Схема заземления и зануления объекта электроснабжения: Схема заземления и зануления объекта электроснабжения

Содержание

Схема заземления и зануления объекта электроснабжения

Чем отличается заземление от зануления

Для безопасной работы на различных электоустановках и проводниках используется соединение открытых металлических отводов с землей и подключение сети к нулевому кабелю. Но немногие начинающие мастера точно знают, чем отличается заземление и зануление электроустановок и электрооборудования.

Определение заземления

Заземление – это умышленное подключение открытых частей электрического оборудования, которые находятся под напряжением, к специальному заземляющему отводу, шине или другому защитному оборудованию. Это может быть арматура в земле, часть электроустановки и другие приспособления. Такой подход, согласно ПУЭ, является обязательной мерой преднамеренной защиты как жилого, так и нежилого фонда. Это же гласят правила и требования ГОСТ 12.1.030-81 ССБТ (электробезопасность и система стандартов безопасности труда).

Фото — схема

Практически в каждом современном доме установлена схема заземления TN-C-S или TN-S. Но в зданиях старой постройки заземление зачастую вообще отсутствует, поэтому владельцам квартиры в таких постройках приходится своими силами организовывать землю. Такая система называется TN-C. Выполняется при помощи подключения отвода к заземляющему контуру, который может располагаться непосредственно в земле у здания или возле трансформаторной будки.

Теоретически, такую модернизацию проводки может организовать специальная монтажная компания, но практикуется это редко. Чаще к щитку на этаже (в многоквартирном доме) подводится земля, и уже к ней подключаются остальные провода.

  1. Если фаза попадает на открытый металлический отвод любого электрического устройства, то в нем появляется напряжение. Это же случается, если, к примеру, нарушена изоляция кабеля. Человеческое тело – отличный проводник тока, если Вы дотронетесь к такому отводу, то получите сильный удар током. Заземление поможет избежать это;
  2. Блуждающие токи уходят в заземляющий проводник, этим гарантируется охрана жизни;
  3. В особенности опасно напряжение, которое попадает на радиаторы отопления. В таком случае, все батареи в доме становятся проводниками тока. Но если установлена земля, то все напряжение уйдет по проводнику.
Фото — вариант земли

Если нет возможности провести полноценный заземляющий контур, тогда используются другие способы. К примеру, сейчас очень распространено подключение переносных заземляющих штырей (портативные шины). Их действие никак не отличается от стандартного стационарного отвода, но при этом они гораздо практичнее по своему функционалу.

Фото — переносная шина

Назначение зануления

Иногда зануление и заземление путают друг с другом, так в чем разница между ними? Зануление применяется по ПУЭ только для промышленных установок и не является гарантом безопасности. Если фаза попадает на открытую часть устройства, то ток не уходит. После этого происходит сопряжение двух фаз, и, как следствие, короткое замыкание. Нулевой проводник необходим для быстрого реагирования дифференциального защитного автомата на КЗ, но не для защиты человека от поражения током. Поэтому его принято использовать только на производстве, где требуется быстрое отключение питания в случае аварийной ситуации.

Фото — схема зануления

Нужно ли делать зануление в частном доме или квартиры? Нет, это необязательно, и даже чревато различными негативными последствиями. Скажем, если нулевой провод сгорит, то большее количество электрических устройств, к которым он был подключен, сломается из-за чрезвычайно высокого скачка напряжения. Стоит помнить, что Ваша безопасность не пострадает, если вместе с занулением обустроить также заземление, установить УЗО и защитный выключатель.

Фото — принцип работы зануления

Как установить зануление, чтобы устройство, подключенное к нему, не сгорело:

  1. Нужно использовать трехжильный провод с изоляцией. Одна жила отведена для фазы, вторая для нуля, третья для заземления;
  2. Земля подключается в самом конце электромонтажных работ на корпус безопасного проводника к заземляющему контуру и т. д. Наиболее практичен специальный заземляющий отвод у щита;
  3. В целях безопасности обязательно устанавливаются различные выключатели питания и прочие защитные установки.

Видео: в чем разница зануления и заземления

Главное отличие

Самое главное, что нужно запомнить: схемы зануления и заземления имеют различное защитное действие. Ноль гарантирует быструю реакцию на изменение потенциалов или утечку тока для обеспечивающих защиту установок. Соответственно, при высоком напряжении обеспечивается отключение всех потребителей энергии: осветительных приборов, компьютера и других машин (в том числе, станков, трансформаторов).

Фото — отличие зануления и заземления

Заземлением же обеспечивается выравнивание потенциалов и защита от поражения током. Земля чаще применяется в домашних условиях, её монтаж можно легко сделать своими руками. Но здесь нет гарантии, что предохранители быстро отреагируют на утечку. Оптимальным вариантом для повышения гарантии безопасности является совместное применение зануления и заземления сетей и открытых частей машин.

Перед установкой любого из этих вариантов защиты, нужно обязательно получить разрешение на проведение работ. Также дополнительно проводится расчет защитного проводника, подведение к каждому потребителю в жилище земли и установка защитного оборудования.

Что такое защитное зануление и где оно применяется

Защитное зануление — система, в которой токопроводящие части оборудования, не находящиеся в норме под напряжением, соединены с нейтралью. В защитных целях преднамеренно создается соединение между открытыми проводящими элементами глухозаземленной нейтрали (в сетях трехфазного тока).

В сетях однофазного тока создают контакт с глухозаземленным выводом источника однофазного тока, а в случае с постоянным током — с глухозаземленной точкой источника тока. Хотя зануление характеризуется серьезными недостатками, система по-прежнему широко применяется во многих сферах для защиты от тока.

Разница между занулением и заземлением

Между занулением и заземлением имеются отличия:

  1. В случае заземления лишний ток и появившееся на корпусе напряжение перенаправляются в грунт. Принцип действия зануления основан на обнулении на щитке.
  2. Заземление более эффективно с точки зрения защиты человека от удара током.
  3. Заземление основано на быстром и значительном уменьшении напряжения. Тем не менее, какое-то (уже неопасное) напряжение остается.
  4. Зануление заключается в создании соединения между металлическими деталями, в которых отсутствует напряжение. Принцип зануления основан на умышленном создании короткого замыкания при пробое изоляции или попадании тока на нетоковедущие части электроустановок. Как только происходит замыкание, в дело вступает автоматический выключатель, перегорают предохранители или срабатывают иные средства защиты.
  5. Заземление чаще всего используют на линиях с изолированной нейтралью в системах типа IT и TT в трехфазных сетях, где напряжение не превышает тысячи вольт. Заземление применяют при напряжении более тысячи вольт с нейтралью в любом режиме. Зануление используют в глухозаземленных нейтралях.
  6. При занулении все элементы электроприборов, не находящиеся в стандартном режиме под напряжением, соединяются с нулем. Если фаза случайно коснется зануленных элементов, резко увеличивается ток и отключается электрооборудование.
  7. Заземление не зависит от фаз электроприборов. Для организации зануления требуется соблюдение жестких условий подключения.
  8. В современных домах зануление применяется редко. Однако этот способ защиты все еще встречается в многоэтажных домах, где по каким-либо причинам нет возможности организовать надежное заземление. На предприятиях, где имеются повышенные нормативы по электробезопасности, основной способ защиты — зануление.

Обратите внимание! Для правильного определения нулевых точек и выбора способа защиты понадобится помощь квалифицированного электрика. Сделать заземление, собрать элементы контура и установить его в грунт можно и своими руками.

Схема работы

Как было сказано выше, зануление основано на провоцировании короткого замыкания после попадания фазы на металлический корпус электроустановки, соединенной с нулем. Так как сила тока возрастает, подключается защитный механизм, отключающий электропитание.

По нормативам Правил установки электроустановок в случае нарушения целостности линии она должна отключаться автоматически. Регламентируется время на отключение — 0,4 секунды (для сетей 380/220В). Для отключения используются специальные проводники. Например, в случае однофазной проводки задействуется третья жила кабеля.

Для правильного зануления важно, чтобы петля фазы-нуля характеризовалась невысоким сопротивлением. Так обеспечивается срабатывание защиты за нужный промежуток времени.

Организация зануления требует высокой квалификации, поэтому такие работы должны выполнять только квалифицированные электрики.

На схеме ниже показан принцип работы системы:

Область применения

Защитное зануление используют в электроустановках с четырехпроводными электросетями и напряжением до 1 кВт в следующих случаях:

  • в электроустановках с глухозаземленной нейтралью в сетях TN-C-S, TN-C, TN-S с проводниками типов N, PE, PEN;
  • в сетях с постоянным током и заземленной средней точкой источника;
  • в сетях с переменным током и тремя фазами с заземленным нулем (220/127, 660/380, 380/220).

Сети 380/220 допускаются в любых сооружениях, где зануление электроустановок обязательно. Для жилых помещений с сухими полами зануление обустраивать не нужно.

Электрооборудование 220/127 используются в специализированных помещениях, где отмечается повышенный риск поражения током. Такая защита необходима в условиях улицы, где занулению подлежат металлические конструкции, к которым прикасаются работники.

Проверка эффективности зануления

Чтобы проверить, насколько действенно зануление, нужно сделать замер сопротивления петли фаза-ноль в наиболее отдаленной от источника электропитания точке. Это даст возможность проверить защищенность в случае воздействия тока на корпус.

Сопротивление измеряется с использованием специализированной аппаратуры. Измерительные приборы оснащены двумя щупами. Один щуп направляют на фазу, второй — на зануленную электроустановку.

По результатам измерений устанавливают уровень сопротивления на петле фазы и нуля. С полученным результатом рассчитывают ток однофазного замыкания, применяя закон Ома. Расчетное значение тока однофазного замыкания должно быть равно или превышать ток срабатывания защитного оборудования.

Предположим, что для предохранения электроцепи от перегрузок и коротких замыканий подключен автомат-выключатель. Ток срабатывания составляет 100 Ампер. По результатам измерений сопротивление петли фазы и нуля равно 2 Ом, а фазовое напряжение в сети — 220 Вольт. Делаем расчет тока однофазного замыкания на основе закона Ома:

I = U/R = 220 Вольт/2 Ом = 110 Ампер.

Поскольку расчетный ток короткого замыкания превышает ток мгновенного срабатывания автомата-выключателя, делаем вывод об эффективности защитного зануления. В противном случае понадобилась бы замена автомата-выключателя на прибор с меньшим током срабатывания. Другой вариант решения проблемы — сокращение сопротивления петли фаза-ноль.

Нередко при проведении расчетов ток срабатывания автомата умножают на коэффициент надежности (Кн) или коэффициент запаса. Причина в том, что отсечка не всегда равна указанному показателю, то есть возможна определенная погрешность. Поэтому использование коэффициента позволяет получить более надежный результат. Для старого оборудования Кн составляет от 1,25 до 1,4. Для новой техники применяется коэффициент 1,1, так как такие автоматы работают с большей точностью.

Опасность зануления в квартире

Скачки напряжения опасны как для людей, так и для бытовой техники в квартирах. В многоквартирных домах одной из квартир достанется низкое напряжение, а другой — высокое.

Если в розетке квартиры случится обрыв нулевого проводника, при следующем включении электроустановки (например, бойлера) человека ударит током.

Особенно зануление опасно в двухпроводной системе. К примеру, при проведении электромонтажных работ электрик может заменить нулевой проводник на фазный. В электрощитах эти жилы далеко не всегда обозначены определенным цветом. Если замена произойдет, электрическое оборудование окажется под напряжением.

По нормативам Правил установки электроустановок на бытовом уровне зануление не разрешается для использования в бытовых целях именно по причине его небезопасности. Зануление эффективно только для защиты больших объектов производственного назначения. Однако, несмотря на запрет, некоторые люди решаются на установку зануления в собственном жилье. Происходит это либо по причине отсутствия иных методов решения проблемы, либо из-за недостаточности знаний по данному предмету.

Зануление в квартире технически осуществимо, но эффективность такой защиты непредсказуема, как и возможные негативные последствия. Далее рассмотрим ряд ситуаций, которые возникают при наличии зануления квартире.

Зануление в розетках

В некоторых случаях защиту электроприборов предлагают выполнить путем перемычки клеммы розеточного рабочего нуля на защитный контакт. Такие действия противоречат пункту 1.7.132 ПУЭ, поскольку предполагают задействование нулевого провода двухпроводной электросети в качестве как рабочего, так и защитного нуля одновременно.

На вводе в жилое помещение чаще всего расположено устройство, предназначенное для коммутации фазы и нуля (двухполюсный прибор или так называемый пакетник). Коммутация нуля, используемого как защитный проводник, не допускается. Иными словами, запрещено использовать в качестве защиты проводник, электроцепь которого включает коммутационный аппарат.

Опасность защиты с применением перемычки в розетке состоит в том, что корпуса электроустановок в случае повреждения нуля (независимо от участка) попадают под фазное напряжение. Если нулевой проводник обрывается, электроприемник перестает функционировать. В этом случае провод кажется обесточенным, что провоцирует на необдуманные действия со всеми вытекающими последствиями.

Обратите внимание! При обрыве нуля источником опасности становится любая техника в квартире или в частном доме.

Перепутаны местами фаза и ноль

При проведении электромонтажных работ в двухпроводном стояке своими руками существует немалая вероятность путаницы между нулем и фазой.

В домах с двухпроводной системой жилы кабелей лишены отличительных признаков. При работе с проводами в этажном щитке электрик может попросту ошибиться, перепутав фазу и ноль местами. В результате корпуса электроустановок попадут под фазное напряжение.

Отгорание нуля

Обрыв нуля (отгорание нуля) часто случается в зданиях с плохой проводкой. Чаще всего проводка в таких домах проектировалась, исходя из 2 киловатт на единицу жилья. На сегодняшний день электропроводка в домах старого типа не только износилась физически, но и не способна удовлетворить возросшее количество бытовой техники.

При обрыве нуля дисбаланс возникает на трансформаторной подстанции, от которой питается многоквартирное здание. Перекос возможен в общем электрическом щите здания или в этажном щитке дома. Следствием этого станет беспорядочное понижение напряжения в одних квартирах и повышение — в других.

Низкое напряжение губительно для некоторых видов электробытовой техники, в том числе кондиционеров, холодильников, вытяжек и прочих аппаратов, оснащенных электрическими двигателями. Высокое напряжение представляет опасность для всех видов электроустановок.

Альтернатива занулению

В подсистеме TN-S зануление защитного проводника PE осуществляется лишь на одном участке — на контуре заземления трансформаторной подстанции или электрогенератора. В этой точке разделяется PEN-проводник, и далее защита и рабочий ноль нигде не встречаются.

В такой схеме энергоснабжения заземление и зануление органично взаимодействуют, создавая условия для высокой электробезопасности. Однако в системах, где нейтраль изолирована (IT, TT), зануление не используется. Электрическое оборудование, работающее в рамках системы TT и IT, заземляется за счет собственных контуров. Так как система IT предполагает подачу питания только специфическим потребителям, рассматривать такой способ организации защиты в жилых домах не имеет смысла. Единственная альтернатива неправильному, а потому опасному занулению шины PE — система TT. Особенно актуальна такая система, потому что переход на технически прогрессивные системы TN-S, TN-C-S технически и финансово затруднен для домов, чей возраст превышает 20 – 25 лет.

Электрическая сеть, построенная по стандарту TT, призвана обеспечивать качественную защиту от попадания под напряжение нетоковедущих частей. Все работы по организации зануления должны осуществляться в соответствии с нормами, указанными в пункте 1.7.39 Правил установки электроустановок.

Выполнение заземления и зануления электроустановок

Обязательным условием безопасного функционирования электроприборов и различного оборудования является качественное заземление и зануление. Такая работа выполняется самостоятельно, что позволяет избежать выхода из строя техники из-за ее перенапряжения и коротких замыканий в сети. Заземление и зануление электроустановок выполняется с учетом особенностей оборудования, что предупредит его преждевременный выход из строя.

Определение понятий

Под заземлением принято понимать использование специальных конструкций, которые соединяют электропроводку дома или отдельные приборы с землёй. Благодаря наличию такой защиты прикосновение к поверхностям, которые находятся под напряжением, не приведет к летальному исходу, а удар тока будет минимальным. Изготавливается защита с электрооборудованием, имеющим изолированную нейтраль. Заземляющие устройства могут выполняться целой группой проводников, соединяющих с землей токопроводящие элементы.

Заземление электрооборудования также увеличивает аварийные токи замыкания, что необходимо в тех случаях, когда имеющаяся защита срабатывает при попадании под напряжение нетоковедущих частей. Это позволяет предупредить выход оборудования из строя при замыканиях, неквалифицированном ремонте и вмешательстве в электросети. Сегодня принято выделять несколько разновидностей заземления:

  • рабочий тип обеспечивает бесперебойную работу электрооборудования в штатном и аварийном режиме;
  • защитный тип обеспечивает безопасность электроустановок, предупреждая пробой на корпус и рабочую поверхность токоведущих проводов;
  • грозозащитный тип отводит молнию от зданий, уводя разряд в землю, предупреждает повреждение электрооборудования и возгорание строений.

Принято также различать искусственно изготовленное и естественное заземление. Первое выполняется для защиты сооружений и электроприборов от повышенного напряжения. Такие устройства состоят из металлического стержня, провода, труб некондиционного типа и стальных уголковых приспособлений. Естественное заземление также изготовлено человеком, однако изначально оно не предназначается для защиты от повышенного напряжения. В качестве него можно рассматривать железобетонные сооружения, трубопроводы, обсадные трубы и т. д.

Зануление также обеспечивает необходимую защиту электрооборудования, предупреждая его выход из строя из-за замыканий и перенапряжения в сети. Такой вид работ отличается от заземления принципом монтажа и назначением. Зануление подразумевает подключение токопроводящих элементов к корпусу электроприбора или металлическим деталям. Для обеспечения безопасности обязательно соединение с нейтралью, которая является источником трехфазного пониженного напряжения.

Основной задачей зануления является защита электрооборудования и рабочего персонала от поражения током за счёт срабатывания автоматического коммутационного оборудования. Принцип работы такой защиты заключается в создании искусственных коротких замыканий при попадании тока на корпус техники или в случаях пробоя изоляции. Возникновение короткого замыкания приводит к срабатыванию:

  • предохранителей;
  • автоматических выключателей;
  • специальной защиты от короткого замыкания.

Заземление отличается от зануления применением специального оборудования, которое использует нейтраль и за счёт коротких замыканий разрывает цепь, предупреждая серьёзное поражение электрическим током. Особенностью зануления является необходимость высокой мощности тока нулевого провода, за счёт которого происходит короткое замыкание. Только в этом случае можно обеспечить стопроцентную вероятность защиты от поражения электричеством при наличии проблем в электроснабжении. Если мощности нулевого провода и токов короткого замыкания недостаточно, это приводит к появлению повышенного напряжения в электрооборудовании.

Выбор технологии

Планируя электрозащиту дома, многие из нас задумываются о выполнении дополнительной защиты электроснабжения. Однако домовладельцы не всегда понимают, в чем разница заземления и зануления. Основными различиями являются:

  • при заземлении избыточный ток отводится в землю, а при выполнении зануления напряжение сбрасывается в щитке на ноль;
  • заземление считается наиболее эффективным способом защиты человека от поражения электротоком.
Сделать заземление проще, чем зануление. В последнем случае потребуется помощь специалиста, который должен рассчитать оптимальные показатели нулевого тока и лишь после этого можно будет обеспечить правильность работы защитного оборудования.

К выполнению заземления чаще всего прибегают владельцы частных домов, а вот обладателям квартир в многоэтажках требуется делать зануление, для чего дополнительно устанавливают УЗО и аналогичные устройства, предупреждающие поражение током и повреждение работающих электроприборов. При правильном устройстве защиты можно полностью исключить опасность поражения электротоком, а различная техника и приборы будут полностью защищены от вероятных скачков напряжения и замыканий в сети.

Для обеспечения качественной защиты при занулении необходимо учитывать фазность приборов и выполнять сложные расчёты. Самостоятельно провести такую работу не представляется возможным. Только опытный электрик правильно спланирует подключение, установит соответствующие защитные приборы и проведет качественное зануление.

Выполненное заземление не будет зависеть от разности приборов, поэтому его проще обустроить самостоятельно, даже не имея каких-либо профессиональных навыков. Сбросить лишнее напряжение в землю намного безопаснее, чем монтировать дополнительные приспособления, которые отводят ток на щиток.

Сегодня в продаже имеются уже готовые комплекты для заземления частного дома. Потребуется только заглубить на несколько метров в землю металлический контур, подключить к нему фазу со щитка, что и позволит обеспечить максимальную безопасность используемых электроприборов. Можно подобрать различные комплекты, которые подходят для дачи или полноразмерного частного дома, отличаются своей конструкцией, способом подключения и максимально возможной нагрузкой.

В последние годы отмечается тенденция, когда полноценное зануление выполняется на производстве и предприятиях, где требуется обеспечить повышенную электробезопасность эксплуатируемым приборам и промышленному оборудованию. Обычные же домовладельцы в целях защиты от поражения током обустраивают простейшее заземление, сделать самостоятельно которое не составит особого труда.

Разновидности защитных систем

Основные требования к заземлению и занулению описаны в ГОСТе, что упрощает выполнение такой работы и стандартизирует используемые устройства. Защитные системы отличаются способом обустройства, принципом работы и используемым дополнительным оборудованием.

Система TN-C была разработана в Германии еще в начале прошлого века. Такая защита предусматривает использование единого кабеля с PE проводником и нулевым проводом. Недостатком этой системы заземления является появление избыточного напряжения при нарушении корпуса оборудования и отгорания нуля. Несмотря на имеющиеся недостатки, TN-C пользуется сегодня популярностью благодаря простоте в реализации.

Системы заземления TN-S и TN-C-S используют два провода, которые отходят от щитка и идут в землю. Контур выполняется в виде сложной металлической конструкции, что полностью исключает вероятность поражения током и выход из строя электроприборов при наличии проблем с электроснабжением. Эта схема получилась чрезвычайно удачной, она пользуется популярностью и обустраивается на дачах и в частных домах.

Заземление по типу TT основывается на соединении контура электроустановки с металлическими элементами, находящимися под землёй. Такая схема не получила сегодня должного распространения из-за сложности в реализации, а также возможных перепадов напряжения в сети.

Разновидность защиты OT подразумевает передачу лишнего напряжения на корпус и в землю с нейтрали, которая изолирована от грунта и подключена к приборам с большим сопротивлением. Такая схема получила распространение при использовании электрического оборудования, которому требуются стабильность и повышенная безопасность.

Популярные способы зануления

Зануление PNG отличается простотой конструкции, что объясняется совмещением защитных и нулевых проводников. К недостаткам этой системы безопасности относятся повышенные требования к взаимодействию проводникового сечения ее потенциалов. PNG широко используется при необходимости зануления асинхронных агрегатов, работающих в трехфазных сетях.

Наибольшую популярность сегодня получили модифицированные системы зануления электроустановок, которые питаются от однофазной сети. В них используется общий совмещенный PEN проводник, соединяющийся с глухозаземленной нейтралью. После такого соединения происходит разделение кабелей PE и N, которые далее подключаются к корпусу или аналогичным приборам защиты. Преимуществом такой технологии зануления является ее универсальность, возможность использования в однофазной и трехфазной сети, а также простота конструкции и полная безопасность.

Заземление и зануление электроустановок позволяет защитить технику от скачков напряжения и коротких замыканий. Зануление подразумевает использование специального оборудования, позволяющего перенаправить лишнее напряжение на щиток. Такая защита используется преимущественно на промышленных предприятиях и объектах, где требуется повышенная безопасность работы оборудования. Владельцы частных домов могут самостоятельно выполнить заземление, что позволит им защитить себя и используемые электроприборы от замыканий и перепадов в сети.

Заземление и зануление электроустановок, разновидности (TN-C,TN-S,TN-C-S,TT,TI), достоинства и недостатки

Любая электроустановка состоит не только из проводников электрического тока. Они помещаются в корпуса и оболочки, закрыты кожухами. Между токоведущими частями корпусами, в которых они находятся или на которых расположены, размещаются изоляционные материалы.

Все изоляторы подвержены способности повреждаться. При этом они теряют свои свойства и начинают проводить электрический ток. Потенциал рабочих частей электроустановки, находящихся под напряжением, проникает через место повреждения на токопроводящие корпуса и оболочки. При прикосновении к ним человека последний получает опасный для жизни удар электрическим током.

Способы защиты от опасных потенциалов

Ситуацию с повреждением междуфазной изоляции электрооборудования мгновенно пресекают защитные устройства: автоматические выключатели или предохранители. Но она лишь косвенно представляет опасность для человека.

Опаснее для людей как раз однофазное замыкание, в результате которого корпуса электродвигателей, электрошкафов, кабельных конструкций оказываются под напряжением.

Чтобы исключить риск поражения электротоком, нужно, чтобы при попадании напряжения на корпус произошло гарантированное короткое замыкание и потенциал на корпусе был максимально снижен.

Первое защитное действие достигается созданием цепи между корпусом и заземленной нейтралью электроустановки. При замыкании возникает ток, достаточно большой для срабатывания тех же защитных аппаратов, работающих при междуфазных замыканиях. Это называется защитным отключением.

Для реализации второго метода всем потенциально опасным металлическим частям электрооборудования придают потенциал земли. Делается это преднамеренным их соединением с заземляющим устройством. Мероприятие носит название – защитное заземление.

Системы заземления электроустановок до 1000 В получили в 7-м издании ПУЭ классификацию. Рассмотрим эти системы по очереди.

Система заземления TN-C

В этой конструкции нет ничего нового. Она была такой долгие годы.

Для питания потребителей в ней используется 4 провода. Три из них – фазные, один – нулевой. По последнему протекает рабочий ток нагрузки. Но он же используется и для реализации защитных целей, соединяясь с контуром заземления нейтрали силового трансформатора, питающего электроустановки. К нему же присоединяются и корпуса электрооборудования. Называется он проводником PEN. Из-за того, что в нем сочетаются функции защиты и транспортировки рабочего тока к месту назначения, он получил название «совмещенный проводник».

В итоге реализуются обе задачи: ток замыкания на землю высок – отключение поврежденного участка происходит достаточно быстро. К тому же при повреждении малое сопротивление PEN-проводника шунтирует тело прикоснувшегося к корпусу человека, имеющее сопротивление порядка килоома. Большая часть тока стекает в землю.

Но по PEN-проводнику протекает рабочий ток нагрузки. Контактные соединения от этого могут нарушиться, соединение – стать ненадежными или прерваться вовсе.

Так исчезает столь необходимая связь с заземляющим устройством.

Даже, если имеется повторное заземление PEN-проводника на вводе в здание.

Мало того, наличие тока в этом проводнике приводит к возникновению потенциала, увеличивающегося по мере удаления от точки связи с контуром заземления.

А при обрыве проводника PEN картина и вовсе ужасающая. Потенциал на корпусах за местом обрыва может теоретически достигнуть и 220 В.

Добавим ко всему этому технологически трудную реализацию соединения корпусов некоторых электроприемников с PEN. Как заземлить корпус электроплитки, подключаемой к сети через розетку?

Развитие бытовых электроприборов, требующих применения защитных мер по электробезопасности, привело к усовершенствованию системы TN-C. Подробнее о системе TN-C можно почитать в отдельной статье.

Система заземления TN-S

Отличие от предыдущей рассмотренной системы заземления в том, что функции рабочего-нулевого и защитного проводника разделены в разных физических проводниках. Нулевой рабочий (N) – проводит ток нагрузки, нулевой защитный (РЕ) – подключается к контуру заземления.

В результате происходит полное избавление от потенциала на корпусах, появляющихся в «особо отдаленных районах» электрической сети, а также – при обрывах проводников. Максимум, что грозит при отсутствии целостности проводника РЕ – отсутствие защиты. Но оборваться у него шансов немного – ток-то по нему не протекает, с чего бы вдруг потеряться выполненным по всем электрическим правилам контактным соединениям?

Поскольку сечение РЕ-проводников в составе кабельных линий обычно оказывается равным сечению фазных, упростилась задача присоединить их к корпусам любого электрооборудования.

Даже к заземляющему контакту розетки. Что позволило распространить защитные меры безопасности на все бытовые электроприборы: на ту же электроплитку, в частности.

Правда, в силовые кабельные линии добавилась лишняя жила. Ну что же – за безопасность надо платить.

Все вновь монтируемые электроустановки теперь, как правило, выполняются по этой системе заземления.

Подробнеео системе TN-S можно почитать в отдельной статье.

Система заземления TN-C-S.

Существенной проблемой при реализации системы TN-S является то, что реконструкция электроустановок и строительство новых происходит зачастую без реконструкции самой трансформаторной подстанции. Обычно переделывается какая-то ее часть, начиная от распределительного щита на вводе до последнего потребителя. До этого щитка система заземления неизбежно сохраняет старую конструкцию.

Эта проблема заранее решена тем же самым пунктом ПУЭ, описывающим переходной вариант системы заземления, обозначенный, как TN-C-S. В нем нетронутая реконструкцией часть электроустановки вполне себе официально не меняет своей структуры, оставаясь то же TN-C. А вот с некоторой точки распределительная сеть выполняется по новым правилам.

Суть в разделении проводника PEN на два: рабочий и защитный.

Выполняется это во вводном распределительном устройстве. В нем устанавливается две распределительных шинки: N и РЕ. Проводник PEN в обязательном порядке присоединяется к РЕ, а между самими шинками монтируется перемычка.

Подробнее о системе TN-C-S можно почитать в отдельной статье.

Почему к РЕ?

Если перемычка между шинами оборвется (этого нельзя исключать ни в коем случае), то при таком способе соединения нулевая рабочая шина потеряет связь с нейтралью электроустановки. При этом возможны тяжелые последствия для электрооборудования – но соединение с защитной шиной не пострадает, люди останутся в безопасности.

К тому же не заметить сей факт обрыва невозможно. Его сразу побегут искать.

При обратной же схеме коммутации обрыв перемычки заметят разве что при плановых измерениях целостности защитной цепи. А за это время люди останутся без защиты – корпуса «повиснут в воздухе». Хорошо бы, если так.

Предоставленная сама себе сеть из соединенных между собой защитных проводников таит не меньшую опасность, чем при обрыве PEN-проводника система TN-C.

Блоки питания бытовой аппаратуры (компьютеров или стиральных машин, к примеру) и полупроводниковые ПРА люминесцентных ламп при отсутствии соединения их корпусов с заземляющим устройством выдают на них потенциал порядка 110 В через конденсаторы входного помехоподавляющего фильтра блока питания. Он распространяется по всей сети, появляясь на прочих металлических частях, соединенных с РЕ-проводником.

Не стоит забывать о том, что эта система унаследовала от TN-C ее главные недостатки: потенциал на PEN-проводнике и опасные напряжения на нем при его обрыве. Главный метод борьбы с ними – собственный контур повторного заземления, вывод от которого присоединяется к шине РЕ вводного щитка.

Но есть и другие системы заземления, использующиеся в частных случаях для защиты людей.

Система заземления ТТ

В предыдущих системах все заземляющие устройства соединяются в единую цепь проводниками PEN или (и) РЕ. В системе ТТ потребитель имеет свой собственный контур заземления, не связанной с проводником PEN питающей линии. Все его электрооборудование связано с этим контуром проводниками РЕ.

Таким образом, исчезают проблемы с возможным обрывом питающего потребителя PEN- проводника. Он используется как нулевой рабочий и никак не связан с корпусами.

Защита с помощью предохранителей и автоматических выключателей у потребителя работает только на устранение междуфазных замыканий, а также – между фазой и нулевым проводником.

Мерой же для защитного отключения служит обязательная установка УЗО у потребителя.

Внедрение этого метода заземления имеет показания к применению и при большой протяженности питающих линий, когда повышенное сопротивление петли фаза-нуль не позволяет произвести защитное отключение в нормируемое время.

Подробнеео системе TT можно почитать в отдельной статье.

Система заземления IT

А здесь нулевой проводник отсутствует вовсе, так как эта система – с изолированной нейтралью. Подключение нагрузки возможно только на линейные напряжения сети.

Ничего опасного для потребителя при возникновении повреждения одной фазы на корпус не происходит. Ток замыкания на землю ничтожен и не принесет организму особого вреда.

А для ликвидации опасных по величине токов все линии защищают УЗО в обязательном порядке.

Но для фиксации замыканий на землю в таких сетях устанавливаются специальные элементы – реле утечки. При его срабатывании повреждение требуется активно поискать. А при возникновении второго замыкания участок сети с повреждением подлежит немедленному отключению.

Отличия зануления от заземления, их схемы и область применения

Чем отличается заземление от зануления? Специалисты разобрались с этим вопросом. Все это — защитные меры от пиковых токов. Предусматривают работу по недопущению поражения электричеством человека и бытовых приборов. Названия разные, но все это — системы защиты.

Чтобы понять, в чем разница между заземлением и занулением, нужно знать назначение и принцип работы электрических устройств.

Принцип действия

Заземляющий контур электрической цепи – система проводов, соединяющая каждого потребителя, в обслуживаемой цепи, со специальным заземляющим контуром здания. При пробое на корпус прибора или утечке тока с поврежденной проводки, ток проходит по проводам к заземлителю.

Сопротивление заземления, как правило, выполняется меньше, чем сопротивление всей цепи. Поэтому ток течет по «легкому» пути и отводится с корпусов оборудования.

Занулением называется выполнение электрического соединения токопроводящих корпусов приборов с глухозаземленной нейтралью. При возникновении пиковых значений тока, его потенциал отводится, с помощью шины зануления, в специальную щитовую или на трансформаторную будку.

Главное его назначение – в случаях пробоев и утечек напряжения на корпус оборудования, вызывается короткое замыкание, сгорают предохранители или срабатывают автоматические размыкатели цепи.

Это и есть главное отличие заземления от зануления. Заземляющий контур принимает на себя токи КЗ, зануление вызывает срабатывание предохранительных устройств.

Разберем подробнее работу систем защиты от воздействия электрического тока.

Особенности заземляющего устройства

Основной целью заземляющего контура является понижение потенциала при пробое на корпус и коротком замыкании, до безопасного значения.

При этом, на корпусе оборудования понижается напряжение и сила тока, до безопасного уровня. На производстве заземляют корпуса электрооборудования, зданий и помещений от воздействия атмосферных токов.

При монтаже контура, в сети трехфазного тока не более 1000 В, применяют изолированную нейтраль. При больших уровнях напряжения сети, монтируется система с разными режимами нейтрали.

Контур заземления – это целая система, включающая в себя:

  • заземлитель;
  • заземляющие горизонтальные проводники;
  • подводящие провода.

Заземлитель подразделяют на искусственный и естественный.

При возможности следует использовать естественный заземлитель:

  • подземные трубопроводы водоснабжения. Но в этом случае, необходимо оборудовать трубопровод защитой от блуждающих токов;
  • подключаются на металлоконструкции цехов и помещений;
  • стальная или медная оплетка кабеля;
  • трубопроводы в скважине.

По нормам ПУЭ запрещено подключать заземляющий контур на трубы отопления и с пожароопасными материалами.

При искусственном оснащении, заземляемое оборудование предохраняется путем изготовления контура в виде равностороннего треугольника из металлических штырей или уголков.

Для щелочной и кислой почвы, рекомендуется использовать медный, оцинкованный заземлитель. Для изготовления контура в виде треугольника, необходимо углубиться в землю на 70 см.

Нельзя устанавливать групповые заземлители в пробуренные отверстия. Их необходимо забить в месте разметки, на глубину, не менее 2-х метров. Затем, соединяют заземлители в единую конструкцию с помощью отрезков стальной полосы.

Корпуса каждого прибора должны обязательно подключаться к системе защиты. При этом, нельзя подключать несколько потребителей последовательно, каждое устройство обязано обустраиваться линией подключения.

Теперь о главном – значение уровня сопротивления контура. В него суммируется сопротивления каждого прибора цепи и его проводов.

При расчете сопротивления контура, следует учитывать уровень значения грунта, размеры и глубину забивания заземлителей. Необходимо учитывать температурные особенности региона обустройства контура.

Помните – при жаркой погоде, место установки следует заливать водой, почва при высыхании меняет уровень сопротивления.

При обслуживании сетей до 1000. В и мощности оборудования свыше 100 кВА – сопротивление контура не более 10 Ом. В бытовых сетях оптимальным значением будет 4 Ома. Напряжение при прикосновении должно быть меньше 40 В. Сети свыше 1000 В защищаются устройством с сопротивлением не более 1 Ома.

Это некоторые особенности и принцип действия заземления. Более подробно, вы можете ознакомиться в статьях по этой теме на сайте.

Особенности и принцип действия зануления

Назначение зануления — метод защитного устройства позволяет провести подключение корпусов оборудования и других деталей из металлов с нейтралью (нулевой защитный проводник). В условиях с заземленным защитным проводником и напряжением в сети не более 1000 В, используется схема зануления.

При пробое фазного тока на корпусе электроприборов и оборудовании происходит КЗ фазы. При этом, срабатывают автоматы защитного отключения тока и цепь размыкается. Этим и отличаются две защитные системы.

К приборам зануления относят:

  • плавкий предохранитель;
  • автомат отключения тока;
  • встроенные в пускатели, тепловые реле;
  • контактор с тепловой защитой.

Возникла ситуация пробоя фазного напряжения. При этом от корпуса электроустановки ток проходит по нейтрали на обмотку трансформатора. Затем, от него по фазе — на предохранитель. Плавкие предохранители сгорают от пиковых значений тока, в электрическую цепь прекращается подача напряжения.

При этом, ноль беспрепятственно проводит ток, позволяя сработать защите. Его прокладывают в безопасном месте, запрещается оснащать его дополнительными выключателями и другими устройствами.

Значение уровня проводимости провода фазы должно быть наполовину больше нулевого проводника. Как правило, в этом случае используют стальные пластины, оболочки кабеля и другие материалы.

Зануляющие проводники проверяют на исправность при сдаче работ по подключению и проводке электроэнергии в здании, а также, через определенное количество времени, при пользовании электрической схемой.

Не менее одного раза в период 5 — летнего срока, производятся замеры значений сопротивления всей цепи фазного и нулевого проводника на корпусах самого дальнего оборудования от щита электропроводки, а также самого мощного оборудования в помещении.

Защитное зануление, в некоторых случаях, может выполнять работу защитного отключения. При этом, отличаются эти 2-е защитных системы тем, что в случае защитного отключения цепи, его можно использовать в любых условиях, при различных режимах заземляющего проводника, показателей напряжения цепи. В таких сетях можно обойтись и без провода нулевого подключения.

Расчет зануления необходимо производить с учетом всех условий работы и принципа его действия.

Защитное отключение выполняют с использованием защитной системы, которая отключает электрооборудование автоматически. При возникновении аварийных ситуаций и угроз поражения и нанесения электротравм человеку, к таким ситуациям можно отнести:

  • короткое замыкание фазного провода на корпус;
  • повреждение изоляции электрической проводки;
  • неисправности на заземляющем контуре;
  • нарушения целостности зануляющих проводников.

Эта защитная система нередко используется при невозможности провести защитные системы заземления и зануления. Но на ответственных участках, возможна установка защитного отключения и как дополнительный контур защиты человека и оборудования от поражения токами утечки и короткого замыкания.

При этом, их подразделяют, в зависимости от величины тока на входе и изменений реакции защитных устройств, на несколько схем:

  • наличия напряжения на корпусе оборудования;
  • силу тока при замыкании на провод земли;
  • напряжения или силу тока в нулевом проводнике;
  • уровня напряжения на фазе относительно значения на проводе земли;
  • устройства для постоянного или переменного тока;
  • устройства комбинированные.

Все системы защиты и отключения подачи тока в сеть оснащаются автоматическими выключателями. В их конструкции предусмотрена установка специального оборудования защитного отключения. При этом, период времени для отключения сети не должен превышать 2-е десятые секунды.

В заключение разберем вопрос, который может задать начинающий электрик.

Взаимозаменяемость защитных систем

Можно ли установить зануление вместо заземления? На этот вопрос любой специалист ответит «да», но только в промышленном здании.

В жилом помещении применять такую схему защиты следует в очень редких случаях, и только в нежилых помещениях. Это обусловлено, в первую очередь, с неравномерной нагрузкой на провод фазы и нейтрали.

При работе, на провода каждой фазы поступает одинаковая нагрузка, но по нейтрали общей цепи проходит достаточно малый ток. Каждому известно, что нельзя касаться фазы, но можно выполнять работу с нолем под нагрузкой.

При этом, сечение нулевого провода меньше провода фазы. При долгом использовании он окисляется на скрутках, нарушается слой изоляции при нагреве, в худшем случае он просто отгорит. При этом, напряжение фазы подходит к щитовой, затем, через провод ноля идет к потребителю. Корпуса приборов находятся под напряжением, повышается возможность поражения человека током.

Как советуют некоторые умельцы в Интернете, можно подвести к каждому бытовому прибору провода системы зануления, но это повлечет за собой значительные траты на проводку и последующий ремонт. Поэтому занулять источники в жилых помещениях нельзя.

Лучше в электрощите установить устройство защитного отключения и спокойно пользоваться бытовыми приборами. Каждое защитное устройство выполняет свое предназначение, при правильном расчете, монтаже и его использовании.

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Система заземления TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

Система заземления TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Система заземления IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

 

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

 

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

 

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

 

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

 


Смотрите также:


Смотрите также:

Система заземления IT. Возможности реализации в жилых домах

 

Международная классификация и кодирование систем электроснабжения

При описании систем электроснабжения в данной статье будем руководствоваться материалами и стандартами международной электротехнической комиссии (МЭК) и российскими «Правилами устройства электроустановок» (ПУЭ).

Если исходить из вышеперечисленных нормативных документов, описания систем электроснабжения в проектировании варьируются в зависимости от способов заземления, используемых в распределительных сетях. Специалистами употребляются различные виды методик в сфере защиты от негативных факторов поражения электрическим током. В практической деятельности инженеры-электрики сталкиваются с функциональным и защитным заземлениями.

Функциональное заземление служит для обеспечения нормальной работы электрических приборов. А вот с целью обеспечения безопасности электрических сетей и электроустановок на объектах применяют защитное заземление.

 

Разновидности систем заземления

Рассмотрим базовые понятия и расскажем Вам, что же означают буквенные обозначения, используемые специалистами электриками.

Часто в документации по электроснабжению, употребляется понятие «нулевой рабочий проводник» или по-другому он еще обозначается, как «N-проводник». Он используется для питания приемников электроэнергии, служит соединяющей частью для вывода с нейтралью электрооборудования, глухо заземленной. В разных случаях, он применяется, как в источниках однофазного/трёхфазного переменного тока, так и в сетях постоянного тока.

А вот в случае, когда вышеописанные два проводника совмещают свои функции в одном проводнике, то вводится понятие — PEN-проводник.

Исходя из правил МЭК, а также пользуясь принятой там системой кодирования согласно (ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики»), расскажем Вам о специальных буквенных обозначениях, которые приняты в этой области знаний.

В этой терминологии первой латинской буквой обозначают, какое бывает состояние у нейтрали источника питания в отношении «земли».

Если есть нейтраль, которая заземлена, то пишем T (Terra, в переводе с латинского «земля»). Если речь идет об изолированной нейтрали, то используем I (англ., Isolate). При обозначении видов заземления ОПЧ пользуются буквой под номером два. Латинскую T применяют в случае автономного от связи источника питания с землей, заземления ОПЧ. А вот знаком N маркируют, если ОПЧ непосредственно контактируют с точкой заземления источника питания. Еще несколько латинских букв используют в качестве описания разных состояний PE-проводника и N-проводника.

При применении в схеме раздельных проводников, N и PE, используют S (от англ. термина Separated, в переводе означает «разделение»).

А вот если применяется PEN-проводник, в котором соединяются функции как нулевого защитного, так и нулевого рабочего проводников, то обозначают буквой C (от англ. слова Combined – комбинирован).

Теперь, зная основные буквенные обозначения, можно без труда расшифровать аббревиатуры, которыми помечают различные виды систем заземления.

Рассмотрим вид №1, TN-систему.

В таком схемном решении имеем нейтраль источника питания в положении «глухо заземлена». ОПЧ электрического оборудования присоединены к ней с помощью PE-проводников. Такое схемное решение заключает в себе ещё 3 подвида:

  • TN-C — в случае совмещения N/PE-проводников в одном. А вот если разделить конкретно в применении для всей системы функции N- и PE-проводников, то такую схему маркируют, как TN-S. Если же совместить функционал N/PE-проводников только для какой-нибудь из частей системы, то мы получим обозначение TN-C-S.
  • Второй вид – это TT. Это решение предусматривает существование нейтрали источника питания, которая «заземлена глухо». ОПЧ, как правило, заземляют от отдельного заземлителя. Он расположен совершенно автономно от заземления нейтрали источника питания.
  • И наконец, перейдем к третьему виду — IT. Это решение предусматривает изоляцию токоведущих частей системы питания от земли. В некоторых случаях допустимо заземление с помощью приборов с большим сопротивлением. Заземление ОПЧ осуществляется отдельно. Иногда, такой вариант в технической литературе называют «системами c изолированной нейтралью».

 

Детали и особенности применения распределительных сетей, защитных заземлений

Определившись с классификацией распределительных сетей, кратко определимся с их практическим назначением. И начнём наше рассмотрение c типа TN. Конкретно возьмем для примера — TN-C. Является одной из наиболее старых и проверенных систем. Она досталась нам ещё от Ленинского плана ГОЭЛРО. Достоинства её в экономичности и простоте. Недостаток – отсутствие РЕ-проводника, а значит повышенная опасность в условиях быта в части уравнивания потенциалов и отсутствия в жилых зданиях защитного заземления (возможно лишь «зануление»). Уходящая технологическая система. Не рекомендуется для электроснабжения вновь возводимых объектов.

В качестве переходной подсистемы предлагается TN-C-S. В технической реализации она достаточно проста. Переход просто осуществляется c подсистемы TN-C. Но в случае серьезного повреждения проводника типа PEN, потребители электроэнергии могут оказаться в опасности.

И наконец, подробнее остановимся на технологии ТТ. Из-за угроз от поражения электрическим током такая технология в СССР была запрещена.

Однако, в современной действительности, в Российской Федерации достигнут большой прогресс в применении средств АЗС и УЗО. И эта технология «получила вторую жизнь», как средство подачи электроэнергии на буровых, в строительные бытовки и на другие передвижные и временные объекты.

К заземляющему устройству такой системы предъявляются повышенные требования, которые отражаются в проекте и прописываются в технических условиях.

А теперь мы подходим к основной цели нашего повествования – системам IT, на которых сконцентрируем основное наше внимание.

 

Распределительные сети IТ: историческая ретроспектива, принципы построения, показатели назначения, области возможных применений

В исторически обозримом прошлом (начало и середина XX века) распределительные IT системы имели доминирующее положение в странах Западной Европы. Однако по ряду причин экономического и технического характера от них отказались и перешли на TN-технологии. Если задуматься, почему это было сделано, то приходит на ум такой пример, как слабая устойчивость сетей IT к импульсным перенапряжениям коммутационного и грозового характера и более высокая стоимость таких решений перед пришедшими на смену TN-технологиями. Исключением является Королевство Норвегия, где распределительные IT-сети успешно эксплуатируются и развиваются. На это существуют свои причины, среди которых следует отметить географическое расположение (северные территории с малым количеством гроз, северные сияния не идут в счёт т.к. они происходят в верхних слоях атмосферы), повсеместный скальный грунт (трудности с построением высокоэффективной системы заземления), невысокая нагрузка на энергетическую систему страны ввиду отсутствия в массовом характере энергозатратных производств, а вследствие небольшой территории и предыдущего фактора, больших перетоков мощностей (коммутационных перенапряжений) в распределительных сетях. Тем не менее, давайте оставим пока «норвежский феномен» и зададимся вопросом: какова нишевая применимость данной технологии в современных условиях постиндустриального общества? И чтобы ответить на данный вопрос рассмотрим архитектуру построения распределительной IT-сети. В этой технологии, как мы уже писали выше, нейтраль изолирована от земли или же заземлена через специальные приборы с высоким импедансом (иногда в особых случаях применима низкоимпедансная, реже дугогасящая схема). При этом ОПЧ потребителя надёжно заземлены, а это предполагает низкие токи утечки на токопроводящие части электроустановки и на землю. Таким образом, при аварийной ситуации — замыкании на землю, исключается немедленное отключение питающей установки от присоединённого электрооборудования, система продолжает работать без перерыва питания. Также исключается возникновение дугового разряда и «шагового напряжения» с высоким потенциалом. Следует заметить, что данная технология при трёхфазном вводе позволяет организовать подключение потребителя двумя возможными способами: «треугольником» и «звездой».

Положив в основу особенности архитектуры построения данных систем заземления и их свойства в части электробезопасности, определим основные показатели назначения технологии заземления распределительных IT-сетей:

  • это безопасность для людей и животных, а также применимость как в обычных бытовых, так и в необычных (экстремальных) условиях;
  • повышенная защищенность от пожаров, взрывов;
  • облегченная возможность монтирования этих систем в виде наложения распределительной сети на уже имеющиеся технологии электроснабжения;
  • эффективность масштабирования сети;
  • простое управление емкостью сети;
  • система обнаружения повреждений;
  • устойчивости сети к неоднократным межфазным замыканиям;
  • системы настроек защиты (АЗС, УЗИП, УЗО).

Исходя из показателей назначения, вытекает сфера возможных применений. Это, прежде всего, медицинские стационары (операционные, реанимация и пр.), где требуется обеспечение высокой живучести и электробезопасности систем жизнеобеспечения. Научные лаборатории, где используется чувствительное электронное и компьютерное оборудование. Взрывоопасные производства (предприятия нефтехимии, деревообработки, газовое хозяйство, угольные шахты и пр.). Помещения с повышенной влажностью (банно-прачечные комбинаты, бассейны, животноводческие фермы и др.). ГЭС и высоковольтные подстанции, где велика вероятность образования аварийного шагового напряжения высокого потенциала. В этом случае по технологии IT-заземления организуется наложенная обслуживающая технологическая система энергоснабжения.

Ну и конечно, часто задаваемый вопрос относительно возможности использования IT-заземления в квартире, индивидуальном строении (коттедж, дачный дом и пр.), т.е. в бытовых жилищных условиях. Отвечаем сразу – это возможно. И с технической стороны, здесь ключевую роль играет разделительный трансформатор, иногда называемый трансформатором безопасности. В данном устройстве первичная обмотка глухозаземлена и отделена от незаземлённой вторичной заземлённым металлическим экраном и усиленной изоляцией, при этом коэффициент трансформации равен 1, а К.П.Д. достигает 0,98. Все элементы организации IT-заземления в жилищном фонде имеются в продаже (трансформаторы безопасности, модульные системы заземления, заземляющие проводники и пр.) и разрешены к применению. Причём трансформаторы безопасности выпускаются в нескольких исполнениях (контейнерного и боксового типов), что позволяет устанавливать их как внутри, так и снаружи помещений. Кроме того трансформаторные системы разделительного типа снабжены развитой системой дистанционного контроля и диагностики состояния изоляции и заземления.

На этапе проектирования или модернизации объекта необходимо согласование проектно-сметной документации строительного проекта или модернизации системы электрообеспечения действующего жилья с органами энергонадзора. Для индивидуального строительства здесь особых проблем нет. Есть некоторые трудности с квартирным фондом старой застройки, как в части выбора места установки дополнительного оборудования, так и отсутствия заземления (технология TN-C).

Все изменения и модернизации в системе энергоснабжения должны быть отражены в техническом паспорте жилища!

 


Смотрите также:


Смотрите также:

Система заземления tn и ее подвиды, схема заземления tn c s, tt, система зануления tn s

Люди каждый день в быту пользуются различными электрическими приборами, начиная от кофеварки и фена, заканчивая холодильником и стиральной машиной. Они живут в многоэтажных домах, ездят на работу в метро и даже не подозревают, сколько усилий сделано разработчиками этих приборов и устройств, чтобы они могли без страха за свою жизнь пользоваться этими дарами цивилизации. Сейчас любое устройство, здание, сооружение проверяется на электробезопасность. При проектировании любых электроустановок независимо от их назначения, главным условием является их безопасная и нормальная работа, что обеспечивается безупречным проектом и безошибочным устройством заземления. Существуют системы заземления tn, tt и другие. Основным документом, определяющим работу разработчиков систем заземления, являются Правила устройства электроустановок.

Категории

Наша земля является колоссальным поглотителем электроэнергии любого происхождения, и это ее качество используется человеком для обеспечения безопасности при использовании электрических приборов.

Все заземлители делятся на две категории: естественные и искусственные. К первым относятся все металлические изделия, находящиеся в соприкосновении с землей. Это арматура в железобетонных конструкциях, в буронабивных сваях, канализационные, водопроводные трубы и прочие электропроводные предметы.

Но проводимость земли в разных местах сильно различается, зависит от типа почвы, места расположения, поэтому нормировать ее проводимость в местах растекания электрических зарядов от этих предметов не представляется возможным. Кроме этого, использование арматуры, труб, металлических ферм приводит к ускоренной коррозии и ухудшению их прочностных характеристик. В связи с этим, запрещается использовать естественное заземление при эксплуатации электроприборов и оборудования.

Государственными и международными стандартами разрешено применение только искусственного заземления. В этом случае оборудование через специальную шину присоединяется к заземлителю с допустимой нормированной проводимостью.

Виды искусственного заземления

Если рассматривать по функциональности, то существует защитное и рабочее заземления. Первое обеспечивает безопасность людей при использовании электроприборов, а второе – нормальную работу электроустановок. По типу заземления нулевого провода делятся на системы с изолированной (IT) и глухозаземленной (TN) нейтралью. На рисунке показаны все типы заземления.

В системе IT нулевой провод генератора электроэнергии не имеет гальванической связи с заземлением, а токопроводящие части намеренно заземляются. Допускается между заземлителем и нейтралью установка дугообразующего устройства или приборов с большим внутренним сопротивлением.

Система заземления TN самая распространенная. В ней нулевой провод генератора электроэнергии глухо заземлен, а токопроводящие части с помощью специальных шин присоединяются к нему.

Она подразделяется еще на четыре подвида:

  • систему заземления TN-С, в ней рабочий и защитный нулевые провода представляют собой один проводник от источника до потребителя энергии;
  • систему TN-S, в ней рабочий и защитный нулевые провода представляют собой два проводника от источника до потребителя энергии;
  • систему заземления TN C S, в ней рабочий и защитный нулевые проводники представляют собой один проводник, начиная от генератора электроэнергии, затем на каком-то участке разделяются на два;
  • систему ТТ, в ней нулевой провод генератора электроэнергии глухо заземлен, а открытые токопроводящие части потребителя электроэнергии заземлены через собственное заземление, которое никак не связано с нулевым проводом генератора электроэнергии.

Первый символ аббревиатуры сообщает, в каком состоянии относительно земляного слоя находится нулевой провод производителя электроэнергии (генератора, трансформатора).

Т – заземленный нулевой проводник.

I — изолированный нулевой проводник.

Второй символ информирует о состоянии токопроводящих частей относительно заземления.

Т — токопроводящие части заземлены, состояние нулевого провода генератора электроэнергии значения не имеет;

N — токопроводящие части присоединены к глухозаземленному нулевому проводнику источника электропитания.

Символ после N показывают, как соотносятся рабочий и защитный нулевые проводники.

S (separated)— разделены рабочий (N) и защитный (PE) нулевые проводники.
С (combined)— объединены в (PEN) проводе N и PE проводники.

Системы с глухозаземлённым нулевым проводом

Система зануления TN C впервые была применена компанией AEG в начале ХХ века. Классическим ее видом является обычная схема электроснабжения с тремя фазными и одним нулевым проводом. Он одновременно является функциональным (N) и защитным (PE) «нолем», наглухо заземленным. С ним соединяют все корпуса и доступные токопроводящие части устройств. Самая большая проблема у системы возникает при обрыве нулевого провода, на токоведущих частях корпусов устройств появляется линейное напряжение в 1,73 раза больше фазного. При нормальной работе, попадание фазного провода на корпус приведет к короткому замыканию, но, благодаря специальным устройствам, произойдет мгновенное отключение, что оградит людей от удара током. В странах СНГ схема заземления TN C используется в наружном освещении и в зданиях, построенных до девяностых годов ХХ века.

Система TN-S

Самая надежная и безопасная система заземления TN-S была создана перед Второй мировой войной. Главная ее особенность заключается в раздельном использовании рабочего и защитного нулевого проводников, начиная от генератора электроэнергии. При трехфазном электроснабжении используются пять проводов, однофазном — три. Электробезопасность обеспечивается за счет практического дублирования защитного проводника. Независимо от места обрыва N проводника, система оставалась относительно безопасной. Позже, благодаря этому способу заземления были разработаны дифференциальные автоматы.

ГОСТ Р50571 и новая редакция ПУЭ предписывает при электроснабжении новых объектов, при капитальном ремонте зданий использовать систему зануления TN-S. Но ее распространению мешает высокая стоимость и то, что вся российская энергетика работает по четырехпроводной системе электроснабжения.

Система TN-C-S

Компромиссной стала система заземления TN-C-S, которая использовала преимущества TN-S, но по стоимости стала значительно дешевле. Все дело в том, что с трансформатора подача электроэнергии происходит с применением объединенного нуля «PEN», наглухо заземленного. При входе на объект PEN провод разделяется на защитный и рабочий нуль, но расщепление возможно и раньше ввода в сооружение. При обрыве провода PEN на участке генерирующая станция — здание, на корпусах электроустановок, появится опасное напряжение. Поэтому в системе заземления TN C S нормами предусмотрены особые меры защиты проводника PEN.

Система TT

Самый экономичный способ доставки электроэнергии на селе по воздушным линиям. Использование системы TN-S, как наиболее безопасной, обходится дорого, у систем заземления TN-C и TN-C-S сложно обеспечить надежную защиту нулевого проводника PEN. Поэтому часто используется система TT, с заземленным нулевым проводом у источника электропитания. При трехфазном электроснабжении система работает по четырехпроводной схеме с одним нулевым проводником.

Около приемника электроэнергии делается местное заземление, к которому присоединяют токоведущие части и корпуса устройств. В случае обрыва нулевого провода, а вне города это нередкое явление, на корпусе устройства не возникает опасного напряжения благодаря местному заземлению. В городской черте система заземления TT используется при электроснабжении временных сооружений, при этом обязательно должны быть установлены устройства защитного отключения и проведена грозозащита.

Система IT

Это система, в которой имеется полностью изолированный от земли нулевой провод или соединенный с ней через высокоомное сопротивление, а также наличие у потребителя электроэнергии собственного защитного заземления. Все токопроводящие части оборудования при этом надежно заземляются. Система IT применяется в электроустановках зданий с повышенными требованиями безопасности, например, в больницах для медицинского оборудования, в шахтах, карьерах. Мобильные электростанции тоже используют изолированную нейтраль, что позволяет использовать подключенные к ним электроприборы без заземления. Раньше система IT широко использовалась и в энергоснабжении деревянных домов. В Советском Союзе сети напряжения 127/220 В долгое время использовались с изолированным нулевым проводом, это было связано с отсутствием заземления в домах. С началом панельного строительства от нее отказались.

Сами заземляющие устройства прежде выглядели как набор трехметровых стальных стержней вкопанных в землю на расстоянии нескольких метров, вершины которых соединялись стальной полосой. Получившийся огромный контактный элемент проверялся на сопротивление, если превышал нормированную величину, то вкапывались дополнительные стержни, пока не получали необходимый результат. Недостатком его были большие занимаемые площади и недостаточная стойкость к коррозии. Современные заземляющие устройства лишены этих недостатков. Они строятся на основе омедненных стальных стержней, которые могут соединяться между собой при помощи латунных муфт и забиваться на глубину до 50 м. По верху соединяются медной полосой. За счет такой конструкции могут устанавливаться на любых грунтах, не требуют земляных работ и занимают мало площади.

Вот такими заземляющими устройствами и системами заземления обеспечивается электробезопасность людей.

Заземление электроустановок и оборудования — правила и требования

Заземление – соединение корпуса электроустановки с заземляющим контуром, с целью предотвращения поражения током работающих и находящихся в непосредственной близости людей. Является обязательным элементом комплекса мер по обеспечению безопасности. Существуют различные виды электроустановок, и каждый требует особого подхода к организации заземления, поэтому важно уделить внимание технической стороне вопроса. 

Классификация заземляющих устройств

Система заземления электроустановок – комплекс, состоящий из заземляющего контура и проводников, соединяющих его с корпусами оборудования для обеспечения стекания в землю  избыточного тока, появившегося в результате попадания фазы на корпус. Действующая в России  классификация устройств заземления (далее УЗ) подразумевает градацию по следующим признакам:

  • Виду нейтрали. По наличию соединения с заземляющим устройством:
    • заземленная;
    • изолированная.
  • Способу прокладывания от понижающей подстанции до электроустановки.
  • Способ подключения нагрузки к нейтрали.

Организация системы заземления регулируется правилами устройства электроустановок (ПУЭ). Документ регламентирует порядок и признаки классификации заземляющих систем. Для обозначения маркировки используются буквы английского алфавита:

T – заземление;

N – нейтраль;

I – изолированное;

C – общая;

S – раздельная.

Такой вид маркировки позволяет определить используемый способ защиты генератора тока и предпочтительные схемы заземления электроустановок на стороне потребителя.

При монтаже линий электроснабжения общепринятыми для России считаются три системы заземления:

  • TN-C – обозначает, что нулевой рабочий и защитный проводники объединены в общую шину на всем протяжении трассы.
  • TN-S – нулевой рабочий и защитный проводники прокладываются раздельно.
  • TN-C-S – нулевой рабочий и защитный проводники на части трассы объединены, а на остальной прокладываются раздельно.

Реже встречаются следующие системы:

  • TT – нулевой рабочий и защитный проводники заземляются раздельно. Чаще всего этот способ используют в случае неудовлетворительного состояния питающей воздушной ЛЭП или для предотвращения поражения людей через токопроводящие поверхности временных сооружений.
  • IT – в этой схеме нейтраль изолируется от земли или заземляется через специальное оборудование. Такой вариант чаще всего используют, если необходимо обеспечить высокий уровень защиты оборудования. Поскольку при таком варианте подключения риск искрообразования минимален.


Технические требования к организации заземления электроустановок

УЗ используют для защиты людей и оборудования от разрушительного действия электрического тока. Безопасность обеспечивается путем соединения защищаемых корпусов электроустановок с землей. Работы по организации заземляющих сетей регламентируются положениями ГОСТ 12.1.030-81, согласно которым  защитное заземление электроустановки следует выполнять при следующих параметрах:

  • при значениях номинального напряжения 380 B и более переменного тока и более 440 B и более постоянного тока – при любых значениях;
  • при значениях номинального напряжения 42-380 B переменного тока 110-440 B. Для работ связанных с повышенной опасностью.

Правильно организованная система заземления электроустановок способна нейтрализовать избыточный потенциал любой мощности и защитить людей, оборудование и здания от воздействия электрического тока будь то скачки, вызванные включением или отключением силового оборудования или грозовое воздействие.

Принцип работы основан на разнице сопротивлений человеческого тела и УЗ. Избыточный потенциал отводится в направлении меньшего показателя, т. е. в сторону защитного контура.

Выбор естественных заземлителей

Согласно правилам устройства электроустановок, их корпуса должны быть подключены к искусственным или естественным заземлителям. В качестве естественных используют следующие металлические объекты:

  • каркасы подземных металлоконструкций, имеющие непосредственный контакт с грунтом;
  • защитные кожухи кабелей, проложенных под землей;
  • металлические трубы, за исключением газо- и нефтепроводов;
  • железнодорожные рельсы.

Контакт объекта с естественным заземлителем должен осуществляться минимум в двух местах. Преимущества этого метода в простоте, эффективности и сокращении затрат на организацию системы электробезопасности.

Нельзя выбирать в качестве естественных заземлителей следующие объекты:

  • трубопроводы горючих и взрывчатых газов и жидкостей;
  • трубы, покрытые антикоррозийной изоляцией;
  • канализационные трубопроводы;
  • трубы централизованного отопления.

Сопротивление стеканию тока

Заземление работает по следующему принципу: ток, стекающий в землю через место замыкания, проходит вначале на корпус электроустановки и с него через УЗ в грунт. Очевидно, что при организации сетей заземления до 1000 Вольт, важно создать цепочку, обеспечивающую стекание избыточного заряда в землю.

Значения сопротивления заземления для сетей различного назначения:

Назначение сети

Максимальное значение сопротивления, Ом

Частные дома 220, 380 Вольт

30

Промышленное оборудование

4

Источник тока при напряжении 660, 380 и 220 Вольт

2, 4, 8

Частный дом при подключении газопровода

10

Устройства защиты линий связи

2 (реже 4)

Телекоммуникационное оборудование

2 или 4

Чтобы получить показатели сопротивления, установленные нормативами, следует придерживаться типовых процедур:

  • Увеличить площадь соприкосновения деталей заземляющего устройства с грунтом.
  • Обеспечить качественный контакт между элементами устройства и соединительными шинами.
  • Усилить проводимости почвы увлажнением или повышением ее солености.

Для контроля за соответствием сопротивления предписанным нормам следует проверять его уровень не реже одного раза в шесть лет.

Работа УЗ при нарушении защитной изоляции электрооборудования

Нарушение целостности защитной изоляции нередко приводит к замыканию фазы на корпус. Дальнейшее развитие событий зависит от качества системы электробезопасности. Возможны следующие варианты:

  1. Заземление отсутствует, устройство защитного отключения не установлено. Самая неблагоприятная ситуация. При прикосновении к корпусу ощущается сильный удар.
  2. Корпус подключен к системе заземления, УЗО отсутствует. Если ток утечки будет велик, сработает автомат и отключит питающую линию или цепочку. Этот вариант может привести к накоплению избыточного потенциала на корпусе, если сопротивление переходов и номинал предохранителей будут велики. Такая ситуация опасна для людей.
  3. Заземление отсутствует, устройство защитного отключения установлено. Ток утечки вызовет срабатывание УЗО и человек успеет ощутить только слабый удар током.
  4. Корпус подключен к заземлению, УЗО установлено – наиболее надежный вариант, обеспечивающий защиту людей и техники благодаря тому, что защитные устройства дополняют и отчасти дублируют друг друга. При замыкании фазы на корпус, избыточный потенциал стекает через систему заземления. Одновременно устройство защитного отключения реагирует на утечку и отключает подачу тока, исключая возможность поражения током людей. Если ток утечки значительно превышает возможности УЗО, может сработать автомат и продублировать его функцию.

Заземление цехового оборудования

Согласно правилам устройства электроустановок до 1000 Вольт, их классифицируют по виду заземляемых устройств:

  • Для типового станочного оборудования.
  • Для электродвигателей и сварочных аппаратов.
  • Для передвижных установок и эксплуатируемых электроприборов.

Заземление типового станочного оборудования

Для заземления цехового оборудования используют контур системы уравнивания потенциалов (далее СУП).

Система уравнивания потенциалов  – это элемент устройства заземления, представляющий из себя контур из проводящих элементов для подключения корпусов оборудования с целью достижения равенства потенциалов.

 Важно уделить внимание  следующим техническим вопросам: 

  • Определить расположение контура СУП в рабочей зоне.
  • Рассчитать толщину шины, используемой для соединения корпуса станка с УЗ.
  • Определить место наложения стационарного заземления.
  • Выяснить какие устройства используются для защиты опасных частей оборудования.

Контроль этих вопросов – обязанность цехового электрика, владеющего информацией о структуре и расположении элементов системы заземления и порядке подсоединения к ней корпусов станков, в том числе предписанном конструкцией станка расположении точки подключения заземляющей шины.

Заземление электродвигателей

Согласно нормам, заземление электродвигателей также является обязательным, кроме случаев, когда оборудование устанавливается на металлический пьедестал, имеющий контакт с грунтом. В остальных случаях необходимо соединить корпус с системой заземления при помощи медной жилы. Правилами указывается, что контакт с заземлением должно быть прямым у каждого электродвигателя и последовательное подключение нескольких устройств через заземляющую цепочку недопустим, поскольку обрыв линии приводит к потере контакта сразу всех электродвигателей.

Для грамотного подключения заземления необходимо предусмотреть на подводящем силовом кабеле 380 Вольт дополнительную шину, одним концом подключенную клемме заземления в распредкоробке двигателя, а вторым – к корпусу силового шкафа. При этом важно соблюсти последовательность подключения и соединить с системой заземления вначале электрический щиток. Важно также обеспечить соответствие диаметра сечения проводников установленным нормам.


Заземление сварочных аппаратов

Правила устройства электроустановок регламентируют также порядок заземления сварочных аппаратов. Заземление корпусов оборудования в данном случае является обязательным. Кроме корпуса заземляться должна и трансформаторная вторичная обмотка через один из выводов. Другой используется для подключения держателя электродов.

Возле заземляемого вывода на корпусе расположен соответствующий знак и приспособление для фиксации шины, соединяющей его с защитным контуром. Переходное сопротивление защитного контура или устройства не должно быть выше 10 Ом.

Для повышения электропроводимости системы заземления следует увеличить контактную площадь соединений, в том числе площадь соприкосновения с землей. Подключение к ЗУ должно быть индивидуальным у каждого сварочного аппарата и не должно осуществляться через заземляющую цепочку, поскольку в случае обрыва контакт с УЗ будет потерян сразу всеми аппаратами.


Защита передвижных установок

Особое внимание стоит уделить заземлению передвижных установок. Для защиты передвижных установок используют заземлители для передвижных установок  ГОСТ 16556-02016. Поскольку особенности их эксплуатации затрудняют выполнение требований по обеспечению показателей переходного сопротивления, поэтому правилами устройства электроустановок допускается повышение показателя до 25Ом. Это относится только к установкам, снабженным автономным питанием и имеющим изолированную нейтраль.

Этот вид УЗ может применяется для установок с пониженным искрообразованием, не являющихся источниками питания для иного оборудования, а также для передвижных агрегатов, имеющих собственные заземлители, не задействованные в данный момент.

Передвижные установки, оснащенные автономным питанием, требуют регулярного освидетельствования на наличие повреждений защитной оболочки, поскольку имеют изолированную нейтраль и повышенный риск образования трущихся сочленений.

Защита электроприборов

При работе с электроприборами разных типов можно ориентироваться на стандартные правила обеспечения безопасности:

  • Защитить открытые токоведущие части.
  • Нарастить защитную изоляцию.
  • Использовать специальные приспособления для ограничения доступа к корпусам оборудования.
  • Если позволяет конструкция, можно как меру использовать понижение напряжения.

 Во избежание пробоев изоляции и попадания фазы на корпус электроприбора эффективными являются традиционные методы:

  • Наличие системы заземления.
  • Система уравнивания потенциалов.
  • Усиление изоляции токоведущих частей.
  • В некоторых случаях как меру безопасности при работе с электрооборудованием можно использовать ограничение доступа в помещения, представляющие потенциальную опасность за счет повышенной влажности, запыленности и т.п.

Важно учесть, если помимо заземления используются другие методы защиты людей – они не должны быть взаимоисключающими и снижать эффективность друг друга.

Задействовать естественные заземлители для обеспечения защиты возможно только при отсутствии вероятности повреждения подземных конструкций, в случае протекания по ним аварийного тока.

Защита с помощью заземления и зануления

Для обеспечения электробезопасности людей нередко используют комбинированный метод заземления и зануления электрооборудования. Зануление обеспечивается соединением защитных корпусов с нейтралью подводящей силовой линии. Это позволяет преобразовать сетевое напряжение, попавшее на корпус установки, в однофазное короткое замыкание. И заземление и зануление выполняют защитную функцию, но разными методами.

При заземлении для обеспечения снижения избыточного потенциала используется дополнительное устройство. Для работы системы зануления достаточно соединить корпус электроустановки с нейтралью питающей сети.

При работе в потенциально опасных помещениях использование одного из описанных методов является обязательным. Ответственные сотрудники должны четко понимать отличие одного способа защиты от другого и знать каким должен быть контур заземления у каждого вида оборудования.

Контроль состояния защитных устройств

Правила устройства электроустановок предписывают проводить периодическую проверку работоспособности системы заземления. Она позволяет установить соответствие параметров сопротивления стеканию тока заземляющих контуров нормативным. Проверка происходит с использованием специальных измерительных приборов, подключаемых к заземляющим устройствам по определенным схемам.

Правилами также регламентируется периодичность проведения проверки. Она зависит от класса обследования, конструкции заземляющих устройств, типа и мощности используемого оборудования. Визуальный осмотр состояния системы заземления должен проводиться каждые полгода. Проверки, сопровождаемые вскрытием грунта в местах, связанных с повышенным риском – раз в 12 лет или чаще.

Грамотный подход к организации системы заземления электроустановок, четкое понимание структуры и особенностей разных типов УЗ, а также своевременный контроль их состояния, в соответствии с действующими регламентами, обеспечит безопасность сотрудников предприятия, сохранность оборудования и зданий.

Что такое зануление — НТЦ «ОРБИТА»

1. Описание

Сегодня нашу жизнь трудно представить без ежедневной эксплуатации всевозможных электрических приборов. Однако, практическое использование тока небезопасно без защитных систем. Возможны случаи, когда защитные устройства (пробки, автоматы и др.) могут не сработать, в результате чего происходит повреждение внутренней изоляции и возникает повышенное напряжение на металлическом корпусе оборудования. Для защиты человека от возможного поражения электрическим током в процессе эксплуатации электроприборов и бытовой техники, разработаны всевозможные защитные мероприятия, к числу которых относится и зануление. Данная статья написана с целью объяснить читателю, в чём заключается особенность зануления, как способа защиты электросетей, в каких случаях применятся и чем отличается от защитного заземления.

Зануление используют для обеспечения электробезопасности систем с PEN, PE или N проводниками. К ним относят сети с глухозаземленной нейтралью: TN-C, TN-S и TN-C-S. Основное различие в организации зануления для указанных систем состоит в схеме соединения нулевых защитных и рабочих проводников.

Система зануления TN-C

Система зануления TN-C на сегодняшний день относится к устаревшей, так как преобладает в зданиях старого жилого фонда. Для нее характерно наличие совмещенного по всей длине нулевого защитного и нулевого рабочего проводника PEN. Используется для электроснабжения в трехфазных сетях. Запрещена для групповых и распределительных однофазных сетей. Данная система достаточно проста в организации, однако не обеспечивает достаточного уровня электробезопасности, что делает невозможным ее применение при строительстве новых зданий.

Система зануления TN-C-S

Представляет собой улучшенный вариант системы зануления TN-C для обеспечения электробезопасности в однофазных сетях. В точке разветвления трёхфазной линии на однофазные совмещенный PEN-проводник разделяют на PE- и N-проводники, подводя их к однофазным потребителям. Данная система зануления, при относительно небольшом удорожании, отличается более высоким уровнем безопасности.

Система зануления TN-S

Считается наиболее совершенной и безопасной схемой зануления. Принцип действия основан на разделении по всей длине нулевого защитного и нулевого рабочего проводников. К нулевому защитному проводнику PE присоединяют все металлические элементы электроустановки. Во избежание повторного заземления устраивают трансформаторную подстанцию, имеющую основное заземление.

Электробезопасность при занулении

Используя схему защитного зануления важно учитывать, что ток при коротком замыкании должен достигать значения, достаточного для срабатывания электромагнитного расцепителя автоматического выключателя или плавления вставки предохранителя. В противном случае ток замыкания свободно будет протекать по электрической цепи, что приведет к увеличению падения напряжения на каждом элементе электрической цепи и на всех зануленных элементах электроустановки до величины, при которой вероятность поражения током от корпуса прибора многократно возрастет. Получается, что надежность системы зануления определяется по большей части надежностью используемого нулевого защитного проводника, к которому соответственно предъявляют повышенные требования см. пункты 1.7.121 – 1.7.126 ПУЭ-7. Тщательно проложенный нулевой провод должен отличаться окраской в виде желтых полос по зеленому фону. Кроме того, необходимо постоянно осуществлять контроль за исправностью его состояния. К нулевому проводу запрещается монтировать средства защиты электроустановок, которые при срабатывании могут привести к его повреждению. Соединения нулевых проводов между собой и с металлическими элементами электроустановки, доступными для прикосновения пользователям, должны гарантировать надежный контакт и иметь возможность для осмотра см. пункт 1.7.39, 1.7.40 ПУЭ-7. Значение сопротивления в болтовом соединении с частями электроустановки не должно превышать 0,1 Ом. Контроль за сопротивлением петли “фаза-нуль» осуществляют на этапе приемо-сдаточных работ, при капитальном ремонте и реконструкции сети, а так же в установленные в нормативно-технической документации сроки. Измерения в отключенной электроустановке проводят с помощью вольтметра-амперметра. Кроме того, постоянному контролю подлежит значение сопротивления заземления нейтрали и повторных заземлителей, зависимость времени действия автоматических устройств защиты от тока короткого замыкания.

Для уменьшения удара током, в случае обрыва нулевого провода, рекомендуют выполнять повторные заземления сопротивлением не более 30 Ом через каждые 200 м линии и опор, для чего преимущественно используют естественные заземлители.

2. Нормирование зануления

Технические требования к организации систем защитного зануления определены следующими документами:

  • Правила устройства электроустановок (ПУЭ), глава 1.7,
  • ГОСТ Р 50571.5.54-2013 (пункт 543),
  • ГОСТ 12.1.030-81 (пункт 7).

Механизм зануления основан на автоматическом отключении поврежденного участка сети, время которого не должно превышать значений согласно пункту 1.7.79 ПУЭ-7.

Наибольшее допустимое время защитного автоматического отключения для системы TN

Номинальное фазное напряжение Uo, В Время отключения, с
127 0,8
220 0,4
380 0,2
более 380 0,1

Нулевой рабочий и защитный проводники должны обладать сопротивлением, достаточным для срабатывания защиты. Активные и индуктивные сопротивления проводников образуют полное сопротивление петли «фаза-ноль». Активные сопротивления проводников зависят от их длины, удельного сопротивления материала и сечения. Индуктивные сопротивления различают для проводников из меди и стали. В стальном проводе они находятся в обратной зависимости от плотности тока и отношения периметра к площади сечения проводника. Индуктивные сопротивления стальных проводников выше, чем медных. В пункте 1.7.126 ПУЭ-7 установлены наименьшие площади поперечного сечения защитных проводников для случаев, когда они изготовлены из того же материала, что и фазные проводники. Сечения защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным.

Наименьшие сечения защитных проводников

Сечение фазных проводников, мм2 Наименьшее сечение защитных проводников, мм2
S ≤ 16 S
16 < S ≤ 35 16
S > 35 S/2

Двухпроводная линия, состоящая из рабочего и защитного проводников, образует один большой виток, сопротивление взаимоиндукции которого (рекомендуемое значение для расчётов — 0,6 Ом/км) зависит от длины линии, диаметра проводов и расстояния между ними. Сопротивление заземления нейтрали источника питания не должно превышать 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока см. пункт 1.7.101 ПУЭ-7. Увеличение тока короткого замыкания достигают путем понижения сопротивления трансформатора и петли, для чего используют схему треугольник-звезда. Обмотки мощных трансформаторов и так имеют не большое сопротивление. Меньшее сопротивление линий зануления достигают выполняя их короткими и простыми, увеличивая сечение проводников, заменяя стальные проводники на изготовленные из цветных металлов с малым индуктивным сопротивлением. Наибольшее сопротивление нулевого защитного провода не должно превышать удвоенного сопротивления фазного провода. Сокращая расстояние между ними, снижают внешнее индуктивное сопротивление. Уменьшение сопротивления повторных заземлителей и приближение их к узлам нагрузки, способствует понижению силы тока на зануленных частях оборудования. Соединение с нулевым проводником всех заземленных металлические конструкций здания повышает потенциал поверхности пола, на котором стоит человек, и тем самым значительно снижает напряжение его прикосновения до величины, примерно равной от 0,1 до 0,01 Uз.

3. Применение зануления

Зануление выполняют на промышленных объектах, часто с расположенным в здании источником питания (генератором или трансформатором), для обеспечения безопасности эксплуатации электроустановок различного назначения и повышения помехоустойчивости при их работе. Согласно требованиям пункта 1.7.101 ПЭУ-7 зануление электроустановок следует выполнять: — при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока — во всех электроустановках; — при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока — только в помещениях с повышенной опасностью, особо опасных и в наружных установках. Все электрооборудование промышленных объектов выводят на общий контур заземления и соединяют между собой металлической заземляющей шиной. Полный перечень частей, подлежащих занулению, представлен в главе 1.7 Правил устройства электроустановок (ПУЭ-7). Там же приведен список электрооборудования, преднамеренное зануление которого не требуется. Для электрозащиты объектов жилого фонда зануления практически не применяют. В новостройках заземление организованно централизованно. Современные электроприборы имеют вилку с тремя контактами. Один из контактов подключен к корпусу. Заземление для отдельно взятой квартиры состоит в присоединении к заземлителям корпусов и частей бытовых приборов. Потребность в занулении в таком случае отпадает. Дома старого жилого фонда, как правило, подключенные по системе TNC, могут и вовсе не иметь заземления. Модернизацией электросетей подобных домов должна заниматься специализированная электротехническая компания. Однако, зачастую сами жильцы таких домов прибегают к обустройству запрещенного в данном случае зануления, что является совсем не безопасным способом электрозащиты для жилого сектора. Требования к организации системы защитного зануления, как уже говорилось, определены в нормативных документах. Однако в процессе реализации данного способа защиты электросетей, нередко допускаются ошибки, препятствующие его прямому назначению. Ошибочно мнение о том, что лучше выполнять заземление на отдельный от нулевого проводника контур, ввиду отсутствия сопротивление длинного PEN-проводника от электроприбора до заземлителя подстанции. Однако на деле, сопротивление заземления оказывается гораздо большим, чем у длинного провода. При попадании фазы на заземлённый указанным способом корпус установки, ток замыкания может быть недостаточным для срабатывания автоматических средств защиты электросети. В данном случае напряжение на корпусе достигает опасной для пользователя величины. Даже при применении автоматического выключателя небольшого номинала, не удается обеспечить требуемое ПУЭ время автоматического отключения повреждённой линии от сети.

4. Отличие зануления от заземления

По своему назначению заземление и зануление во многом похожи – обеспечивают защиту пользователя электроустановки от поражения электрическим током. Однако способы и принцип организации такой защиты различны. Обеспечение электробезопасности сетей с использованием системы зануления подробно рассмотрено в предыдущих разделах статьи. Действие защитного заземления основано на принудительном соединении электроустановок с землей с целью снижения напряжения прикосновения до безопасной величины. Избыточный ток, поступающий на корпус электроустановки, отводится напрямую в землю (по заземляющей части). В качестве заземлителя устанавливают заземляющий контур треугольной конфигурации, сопротивление которого должно быть меньше, чем на остальных участках цепи. Отличие зануления от заземления состоит в следующем:

  • в способе обеспечения защиты электрических сетей: заземление -снижает напряжение прикосновения, зануление — отключает поврежденную электроустановку от сети, что практически исключает удар током и, с этой точки зрения, является более эффективным средством защиты для использования на промышленных предприятиях. Однако, если говорить о надежности защиты в процессе эксплуатации, то зануление уступает заземлению по причине большей вероятности повреждения целостности нулевого провода и возможного изменения сопротивления петли «фаза-нуль».
  • системами применения: заземление используют исключительно для защиты сетей с изолированной нейтралью (системы TT и IT), зануление — в сетях с глухо заземленной нейтралью TN-C, TN-S и TN-C-S, где присутствует PEN, PE или N проводники.
  • по типу обустройства: с точки зрения простоты и доступности обустройства, зануление представляет собой более сложный и трудоемкий способ защиты, требующий технических знаний и навыков для правильного определения способа и средней точки зануления. В случае защитного заземления соединяют отдельные детали токоприемника с землей, для чего достаточно применение инструкций к электроприборам.
5. Заключение

Роль зануления при работе с электроустановками на промышленных предприятиях трудно переоценить. Отключая поврежденную установку от сети в случае пробоя изоляции, зануление выступает надежным способом защиты человека от возможного поражения электрическим током. Для эффективного обеспечения электробезопасности, необходимо строгое соответствие конструкции элементов системы зануления рассмотренным нормативам, а так же тщательный и постоянный контроль за их состоянием. Использование зануления или заземления зависит от необходимого способа обеспечения защиты различных систем электрических сетей.

Принципы работы систем заземления для зданий тn-c и tn-c-s

Для работы электроприборов достаточно присоединить к ним ноль и фазу. Однако такое подключение может привести к аварии и опасно для людей, проживающих в доме. Для предотвращения подобных ситуаций необходимо выбрать, устанавливать и подключить системы заземления и зануления.

Питание бытовых потребителей осуществляется от понижающего трёхфазного трансформатора, имеющего напряжение на выводах вторичной обмотки 0,4кВ или 380В. Катушки этого аппарата соединены звездой, средняя точка которой подключается к контуру заземления, находящемуся в земле возле трансформаторной будки. Такой аппарат называется «трансформатор с глухозаземлённой нейтралью».

В квартиру или частный дом от трансформатора приходят как минимум два провода — ноль и фаза, соединённых с фазным выводом и средней точкой звезды соответственно. Такое подключение обеспечивает напряжение в розетках 220В.

Кроме нулевого и фазного проводов в квартирах прокладывается заземляющий проводник, защищающий людей от поражения электрическим током при нарушении изоляции между корпусом электроприбора и частями электросхемы, находящимися под напряжением. Этот провод соединяется с системой заземления.

Такая система состоит из двух основных элементов — трансформатор и электроустановка. В простейшем случае это однофазная нагрузка, однополюсный автомат и одна фаза трёхфазного трансформатора.

Справка! Само понятие «система» происходит от др. греч. σύστημα «целое, состоящее из отдельных частей» — несколько элементов, работающих вместе и объединённых в одну конструкцию.

В этой статье рассказывается о классификации систем заземления, различии между чаще всего применяющимися видами — ТТ, TN-C и TN-C-S и про опасность применения зануления вместо заземления, а также о системах заземления TN-S и IT.

Классификация систем заземления по ПУЭ

Электроустановки (в частности трансформаторы) напряжением до 1000В по наличию систем заземления делятся на две категории, каждая из которых имеет свои сферы применения:

  1. С глухозаземлённой нейтралью. Самый распространённый тип электротрансформаторов. Вторичные обмотки соединены в «звезду», средняя точка которых имеет постоянное подключение к контуру заземления. Жилые дома питаются только от трансформаторов с таким способом заземления нейтрали.
  2. С изолированной нейтралью. Вторичные обмотки трансформаторов не заземляются. Являются разделительными и используются только в промышленности в специальных установках, таких, как нагревательные печи и некоторые другие, в которых важно отсутствие электрического соединения токоведущих частей и контура заземления.

Глухозаземлённая нейтраль в электротрансформаторах обозначается «TN». Самое распространённое защитное применение такой нейтрали — соединение с ней токопроводящих корпусов электроприборов отдельными проводами, однако они могут соединяться и другими способами.

При проектировании систем электроснабжения проектная организация выбирает тип заземления согласно полученному техническому заданию и описанию систем заземления. Этот выбор определяется ПУЭ и другими нормативными документами и от него зависит безопасность людей и приёмка здания в эксплуатацию.

Важно! Неправильный выбор вида системы заземления или некачественный монтаж приведут к требованию контролирующей организации исправить допущенные ошибки.

Виды систем заземления

Основным способом защиты от поражения электрическим током является применение одной из систем заземления. В главе 1.7 ПУЭ перечисляются пять типов таких устройств:

  • TN-C;
  • TN-C-S;
  • TN-S;
  • TT;
  • IT.

Любая из этих систем надёжно защищает людей в условиях городской квартиры или частного дома, но имеет свои конструктивные и защитные отличия.

Применение конкретного вида защиты в особых условиях регламентируется ПУЭ и связано с особенностями помещений и электроустановок.

Информация! Установка заземления обязательна во всех новых зданиях и желательна при ремонте старых сооружений.

Выбор системы заземления производится на стадии проектирования здания и электропроводки до начала монтажных работ.

Система TN-C

Самый старый вид системы заземления — это система TN-C. В ней отсутствует отдельный провод для заземления и оно (заземление) осуществляется общим проводом PEN. Начиная от подстанции (трансформатора) PEN провод совмещает в себе нулевой защитный и нулевой рабочий проводники (PEN = PE + N). В старых жилых домах применяется именно такое заземление.

По системе TN-C заземляются только вводные щитки в подъездах и столбы уличного освещения. В квартирах таких домов заземление в розетках отсутствует, а электропроводка выполнена двухпроводной – фаза и ноль.

Такое защитное заземление морально устарело и не обеспечивает надёжной защиты от поражения электрическим током. При необходимости заземлить электроприборы, а также во время реконструкции электропроводки заземление тип TN-C заменяется на TN-C-S.

Система TN-C-S

Защитное заземление этого типа устроено аналогично системе TN-C. Питающий трансформатор имеет глухозаземлённую нейтраль, а заземляющие провода соединяются с ней нулевым проводом PEN, который на входе в дом разделяется на нулевой проводник — N и заземляющий — PE.

Такое разделение производится только на вводе кабеля в многоквартирный дом, как правило в ВРУ (вводном распределительном устройстве). В вводном щитке эти кабеля присоединяются к общей шине или клемме. Допускается применение такой системы в частных домах, питание которых осуществляется воздушными линиями при подключении к трёхфазной сети.

Согласно ПУЭ пункт 1.7.132 разделение нулевого и заземляющего проводов в однофазной сети 220В не выполняется. При необходимости выполнить такое разделение оно производится там, где это разрешено правилами, а к дому прокладывается дополнительный провод.

То есть, если у Вас в квартире нет заземления, и вы хотите из системы TN-C сделать TN-C-S, такой способ разделения PEN проводника на просто ноли и заземление не прокатит в квартирном щитке.

Важно! Согласно ПУЭ 1.7.135 после разделения в вводном щитке провода PE и N НЕ ДОЛЖНЫ соединяться между собой.

Система TN-S

Самые дорогостоящие в реализации, но самые удобные и надёжные системы заземления — это системы TN-S, которые монтируются вместе с трансформаторами с глухозаземлённой нейтралью.

Для системы TN-S заземляющий и нулевой провода соединяются в трансформаторной подстанции. На всем протяжении больше эти проводники не связаны между собой.

К потребителю, будь то квартира или дом, приходит два независимых друг от друга проводника нулевой рабочий N и нулевой защитный PE.

Для бОльшей надёжности заземляющий провод РЕ может соединяться с контуром заземления на вводе в здание.

Это самый простой в эксплуатации тип защиты. При его монтаже отсутствуют высокие требования к контуру заземления здания.

Недостаток этой системы в необходимости вместо четырёх проводов (L1,L2,L3,РЕN) использовать пять, где пятым проводом является заземляющий PE, однако это перекрывается повышенной безопасностью эксплуатации. Поэтому новые воздушные и кабельные линии электропередач прокладываются пятижильными кабелями и проектируются по системе TN-S.

Система TT

Это такая система защитного заземления, которая выполняется при невозможности смонтировать заземление другого типа. В этом случае нейтраль трансформатора не имеет связи с заземляющими проводами электропроводки, и они подключаются к собственному контуру заземления дома.

То есть в системе TT нулевой провод сети никак не связан с заземляющим контуром потребителя.

Случаи применения системы ТТ указаны в ПУЭ п1.7.59.

Важно! Ток, возникающий при замыкании токоведущих частей с заземлённым корпусом может быть недостаточным для срабатывания автоматического выключателя. Поэтому, согласно ПУЭ п1.7.59, применять систему ТТ без УЗО или дифференциального автомата запрещается.

Система IT

Применяется с трансформаторами с изолированной нейтралью. Обычно она соединяется с заземлением через разрядник, обладающий высоким сопротивлением при низком напряжении и низким при повышении напряжения выше допустимого предела. Это защищает потребителей от попадания первичного напряжения во вторичную обмотку.

В этой питающей сети отсутствует нулевой провод N, заземляющий РЕ и однофазное напряжение как таковое. Потребители подключаются на линейное напряжение 380 Вольт.

Данная система используется только с двух- и трёхфазными установками. Металлический корпус электрооборудования и другие токопроводящие элементы соединяются с контуром заземления здания.

Токи короткого замыкания на землю в такой системе незначительные, поэтому использование УЗО или дифференциальных автоматов является обязательным.

Система уравнивания потенциалов

В особоопасных сырых помещениях, таких, как бассейны или сауны, кроме непосредственного заземления корпусов электроприборов, используется система уравнивания потенциалов.

Она заключается в соединении между собой всех металлических частей в помещении — стальных дверей, нержавеющих раковин, водопроводных и канализационных труб и других элементов. Все эти соединённые между собой части подключаются к применяемой системе заземления.

В чём опасность применения зануления вместо заземления

Некоторые электромонтёры предлагают использовать зануление вместо заземления. Это нельзя делать по нескольким причинам:

  • Жилые дома подключаются к трёхфазной сети и по нулевому проводу течёт уравнительный ток. Так как этот провод имеет сопротивление, то между занулённым корпусом электроприбора и заземлёнными конструкциями, например водопроводным краном, имеется разность потенциалов. В обычных условиях это неопасно, но при прикосновении к воде или мокрой земле можно получить электрическим током.
  • При обрыве нулевого провода и неравномерной нагрузке между нулём и фазой может быть не 220В, а больше, вплоть до 380В. В этом случае между занулённым корпусом электрооборудования и заземлёнными конструкциями появится опасное для жизни напряжение 220В.
  • Нулевой и фазный провода подключаются к квартире через двухполюсный автоматический выключатель. При его срабатывании нулевой провод N, используемый в качестве заземляющего проводника, отключается от контура заземления. Это недопустимо по требованиям ПУЭ п1.7.145

К отдельно стоящему зданию может быть подведено не однофазное напряжение 220В, а трёхфазное с тремя фазными и одним нулевым проводами. В этом случае есть возможность переделки защитного зануления в систему заземления TN-C-S.

Вывод

Системы TT и IT также являются системами с заземлением. В них заземляющий провод РЕ не имеет электрической связи с нейтралью трансформатора.

Системы заземления TN всех видов считаются системами с занулением. В них заземляющий провод РЕ связан каким-либо способом с нейтралью питающего трансформатора и проводником N:

  1. В системе TN-C-S заземляющие жёлтые или жёлто-зелёные провода подключены к проводнику PEN. Он проложен от нейтрали трансформатора к вводному щитку в здании.
  2. В системе TN-C заземляющий проводник РЕ совмещён с нейтральным проводом N, поэтому к нему корпуса электроприборов не подключаются. Для их заземления защитное заземление типа TN-C необходимо переделать в TN-C-S.
  3. Система TN-S является самой надёжной. В ней провода РЕ и N разделены на всём протяжении от электроприбора до нейтрали питающего трансформатора.

Нет системы заземления, идеально подходящей для всех ситуаций. Каждая из них обладает своими достоинствами и недостатками, но у всех одна задача — обеспечение максимальной безопасности людей. Для выбора типа защиты необходимо знать, какие бывают системы заземления и зануления.

Принципы работы систем заземления для зданий ТN-C и TN-C-S

Однако большая масса зданий продолжает эксплуатироваться по старой схеме TN-C. На переоборудование ее по системе TN-C-S требуются огромные материальные затраты, выполнить все это в масштабах государства не просто. Поэтому такая работа проводится постепенно, но планомерно.

В статье «Классификация систем заземления электроустановок» дается определение электрических схем для электроснабжения жилых домов и производственных объектов, приводится описание систем TN-C и TN-C-S. Рассмотрим их немного подробнее.

  • Старая схема
  • Принципиальная схема электроснабжения здания по системе TN-C

На картинке показано, что заземление PEN проводника (цвет желто-зеленый) выполнено контуром, расположенным на трансформаторной подстанции, и только. Больше нигде никаких подключений к земле не применяется.

В каждую квартиру поступают только ноль, который фактически является тем же самым PEN проводником и фаза. То есть в квартиру приходят всего два провода из распределительного щитка, расположенного на этаже для нескольких квартир.

Между распределительными щитами этажа и дома проложены четырехжильные силовые кабели, передающие три фазы по жилам и один общий ноль. Такой же силовой кабель, только большей мощности, соединяет электрооборудование трансформаторной подстанции с распределительным щитом здания.

  1. Модифицированная схема
  2. Принципиальная схема электроснабжения здания по системе TN-C-S

В ней без изменений остался кабель, проложенный от трансформаторной подстанции до распределительного щита на вводе в здание. Все остальное подверглось доработкам. PEN проводник, подключенный к своей шине, разделился на две магистрали: РЕ (цвет желто-зеленый) и N (цвет синий). Этот способ на практике электрики именуют «расщеплением».

Он показан на приведенной ниже картинке.

Принципиальная схема расщепления PEN проводника

На ней видно, что кабельный конец PEN проводника от ТП подключен к РЕ шине, которая повторно заземлена. От нее отходят все РЕ проводники в электросхему здания.

Шина общего нуля N установлена на изоляторах внутри распределительного щита здания и подключена к шине РЕ двумя перемычками, расположенными по краям. N проводники подключаются к своей шине, а затем уходят от нее дальше в схему.

Правильное выполнение такой схемы исключает потерю контура заземления РЕ проводником при повреждениях нуля или любых манипуляциях с ним как внутри здания, так и на трансформаторной подстанции.

Характерные ошибки и советы домашнему мастеру

Благое намерение владельцев квартир, оборудованных электропроводкой, работающей по схеме TN-C, выполнить рекомендации о заземлении электроприборов довольно часто сопровождается серьезными нарушениями правил, способными причинить большой вред окружающим людям. Рассмотрим типичные ошибки самостоятельного подключения приборов.

Сразу договоримся, что вопросы использования защитных устройств и автоматики здесь рассматривать не будем. Это тема отдельной статьи. Она изложена здесь.

Подключение корпусов электроприборов к нулю

Этот способ называют занулением. Он широко использовался как защитный прием при выполнении кратковременных работ со старым электроинструментом, оборудованным металлическим корпусом со слабой изоляцией. Современная промышленность такие устройства не выпускает.

Принцип работы: в случае нарушения изоляции и появления потенциала фазы на корпусе возникает ток короткого замыкания, который быстро отключается защитными автоматами.

Опасности зануления:

  • отсутствие точно налаженных защитных устройств в случае повреждения прибора не исключает появление опасного потенциала у человека, контактирующего с корпусом;
  • иногда «электрики» совершают ошибки, путая фазу с нулем. В этом случае фаза будет преднамеренно подведена на корпус;
  • в случаях повреждения нуля схема не работает.

Подключение корпусов электроприборов к металлическим строительным конструкциям

Водопроводные сети, магистрали водяного отопления, корпуса шахт лифтового оборудования и некоторые другие элементы стационарно расположены в земле. Народные «умельцы» используют их для заземления.

Риски метода:

  • электрический контакт с землей не контролируется;
  • в случае ремонта трубопроводов цепь разрывается;
  • вмонтированные участками пластиковые трубы работают изоляторами;
  • при появлении потенциала на корпусе прибора может пострадать случайный человек в любой квартире, дотронувшийся до батареи отопления, водопроводного крана и оказавшийся на пути прохождения тока.

Самовольное расщепление PEN проводника на этажном щитке

На первый взгляд этот метод кажется наиболее оптимальным решением. Электропроводка квартиры переделывается по трехжильной схеме для подключения ноля и РЕ проводника в строгом соответствии с правилами. Остается только подключиться к контуру заземления и «домашний электрик» самостоятельно делает расщепление на этажном распределительном щитке.

Это опасно тем, что:

  • грубо нарушается утвержденный и выполненный проект электропроводки всего здания;
  • создаются предпосылки электротравм, угрозы повреждения оборудования;
  • при возникновении любых неисправностей в электропроводке здания представители коммунальных служб могут «назначить» владельца квартиры виновным, что повлечет скандалы, наложение штрафов, проверки различными комиссиями и другие неприятности;
  • электрики ЖКХ, занимающиеся обслуживанием здания, при работах не будут учитывать особенности проведенных доработок. Это может быть причиной аварийных ситуаций.

Рекомендации

Осуществить процесс перевода электрооборудования на безопасную схему электропитания для владельцев коттеджей и частных домов не так уж и сложно. Для этого достаточно создать отдельный контур заземления, желательно из современных модульных конструкций и подключиться к нему по системе ТТ.

Жителям многоэтажных домов сложнее правильно решить этот вопрос. Расщепление PEN проводника на две составляющие магистрали — это задача энергоснабжающей организации. Она будет выполнена, но в различные сроки.

К этому моменту во время проведения ремонтов помещений необходимо внутри квартиры заменить старую проводку новой трехжильной и подготовиться к переводу схемы на систему TN-C-S. Выведенный из квартиры PE проводник оставить в готовности к подключению электрикам ЖКХ.

по этой теме: Как определить тип системы заземления в доме

Что представляет собой система заземления TN-C-S

По сей день в эпоху стремительного роста научно-технического прогресса и внедрения в нашу жизнь суперпродвинутых инноваций основная масса населения пользуется устаревшей системой заземления электрических сетей TN-C.

Времена, когда среднестатистический российский пользователь с недоумением рассматривал трехштекерную вилку зарубежных бытовых электроприборов, ставших в одночасье доступными для всеобщего приобретения, конечно, уже прошли.

Но, к сожалению, до сей поры полной ясности в том, для чего, так называемая, евровилка укомплектована третьим штекером, у большинства еще нет.

Для того чтобы окончательно решить этот вопрос, необходимо разобраться с существующими вариантами защиты электрических сетей, а также подробно рассмотреть, что такое система заземления TN-C-S. Описание упомянутого варианта защиты, а также его плюсы и минусы мы предоставили ниже.

Существующие системы заземления

В Российской Федерации в электросетях обслуживающих жилой фонд применяются следующие типы систем заземления:

TN-C. Устаревшая, но самая распространенная система. Львиная доля частного сектора и устаревшего жилого фонда многоквартирных домов пользуется данным типом электроснабжения.

При системе TN-C заземляющий контур обустроен на трансформаторной понижающей подстанции, обслуживающую дом или улицу, нулевая точка трансформатора наглухо заземлена. Проводник, подключенный к нулевой точке PEN, подается в жилье и выполняет функции нулевого рабочего N и защитного провода PE.

В связи с тем, что TN-C наиболее проста и экономична, она в полной мере не отвечает требованиям электробезопасности.

TN-S. В этом случае нулевой PN и защитный PE проводники выполнены раздельно. Данный тип защиты в полной мере обеспечивает мероприятия безопасности от поражения электрическим током, поэтому при организации электроснабжения новых микрорайонов используют именно систему TN-S.

Системы TT и IT используются в специальных условиях, о них мы поговорим в отдельных статьях. Сейчас же более подробно рассмотрим плюсы и минусы, а так же что собой представляет система TN-C-S.

Описание схемы электроснабжения TN-C-S

Перевод энергоснабжения жилого фонда, с системы TN-C на TN-S в настоящее время не реален, потому что потребует колоссальных затрат на модернизацию. Для обеспечения соответствующих норм электробезопасности оптимальным вариантом будет использование системы TN-C-S, которая является комбинацией TN-C и TN-S.

Смысл ее заключается в том, что от подстанции до вводного распределительного устройства (ВРУ) дома или коттеджа электроснабжение осуществляется с использованием одного проводника PEN. В водных распределительных устройствах (ВРУ) подъездов или частных домов, оборудованных повторным заземлением, происходит разделение PEN на нулевой PN и защитный проводник PE.

Согласно схеме предоставленной ниже, при заземлении типа TN-C-S к клеммам потребителей трехфазной нагрузки подводится 4 проводника, 3 из которых являются фазными проводами А, В, С, а четвертый – нейтральным проводом PN.

Защитный провод PE выполнен в виде перемычки между металлическим корпусом электроприбора и заземляющим контуром. Подключение потребителя к однофазной сети осуществляется одним фазным проводом и нейтралью PN с последующим заземлением корпуса выполненного из металла.

Схема разделения проводника PEN в ВРУ:

Очень важно соблюсти необходимую величину сечения заземляющего проводника между заземляющим контуром и шиной заземляющего контура дома. Согласно п. 1.7.117 (см. Главу 1.

7), заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках напряжением до 1 кВ, должен иметь сечение не менее: медный — 10 мм2, алюминиевый — 16 мм2, стальной — 75 мм2.

Как сделать заземляющий контур

В многоквартирных домах мероприятиями по переходу на систему заземления TN-C-S, как правило, занимаются специализированные предприятия. Они производят соответствующие переключения в ВРУ дома или подъезда и обустраивают дополнительный заземляющий контур.

Практика показывают, что бывают случаи, когда безграмотные в вопросах электротехники, но не в меру активные жильцы, пытаются совершить модернизацию схемы электроснабжения для своей отдельно взятой квартиры самостоятельно. Для этой цели в качестве заземляющего контура они пытаются использовать стояки водопровода или теплоснабжения, что категорически запрещено, т.к.

данный способ неизбежно приводит к электротравматизму и оказывает пагубное воздействие на срок службы трубопроводов и приборов отопления.

Для условий частного дома изготовить дополнительное заземление не сложно, самой популярной и надежной является замкнутая схема в виде треугольника:

Электрод, погруженный в землю – уголковая сталь, перемычка – стальная полоса, заземляющий проводник – стальной прут. Более подробно о том, как сделать заземление в доме, мы рассказывали в отдельной статье!

Преимущества и недостатки TN-C-S

Заземление типа TN-C-S, как и другие системы имеет свои плюсы и минусы. К значительным ее преимуществом можно отнести простоту и экономичность, способность обеспечить должный уровень электробезопасности.

Серьезным недостатком TN-C-S является то, что при обрыве проводника PEN на участке до его разделения проводник PE, а также все заземленные металлические корпуса электроприборов будут находиться под напряжением.

Напоследок рекомендуем просмотреть полезные видео по теме:

Вот мы и предоставили описание системы заземления TN-C-S. Надеемся, благодаря схемам и видео вам стало понятно, что собой представляет данный вариант электроснабжения и как его организовать своими руками.

Будет интересно прочитать:

Электрик Про

Система заземления определяет конфигурацию использующейся электросети. В буквенном обозначении указывается тип использования проводов (земля, ноль), их совмещение либо отдельное прохождение, вариант заземления потребителя, нейтрали.

Тип заземления электроустановки (открытых ее частей) указывает вторая буква международной классификации. Характер заземления самого источника обозначает первая буква аббревиатуры. Две системы IT, TT не имеют подсистем, третья TN делится на три подкатегории – C-S, S, C.

Латинскими символами в этих системах обозначены:

Первая буква:

  • T – Глухозаземленная нейтраль
  • I — Изолированная нейтраль
  • Вторая буква:

  • T – Непосредственное присоединение открытых проводящих частей к земле (защитное заземление)
  • N — Непосредственное присоединение открытых проводящих частей к глухозаземленной нейтрали источника питания (защитное зануление)
  • Последующие буквы:

  • S – Нулевой рабочий и защитный проводник работают раздельно на всем протяжении системы
  • C – Нулевой рабочий и защитный проводники объединены на всем протяжении системы
  • C – S – Нулевой рабочий и защитный проводники объединены на части протяжении системы
  • Согласно ГОСТ, нулевые проводники обозначаются маркировками:

  • совмещенные защитный, рабочий нулевой проводники – PEN
  • нулевой защитный проводник – PE
  • нулевой рабочий проводники – N
  • Принцип работы заземления

    При нормальной работе системы электроустановки ее отдельные элементы не должны находиться под напряжением для безопасности пользователей. В жилом здании такими частями установок являются:

  • корпуса бытовых приборов (металлические)
  • электрощиты, силовые шкафы
  • корпуса электрооборудования
  • Для обеспечения безопасности их соединяют с контуром заземления, возникший потенциал не причиняет вреда человеку, уходит в землю, обладающую значительной массой. Незначительное воздействие электрического тока при этом пользователь почувствует, однако, оно будет безопасно для организма.

    Типовые квартиры, частные коттеджи, построенные недавно, имеют заземление во всех розетках. В старом жилом фонде эти системы безопасности в электропроводке отсутствуют. Современные вилки бытовой аппаратуры, электроприборов так же имеют три контакта, поэтому, целесообразен перевод старых домов (там где это технически возможно) c системы питания TN-C на систему питания TN-C-S.

    Дома подключаются к промышленным источникам тока (трансформаторные подстанции), имеющим заземлители в обязательном порядке. Современные нормы СНиП так же обязывают застройщика обеспечить заземлением ВРУ (распределительные устройства ввода).

    На практике этими устройствами являются распределительные щиты, от которых необходимо обеспечить качественное соединение с вилками бытовых приборов.

    Причем, использовать для этих целей трубопроводы инженерных систем в большинстве случаев не удастся в силу следующих причин:

  • по трубам транспортируются воспламеняющиеся жидкости
  • современная разводка выполняется полимерными материалами, не проводящими электричество
    • Согласно европейским стандартам, к домам могут подходить три провода однофазной сети:
  • фазный проводник L
  • рабочий ноль N
  • защитный нулевой проводник РЕ
  • В трехфазной сети вместо одного проводника L присутствует три фазы L3, L2, L1. Это простейшая TN-S схема, обеспечивающая надежное заземление, в каждую квартиру приходит трехжильный провод с желто-зеленым проводником, подключенным в этажном щитке к РЕ проводу.

    В схеме TN-C-S разводка по квартирам осуществляется аналогичным образом, однако, при вводе в дом ноль дополнительно заземляется.

    TN система

    При «глухом» заземлении нейтрали источника с одновременным присоединением его открытых элементов к ней же защитными нулевыми проводами система именуется TN. В этом случае нейтраль присоединяется к заземляющему контуру возле подстанции, а, не к дугогосящему реактору.

    Подсистема TN-C

    Подсистема TN-C использует объединенные в общий провод нулевые проводники (защитный + рабочий), что обеспечивает простую схему, экономию материалов проводки.

    Недостатками являются:

  • отсутствие PE проводника
  • розетки жилого дома остаются без защитного заземления
  • В этом варианте вместо заземления, обеспечивающего безопасность касания к корпусу прибора под напряжением, используется защита обнуления – срабатывание автомата при резком увеличении тока в цепи (КЗ). Рабочий нулевой проводник в этой схеме обозначается PEN, присутствует в схеме TN-C. Слабым местом схемы является участок от квартиры до ввода в дом – нарушение целостности цепи (отгорание провода, подключение автомата, предохранителя в разрыв) гарантирует фазу на корпусе, несчастный случай при случайном контакте.

    Система заземления этого типа вынуждает дополнительно использовать схемы зануления. При КЗ (случайное попадаете фазы на корпус электроприбора) срабатывает автомат, происходит отключение энергии. Технология энергоснабжения присутствует в большинстве жилищ вторичного фонда, постепенно заменяется более совершенными схемами. Уравнивание потенциалов в этом случае запрещено в санузлах.

    Подсистема TN-S

    В подсистеме TN-S улучшена безопасность зданий, оборудования, пользователей за счет разделения защитного, рабочего проводников по всей длине. Однако, это приводит к увеличению бюджета строительства, так как, необходима прокладка трехжильного либо пятижильного кабеля от ТП для однофазных, трехфазных сетей, соответственно.

    Подсистема TN-C-S

    Подсистема TN-C-S является гибридной, в ней нулевые проводники (защитный + рабочий) объединены на расстоянии от подстанции до ввода в здание, расщепляются внутри него с использованием повторного заземления PE провода, N провода. Эта система заземления является универсальной – рекомендована при обустройстве новостроек, применяется для модернизации эксплуатируемых TN-C подсистем несложным улучшением подъездных стояков.

    Тт система

    Отличительной особенностью схемы защиты открытых токопроводящих частей источника, которую использует система заземления TT, является независимая от заземлителя нейтраль.

    Система разрешена в России недавно, применяется лишь в случаях невозможности обеспечения электробезопасности домов, павильонов, мобильных зданий с помощью TN системы.

    Это обусловлено необходимостью повторного заземления высокого качества (обычно, модульно-штыревые конструкции в комбинации с УЗО), к контуру которого распределительный щит подключается непосредственно на объекте.

    IT схема

    Особенность схемы заземления IT состоит в заземленных открытых токопроводящих частях источника электроэнергии.

    Нейтраль в этих схемах безопасности либо заземлена через высокое сопротивление приборов, либо изолирована от земли, что позволяет свести к минимуму электромагнитные поля, наведенные токи.

    Схема оптимально подходит для учреждений медицины, лабораторий, использующих высокоточную аппаратуру. Не рекомендуется для жилых домов.

    Оставить коментарий

    proxyelite.bizTN-S это система, в которой на всем протяжении разделены нулевой защитный и нулевой рабочий проводники. Это самая безопасная, но и самая дорогая система.   

    Для корректного отображения этого элемента вам необходимо установить FlashPlayer и включить в браузере Java Script.

    Наши Друзья

    Принципы работы систем заземления для зданий ТN-C и TN-C-S » Электрика в квартире и доме своими руками

    Вопросы безопасного использования электроэнергии продолжают становиться все более актуальными для всего населения.

    Требования международной электротехнической компании, внедренные в действие нормативными документами в нашей стране, ужесточили правила эксплуатации электротехнического оборудования.

    После этого действующие с советских времен государственные стандарты с упрощенными правилами заземления электрических схем для жилых домов пересмотрены.

    Однако большая масса зданий продолжает эксплуатироваться по старой схеме TN-C. На переоборудование ее по системе TN-C-S требуются огромные материальные затраты, выполнить все это в масштабах государства не просто. Поэтому такая работа проводится постепенно, но планомерно.

    В статье «Классификация систем заземления электроустановок» дается определение электрических схем для электроснабжения жилых домов и производственных объектов, приводится описание систем TN-C и TN-C-S. Рассмотрим их немного подробнее.

    Старая схема

    Принципиальная схема электроснабжения здания по системе TN-C

    На картинке показано, что заземление PEN проводника (цвет желто-зеленый) выполнено контуром, расположенным на трансформаторной подстанции, и только. Больше нигде никаких подключений к земле не применяется.

    В каждую квартиру поступают только ноль, который фактически является тем же самым PEN проводником и фаза. То есть в квартиру приходят всего два провода из распределительного щитка, расположенного на этаже для нескольких квартир.

    Между распределительными щитами этажа и дома проложены четырехжильные силовые кабели, передающие три фазы по жилам и один общий ноль. Такой же силовой кабель, только большей мощности, соединяет электрооборудование трансформаторной подстанции с распределительным щитом здания.

    Модифицированная схема

    Принципиальная схема электроснабжения здания по системе TN-C-S

    В ней без изменений остался кабель, проложенный от трансформаторной подстанции до распределительного щита на вводе в здание. Все остальное подверглось доработкам. PEN проводник, подключенный к своей шине, разделился на две магистрали: РЕ (цвет желто-зеленый) и N (цвет синий). Этот способ на практике электрики именуют «расщеплением».

    Он показан на приведенной ниже картинке.

    Принципиальная схема расщепления PEN проводника

    На ней видно, что кабельный конец PEN проводника от ТП подключен к РЕ шине, которая повторно заземлена. От нее отходят все РЕ проводники в электросхему здания.

    Шина общего нуля N установлена на изоляторах внутри распределительного щита здания и подключена к шине РЕ двумя перемычками, расположенными по краям. N проводники подключаются к своей шине, а затем уходят от нее дальше в схему.

    Правильное выполнение такой схемы исключает потерю контура заземления РЕ проводником при повреждениях нуля или любых манипуляциях с ним как внутри здания, так и на трансформаторной подстанции.

    Характерные ошибки и советы домашнему мастеру

    Благое намерение владельцев квартир, оборудованных электропроводкой, работающей по схеме TN-C, выполнить рекомендации о заземлении электроприборов довольно часто сопровождается серьезными нарушениями правил, способными причинить большой вред окружающим людям. Рассмотрим типичные ошибки самостоятельного подключения приборов.

    Сразу договоримся, что вопросы использования защитных устройств и автоматики здесь рассматривать не будем. Это тема отдельной статьи. Она изложена здесь.

    Подключение корпусов электроприборов к нулю

    Этот способ называют занулением. Он широко использовался как защитный прием при выполнении кратковременных работ со старым электроинструментом, оборудованным металлическим корпусом со слабой изоляцией. Современная промышленность такие устройства не выпускает.

    Принцип работы: в случае нарушения изоляции и появления потенциала фазы на корпусе возникает ток короткого замыкания, который быстро отключается защитными автоматами.

    Опасности зануления:

    • отсутствие точно налаженных защитных устройств в случае повреждения прибора не исключает появление опасного потенциала у человека, контактирующего с корпусом;
    • иногда «электрики» совершают ошибки, путая фазу с нулем. В этом случае фаза будет преднамеренно подведена на корпус;
    • в случаях повреждения нуля схема не работает.

    Подключение корпусов электроприборов к металлическим строительным конструкциям

    Водопроводные сети, магистрали водяного отопления, корпуса шахт лифтового оборудования и некоторые другие элементы стационарно расположены в земле. Народные «умельцы» используют их для заземления.

    Риски метода:

    • электрический контакт с землей не контролируется;
    • в случае ремонта трубопроводов цепь разрывается;
    • вмонтированные участками пластиковые трубы работают изоляторами;
    • при появлении потенциала на корпусе прибора может пострадать случайный человек в любой квартире, дотронувшийся до батареи отопления, водопроводного крана и оказавшийся на пути прохождения тока.

    Самовольное расщепление PEN проводника на этажном щитке

    На первый взгляд этот метод кажется наиболее оптимальным решением. Электропроводка квартиры переделывается по трехжильной схеме для подключения ноля и РЕ проводника в строгом соответствии с правилами. Остается только подключиться к контуру заземления и «домашний электрик» самостоятельно делает расщепление на этажном распределительном щитке.

    Это опасно тем, что:

    • грубо нарушается утвержденный и выполненный проект электропроводки всего здания;
    • создаются предпосылки электротравм, угрозы повреждения оборудования;
    • при возникновении любых неисправностей в электропроводке здания представители коммунальных служб могут «назначить» владельца квартиры виновным, что повлечет скандалы, наложение штрафов, проверки различными комиссиями и другие неприятности;
    • электрики ЖКХ, занимающиеся обслуживанием здания, при работах не будут учитывать особенности проведенных доработок. Это может быть причиной аварийных ситуаций.

    Рекомендации

    Осуществить процесс перевода электрооборудования на безопасную схему электропитания для владельцев коттеджей и частных домов не так уж и сложно. Для этого достаточно создать отдельный контур заземления, желательно из современных модульных конструкций и подключиться к нему по системе ТТ.

    Жителям многоэтажных домов сложнее правильно решить этот вопрос. Расщепление PEN проводника на две составляющие магистрали — это задача энергоснабжающей организации. Она будет выполнена, но в различные сроки.

    К этому моменту во время проведения ремонтов помещений необходимо внутри квартиры заменить старую проводку новой трехжильной и подготовиться к переводу схемы на систему TN-C-S. Выведенный из квартиры PE проводник оставить в готовности к подключению электрикам ЖКХ.

    по этой теме: Как определить тип системы заземления в доме

    Бравый Алексей Семенович

    Ремонт квартир, загородных домов, кровля, фундаменты, заборы, ограждения, автономная газификация, частная канализация, отделка фасадов, системы водоснабжения от колодца и скважины, профессиональные современные котельные для частных домов и предприятий.
    Системы: отопления, водоснабжения, канализации. Под ключ.
    Холдинговая компания СпецСтройАльянс
    Прокладка, ремонт и монтаж тепловых сетей, теплотрасс под ключ. Для частных домов и предприятий.

    Система заземления TN-C-S, схема, особенности, достоинства и недостатки

    • Организация системы TN-C-S состоит в том, что нулевой провод N и защитный PEN совмещены и разделяются в какой-то определенной точке электросети, приходя к потребителям по отдельности.
    • Для примера рассмотрим схему электроснабжения жилого многоэтажного дома.
    • При такой системе заземление электроснабжение квартиры осуществляется:
    • — при 3-фазном питании: 5-ти-жильным кабелем с жилами — А,В,С,N,PE;
    • — при 1-фазном: 3-х-жильной кабельной линией – фаза, N, PE.
    • Данная система заземления предполагает установку розеток с выводом для подключения заземления, ее в народе называют евророзеткой.

    При такой системе к защитному проводнику подключается корпус электроприборов (электрическая плита, кондиционер, стиральная машина и др.). Нулевой проводник при этом выполняет роль рабочего, основное назначение которого — передача электроэнергии.

    Точка раздела PEN проводника

    В большинстве случаев разделение осуществляют на вводе в многоэтажный дом — в РЩ (распределительном щите). Для этого следует PEN проводник вводной кабельной линии подключить к шине заземления РЕ.

    Сечение PEN до места раздела должно иметь не менее 10 кв. мм – при медном соединении и 16кв.мм – при алюминиевом. При этом нулевую шину N, шину РЕ соединяют с помощью перемычки.

    Шину заземления повторно заземляют, подключают к контуру заземления здания.

    1. Преимущества системы TN-C-S
    2. Данная система на сегодняшний день считается наиболее перспективной, поскольку она обеспечивает высокий уровень электробезопасности может использоваться совместно с устройствами защитного отключения.
    3. Недостатки

    Несовершенство системы TN-C-S объясняется опасностью поражения электротоком при обрыве PEN проводника. При неисправности изоляции корпус электроприборов может оказаться под опасным для человеческого организма напряжением.

    Поэтому сегодня при обустройстве электропроводки для нового жилья и модернизации старой в соответствии с ПУЭ необходимо использовать TN-C-S систему (а лучше TN-S), поскольку от этого напрямую зависит безопасность Вас и близким Вам людей.

    Основы заземления электрических систем

    Заземление или заземление — это фундаментальная тема для правильной работы электрических систем и устройств. Однако мало кто понимает этот вопрос или причину его использования.

    Заземление — это огромная тема, полная стандартов, практических правил, заблуждений, сюрпризов и некоторого волшебства. Правила заземления довольно сложны и порой кажутся неясными.

    В этой вводной статье обсуждаются основные принципы заземления, дается обзор основных приложений заземления и закладывается основа для изучения этих приложений от первого до последнего.

    Что такое заземление?

    При анализе электрических установок вы часто будете встречать термины «заземление», «заземление» и «заземление». Есть несколько формальных определений этих терминов в разных стандартах и ​​кодексах. Однако, как следует из названия, заземление — это соединение электрической системы, электрических устройств и металлических корпусов с землей. Это также известно как заземление, то есть соединение с землей.

    Несмотря на то, что незаземленные электрические системы действительно существуют — либо потому, что они исключены из заземления по правилам, либо по эксплуатационным причинам — большинство массивов так или иначе заземлены.

    Является ли земля проводником электричества?

    Хотя и не самый лучший, да, заземление — это электрический проводник. Он используется для передачи токов повреждения, сигналов и радиоволн.

    Распространение земной волны особенно важно в низко- и среднечастотной части радиоспектра. Есть подземные низкочастотные радиоантенны, которые были разработаны в первые дни 20 века. Это электрическое свойство становится видимым, когда молния распространяется от Земли и обратно.

    Заземление. Изображение любезно предоставлено Pixabay.

    Также важно знать, что иногда предполагается, что земля как проводник имеет нулевой потенциал и используется в качестве эталона при многих измерениях напряжения.

    Заземление энергосистемы очень важно, так как большинство неисправностей связано с заземлением. Кроме того, он играет основную роль в защите своих компонентов, а также в обеспечении безопасности оператора. Для крепления электрической системы к земле используются различные методы заземления.Давайте теперь посмотрим на каждый тип.

    Заземление системы

    Заземление системы относится к пределу определенных значений напряжения на землю в каждой части электрической системы. Он соединяет токоведущую точку электрической системы с землей, то есть нейтраль трансформаторов и вращающегося оборудования, а также линии.

    Заземление нейтрали

    Искусство и наука нейтрального заземления имеют первостепенное значение в этом анализе.Появился выбор методов заземления нейтрали в трансформаторах и вращающемся оборудовании для управления частотой отказов и переходных помех, улучшая непрерывность работы. Основные типы заземления нейтрали:

    • Незаземленный: Заземление не выполняется специально, но система заземлена из-за ее естественной емкости относительно земли
    • Сквозное сопротивление
      • Сопротивление — высокое сопротивление, низкое сопротивление
      • Реактивное сопротивление — высокое реактивное сопротивление, резонансное (также высокое реактивное сопротивление), низкое реактивное сопротивление
    • Сплошной (эффективный)

    Заземление нейтрали в большинстве случаев надежное.В этом методе нейтраль поддерживается на уровне земли, что дает следующие преимущества:

    • Ограничивает напряжение, которое будет приложено к изоляции оборудования. Напомним, что материалы, используемые в изоляции, должны выдерживать приложенное напряжение;
    • Ограничивает напряжение системы до земли или корпусов оборудования в нормальных условиях и при неисправностях, повышая безопасность персонала;
    • Минимизирует возможные переходные перенапряжения;
    • Обеспечивает источник реле тока замыкания на землю, позволяя быстро устранить замыкание.

    Другие способы заземления

    В системах 600 В и ниже иногда используются другие методы заземления.

    • Заземление линии
      • Трансформатор заземления зигзагообразный
      • Угол дельты
    • Заземление средней фазы

    Оборудование и защитное заземление

    Люди должны быть защищены, потому что небольшое количество тока, циркулирующего по телу, может привести к серьезным повреждениям или смерти.

    Заземление оборудования соединяет все нетоковедущие металлические части системы электропроводки или оборудования с землей. Примеры включают шкаф сервисного оборудования, рамы трансформаторов и двигателей, металлические кабелепроводы и коробки, металлический экран экранированных кабелей, столбы, башни и многое другое.

    Заземление оборудования ограничивает напряжение между токоведущими частями и между этими частями и землей до безопасного значения, повышая защиту. Это также обеспечивает быстрое устранение неисправностей.

    Кроме того, для защиты людей и животных в непосредственной близости электростанции и подстанции строятся на заземляющих матах. Такая практика сводит к минимуму возможность поражения электрическим током.

    Заземление оборудования. Изображение любезно предоставлено Pixabay.

    Оборудование для склеивания в соответствии со стандартами безопасности

    Соединение состоит из соединения всех нетоковедущих металлических частей установки для обеспечения непрерывности и электропроводности.Таким образом, металлические части имеют общий и минимальный потенциал над землей. Коды требуют подключения в заземленных и незаземленных массивах.

    Это соединение ведет себя как путь с низким импедансом, который безопасно проводит ток замыкания на землю и помогает быстро срабатывать устройства защиты от перегрузки по току в заземленной системе, а также работать детекторам замыкания на землю в заземленных с высоким импедансом и незаземленных системах.

    Кодексы

    также касаются соединения металлических частей здания (неэлектрических), которые могут случайно оказаться под напряжением.

    Защита от статического электричества с помощью статического заземления

    Целью контроля статических зарядов является защита людей и имущества.

    Трение между двумя поверхностями изолирующих материалов может вызвать перенос электронов с одной поверхности на другую, создавая разность потенциалов в тысячи вольт. Эта разность потенциалов может вызвать статические искры, которые являются источником пожаров и взрывов.

    Электронные компоненты и оборудование не способны выдерживать мгновенную мощность, создаваемую статическим электричеством.Существует несколько методов защиты от статического электричества, два из них — заземление.

    Статическое заземление обеспечивает заземление с низким сопротивлением, уменьшая образование статического электричества. Это предотвращает искрение между телами.

    Опасные места особенно важны для заземления, поскольку в них могут находиться легковоспламеняющиеся или горючие материалы, а искры, вызванные статическим электричеством, могут воспламенить атмосферу.

    Электростатическая индукция также может быть причиной переходных состояний, которые вызывают непреднамеренные события в соседних цепях, вызывая ложные срабатывания реле, срабатывания выключателей или ложные сигналы в цепях управления, и это лишь некоторые из них.

    Заземление молниезащиты

    Молниезащита играет ключевую роль в проектировании и эксплуатации электроэнергетических систем. В районах с частыми штормами молнии — самая частая причина отключений и повреждений.

    Система молниезащиты улавливает или отводит молнию и обеспечивает определенный путь для безопасного отвода скачков к земле с помощью соответствующих токоотводов к заземляющим электродам. Таким образом, это помогает предотвратить катастрофические события, такие как пожары, травмы и смерть.

    Молниезащита играет ключевую роль в проектировании и эксплуатации электроэнергетических систем. Изображение любезно предоставлено Pixabay.

    Помимо систем электроснабжения, высокие конструкции, такие как дымовые трубы, резервуары, башни и здания, могут нуждаться в системах молниезащиты, хотя они потребуются не всем объектам или сооружениям на данном участке. Опять же, опасные места важны, потому что молния вызывает искры, а риск возгорания и взрыва высок.

    Имейте в виду, что невозможно защитить 100% конструкции от прямых ударов, кроме как полностью изолировать ее металлом.

    Что касается систем передачи, хорошо продуманная система заземляющих проводов может существенно снизить частоту отказов, поскольку она будет экранировать фазные проводники, принимая на себя прямое воздействие ударов молнии.

    Защита от перенапряжений, индуцированных молнией

    Переходные перенапряжения — это повседневные явления в электроэнергетических системах.Переключение является их основным инициатором, но с коммутационными импульсами относительно легко справиться. Однако разряды молний — самые сильные, и с ними трудно справиться. Они могут увеличить напряжение системы во много раз по сравнению с номинальным напряжением. Если оборудование в энергосистеме не защищено от скачков молнии, это может привести к значительным повреждениям.

    Перепуск заземляющих проводов, помимо защиты от прямых ударов молнии, снижает влияние наведенных скачков напряжения.

    Аналогичным образом, ограничители перенапряжения подключаются шунтом к частям электрического оборудования, чтобы отводить переходные процессы на землю.

    Методы заземления для защиты электронного оборудования

    Компьютеры, системы связи, контрольно-измерительные приборы и оборудование управления требуют надлежащего заземления для правильной работы. Чаще всего безопасное заземление оборудования для электронного оборудования такое же, как и для любого другого устройства.

    Диспетчерская. Изображение любезно предоставлено Unsplash.

    Иногда к электронному оборудованию применяются специальные методы заземления, отличные от обычных методов безопасного заземления, но необходимо соблюдать осторожность, чтобы не допустить, чтобы эти методы приводили к небезопасным действиям.

    Некоторые электрические распределительные системы для электронного оборудования были установлены ошибочно с целью минимизировать количество электрических помех, наблюдаемых в системе заземления. Но эти установки не соответствуют правилам Национального электротехнического кодекса (NEC), что ставит под угрозу безопасность персонала.

    Защита цепей данных от помех или повреждений не всегда включает заземление, хотя хорошее заземление облегчает эту защиту.

    Обзор методов и способов заземления

    Одним из наиболее важных, но наименее понятных факторов при проектировании электрических систем является заземление.

    Заземление состоит из низкоомного соединения с землей. Заземление — плохой проводник, но достаточно хорошее для этой цели.

    Заземление играет ключевую роль в правильной работе электрических систем, силовых или электронных, а также в защите людей.

    • Заземление системы помогает обнаруживать и устранять замыкания на землю.
    • Заземление оборудования обеспечивает обратный путь для тока замыкания на землю.
    • Склеивание сохраняет электрическую целостность и проводимость.
    • Статическое заземление предотвращает накопление статического электричества, снижая вероятность возгорания или взрыва при работе с опасными материалами.
    • Заземление для защиты от молний помогает защитить конструкции и оборудование от прямых ударов.
    • Воздушные провода заземления и ограничители перенапряжения, подключенные к земле, могут ограничивать опасные перенапряжения в системе до безопасных значений.

    По сути, заземление электронной системы аналогично заземлению любой электрической системы.Однако следует соблюдать осторожность, чтобы специальные методы заземления не создавали опасных условий.

    Консультации — Специалист по спецификациям | Как спроектировать заземленную систему электроснабжения

    Цели обучения:

    • Поймите разницу между заземленными и незаземленными системами.
    • Узнайте, что требует код для незаземленных систем питания переменного и постоянного тока.
    • Знайте, чем поведение незаземленных систем во время замыканий на землю отличается от поведения заземленных систем и как уменьшить этот эффект.

    На любом объекте с критическими нагрузками, связанными с безопасностью жизни или чувствительными компьютерными нагрузками, жизненно важными для работы объекта, одним из наиболее важных элементов оборудования, указанного в проекте, является источник бесперебойного питания (ИБП), который использует накопленную энергию для подавать питание на эти критические нагрузки, когда обычное питание пропадает и запускается резервный источник питания для питания нагрузок в здании.

    При выборе модулей ИБП для питания критических нагрузок на объекте необходимо принять одно ключевое решение — использовать ли ИБП с входными и / или выходными трансформаторами или без них.На рисунках 2 и 3 представлены условные схемы, изображающие, соответственно, трансформаторный и бестрансформаторный модули ИБП.

    За последнее десятилетие бестрансформаторные ИБП стали популярными, затмив конструкции на основе трансформаторов. Этот переход неудивителен, поскольку бестрансформаторные модули имеют много преимуществ по сравнению с ИБП с трансформаторами. Самое большое преимущество — эффективность. ИБП без трансформаторов может получить преимущество в КПД на 5% или больше по сравнению с ИБП с трансформаторами.Это не только означает более низкие счета за электроэнергию, но также снижает тепловую нагрузку в помещении, в котором находится ИБП, что приводит к снижению требований к HVAC.

    На объектах с большой критической нагрузкой экономия может быть значительной. Кроме того, бестрансформаторные системы ИБП уменьшают вес и занимаемую площадь каждого модуля ИБП по сравнению с трансформаторными системами, уменьшая размер и требования к конструкции электрических помещений и оставляя больше места для пустого пространства или других частей здания.

    Однако выходной трансформатор ИБП на базе трансформатора предоставляет возможность, недоступную для бестрансформаторных систем ИБП: гальваническая развязка, обеспечиваемая трансформатором, дает возможность создать отдельно производное соединение нейтрали с землей на выходе ИБП. В определенных ситуациях — например, в системе, обслуживаемой незаземленной треугольником, в системе, заземленной через заземление с высоким сопротивлением, или в системах, в которых существует вероятность того, что два источника ИБП с двумя входами могут поступать из двух независимых источников — может быть желательно получить нейтраль на ИБП без трансформатора, чтобы обеспечить ИБП стабильным опорным заземлением, которое он может использовать для регулирования напряжения на выходе и на шине постоянного тока.

    Если такая нейтраль не образуется в бестрансформаторной системе ИБП, тогда, когда батарея ИБП разряжается во время сбоя входного питания, а входной автоматический выключатель ИБП разомкнут, нижестоящая система работает без заземления. В большинстве установок будет один или несколько выходных трансформаторов, внешних по отношению к ИБП, обслуживаемых критически важной системой электроснабжения. Эти выходные трансформаторы обычно размещаются в блоке распределения энергии, и на их вторичной стороне может быть получена заземленная система, но эта часть системы на первичной стороне, тем не менее, будет незаземленной в течение этого периода.

    Большинство инженеров-проектировщиков привыкли работать с заземленными системами, и перспектива оставить часть здания незаземленной даже в течение обычно короткого переходного периода между отключением входного питания и запуском системы резервного питания объекта может показаться тревожной. Однако создать безопасную, надежную и совместимую с правилами незаземленную систему питания относительно просто, требуя лишь незначительных модификаций систем заземления и соединения, необходимых в любой заземленной системе питания.

    Заземленный против незаземленного

    Чтобы понять особые требования к незаземленной системе, важно сначала определить, что подразумевается под «заземленным» и «незаземленным». Заземление системы достигается путем намеренного подключения токоведущего проводника к земле (т. Е. К земле) или к чему-то, что служит вместо земли. Обычно это достигается путем соединения нейтрального провода системы с землей в источнике питания, часто со вторичной обмоткой трансформатора или статора генератора, соединенной звездой, а также с помощью основных средств отключения на объекте.Следовательно, незаземленная система — это система, в которой ни один из проводников с током не заземлен намеренно.

    Заземленные системы обычно предпочтительнее незаземленных по нескольким причинам. Заземленные системы стабилизируют уровни напряжения по всей системе, гарантируя, что все оборудование в системе работает при одинаковой разности потенциалов. Это особенно важно для ИБП, поскольку перед ним стоит задача точного регулирования уровней напряжения как на выходе, так и на шине постоянного тока, а для точного регулирования напряжения требуется надежное, стабильное опорное напряжение относительно земли.Заземленные системы также уменьшают скачки напряжения из-за ударов молнии, помогают предотвратить разность потенциалов между различными частями оборудования в системе и обеспечивают цепь для протекания тока замыкания на землю через заземленные проводники цепи обратно к источнику питания, позволяя использовать устройства защиты от сверхтоков. для быстрой работы и локализации неисправности.

    NFPA 70: Национальный электротехнический кодекс (NEC), статья 250.4, устанавливает общие, основанные на характеристиках требования для обеих заземленных систем в 250.4 (A) и незаземленные системы в 250,4 (B). К заземленным системам предъявляются пять требований: заземление электрической системы, заземление электрического оборудования, соединение электрического оборудования, соединение электропроводящих материалов и эффективные пути тока замыкания на землю.

    Примечательно, что четыре требования к незаземленным системам, перечисленные в 250.4 (B), аналогичны или идентичны последним четырем требованиям к заземленным системам. Так же, как и в заземленных системах, для незаземленных систем требуется, чтобы токопроводящие материалы, не содержащие токи, охватывающие электрические проводники или оборудование, а также те, которые могут оказаться под напряжением, были подключены к земле через путь с низким сопротивлением.Перекрытие между этими двумя наборами требований иллюстрирует представление о том, что проектирование незаземленной системы не слишком сильно отличается от проектирования заземленной.

    Чтобы понять, что NEC требует от бестрансформаторной системы ИБП, когда она работает без заземления во время разряда батареи, мы должны сначала определить, как эта система определяется на языке NEC. Когда входной автоматический выключатель ИБП разомкнут, ИБП не подключается к вышестоящей системе электроснабжения и, следовательно, к источнику питания через какие-либо проводники цепи, кроме тех, которые используются для заземления и соединения.

    Важно отметить, что даже несмотря на то, что корпус ИБП и последующее оборудование все еще могут быть эффективно подключены к корпусу источника питания в этом состоянии, система не считается заземленной, если токоведущий проводник не подключен к земле. Поэтому NEC определяет систему в этом состоянии как отдельно производную систему, а батареи ИБП как отдельно производный источник. Требования к заземлению для незаземленных отдельно выведенных систем определены в статье 250.30 (В).

    Для этого раздела NEC требуются три компонента: провод заземляющего электрода, система заземляющих электродов и соединительная перемычка на стороне питания. Последний из этих компонентов требуется только тогда, когда источник отдельно производной системы расположен в отдельном корпусе, чем первое средство отключения. Обычно это не относится к ИБП, поскольку выходной автоматический выключатель ИБП обычно размещается в корпусе ИБП.

    Все три из этих заземляющих компонентов также требуются в заземленных отдельно производных системах.По сути, корпус ИБП должен быть заземлен через систему заземляющих электродов здания с помощью проводника заземляющего электрода. Это соединение в незаземленной системе служит опорной точкой заземления для всего токопроводящего оборудования в незаземленной системе, которое не пропускает ток при нормальных условиях.

    Заземление системы

    Производители ИБП

    предлагают множество решений по вопросу о том, как обеспечить, чтобы ИБП поддерживал связь с землей в незаземленных условиях, чтобы гарантировать стабильное регулирование напряжения ИБП.Некоторые производители используют так называемое «виртуальное заземление» в общей точке входного и выходного фильтров ИБП для достижения этой цели. Часто это стандартная функция, особенно на новых моделях ИБП, но в некоторых случаях требуется дополнительный аксессуар. Выбирая бестрансформаторный ИБП, особенно в трехфазной трехпроводной системе, обратите внимание на то, как он будет работать в незаземленных условиях.

    Правила, регулирующие систему заземляющих электродов и проводников заземляющих электродов, содержатся в Части III статьи 250 NEC.Та же система заземляющих электродов, которая используется для здания в целом, также должна использоваться для любых отдельно созданных систем в соответствии с NEC 250.58, поэтому все, что требуется, — это соединение между заземляющим электродом здания и корпусом ИБП через провод заземляющего электрода. . Соответственно, в этой ситуации применимы все обычные требования к материалам системы заземляющих электродов, перечисленные в NEC 250.52, и к установке, перечисленные в 250.53.

    Точно так же правила, регулирующие проводники заземляющих электродов, не различаются для заземленных и незаземленных систем.Статьи 250.62 и 250.64 NEC регулируют материалы и методы установки заземляющих проводников электродов соответственно. Требуемый размер используемых проводов заземляющего электрода должен определяться в соответствии с требованиями NEC 250.66, которые различаются в зависимости от типа используемого заземляющего электрода, размера самого большого незаземленного проводника или набора проводников в системе и материала провод заземляющего электрода.

    Независимо от размера системы, провод заземляющего электрода всегда должен быть не меньше, чем # 8 AWG для меди или # 6 AWG для алюминия, и, если это не отменено местными поправками или требованиями юрисдикции (AHJ), заземление провод электрода не должен быть больше, чем # 3/0 AWG для меди или 250 тыс. куб. м для алюминия.Наконец, требования к соединению проводов заземляющего электрода с системой заземляющих электродов изложены в NEC 250.68.

    Незаземленные системы

    До сих пор обсуждаемые правила заземления для незаземленных систем очень похожи на правила для заземленных систем. Действительно, если использовать надежную конструкцию заземления для нормально заземленной системы и обеспечить подключение ИБП и корпусов аккумуляторных шкафов к системе заземляющих электродов здания через проводники заземляющих электродов подходящего размера, почти все требования к незаземленной системе будут выполнены. когда ИБП разряжает свои батареи и становится незаземленной системой во время переключения питания.

    Однако есть ключевое различие между поведением заземленных и незаземленных систем, которое накладывает дополнительные требования на незаземленные системы. Эта разница появляется, когда в системе происходит одиночное замыкание линии на землю.

    В системе с глухим заземлением соединение (обычно) нейтрального провода с землей в источнике питания означает, что при замыкании линии на землю будет сформирована полная цепь. Это позволяет протекать большому току короткого замыкания через путь с низким сопротивлением, созданный замыканием, в результате чего срабатывает устройство защиты от сверхтока (OCPD), оснащенное функцией обнаружения замыкания на землю, и быстро изолирует замыкание.

    В незаземленной системе, однако, не возникает цепи, когда происходит одиночное замыкание линии на землю, через которое может протекать ток короткого замыкания. Вместо этого поврежденный провод просто заземляется, и межфазные потенциалы между поврежденной фазой и другими неповрежденными фазами становятся межфазными потенциалами. Однако величина разности потенциалов между фазами не меняется. Это не окажет заметного влияния на производительность системы, когда это произойдет, но если неисправность не будет устранена и произойдет второе замыкание между фазой на землю, это приведет к двойному замыканию между фазой и землей, вызывая большие токи замыкания. и создание потенциала для большего повреждения электрического оборудования и большего риска для безопасности персонала.Как и в заземленной системе, междуфазное замыкание в незаземленной системе будет генерировать ток короткого замыкания и, как правило, приведет к срабатыванию устройства защиты от перегрузки по току и изоляции замыкания.

    Чтобы гарантировать, что одиночные замыкания на землю не останутся незамеченными, NEC 250.21 (B) требует, чтобы незаземленные системы были оснащены детекторами заземления в точке, максимально приближенной к источнику питания системы. Детектор заземления отслеживает разность потенциалов между фазными проводниками системы и землей в незаземленной части системы, к которой он подключен.Если в системе присутствует замыкание на землю, она издает визуальный и / или звуковой сигнал, чтобы предупредить операторов или обслуживающий персонал. Затем операторы могут инициировать плановое отключение системы, чтобы можно было найти и устранить неисправность. Это особенно важно в системе, обслуживаемой ИБП, поскольку обычно необходимо регулярно отключать критические нагрузки, чтобы свести к минимуму риск для безопасности жизни или нарушения бизнес-функций.

    Например, инициирование выключения критически важной компьютерной системы может быть дорогостоящим из-за наличия замыкания на землю в системе, но это, безусловно, будет меньше, чем внезапное отключение питания тех же самых компьютеров.Большинство систем ИБП содержат механизм обнаружения земли, но важно убедиться, что этот компонент включен, чтобы обеспечить соответствие этому требованию.

    Обнаружение замыканий на землю особенно важно, когда система становится временно незаземленной, например, когда бестрансформаторный ИБП разряжает свою батарею из-за сбоя входного источника, потому что он, вероятно, снова станет заземленным, когда входное питание вернется. Когда питание восстанавливается, либо через возврат сетевого источника, либо из-за того, что источник генератора переходит в режим онлайн, входной автоматический выключатель ИБП замыкается, и система снова заземляется.Если замыкание на землю все еще присутствует в системе, когда это происходит, ток замыкания на землю будет протекать через замыкание. Детектор заземления в ИБП может предотвратить эту ситуацию за счет упреждающего отключения до того, как появится возможность протекания тока короткого замыкания.

    Обнаружение

    Для обеспечения правильной работы детектора замыкания на землю во всей незаземленной системе важно проверить соответствие требованиям для подключения корпуса ИБП к системе заземляющих электродов (см. Выше), а также требованиям к заземлению. металлических предметов, которые не проводят ток, подпадают под действие Части V статьи 250 NEC.Это гарантирует, что любая точка в незаземленной системе, в которой может произойти замыкание на землю, имеет надежную ссылку на землю посредством подключения корпуса ИБП к системе заземляющих электродов, и что детектор может точно обнаружить замыкание на землю. условие.

    Помимо требований к незаземленным системам переменного тока, NEC содержит дополнительные требования к незаземленным системам постоянного тока. Это относится к более распространенной 2-проводной системе постоянного тока, поскольку Раздел 250.162 (B) требует, чтобы все 3-проводные системы постоянного тока были заземлены.Конечно, ИБП будет содержать систему постоянного тока, а именно соединение между системой накопления энергии и выходным инвертором. В статье 250.169 NEC перечислены требования к незаземленной системе постоянного тока с отдельным производством. Эти требования аналогичны требованиям системы переменного тока, а именно: корпус источника должен быть заземлен через систему заземляющих электродов здания посредством проводника заземляющего электрода.

    Однако обратите внимание, что размер проводника заземляющего электрода для системы постоянного тока регулируется другим участком, чем в системе переменного тока, а именно участком 250.166, который требует, чтобы провод заземляющего электрода был не меньше, чем самый большой проводник, питаемый системой постоянного тока. Однако одинаковые минимальные и максимальные размеры проводов заземляющих электродов для различных установок применимы как к системам постоянного, так и переменного тока. Для большинства установок ИБП не требуется никаких особых требований для системы постоянного тока, поскольку обычно система постоянного тока заземляется на батарейном отсеке, хотя важно убедиться, что это будет так в данной установке.

    В случае, если необходимо принять во внимание особые проектные соображения, чтобы рассмотреть, что может быть наилучшей практикой для проектирования системы заземления для части постоянного тока ИБП в условиях незаземленной системы, может быть полезно рассмотреть в некоторой степени аналогичную ситуацию: Незаземленная солнечная фотоэлектрическая система.

    Незаземленные фотоэлектрические системы не редкость по многим из тех же причин, по которым бестрансформаторные ИБП стали популярными. Подобно части постоянного тока системы ИБП во время передачи энергии, незаземленная фотоэлектрическая система — это незаземленная система постоянного тока, питающая систему переменного тока через инвертор.Фактически, большинство фотоэлектрических систем имеют системы хранения энергии как часть системы постоянного тока, как и в ИБП. Таким образом, хотя они и не являются требованиями, правила и комментарии NEC относительно фотоэлектрических систем, содержащиеся в статье 690, особенно в части III и части V, могут быть полезны при размышлении о заземлении системы накопления энергии ИБП.

    Особо следует отметить Раздел 690.15 (D), в котором описаны требования к средствам отключения оборудования для фотоэлектрических систем. В этом разделе обращается внимание на более общее требование, содержащееся в разделе 210.4 (B), согласно которому отключающие средства должны одновременно отключать все незаземленные проводники цепи, к которой они подключены. В отличие от заземленной системы, в которой отключение нейтрального провода не обязательно должно происходить одновременно с отключением фазных проводов, в незаземленной системе все провода должны быть одновременно отключены, так как ни один из них не заземлен. Это не часто вызывает беспокойство, но об этом следует помнить при выборе автоматического выключателя постоянного тока, защищающего систему накопления энергии ИБП.


    Бен Стивенс — младший инженер-электрик в Пейдж. Он проработал в компании Page 3 года и специализируется на научно-технических проектах.

    EOS / ESD: основы, часть 3 | Ассоциация EOS / ESD, Inc.

    Сделать выбор Часть 1: Введение в ESD Часть 2: Принципы контроля ESD Часть 3: Базовые процедуры и материалы для контроля ESD Часть 4: Обучение и аудит Часть 5: Чувствительность устройства и тестирование Часть 6: Стандарты ESD

    Основы электростатического разряда

    Часть третья — Основные процедуры и материалы для защиты от электростатического разряда

    © 2020, ESD Association, Рим, Нью-Йорк Development, мы представили шесть принципов статического контроля и шесть ключевых элементов разработки и реализации программы ESD.В третьей части мы рассмотрим основные процедуры контроля статического электричества и материалы, которые станут частью вашей программы контроля электростатического разряда. Сначала мы рассмотрим принципы.

    ОСНОВНЫЕ ПРИНЦИПЫ СТАТИЧЕСКОГО УПРАВЛЕНИЯ
    Мы предложили сосредоточиться всего на шести основных принципах при разработке и внедрении эффективных программ управления ESD: эффекты электростатического разряда.

  • Определите уровень контроля , необходимый в вашей среде.
  • Определите и определите электростатически защищенные зоны (EPA), зоны, в которых вы будете работать с предметами, подверженными электростатическому разряду (ESDS).
  • Снижение образования электростатического заряда за счет уменьшения и устранения процессов генерации статического электричества, поддержания процессов и материалов при одном и том же электростатическом потенциале, а также путем обеспечения соответствующих путей заземления для уменьшения образования и накопления заряда.
  • Рассеять и нейтрализовать путем заземления, ионизации и использования проводящих и рассеивающих материалов для контроля статического электричества.
  • Защитите продукты от электростатического разряда с помощью надлежащего заземления или шунтирования, а также использования антистатической упаковки и устройств для работы с материалами.
  • На уровне предприятия наши усилия по борьбе с электростатическим разрядом сосредоточены на последних пяти принципах. Здесь, в третьей части, мы сконцентрируемся на первичных материалах и процедурах, которые уменьшают образование электростатического заряда, удаляют заряды на землю и нейтрализуют заряды для защиты предметов ESDS.

    ОПРЕДЕЛЕНИЕ ПРОБЛЕМ И УРОВНЯ КОНТРОЛЯ
    Один из первых вопросов, на который нам нужно ответить: «Насколько чувствительны к электростатическому разряду детали и / или сборки, которые мы производим или обрабатываем?» Эта информация поможет вам определить различные процедуры и материалы, необходимые для контроля электростатического разряда в вашей среде.

    Как вы определяете чувствительность ваших деталей и узлов или где можете получить информацию об их классификации ESD или выдерживаемом напряжении? Первым источником может быть производитель или поставщик самого компонента или использование спецификации детали, связанной с этим компонентом. Очень важно, чтобы вы получили оценки как модели человеческого тела (HBM), так и модели заряженного устройства (CDM). Вы также можете обнаружить, что вам необходимо протестировать свое конкретное устройство на чувствительность к электростатическому разряду с помощью ANSI / ESDA / JEDEC JS-001 (HBM) и ANSI / ESDA / JEDEC JS-002 (CDM).Однако имейте в виду, что корреляция между напряжениями, используемыми для аттестации устройства, и статическими напряжениями, измеренными в полевых условиях, является слабой.

    Второй вопрос, на который вам нужно ответить: «Какие области нашего предприятия нуждаются в защите от электростатического разряда?» Это позволит вам определить ваши конкретные зоны защиты от статического электричества (EPA), зоны, в которых вы будете работать с чувствительными частями, и зоны, в которых вам необходимо будет реализовать принципы управления электростатическим разрядом. Часто вы обнаруживаете, что существует больше областей, требующих защиты, чем вы изначально думали, обычно там, где обрабатываются открытые предметы ESDS.Типичные области, требующие защиты от электростатического разряда, показаны в таблице 1.

    ЗАЗЕМЛЕНИЕ
    Заземление особенно важно для эффективного контроля электростатического разряда. Он должен быть четко определен и регулярно оцениваться.

    Заземляющий провод оборудования позволяет подвести материалы и персонал для защиты от электростатического разряда к одинаковому электрическому потенциалу. Все проводники и рассеивающие материалы в окружающей среде, включая персонал, должны быть соединены или электрически подключены к известному заземлению, либо должны обеспечивать уравновешивание потенциалов между всеми предметами и персоналом.Защита от электростатического разряда может поддерживаться при заряде или потенциале выше «нулевого» опорного напряжения заземления до тех пор, пока все элементы в системе имеют одинаковый потенциал. Важно отметить, что изоляторы, по определению непроводящие, не могут потерять свой электростатический заряд при подключении к земле.

    Стандарт ассоциации ESD ANSI / ESD S6.1- Заземление рекомендует двухэтапную процедуру заземления элементов управления ESD в EPA.

    Первым делом необходимо заземлить все компоненты рабочей станции и персонал (рабочие поверхности, оборудование и т. Д.).) к одной и той же точке электрического заземления, называемой «общей точкой заземления». Эта общая точка заземления определяется как «система или метод подключения двух или более заземляющих проводов к одному и тому же электрическому потенциалу».

    Эта общая точка заземления ESD должна быть правильно идентифицирована. Стандарт ассоциации ESD ANSI / ESD S8.1 — Символы рекомендует использовать символ на рисунке 1 для обозначения общей точки заземления.

    На втором этапе необходимо подключить общую точку заземления к заземляющему проводу оборудования (заземление переменного тока) или третьему проводу (обычно зеленому) к электрическому заземлению.Это предпочтительное заземление, потому что все электрическое оборудование на рабочей станции уже подключено к этому заземлению. Подключение материалов или оборудования для защиты от электростатического разряда к заземлению оборудования приводит все компоненты рабочей станции к одинаковому электрическому потенциалу. Если паяльник, используемый для ремонта элемента ESDS, был подключен к электрическому заземлению, а поверхность, содержащая элемент ESDS, была подключена к вспомогательному заземлению, между паяльником и элементом ESDS могла существовать разница в электрическом потенциале.Эта разница потенциалов может привести к повреждению объекта.

    Любое вспомогательное заземление (водопровод, каркас здания, опора заземления), имеющееся и используемое на рабочей станции, должно быть связано с заземляющим проводом оборудования для минимизации разницы потенциалов между двумя заземлениями. Подробную информацию о заземлении ESD можно найти в стандарте ESD Association ANSI / ESD S6.1, «Заземление», а также в Руководстве пользователя ESD ESD TR20.20 и / или CLC / TR 61340-5-2.

    УПРАВЛЕНИЕ СТАТИЧЕСКИМ ЗАРЯДОМ НА ПЕРСОНАЛ И ДВИЖНОЕ ОБОРУДОВАНИЕ
    Люди могут быть одним из основных генераторов статического электричества.Простая прогулка или движения, необходимые для ремонта печатной платы, могут вызвать электростатический заряд в несколько тысяч вольт на теле человека. Если не контролировать должным образом, этот статический заряд может легко разрядиться в предмет ESDS — типичный разряд HBM. Кроме того, человек может переносить заряд на печатную плату или другой предмет, делая его уязвимым для событий CDM в последующем процессе.

    Даже в высокоавтоматизированных процессах сборки и тестирования люди по-прежнему работают с элементами ESDS, включая, но не ограничиваясь: на складе, в ремонте, в лаборатории, в транспорте.По этой причине в программах контроля электростатических разрядов большое внимание уделяется контролю электростатического заряда персонала. Точно так же перемещение мобильного оборудования (например, тележек или тележек) и другого колесного оборудования через объект также может генерировать значительные статические заряды, которые могут передаваться на продукты, транспортируемые на этом оборудовании.

    НАРУЖНЫЕ РЕМНИ

    Обычно наручные ремни являются основным средством заземления персонала, а также могут обеспечивать выравнивание потенциалов при ремонте в полевых условиях.При правильном ношении и подключении к земле или точке уравнивания потенциалов браслет удерживает человека, носящего его, под потенциалом земли или таким же потенциалом, что и объект, когда заземление невозможно. Поскольку человек и другие заземленные объекты в рабочей зоне имеют одинаковый потенциал, между ними не может быть опасного разряда. Кроме того, статические заряды снимаются с человека на землю и не накапливаются. Когда персонал сидит и обращается с открытыми предметами ESDS, он должен быть заземлен с помощью браслета.

    Браслеты состоят из двух основных компонентов: браслета, который охватывает запястье человека, и кабеля заземления, соединяющего браслет с общей точкой заземления.

    У большинства браслетов есть токоограничивающий резистор, встроенный в шнур заземления на конце, который соединяется с браслетом. По закону Ома ток равен напряжению, деленному на сопротивление; следовательно, добавление сопротивления «цепи» оператора к земле ограничит количество тока, протекающего через шнур браслета.Этот резистор обычно составляет один мегом, номинал не менее 1/4 ватта с номинальным рабочим напряжением 250 вольт. В целях безопасности персонала, если оператор будет подвергаться воздействию электрических цепей с напряжением 250 В или выше, запрещается использовать браслеты.

    Наручные ремешки имеют несколько механизмов выхода из строя, поэтому их следует регулярно проверять. Рекомендуется либо ежедневное тестирование на определенных испытательных станциях, либо использование постоянного монитора на рабочем месте.

    ПОЛ, КОВРИКИ, ОТДЕЛКА ПОЛОВ
    Второй метод заземления персонала — это система напольных покрытий / обуви, достигаемая за счет использования систем полов с защитой от электростатического разряда в сочетании с обувью с защитой от электростатического разряда.Эта комбинация проводящих или рассеивающих материалов пола и обуви обеспечивает безопасный путь заземления для рассеивания электростатического заряда, тем самым уменьшая накопление заряда у персонала. Помимо рассеивания заряда, некоторые материалы для пола (и отделка пола) также уменьшают трибоэлектрический заряд. Использование системы напольных покрытий / обуви особенно уместно в тех областях, где необходима повышенная мобильность персонала. Кроме того, материалы для пола могут минимизировать накопление заряда на стульях, мобильном оборудовании (например, тележках и тележках), погрузчиках и других объектах, перемещающихся по полу.Однако для этих предметов требуются рассеивающие или токопроводящие ролики или колеса для электрического контакта с полом, а компоненты должны быть электрически соединены. При использовании в качестве системы заземления персонала сопротивление заземления, включая человека, обувь и пол, должно быть менее 1,0 x 10 9 (ANSI / ESD STM97.1), а напряжение аккумулируемого тела при стандартном испытании на напряжение при ходьбе (ANSI / ESD STM97.2) должно быть меньше 100 вольт. Обратите внимание, что должны быть соблюдены оба ограничения.

    ОБУВЬ ДЛЯ УПРАВЛЕНИЯ ЭСР, КОЛЕСА
    Используемая в сочетании с системами напольных покрытий для защиты от ЭСР, обувь для защиты от ЭСР, ролики и колеса обеспечивают необходимый электрический контакт между человеком или объектом и системой покрытия.При работе с незащищенными предметами ESDS следует избегать использования изолирующей обуви, роликов или колес, поскольку эти предметы предотвращают отток статических зарядов от тела или мобильного оборудования на землю через элементы управления ESD.

    ОДЕЖДА
    Одежда является важным элементом большинства EPA, особенно в чистых помещениях и очень сухих помещениях. Материалы одежды, особенно те, которые сделаны из синтетических тканей, могут генерировать электростатические заряды, которые могут разрядиться в изделиях ESDS, или они могут создавать электростатические поля, которые могут индуцировать заряды.Поскольку одежда обычно электрически изолирована или изолирована от тела, заряды на тканях одежды не обязательно передаются на кожу, а затем на землю. Одежда с защитой от статического электричества может подавлять или иным образом влиять на электрическое поле от одежды, которая находится под одеждой. Согласно ANSI / ESD S20.20 и стандарту одежды ANSI / ESD STM2.1, существует три категории одежды ESD:

    • Одежда ESD категории 1; одежду для контроля статического электричества , не прикрепленную к земле.Однако без заземления заряд может накапливаться на проводящих или рассеивающих элементах одежды, если они есть, что приводит к возникновению заряженного источника.
    • Одежда ESD категории 2; Одежда с заземляющим статическим контролем, при подключении к земле обеспечивает более высокий уровень подавления воздействия электрического поля от одежды, которую носят под одеждой.
    • Одежда категории 3 по ESD; Заземляющая система одежды для контроля статического электричества также связывает кожу человека с идентифицированной землей. Общее сопротивление системы, включая человека, одежду и заземляющий шнур, должно быть менее 35 МОм.

    РАБОЧИЕ СТАНЦИИ И РАБОЧИЕ ПОВЕРХНОСТИ
    Рабочее место для защиты от электростатического разряда относится к рабочей зоне отдельного человека, которая построена и оснащена материалами и оборудованием для ограничения повреждений предметов ESDS. Это может быть автономная станция на складе, складе или сборочной площадке, или в полевых условиях, например, в компьютерном отсеке в коммерческом самолете.Рабочее место также может быть расположено в контролируемой зоне, например, в чистом помещении. Ключевыми элементами управления электростатическим разрядом, входящими в состав большинства рабочих станций, являются рабочая поверхность, рассеивающая статическое электричество, средство заземления персонала (обычно браслет на запястье), общая точка заземления, а также соответствующие вывески и маркировка. Типичная рабочая станция показана на рисунке 2.

    Рабочая станция обеспечивает средства для подключения всех рабочих поверхностей, приспособлений, подъемно-транспортного оборудования и заземляющих устройств к общей точке заземления. Кроме того, может быть предусмотрено подключение дополнительных устройств заземления персонала, оборудования и принадлежностей, таких как постоянные или непрерывные мониторы и ионизаторы.

    Рабочие поверхности для защиты от электростатических разрядов с сопротивлением заземлению 1,0 x 10 6 до 1,0 x 10 9 обеспечивают поверхность с таким же электрическим потенциалом, что и другие элементы управления ESD на рабочей станции. Они также обеспечивают электрический путь к земле для контролируемого рассеивания любых статических зарядов на материалах, контактирующих с поверхностью. Рабочая поверхность для защиты от электростатического разряда также помогает определить конкретную рабочую зону, в которой должны работать элементы ESDS. Защитная рабочая поверхность от электростатического разряда соединена с общей точкой заземления.

    НЕПРЕРЫВНЫЕ ИЛИ ПОСТОЯННЫЕ МОНИТОРЫ
    Непрерывные (или постоянные) мониторы предназначены для обеспечения непрерывного тестирования системы браслета. Несмотря на то, что используется ряд технологий, цель остается неизменной: электрические соединения проверяются между точкой заземления, шнуром заземления, браслетом и телом человека, пока пользователь работает с предметами ESDS. Мониторы непрерывного действия могут также обеспечивать цепь мониторинга для защиты от электростатического разряда рабочей поверхности или другого оборудования, подключенного к заземлению.

    Типичные программы тестирования рекомендуют ежедневно проверять браслеты, которые используются ежедневно. Однако, если элементы ESDS чувствительны к значению, необходимо постоянное надежное заземление; тогда следует рассмотреть или даже потребовать непрерывный мониторинг. Ежедневное тестирование браслета можно не проводить, если используется постоянный мониторинг. Пользователи должны изучить различные типы систем непрерывного мониторинга, чувствительность их элементов ESDS и то, какая система лучше всего подойдет для их программы управления ESD.

    ПРОИЗВОДСТВЕННОЕ ОБОРУДОВАНИЕ И ПРОИЗВОДСТВО AIDS
    Хотя персонал может быть одним из основных генераторов электростатического заряда, автоматизированное производственное и испытательное оборудование также может создавать проблему электростатического разряда. Например, элемент ESDS может зарядиться из-за скольжения вниз по устройству подачи компонентов. Если устройство затем соприкасается с вставной головкой или другой проводящей поверхностью, происходит быстрый разряд от устройства к металлическому объекту и происходит событие CDM. Если невозможно избежать зарядки элемента ESDS — что довольно часто случается на современных сборочных линиях из-за изоляционных корпусов ИС — заряд, накопленный на упаковочных материалах, следует уменьшить с помощью ионизаторов.Кроме того, при работе с открытыми предметами ESDS могут возникнуть проблемы с различными производственными вспомогательными средствами, такими как ручные инструменты, ленты или растворители.

    Заземление является основным средством контроля статического заряда оборудования и многих вспомогательных средств производства. Согласно требованиям Национального электротехнического кодекса, большая часть электрического оборудования должна быть подключена к заземлению оборудования (зеленый провод) для проведения токов короткого замыкания. Это заземление также будет работать для защиты от электростатического разряда. Все электрические инструменты и оборудование, используемые для обработки или обращения с предметами ESDS, требуют трехконтактной заземленной вилки переменного тока.Ручные инструменты, которые не имеют электрического питания, например, плоскогубцы, кусачки и пинцеты, обычно заземляются через защитную рабочую поверхность от электростатического разряда и заземляют человека с помощью токопроводящих / рассеивающих инструментов. Крепежные приспособления по возможности должны быть изготовлены из проводящих материалов или материалов, рассеивающих статическое электричество; Материалы, рассеивающие статическое электричество, часто рекомендуются при работе с очень чувствительными устройствами. Отдельный заземляющий провод может потребоваться для токопроводящих или рассеивающих устройств, не контактирующих с антистатической рабочей поверхностью или обслуживаемых заземленным лицом.Для предметов, которые состоят из изоляционных материалов, может потребоваться использование ионизации или применение местных антистатиков для контроля образования электростатических зарядов и накопления статических зарядов.

    ПЕРЧАТКИ И НАПАЛЬЧИКИ
    Разумеется, заземленный персонал, работающий с предметами ESDS, не должен носить перчатки или накатные манжеты из изоляционного материала. Если используются перчатки или манжеты для пальцев, материал должен быть рассеивающим или проводящим. ESD TR53 предоставляет процедуры тестирования для измерения электрического сопротивления перчаток или кроваток для пальцев вместе с персоналом в системе.

    КОНТЕЙНЕРЫ ДЛЯ ПЕРЕМЕЩЕНИЯ МАТЕРИАЛОВ УПАКОВКИ
    Внутри EPA контейнеры для упаковки и погрузочно-разгрузочных работ должны иметь низкий заряд и быть рассеивающими или проводящими. За пределами упаковки EPA и контейнеров для погрузочно-разгрузочных работ также должна быть конструкция, обеспечивающая защиту от электростатического разряда.

    Непосредственная защита предметов ESDS от электростатического разряда обеспечивается упаковочными материалами, такими как защитные пакеты, гофрокороба, а также жесткие или полужесткие пластиковые пакеты.Основное использование этих предметов — защита продукта, когда он покидает предприятие, обычно при отгрузке покупателю. Кроме того, контейнеры для погрузочно-разгрузочных работ, такие как большие коробки и другие контейнеры, в первую очередь обеспечивают защиту при транспортировке между или внутри помещений.

    При использовании с предметами ESDS основная функция контейнеров для упаковки и погрузочно-разгрузочных работ заключается в ограничении возможного воздействия электростатического разряда от генерации трибоэлектрического заряда, прямого разряда и, в некоторых случаях, электростатических полей.Первоначально следует учитывать, что материалы с низким зарядом должны контактировать с предметами ESDS. Например, свойство низкого заряда могло бы контролировать трибоэлектрический заряд, возникающий в результате скольжения платы или компонента в упаковку или контейнер. Второе требование — материал может быть заземлен, поэтому диапазон сопротивления должен быть проводящим или рассеивающим. Третье свойство, требуемое за пределами EPA, — это обеспечение защиты от прямых электростатических разрядов, которые могут сделать упаковку и контейнер для погрузочно-разгрузочных работ защитным экраном от разряда.

    Доступно множество материалов, которые обеспечивают все три свойства: низкий уровень заряда, сопротивление и защиту от разряда. Внутренняя часть этих упаковочных материалов имеет слой с низким зарядом, но также имеет внешний слой с проводящим или рассеивающим диапазоном поверхностного сопротивления. В соответствии со стандартом упаковки ANSI / ESD S541 для упаковки или контейнеров для погрузочно-разгрузочных работ в пределах EPA требуется малозарядная, проводящая или рассеивающая упаковка. За пределами EPA упаковка или контейнеры для погрузочно-разгрузочных работ также должны иметь свойство защиты от разряда.При принятии решений об упаковке необходимо сбалансировать эффективность, стоимость и уязвимость устройства для различных механизмов (см. ANSI / ESD S541, ESD Handbook ESD TR20.20 и / или CLC / TR 61340-5-2 Руководство пользователя для более подробной информации. ).

    Измерения сопротивления или удельного сопротивления помогают определить способность материала обеспечивать электростатическое экранирование или рассеивание заряда.

    • Электростатическое экранирование ослабляет электростатические поля на поверхности упаковки для предотвращения разницы в электрических потенциалах внутри упаковки.
    • Экранирование разряда обеспечивается материалами с поверхностным сопротивлением, равным или меньшим 1 × 10 3 Ом при испытании в соответствии с ANSI / ESD STM11.11 или объемным сопротивлением, равным или меньшим 1 × 10 3 Ом-см при испытании в соответствии с методами ANSI / ESD STM11.12. Кроме того, эффективное экранирование может быть обеспечено упаковочными материалами, которые обеспечивают достаточно большой воздушный зазор между упаковкой и предметами ESDS. Способность некоторых корпусов обеспечивать защиту от разряда может быть оценена с помощью ANSI / ESD STM11.31, который измеряет энергию, передаваемую внутрь упаковки.
    • Диссипативные материалы обеспечивают рассеивание заряда. Эти материалы имеют поверхностное сопротивление более 1 × 10 4 Ом, но менее 1 × 10 11 Ом при испытании в соответствии с ANSI / ESD STM11.11 или объемное сопротивление более 1,0 × 10 5 Ом-см но меньше или равно 1,0 × 10 12 Ом-см при испытании в соответствии с методами ANSI / ESD STM11.12.
    • Низкая зарядная способность материала не обязательно определяется его сопротивлением или удельным сопротивлением.

    ИОНИЗАЦИЯ
    Большинство программ контроля статического электричества также имеют дело с изолированными проводниками, которые не заземлены, или с изоляционными материалами (например, наиболее распространенными пластиками), которые нельзя заземлить. Актуальные антистатики могут обеспечить временную способность рассеивать статические заряды при некоторых обстоятельствах.

    Однако более часто ионизация воздуха используется для нейтрализации статического заряда на изолированных и изолированных объектах путем создания сбалансированного источника положительно и отрицательно заряженных ионов.Статический заряд, присутствующий на объектах в рабочей среде, будет уменьшен, нейтрализован за счет притягивания зарядов противоположной полярности из воздуха. Поскольку он использует только воздух, который уже присутствует в рабочей среде, ионизация воздуха может применяться даже в чистых помещениях, где химические спреи и некоторые материалы, рассеивающие статическое электричество, неприменимы.

    Ионизация воздуха является одним из компонентов полной программы борьбы с электростатическими разрядами и не заменяет заземление или другие методы. Ионизаторы используются, когда невозможно все должным образом заземлить, и в качестве резервной копии для других методов статического контроля.В чистых помещениях ионизация воздуха может быть одним из немногих доступных методов контроля статического электричества.

    См. Стандарт ионизации ANSI / ESD STM3.1, ANSI / ESD SP3.3 и ESD TR53 для проверки напряжения смещения (баланса) и времени разряда ионизаторов.

    ЧИСТЫЕ ПОМЕЩЕНИЯ
    Хотя основные методы контроля статического электричества, обсуждаемые здесь, применимы в большинстве сред, производственные процессы в чистых помещениях требуют особого внимания.

    Многие объекты, являющиеся неотъемлемой частью процесса производства полупроводников (кварц, стекло, пластик и керамика), по своей природе генерируют заряд.Поскольку эти материалы являются изоляторами, этот заряд нельзя удалить путем заземления. Многие материалы для контроля статического электричества содержат частицы углерода или поверхностно-активные добавки, которые иногда ограничивают их использование в чистых помещениях. Потребность в мобильности персонала и использовании одежды для чистых помещений часто затрудняет использование браслетов. В этих условиях системы напольных покрытий / обуви с защитой от электростатического разряда и ионизации становятся ключевым оружием против статического заряда.

    ИДЕНТИФИКАЦИЯ
    Последним элементом нашей программы управления ESD является использование соответствующих символов для идентификации элементов ESDS, а также специальных продуктов, предназначенных для управления ESD.Два наиболее широко распространенных символа для обозначения элементов ESDS или защитных материалов для защиты от электростатического разряда, как определено в стандарте ассоциации ESD ANSI / ESD S8.1 — Символы осведомленности о электростатическом разряде.

    Рисунок 3 :
    Символ чувствительности к электростатическому разряду

    Символ чувствительности к электростатическому разряду (рис. 3) состоит из треугольника, протягивающейся руки и косой черты, проходящей через протягивающую руку.Треугольник означает «осторожность», а косая черта в протянутой руке означает «не трогать». Из-за его широкого использования рука в треугольнике стала ассоциироваться с электростатическим разрядом, а этот символ буквально переводится как «вещи, чувствительные к электростатическому разряду, не трогайте».

    Символ устойчивости к электростатическому разряду наносится непосредственно на интегральные схемы, платы и сборки, которые чувствительны к электростатическому разряду. Это означает, что обращение с этим предметом или его использование может привести к повреждению от электростатического разряда, если не будут приняты надлежащие меры предосторожности. Операторы должны быть заземлены перед обращением с ними.При желании уровень чувствительности предмета может быть добавлен к этикетке.

    Рисунок 4 :
    Символ защиты от электростатического разряда

    Символ защиты от электростатического разряда (рис. 4) представляет собой протянутую руку в треугольнике. Дуга вокруг треугольника заменяет косую черту. Этот «зонт» означает защиту.Этот символ указывает на материал для защиты от электростатического разряда. Его наносят на коврики, стулья, браслеты, одежду, упаковку и другие предметы, обеспечивающие защиту от электростатического разряда. Его также можно использовать в таком оборудовании, как ручные инструменты, конвейерные ленты или автоматизированные манипуляторы, которые специально разработаны или модифицированы для обеспечения свойств управления электростатическим разрядом (низкий заряд, проводящее / рассеивающее сопротивление и / или защита от разряда).

    РЕЗЮМЕ
    Для эффективных программ защиты от электростатических разрядов требуются различные процедуры и материалы.Координатор ESD должен регулярно выпускать и контролировать список конкретных продуктов для борьбы с ESD, разрешенных для использования в программе управления ESD на объекте. Мы представили краткий обзор наиболее часто используемых продуктов. Дополнительное подробное обсуждение отдельных материалов и процедур можно найти в таких публикациях, как ESD Handbook (ESD TR20.20), опубликованный ESD Association, или в Руководстве пользователя CLC / TR 61340-5-2.

    Ваша программа запущена и работает. Как определить, эффективен ли он? Как вы убедитесь, что ваши сотрудники следят за ним? В четвертой части мы рассмотрим темы аудита и обучения.

    ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ
    Стандарты ассоциации ESD

    ANSI / ESD S1.1: браслеты , ESD Association, Rome, NY 13440

    ANSI / ESD Характеристики 9032-STM2.1: Одежда , ESD Association, Rome, NY 13440

    ANSI / ESD STM3.1: Ionization , ESD Association, Rome, NY 13440

    ANSI / ESD SP3.3: Периодическая проверка ионизаторов воздуха , ESD Association, Рим, NY 13440

    ANSI / ESD STM4.1: Измерения сопротивления рабочих поверхностей , ESD Association, Rome, NY 13440

    ANSI / ESD STM4.2: ESD-защитные рабочие поверхности — характеристики рассеивания заряда , ESD Association, Rome, NY 13440

    ANSI / ESD S6.1 : Заземление, ESD Association, Rome, NY 13440

    ANSI / ESD STM7.1: Resistive Characterization of Materials-Floor Materials , ESD Association, Rome, NY 13440

    ANSI / ESD S8.1: Символы-ESD Осведомленность , Ассоциация ESD, Рим, NY 13440

    ANSI / ESD STM9.1: Сопротивление обуви , Ассоциация ESD, Рим, Нью-Йорк 13440

    ESD SP9.2: Сопротивление заземлителей обуви , Ассоциация ESD, Рим, Нью-Йорк 13440

    ANSI / ESD SP10.1: Автоматическая обработка Оборудование , ESD Association, Rome, NY 13440

    ANSI / ESD STM11.11: Измерение поверхностного сопротивления статических рассеивающих плоских материалов , ESD Association, Rome, NY 13440

    ANSI / ESD STM11.12: Измерение объемного сопротивления статических рассеивающих плоских материалов , ESD Association, Rome, NY 13440

    ANSI / ESD STM11.13: Двухточечное измерение сопротивления , Ассоциация ESD, Рим, Нью-Йорк 13440

    ANSI / ESD STM11.31: Оценка характеристик защитных мешков от электростатического разряда , Ассоциация ESD, Рим, Нью-Йорк 13440

    ANSI / ESD STM12 .1: Измерение сопротивления посадки , ESD Association, Rome, NY 13440

    ESD STM13.1: Электрический паяльный / демонтажный ручной инструмент , ESD Association, Rome, NY 13440

    ANSI / ESD SP15.1: In -Используйте испытание на сопротивление перчаток и манжет, ESD Association, Rome, NY 13440

    ANSI / ESD S20.20: Стандарт для разработки программы контроля ESD , Ассоциация ESD, Рим, Нью-Йорк, 13440

    ANSI / ESD STM97.1: Материалы пола и обувь — сопротивление в сочетании с человеком , Ассоциация ESD, Рим, Нью-Йорк 13440

    ANSI / ESD STM97.2: Материалы для полов и обуви — Измерение напряжения в сочетании с личным участием , ESD Association, Rome, NY 13440

    ANSI / ESD S541: Упаковочные материалы для ESD-чувствительных предметов, ESD Association, Рим , NY 13440

    ESD ADV1.0: Глоссарий терминов, ESD Association, Rome, NY 13440

    ESD ADV11.2: Тестирование накопления трибоэлектрического заряда , ESD Association, Rome, NY 13440

    ESD ADV53.1: ESD Protective Workstations , ESD Association , Рим, Нью-Йорк, 13440

    ESD TR20.20: Справочник по ESD , Ассоциация ESD, Рим, Нью-Йорк 13440

    ESD TR53: Проверка соответствия оборудования и материалов для защиты от электростатического разряда , ESD Association, Rome, NY 13440

    Другие ресурсы

    Центр надежности системы, 201 Милл-Стрит, Рим, Нью-Йорк 13440

    ANSI / IEEE STD142, IEEE Green Book , Институт инженеров по электротехнике и электронике

    ANSI / NFPA 70, Национальный электротехнический кодекс , национальный Ассоциация противопожарной защиты, Куинси, Массачусетс

    CLC / TR 61340-5-2 Руководство пользователя, Европейский комитет по стандартизации в электротехнике, Брюссель

    900 03

    Методы заземления в критически важных объектах

    % PDF-1.6 % 586 0 объект > / Метаданные 623 0 R / Контуры 113 0 R / Страницы 583 0 R / StructTreeRoot 117 0 R / Тип / Каталог / Viewer Настройки >>> эндобдж 604 0 объект > / Шрифт >>> / Поля [] >> эндобдж 623 0 объект > поток False11.08.582018-09-12T16: 18: 38.961-04: 00 Библиотека Adobe PDF 15.0Eatonc72bc7f170616d29240018ee6313f81cd929051d497229Adobe InDesign CC 13.1 (Macintosh) 2018-09-12T14: 23: 54.000-05: 002018-09-12T15 -09-11T15: 25: 41.000-04: 00application / pdf2018-09-12T16: 22: 12.040-04: 00

  • Eaton
  • Способы заземления в критически важных объектах
  • Способы заземления в критически важных объектах
  • xmp.id:5a67ae88-d4ad-46b9-9f05-937ca1dcfd88xmp.did:07801174072068118DBBAB668637C198proof:pdfuuid:ff07ad53-7a3f-44da-8514-2df9b78ebe95xmp.iid:ed244e25-d635-4e44-9b41-9e548f67a780xmp.did:07801174072068118DBBAB668637C198defaultxmp.did:886738FBB5CEE21192DD8F08ADAD9468
  • преобразованный Adobe InDesign CC 13.1 (Macintosh) 2018-09-11T14: 25: 41.000-05: 00от приложения / x-indesign к приложению / pdf /
  • Библиотека Adobe PDF 15.0false
  • eaton: таксономия продуктов / системы распределения электроэнергии среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-5-15kv-36-wide
  • eaton: таксономия продукции / распределительные-системы-распределения-среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-27-kv-42-wide-arc-устойчивое-металлическое-плакированное-распределительное устройство среднего напряжения
  • eaton: таксономия продукции / распределительные-распределительные устройства среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-38-kv-42-wide-arc-устойчивое-металлическое-плакированное-распределительное устройство среднего напряжения
  • eaton: таксономия продукции / распределительные-системы-распределения-среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-38-kv-42-wide-metal-clad-mid-voltage-switchgear
  • eaton: ресурсы / технические ресурсы / заметки по применению
  • eaton: language / en-us
  • eaton: таксономия продукции / распределительные-системы-распределения-среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-5-kv-26-широкая-узкая-конструкция-металлическая-оболочка-распределительное устройство среднего напряжения
  • eaton: вкладки поиска / тип содержимого / ресурсы
  • eaton: страна / северная америка / сша
  • eaton: классификация продукции / распределительные-системы-распределения-среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-27-kv-36-wide-metal-clad-среднее-распределительное устройство среднего напряжения
  • eaton: таксономия продукции / распределительные-системы-распределения-среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-5-15-kv-36-wide-arc-устойчивые-металлические-плакированные-среднего напряжения -распределитель
  • конечный поток эндобдж 113 0 объект > эндобдж 583 0 объект > эндобдж 117 0 объект > эндобдж 118 0 объект > / A3> / A5> / A6> / A7> / Pa0> / Pa1> / Pa10> / Pa13> / Pa14> / Pa16> / Pa17> / Pa2> / Pa20> / Pa3> / Pa4> / Pa5> / Pa6> / Pa7> / Pa8 >>> эндобдж 119 0 объект > эндобдж 120 0 объект > эндобдж 121 0 объект > эндобдж 122 0 объект [161 0 R 162 0 R 163 0 R 164 0 R 164 0 R 164 0 R 164 0 R 164 0 R 165 0 R 166 0 R 166 0 R 166 0 R 166 0 R 166 0 R 168 0 R 169 0 R 169 0 R 169 0 R 169 0 R 169 0 R 579 0 R 578 0 R 576 0 R 575 0 R 573 0 R 572 0 R 570 0 R 569 0 R 567 0 R 566 0 R 564 0 R 563 0 R 561 0 R 560 0 R 171 0 R 172 0 R 172 0 R 172 0 R 172 0 R 551 0 R 550 0 R 549 0 R] эндобдж 123 0 объект [NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL 177 0 R 178 0 R 178 0 R 178 0 R 179 0 R 546 0 R 545 0 R 543 0 R 542 0 R 540 0 R 539 0 R 539 0 R 181 0 R 534 0 R 533 0 R 531 0 R 530 0 R 530 0 R 528 0 R 527 0 R 527 0 R 527 0 R 522 0 R 521 0 R 520 0 R 185 0 R 186 0 R 186 0 R 186 0 R 517 0 R 186 0 R 186 0 R 186 0 R 187 0 R 187 0 R 187 0 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 516 0 R 515 0 R 514 0 R 512 0 R 510 0 R 511 0 R 510 0 R 508 0 R 507 0 R 190 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 502 0 R 501 0 R 500 0 R 194 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 196 0 R 196 0 R 196 0 R 196 0 R 196 0 R 196 0 R 196 0 R 196 0 196 руб. 0 196 руб. 0 197 0 руб. 197 0 руб. 197 0 руб. 197 0 руб. 197 0 руб. 198 0 руб. 198 0 руб. 198 0 руб. 198 0 руб. 198 0 руб. 198 0 199 0 рэнд 199 0 рэнд 199 0 рэнд 199 0 рэнд 199 0 рэнд 0 р19 0 рэнд 497 0 рэнд 199 0 рэнд 199 рэнд 0 рэнд 199 0 рэнд 199 рэнд 0 р] эндобдж 124 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null 201 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 496 0 R 495 0 R 494 0 R 205 0 R 206 0 206 0 R 206 0 R 206 0 R 206 0 R 206 0 R 206 0 R 491 0 R 490 0 R 489 0 R 487 0 R 485 0 R 486 0 R 485 0 R 481 0 R 480 0 R 480 0 R 480 0 R 479 0 R 479 0 R 478 0 R 478 0 R 473 0 R 472 0 R 471 0 R 469 0 R 470 0 R 464 0 R 463 0 R 462 0 R 461 0 456 руб. 455 руб. 0 руб. 454 0 пр. 453 0 руб. 448 0 руб. 447 0 руб. 446 0 руб. 445 0 руб. 434 0 руб. 433 руб. 0 R 211 0 R 211 0 R 213 0 R 213 0 R 213 0 R 430 0 R 429 0 R 427 0 R 426 0 R 424 0 R 423 0 R 421 0 R 420 0 R 215 0 R 215 0 R 215 0 R 215 0 R 215 0 R 215 0 R 215 0 R 216 0 R 216 0 R 216 0 R 216 0 R 216 0 R 216 0 R 414 0 R 413 0 R 411 0 R 412 0 R 411 0 R 219 0 R 219 0 219 0 R 219 0 R 219 0 R 220 0 R 220 0 R 220 0 R 220 0 R 408 0 R 407 0 R 406 0 R 406 0 R] эндобдж 125 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null значение NULL null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null 223 0 R 224 0 R 224 0 R 224 0 R 225 0 R 225 0 R 225 0 R 225 0 R 226 0 R 227 0 R 227 0 R 227 0 R 227 0 R 228 0 R 228 0 R 228 0 R 228 0 R 228 0 R 228 0 R 228 0 R 228 0 R 403 0 R 402 0 R 401 0 R 398 0 R 397 0 R 396 0 R 393 0 R 392 0 R 391 0 235 0 R 236 0 R 236 0 R 236 0 R 236 0 R 388 0 R 387 0 R 386 0 R 239 0 R 240 0 R 240 0 R 240 0 R 240 0 R 240 0 R 240 0 R 241 0 R 383 0 R 382 0 R 382 0 R 380 0 R 358 0 R 358 0 R 379 0 R 378 0 R 378 0 R 376 0 R 375 0 R 375 0 R 373 0 R 372 0 R 372 0 R 370 0 R 369 0 R 367 0 R 366 0 R 366 0 R] эндобдж 126 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null значение NULL null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL 354 0 R 344 0 R 344 0 R 344 0 R 353 0 R 352 0 R 352 0 R 350 0 349 р. 349 0 р. 245 0 р. 245 0 р. 245 0 р. 245 0 р. 245 0 р. 246 0 р. 246 0 р. 246 0 р. 246 0 р. 247 0 р. 247 0 р. 341 0 р. 340 0 р. 338 0 р. 339 0 R 338 0 R 335 0 R 334 0 R 332 0 R 333 0 R 332 0 R 252 0 R 252 0 R 255 0 R 256 0 R 256 0 R 256 0 R 256 0 R 257 0 R 257 0 R 257 0 R 257 0 R 257 0 R 257 0 R 257 0 R 257 0 R 258 ​​0 R 258 ​​0 R 258 ​​0 R 329 0 R 328 0 R 327 0 R 324 0 R 323 0 R 322 0 R 263 0 R 264 0 R 264 0 R 264 0 R 264 0 R 264 0 R] эндобдж 127 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null значение NULL null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL 267 0 R 268 0 R 268 0 R 268 0 R 319 0 R 318 0 R 316 0 R 315 0 R 315 0 R 270 0 R 270 0 R 270 0 R 270 0 R 270 0 R 311 0 R 310 0 R 309 0 R 309 0 R 273 0 R 273 0 R 273 0 R 273 0 R 273 0 R 274 0 R 274 0 R 274 0 R 274 0 R 274 0 R 274 0 R 274 0 R 306 0 R 305 0 R 304 0 R 304 0 R 279 0 R 279 0 R 279 0 R 279 0 R 279 0 R 279 0 R 279 0 279 0 R 280 0 R 280 0 R 281 0 R 281 0 R 281 0 R 281 0 R 282 0 R 282 0 R 282 0 R 301 0 R 300 0 R 300 0 R 298 0 R 297 0 R 295 0 R 294 0 R] эндобдж 128 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null значение NULL null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL 129 0 R 130 0 R 130 0 R 130 0 R 130 0 R 130 0 R 130 0 R 131 0 R 131 0 R 131 0 R 131 0 R 132 0 R 133 0 R 132 0 R 134 0 R 135 0 R 136 0 R 137 0 R 137 0 R 138 0 R 139 0 R 140 0 R 141 0 R 142 0 R 143 0 R 144 0 R 145 0 R 146 0 R 147 0 R 148 0 R 149 0 R 150 0 R 151 0 R 151 0 R 151 0 152 0 R 153 0 R 154 0 R 155 0 R 156 0 R 157 0 R] эндобдж 129 0 объект > эндобдж 130 0 объект > эндобдж 131 0 объект > эндобдж 132 0 объект > эндобдж 133 0 объект

    % PDF-1.5 % 1 0 объект > / Метаданные 2 0 R / Страницы 3 0 R / StructTreeRoot 5 0 R / Тип / Каталог >> эндобдж 2 0 obj > поток 2015-09-21T16: 44: 16-07: 002015-09-21T16: 44: 16-07: 002015-09-21T16: 44: 16-07: 00 Приложение Adobe InDesign CC 2014 (Windows) / pdfuuid: 44862331-3fae -4d06-b30f-594044694199uuid: 1c0a64d3-8d87-4d2d-96c1-a9b4cc78945c Adobe PDF Library 11.0 конечный поток эндобдж 3 0 obj > эндобдж 5 0 obj > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 255 0 объект > эндобдж 256 0 объект > эндобдж 257 0 объект > эндобдж 258 0 объект > эндобдж 259 0 объект > эндобдж 260 0 объект > эндобдж 261 0 объект > эндобдж 262 0 объект > эндобдж 263 0 объект > эндобдж 264 0 объект > эндобдж 265 0 объект > эндобдж 266 0 объект > эндобдж 267 0 объект > эндобдж 14 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Rotate 0 / StructParents 8 / TrimBox [0.g = #? jO, f [ڙ 1 & X.3i`Tr2-ru ո k7O = Ჴ > w \ L [| / p # X / NqMKer ڰم? s-SjP- [Av / 4P

    Качество воздуха в помещении в 2-5 раз хуже, чем на улице

    Добро пожаловать в Thomas Insights — каждый день мы публикуем самые свежие новости и аналитика, чтобы держать наших читателей в курсе того, что происходит в отрасли. Подпишитесь здесь, чтобы получать самые популярные новости дня прямо на ваш почтовый ящик.

    Спонсором этой статьи является Filti LLC , производитель американских масок для лица и моющихся воздушных фильтров.Компания Filti, проверенная Томасом, принимала участие в усилиях по реагированию на COVID-19.

    Представьте, что у вас есть отличная идея для нового бизнеса. Вы исследуете, начинаете разрабатывать свой продукт и даже начинаете создавать канал продаж. А потом разразилась пандемия.

    Что бы вы сделали?

    Если вы похожи на Дакоту Хендриксон, основателя и генерального менеджера Filti LLC, вы меняете направление, привлекаете друга детства и небольшую, но непоследовательную команду, а затем идете вертикально.

    «Filti была основана в январе 2019 года», — говорит Хендриксон.«Мое внимание было сосредоточено главным образом на попытке внедрить технологию нановолокна на рынок потребительских товаров. Нановолокно ранее использовалось на рынке промышленных газовых турбин. На потребительском рынке она никогда не использовалась по-настоящему ».

    «Я работал над разработкой продукта и созданием веб-сайта», — продолжает он, рассказывая историю своей компании. «Перенесемся в март 2020 года, и мы как раз собираемся запустить моющийся многоразовый фильтр MERV 13 на нашем веб-сайте и запустить его, и внезапно пандемия поразила.”

    «Мы быстро перешли на производство некоторых материалов для масок и сразу же начали получать заказы», ​​- говорит Хендриксон. Чтобы удовлетворить спрос, он обратился к своему другу Джорджу Цацосу. Они выросли в одном районе и оба учились в Университете Крейтон и Бизнес-колледже Хейдера, но по разным специальностям, что делало их командой мечты. «Джордж отправил около 50 000 посылок за шесть месяцев».

    Чтобы стать более вертикальным, Цацос перешел на должность вице-президента по продажам, они наняли менеджера завода, который контролировал производство, и перешли от продажи материалов к продаже готовой продукции.«Были крупные корпорации, у которых были все виды материалов, но они не знали, как преобразовать их в готовые маски для лица, поэтому Филти пришел на помощь», — объясняет Хендриксон. Filti начала производить маски для лица хирургического типа, а через несколько месяцев, в ноябре 2020 года, компания представила свой респиратор NF95.

    Теперь Хендриксон хочет вернуться к сути бизнеса Filti: воздушным фильтрам.

    Мы спросили Хендриксона и Цацоса, что, по прогнозам Filti, который умеет рассчитывать время, станет следующей большой тенденцией в области фильтрации воздуха, открыли шокирующую реальность о воздухе в помещении, которым мы дышим, и раскрыли секреты их предпринимательского преимущества.

    Познакомьтесь с Filti

    • «Мы гордимся тем, что на 100% произведены в США», — говорит Хендриксон.
    • Дистрибьюторы могут стать зарегистрированными проверенными поставщиками продуктов Filti. «У нас есть продукты оптом, и наши продукты доступны оптом не только для потребителей, но и для B2B-сегмента», — говорит Цацос.
    • «Несмотря на то, что у нас есть новые технологии, мы чрезвычайно конкурентоспособны», — говорит основатель Filti. «Мы — лидер с низкими затратами».

    Thomas Insights (TI): Учитывая, что всех беспокоит то, чем они дышат в наши дни, какие тенденции вы наблюдаете в фильтрации?

    Дакота Хендриксон (DH): Все пытаются повысить свой рейтинг фильтрации.До пандемии широкая публика использовала MERV 8 — MERV 11, но теперь все хотят MERV 13. MERV 13 способны улавливать больше частиц, особенно вредных.

    Георгий Цацос (GT): Спрос огромный. Нью-Йорк и Калифорния издали постановление, согласно которому все общественные здания должны фильтроваться через фильтры MERV 13. Похоже, что большинство государств последуют этой тенденции в самое ближайшее время.

    Кроме того, у нас есть большой запас носителей MERV 13.Это позволило нам опередить эту тенденцию. И у нас есть отличная команда инженеров, которые постоянно проводят исследования и разработки, чтобы вывести на рынок следующий большой фильтр.

    TI: Мы склонны беспокоиться о загрязнении в общественной сфере, но почему фильтрация важна для обычного дома?

    DH: Люди предполагают, что качество воздуха в помещении лучше, чем на улице, но на самом деле это 100% ложь. Если вы ссылаетесь на EPA или CDC, качество воздуха в помещении примерно в два-пять раз на хуже, чем на , чем на улице.Бывают случаи, когда качество воздуха в помещении может быть в 100 раз хуже, чем на улице.

    В доме есть загрязнения, которые могут превратиться в частицы и в конечном итоге попасть в ваши легкие. Некоторые из этих частиц могут быть формальдегидом, строительными материалами из дерева в вашем доме и асбестом.

    Большая часть пыли в вашем доме образуется из клеток кожи, волос, домашних животных и детей. Все эти факторы на самом деле ухудшают качество воздуха в помещении. Наши фильтры настолько эффективны и современны, что способны улавливать такие мелкие частицы микронного уровня, которые обеспечивают значительно более чистые дома.Это определенно сохраняет дома людей в чистоте.

    Если вы посмотрите на наш запатентованный моющийся фильтр, это действительно экологически чистый продукт. На рынке есть и другие моющиеся фильтры, но они электростатические, и многие люди не понимают, что когда вы получаете влажность, влагу или любую воду на электростатическом фильтре, вы фактически нейтрализуете их. обвинения. Наш моющийся фильтр механически эффективен. Когда вы его стираете, это не снижает заряд носителя.

    Большинство фильтров одноразовые, поэтому каждые три месяца люди выбрасывают их в мусор.Мы посчитали, и только в США — если учитывать только использование в жилых домах — количество отходов одноразовых фильтров за год может обернуться вокруг Земли примерно 157 раз. Представьте, если мы включим коммерческое и промышленное использование!

    В финансовом отношении Filti значительно более рентабельна. Вы можете пойти на Amazon и купить наш моющийся фильтр за 49,99 долларов, а если бы вы покупали одноразовые фильтры, вы, вероятно, потратили бы около 100 долларов на свой дом.

    Это превосходный воздушный фильтр, обеспечивающий безопасность вас и вашей семьи.

    TI: Что отличает Filti от конкурентов?

    DH: Если вы поговорите с некоторыми людьми, которые носят наши маски для лица из нановолокна, они скажут, что это самая дышащая маска на рынке.

    Основным компонентом, который отличает нас от других, являются нановолокна. Это одна из новейших и величайших технологий, поразивших отрасль фильтрации. Все больше и больше промышленных предприятий и крупных коммерческих предприятий используют продукты из нановолокна для обеспечения безопасности и защиты своих зданий и, очевидно, от распространения любых других бактерий или вирусов.

    В большинстве фильтров в мире сегодня используется электростатический заряд, поэтому они фактически притягивают частицы через заряд, в то время как мы фильтруем эти загрязнители механически. Преимущество нановолокна заключается в том, что вы можете достичь действительно высокой эффективности, сохраняя при этом чрезвычайно высокую воздухопроницаемость.

    TI: Как новая компания вы справлялись с логистическим кошмаром пандемии?

    GT: К нам пришел клиент, у которого нынешнему поставщику требовалось более трех месяцев, чтобы выполнить его заказы.Напротив, мы смогли выполнить заказ за 2 недели. У нас есть возможность разворачиваться быстрее, чем у наших конкурентов.

    Многие из этих крупных игроков не могут справиться со своими безумно высокими требованиями, потому что они — главный источник. Как «новый игрок» в отрасли, мы смогли найти поставщиков, у которых нет огромных счетов, поэтому мы получили приоритет, потому что мы велики в их бухгалтерских книгах, но не велики в общей схеме индустрии фильтров. У нас прекрасные отношения с нашим поставщиком носителей, поставщиком гофрированного картона и всеми остальными поставщиками, от которых мы действительно зависим.Мы все получаем взаимную выгоду, усердно работая для достижения одной и той же общей цели.

    Мы также проделали большую работу с нашим каналом поставок, заказав достаточное количество, чтобы опережать дефицит. Это то, что я пытаюсь прояснить для многих потенциальных клиентов B2B, говоря: «Эй, мы получили это. Дайте нам заказ на покупку, и мы позаботимся о вас».

    DH: Часть вашего предпринимательского пути при открытии компании — это время. Мы пришли вовремя. Если вы посмотрите на наши цифры того, что мы сделали во время пандемии, я действительно совершенно уверен, что нет других компаний, которые делали бы то же самое.Были люди, которые говорили: «О, спекуляция», но мы продавали не для получения прибыли; мы продавали, чтобы помочь нуждающимся. Мы действительно просто продавали, чтобы окупиться.

    Во время пандемии, когда людям нужно защитить себя, они, естественно, думают, что их заказы должны поступать быстрее, чем Uber Eats может доставить вам. UPS столкнулась с существенными логистическими задержками, поэтому мы заменили оплаченную ими услугу наземной доставки UPS на более быструю двухдневную авиаперевозку UPS. Мы съели эту цену, что было значительным расходом для нас, как для новой компании.Это было то, что мы, , хотели, чтобы сделал, чтобы помочь нуждающимся.

    Мы гордимся своей службой поддержки клиентов. Мы можем помогать людям, быть один на один, обеспечивать прозрачность, и наши клиенты были благодарны. Мы делаем все возможное, чтобы помочь им и их близким, обезопасить их и помочь им почувствовать себя лучше. И в конце концов они возвращаются, оставляют действительно хорошие отзывы и присылают нам приятные сообщения: «Спасибо. Вы спасли нашу семью …»

    У нас был один дом престарелых, где ни один человек не заразился COVID, и все они использовали продукты Filti.Это то, что нас поддерживает.

    TI: В чем секрет ’s Filti успешного предпринимательства во время кризиса?

    DH: Мы действительно худые, подлые и молодые. Парням, которые занимаются бизнесом изо дня в день, 25 лет или меньше. Мы умеем быть действительно гибкими. Мы очень продуктивны. У нас не так много рабочих на палубе, как могло бы быть — нас пять или шесть из нас, которые работают в штаб-квартире здесь, в Канзас-Сити, и еще около 12 из нас работают на производственном предприятии в Клермор, Оклахома, пригород Талсы.Все мы выполняем несколько работ. Мы добились успеха во многих сферах, учитывая минимальные ресурсы, которые у нас есть.

    Это действительно командная работа. Если кто-то перегружен, мы вмешаемся и поможем ему. Это путь предпринимательства. Погружаемся. Посмотрим часовой семинар. Мы прочитаем книгу. Мы получим образование. Разберемся сами.

    Все сводится к общению и исполнению, и в этом Filti действительно хорош. Мы быстро движемся, очень хорошо общаемся, выполняем и выполняем.

    Последние 15-16 месяцев походили на питье из пожарного шланга. В некоторые дни вы идете домой и так измотаны. Но мы получили много сообщений от людей, которые рассказали нам интересные истории о том, как мы обеспечиваем их безопасность и как мы предотвращаем дальнейшее распространение COVID-19 в их лесу. Эти сообщения лишь подпитывают нас, чтобы продолжать доставлять и помогать нуждающимся.

    Изображение предоставлено: Нина Будай / Shutterstock.com

    Производитель добавок из Массачусетса приобретает фирму по 3D-печати из различных материаловСледующая история »

    Больше от предпринимателей

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *