Схема задержки выключения реле на 12 вольт: схема подключения. Сфера применения реле времени

Содержание

Схема задержки выключения реле на 12 вольт

Сейчас практически у каждого видеорегистратора есть функция задержки отключения. Задействуется она благодаря трём проводам, выходящим из корпуса устройства. Также как у автомагнитолы: красный провод подключается к цепи питания аксессуаров AAC, желтый «дежурный» провод соединяется с аккумуляторной батареей, естественно через предохранитель, ну а черный цепляется на массу автомобиля.

Есть небольшой нюанс в том, что лучше красный провод подключать к цепи зажигания IGN1, чтобы видеорегистратор не отключался при запуске мотора. К контакту IGN2, который есть в некоторых иномарках, подключаться не надо, поскольку на нём тоже пропадает напряжение при работе стартера.

Но сейчас речь не об этом. Вот в чем дело, даже отключенный видеорегистратор, так сказать в режиме ожидания, все равно потребляет электричество. И это происходит через дежурный, постоянно подключенный к батарее проводок. Вроде немного, всего около 50 мА, но для небольшого аккумулятора малой емкости это критично.

А если оставить машину безвыездно на месяц, то и вовсе катастрофа.

Проблему можно решить, если выходя из машины отключить видеорегистратор полностью. А это значит отсоединить все провода от цепи питания, через замок зажигания, тумблер, всё равно как. Можно даже предохранитель вытянуть. Но дополнительный «дежурный» проводок питания не просто так придуман. И не зря у видеозаписывающего устройства есть продвинутая функция задержки отключения. Отключишь разом видеорегистратор от питания, и он не успеет сохранить последнюю запись, а скорее всего попросту зависнет.

Знакомая ситуация? И вот что можно сделать: отключать дежурную цепь питания виорегистратора не сразу, а с задержкой. Конечно же, понадобится электромеханическое реле. Для такого слабомощного устройства как видеорегистратор или навигатор подойдет самое маленькое с немощными контактами. Главное чтобы работало от 12 В. Остается только поискать мелочные электронные детали.

Вот простая схема реле с задержкой отключения.

Управляющее 12 В снимается при повороте замка зажигания, реле ещё остается включенным за счет заряженного конденсатора, ток от которого удерживает открытым ключевой транзистор.

В этой схеме конденсатор С1и резистор R2 подобраны так, чтобы реле после снятия управляющего 12 В от замка зажигания продолжало ещё работать где-то 30 секунд.

Очевидно, что здесь применено большое автомобильное реле, поскольку поставлен слишком мощный биполярный транзистор КТ829, составной в металлопластмассовом корпусе ТО-220. Можно обойдись менее мощным и более дешевым транзистором обратной проводимости КТ817 или КТ815, если найдете на какой-то плате микрорелюшку на 12 В. Её небольших контактов будет достаточно для включения, отключения видеорегистратора или навигатора. А маленьким герконовым реле с сопротивлением катушки более 1 КОм вполне возможно управлять даже транзистором КТ315. Можете применить аналоги транзисторов. Хотя предложенные детали являются очень распространенными.

Конденсаторы на 1000 мкФ имеют довольно большие размеры, а видеорегистратору достаточно всего 5 секунд чтобы сохраниться. Поставив конденсатор малой емкости, и применив заодно небольшое реле с килоомной катушкой, можно уменьшить собранную схему.

Вот усовершенствованная схема задержки отключения видеорегистратора.

Дополнительно диод D2 параллельно катушке реле понадобился для снятия обратного тока при коммутации транзистора. Так как у маленького, немощного реле катушка намотана тончайшей проволокой, которая перегорает даже от миллиамперных скачков.

В итоге, даже после доработки схема задержки отключения осталась очень простой и дешевой. Её запросто можно собрать на маленькой макетной плате.

На рисунке показана схема узла универсальной задержки выключения любого устройства.

Принципиальная схема

Непосредственно коммутирует нагрузку реле К1. Его группы контактов рассчитаны на управление маломощной нагрузкой с током до 0,2 А.

Для коммутации более мощных потребителей энергии, например для коммутации активной нагрузки в сети 220 В придется вводить в схему более мощное реле таким образом, чтобы контакты К1 подавали питание на дополнительное реле, а оно своими контактами коммутировало нагрузку.

Рис. 1. Принципиальная схема реле времени на двух транзисторах.

Схема не требует настройки и начинает сразу стабильно работать. Этот компактный узел можно вмонтировать в любой промышленный корпус или прибор (холодильник, электронагреватель и т.д.).

В представленном виде – это готовое простое устройство, способное управлять светом в прихожей, коридоре, подсобном помещении, на лестнице – везде, где требуется локальное включение освещения с автоматическим выключением.

Смещение, задаваемое через резистор R2 на базу транзистора VT1, не открывает его, но держит в состоянии ожидания. Включение однотипных транзисторов по схеме эмиттерного повторителя позволяет им реагировать даже на минимальный ток на входе. Благодаря этому удалось с применением небольшой емкости оксидного конденсатора С1 добиться длительной задержки (при напряжении питания 11 В, С1 = 4000 мкФ, R3 = 47 кОм) – до 5,5 мин.

Задержка выключения зависит от емкости С1, его марки и устойчивости к изменению температуры окружающей среды (ТКЕ – температурный коэффициент емкости). Диод VD1 препятствует броскам напряжения через обмотку реле при его включении и устраняет дребезг контактов К1.

Запуск схемы задержки осуществляется кратковременным замыканием контактов переключателя S1. Через резистор R1 конденсатор С1 зарядится до состояния насыщения и это напряжение откроет транзисторы VT1, VT2. Реле К1 включит нагрузку.

После размыкания контактов S1 транзисторы будут открыты и реле К1 включено до тех пор, пока конденсатор С1 не разрядится до напряжения менее 0,3 В. Тогда транзисторы закроются и реле К1 обесточится.

Детали

Все постоянные резисторы в схеме типа МДТ-0,5, оксидный конденсатор С1 типа К50-20 или фирмы TESLA.

Диод VD1 препятствует дребезгу контактов реле и броскам обратного тока через обмотку К1 в моменты включения/отключения. Реле К1 – любое на напряжение срабатывания 6. 10 В.

Транзисторы можно заменить на МП16, МП26, МП39-МП42, КТ361, КТ502, КТ3107 с любым буквенным индексом. Переключатель S1 любой. Провода соединения переключателя S1 со входом схемы должны иметь минимальное сопротивление. Удобно использовать провода МГТФ-1.

Устройство проверено длительной эксплуатацией в круглосуточном режиме при длине проводов 3,5 м. К примеру, аналогичная схема, построенная на чувствительном элементе микросхемы с технологией МОП (К561ЛА7), работала бы не стабильно из-за наводок (помех), создаваемых в проводах такой длины.

Напряжение питания узла можно изменять в широких пределах – от 5 до 25 В (верхний предел необходимо согласовать по справочнику с применяемыми транзисторами и пропорционально увеличить сопротивление резисторов R1, R2). Источник питания может быть нестабилизированным.

При замыкании контактов переключателя S1 во время еще не закончившейся разрядки конденсатора С1 время задержки выключения увеличивается еще на 5 мин.

Литература: А. П. Кашкаров, А. Л. Бутов – Радиолюбителям схемы, Москва 2008.

Предлагаю простую схему устройства управления ближним светом или ходовыми огнями автомобиля. Водители очень часто при выезде автомобиля с парковки забывают включать ближний свет, а при остановки и уходе забывают выключить, что грозит разрядом аккумуляторной батареи. Устройство включает ближний свет автоматически спустя 8-10 сек. Схема доступна для повторения даже начинающему радиолюбителю, содержит мало радиоэлементов и надёжна в работе.

Рассмотрим работу схемы:

При подаче на клемму Х1 питания 12в с замка зажигания автомобиля напряжение через резистор поступает на конденсатор, который начинает заряжаться. При достижении на нём определённого уровня напряжения, через 8-10 сек, открывается транзистор и срабатывает реле. Его контакты замыкаются и питание поступает в схему автомобиля. Ходовые огни можно подключить напрямую непосредственно к клемме Х2. Если нет ходовых огней, а только ближний свет, то клемма Х2 подключается к переключателю ближнего света автомобиля.

Схема собрана навесным монтажом. После сборки и проверки работоспособности схемы все радиоэлементы упаковываются в коробочку или в несколько слоёв изоленты. Устройство устанавливается в автомобиль в удобном для монтажа месте.

Детали: транзистор С3987 заменим на КТ829А. Конденсатор электролитический желательно взять меньших габаритов, ещё чем больше его ёмкость тем дольше задержка включения реле, а соответственно и света. Реле на ток контактов не менее 5А (всё зависит от мощности ходовых огней) и сопротивлением катушки не менее 120 Ом.

Также можно подключить и простое пятиконтактное автомобильное реле.

Схема задержки включения реле на 12 вольт – АвтоТоп

Решил как-то я автоматизировать включение ДХО (ПТФ) с задержкой после зажигания – секунд 10-13.
Было 3 варианта:
1. Готовый блок управления за деньги.
2. Самосборная приблуда на транзисторах и конденсаторах.
3. Самосборная приблуда на цифровом таймере.
Хотелось и чесалось бесплатно и что-то своими руками собрать.

Решил собрать реле задержки включения на микросхеме NE555. (третий вариант).
Нашел детали из того, что под ногами валялось, т.е. ранее было выпаяно, разобрано, заброшено и забыто, а сейчас вспомнено =)

Реле надо брать 4 или 5-ти контактное с номерами 23.3787 или 75.3777. У них места достаточно для встраивания внутрь микросхемы.

Делаем обвязку микрухи (создаем жука =)).

В некоторых электронных конструкциях иногда возникает потребность включения того или иного узла или определенной нагрузки с временной задержкой после подачи питания на схему. Схемотехника таких устройств содержит множество вариантов, один из них – узел задержки включения реле, выполненный на одном биполярном транзисторе с несколькими ключевыми элементами в обслуживании .

Реле времени сегодня является электронным устройством, которое устанавливается на любые бытовые приборы, для которых имеет значение отсчет времени. Поэтому большой интерес для любителей электроники является самостоятельная сборка реле времени.

При этом, выдержки времени нужны не только для включения и выключения приборов, но также и для мощности нагрева, как это предусматривают микроволновые печи. В зависимости от времени включения происходит ее нагрев.

  • Устройство
  • Простая радиосхема
  • Многофункциональные релейные устройства

Устройство

Для того, чтобы понять, как устроено электронное реле, полезно вспомнить старые механические регуляторы времени. Скажем, у прежних стиральных машин поворот вынесенной на корпус ручки включал исполнительный механизм. Одновременно запускалась выдержка. По прошествии заданного времени исполнительный механизм отключался. По такому алгоритму работают любые включатели времени либо таймеры, даже находящиеся в микроконтроллере (МК).

Хотя сегодня, в век электроники, существуют очень много электронных часовых механизмов и реле, то возникает вопрос о необходимости изготовления механизма, регулирующего время своими руками. Ответить на него очень просто. Часто дома приходится делать что-то, где потребуются дозированные временные границы. Поэтому простые механизмы регулирования временивозможно собрать и самому, своими руками.

Простая радиосхема

Схема печатной платы реле на 12 в

Приведем одну из наиболее простых схем. Для наглядности приводится схема и изображение печатной платы реле на 12 в.

Представим, что кнопка sb1 выключена. На обкладке конденсатора с1 сейчас напряжения нет. В результате этого, транзисторы закрыты и в обмотках реле ток отсутствует. После включения кнопки происходит заряд емкости с1, открывающий транзистор vt1, к базе которого прикладывается отрицательное напряжение. В итоге будет открыт второй транзистор и сработает реле k1.

Если отпустить кнопку, то произойдет разряд конденсатора по цепи: r2-r3 эмиттер vt1-r4.

Реле остается включенным, до того момента, когда напряжение на контактах емкости не снизится до 2-3 вольт. На протяжении этого времени соединения реле будут пребывать в одном из положений: либо включенном, либо отключенном.

Временная выдержка регулируется в пределах, которые зависят от емкости с1 и суммы сопротивлений подключенных к ней цепей. Задержка по длительности может регулироваться с помощью сопротивления r3. Получение более увеличенных пределов выдержек возможно с помощь увеличения номиналов с1 и r3. Схема простая, микросхемы отсутствуют.

Если нужно изготовить реле времени на 220 в, то можно воспользоваться следующей схемой. Здесь представлена очень простая схема подключения.

С включением соединенияs1 емкость с1 будет заряжаться, на управляющую ножку тиристора подается плюс, тиристор откроется и при этом загорится последовательно соединенная в цепь лампа L1. Пока конденсатор заряжается, по нему перестает проходить ток. Соответственно тиристор закрывается и происходит выключение лампы.

При выключении контакта s1 емкость разряжается посредством резистора r1 и реле времени возвращается в первоначальное положение. Продолжительность горения лампы будет около 4 -7 секунд. Для того, чтобы увеличить задержку, нужно изменить емкость конденсатора. Такое реле можно поставить для включения освещения на лестничной площадке или подключить к АВР.

10 часовой таймер на микросхемах К155ЛА3 и К176ИЕ5

В данной схеме основной упор сделан на микросхему D1. Подобная микросхема может работать с различными устройствами на 12 в.Вся же схема, собранная своими руками, тоже имеет различное применение. Например, если ее подключить к контактору, то можно дистанционно управлять электроприборами, как пускателем. Подобные контакторы, управляемые слабыми токами, могут использоваться в различных автоматических системах, например, открывать ворота гаража или включать в нем освещение.

На одном контакторе возможно своими руками собрать схему АВР. Такие схемы АВР устанавливаются для включения и *выключения устройств телемеханики и уличного освещения. Автоматическое включение резерва (АВР) необходимо для быстродействия при отключении питания. Система АВР содержит в себе часовой механизм, который через минимальную задержку времени отключает цепь силового трансформатора. Обычно такие АВР, использующие именно часовые механизмы работают на электрических подстанциях.

Многофункциональные релейные устройства

Своими руками можно собрать и многофункциональные релейные устройства, которые могут быть применены в домашнем хозяйстве. Ими можно организовать включение и выключение отопления, вентиляции, освещения. Многофункциональные устройства могут работать с любыми заданными промежутками времени. Задержку можно настроить в интервале от 0,1 сек и до 24 суток, при этом напряжение питание может быть от 12 до 220в переменного или постоянного тока.

Главными функциями работы реле в таких случаях считаются:

  • Задержка выключения, происходящую за счет переключающихся контактов;
  • Задержка срабатывания устройства.

Реле задержки выключения 12в своими руками – АвтоТоп

Реле времени сегодня является электронным устройством, которое устанавливается на любые бытовые приборы, для которых имеет значение отсчет времени. Поэтому большой интерес для любителей электроники является самостоятельная сборка реле времени.

При этом, выдержки времени нужны не только для включения и выключения приборов, но также и для мощности нагрева, как это предусматривают микроволновые печи. В зависимости от времени включения происходит ее нагрев.

  • Устройство
  • Простая радиосхема
  • Многофункциональные релейные устройства

Устройство

Для того, чтобы понять, как устроено электронное реле, полезно вспомнить старые механические регуляторы времени. Скажем, у прежних стиральных машин поворот вынесенной на корпус ручки включал исполнительный механизм. Одновременно запускалась выдержка. По прошествии заданного времени исполнительный механизм отключался. По такому алгоритму работают любые включатели времени либо таймеры, даже находящиеся в микроконтроллере (МК).

Хотя сегодня, в век электроники, существуют очень много электронных часовых механизмов и реле, то возникает вопрос о необходимости изготовления механизма, регулирующего время своими руками. Ответить на него очень просто. Часто дома приходится делать что-то, где потребуются дозированные временные границы. Поэтому простые механизмы регулирования временивозможно собрать и самому, своими руками.

Простая радиосхема

Схема печатной платы реле на 12 в

Приведем одну из наиболее простых схем. Для наглядности приводится схема и изображение печатной платы реле на 12 в.

Представим, что кнопка sb1 выключена. На обкладке конденсатора с1 сейчас напряжения нет. В результате этого, транзисторы закрыты и в обмотках реле ток отсутствует. После включения кнопки происходит заряд емкости с1, открывающий транзистор vt1, к базе которого прикладывается отрицательное напряжение. В итоге будет открыт второй транзистор и сработает реле k1.

Если отпустить кнопку, то произойдет разряд конденсатора по цепи: r2-r3 эмиттер vt1-r4.

Реле остается включенным, до того момента, когда напряжение на контактах емкости не снизится до 2-3 вольт. На протяжении этого времени соединения реле будут пребывать в одном из положений: либо включенном, либо отключенном.

Временная выдержка регулируется в пределах, которые зависят от емкости с1 и суммы сопротивлений подключенных к ней цепей. Задержка по длительности может регулироваться с помощью сопротивления r3. Получение более увеличенных пределов выдержек возможно с помощь увеличения номиналов с1 и r3. Схема простая, микросхемы отсутствуют.

Если нужно изготовить реле времени на 220 в, то можно воспользоваться следующей схемой. Здесь представлена очень простая схема подключения.

С включением соединенияs1 емкость с1 будет заряжаться, на управляющую ножку тиристора подается плюс, тиристор откроется и при этом загорится последовательно соединенная в цепь лампа L1. Пока конденсатор заряжается, по нему перестает проходить ток. Соответственно тиристор закрывается и происходит выключение лампы.

При выключении контакта s1 емкость разряжается посредством резистора r1 и реле времени возвращается в первоначальное положение. Продолжительность горения лампы будет около 4 -7 секунд. Для того, чтобы увеличить задержку, нужно изменить емкость конденсатора. Такое реле можно поставить для включения освещения на лестничной площадке или подключить к АВР.

10 часовой таймер на микросхемах К155ЛА3 и К176ИЕ5

В данной схеме основной упор сделан на микросхему D1. Подобная микросхема может работать с различными устройствами на 12 в.Вся же схема, собранная своими руками, тоже имеет различное применение. Например, если ее подключить к контактору, то можно дистанционно управлять электроприборами, как пускателем. Подобные контакторы, управляемые слабыми токами, могут использоваться в различных автоматических системах, например, открывать ворота гаража или включать в нем освещение.

На одном контакторе возможно своими руками собрать схему АВР. Такие схемы АВР устанавливаются для включения и *выключения устройств телемеханики и уличного освещения. Автоматическое включение резерва (АВР) необходимо для быстродействия при отключении питания. Система АВР содержит в себе часовой механизм, который через минимальную задержку времени отключает цепь силового трансформатора. Обычно такие АВР, использующие именно часовые механизмы работают на электрических подстанциях.

Многофункциональные релейные устройства

Своими руками можно собрать и многофункциональные релейные устройства, которые могут быть применены в домашнем хозяйстве. Ими можно организовать включение и выключение отопления, вентиляции, освещения. Многофункциональные устройства могут работать с любыми заданными промежутками времени. Задержку можно настроить в интервале от 0,1 сек и до 24 суток, при этом напряжение питание может быть от 12 до 220в переменного или постоянного тока.

Главными функциями работы реле в таких случаях считаются:

  • Задержка выключения, происходящую за счет переключающихся контактов;
  • Задержка срабатывания устройства.

Решил как-то я автоматизировать включение ДХО (ПТФ) с задержкой после зажигания – секунд 10-13.
Было 3 варианта:
1. Готовый блок управления за деньги.
2. Самосборная приблуда на транзисторах и конденсаторах.
3. Самосборная приблуда на цифровом таймере.
Хотелось и чесалось бесплатно и что-то своими руками собрать.
Решил собрать реле задержки включения на микросхеме NE555. (третий вариант).
Нашел детали из того, что под ногами валялось, т.е. ранее было выпаяно, разобрано, заброшено и забыто, а сейчас вспомнено =)

Реле надо брать 4 или 5-ти контактное с номерами 23. 3787 или 75.3777. У них места достаточно для встраивания внутрь микросхемы.

Делаем обвязку микрухи (создаем жука =)).

При выполнении задач по автоматизации производственных процессов, для обеспечения точного выдерживания временных промежутков, выполнения различных действий и операций, а также для осуществления функций по своевременному управлению запуском и остановкой необходимых машин и оборудования применяется реле времени 12в.

Точность и надежность действия приборов выдержки времени служит основой для выработки высококачественной продукции.

Примером могут служить, в производстве: операции по точечной сварке, пайке материалов, закалка металлов высокочастотными токами, электрохимические и термические процессы. В быту это: микроволновые печи, стиральная машина и многое другое.

Электрическое реле времени 12в состоит из трех основных частей, это:

  1. Воспринимающая часть, служит для обеспечения реагирования при приеме сигнала управления.
  2. Замедляющая часть, служит для обеспечения определенного временного промежутка начиная с времени прихода сигнала управления к воспринимающей части.
  3. Исполнительная часть, служит для скачкообразного регулирования параметров электрической схемы, находящейся под управлением.

Рис. №1. Внешний вид реле времени РЭВ-811.

Классификация реле времени

Реле времени различается:

  1. По способу работы воспринимающей части.
  2. Конструкции и типу исполнительного механизма.
  3. По работе замедляющей части.

К основным типам данного устройства относятся, следующие реле времени:

  1. Электронные устройства, отличаются малыми размерами и повышенным энергосбережением.
  2. Приборы с использованием электромагнитного замедлителя, применяемые только в цепях постоянного тока, конструкция содержит главную и короткозамкнутую обмотки.
  3. Устройство с использованием пневматического замедления, в конструкции прибора предусмотрен специальный пневматический демпфер. Он служит для регулирования временного промежутка выдержки, производимого путем изменения диаметра отверстий, предназначенных осуществлять забор воздуха.
  4. Реле времени с использованием часового или анкерного механизма, действует за счет использования пружинного механизма и электромагнита, период отсчитывается анкером.
  5. Реле моторного типа рассчитано на длительный временной промежуток срабатывания, в конструкции предусмотрен синхронный электромотор, редукторная передача и электромагнит.

Простейшие реле времени 12в

Рис. №2. Простое реле времени, схема включения и внешний вид.

Простое реле времени 12в является прибором нейтрального электромагнитного типа в основе его работы лежит использование постоянного тока. Чтобы задать выдержку времени, бывает достаточно замедлить действие срабатывания устройства и изменить момент отпускания.

Время срабатывания состоит из двух рабочих моментов это:

  1. Время трогания после срабатывания, в него входит временной промежуток с начала подачи питания на катушку до начала вращения якоря.
  2. Время вращения якоря после срабатывания, это отсчет времени с момента отключения устройства до момента вращения якоря.

Для нормальных реле, характерен временной промежуток 10 – 30% от времени трогания.

Простейшие методы замедления срабатывания и отпускания релейных устройств времени, при использовании схем заключаются в регулировании увеличения скорости и плавного падения токового значения в катушке прибора.

Современные многофункциональные релейные устройства

В наше время повсеместно используются многофункциональные устройства. Они применяются в промышленных и бытовых автоматических устройствах в системах жизнеобеспечения и отвечают за своевременную работу осветительных, отопительных и вентиляционных систем. Устройства работают со значительным определенным заданным временным промежутком.

Современные устройства могут иметь самые широкие границы выдержки времени, они включают 0,1 сек. и могут достигать до 24 суток, и рассчитаны на напряжение от 12 до 264в АС/DC (переменный/постоянный ток питания).

Основные функции работы реле

  1. Задержка выключения, происходит после подачи питающего напряжения, осуществляется за счет переключения контактов.
  2. Задержка срабатывания устройства.
  3. Циклический рабочий цикл с задержкой отключения, в этом случае действие прибора происходит с включения и выключения в различные временные промежутки и т. д. до времени прекращения подачи питания.
  4. Циклическое действие с задержкой срабатывания, отчет действия реле начинается с задержки включения прибора на время с последующим циклическим периодом срабатывания и до прекращения подачи питания.

Рис. № 3. Многофункциональное цифровое реле времени FINDER

Контакты современного электронного реле рассчитаны на ток 8 – 10 А и могут выдержать мощность от 250 Вт, на которую рассчитано энергосберегающее освещение и до 2 кВт активной нагрузки обогревателя. Электронное реле времени может выдержать работу 0,5 кВт двигателя, включает в действие катушки контакторов на 325 ВА, может поддерживать работу безиндуктивной нагрузки постоянного тока от 0,35 А при 24 В и 0,18 А при напряжении 230 В.

Рис №4. Многофункциональное реле АН3-NB, внешний вид.

Для обеспечения стабильной работы реле и увеличения ресурса многие устройства комплектуются трансформаторным блоком питания.

Рис. №5. Трансформаторный блок питания многофункционального реле АН3-N.

Самодельное реле времени 12в

Рис. №6. Простейшее реле времени 12 В схема подключения.

Подобное реле времени 12 В можно сделать своими руками. Реализация подобной схемы этого прибора не требует использования дорогостоящих деталей. Действие реле строится на принципе определения времени заряда и находится, как произведение величины сопротивления электрической цепи, на емкость конденсатора, который, в свою очередь, должен быть полностью заряжен.

В первую очередь на схему подается питание от источника, следующий шаг подключение с использованием резисторов и транзисторов – конденсатора. После открытия заряда наблюдается падение величины напряжения на 1 резисторе, это происходит вследствие эмиттерного тока, который проходит через него в результате падения напряжения откроется второй транзистор, реле начнет работать, замыкание контактов подает питание на светодиод. Резистор, закрепленный за светодиодом, служит для ограничения ток нагрузки.

С увеличением заряда происходит повышение значения напряжения конденсатора, а также снижение зарядного и эмиттерного тока, одновременно с этим действием наблюдается падение величины напряжения в резисторе. Величина зарядного тока конденсатора уменьшится до величины, приводящей к закрытию конденсатора, а впоследствии и транзистора, происходит опускание реле и прекращается работа светодиода. Для следующего запуска реле требуется повторно нажать пусковую кнопку на приборе, чтобы осуществить полную разрядку конденсатора.

Подбор емкости конденсатора и выбор величины сопротивления резистора способствуют выбору необходимого временного промежутка.

Благодаря небольшой стоимости простейшего набора деталей достаточно просто решить вопрос как сделать реле времени 12в своими руками.

Рис. №7. Самодельное реле задержки времени включения 12в, внешний вид.

Схема задержки выключения реле 220в на конденсаторе. Схемы реле времени и задержки выключения нагрузки. Из чего состоит реле задержки

Наиболее простым и несложным прибором, позволяющим автоматизировать различные действия, является реле времени с задержкой выключения на 220 В. Изменение рекламы на вывесках, контроль поливочных систем, включение приборов в определённое время, подача электричества, воды — всё это и многое другое возможно осуществить, используя такое несложное устройство. Современные реле несложны в настройках режимов работы и позволяют их выполнить даже людям, не разбирающимся в технике.

Назначение, виды и принцип работы

Реле времени — это прибор, предназначенный для автоматизации действий в зависимости от установленного интервала времени. Другими словами, устройство позволяет отсрочить запуск процесса на какой-то промежуток времени. Конструктивно прибор состоит из следующих частей:

  • управляющая;
  • выдерживающая;
  • исполнительная.

Управляющая часть обеспечит запуск при появлении разрешающего сигнала, поступающего на элементы схемы. Выдерживающая часть переводит прибор в режим паузы, а исполнительная уже непосредственно коммутирует подключённую к выходу нагрузку.

Простое реле времени с задержкой включения 220 В предназначено для управления отсрочкой по времени, например, отключение света через пять минут после его включения. Наиболее распространёнными типами реле являются: электромеханическое, электромагнитное, программируемое.

В простых случаях применяют первые два вида реле, использующие одну настройку. Программируемый тип обладает расширенными возможностями. Основная его способность заключается в возможности создания цикличности действия и гибкости настройки. Благодаря чему такое реле является универсальным для любой сферы применения и настраивается с высокой точностью. Оно может управляться дистанционно, комплектоваться удобной системой индикации, а также использоваться в схемах вместо импульсного реле.

По способу расположения разделяются на отдельностоящие, встраиваемые и модульные. Отдельностоящие — это независимые устройства, выполняемые в отдельном корпусе с выносным устройством питания. Например, реле времени для фотопечати. Встраиваемые устройства представляю собой плату и механизм без корпуса. Они составляют единое целое с другими сложными приборами, например, таймер-программатор в микроволновой печи или накладной выключатель с выдержкой времени. Модульные приборы выпускаются с креплениями, выполненными под din-рейку, и предназначены они для расположения в щитовых шкафах.

Электромагнитный тип устройства

Используется в линии постоянного тока. Преимущество электромагнитных реле заключается в низкой цене, а недостаток — в ограниченном ресурсе работы. Основными частями, из которых состоит устройство, являются:

  • катушка;
  • магнитопровод;
  • якорь;
  • траверс;
  • пружина.

Для получения напряжения требуемого для различных частей схемы, на её входе располагается преобразователь. Кроме этого, он формирует уровень опорного напряжения. Таким образом, в цифровых реле задержка времени задаётся зарядно-разрядной цепочкой и компаратором. Подсчёт числа импульсов генератора и изменение величины времени, осуществляется с помощью счётчика. Получая импульсы от генератора, счётчик проводит их подсчёт. Дешифратор анализирует состояние счётчика и формирует сигнал, пересылаемый в исполнительный блок.

Основные характеристики устройства

В специализированных торговых точках встречаются устройства задержки с различными характеристиками, выпускающиеся разными производителями. Качество продукции от именитых производителей подтверждается сертификатами и гарантируемым ими сроком работы. Из популярных компаний выделяются: Hager, Аско, Eaton, ABB, Schneider, Новатек. Независимо от типа и модели, реле времени характеризуются следующими параметрами:

Для цифровых устройств выделяют ещё и период программирования. Например, электронное реле времени на 220 В программируется на неделю или сутки, что позволяет установить оптимальные настройки работы.

Подключение прибора обычно не вызывает проблем. Устройство включается в разрыв линии подходящей к нагрузке. С каждым реле временем должна идти инструкция от производителя с подробной схемой подключения и её описанием. При этом она может быть изображена и на самом корпусе прибора.

Самостоятельное изготовление

При желании можно сделать таймер включения и выключения электроприборов своими руками. Перед тем как приступить к исполнению, нужно определиться с задачами, найти схему устройства и требуемые радиодетали. Схемы существуют разной степени сложности.

Схема реле на транзисторе

Простая схема реле задержки выключения 12 В собирается на одном транзисторе, и не содержит дефицитных деталей. Эта очень простая к повторению схема. После сборки не требует настройки. Такое устройство будет работать не хуже приобретённого в магазине.

В качестве VT1 используется любой транзистор n-p-n проводимости. При подаче питания конденсатор заряжаться. При достижении на нём пороговой величины напряжения, транзистор открывается и срабатывает реле K1. Изменяя значение С1 и R2, регулируется время включения. Задержка включения в таком исполнении достигает 10 секунд. Для того чтобы при снятии питания реле оставалось замкнутым некоторое время, параллельно питанию схемы устанавливается конденсатор большой ёмкости.

Управление задержкой на микросхеме

Простая схема управления светом, вентилятором, или другой нагрузкой может быть собрана на NE555. Специализированная микросхема NE555 есть не что иное, как таймер. Выходной ток устройства 200 мА, ток потребления 203 мА. Погрешность таймера не превышает один процент и не зависит от изменения сигнала в сети 220 вольт.

Схема работает от источника постоянного напряжения. Уровень сигнала питания схемы выбирается в диапазоне от 9 до 14 Вольт. Цепочка, состоящая из резисторов R2, R4 и конденсатора C1 задаёт время задержки. Рассчитать это время можно воспользовавшись формулой t = 1.1*R2*R4*C1. После нажатия кнопки SB1 происходит замыкание контактов K1.1. Через время t они разомкнутся. Для того чтобы таймер начинал отсчёт времени не от момента нажатия на кнопку, а в момент отпускания, понадобится использовать кнопку с нормально замкнутыми контактами.

Время подстройки легко регулировать с помощью переменного резистора R2. Такую схему удобно собрать на плате, выполненной из текстолита или гетинакса. После правильной сборки и при исправных радиодеталях схема работает сразу.

Для обеспечения точных промежутков времени при выполнении различных действий с помощью электрооборудования применяются реле времени.

Они повсюду применяются в быту: электронный будильник, изменение режимов работы стиральной машины, микроволновой печи, вытяжные вентиляторы в туалете и ванной комнате, автоматический полив растений и т. п.

Достоинства таймеров

Из всех разновидностей наиболее распространены электронные устройства. Их преимущества:

  • малые размеры;
  • исключительно малые энергозатраты;
  • отсутствие подвижных частей за исключением механизма электромагнитного реле;
  • широкий диапазон временных выдержек;
  • независимость срока службы от количества рабочих циклов.

Реле времени на транзисторах

Обладая элементарными навыками электрика, можно изготовить электронное реле времени своими руками. Его монтируют в пластиковом корпусе, где размещаются блок питания, реле, плата и элементы регулирования.

Простейший таймер

Реле времени (схема ниже) производит подключение нагрузки к питанию на время 1-60 сек. Транзисторный ключ управляет электронным реле К1, который подключает потребитель к сети контактом К1.1.

В исходном состоянии переключатель S1 замыкает конденсатор С1 на сопротивление R2, который поддерживает его разряженным. Электромагнитный переключатель К1 при этом не работает, поскольку транзистор заперт. При подключении конденсатора к питающей сети (верхнее положение контакта S1) начинается его зарядка. Через базу протекает ток, который открывает транзистор и включается К1, замыкая цепь нагрузки. Напряжение питания на реле времени — 12 вольт.

В процессе зарядки конденсатора базовый ток постепенно уменьшается. Соответственно падает величина коллекторного тока, пока К1 своим отключением не разомкнет цепь нагрузки контактом К1.1.

Чтобы снова подключить нагрузку к сети на заданный период работы, схему следует снова перезапустить. Для этого переключатель устанавливается в нижнее положение «выключено», что приводит к разрядке конденсатора. Затем устройство снова включается с помощью S1 в течение заданного временного промежутка. Задержка регулируется с помощью установки резистора R1, а также может быть изменена, если конденсатор заменить на другой.

Принцип действия реле с применением конденсатора основан на его зарядке в течение времени, зависящего от произведения емкости на величину сопротивления электрической цепи.

Схема таймера на двух транзисторах

Нетрудно собрать реле времени своими руками на двух транзисторах. Оно начинает работать, если подать питание на конденсатор С1, после чего начнется его зарядка. При этом ток базы открывает транзистор VT1. Вслед за ним откроется VT2, и электромагнит замыкает контакт, подавая питание на светодиод. По его свечению будет видно, что сработало реле времени. Схема обеспечивает переключение нагрузки R4.

По мере того как конденсатор заряжается, эмиттерный ток постепенно снижается, пока транзистор не закроется. В результате реле отключится, и светодиод прекратит работу.

Повторный запуск устройства происходит, если нажать кнопку SB1, а затем ее отпустить. При этом конденсатор разрядится и процесс повторится.

Работа начинается, когда на реле времени 12 В подается питание. Для этого могут применяться автономные источники. При питании от сети к таймеру подключается блок питания, состоящий из трансформатора, выпрямителя и стабилизатора.

Реле времени 220в

Большинство электронных схем работают на малом напряжении с гальванической развязкой от сети, но при этом могут коммутировать значительные нагрузки.

Временная задержка может производиться от реле времени 220В. Всем известны электромеханические устройства с задержкой выключения старых стиральных машин. Достаточно было повернуть ручку таймера, и устройство включало двигатель на заданное время.

На смену электромеханическим таймерам пришли электронные устройства, которые также применяются для временного освещения в туалете, на лестничной площадке, в фотоувеличителе и т. п. При этом часто используются бесконтактные переключатели на тиристорах, где схема работает от сети 220 В.

Питание производится через диодный мост с допустимым током 1 А и более. Когда контакт выключателя S1 замыкается, в процессе зарядки конденсатора С1 открывается тиристор VS1 и загорается лампа L1. Она служит нагрузкой. После полной зарядки тиристор закроется. Это будет видно по отключению лампы.

Время горения лампы составляет несколько секунд. Его можно менять, установив конденсатор С1 с другим номиналом или подключив к диоду D5 переменный резистор на 1 кОм.

Реле времени на микросхемах

Транзисторные схемы таймеров имеют много недостатков: сложность определения времени задержки, необходимость разрядки конденсатора перед следующим пуском, малые интервалы срабатывания. Микросхема NE555, получившая название «интегральный таймер», давно завоевала популярность. Ее применяют в промышленности, но можно увидеть множество схем, по которым делают реле времени своими руками.

Временная выдержка задается сопротивлениями R2, R4 и конденсатором С1. Контакт подключения нагрузки К1.1 замыкается при нажатии на кнопку SB1, а затем он самостоятельно размыкается после задержки, продолжительность которой определяется из формулы: t и = 1.1R2∙R4∙C1.

При повторном нажатии на кнопку процесс повторяется.

Во многих бытовых приборах применяются микросхемы с реле времени. Инструкция для пользования — это необходимый атрибут правильной эксплуатации. Она также составляется для таймеров, созданных своими руками. От этого зависит их надежность и долговечность.

Схема работает от простейшего блока питания на 12 В из трансформатора, диодного моста и конденсатора. Ток потребления составляет 50 мА, а реле коммутирует нагрузку до 10 А. Регулируемую задержку можно сделать от 3 до 150 с.

Заключение

В бытовых целях можно легко собрать реле времени своими руками. Электронные схемы хорошо работают на транзисторах и микросхемах. Можно установить бесконтактный таймер на тиристорах. Его можно включать без гальванической развязки от действующей сети.

Принципиальные схемы реле задержки времени, автоматических включателей и выключателей нагрузки 220В с заданым интервалом времени. Схемы просты в сборке и построены на основе микросхемы LM555.

Реле времени для автоматического отключения нагрузки

Иногда бывает необходимо выключить приемник или лампу подсветки через определенный интервал времени. Эту задачу может решить схема, приведенная на рис. 1.

Рис. 1. Схема таймера для автоматического отключения нагрузки.

При указанных на схеме номиналах времязадающих элементов задержка отключения составит около 40 минут (для микромощных таймеров это время может быть значительно увеличено, так как они позволяют R2 установить с большим номиналом).

В ждущем режиме устройство не потребляет энергии, так как при этом транзисторы VT1 и VT2 заперты. Включение производится кнопкой SB1 — при ее нажатии открывается транзистор VT2 и подает питание на микросхему. На выходе 3 таймера при этом появляется напряжение, которое открывает транзисторный ключ VT1 и подает напряжение в нагрузку, например на лампу BL1.

Кнопка блокируется, и схема будет находиться в таком состоянии, пока заряжается конденсатор С2, после чего отключит нагрузку. Резистор R3 ограничивает ток разряда емкости времязадающего конденсатора, что повышает надежность работы устройства. Для получения больших интервалов задержки конденсатор С2 необходимо применять с малым током утечки, например танталовый из серии К52-18.

Таймер с увеличенным временным интервалом

Схема устройства аналогичного назначения показана на рис. 2. Она позволяет дискретно изменять время задержки отключения нагрузки от 5 до 30 мин (с шагом 5 мин) при помощи переключателя SA1. Благодаря использованию микромощного таймера, обладающего большим входным сопротивлением, имеется возможность использовать времязадающие резисторы значительно больших номиналов (от 8,2 до 49,2 МОм), что позволяет увеличить и временной интервал: Т= 1,1 * С2 * (R1 + … + Rn).

Рис. 2. Схема таймера с увеличенным временным интервалом для отключения нагрузки.

Схемы реле времени на симисторах

Схемы, позволяющие непосредственно (без реле) управлять отключением сетевой нагрузки, приведены на рис. 3 и 4. В них в качестве коммутатора использован симистор. По сравнению с оригиналом, в приведенных здесь вариантах некоторые номиналы изменены для работы устройств от сетевого напряжения 220 В.

В схеме на рис. 3 включение нагрузки происходит сразу при замыкании контактов SA1, а выключение с задержкой, определяемой номиналами R2-C2 (для указанных на схеме она составляет 11 секунд). Цепь R1-C1 обеспечивает запуск одновибратора при включении.

Рис. 3. Бестрансформаторная схема управления сетевой нагрузкой.

Рис. 4. Вариант схемы для автоматического отключения сетевой нагрузки.

Во второй схеме (рис. 4) включение нагрузки будет при первоначальном подключении к сети или при нажатии на кнопку SB1. Для питания микросхемы использовано реактивное сопротивление, которым является конденсатор С1 (он не греется, что лучше по сравнению с гасящим напряжение активным сопротивлением, как это сделано в предыдущей схеме).

Стабилитрон VD1 обеспечивает стабильное напряжение питания микросхемы, а диод VD3 позволяет уменьшить время готовности схемы для частого нажатия на кнопку. Время задержки выключения может регулироваться резистором R3 от 0 до 8,5 мин. Времязадающий конденсатор СЗ обязательно должен иметь маленькую утечку.

Литература: Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.

На сегодня, существует множество устройств, призванных облегчить быт современного человека. Так, из промышленной сферы в хозяйственно-бытовую перешли и реле времени , позволяющие автоматизировать работу современных электроприборов и систем. Какие виды временных реле предлагает современный рынок, как выбрать временной регулятор и собрать прибор своими руками – читайте ниже.

Что такое реле задержки времени

Реле временной задержки – это специальные устройства, главным предназначением которых является обеспечения последовательной работы элементов схемы в течении определенного времени после включения или отключения питания. Задержки, создаваемые реле, по продолжительности могут быть как минутными и часовыми, так и суточными, недельными. При этом, с помощью одного сигнала реле способно одновременно контролировать работу нескольких схем.

По принципу работы реле задержки времени делятся на устройства:

  • С электромагнитным замедлением;
  • С пневматическим механизмом замедления;
  • С часовым или анкерным механизмом;
  • Моторного типа.

Отдельно выделяют электронные реле времени. Временная задержка в таких устройствах реализуется посредством аналоговых и цифровых технических решений. Зачастую эти решения представлены цифровыми таймерами.


Электронные реле получили широкое распространение благодаря наиболее широкому диапазону регулировки временной задержки.

Так, электронное реле способно контролировать работу элементов схемы с временной выдержкой от доли секунды до нескольких тысяч часов. Кроме того, к достоинствам электронных реле относятся их небольшие габариты, экономичное энергопотребление и многофункциональность. Существуют также временные реле, работающие на микропроцессорах. Такие модели считаются наиболее эффективными.

Классификация реле задержки времени

Для удобства реле времени классифицирует по типу исполнения. Такая классификация позволяет разделить устройства на реле для промышленного использования и бытовые контроллеры.

Так, все временные реле задержки делятся на:

  • Моноблочные;
  • Встраиваемые;
  • Модульные.

Проще всего устанавливаются моноблочные и модульные устройства. Моноблочные реле представляют собой автономные устройства для внешней установки. Такие устройства оснащены встроенными элементами питания, имеют клеммы для подключения нагрузки. Модульные реле являются разновидностью моноблочных, и используются для монтажа в электрощитах .


Наиболее распространенными в промышленной и хозяйственной сфере являются встроенные реле.

Они активно используются в современных бытовых электроустановках (например, стиральных машинах), системах “умный дом”. Кроме того, такие устройства используют при автоматизации тепличного хозяйства.

Сфера применения реле времени с задержкой выключения

Сфера применения временных реле крайне широка и зависит от типа устройства. Так, все реле времени делятся на устройства с задержкой включения после подачи питания и приборы с временной задержкой выключения после отключения нагрузки. Наиболее распространенными в бытовой сфере и коммунальном хозяйстве являются реле с временной задержкой выключения.

Чаще всего, устройства, создающие задержку на выключение, используют для:

  • Автоматизации работы уличного и внутридомового освещения;
  • Контроля над системами полива;
  • Автоматизации вентиляционных систем;
  • Контроля над работой бытовых насосов, газовых котлов, электрических водонагревателей.

Таким образом, реле времени позволяют использовать различное электрооборудование только по его фактической надобности, исключая вероятность его нецелесообразного использования. Это не только экономит расход электроэнергии, но и продлевает срок эксплуатации электроприборов.

Реле с выдержкой времени на включение применяют для контроля работы промышленной и хозяйственно-бытовой автоматики.

Так, например, устройства можно использовать для автоматического восстановления работы бытовой техники, осветительных приборов, вентиляционных, и отопительных систем после возобновления подачи напряжения. При правильном подключении и хорошей настройке, реле с задержкой включения могут активировать систему “теплый пол” к вашему приходу, включать водонагреватели и бытовые приборы (например, кофемашину) после вашего пробуждения.

Главным критерием выбора временного реле для однофазных сетей (220 В) является диапазон задержки. Этот параметр определяется назначением устройства отключения. Так, например, для реле, подключенного к вентилятору в санузле, будет достаточно задержки выключения в диапазоне от 1 сек до 1 часа.

Реле времени с задержкой включения, обычно, имеют меньший диапазон.

Это связано со сферой их использования. Зачастую, после восстановления энергоснабжение, включение промышленной, бытовой и хозяйственной автоматики должно выполняться незамедлительно. Так, задержка на включение бытового электрооборудования должна составлять не более 2 мин.


Кроме того, при выборе реле времени необходимо учитывать:

  • Тип коммутируемого тока. Реле могут коммутировать как переменный, так и постоянный ток. Для коммутации переменного тока следует выбирать реле AC типа, для коммутации постоянного тока – DC типа. Существуют и универсальные устройства с маркировкой AC/DC.
  • Максимальный коммутируемый ток. Для бытового использования подойдут реле, способные коммутировать нагрузку в диапазоне от 10 до 16 А.
  • Степень защиты устройства. Для внутренней установки подойдут реле с индексом IP20. Для установки на улице этот показатель должен быть увеличен в два раза, либо реле должно быть установлено в защитном корпусе.
  • Возможности подключения реле. Отдельные модели временных реле могут одновременно подключаться к двум элементам, управляющим нагрузкой (например, к двум выключателям). Так работу реле можно контролировать из двух точек, расположенных в разных концах помещения.

Не стоит забывать про габаритные размеры и способ монтажа устройства. Это позволит быстро вписать устройство в проект. Так, наименьшие габариты имеют электронные установки. Кроме того, временное реле может требовать или не требовать крепления DIN-рейки.

Схема задержки включения реле на 12 вольт

Собрать простое реле можно своими руками. Самая легкая в исполнении схема электронного реле времени собирается на базе интегрального таймера ne555. Управление реле осуществляется посредством нажатия внешних клавиш. Для работы устройства будет достаточно 12В. Запитать реле можно через силовой кабель к электросети. Временно поддержать работу реле может и аккумулятор на 12 вольт.

Схема простого временного реле на основе таймера NE 555 имеет также такие особенности:

  • Задающим интервал времени узлом, является цепь из резистора переменного тока и электролитического конденсатора. От их номинала зависит интервал задержки включения реле времени
  • При номинале резистора в 500 кОм и конденсатора в 220 мкФ, диапазон задержки может составлять от 2 сек до 3 мин.
  • Индикатором работоспособности реле может выступить светодиод, подключенный параллельно катушке.

Данный прибор можно использовать как для отключения, так и включения электрооборудования с временной задержкой. Для начала временного отсчета необходимо нажать кнопку “старт”, которая запускает таймер. Кнопка “стоп” отвечает за отключения питания и возврат контролируемого с помощью реле устройства в первоначальное состояние.


Приветствую! Представляю вам несколько схем реле времени и задержки выключения нагрузки. Нагрузкой может быть как лампочка так и телевизор. Фантазию включать вам.
Вот эта схема нужна для выключения чего либо через определенный интервал времени.

Рис.1. Схема таймера для автоматического отключения нагрузки .
При указанных на схеме номиналах времязадающих элементов задержка отключения составит около 40 мин (для микромощных таймеров это время может быть значительно увеличено, так как они позволяют R2 установить с большим номиналом).
В ждущем режиме устройство не потребляет энергии, так как при этом транзисторы VT1 и VT2 заперты. Включение производится кнопкой SB1 — при ее нажатии открывается транзистор VT2 и подает питание на микросхему. На выходе 3 таймера при этом появляется напряжение, которое открывает транзисторный ключ VT1 и подает напряжение в нагрузку, например на лампу BL1. Кнопка блокируется, и схема будет находиться в таком состоянии, пока заряжается конденсатор С2, после чего отключит нагрузку. Резистор R3 ограничивает ток разряда емкости времязадающего конденсатора, что повышает надежность работы устройства. Для получения больших интервалов задержки конденсатор С2 необходимо применять с малым током утечки, например танталовый из серии К52-18.
Следующая схема для отключения нагрузки через 5-30 минут с шагом в 5 минут нажатием кнопки SA1.
Благодаря использованию микромощного таймера, обладающего большим входным сопротивлением, имеется возможность использовать времязадающие резисторы значительно больших номиналов (от 8,2 до 49,2 МОм), что позволяет увеличить и временной интервал: Т= 1,1 * С2 * (R1 + … + Rn).

Рис.2. Схема таймера с увеличенным временным интервалом для отключения нагрузки
Схемы, позволяющие непосредственно (без реле) управлять отключением сетевой нагрузки, приведены на рис.3 и 4. В них в качестве коммутатора использован симистор. По сравнению с оригиналом, в приведенных здесь вариантах некоторые номиналы изменены для работы устройств от сетевого напряжения 220 В.
В схеме на рис.3 включение нагрузки происходит сразу при замыкании контактов SA1, а выключение с задержкой, определяемой номиналами R2-C2 (для указанных на схеме она составляет 11 с). Цепь R1-C1 обеспечивает запуск одновибратора при включении.

Рис.3. Бестрансформаторная схема управления сетевой нагрузкой

Рис.4. Схема для автоматического отключения сетевой нагрузки

Во второй схеме (рис.4) включение нагрузки будет при первоначальном подключении к сети или при нажатии на кнопку SB1. Для питания микросхемы использовано реактивное сопротивление, которым является конденсатор С1 (он не греется, что лучше по сравнению с гасящим напряжение активным сопротивлением, как это сделано в предыдущей схеме). Стабилитрон VD1 обеспечивает стабильное напряжение питания микросхемы, а диод VD3 позволяет уменьшить время готовности схемы для частого нажатия на кнопку. Время задержки выключения может регулироваться резистором R3 от 0 до 8,5 мин. Времязадающий конденсатор СЗ обязательно должен иметь маленькую утечку.

Литература: Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.

Как сделать простое реле времени, пайка схемы временной задержки включения нагрузки.

Порой возникает необходимость в отсроченном включении или выключении тех или иных электроприборов. Существуют специальные электронные схемы задержки времени срабатывания, которые называются реле времени. Их задача сводится к тому, что после своего включения (подачи питающего напряжения на саму схему) они ждут определенное время, по истечению которого происходит их срабатывание и замыкание управляющих контактов обычного реле, что стоит внутри их схемы. Эти контакты являются ключами, что уже могут управлять включением или выключением различных сторонних электрических устройств, нуждающиеся в подобной задержки времени. Время задержки можно выставить изначально специальным переменным резистором, который находится на самом корпусе реле времени.

В этой статье я хочу предложить вашему вниманию достаточно простую схему электронного реле времени, что питается от напряжения 12 вольт. И в общих чертах поясню принцип работы данной схемы задержки времени. Вот сама принципиальная схема.

Итак, время задающими элементами в этой схеме являются переменный резистор R1 и конденсатор  C1. После подачи на схему электропитания величиной 12 вольт оно начинает постепенно перераспределяться между этими элементами. То есть, изначально конденсатор C1 находится в разряженном состоянии, на нем напряжение равно нулю, и все, поданное на схему, напряжение оседает на резисторе R1. С течением времени C1 начинает накапливать электрический заряд, напряжение на нем начинает постепенно увеличиваться, в то время как на R1 оно уменьшается (идет перераспределение). Напряжение на конденсаторе C1 достигнув определенной величины способствует открыванию транзистора VT1.

Как известно, чтобы биполярный кремниевый транзистор перешел из закрытого состояния (не пропускал ток через переход коллектор-эмиттер) в открытое (начал пропускать ток через переход коллектор-эмиттер) нужно чтобы на переходе база-эмиттер появилось некое напряжение насыщения транзистора, равное где-то в среднем 0,6 вольт. Так вот, получается следующее, время задающий конденсатор постепенно накапливает на себе электрический заряд (скорость заряда зависит от величины сопротивления R1, чем он больше, тем дольше будет заряжаться C1). Напряжение на C1 постепенно увеличивается, а поскольку параллельно конденсатору стоит цепь, состоящая из транзисторного перехода база-эмиттер, резистора R2 и R3, то это напряжение увеличивается и на этих элементах.

И как только на база-эмиттерном переходе VT1 напряжение достигло величины 0,6 вольт, транзистор перешел в открытое состояние, через его переход коллектор-эмиттер пошел ток, после чего произошло открытие и транзистора VT2. И у второго транзистора, после его открытия, пошел ток через его коллектор-эмиттерный переход, что способствовало включению реле K1. Данное реле после своего срабатывания замкнуло (или разомкнуло) свои контакты и привело в действие ту электрическую цепь, что нужно было включить или выключить с определенной задержкой времени.

Стоит обратить внимание, что на схеме параллельно катушки реле K1 стоит диод VD1. Включение у него обратное (плюс диода подключен к минусу питания, а минус диода на плюс питания). Зачем нужен этот диод? Дело в том, что у любых катушек существует такое свойство как самоиндукция. То есть, если мы подадим напряжение на катушку, а потом резко его снимем, то на концах данной катушки образуется ЭДС самоиндукции (сгенерируется некоторая величина напряжения, которое в значительной степени может превышать напряжение, что было подано изначально). Этот возникший всплеск напряжения легко может негативно повлиять на чувствительные элементы электрической схемы. В нашем случае могут выйти из строя транзисторы VT1 и VT2. Роль диода VD1 заключается как раз в закорачивании этого всплеска ЭДС самоиндукции. Он как бы гасит ЭДС на себе, защищая схему.

Итак, схема отработала цикл, контакты реле включили или выключили ту электрическую цепь, которая нуждалась в задержке времени срабатывания. Для того, чтобы схему сбросить, нужно, либо отключить от нее питание, либо же нажать кнопку S1, которая замкнет конденсатор C1 и обнулит его электрический заряд (напряжение сведя к нулю). После отпускания кнопки S1 реле времени начнет новый отсчет времени, после чего опять сработает. Кнопка S1 должна быть без фиксации, иначе реле времени после своего включения так и не начнет отсчет времени.

В принципе данная схема простого реле времени особо не капризна к величине напряжения своего питания. Она будет нормально работать и при 9 вольтах, и при 15. Тогда нужно будет поставить реле, у которого катушка будет рассчитана на величину подаваемого напряжения питания. Кроме этого нужно еще учесть, что в данной схеме я поставил маломощное реле, его катушка потребляет всего 50 миллиампер. Эта катушка стоит последовательно с транзистором VT2 (его переходом коллектор-эмиттер). Максимальный ток данного транзистора 100 миллиампер. То есть, у транзистора есть достаточный запас по коллекторному току. Если же в схему поставить более мощное реле, у которого катушка будет потреблять более 100 миллиампер (да и на пределе, чтобы было, не желательно), то скорее всего транзистор VT2 не выдержит и сгорит. В таком случае в место него нужно поставить более мощный, например КТ815 (у которого максимальный ток 1,5 ампер) или КТ817 (ток 3 ампера).

Видео по этой теме:

P.S. Например, когда я ставил C1 с емкостью в 100 мкф и R1 с сопротивлением в 100 Ом, то время задержки включения данного реле времени было около 3 секунд. Следовательно, чем больше емкость конденсатора и чем больше сопротивление резистора, тем длительнее задержку можно получить. Экспериментируйте, подбирайте нужные времязадающие элементы, наслаждайтесь работой схемы. Эта схема после своей сборки сразу же начинает нормально работать, если конечно все детали годные и находятся в рабочем состоянии!

Реле времени на 12 вольт своими руками на основе чипа NE555

Некоторые из моих друзей сделали своими руками подсветку для велосипедов. Каждая из подсветок получилась с различной конфигурацией корпуса, лампами, батареями, рабочим напряжением и силой тока. Мне нужно было построить такую схему реле времени на 12 вольт, которая вместила бы все светодиоды без дополнительных усилий. Я нашел ответ в схеме с использованием чипа 555. Это идеальный и дешевый выбор самодельного электронного реле времени.

Конечно, дешевле и проще было бы купить готовую подсветку, но сделать собственную гораздо веселее. Также нужно сказать, что использование этой схемы ограничивается лишь воображением. Это может быть строба велосипеда, рождественская гирлянда, стробоскоп для автомобиля и т.д.

Несколько слов о могучем чипе 555

Он может работать от источника постоянного тока от 3В до 16В. Также он может дать выход 200 мА на из пина 3, чего хватает для управления несколькими обычными светодиодами, но мало для серьезного устройства. Лучшим решением будет использование транзистора.

Шаг 1: Выход LOAD и материалы

Добавьте силы вашему чипу 555

Какой транзистор лучше подойдет? Вот список транзисторов от маленькой до высокой мощности. Их можно использовать в этом проекте.

LOAD = это ток (А) лампочки. 1 А = 1000 мА.

Для 200mA LOAD => BC547 NPN
Для 500 мА LOAD => BC337, 2N1711 NPN
Для 1,5A LOAD => BD135 NPN
Для 3A LOAD => TIP31, BD241 NPN
Для 4A LOAD => BD679 NPN
Для 5-15A LOAD => TIP3055 N-gate (этот транзистор не рекомендуется для данной печатной платы, потому что дорожки слишком тонкие, чтобы нести нагрузку больше 5А)

Совет. Никогда не используйте транзистор 500 мА для нагрузки 500 мА без радиатора. Лучше используйте транзистор 1А.

Необходимые инструменты

  • Паяльник. Не более 25 Вт
  • Припой в виде проволоки — 0,5-1,0 мм
  • Губка для припоя
  • Паяльная паста (флюс)
  • Маленькие ножницы для припоя
  • Сверла = 0,7 мм и 1 мм
  • Цифровой мультиметр

Шаг 2: Чип 555 с циклом включения/выключения 1:1

Печатная плата с циклом включения/выключения 1:1

Эта плата достаточно мала, чтобы поместиться в почти любой корпус. Вы можете скачать и распечатать компоновку печатной платы с помощью любого графического редактора, который может изменить размер изображения при предварительном просмотре перед печатью, например, corel photo-paint. Размер платы — 21,5 мм x 32 мм с разрешением 72dpi.

Распечатайте печатную плату, удалите медь, используя любую химическую технику. Просверлите отверстия самым маленьким сверлом, которое вы сможете найти, нанесите флюс на плату, а затем переверните её вверх ногами, чтобы поместить компоненты. Будьте внимательны, соблюдайте полярность всех компонентов, особенно диода D1 и конденсатора C1. Длинная клемма светодиода обозначает анод (положительный +). Для транзистора Q1 смотри схему. Сверху чипа 555 есть точка, обозначающая номер пина (1).

Список частей — для чипа 555 с циклом включения/выключения 1:1

  • Все резисторы 1/4 Вт
  • R1 = 1K
  • R2 = 10K
  • R3 = 1K
  • R4 = 680 для красного светодиода 5 мм. 470 для белого светодиода 5 мм
  • D1 = 1N5817 диод Шоттки
  • D2 = красный или белый светодиод 5 мм
  • C1 = 33uF / 25V электролитический конденсатор
  • C2 = 10nF
  • Q1 = BD135 NPN-транзистор
  • IC1 = 555 (NE555), 8-контактный коннектор с разъемом DIN (корпус)
  • PCB = около 25 мм x 35 мм
  • какой-нибудь тонкий провод

Эксплуатация и регулировка чипа 555 с циклом включения/выключения 1:1

Из-за наличия диода D1 Шоттки в качестве защиты от обратной полярности вы заметите разницу между входом и выходом около 0,3 — 0,5 В. Это нормально для диодов Шоттки.

Лучше защитить цепь от обратной полярности, чем все сжечь. Чтобы отрегулировать выход в герцах = циклах в секунду (мерцаний), требуется только заменить конденсатор С1. Для более коротких циклов используйте конденсатор меньшей емкости в uF, а для более длинных — большей емкости.

Если C1 = 47uF, то это примерно 1 герц (1 мерцание в секунду). Если C1 = 33uF, то это около 2 герц и т. Д. Это все!

Шаг 3: 555 с вариативным циклом включения/выключения

Ниже приведена схема изменения цикла включения/выключения с использованием 2 триммеров.

Схема и печатная плата 2(А), 2(Б)

Скачайте изображение печатной платы 2(А) и изображение расположения компонентов, если вы собираетесь использовать горизонтальные триммеры 10 мм. Размеры печатной платы = 31 х 37 мм.

Скачайте схему печатной платы 2 (Б) и изображение расположения компонентов, если вы собираетесь использовать 10 мм вертикальные многооборотные триммеры, которые более точные и экономят место на печатной плате. Размеры печатной платы = 32 х 33 мм.

Регулировка для чипа 555 с вариативным циклом включения/выключения

  • Это легко сделать и это очень универсальный вариант, потому что для смены цикла нужно только заменить конденсатор С1 на конденсатор с большей емкостью в uF.
  • POT1 используется для активного периода времени (вкл.).
  • POT2 используется для неактивного периода времени (выкл.).
  • Опять же, вы можете использовать любой транзистор NPN, в зависимости от требуемого значения силы тока.
  • Рабочее напряжение составляет 5 — 15 В постоянного тока.

Список частей для чипа 555 с вариативным циклом включения/отключения:

  • Все резисторы 1/4 Вт
  • R1 = 1K
  • R2 = 1K
  • R3 = 470
  • POT 1,2 = 100K триммеры или многооборотные потенциометры
  • R4 = 680 для красного светодиода 5 мм. 470 для белого 5мм светодиода
  • D2,3 = 1N4148
  • Красный или белый светодиод 5 мм
  • C1 = 10 мкФ / 25В электролитический конденсатор
  • C2 = 10nF керамический конденсатор
  • Q1 = BD241 NPN-транзистор
  • IC1 = 555 (NE555), 8-контактный коннектор с разъемом DIN

Шаг 4: Обновленная версия печатной платы

Здесь приведена обновленная версия печатной платы на основе LM555, в которой могут быть установлены потенциометры с одним поворотом или многооборотные триммеры для лучшей точности в зависимости от ваших потребностей.

Поскольку электролитический конденсатор C1 отвечает за период времени, может потребоваться заменить его на другой, с большей ёмкостью. Для простоты использования C1 заменен на 2-контактный клеммный блок для печатных плат. Все, что нам нужно сделать, это вставить C1 в разъем.

Помните правило для С1:

  • C1 (электролитический конденсатор) отвечает за максимальное время включения / выключения схемы.
  • Низкая емкость конденсатора, скажем, 1uF = короткие временные интервалы.
  • Высокая емкость конденсатора, скажем, 100uF = более длительные интервалы времени.

Настройка таймера задержки:

  1. POT1 (потенциометр): установите желаемый период времени, когда схема включит подключенное устройство (в пределах максимального предела времени, которое может дать C1).
  2. POT2 (потенциометр): установите желаемый период времени, когда схема выключит подключенное устройство (в пределах максимального предела времени, которое может дать C1).

Скачайте приложенный файл, содержащий все изображения и схему платы. Руководствуйтесь изображением, чтобы разместить компоненты на печатной плате.

Файлы

устройство, виды, схема для выполнения своими руками

Наиболее простым и несложным прибором, позволяющим автоматизировать различные действия, является реле времени с задержкой выключения на 220 В. Изменение рекламы на вывесках, контроль поливочных систем, включение приборов в определённое время, подача электричества, воды — всё это и многое другое возможно осуществить, используя такое несложное устройство. Современные реле несложны в настройках режимов работы и позволяют их выполнить даже людям, не разбирающимся в технике.

Назначение, виды и принцип работы

Реле времени — это прибор, предназначенный для автоматизации действий в зависимости от установленного интервала времени. Другими словами, устройство позволяет отсрочить запуск процесса на какой-то промежуток времени. Конструктивно прибор состоит из следующих частей:

  • управляющая;
  • выдерживающая;
  • исполнительная.

Управляющая часть обеспечит запуск при появлении разрешающего сигнала, поступающего на элементы схемы. Выдерживающая часть переводит прибор в режим паузы, а исполнительная уже непосредственно коммутирует подключённую к выходу нагрузку.

Простое реле времени с задержкой включения 220 В предназначено для управления отсрочкой по времени, например, отключение света через пять минут после его включения. Наиболее распространёнными типами реле являются: электромеханическое, электромагнитное, программируемое.

В простых случаях применяют первые два вида реле, использующие одну настройку. Программируемый тип обладает расширенными возможностями. Основная его способность заключается в возможности создания цикличности действия и гибкости настройки. Благодаря чему такое реле является универсальным для любой сферы применения и настраивается с высокой точностью. Оно может управляться дистанционно, комплектоваться удобной системой индикации, а также использоваться в схемах вместо импульсного реле.

По способу расположения разделяются на отдельностоящие, встраиваемые и модульные. Отдельностоящие — это независимые устройства, выполняемые в отдельном корпусе с выносным устройством питания. Например, реле времени для фотопечати. Встраиваемые устройства представляю собой плату и механизм без корпуса. Они составляют единое целое с другими сложными приборами, например, таймер-программатор в микроволновой печи или накладной выключатель с выдержкой времени. Модульные приборы выпускаются с креплениями, выполненными под din-рейку, и предназначены они для расположения в щитовых шкафах.

Электромагнитный тип устройства

Используется в линии постоянного тока. Преимущество электромагнитных реле заключается в низкой цене, а недостаток — в ограниченном ресурсе работы. Основными частями, из которых состоит устройство, являются:

  • катушка;
  • магнитопровод;
  • якорь;
  • траверс;
  • пружина.

Между якорем и сердечником располагается стойкая к намагничиванию прокладка. Основное её назначение защита якоря от контакта с сердечником. Движение якоря в катушке создаётся магнитным полем в результате прохождения электрического тока по её виткам. Если прокладки не будет, то пружина не преодолеет действия остаточной намагниченности и подвижные контакты на траверсе не разомкнутся. Толщина прокладки влияет на время задержки срабатывания.

Регулировка задержки времени происходит выставлением величины натяжения пружины. Для этого в конструкции предусмотрен регулировочный винт. Выдержка времени осуществляется закорачиванием или отключением катушки реле.

При закорачивании катушки магнитное поле исчезает или достигает малой величины. После отключения подачи питания из-за замыкания катушки в контуре образуется самоиндукция, поддерживающая некоторое время значение тока. Магнитное поле, а значит и сила, удерживающая якорь, начинает постепенно уменьшаться.

Для того чтобы величина магнитного поля при отключении катушки медленно уменьшалась, применяются так называемые демпферы, образующие вторичный контур. Материалом для их изготовления служит медь или алюминий. При исчезновении магнитного поля в демпфере индуктируется ток, чем меньше его масса, тем и время выдержки меньше. Используя разные съёмные демпферы, изменяют и время задержки.

Реле с пневматической и анкерной задержкой

Главной частью этого типа является электромагнит. Он применяется как постоянного, так и переменного тока. В качестве устройства задержки используется пневмонический демпфер или часовой. Достоинство такого метода работы устройства его независимость от формы запитывающего сигнала и температуры окружающей среды. Основной элемент анкерной конструкции пружина, степенью сжатия которой управляет электромагнит. Пневматические реле разрешают регулировать время в пределах от 0,4 до двух минут с точностью десять процентов. Для анкерных устройств время паузы составляет от 7 до 20 секунд с той же точностью.

Кроме электромагнита, пневматическое реле содержит:

  • пневматический замедлитель;
  • колодку;
  • резиновую диафрагму;
  • иглу регулировки.

Электромагнит, срабатывая, опускает колодку под давлением пружины. Скорость опускания зависит от диаметра отверстия, через него воздух поступает в верхнюю часть. Изменяя скорость подачи воздуха и регулируя размер отверстия, изменяют и время задержки.

Приборы моторного типа

Устройства позволяют коммутировать мощную нагрузку. Точность работы составляет пять процентов, при этом они могут совершить более 1 тыс. циклов срабатывания. Время задержки достигает 30 минут. В конструкции применяется электродвигатель с регулируемыми оборотами. При подаче питания на двигатель происходит его запуск, через муфту вращение передаётся на диски с кулачками. Последние и воздействуют на выходные клеммы.

В зависимости от расположения кулачков происходит замыкание или размыкание контактов. Время задержки определяется начальным положением дисков. Как только питание пропадает, диски под действием возвратной пружины возвращаются в исходное состояние. Время возврата не превышает секунду.

Электронная задержка времени

Цифровые приборы наиболее функциональные и распространённые типы реле. Их достоинство в обработке сигналов цифровым способом, что позволяет получить высокую степень точности. Выпускаются такие реле времени с задержкой выключения на 12 В, 24 В, 220 В и других величин. Работа устройства не зависит от изменения величины и частоты входного сигнала. Этот типа прибора наиболее безопасен в эксплуатации, так как имеет гальваническую развязку с цепью питания.

Принцип работы основан на использовании переходных процессов в резистивно-ёмкостных и индуктивных цепях. Для формирования задержки применяются специализированные микросхемы, позволяющие программировать таймеры. Программирование таймера сводится к установке времени. Оно может быть аналоговым либо цифровым.

Управляя величиной напряжения на конденсаторе, формируется интервал времени. Он равен его значению от момента подачи сигнала на цепочку, до достижения требуемого уровня напряжения на конденсаторе. Разряд конденсатора происходит по экспоненциальной функции. Для увеличения времени задержки используется автоколебательная схема, а степень точности достигается добавлением в схему кварца. Устройство с небольшими задержками времени выполняется на основе одного цикла заряд-разряд, а с более длинными из нескольких.

Для получения напряжения требуемого для различных частей схемы, на её входе располагается преобразователь. Кроме этого, он формирует уровень опорного напряжения. Таким образом, в цифровых реле задержка времени задаётся зарядно-разрядной цепочкой и компаратором. Подсчёт числа импульсов генератора и изменение величины времени, осуществляется с помощью счётчика. Получая импульсы от генератора, счётчик проводит их подсчёт. Дешифратор анализирует состояние счётчика и формирует сигнал, пересылаемый в исполнительный блок.

Основные характеристики устройства

В специализированных торговых точках встречаются устройства задержки с различными характеристиками, выпускающиеся разными производителями. Качество продукции от именитых производителей подтверждается сертификатами и гарантируемым ими сроком работы. Из популярных компаний выделяются: Hager, Аско, Eaton, ABB, Schneider, Новатек. Независимо от типа и модели, реле времени характеризуются следующими параметрами:

  • Напряжение питания. Значение уровня сигнала необходимого для работы прибора, единица измерения вольт.
  • Максимальный ток. Величина тока, которую может пропустить через себя устройство без повреждения узлов своей схемы, измеряется в амперах.
  • Диапазон времени. Время срабатывания.
  • Расчётное напряжение. Значение величины коммутируемого сигнала и его форма.
  • Рабочая температура. Среднее значение составляет от -20 до 50 °C.
  • Функциональность. Выпускаются одноканальные устройства и многоканальные с независимым управлением.
  • Наибольшее сечение кабеля возможное для коммутации.
  • Степень защиты. Должно соответствовать значению не ниже IP 24.
  • Способ регулировки. Цифровой или аналоговый.
  • Дополнительные возможности. Устройства с реле времени могут включать в себя различные датчики. Например, при использовании датчика движения прибор среагирует на попадание объекта в его поле действия. При этом каждое движение поддерживает это освещение. Как только движение прекращает регистрироваться, свет через некоторое время выключится.
  • Способ монтажа. Могут располагаться в щитке, устанавливаться в розетку или монтироваться вместо обычного выключателя.

Для цифровых устройств выделяют ещё и период программирования. Например, электронное реле времени на 220 В программируется на неделю или сутки, что позволяет установить оптимальные настройки работы.

Подключение прибора обычно не вызывает проблем. Устройство включается в разрыв линии подходящей к нагрузке. С каждым реле временем должна идти инструкция от производителя с подробной схемой подключения и её описанием. При этом она может быть изображена и на самом корпусе прибора.

Самостоятельное изготовление

При желании можно сделать таймер включения и выключения электроприборов своими руками. Перед тем как приступить к исполнению, нужно определиться с задачами, найти схему устройства и требуемые радиодетали. Схемы существуют разной степени сложности.

Схема реле на транзисторе

Простая схема реле задержки выключения 12 В собирается на одном транзисторе, и не содержит дефицитных деталей. Эта очень простая к повторению схема. После сборки не требует настройки. Такое устройство будет работать не хуже приобретённого в магазине.

В качестве VT1 используется любой транзистор n-p-n проводимости. При подаче питания конденсатор заряжаться. При достижении на нём пороговой величины напряжения, транзистор открывается и срабатывает реле K1. Изменяя значение С1 и R2, регулируется время включения. Задержка включения в таком исполнении достигает 10 секунд. Для того чтобы при снятии питания реле оставалось замкнутым некоторое время, параллельно питанию схемы устанавливается конденсатор большой ёмкости.

Управление задержкой на микросхеме

Простая схема управления светом, вентилятором, или другой нагрузкой может быть собрана на NE555. Специализированная микросхема NE555 есть не что иное, как таймер. Выходной ток устройства 200 мА, ток потребления 203 мА. Погрешность таймера не превышает один процент и не зависит от изменения сигнала в сети 220 вольт.

Схема работает от источника постоянного напряжения. Уровень сигнала питания схемы выбирается в диапазоне от 9 до 14 Вольт. Цепочка, состоящая из резисторов R2, R4 и конденсатора C1 задаёт время задержки. Рассчитать это время можно воспользовавшись формулой t = 1.1*R2*R4*C1. После нажатия кнопки SB1 происходит замыкание контактов K1.1. Через время t они разомкнутся. Для того чтобы таймер начинал отсчёт времени не от момента нажатия на кнопку, а в момент отпускания, понадобится использовать кнопку с нормально замкнутыми контактами.

Время подстройки легко регулировать с помощью переменного резистора R2. Такую схему удобно собрать на плате, выполненной из текстолита или гетинакса. После правильной сборки и при исправных радиодеталях схема работает сразу.

Amazon.com: 12-вольтное реле таймера, DROK от 0,1 с до 999 мин, 50 мА, 4-режимное автомобильное цифровое реле задержки включения-выключения, электрический переключатель с таймером задержки, модуль задержки времени цикла со светодиодным дисплеем: Kitchen & Dining

Параметры продукта:
Рабочее напряжение: 12 В постоянного тока
Диапазон времени задержки: от 0,1 секунды (мин.) До 999 минут (макс.), Регулируется
Источник сигнала: положительная сторона срабатывания источника питания, кнопка, датчик PNP, сигнал ПЛК
Выходная способность: может управлять устройствами в пределах 30 В постоянного тока 5 А или 220 В переменного тока 5 А
Ток покоя: 20 мА
Рабочий ток: 50 мА
Срок службы: более 100000 раз
Рабочая температура: от -40 до 85 ℃
Размер: 64.2 * 34,8 * 18,5 мм

Характеристики продукта:
Выход использует изоляцию оптопары, которая увеличивает способность противостоять потребляемой мощности помех.
Печатная плата промышленного уровня
Установленные параметры будут навсегда сохранены в памяти даже после отключения питания.
Примечание: выходом реле является пассивный контакт, который выводит без электричества и управляет включением / выключением одной цепи.

4 режима:
● P-1: срабатывание сигнала, реле подключается.По истечении времени реле отключается. В течение времени задержки
● P-2: Срабатывание сигнала, время начала отсчета T1. По истечении времени T1 реле подключается. Затем, когда время T2 истекло, реле отключается (сбрасывается)
● P-3: Recycle: когда время T1 истекло, реле подключается, а затем, когда время T2 истекло, реле отключается, бесконечный цикл. Значение T1 и T2 регулируется.
Если значение втягивания или разъединения равно 0, он может выключить бесконечный цикл отсроченного подключения или отсроченного отсоединения при включении питания.
● P-4: При срабатывании сигнала реле подключается и продолжает подключение. Когда сигнал исчезнет, ​​начните отсчет времени. По истечении времени задержка отключается.
В течение времени задержки снова активируйте сигнал, задержка прекращается, задержка продолжает соединение. Когда сигнал исчезнет, ​​снова выполните повторную синхронизацию.

Компактное реле времени с задержкой включения — регулируемое 12В

Реле времени с регулируемой задержкой включения 12 В А Индивидуальное время задержки (см. Ниже) S1 1.022.112.xxE + Список цитат
Реле времени с регулируемой задержкой включения 12 В C Индивидуальное время задержки (см. Ниже) S2 1.022. 110. xxE + Список цитат
Реле времени с регулируемой задержкой включения 12 В А Интервал времени: 0,5 — 5 секунд S1 1.022.112.01E + Список цитат
Реле времени с регулируемой задержкой включения 12 В А Временной интервал: 1-30 секунд S1 1.022.112.02E + Список цитат
Реле времени с регулируемой задержкой включения 12 В А Временной интервал: 0,5 — 60 секунд S1 1.022.112.03E + Список цитат
Реле времени с регулируемой задержкой включения 12 В А Временной интервал: 30 — 900 секунд S1 1.022.112.04E + Список цитат
Реле времени с регулируемой задержкой включения 12 В А Временной интервал: 0,5 — 4000 секунд S1 1.022.112.05E + Список цитат
Реле времени с регулируемой задержкой включения 12 В C Интервал времени: 0,5 — 5 секунд S2 1.022.110.01E + Список цитат
Реле времени с регулируемой задержкой включения 12 В C Временной интервал: 1-30 секунд S2 1.022.110.02E + Список цитат
Реле времени с регулируемой задержкой включения 12 В C Временной интервал: 0,5 — 60 секунд S2 1.022.110.03E + Список цитат
Реле времени с регулируемой задержкой включения 12 В C Временной интервал: 30 — 900 секунд S2 1.022.110.04E + Список цитат
Реле времени с регулируемой задержкой включения 12 В C Временной интервал: 0,5 — 4000 секунд S2 1.022.110.05E + Список цитат

12v time delay relay — купить 12v time delay relay с бесплатной доставкой на AliExpress

Отличные новости !!! Вы попали в нужное место для 12-вольтового реле с выдержкой времени. К настоящему времени вы уже знаете, что все, что вы ищете, вы обязательно найдете на AliExpress.У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку это лучшее реле с выдержкой времени на 12 В должно стать одним из самых востребованных бестселлеров в кратчайшие сроки. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели реле с выдержкой времени 12 В на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в реле с выдержкой времени на 12 В и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести 12v time delay relay по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Длинная петельная антенна


Намотанная на трубку из ПВХ длиной 3 фута, длинная петельная антенна представляла собой эксперимент, чтобы попытаться улучшить радиоприем AM без использования длинного провода или земля. Он работает достаточно хорошо и значительно улучшает прием слабого станции в 130 милях отсюда.2) / ((9 * радиус) + (10 * длина))

, где размеры указаны в дюймах, а индуктивность — в микрогенри. Индуктивность должно быть около 230 микрогенри для работы со стандартной настройкой AM-радио конденсатор (33-330 пФ). 3-футовая ПВХ-труба наматывается примерно 500 равномерно расположенные витки медного провода № 24, который образует индуктор примерно 170 microhenrys, но у меня получилось немного больше (213uH), потому что обмотка интервал был не совсем ровным. Вторичная обмотка примерно на 50 витков намотана по длине труба наверху первичной, а затем подключенная к 4 виткам намотанной проволоки прямо вокруг радио.Обмотки вокруг магнитолы ориентированы так, чтобы стержень внутренней антенны радиостанции проходит через внешние обмотки. Лучше метод соединения будет заключаться в намотке нескольких витков непосредственно вокруг внутреннего стержневая антенна внутри самого радио, но вам придется открыть радио, чтобы сделать что. Во время работы антенна должна располагаться горизонтально к земле и справа. углы к направлению интересующей радиостанции. Настройте радио на слабую станцию, чтобы вы могли слышать определенный шум, а затем настройте конденсатор антенны и поверните антенну для лучшего отклика.Антенна также следует располагать подальше от регуляторов освещенности, компьютерных мониторов и других устройства, вызывающие электрические помехи.

Меню

Цепь зажигания разряда конденсатора (CDI)


Цепь зажигания CDI создает искру от катушки зажигания. разряд конденсатора через первичную обмотку. Конденсатор емкостью 2 мкФ заряжен примерно до 340 вольт, а разряд контролируется тиристором. Генератор триггера Шмитта (74C14) и MOSFET (IRF510) используются для управления сторона низкого напряжения небольшого (120/12 В) силового трансформатора и напряжение Устройство удвоения используется на стороне высокого напряжения для увеличения емкости конденсатора напряжение примерно до 340 вольт.Аналогичный генератор триггера Шмитта используется для запускайте SCR примерно 4 раза в секунду. Электропитание отключено во время время разряда, так что SCR перестанет проводить и вернется к своему состояние блокировки. Диод, подключенный от 3904 к выводу 9 74C14, вызывает генератор источника питания остановится во время разряда. Схема рисует всего около 200 миллиампер от источника 12 вольт и обеспечивает почти вдвое больше нормальная энергия обычной цепи зажигания.Высокое напряжение с катушки около 10 кВ при использовании искрового разрядника 3/8 дюйма при нормальной температуре и давлении воздуха. Частота искры может быть увеличена до 10 Гц без потери искры. интенсивность, но ограничена низкочастотным силовым трансформатором и рабочим циклом осциллятора. Для более высокой скорости искры, более высокой частоты и меньшего потребуется источник импеданса. Учтите, что катушка зажигания не заземлена. и представляет опасность поражения электрическим током на всех своих клеммах. Используйте ВНИМАНИЕ, когда управляя схемой.Альтернативный способ подключения катушки — заземление. клемму (-) и переместите конденсатор между катодом выпрямительный диод и положительный вывод катушки. Затем SCR помещается между землей и стороной конденсатора +340 В. Это снижает опасность поражения электрическим током и является обычной конфигурацией в автомобильных приложениях.

Меню

Низкое напряжение, сильноточная цепь задержки времени

В этой схеме счетверенный компаратор напряжения LM339 используется для генерации выдержка времени и управление сильнотоковым выходом при низком напряжении.Приблизительно 5 ампер тока можно получить, используя пару свежих щелочных батареек D. Три компаратора подключены параллельно для управления PNP средней мощности. транзистор (2N2905 или аналогичный), который, в свою очередь, управляет сильноточным NPN транзистор (TIP35 или аналогичный). 4-й компаратор используется для генерации времени задержка после размыкания нормально замкнутого переключателя. Два резистора (36К и 62К) используются как делитель напряжения, на который приходится около двух третей батареи напряжение на входе (+) компаратора, или около 2 вольт.Время задержки после переключатель открыт, будет примерно одна постоянная времени с использованием конденсатора 50 мкФ и переменный резистор 100 кОм, или примерно (50u * 100 кОм) = 5 секунд. Время может можно уменьшить, установив резистор на меньшее значение или используя меньшее конденсатор. Более продолжительное время можно получить с помощью резистора или конденсатора большего размера. Для работы схемы при более высоких напряжениях резистор 10 Ом должен быть увеличивается пропорционально (4,5 В = 15 Ом).

Меню

Реле задержки времени включения


Вот схема реле задержки времени включения, которая использует преимущества напряжение пробоя эмиттер / база обычного биполярного транзистора.В используется обратный переход эмиттер / база транзистора 2N3904 как стабилитрон на 8 В, который создает более высокое напряжение включения для Дарлингтон подключил пару транзисторов. Практически любой биполярный транзистор может быть используется, но напряжение стабилитрона будет варьироваться от 6 до 9 вольт в зависимости от конкретный используемый транзистор. Задержка времени составляет примерно 7 секунд при использовании Резистор 47 кОм и конденсатор 100 мкФ и может быть уменьшен за счет уменьшения сопротивления R или Ценности C. Более длинные задержки могут быть получены с большим конденсатором, резистор синхронизации, вероятно, не следует увеличивать выше 47 кОм.Схема должен работать с большинством любых реле постоянного тока на 12 В с сопротивлением катушки 75 Ом или больше. Резистор 10 кОм, подключенный к источнику питания, обеспечивает путь разряда конденсатора при отключенном питании и не необходимо, если в блоке питания уже есть спускной резистор.
Меню

Реле задержки отключения питания

Две схемы ниже иллюстрируют размыкание контакта реле на короткое замыкание. время после выключения зажигания или выключателя света.Конденсатор заряжается и реле замыкается, когда напряжение на аноде диода поднимается до +12 вольт. Схема слева — это обычный коллектор или эмиттер-повторитель и имеет преимущество на одну часть меньше, так как резистор не нужен последовательно с базой транзистора. Тем не менее напряжение на катушке реле будет на два диода меньше, чем напряжение питания напряжение, или около 11 вольт для входа 12,5 вольт. Общий эмиттер конфигурация справа предлагает преимущество полного напряжения питания через нагрузку в течение большей части времени задержки, что приводит к срабатыванию реле и выпадающее напряжение меньше беспокоит, но требует дополнительного резистора в серия с транзисторной базой.Общий эмиттер (схема справа) — это лучшая схема, поскольку можно выбрать последовательный базовый резистор чтобы получить желаемое время задержки, тогда как конденсатор должен быть выбран для общего коллектора (или дополнительного резистора, используемого параллельно с конденсатор). Временная задержка для общего эмиттера будет примерно 3 постоянные времени или 3 * R * C. Значения конденсатора / резистора можно определить от тока катушки реле и усиления транзистора. Например 120 Ом катушка реле потребляет 100 мА при 12 вольт и при условии, что коэффициент усиления транзистора составляет 30, базовый ток будет 100/30 = 3 мА.Напряжение на резисторе будет напряжение питания минус два диодных падения или 12-1,4 = 10,6. Резистор значение будет напряжение / ток = 10,6 / 0,003 = 3533 или около 3,6 К. В Емкость конденсатора для 15-секундной задержки будет 15 / 3R = 1327 мкФ. Мы можем используйте стандартный конденсатор емкостью 1000 мкФ и пропорционально увеличивайте резистор чтобы получить 15 секунд.

Меню

Цепь таймера и реле 9 секунд светодиодов


Эта схема обеспечивает визуальную 9-секундную задержку с использованием 10 светодиодов перед замыкание реле на 12 вольт.Когда переключатель сброса замкнут, 4017 Десятилетний счетчик будет сброшен на счет 0, который загорится Светодиод работает от контакта 3. Выход таймера 555 на контакте 3 будет высоким и напряжение на выводах 6 и 2 таймера будет чуть меньше нижняя точка срабатывания, или около 3 вольт. Когда переключатель открыт, транзистор параллельно с конденсатором выдержки времени (22uF) выключается, позволяя конденсатору начать зарядку, а 555 схема таймера для создания примерно 1-секундного тактового сигнала до декады прилавок.Счетчик продвигается при каждом положительном изменении на выводе 14 и включен, когда на выводе 13 установлен низкий уровень. Когда будет достигнут 9-й счет, закрепите 11 и 13 будут иметь высокий уровень, остановив счетчик и включив реле. Более длительное время задержки может быть получено с емкостью большего или большего размера. резистор на выводах 2 и 6 таймера 555.
Меню

Таймер обратного отсчета 9 секунд цифрового отсчета


Эта схема обеспечивает визуальную 9-секундную задержку с использованием 7-сегментного цифрового светодиод индикации.Когда переключатель замкнут, счетчик обратного / обратного отсчета CD4010 предварительно установлено значение 9, и таймер 555 отключен с высоким выходом. Когда переключатель разомкнут, таймер показывает примерно 1 секунду. тактовый сигнал, уменьшающий счетчик до тех пор, пока не будет достигнут нулевой счет. Когда достигается нулевой счетчик, сигнал выполнения на выводе 7 счетчик движется к низкому уровню, запитывая реле 12 вольт и останавливая часы при низком уровне сигнала на линии сброса (вывод 4). Реле останется под напряжением. пока переключатель снова не замкнется, сбрасывая счетчик на 9.1 секунда тактовый сигнал от таймера 555 можно отрегулировать немного длиннее или короче путем увеличения или уменьшения значения резистора на выводе 3 таймера.

CD4510 — это предварительно настраиваемый счетчик BCD в формате CMOS, который может быть предварительно установленным на любое число от 0 до 9 с высоким уровнем на PRESET ENABLE line (контакт 1) или сбросить на 0 с высоким уровнем на Линия RESET (вывод 9). Входы для предварительной настройки счетчика (P1, P2, P3, P4) находятся на контактах (4, 12, 13, 3) соответственно.Счетчик продвигается вверх или вниз на каждом положительном тактовом переходе (вывод 15) и направление счета (вверх или вниз) контролируется логическим уровнем на входе UP / DOWN (контакт 10, высокий = вверх, низкий = вниз). Сигнал CARRY-IN (вывод 5) отключает счетчик с высоким логическим уровнем.

CD4511 — это 7-сегментный CMOS BCD-декодер с защелкой, до 25 мА, что позволяет напрямую управлять светодиодами и другими дисплеями. Линия LATCH-ENABLE (контакт 5, активный низкий уровень) хранит данные с входа BCD. линий.Вход LAMP-TEST (контакт 3, активный низкий уровень) может использоваться для освещения все 7 сегментов, а также вход BLANKING (контакт 4, активный низкий уровень) можно использовать для выключить все сегменты. Светодиодный дисплей должен быть с обычным катодом, чтобы что сегменты освещены положительным напряжением на их соответствующие подключения. Полные спецификации для CD4510 и CD4511 можно получить по адресу ответить на факс от
Harris Semiconductors (поиск)

Меню

Электронный термостат и цепь реле


Вот простая схема термостата, которую можно использовать для управления реле и подавать питание на небольшой обогреватель через контакты реле.Контакты реле должны иметь номинал выше текущие требования к обогревателю.

Температурные изменения регистрируются термистором (1,7K при 70F), установленном последовательно с потенциометром 5K, который дает около 50 милливольт на градус F на входе компаратора напряжения LM339. Два 1К резисторы, подключенные к выводу 7, устанавливают опорное напряжение на половину напряжение питания и диапазон гистерезиса примерно до 3 градусов или 150 милливольт. Диапазон гистерезиса (диапазон температур, в котором реле включения и выключения) можно регулировать с помощью резистора 10 кОм между контакты 1 и 7.Более высокое значение сузит диапазон.

В процессе работы резистор регулируется таким образом, чтобы реле просто выключается при желаемой температуре. Падение на три градуса температура должна привести к тому, что реле снова включится и останется до тех пор, пока температура снова не поднимется до заданного уровня. Действие реле можно изменить, чтобы оно отключалось на нижнем конце. диапазона, поменяв местами потенциометр 5K и термистор. 5.Стабилитрон на 1 вольт регулирует напряжение цепи так, чтобы небольшой изменения напряжения питания 12 В не повлияют на работу. Напряжение на термистор должен быть наполовину ниже напряжения питания или около 2,6 вольт, когда температура находится в пределах диапазона 3 градусов, установленного потенциометром. Можно использовать практически любой термистор, но сопротивление должно быть выше 1 кОм при интересующей температуре. Выбранный резистор серии должно быть примерно в два раза больше сопротивления термистора, поэтому регулировка заканчивается около центра элемента управления.

Меню

Термостат для обогревателя помещения мощностью 1 кВт (управление SCR)


Ниже представлена ​​схема термостата, которую я недавно построил для управления обогревателем на 1300 Вт. Нагревательный элемент (не показан) соединен последовательно с двумя спина к спине на 16 ампер. SCR (не показаны), которые управляются небольшим импульсным трансформатором. Пульс трансформатор имеет 3 одинаковые обмотки, две из которых используются для питания триггера. импульсы на тиристоры, а третья обмотка подключена к паре транзисторов PNP которые поочередно подают импульсы на трансформатор в начале каждого переменного тока. полупериод.Импульсы запуска применяются к обоим тиристорам ближе к началу каждый полупериод переменного тока, но только один работает в зависимости от полярности переменного тока.

Мощность постоянного тока для схемы показана в нижнем левом разделе чертежа. и использует неполяризованный конденсатор 1,25 мкФ, 400 В, чтобы получить около 50 мА. тока от сети переменного тока. Ток выпрямляется двумя диодами и используется для зарядите пару больших низковольтных конденсаторов (3300 мкФ), которые обеспечивают около 6 вольт постоянного тока для цепи.Напряжение постоянного тока регулируется стабилитроном на 6,2 вольт. и резистор 150 Ом, включенный последовательно с линией, ограничивает импульсный ток, когда сначала подается питание.

Нижний компаратор (выход на выводе 13) служит детектором пересечения нуля. и генерирует прямоугольную волну 60 Гц в фазе с линией переменного тока. Фаза немного сдвинут на 0,33 мкФ, 220К и 1К, так что SCR запускающий импульс поступает, когда линейное напряжение на несколько вольт выше или ниже нуль.SCR не сработает точно при нуле, так как не будет напряжение для поддержания проводимости.

Два верхних компаратора работают так же, как описано в Схема «Электронный термостат и реле». Низкий уровень на контакте 2 производится, когда температура выше желаемого уровня, и препятствует прямоугольная волна на выводе 13 и предотвращает срабатывание SCR. Когда температура упадет ниже желаемого уровня, контакт 2 перейдет в состояние разомкнутой цепи, позволяющее срабатывать меандр на выводе 13 SCR.

Используется компаратор в центре рисунка (контакты 8,9,14). чтобы обогреватель включился вручную в течение нескольких минут и автоматически выключить. Тумблер мгновенного действия (показан подключенным к резистору 51 Ом) используется для разряда конденсатора 1000 мкФ, так что вывод 2 верхнего компаратор переходит в состояние разомкнутой цепи, разрешая меандр 60 Гц. для срабатывания тиристоров и питания нагревателя. Когда конденсатор достигает около 4 вольт цепь возвращается в нормальный режим работы, когда термистор управляет работой.Мгновенный переключатель также может быть переключается так, что конденсатор заряжается выше 4 вольт и отключает нагреватель, если температура выше установленной для кастрюли.

Меню

Как построить цепь реле с выдержкой времени

Реле — это электромеханическое устройство, которое действует как переключатель между двумя клеммами. Операция переключения достигается включением или отключением питания катушки в реле.


Эту работу сделает небольшой электрический сигнал от микроконтроллера или другого устройства.Есть некоторые специальные типы реле, в которых действие переключения не является немедленным для включения и выключения катушки.

Эти реле обеспечивают «временную задержку» между включением или отключением питания катушки и перемещением якоря. Такие реле называются реле с выдержкой времени.

Реле с задержкой времени состоит из обычного электромеханического реле и схемы управления для управления работой реле и синхронизацией.

Основное различие между обычным реле и реле с выдержкой времени состоит в том, что в случае нормального реле контакты замыкаются или размыкаются сразу, когда катушка находится под напряжением или обесточивается, в то время как в случае реле с выдержкой времени контакты замыкаются или размыкаются только по истечении заданного временного интервала.

В этом проекте простое реле с выдержкой времени на 12 В спроектировано с использованием обычного электромеханического реле и некоторой дополнительной схемы для обеспечения функции отсчета времени.

[Чтение: Схема регулируемого таймера]

Принципиальная схема

Необходимые компоненты

  • Реле 12 В — 1
  • TIP122 — 1
  • 1N4728A (стабилитрон 3,3 В) — 1 100
  • POT356
  • 1 кОм — 3
  • 330 Ом — 1
  • 1000 мкФ / 25 В — 1
  • 100 мкФ / 25 В — 1
  • 1N4007 — 1
  • Светодиоды — 2

Схема цепи реле задержки времени

A Переменный резистор 100 кОм и еще один резистор 1 кОм подключены последовательно между питанием и землей.

Стеклоочиститель переменного резистора подключен к положительной клемме конденсатора емкостью 1000 мкФ. Клемма стеклоочистителя переменного резистора также подключена к катоду стабилитрона.

Анод стабилитрона подключен к положительной клемме конденсатора 100 мкФ. Анод стабилитрона также подключен к базе транзистора TIP122.

Отрицательные выводы конденсаторов и эмиттера транзистора соединены с землей.

Один конец катушки реле подключен к клемме коллектора транзистора, а другой конец катушки подключен к источнику питания.

Между выводами катушки установлен диод. Светодиод вместе с токоограничивающим резистором подключается от коллектора транзистора.

Чтобы показать операцию переключения реле, светодиод подключен к нормально разомкнутому контакту реле, а контакт Com подключен к источнику питания.

Работа реле с задержкой времени

В современных электронных устройствах используются системы питания на основе SMPS. Такие системы питания уязвимы для скачков напряжения в электросети.

Входной импульсный ток при включении или возобновлении подачи питания после сбоя может вызвать серьезное повреждение систем SMPS в электронных устройствах.

Следовательно, можно безопасно предусмотреть временную задержку перед подачей питания на устройство. Это предотвращает катастрофические последствия скачков напряжения или скачков входного тока.

Целью этого проекта является демонстрация работы реле с выдержкой времени. Реле временной задержки может обеспечить небольшую задержку после включения питания и перед включением устройства.

Работа очень проста и объясняется ниже.

Схема основана на RC-реле выдержки времени и переключателе с стабилитроном. Когда питание схемы включено, конденсатор емкостью 1000 мкФ заряжается через переменный резистор 100 кОм.

Когда заряд конденсатора 1000 мкФ достигает 3,3 В, стабилитрон начинает проводить.

Поскольку стабилитрон подключен к базе транзистора, он запускает транзистор, и он включается. Катушка реле подключена к коллектору транзистора.

Следовательно, катушка реле находится под напряжением при включении транзистора. В итоге контакты реле переключаются.

Конденсатор емкостью 100 мкФ, подключенный к базе транзистора, используется для поддержания стабильного смещения базы транзистора, чтобы не было щелчков реле.

Задержкой реле можно управлять с помощью переменного резистора и конденсатора емкостью 1000 мкФ. При более коротких задержках схема работает нормально, но при более длительных задержках реле на 12 В может быть нестабильным, и могут наблюдаться колебания якоря.

Для более длительных задержек рекомендуется использовать реле на 6 В с резистором 100 Ом, соединенным последовательно с катушкой. Это стабилизирует работу якоря даже при более длительных задержках.

Когда переменный резистор поддерживается на 20 кОм, задержка составляет около 8 секунд.

ПРИМЕЧАНИЕ

  • Здесь разработана простая схема реле с выдержкой времени. С помощью этой схемы можно задать задержку срабатывания реле, контролируемую пользователем.
  • Реле с выдержкой времени очень полезны для защиты чувствительных электронных устройств от скачков и скачков напряжения.

Реле задержки времени с использованием таймера 555 IC

В этом уроке мы покажем вам, как сделать схему реле с временной задержкой, используя микросхему таймера 555. Эта схема может запускать реле от нескольких секунд до нескольких минут после нажатия переключателя S1. Его легко сделать, и в нем используется всего несколько компонентов.

Реле — это переключатель, который управляется электрически между двумя клеммами: нормально замкнутым и нормально разомкнутым. Это зависит от включения и выключения катушки реле.Есть некоторые реле, в которых процесс переключения не является немедленным и требует времени, они обеспечивают «временную задержку» между включением и выключением катушки. Эти реле называются реле с временной задержкой, которые мы собираемся использовать сегодня.

Основное различие между этими реле заключается в том, что нормальные реле переключаются с нормально замкнутого контакта на нормально разомкнутый контакт немедленно, тогда как в реле с выдержкой времени контакты замыкаются или размыкаются только после заданного временного интервала.

Компоненты оборудования

Принципиальная схема

рабочая

Рабочее напряжение этой цепи составляет 9-12 В постоянного тока.Мы используются электролитический конденсатор емкостью 1000 мкФ, который отвечает за настройку время задержки примерно 2 минуты. Время задержки может быть увеличено на увеличение емкости конденсатора. Например, конденсатор 220 мкФ даст вы задержка ок. 5 минут.

Переключатель используется на входном контакте микросхемы таймера 555 вместе с конденсатором, когда мы включим переключатель, реле будет активировано и обеспечит временную задержку.

В этой схеме мы также используем светодиод с резистором 470 Ом, чтобы указать, находится ли реле в состоянии ВКЛ или ВЫКЛ.Использование светодиода и резистора совершенно необязательно, вы можете пропустить этот шаг, если хотите сделать эту схему еще проще.

Применение и использование

  • Защита чувствительных электронных устройств от скачков и скачков напряжения
  • Управление миганием
  • Управление задержкой плавного пуска двигателя

Как управлять реле таймера NE555 12 В / 5 В от источника постоянного тока 12 В и конденсатора

Попробуйте это: —

смоделировать эту схему — Схема создана с помощью CircuitLab

При включении зажигания Q1 включается и подключает отрицательное питание к модулю таймера.Q1 сначала включается через R2, C2 и R3, а затем удерживается R4 после того, как C2 зарядился. Стабилитрон D2 ограничивает напряжение на C2 до 6,8 В, поэтому любые изменения напряжения аккумулятора (вызванные, например, запуском двигателя), которые не снижают напряжение аккумулятора ниже ~ 7 В, не должны иметь никакого эффекта.

При выключении зажигания входное напряжение быстро падает. Как только оно упадет ниже ~ 7 В, стабилитрон перестает сжиматься, и напряжение на C2 быстро упадет до нуля. Поскольку на C2 подается примерно 6,2 В, на другом конце идет примерно -6.2 В, который отключает Q1 и модуль таймера.

Затем

C2 медленно разряжается через R3 и R4, пока напряжение на базе Q1 не поднимется до 0,6 В, когда он снова включится. При повторном подключении питания модуль времени перезапускается и включает реле до завершения цикла отсчета времени или до разрядки C1, в зависимости от того, что наступит раньше.

Банкноты:

  1. Я заменил ваш транзистор на диод, чтобы гарантировать, что C1 не сможет разряжаться обратно на вход питания. Поскольку Q1 выключается, как только зажигание выключается, модуль таймера не потребляет энергию, поэтому C1 хорошо держит свой заряд (по крайней мере, до тех пор, пока модуль таймера не будет повторно включен через 2 секунды.После этого…).

  2. Помимо того, что схема нечувствительна к колебаниям напряжения батареи, D2 также предотвращает падение базы Q1 ниже -7В. Это важно, потому что переход база-эмиттер транзистора выходит из строя при подаче напряжения более ~ -7,5 В, что нарушит синхронизацию, а также может повредить транзистор.

  3. R3 снижает чувствительность Q1 к небольшим выбросам отрицательного напряжения, которые могут пройти через D2.

  4. Время задержки выключения можно отрегулировать, изменив значение C2.

Эта схема хорошо работает при моделировании, но будет ли она надежно работать в жесткой электрической среде автомобиля — другой вопрос. Более сложная схема должна иметь защиту от всплесков и фильтрацию, чтобы гарантировать правильную синхронизацию даже при кратковременном падении напряжения питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *