллером, есть несколько недостатков. Мы не будем вдаваться в подробности здесь, но почти все они объяснены и предоставлены средства правовой защиты членам The Electronics Club , но если вы хотите узнать, как это сделать, вам нужно будет подписаться на 4QD-TEC, см. Нижнюю часть этой страницы.
- Как указывалось ранее, цепь 3524 не даст более 90% полной скорости.
- Цепь ограничена по току в режиме движения, но если вы заведете автомобиль на вершине холма и начнете тормозить на спуске, нет ничего, что могло бы ограничить регенерированный ток.Вполне возможно добавить ограничение на торможение с регенерацией, и у 4QD есть уникально простой и эффективный способ сделать это — подобного, которого я не видел больше нигде. Вам нужно будет присоединиться к 4QD-TEC, чтобы получить подробную информацию!
- Регенеративное перенапряжение. Если аккумулятор отключается при торможении, регенерированная энергия не может быть возвращена в нее: вместо этого регенерированная энергия накачивает напряжение на контроллере до тех пор, пока полевые МОП-транзисторы не выйдут из строя: если они не могут поглотить регенерируемую энергию, тогда у вас будет дорогостоящий дым. генератор.Вылечить легко.
- Одна вещь, которая разрушает контроллеры MOSFET, — это реверсирование батареи: теперь два MOSFET представляют собой два диода с прямым смещением, подключенных к батарее. См. Наш список часто задаваемых вопросов для лечения.
- Еще одна вещь, которая разрушает все известные контроллеры MOSFET, — это буксировка транспортного средства, в котором они установлены. Если обратная ЭДС двигателя превышает напряжение батареи, ведущий MOSFET становится диодом с прямым смещением, подающим сгенерированный выход двигателя прямо на аккумулятор. Невозможно ограничить этот ток, поэтому полевой МОП-транзистор вспыхивает и создает клубы дыма.К счастью, такой режим отказа встречается довольно редко, но простой защиты от него действительно нет.
ШИМ и обогрев двигателя
Популярная «сказка старой жены» состоит в том, что ШИМ заставляет двигатель нагреваться больше, чем чистый постоянный ток. Как и большинство старых женских сказок, это исходит из частичной правды, взращенной непониманием. «Миф» возникает из-за того, что, если частота слишком низкая , ток будет прерывистым (или, по крайней мере, переменным в зависимости от формы сигнала ШИМ), потому что индуктивность двигателя не может поддерживать ток должным образом в период отключения сигнала.Таким образом, ток двигателя будет импульсным, а не непрерывным. Средний ток будет определять крутящий момент, но нагрев будет интегралом от квадрата тока (нагрев пропорционален I²R) — «форм-фактор» тока будет больше единицы. Чем ниже частота, тем выше ток пульсации и сильнее нагрев.
Рассмотрим упрощенный случай, когда ток либо включен, либо выключен. Если ток течет, скажем, 1/3 времени, и вам требуется крутящий момент от двигателя, эквивалентный тому, который дает постоянный ток в 1 ампер, то вам явно понадобится средний ток 1 ампер.Для этого при рабочем цикле 33% у вас должно быть 3 ампера (ток течет в течение 1/3 времени).
Теперь ток в 3 ампера даст 9-кратный (я возведен в квадрат) эффект нагрева, равный 1 амперам непрерывного действия.
Но если 3 ампера протекают только 1/3 от общего времени — значит, нагрев двигателя в 9 раз за 1/3 времени — или в 3 раза больше, чем устойчивый 1 ампер! Говорят, что этот сигнал имеет «форм-фактор» 3 (или это 33% — без сомнения, кто-то меня поправит!)
Однако — если частота повторения импульсов достаточно высока, индуктивность двигателя вызовет эффект маховика, и ток станет стабильным.Например, двигатель Lynch имеет индуктивность всего 39 микрогенри (это один из известных мне двигателей с самой низкой индуктивностью) и сопротивление 0,016 Ом. «Постоянная времени» для цепи L-R равна L / R, что (для двигателя Lynch) дает 2,4 мс. Для SEM DPM40P4 (1 кВт) индуктивность составляет 200 микрогенри, а сопротивление 40 миллиом, что дает постоянную времени 5 мсек.
Как показывает опыт, чтобы избежать излишних математических вычислений, период повторения импульсов должен быть значительно короче постоянной времени двигателя.
Другие факторы, влияющие на PRF:
Если он находится в звуковом диапазоне, двигатель может издавать вой (вызванный явлением, известным как «магнитострикция», поэтому держитесь выше звукового диапазона.
Схема MOSFET рассеивает больше всего при переключении из одного состояния в другое, поэтому частота не должна быть слишком высокой — MOSFET можно использовать до 100 кГц с осторожностью, но это становится немного выше.
RF-излучения: они увеличиваются с увеличением частоты, поэтому сохраняйте частоту как можно ниже!
Очевидно, что трудно выбрать «лучший» компромисс между ними, но оптимальная частота, по-видимому, составляет около 20 кГц.
Послесловие
Очевидно, что этот сценарий охватывает лишь небольшую часть задействованной технологии: взгляните на спецификацию нашего Pro-120. Он имеет линейные линейные ускорения и замедления, ограничение чрезмерного разряда, блокировку высоких педалей, двойное линейное изменение направления, ограничение тока рекуперации, защиту от обратной полярности, а также все пункты, упомянутые здесь. Мы также указываем 110 ампер на 1 минуту: правда в том, что мы получаем около 120 ампер за одну минуту. Мы также не знаем «честного» способа его уничтожить: даже короткое замыкание двигателя не приведет к его повреждению.Движение задним ходом на полной скорости безопасно. Переворачивание аккумулятора безопасно. Отключение аккумулятора на полной скорости безопасно (для контроллера, но не ожидайте, что он затормозит машину). Затем мы попытались защитить его от всего, что могут сделать с ним нетехнические заказчики. Мы думаем, что добились успеха — пока, конечно, не найдем покупателя умнее нас! Даже если бы я был готов попробовать, есть способ выразить словами весь опыт, необходимый для разработки такого контроллера, не говоря уже о том, чтобы получить прибыль от его продажи по той цене, которую мы делаем.Если вы в это не верите, попробуйте запросить единовременную цену на любой аналогичный контроллер.
Другие страницы, относящиеся к этому:
Все эти страницы находятся в личном кабинете участников.
PWM Часть 2 Имеет дело с схемами раннего 2QD. Включает принципиальную схему и описание.
PWM Часть 3 Развитие серии 2QD. Позже схема и изменения в деталях.
PWM Часть 4 Современная серия 2QD. Подробное обсуждение. Включает
- Предел тока при рекуперативном торможении
- Использование гистид-полевого МОП-транзистора в качестве синхронного выпрямителя без регенерации.
ШИМ Часть 5 Изменение скорости и реверсирование. Контроллеры серии NCC, разработанные на основе 2QD.
PWM Часть 6 Формы сигналов и коммутация в полумосте MOSFET
ШИМ-управление скоростью двигателя. Часть 7 Начинает работать с полным мостовым управлением.
Схема, плата и конструктивные особенности серии 2QD
Информация о странице
© 1996-2011 4QD-TECАвтор страницы: Ричард Торренс
Цепь ШИМ управления скоростью двигателя постоянного тока
Цепь ШИМ управления скоростью двигателя постоянного тока
Двигатель постоянного тока используется во многих приложениях, а в некоторых случаях требуется управление скоростью двигателя постоянного тока, иногда требуется управление направлением вращения.Здесь простая схема ШИМ управления скоростью двигателя постоянного тока построена с использованием микросхемы IC 555 и микросхемы драйвера двигателя L293D.
На следующей схеме таймер IC 555 действует как генератор ШИМ, а драйвер двигателя H-моста IC L293D берет на себя ответственность за управление двигателем в зависимости от входного сигнала ШИМ. Здесь направление вращения двигателя можно изменить, изменив входные штыри.
Сигнал ШИМ
Когда мы подаем питание постоянного тока на двигатель, он начинает вращать вал, но мы не можем контролировать его обороты (оборотов в минуту), когда мы подаем сигнал ШИМ, поскольку питание двигателя постоянного тока зависит от рабочего цикла ШИМ, мы можем контролировать частоту вращения двигателей постоянного тока.
Здесь рабочий цикл представляет собой процент времени включения в один период и зависит от длительности времени включения и скорости вращения двигателя (об / мин).
Работа Н-моста
Н-мост или ИС драйвера двигателя, такие как L293D, используются для преобразования сигнала управления с низким энергопотреблением в сигнал, достаточный для управления двигателями, и для изменения направления питания двигателя нагрузки.
зависит от положения переключателя в открытом и закрытом положении, двигатель получает питание в прямом и обратном направлении, поэтому вращение изменяется по часовой стрелке или против часовой стрелки в зависимости от положения переключателя, так работают драйверы двигателя H-Bridge.
Принципиальная схема
Необходимые компоненты
- Двигатель постоянного тока (1000 об / мин) 9 В
- IC L293D
- IC 555
- Аккумулятор 9 В
- Переменный резистор 100 кОм
- Резистор 1 кОм
- Резистор 100 Ом = 2.
- Конденсатор электролитный 1 мкФ, 0,1 мкФ
- Диод 1N4007 = 2
- тумблер
- Хлебная доска
- Соединительные провода
Строительство и работа
Здесь таймер IC 555, используемый в качестве генератора прямоугольных импульсов, зависит от величины переменного резистора, изменяется ширина выходного импульса или рабочий цикл, а выходной сигнал IC 555 напрямую подается на H-мост IC L293D драйвера двигателя через тумблер.Используя тумблер, мы можем изменить входной контакт L293D. Двигатель постоянного тока подключается между выходом 1 и выходом 2.
Драйвер двигателя L293D
Микросхема L293D имеет 16 контактов и может одновременно управлять двумя двигателями. На схеме показано двунаправленное управление двигателем постоянного тока.
Зачем и как контролировать скорость вращения вентилятора для охлаждения электронного оборудования
Введение
Растет интерес к интегральным схемам для управления скоростью охлаждающих вентиляторов в персональных компьютерах и другом электронном оборудовании.Компактные электрические вентиляторы дешевы и используются для охлаждения электронного оборудования более полувека. Однако в последние годы технология использования этих вентиляторов значительно изменилась. Эта статья расскажет, как и почему произошла эта эволюция, и предложит некоторые полезные подходы для дизайнера.
Производство и отвод тепла
В электронике, особенно потребительской электронике, наблюдается тенденция к выпуску небольших продуктов с улучшенными комбинациями функций.Следовательно, многие электронные компоненты превращаются в очень маленькие форм-факторы. Наглядный пример — ноутбук. Тонкие и «облегченные» ноутбуки значительно сократились, но их вычислительная мощность сохранилась или увеличилась. Другие примеры этой тенденции включают проекционные системы и телевизионные приставки. Что общего у всех этих систем, помимо значительно меньшего — и все еще уменьшающегося — размера, так это то, что количество тепла, которое они должны рассеивать, не уменьшается; часто увеличивается! В портативном ПК большая часть тепла генерируется процессором; в проекторе большая часть тепла генерируется источником света.Это тепло нужно отводить тихо и эффективно.
Самый тихий способ отвода тепла — использование пассивных компонентов, таких как радиаторы и тепловые трубки. Однако во многих популярных продуктах бытовой электроники этого оказалось недостаточно — к тому же они довольно дороги. Хорошей альтернативой является активное охлаждение, введение вентилятора в систему для создания воздушного потока вокруг корпуса и тепловыделяющих компонентов, эффективного отвода тепла из системы. Однако вентилятор является источником шума.Это также дополнительный источник энергопотребления в системе — очень важное соображение, если питание должно подаваться от батареи. Вентилятор также является еще одним механическим компонентом системы, что не является идеальным решением с точки зрения надежности.
Регулировка скорости — один из способов ответить на некоторые из этих возражений против использования вентилятора — может иметь следующие преимущества:
- Работа вентилятора медленнее снижает уровень шума, который он излучает,
- , если вентилятор работает медленнее, он может снизить потребляемую мощность,
- , работающий медленнее вентилятора, увеличивает его надежность и срок службы.
Существует множество различных типов вентиляторов и способов управления ими. Мы обсудим здесь различные типы вентиляторов, а также преимущества и недостатки используемых сегодня методов управления. Один из способов классифицировать поклонников:
- 2-проводные вентиляторы
- Вентиляторы 3-проводные
- Вентиляторы 4-х проводные.
Здесь обсуждаются следующие методы управления вентиляторами:
- без управления вентилятором
- двухпозиционное управление
- линейное (постоянное) управление
- низкочастотная широтно-импульсная модуляция (ШИМ)
- управление высокочастотным вентилятором.
Типы вентиляторов
Двухпроводный вентилятор имеет клеммы питания и заземления. Трехпроводный вентилятор имеет питание, массу и тахометрический выход (тахометр) , который выдает сигнал с частотой, пропорциональной скорости. Четырехпроводной вентилятор имеет питание, массу, выход тахометра и вход привода ШИМ. Короче говоря, ШИМ использует относительную ширину импульсов в последовательности двухпозиционных импульсов для регулировки уровня мощности, подаваемой на двигатель.
Управление двухпроводным вентилятором осуществляется путем регулировки либо напряжения постоянного тока, либо ширины импульса в низкочастотной ШИМ.Однако при наличии всего двух проводов сигнал тахометра не всегда доступен. Это означает, что нет никаких указаний относительно того, насколько быстро вентилятор работает — или действительно, работает ли он вообще. Эта форма управления скоростью — разомкнутый контур .
Трехпроводным вентилятором можно управлять с помощью привода того же типа, что и для двухпроводных вентиляторов — регулируемого постоянного тока или низкочастотной ШИМ. Разница между 2-проводными вентиляторами и 3-проводными вентиляторами заключается в наличии обратной связи от вентилятора для регулирования скорости с обратной связью.Сигнал тахометра показывает, работает ли вентилятор и его скорость.
Сигнал тахометра, управляемый напряжением постоянного тока, имеет прямоугольную форму на выходе, очень напоминающую «идеальный тахометр» на Рисунке 1. Он всегда действителен, поскольку питание постоянно подается на вентилятор. Однако при низкочастотной ШИМ тахометр действителен только тогда, когда на вентилятор подается питание, то есть во время фазы импульса на . Когда привод ШИМ переключается на фазу выключен , внутренняя схема генерации тахометрического сигнала вентилятора также отключается.Поскольку выходной сигнал тахометра обычно исходит от открытого стока, он будет иметь высокий уровень, когда привод ШИМ находится на от , как показано на рисунке 1. Таким образом, хотя идеальный тахометр отражает фактическую скорость вентилятора, ШИМ-привод эффект «отбивает» выходной сигнал тахометра и может давать ошибочные показания.
Рис. 1. Форма выходного сигнала тахометра в 3-проводных вентиляторах — идеальный вариант и с ШИМ-управлением.Чтобы быть уверенным в правильности считывания скорости вращения вентилятора при ШИМ-регулировании, необходимо периодически включать вентилятор на на время, достаточное для полного цикла тахометра.Эта функция реализована в ряде контроллеров вентиляторов Analog Devices, таких как ADM1031 и ADT7460.
В дополнение к сигналам питания, заземления и тахометра, 4-проводные вентиляторы имеют вход ШИМ, который используется для управления скоростью вентилятора. Вместо того, чтобы переключать питание всего вентилятора на и на , переключается только питание катушек возбуждения, делая информацию тахометра доступной постоянно. Включение и выключение катушек создает некоторый коммутационный шум .При работе катушек с частотой более 20 кГц шум перемещается за пределы слышимого диапазона, поэтому типичные сигналы привода вентилятора ШИМ используют довольно высокую частоту (> 20 кГц). Еще одно преимущество 4-проводных вентиляторов заключается в том, что скорость вращения вентилятора можно регулировать на уровне 10% от полной скорости вентилятора. На рисунке 2 показаны различия между 3-проводными и 4-проводными схемами вентилятора.
Рисунок 2. 3- и 4-проводные вентиляторы.Управление вентилятором
Нет управления: Самый простой способ управления вентилятором — вообще не использовать его; просто запускайте вентилятор соответствующей мощности на полной скорости 100% времени.Основными преимуществами этого являются гарантированное безотказное охлаждение и очень простой внешний контур. Однако, поскольку вентилятор всегда включен, его срок службы сокращается, и он потребляет постоянное количество энергии, даже если охлаждение не требуется. Кроме того, его непрекращающийся шум может раздражать.
Включение / выключение: Следующим простейшим методом управления вентилятором является термостатический, или управление включением / выключением . Этот метод также очень легко реализовать. Вентилятор включается только тогда, когда необходимо охлаждение, и выключается на остальное время.Пользователь должен установить условия, при которых необходимо охлаждение — обычно, когда температура превышает предварительно установленный порог.
Analog Devices ADM1032 — идеальный датчик для управления включением / выключением вентилятора с использованием заданного значения температуры. Он имеет компаратор, который выдает выходной сигнал THERM — обычно высокий , но переключает низкий , когда температура превышает программируемый порог. Он автоматически переключается обратно на high , когда температура падает на заданное значение ниже предела THERM.Преимущество этого программируемого гистерезиса заключается в том, что вентилятор не включается / выключается постоянно, когда температура приближается к пороговому значению. На рисунке 3 показан пример схемы, использующей ADM1032.
Рисунок 3. Пример схемы включения / выключения.Недостаток управления включением / выключением в том, что он очень ограничен. Когда вентилятор переключается с на , он сразу же начинает раскручиваться до полной скорости, слышно и раздражающе. Поскольку люди быстро привыкают к звуку вентилятора, его выключение на также очень заметно.(Его можно сравнить с холодильником на вашей кухне. Вы не замечали шума, который он производил, пока он не выключился.) Таким образом, с акустической точки зрения управление включением / выключением далеко не оптимально.
Линейное управление: на следующем уровне управления вентилятором, линейное управление , напряжение, подаваемое на вентилятор, является переменным. Для более низкой скорости (меньшее охлаждение и более тихая работа) напряжение уменьшается, а для более высокой скорости оно увеличивается. У отношений есть ограничения. Рассмотрим, например, вентилятор на 12 В (максимальное номинальное напряжение).Такому вентилятору для запуска может потребоваться минимум 7 В. Когда он действительно начнет вращаться, он, вероятно, будет вращаться примерно на половину своей полной скорости при подаче напряжения 7 В. Из-за необходимости преодоления инерции напряжение, необходимое для запуска вентилятора, выше, чем напряжение, необходимое для его вращения. Так как напряжение, подаваемое на вентилятор, уменьшается, он может вращаться с меньшей скоростью, скажем, до 4 В, после чего он остановится. Эти значения будут отличаться от производителя к производителю, от модели к модели и даже от вентилятора к вентилятору.
ИС линейного управления вентиляторами ADM1028 от Analog Devices имеет программируемый выход и практически все функции, которые могут потребоваться для управления вентиляторами, включая возможность точного взаимодействия с термочувствительным диодом, предусмотренным на микросхемах, таких как микропроцессоры, которые составляют большая часть рассеивания в системе. (Назначение диода — обеспечить быструю индикацию критических температур перехода, избегая всех тепловых задержек, присущих системе. Он позволяет немедленно инициировать охлаждение, основанное на повышении температуры кристалла.) Чтобы поддерживать потребление энергии ADM1028 на минимальном уровне, он работает при напряжении питания от 3,0 В до 5,5 В с выходным сигналом полной шкалы + 2,5 В.
Вентиляторына 5 В позволяют регулировать скорость только в ограниченном диапазоне, поскольку их пусковое напряжение близко к уровню 5 В на полной скорости. Но ADM1028 можно использовать с вентиляторами на 12 В, используя простой повышающий усилитель со схемой, подобной показанной на рисунке 4.
Рис. 4. Схема наддува для управления вентилятором 12 В с использованием выходного сигнала ЦАП ADM1028 с линейным управлением вентилятором.Основным преимуществом линейного управления является его бесшумность. Однако, как мы уже отметили, диапазон регулирования скорости ограничен. Например, вентилятор на 12 В с диапазоном управляющих напряжений от 7 В до 12 В может работать на половинной скорости при 7 В. Еще хуже обстоит дело с вентилятором на 5 В. Как правило, для запуска 5-вольтовых вентиляторов требуется 3,5 В или 4 В, но при этом напряжении они будут работать почти на полной скорости с очень ограниченным диапазоном регулирования скорости. Но работа при 12 В с использованием схем, подобных показанной на рисунке 4, далека от оптимума с точки зрения эффективности.Это связано с тем, что повышающий транзистор рассеивает относительно большое количество энергии (когда вентилятор работает при 8 В, падение 4 В на транзисторе не очень эффективно). Требуемая внешняя цепь также относительно дорога.
ШИМ-управление : В настоящее время распространенным методом управления скоростью вращения вентилятора в ПК является низкочастотный ШИМ-контроль . При таком подходе напряжение, подаваемое на вентилятор, всегда либо нулевое, либо полное, что позволяет избежать проблем, возникающих при линейном управлении при более низких напряжениях.На рисунке 5 показана типичная схема управления, используемая с выходом ШИМ от терморегулятора ADT7460.
Рисунок 5. Схема низкочастотного ШИМ-привода вентилятора.Основным преимуществом этого метода привода является то, что он простой, недорогой и очень эффективный, поскольку вентилятор либо полностью на , либо полностью на .
Недостатком является то, что информация тахометра прерывается управляющим сигналом ШИМ, поскольку питание не всегда подается на вентилятор. Информация о тахометре может быть получена с помощью метода, называемого растягиванием импульсов — включения вентилятора на время, достаточное для сбора информации о тахометре (с возможным увеличением слышимого шума).На рис. 6 показан случай растяжения импульса.
Рисунок 6. Растяжение импульса для сбора тахометрической информации.Еще один недостаток низкочастотной ШИМ — коммутационные шумы. При постоянном включении и выключении фанкойлов может присутствовать слышимый шум. Чтобы справиться с этим шумом, новейшие контроллеры вентиляторов Analog Devices предназначены для работы вентилятора с частотой 22,5 кГц, которая находится за пределами слышимого диапазона. Схема внешнего управления проще с высокочастотной ШИМ, но ее можно использовать только с 4-проводными вентиляторами.Хотя эти вентиляторы появились на рынке относительно недавно, они быстро становятся все более популярными. На рисунке 7 изображена схема, используемая для высокочастотной ШИМ.
Рисунок 7. Схема управления вентилятором с высокочастотной ШИМ.ШИМ-сигнал напрямую управляет вентилятором; приводной полевой транзистор встроен в вентилятор. Уменьшая количество внешних компонентов, этот подход значительно упрощает внешнюю схему. Поскольку управляющий сигнал ШИМ подается непосредственно на катушки вентилятора, электроника вентилятора всегда включена, а сигнал тахометра всегда доступен.Это устраняет необходимость в растягивании импульсов и создаваемых им шумах. Коммутационный шум также устраняется или значительно снижается, поскольку катушки переключаются с частотой за пределами слышимого диапазона.
Резюме
С точки зрения акустического шума, надежности и энергоэффективности наиболее предпочтительным методом управления вентилятором является использование высокочастотного (> 20 кГц) ШИМ-привода.
Помимо устранения необходимости зашумленного растяжения импульсов и коммутационного шума, связанного с низкочастотной ШИМ, он имеет гораздо более широкий диапазон управления, чем линейное управление.Благодаря высокочастотной ШИМ вентилятор может работать на скорости до 10% от полной скорости, в то время как тот же вентилятор может работать не менее чем на 50% от полной скорости при линейном управлении. Он более энергоэффективен, потому что вентилятор всегда либо полностью включен, либо полностью выключен. (Когда полевой транзистор либо выключен, либо находится в режиме насыщения, его рассеивание очень мало, что устраняет значительные потери в транзисторе в линейном случае.) Это тише, чем при постоянном включении или включении / выключении, поскольку вентилятор может работать на более низких скоростях. — это можно постепенно менять.Наконец, более медленная работа вентилятора также увеличивает срок его службы, повышая надежность системы.
Метод управления | Преимущества | Недостатки |
Вкл. / Выкл. | Недорого | Худшие акустические характеристики — вентилятор всегда работает. |
Линейный | Самый тихий | Дорогая схема Неэффективная — потеря мощности в схеме усилителя |
Низкочастотный ШИМ | Эффективный Широкий диапазон регулирования скорости при измерении скорости | Шум при коммутации вентилятора Требуется растяжение импульса |
Высокочастотный ШИМ | Efficient Хорошая акустика, почти как линейная.Недорогая внешняя цепь Широкий диапазон регулирования скорости | Необходимо использовать 4-проводные вентиляторы |
Введение в широтно-импульсную модуляцию, управление скоростью и приложения
Использование ШИМ в качестве метода переключения
Широтно-импульсная модуляция (ШИМ) — это широко используемый метод для общего управления мощностью постоянного тока, подаваемого на электрическое устройство. современные электронные силовые выключатели. Однако он также находит свое место в прерывателях переменного тока.Среднее значение тока, подаваемого на нагрузку, регулируется положением переключателя и продолжительностью его состояния. Если период включения переключателя больше по сравнению с периодом выключения, нагрузка получает сравнительно более высокую мощность. Таким образом, частота переключения ШИМ должна быть выше.
Обычно переключение должно производиться несколько раз в минуту в электрической плите, 120 Гц в диммере лампы, от нескольких килогерц (кГц) до десятков кГц для моторного привода. Частота коммутации усилителей звука и компьютерных блоков питания составляет от десяти до сотен кГц.Отношение времени включения к периоду импульса известно как рабочий цикл. Если рабочий цикл низкий, это означает низкую мощность.
Потери мощности в коммутационном устройстве очень низкие из-за почти незначительного тока, протекающего в выключенном состоянии устройства, и незначительного падения напряжения в выключенном состоянии. Цифровое управление также использует метод ШИМ. ШИМ также использовался в некоторых системах связи, где его рабочий цикл использовался для передачи информации по каналу связи.
ШИМ может использоваться для регулировки общего количества мощности, подаваемой на нагрузку, без потерь, обычно возникающих, когда передача мощности ограничивается резистивными средствами. К недостаткам относятся пульсации, определяемые рабочим циклом, частотой переключения и свойствами нагрузки. При достаточно высокой частоте переключения и, при необходимости, использовании дополнительных пассивных электронных фильтров последовательность импульсов может быть сглажена и восстановлена средняя аналоговая форма волны. Системы управления с высокочастотной ШИМ могут быть легко реализованы с использованием полупроводниковых переключателей.
Как уже было сказано выше, переключатель почти не рассеивает мощность ни в состоянии, ни в выключенном состоянии. Однако во время переходов между включенным и выключенным состояниями как напряжение, так и ток не равны нулю, и, таким образом, значительная мощность рассеивается в переключателях. К счастью, изменение состояния между полностью включенным и полностью выключенным происходит довольно быстро (обычно менее 100 наносекунд) по сравнению с типичным временем включения или выключения, поэтому средняя рассеиваемая мощность довольно низка по сравнению с мощностью, подаваемой даже при высоких частотах переключения. используются.
Использование ШИМ для подачи питания постоянного тока на нагрузку
Большая часть промышленных процессов требует выполнения определенных параметров, касающихся скорости привода. Системы электропривода, используемые во многих промышленных приложениях, требуют более высокой производительности, надежности, регулируемой скорости из-за простоты управления. Регулировка скорости двигателя постоянного тока важна в приложениях, где точность и защита имеют решающее значение. Назначение регулятора скорости двигателя — принять сигнал, представляющий требуемую скорость, и привести двигатель в движение с этой скоростью.
Широтно-импульсная модуляция (ШИМ) применительно к управлению двигателем — это способ передачи энергии посредством последовательности импульсов, а не непрерывно изменяющегося (аналогового) сигнала. Увеличивая или уменьшая ширину импульса, контроллер регулирует поток энергии на вал двигателя. Собственная индуктивность двигателя действует как фильтр, накапливая энергию во время цикла «ВКЛ», высвобождая ее со скоростью, соответствующей входному или опорному сигналу. Другими словами, энергия поступает в нагрузку не столько с частотой переключения, сколько с опорной частотой.
Схема используется для управления скоростью двигателя постоянного тока с использованием метода ШИМ. Контроллер двигателя постоянного тока с регулируемой скоростью 12 В использует микросхему таймера 555 в качестве генератора импульсов ШИМ для регулирования скорости двигателя 12 В постоянного тока. IC 555 — это популярная микросхема таймера, используемая для создания схем таймера. Он был представлен в 1972 году компанией Signetics. Он называется 555, потому что внутри находятся три резистора по 5 кОм. ИС состоит из двух компараторов, цепи резисторов, триггера и выходного каскада. Он работает в 3 основных режимах — Астабильный, Моностабильный (где он действует как генератор однократных импульсов и Бистабильный режим.То есть, когда он срабатывает; выходной сигнал становится высоким в течение периода, зависящего от значений резистора синхронизации и конденсатора. В нестабильном режиме (AMV) ИС работает как автономный мультивибратор. Выходной сигнал постоянно меняется на высокий и низкий, давая пульсирующий выход в качестве генератора. В бистабильном режиме, также известном как триггер Шмитта, ИС работает как триггер с высоким или низким выходом на каждом триггере и сбросе.
В этой схеме используется МОП-транзистор IRF540. Это усовершенствованный N-канальный МОП-транзистор.Это усовершенствованный силовой полевой МОП-транзистор, разработанный, испытанный и гарантированно выдерживающий заданный уровень энергии в лавинном режиме пробоя. Эти силовые полевые МОП-транзисторы предназначены для таких приложений, как импульсные регуляторы, переключающие преобразователи, драйверы двигателей, релейные драйверы и драйверы для мощных биполярных переключающих транзисторов, требующих высокой скорости и низкой мощности управления затвором. Эти типы могут управляться напрямую от интегральных схем. Рабочее напряжение этой цепи можно регулировать в соответствии с потребностями управляемого двигателя постоянного тока.Эта схема может работать от 5-18 В постоянного тока.
Вышеупомянутая схема, то есть управление скоростью двигателя постоянного тока с помощью метода ШИМ, изменяет рабочий цикл, который, в свою очередь, управляет скоростью двигателя. IC 555 подключен в нестабильном режиме к автономному мультивибратору. Схема состоит из потенциометра и двух диодов, которые используются для изменения рабочего цикла и поддержания постоянной частоты. При изменении сопротивления переменного резистора или потенциометра рабочий цикл импульсов, подаваемых на полевой МОП-транзистор, изменяется, и, соответственно, изменяется мощность постоянного тока на двигатель, и, таким образом, его скорость увеличивается с увеличением рабочего цикла.
Использование ШИМ для подачи питания переменного тока на нагрузку
Современные полупроводниковые переключатели, такие как MOSFET или биполярные транзисторы с изолированным затвором (IGBT), являются идеальными компонентами. Таким образом могут быть построены контроллеры с высокой эффективностью. Обычно преобразователи частоты, используемые для управления двигателями переменного тока, имеют КПД выше 98%. Импульсные источники питания имеют более низкий КПД из-за низкого уровня выходного напряжения (часто требуется даже менее 2 В для микропроцессоров), но все же можно достичь КПД более 70-80%.
Этот вид управления переменным током является известным по мощности методом отложенного угла зажигания. Он дешевле и генерирует много электрических шумов и гармоник по сравнению с настоящим ШИМ-регулятором, который создает незначительный шум.
Во многих приложениях, таких как промышленное отопление, управление освещением, асинхронные двигатели с плавным пуском и регуляторы скорости для вентиляторов и насосов, требуется переменное напряжение переменного тока от постоянного источника переменного тока. Для этих требований широко используется регулировка фазового угла регуляторов.Он предлагает некоторые преимущества, такие как простота и возможность экономичного управления большим количеством энергии. Однако запаздывающий угол зажигания вызывает прерывистость и обилие гармоник в токе нагрузки, а на стороне переменного тока возникает запаздывающий коэффициент мощности при увеличении угла зажигания.
Эти проблемы можно решить, используя прерыватель переменного тока с ШИМ. Этот прерыватель переменного тока с ШИМ имеет несколько преимуществ, таких как синусоидальный входной ток с коэффициентом мощности, близким к единице. Однако, чтобы уменьшить размер фильтра и улучшить качество выходного регулятора, следует увеличить частоту переключения.Это вызывает большие потери при переключении. Другой проблемой является коммутация переключающего переключателя S1 с переключателем свободного хода S2. Это вызывает всплеск тока, если оба переключателя включены одновременно (короткое замыкание), и всплеск напряжения, если оба переключателя выключены (нет свободного пути).