Схема подключения трехфазного счетчика через трансформаторы тока
Содержание:В электрических сетях, с напряжением 380 вольт, потребляемой мощностью свыше 60 кВт и током более 100 ампер, используется схема подключения трехфазного счетчика через трансформаторы тока. Данный вариант известен как косвенное подключение. Подобная схема дает возможность измерения высокой потребляемой мощности приборами учета, рассчитанными на низкие показатели мощности. Разница между высокими и низкими значениями компенсируется с помощью специального коэффициента, определяющего окончательные показатели счетчика.
Принцип работы измерительных трансформаторов
Принцип действия данных устройств довольно простой. По первичной обмотке трансформатора, включенной последовательно, протекает фазовый ток нагрузки. За счет этого возникает электромагнитная индукция, создающая ток во вторичной обмотке устройства. В эту же обмотку осуществляется включение токовой катушки трехфазного электросчетчика.
В зависимости от коэффициента трансформации, ток во вторичной цепи будет значительно меньше фазного тока нагрузки. Именно этот ток обеспечивает нормальную работу счетчика, а снимаемые показатели умножаются на величину коэффициента трансформации.
Таким образом, трансформаторы тока или измерительные трансформаторы преобразуют высокий первичный ток нагрузки в безопасное значение, удобное для проведения измерений. Трансформаторы тока для электросчетчиков нормально функционируют при рабочей частоте в 50 Гц и вторичном номинальном токе в 5 ампер. Поэтому, если составляет 100/5, это означает максимальную нагрузку в 100 ампер, а значение измерительного тока — 5 ампер. Следовательно, в этом случае показания трехфазного счетчика умножаются в 20 раз (100/5). Благодаря такому конструктивному решению, отпала необходимость в изготовлении более мощных приборов учета. Кроме того, обеспечивается надежная защита счетчика от коротких замыканий и перегрузок, поскольку сгоревший трансформатор меняется значительно легче по сравнению с установкой нового счетчика.
Существуют определенные недостатки при таком подключении. Прежде всего, измерительный ток в случае малого потребления, может быть меньше стартового тока счетчика. Следовательно, счетчик не будет работать и выдавать показания. В первую очередь это касается с очень большим собственным потреблением. Современные электросчетчики такого недостатка практически не имеют.
Особое внимание при подключение нужно обращать на соблюдение полярности. Первичная катушка имеет входные клеммы. Одна из них предназначена для подключения фазы и обозначается Л1. Другой выход — Л2 необходим, чтобы подключиться к нагрузке. Измерительная обмотка также имеет клеммы, обозначаемые соответственно, как И1 и И2. Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку.
Для вторичных цепей используется проводник, поперечное сечение которого должно быть не ниже 2,5 мм2. Рекомендуется применять разноцветные промаркированные провода с обозначенными выводами. Нередко подключение вторичной обмотки к счетчику осуществляется с помощью опломбированного промежуточного клеммника. Использование клеммника позволяет проводить замену и обслуживание счетчика без отключения электроэнергии, поступающей к потребителям.
Схемы подключения
Подключение измерительного трансформатора к счетчику может быть выполнено разными способами. Запрещается использовать трансформаторы тока с приборами учета, предназначенными для прямого включения в электрическую сеть. В подобных случаях вначале изучается сама возможность такого подключения, выбирается наиболее подходящий трансформатор, в соответствии с индивидуальной электрической схемой.
Если измерительные трансформаторы имеют различный коэффициент трансформации, они не должны подключаться к одному и тому же к счетчику.
Перед подключением необходимо внимательно изучить схему расположения контактов, имеющихся на трехфазном счетчике. Общий принцип действия электросчетчиков является одинаковым, поэтому контактные клеммы располагаются на одних и тех же местах во всех приборах. Контакт К1 соответствует питанию цепи трансформатора, К2 — подключение цепи напряжения, К3 является выходным контактом, подключаемым к трансформатору. Таким же образом подключается фаза «В» через контакты К4, К5 и К6, а также фаза «С» с контактами К7, К8, К9. Контакт К10 является нулевым, к нему подключаются обмотки напряжения, расположенные внутри счетчика.
Чаще всего применяется наиболее простая схема раздельного подключения вторичных токовых цепей. К фазному зажиму от входного автомата сети подается фазовый ток. Для удобства монтажа с этого же контакта выполняется подключение второй клеммы катушки напряжения фазы на счетчике.
Выход фазы является окончанием первичной обмотки трансформатора. Его подключение осуществляется к нагрузке распределительного щита. Начало вторичной обмотки трансформатора соединяется с первым контактом токовой обмотки фазы счетчика. Конец вторичной обмотки трансформатора соединяется с окончанием токовой обмотки прибора учета. Таким же образом подключаются остальные фазы.
В соответствии с правилами выполняется соединение и заземление вторичных обмоток в виде полной звезды. Однако это требование отражено не в каждом паспорте электросчетчиков, поэтому во время ввода в действие иногда приходится отключать заземляющий шлейф. Выполнение всех монтажных работ должно происходить в строгом соответствии с утвержденным проектом.
Существует и другая схема подключения трехфазного счетчика через трансформаторы тока, применяемая очень редко. В данной схеме используются совмещенные цепи тока и напряжения. Возникает большая погрешность в показаниях. Кроме того, при такой схеме невозможно своевременно выявить обмоточный пробой в трансформаторе.
Большое значение имеет правильный выбор трансформатора. Максимальная нагрузка требует величины тока во вторичной цепи не менее 40% от номинала, а минимальная нагрузка — 5%. Все фазы должны чередоваться в установленном порядке и проверяться специальным прибором — фазометром.
Установка счетчика с трансформаторами тока
Схема подключения трехфазного счетчика
Современные приборы учета расхода электрического тока отличаются повышенным классом точности и способны выполнять большое количество функций. В квартирах устанавливаются преимущественно однофазные счетчики, а в загородных домах нередко применяются и трехфазные устройства. Первые применяются в электросетях, работающих при 220 вольт, а вторые работают с повышенным напряжением – от 380 вольт и более. Схема подключения трехфазного счетчика широко применяется не только на производстве, но и в индивидуальных постройках.
Отличия между одно- и трехфазными контрольными устройствами
Приборы контроля над расходом электроэнергии, выполненные в однофазном варианте, устанавливаются в сети с переменным током и способны работать с напряжением в обычные 220В. На всех линиях таких сетей используется только два проводника – фазный и нулевой.
Электрические сети, где используется переменный трехфазный ток, требуют и соответствующего 3х-фазного контрольного устройства. У них совершенно другие схемы подключения, поскольку каждая линия состоит из трех, четырех или пяти проводников. Три провода являются фазными, а остальные выполняют функции нуля и заземления.
Подключение к однофазной электрической сети получило широкое распространение на объектах с потребляемой мощностью до 10 кВт. Поэтому для учета потребленного электричества применяются однофазные счетчики, отличающиеся простой конструкцией, удобной эксплуатацией, возможностью установки в удобном месте. Однако в настоящее время появилось много мощного оборудования, требующего прямого подключения к трехфазному питанию.
В частном секторе довольно часто используются электрические котлы и водонагреватели, электроплиты и асинхронные двигатели. Когда такие приборы подключаются в сеть, то в соответствии со своими техническими характеристиками, качество их работы заметно повышается. Кроме того, предупреждается так называемый перекос фаз, который нередко возникает при одновременных присоединениях на одну линию сразу нескольких мощных устройств. Три фазы позволяют равномерно распределить нагрузку и избежать негативных последствий.
В связи с этим, существенно возросла потребность в том, чтобы выполнить подключение трехфазного электрического счетчика к аналогичной сети. Одним из основных преимуществ этих приборов перед однофазными устройствами является их высокая точность информации. Конструктивно они гораздо сложнее и обладают более крупными размерами. Для подключения обязательно необходимо оборудование трехфазного ввода, а также разрешение соответствующих органов.
Виды контрольной аппаратуры трехфазного типа
Существуют различные модификации трехфазной контрольной аппаратуры, отличающихся способами подключения и тарификацией. Большинству технических условий соответствует конструкция трехфазного счетчика Меркурий 231. Эти устройства могут использоваться с трехжильными или четырехжильными проводами, с нулевой жилой или без нее. В соответствии с конкретными условиями используются схемы прямого, косвенного или полукосвенного подсоединения.
При использовании схемы прямого подключения, электрический ток попадает к потребителю проходя непосредственно через контрольное устройство. Другие варианты предполагают использование трансформаторов тока, исключающих прямой контакт с токопроводящими жилами. Вся информация поступает на счетчик от трансформаторов, закрепленных на специальной шине. Такая схема применяется при более высоких токовых нагрузках и сетевом напряжении.
Возможность тарификации позволяет сэкономить значительные денежные средства. Поэтому среди владельцев недвижимости все более популярной становится монтаж трехфазного счетчика в частном доме, работающего по двум тарифам. Данные приборы автоматически переключаются на работу в дневном и ночном режиме и отдельно рассчитывают затраты электричества для каждого времени суток. Подсоединение двухтарифных устройств выполняется таким же образом, как и обыкновенная трёхфазная аппаратура.
Счетчики с прямым включением
В том случае, когда используются схемы прямого включения счетчик, рассчитанный на три фазы, подключается к сети таким же образом, как и однофазное устройство. Если все соединения выполнялись своими руками, по окончании этой процедуры необходимо обратиться к поставщику электроэнергии с целью проверки правильности выполненных работ и опломбирования прибора учета.
Единственным отличием обоих устройств является большее количество контактов у трехфазного счетчика для подключения всех трех фаз на входе и выходе. Таким образом, нечетные контакты 1, 3,5 предназначены для входных фазных проводов, четные 2, 4, 6 – для выходных. Клеммы 7 и 8 необходимы для подсоединения входного и выходного нулевого проводника. Точно так же выполняется подключение трехфазного электросчетчика Меркурий.
Монтажные работы выполняются преимущественно внутри помещений. Наружная установка возможна при наличии системы подогрева, поскольку такие счетчики не должны эксплуатироваться при температуре окружающей среды ниже нуля градусов. Многие электросчетчики прямого включения без использования трансформаторов ограничены своими параметрами и техническими характеристиками. Например, ограничение по току составляет 100А.
Перед счетчиком в обязательном порядке устанавливается автоматическое защитное устройство, ограждающее от коротких замыканий и отключающее сеть в случае превышения максимальной токовой нагрузки. Проходя через электросчётчик нагрузка равномерно распределяется по фазам, каждая из которых защищена собственным автоматическим выключателем.
Трехфазные счетчики полукосвенного включения
Как уже говорилось, измерители прямого включения имеют ограничение по току до 100А, поэтому для подключения к мощным электроустановкам они совершенно непригодны. Под действием высокого напряжения они просто сгорят. Поэтому в таких сетях используется полукосвенная схема подключения счетчика, функционирующая по десятипроводной схеме совместно с трансформаторами тока. В этом случае электробезопасность обеспечивается за счет раздельных цепей напряжения и тока. Подобное подключение требует большого количества проводов, что создает определенные неудобства.
Каждый контакт трансформатора имеет свое предназначение. В Л1 входит фазная или силовая линия, из Л2 она выходит. И1 служит входом измерительной обмотки, а И2 – выходом. Силовые контакты Л1 и Л2 служат для последовательного включения трансформатора в разрывы всех фазных проводов.
Контактные зажимы трехфазного счетчика распределяются следующим образом:
- 1, 2, 3 – обслуживают фазу А. Сюда производится подсоединение входного (1) и выходного (3) провода фазы, а также входа проводника измерительной обмотки (2).
- 4, 5, 6 – обслуживают фазу В. Сюда производится включение входного (4) и выходного (6) провода фазы, а также входа проводника измерительной обмотки (5).
- 7, 8, 9 – обслуживают фазу С. Сюда производится непосредственное включение входного (7) и выходного (9) провода фазы, а также входа проводника измерительной обмотки (8).
- 10 и 11 предназначены для нулевых проводов входа и выхода.
Другим вариантом подключения электросчетчика является соединение звездой, при котором требуется значительно меньше проводов по сравнению с предыдущей схемой. В этом случае выводы всех трансформаторных обмоток И1 соединяются в общей точке и подключаются к 11-му зажиму электросчетчика. Выходные контакты 3, 6, 9 и клемма нулевого провода 10 объединяются в одно целое и подсоединяются к нулевому проводнику.
Трехфазные счетчики косвенного включения
Схема подключения трехфазного электросчетчика в косвенном варианте считается наиболее сложной, и на практике реализуется в основном с участием квалифицированных специалистов. В этом случае также используются трансформаторы тока и напряжения, позволяющие увеличить проводимость электрической сети.
Применение этих устройств дает возможность преодолевать ограничительный барьер в 100 ампер, установленный для стандартных счетчиков, используемых в однофазной сети.
Таким образом, данная схема подключения 3х-фазного счетчика наилучшим образом подходит для мощных потребителей и электроустановок, широко использующихся в электроснабжении объектов промышленности, на транспорте и других областях. В частном секторе такое подключение практически не используется, так как при отсутствии необходимых потребляемых мощностей это совершенно нецелесообразно с экономической точки зрения.
Содержание: В электрических сетях, с напряжением 380 вольт, потребляемой мощностью свыше 60 кВт и током более 100 ампер, используется схема подключения трехфазного счетчика через трансформаторы тока. Данный вариант известен как косвенное подключение. Подобная схема дает возможность измерения высокой потребляемой мощности приборами учета, рассчитанными на низкие показатели мощности. Разница между высокими и низкими значениями компенсируется с помощью коэффициента, определяющего окончательные показатели счетчика. Принцип работы измерительных трансформаторовПринцип действия данных устройств довольно простой. По первичной обмотке трансформатора, включенной последовательно, протекает фазовый ток нагрузки. За счет этого возникает электромагнитная индукция, создающая ток во вторичной обмотке устройства. В эту же обмотку осуществляется включение токовой катушки трехфазного электросчетчика. В зависимости от коэффициента трансформации, ток во вторичной цепи будет значительно меньше фазного тока нагрузки. Именно этот ток обеспечивает нормальную работу счетчика, а снимаемые показатели умножаются на величину коэффициента трансформации. Таким образом, трансформаторы тока или измерительные трансформаторы преобразуют высокий первичный ток нагрузки в безопасное значение, удобное для проведения измерений. Трансформаторы тока для электросчетчиков нормально функционируют при рабочей частоте в 50 Гц и вторичном номинальном токе в 5 ампер. Поэтому, если коэффициент трансформации составляет 100/5, это означает максимальную нагрузку в 100 ампер, а значение измерительного тока – 5 ампер. Следовательно, в этом случае показания трехфазного счетчика умножаются в 20 раз (100/5). Благодаря такому конструктивному решению, отпала необходимость в изготовлении более мощных приборов учета. Кроме того, обеспечивается надежная защита счетчика от коротких замыканий и перегрузок, поскольку сгоревший трансформатор меняется значительно легче по сравнению с установкой нового счетчика. Существуют определенные недостатки при таком подключении. Прежде всего, измерительный ток в случае малого потребления, может быть меньше стартового тока счетчика. Следовательно, счетчик не будет работать и выдавать показания. В первую очередь это касается счетчиков индукционного типа с очень большим собственным потреблением. Современные электросчетчики такого недостатка практически не имеют. Особое внимание при подключение нужно обращать на соблюдение полярности. Первичная катушка имеет входные клеммы. Одна из них предназначена для подключения фазы и обозначается Л1. Другой выход – Л2 необходим, чтобы подключиться к нагрузке. Измерительная обмотка также имеет клеммы, обозначаемые соответственно, как И1 и И2. Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку. Для вторичных цепей используется проводник, поперечное сечение которого должно быть не ниже 2,5 мм2. Рекомендуется применять разноцветные промаркированные провода с обозначенными выводами. Нередко подключение вторичной обмотки к счетчику осуществляется с помощью опломбированного промежуточного клеммника. Использование клеммника позволяет проводить замену и обслуживание счетчика без отключения электроэнергии, поступающей к потребителям. Схемы подключенияПодключение измерительного трансформатора к счетчику может быть выполнено разными способами. Запрещается использовать трансформаторы тока с приборами учета, предназначенными для прямого включения в электрическую сеть. В подобных случаях вначале изучается сама возможность такого подключения, выбирается наиболее подходящий трансформатор, в соответствии с индивидуальной электрической схемой. Если измерительные трансформаторы имеют различный коэффициент трансформации, они не должны подключаться к одному и тому же к счетчику. Перед подключением необходимо внимательно изучить схему расположения контактов, имеющихся на трехфазном счетчике. Общий принцип действия электросчетчиков является одинаковым, поэтому контактные клеммы располагаются на одних и тех же местах во всех приборах. Контакт К1 соответствует питанию цепи трансформатора, К2 – подключение цепи напряжения, К3 является выходным контактом, подключаемым к трансформатору. Таким же образом подключается фаза «В» через контакты К4, К5 и К6, а также фаза «С» с контактами К7, К8, К9. Контакт К10 является нулевым, к нему подключаются обмотки напряжения, расположенные внутри счетчика. Чаще всего применяется наиболее простая схема раздельного подключения вторичных токовых цепей. К фазному зажиму от входного автомата сети подается фазовый ток. Для удобства монтажа с этого же контакта выполняется подключение второй клеммы катушки напряжения фазы на счетчике. Выход фазы является окончанием первичной обмотки трансформатора. Его подключение осуществляется к нагрузке распределительного щита. Начало вторичной обмотки трансформатора соединяется с первым контактом токовой обмотки фазы счетчика. Конец вторичной обмотки трансформатора соединяется с окончанием токовой обмотки прибора учета. Таким же образом подключаются остальные фазы. В соответствии с правилами выполняется соединение и заземление вторичных обмоток в виде полной звезды. Однако это требование отражено не в каждом паспорте электросчетчиков, поэтому во время ввода в действие иногда приходится отключать заземляющий шлейф. Выполнение всех монтажных работ должно происходить в строгом соответствии с утвержденным проектом. Существует и другая схема подключения трехфазного счетчика через трансформаторы тока, применяемая очень редко. В данной схеме используются совмещенные цепи тока и напряжения. Возникает большая погрешность в показаниях. Кроме того, при такой схеме невозможно своевременно выявить обмоточный пробой в трансформаторе. Большое значение имеет правильный выбор трансформатора. Максимальная нагрузка требует величины тока во вторичной цепи не менее 40% от номинала, а минимальная нагрузка – 5%. Все фазы должны чередоваться в установленном порядке и проверяться специальным прибором – фазометром. Установка счетчика с трансформаторами тока | Содержание: Современные приборы учета расхода электрического тока отличаются повышенным классом точности и способны выполнять большое количество разнообразных функций. В квартирах устанавливаются преимущественно однофазные счетчики, а в загородных домах нередко применяются и трехфазные устройства. Первые применяются в электросетях, работающих при 220 вольт, а вторые работают с повышенным напряжением – от 380 вольт и более. Схема подключения трехфазного счетчика широко применяется не только на производстве, но и в индивидуальных постройках, где установлено мощное электрооборудование и прочая электронная техника для бытовых нужд. Правильный подбор контрольного устройства и варианта подсоединения счетчика электроэнергии, дает возможность рационально использовать электроэнергию и получить значительную экономию средств при оплате счетов. Отличия между одно- и трехфазными контрольными устройствамиПриборы контроля над расходом электроэнергии, выполненные в однофазном варианте, устанавливаются в сети с переменным током и способны работать с напряжением в обычные 220В. На всех линиях таких сетей используется только два проводника – фазный и нулевой. Электрические сети, где используется переменный трехфазный ток, требуют и соответствующего 3х-фазного контрольного устройства. У них совершенно другие схемы подключения, поскольку каждая линия состоит из трех, четырех или пяти проводников. Три провода являются фазными, а остальные выполняют функции нуля и заземления. Подключение к однофазной электрической сети получило широкое распространение на объектах с потребляемой мощностью до 10 кВт. Поэтому для учета потребленного электричества применяются однофазные счетчики, отличающиеся простой конструкцией, удобной эксплуатацией, возможностью установки в удобном месте. Однако в настоящее время появилось много мощного оборудования, требующего прямого подключения к трехфазному питанию. В частном секторе довольно часто используются электрические котлы и водонагреватели, электроплиты и асинхронные двигатели. Когда такие приборы подключаются в сеть, то в соответствии со своими техническими характеристиками, качество их работы заметно повышается. Кроме того, предупреждается так называемый перекос фаз, который нередко возникает при одновременных присоединениях на одну линию сразу нескольких мощных устройств. Три фазы позволяют равномерно распределить нагрузку и избежать негативных последствий. В связи с этим, существенно возросла потребность в том, чтобы выполнить подключение трехфазного электрического счетчика к аналогичной сети. Одним из основных преимуществ этих приборов перед однофазными устройствами является их высокая точность информации. Конструктивно они гораздо сложнее и обладают более крупными размерами. Для подключения обязательно необходимо оборудование трехфазного ввода, а также разрешение соответствующих органов. Виды контрольной аппаратуры трехфазного типаСуществуют различные модификации трехфазной контрольной аппаратуры, отличающихся способами подключения и тарификацией. Большинству технических условий соответствует конструкция трехфазного счетчика Меркурий 231. Эти устройства могут использоваться с трехжильными или четырехжильными проводами, с нулевой жилой или без нее. В соответствии с конкретными условиями используются схемы прямого, косвенного или полукосвенного подсоединения. При использовании схемы прямого подключения, электрический ток попадает к потребителю проходя непосредственно через контрольное устройство. Другие варианты предполагают использование трансформаторов тока, исключающих прямой контакт с токопроводящими жилами. Вся информация поступает на счетчик от трансформаторов, закрепленных на специальной шине. Такая схема применяется при более высоких токовых нагрузках и сетевом напряжении. Возможность тарификации позволяет сэкономить значительные денежные средства. Поэтому среди владельцев недвижимости все более популярной становится монтаж трехфазного счетчика в частном доме, работающего по двум тарифам. Данные приборы автоматически переключаются на работу в дневном и ночном режиме и отдельно рассчитывают затраты электричества для каждого времени суток. Подсоединение двухтарифных устройств выполняется таким же образом, как и обыкновенная трёхфазная аппаратура. Счетчики с прямым включениемВ том случае, когда используются схемы прямого включения счетчик, рассчитанный на три фазы, подключается к сети таким же образом, как и однофазное устройство. Если все соединения выполнялись своими руками, по окончании этой процедуры необходимо обратиться к поставщику электроэнергии с целью проверки правильности выполненных работ и опломбирования прибора учета. Единственным отличием обоих устройств является большее количество контактов у трехфазного счетчика для подключения всех трех фаз на входе и выходе. Таким образом, нечетные контакты 1, 3,5 предназначены для входных фазных проводов, четные 2, 4, 6 – для выходных. Клеммы 7 и 8 необходимы для подсоединения входного и выходного нулевого проводника. Точно так же выполняется подключение трехфазного электросчетчика Меркурий. Монтажные работы выполняются преимущественно внутри помещений. Наружная установка возможна при наличии системы подогрева, поскольку такие счетчики не должны эксплуатироваться при температуре окружающей среды ниже нуля градусов. Многие электросчетчики прямого включения без использования трансформаторов ограничены своими параметрами и техническими характеристиками. Например, ограничение по току составляет 100А. Перед счетчиком в обязательном порядке устанавливается автоматическое защитное устройство, ограждающее от коротких замыканий и отключающее сеть в случае превышения максимальной токовой нагрузки. Проходя через электросчётчик нагрузка равномерно распределяется по фазам, каждая из которых защищена собственным автоматическим выключателем. Трехфазные счетчики полукосвенного включенияКак уже говорилось, измерители прямого включения имеют ограничение по току до 100А, поэтому для подключения к мощным электроустановкам они совершенно непригодны. Под действием высокого напряжения они просто сгорят. Поэтому в таких сетях используется полукосвенная схема подключения счетчика, функционирующая по десятипроводной схеме совместно с трансформаторами тока. В этом случае электробезопасность обеспечивается за счет раздельных цепей напряжения и тока. Подобное подключение требует большого количества проводов, что создает определенные неудобства. Каждый контакт трансформатора имеет свое предназначение. В Л1 входит фазная или силовая линия, из Л2 она выходит. И1 служит входом измерительной обмотки, а И2 – выходом. Силовые контакты Л1 и Л2 служат для последовательного включения трансформатора в разрывы всех фазных проводов. Контактные зажимы трехфазного счетчика распределяются следующим образом:
Другим вариантом подключения электросчетчика является соединение звездой, при котором требуется значительно меньше проводов по сравнению с предыдущей схемой. В этом случае выводы всех трансформаторных обмоток И1 соединяются в общей точке и подключаются к 11-му зажиму электросчетчика. Выходные контакты 3, 6, 9 и клемма нулевого провода 10 объединяются в одно целое и подсоединяются к нулевому проводнику. Трехфазные счетчики косвенного включенияСхема подключения трехфазного электросчетчика в косвенном варианте считается наиболее сложной, и на практике реализуется в основном с участием квалифицированных специалистов. В этом случае также используются трансформаторы тока и напряжения, позволяющие увеличить проводимость электрической сети. Применение этих устройств дает возможность преодолевать ограничительный барьер в 100 ампер, установленный для стандартных счетчиков, используемых в однофазной сети. Таким образом, данная схема подключения 3х-фазного счетчика наилучшим образом подходит для мощных потребителей и электроустановок, широко использующихся в электроснабжении объектов промышленности, на транспорте и других областях. В частном секторе такое подключение практически не используется, так как при отсутствии необходимых потребляемых мощностей это совершенно нецелесообразно с экономической точки зрения. |
Схема подключения трехфазного счетчика через трансформаторы, напрямую — Офремонт
Трёхфазные системы электроснабжения в приватные дома проводят редко, но все же, при большом планируемом потреблении разрешение можно получить. С одной стороны, это отлично, так как существует возможность мощные приборы включать к трехфазной цепи, другими словами применять провода меньшего сечения. Со второй — сама схема труднее, труднее разбиение потребителей на группы, так насколько далеко не вся нагрузка трехфазная, а во время использования обыкновенной техники нежелательно допускать перекос фаз. Также даже схема подсоединения трехфазного счетчика намного проблематичнее, чем однофазного. В общем, нет достоинств без недостатков.
Типы трехфазных счетчиков
Вообще, вид счетчика, а порой и его марка, указан в проекте электрификации. Чрезвычайно редко бывает, однако у вас могут спросить, какой трехфазный счетчик вы хотите. Такие либеральные проэктанты встречаются очень нечасто, и все же, стоит хоть чуть чуть разбираться в теме. Есть трехфазные счетчики для подсоединения трех и четырех проводов. Первые подключаются если нет «нулевого» повода. С этим разобраться очень просто.
Дальше нужны подобрать вид счетчика:
- Трехфазные счетчики прямого включения. Самое обычное подключение, так как присоединяются напрямую к сети. Мощность подключаемой нагрузки не больше 60 кВт, ток не больше 100 А. К ним можно включать провода сечением 15 мм? (не больше 25 мм?). Это уменьшает сфера использования — в основном их устанавливают в квартирах и домах, на маленьких фирмах.
Выбор типа трехфазного счетчика зависит от употребления тока
Вам выбирать сильно не придется, так как вид счетчика, в большинстве случаев, тоже указывается в проекте. Для приватных домов либо прямого, либо полукосвенного подсоединения, в квартирах преимущественно прямого. Прямое подключение легче в реализации (просто завести провода на клеммы), просто считать показания — просто списывать их. Во время установки полукосвенного счетчика, необходимы преобразователи электрической энергии тока (ТТ) или напряжения (зависит от проекта) и рекомендовано подключение через испытательную коробку. Под все данные устройства требуется место в щите. Что еще нужно не забывать, что при расчитывании показаний требуется иметь в виду показатель трансформации для каждой фазы. Другими словами, нужно будет показания множить на этот показатель.
Рабочий принцип счетчика
Однофазные и трехфазные счетчики устроены с одним принципом. Разница лишь в том, что в сети 380 вольт учет проводится отдельно по каждой из фаз, а потом суммируется. Предлагаю разобраться, как работает счетчик для одной фазы, после этого понять устройство з-х фазного очень просто. Ниже показана блок-схема актуального прибора с прямым подключением.
Клеммы для подсоединения проводов в большинстве случаев размещаются в указанном на рисунке порядке, но лучше проверить по паспорту определенного счетчика
Электронные модели
Электронные счетчики электрической энергии как правило будут работать как в сетях переменного, так и в сетях постоянного тока. Постоянное напряжения в большинстве случаев применяется на предприятиях, так что для квартир и приватных домов оно не очень важно. В сравнении с электромеханическими моделями, по размеру электронные значительно меньше, так как в них мало больших компонентов. Плюс к этому, они надежнее, так как нет подвижных деталей. Есть у электронных очередной плюс — они берут во внимание как энергичную, так и реактивную нагрузку (сумма индуктивной и емкостной составляющей).
Преобразователь электрической энергии напряжения подключен между фазой и нулем, преобразователь электрической энергии тока — в разрыв фазного проводника. Данные с преобразователей электрической энергии передаются на преобразователь, где трансформируются в частотные сигналы и поступают в микроконтроллер. В нем расшифровываются показания и пишутся в ОЗУ (оперативное запоминающее устройство). Параллельно процессор управляет электронным реле и монитором.
Блок-схема электронного счетчика электрической энергии
Данные в ОЗУ будут сохранены долгий срок, записи выполняются по типу дневника. В нем крепится расход электрической энергии по датам и времени, что дает возможность провести анализ расхода. В определенных типах, электронные трехфазные счетчики могут передавать информацию о расходе по специализированному каналу. Этот канал может быть подключен к домашнему компьютеру, системе умный дом. При конкретных настройках может автоматично передавать данные в абонентскую службу для выполнения расчетов.
Еще одна функция электронных учетных приборов — многотарифный учет. Если есть наличие нескольких тарифных сеток, зависящих от времени, величина потребленной в очень разный период времени энергии, записывается в различные ячейки. При снятии показаний, данные списываются, умножаются на собственный тариф. Применение многотарифного учета дает возможность экономить на счётах за электричество.
Индукционные или электромеханические
Учет энергии в индукционных счетчиках возведен на отслеживании показателей переменного магнитного поля, благодаря этому работать подобного рода устройства могут лишь с электрическим током.
Устройство индукционного электромеханического счетчика
Важный элемент индукционного 3-х фазного счетчика — специально сконструированный магнитопровод с прорезью. В прорезь ставится край диска, закрепленного на оси. Через одну из катушек магнитопровода проходит ток, вторая подключена параллельно. К плоскости диска с помощью шестеренок подключен механический счетчик, отсчитывающий повороты диска.
Ток, проходя по магнитопроводу, создаёт магнитное поле, а оно вихревые потоки в металлическом диске. Взаимное действие магнитного поля и потоков вихря создаёт вращающий момент, который заставляет диск крутиться вокруг собственной оси. Чем больше сила тока, тем более мощное создается поле, тем быстрее крутится диск, тем быстрее чередуются показания на счетчике.
Схема подсоединения трехфазного счетчика прямого включения
Как уже выше сказано, подключение трехфазного счетчика прямого включения очень обычное. Как и в случае с однофазным, к входным клеммам подключаются провода с вводного автомата. С выходных клемм уходят на нагрузку (в большинстве случаев на противопожарное Устройство защитного отключения, а дальше, уже на автоматы линий).
Схема подсоединения трехфазного счетчика прямого подсоединения
Стоит обратить внимание, с выхода счетчика кабель нейтрали заводится на шину. На прочие устройства ноль подается с этой шины. Как можно заметить, подключение совсем простое. Важно не запутаться с фазами. Для этого лучше применять разноцветные провода. Соблюдение цветовой маркировки в несколько раз делает легче разводку электрической проводки.
На схеме выше на счетчик заведено сразу 4-ре провода, включая нейтраль. И это правильно и разумно. Однако есть и иная схема, по которой защитный PEN проводник подается не на счетчик, а заводится на шину, а с нее с помощью тонкого провода подается на подходящий вход счетчика. Эта схема может существовать, так как в ПУЭ пункт 1.7.135 есть прямое указание на возможность такого подсоединения. Есть даже счетчики под такую схему — с семью выходами (а не с восемью, как в большинстве случаев). К примеру, Энергомера СЕ303-S34.
Вторая схема подсоединения трехфазного счетчика прямого типа
Однако не все подразделения энергосбыта одобряют эту схему. А дело все в том, что при подобном подсоединении кабель PEN можно выключить. В случае с однофазной сетью это приводит к останову счетчика. С трехфазными не так. Экран погаснет, но счетчик продолжит считать, так как для работы ему достаточно наличия трех фаз. В любом случае так говорят производственники. Вот только они не исключают того, что погрешность учета повысится. И не знает никто в какую сторону. Чтобы не допустить остановку счетчика, некоторые подразделения Энергосбыта ставят три пломбы — как на рисунке выше. Очень малоприятное в данном варианте — опломбировка шины, ведь может пригодится вносить изменения в схему.
Через преобразователи электрической энергии тока
При большом потреблении тока — более 100 А — счетчики прямого подсоединения работать не могут. В данном варианте для частного строения рекомендовано подключение полукосвенного учетного прибора через преобразователи электрической энергии тока. Для этого подсоединения нужны три блока питания с некоторыми параметрами.
- Показатель трансформации. Для определения этой характеристики нужно сосчитать максимальное употребление тока (не забывайте предусмотреть токи пуска). Эти сведения вы подаете в проектную организацию, она рассчитывает требуемый показатель трансформации. В большинстве случаев это 100/5, но могут быть и прочие. Полный список вероятных вариантов в таблице ниже.
Коэффициенты трансформации и сопротивление обмоток преобразователей электрической энергии тока
Зачем нужны преобразователи электрической энергии тока при подсоединении счетчиков? Чтобы измерение потребленной электрической энергии было дешевле и проще. Если у вас максимальное употребление тока 100 А, исходя из этого, прибор для измерений (счетчик) должен быть рассчитывается на прохождение такого тока. Обмотка прибора для измерений, которая удержит 100 А, во-первых, будет дорогой, второе, большой. И провода для подсоединения подобного устройства придется применять слишком толстые. В общем, некомфортно и дорого. Преобразователи электрической энергии тока подсоединяются к фазным, пропорционально преобразуют входной ток в меньший номинал и подают на типовый прибор для измерений (счетчик в таком случае). Во сколько раз уменьшается ток и показывает показатель трансформации? К примеру, преобразователь электрической энергии с показателем трансформации 40/5 снижает ток в 8 раз, 100/5 — в 20 раз.
А почему практически всегда ток уменьшается до 5 А? Это одна из типовых величин, прописанная в нормативах. Могут быть еще варианты с 1 А, но они применяются чрезвычайно редко. Просто все приборы для измерений для преобразователей электрической энергии тока выпускаются на 5 А или 1 А, все схемы строятся если из этого исходить.
Преобразователи электрической энергии тока и их подключение
Для правильной работы схемы нужно неукоснительно выполнять правила подсоединения преобразователей электрической энергии. Преобразователь электрической энергии имеет следующие клеммы:
- Л1 — для подсоединения фазного провода от входного автомата.
- Л2 — подсоединяют кабель на нагрузку.
- И1 и И2 — измерительные контакты для подсоединения клемм счетчика.
Что такое преобразователь электрической энергии тока для подсоединения счетчика
Весь ток который потребляется течет по первой обмотке блока питания тока. Во вторичной обмотке появляется пропорционально уменьшенный ток, который идет на счетчик.
Вот так смотрится наглядная схема подсоединения 3-х фазного счетчика через ТТ
При вычислении расхода электрической энергии показания счетчика умножаются на показатель трансформации. Аналогичным образом высчитывается настоящий расход электроэнергии. Все это так, но включать преобразователи электрической энергии можно по-разному.
Десятипроводная
Самая востребованная схема подсоединения трехфазного счетчика через преобразователи электрической энергии — десятипроводная. Она даёт большую степень защиты, так как цепи тока и напряжения разделены. Минус схемы — немалое количество проводов, исходя из этого большая вероятность неправильного подсоединения.
Десятипроводная схема подсоединения трехфазного счетчика через преобразователи электрической энергии тока
Подключение происходит в такой последовательности:
- С выхода защитного автомата фазные провода подаем на входные клеммы первой обмотки преобразователей электрической энергии тока. Обозначаются они Л1.
- С выходов первой обмотки блока питания провода идут к нагрузке. Если говорит непосредственно по приборам, после счетчика в большинстве случаев ставят противопожарное Устройство защитного отключения. В данном варианте выходы Л2 подают на входы данного устройства.
- С клеммы И1 кабель подаем на клемму для подсоединения первой фазы, с другого выхода этой фазы тянем кабель на клемму И2. так подсоединяем все три фазы.
- Нулевой кабель включать можно двумя вариантами (описано для прямого подсоединения):
- Если на счетчике имеется две клеммы для нейтрали, заводим на N1, с выхода N2 подсоединяем к шине и дальше разводку по схеме делаем с шины.
- Если на счетчике лишь одна клемма для подсоединения нейтрали, в первую очередь кабель заводим на шину, с нее подаем на гнездо счетчика для подсоединения нуля.
В общем, вполне понятная и логичная схема, вот только проводов много. Чтобы не было путанницы, собирайте схему постепенно. В первую очередь можно линейную часть, потом — измерительную. Либо наоборот.
Существует еще одна востребованная схема подсоединения трехфазного счетчика — звездой. В данном варианте все выхода измерительных обмоток блока питания (И2) сходятся в одной точке.
Подключение счетчика электрической энергии через преобразователи электрической энергии тока по схеме звезда
От выше описанной она выделяется 2-мя моментами:
- Все выходы измерительных обмоток преобразователей электрической энергии подаются в последнее гнездо счетчика.
- Все выходные гнезда для подсоединения фаз также между собой соединяются и подключаются в предпоследнее гнездо на счетчике. Туда же заводится кабель с шины нейтрали.
При подобном подсоединении проводов меньше, и стоит обратить внимание, общая точка вторичных обмоток в первую очередь заземлена. Минус данной схемы — она очень сложная что бы проверить.
Через испытательную колодку
Чтобы легче было проверять состояние преобразователей электрической энергии тока, рекомендовано включать трехфазный счетчик через испытательную колодку (называют еще экспериментальный блок). Как все знают, оставлять вторичную обмотку без нагрузки нельзя, так как это приводит к ее пробою. При подсоединении трехфазного счетчика через испытательную колодку, закоротить вторичную обмотку блока питания если понадобится легко — нужно только установить перемычку между гнездами.
Подключение через клеммную колодку
Испытательная распределительная коробка (блок) ставится только если применяется десятипроводная схема подсоединения трехфазного счетчика. Сам блок ставится между счетчиком и преобразователями электрической энергии.
Более наглядная схема подсоединения трехфазного счетчика через экспериментальный блок
Суть схемы не меняется, однако в обслуживании узел учета легче. Всегда можно выключить оборудование обеспечив заметный разрыв цепи. Это оборудование стоит мало, обслуживание и измерения оно существенно облегчает. Вот только растёт число точек коммутации, однако, в данном случае, данный недостаток не так критичен.
Как присоединить трехфазный счетчик в однофазную сеть
Нечасто, но бывает, что есть трехфазный счетчик, а его нужно установить в сеть 220 В. Это реально, если учетный прибор прямого включения. В данном варианте подсоединяется одна из фаз, другие остаются просто незадействованными.
Схема подсоединения трехфазного счетчика в однофазную сеть
Само подключение простое, но могут появиться проблемы с энергопоставляющей организацией. Они совсем не всегда принимают такое подключение. В большинстве случаев мотивируя тем, что остаются варианты для кражи электрической энергии.
Самые распространенные схемы включения однофазных и трехфазных электросчетчиков
В этой статье мы рассмотрим основные схемы включения однофазных и трёхфазных электросчётчиков. Сразу хочу отметить, что схемы включения индукционных и электронных электросчётчиков абсолютно идентичны.
Посадочные отверстия для крепления обоих видов электросчётчиков тоже должны быть абсолютно одинаковы, однако некоторые производители не всегда придерживаются этого требования, поэтому иногда могут возникнуть проблемы с установкой электронного электросчётчика вместо индукционного именно в плане крепления на панели.
Зажимы токовых обмоток электросчётчиков обозначаются буквами Г (генератор) и Н (нагрузка). При этом генераторный зажим соответствует началу обмотки, а нагрузочный — ее концу.
При подключении счетчика необходимо следить за тем, чтобы ток через токовые обмотки проходил от их начал к концам. Для этого провода со стороны источника питания должны подключаться к генераторным зажимам (зажимам Г) обмоток, а провода, отходящие от счетчика в сторону нагрузки, должны быть подключены к нагрузочным зажимам (зажимам Н).
Для счетчиков, включаемых с измерительными трансформаторами, должна учитываться полярность как трансформаторов тока (ТТ), так и трансформаторов напряжения (ТН). Это особенно важно для трехфазных счетчиков, имеющих сложные схемы включения, когда неправильная полярность измерительных трансформаторов не всегда сразу обнаруживается на работающем счетчике.
Если счетчик включается через трансформатор тока, то к началу токовой обмотки подключается провод от того зажима вторичной обмотки трансформаторов тока, который однополярен с выводом первичной обмотки, подключенным со стороны источника питания. При этом включении направление тока в токовой обмотке будет таким же, как и при непосредственном включении. Для трехфазных счетчиков входные зажимы цепей напряжения, однополярные с генераторными зажимами токовых обмоток, обозначаются цифрами 1, 2, 3. Тем самым определяется заданный порядок следования фаз 1-2-3 при подключении счетчиков.
Основные схемы включения однофазных счетчиков
На рисунке 1 изображены принципиальные схемы включения однофазного счетчика активной энергии. Первая схема (а) – непосредственного включения – является наиболее распространенной. Иногда, однофазный электросчётчик включают и полукосвенно – с использованием трансформатора тока (б).
Рисунок 1. Схемы включения однофазного счетчика активной энергии: а — при непосредственном включении; б — при полукосвенном включении. Далее рассмотрим схемы включения трёхфазных электросчётчиков.
Самыми распространёнными являются схемы непосредственного (рис.2) и полукосвенного (рис.3) включения в четырехпроводную сеть:
Рисунок 2. Схема непосредственного включения трёхфазного счетчика активной энергии
Рисунок 3. Схема полукосвенного включения трёхфазного счетчика активной энергии.
При полукосвенном включении используют трансформаторы тока. Выбор трансформаторов тока проводят исходя из потребляемой мощности. Промышленностью выпускаются трансформаторы тока с различным коэффициентом трансформации – 50/5, 100/5 …. 400/5 и т.д.
Основные схемы включения трёхфазных электросчётчиков
Кроме полукосвенной схемы, часто применяется и схема косвенного включения трёхфазных электросчётчиков. При этой схеме используют не только трансформаторы тока, но и трансформаторы напряжения.
На рисунке 4 показана схема включения с тремя однофазными трансформаторами напряжения в трёхпроводную сеть, первичные и вторичные обмотки которых соединены в звезду. При этом общая точка вторичных обмоток в целях безопасности заземляется. Это же относится и к вторичным обмоткам трансформаторов тока.
Здесь необходимо обратить внимание на наличие обязательной связи нулевого проводника сети с нулевым зажимом счетчика, т.к. отсутствие такой связи может вызывать дополнительную погрешность при учете энергии в сетях с несимметрией напряжений.
Рисунок 4. Схема косвенного включения трёхфазного счетчика активной энергии в трёхпроводную сеть
Помимо трёхэлементных трёхфазных электросчётчиков, используют и двухэлементные. Принципиальные схемы включения трехфазного двухэлементного счетчика активной энергии типа САЗ (САЗУ) приведены на рисунке 5.
Здесь особо отметим, что к зажиму с цифрой 2 обязательно подключается средняя фаза, т.е. та фаза, ток которой к счетчику не подводится. При включении счетчика с трансформаторами напряжения зажим этой фазы заземляется.
На схеме заземлены зажимы со стороны источника питания (т.е. зажимы И1 трансформаторов тока), но можно было бы заземлять зажимы и со стороны нагрузки.
Счетчики типа САЗ применяются главным образом с измерительными трансформаторами (НТМИ), и поэтому приведенная схема является основной при учете активной энергии в электрических сетях 6 кВ и выше.
Рисунок 5. Схема полукосвенного включения трёхфазного двухэлементного счетчика активной энергии в трёхпроводную сеть
Необходимо отметить один момент, который я упустил раньше. Рабочее напряжение индукционных электросчётчиков, включаемых по схеме непосредственного и полукосвенного включения, равно 220/380 В. В схемах косвенного включения, т.е. с трансформаторами напряжения, применяют электросчётчики на рабочее напряжение 100 В. Некоторые электронные электросчётчики имеют диапазон входного напряжения 100-400 В, что теоретически позволяет использовать их в схемах с любым типом включения.
При монтаже учётов электроэнергии по схеме полукосвенного или косвенного включения, очень большое значение имеет правильное чередование фаз. Для определения чередования фаз применяют различные приборы, например Е-117 «Фаза-Н».
Схемы включения счетчиков реактивной энергии
Довольно часто, вместе с индукционными электросчётчиками активной энергии, применяют электросчётчики реактивной энергии.
На рисунке 6 приведены схемы полукосвснного включения счетчиков в четырехпроводную сеть (380/220 В). Эта схема требует для монтажа меньшего количества провода или контрольного кабеля. При ее сборке значительно уменьшается риск неправильного включения счетчиков, так как исключается несовпадение фаз (А, В, С) тока и напряжения.
Проверить правильность схемы можно упрощенными способами без снятия векторной диаграммы. Для этого достаточным является измерение фазных напряжений, определение порядка следования фаз и проверка правильности включения токовых цепей с помощью поочередного вывода двух элементов счетчиков из работы и фиксацией при этом правильного вращения диска.
Рисунок 6. Схема полукосвенного включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную сеть с совмещенными цепями тока и напряжения.
Недостаток схемы заключается в том, что проверка правильности включения токовых цепей вызывает необходимость трижды отключать потребителей и принимать особые меры по технике безопасности при производстве работ, так как вторичные цепи трансформаторов тока находятся под потенциалами фаз первичной сети.
Другим серьезным недостатком рассматриваемой схемы является то, что необходимо зануление или заземления вторичных обмоток измерительных трансформаторов.
В отличие от предыдущей схема на рисунке 7 имеет раздельные цепи тока и напряжения, поэтому она позволяет производить проверку правильности включения счетчиков и их замену без отключения потребителей, так как в этой схеме цепи напряжения могут быть отсоединены. Кроме этого, в ней соблюдены требования ПУЭ к занулению и заземлению вторичных обмоток трансформаторов тока.
Рисунок 7. Схема полукосвенного включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную сеть с раздельными цепями тока и напряжения.
И в заключение рассмотрим схему косвенного включения двухэлементных электросчётчиков активной и реактивной энергии в трехпроводную сеть свыше 1 кВ. Принципиальная схема данного включения приведена на рисунке 8.
Рисунок 8. Схема косвенного включения двухэлементных счетчиков активной и реактивной энергии в трехпроводную сеть свыше 1 кВ.
В данной схеме в качестве счетчика реактивной энергии принят двухэлементный электросчетчик с разделенными последовательными обмотками. Так как в средней фазе сети отсутствует трансформатор тока, то вместо тока Ib к соответствующим токовым обмоткам этого счетчика подведена геометрическая сумма токов Ia +Ic равная — Id.
На рисунке была показана схема включения с использованием трехфазного трансформатора напряжения типа НТМИ. На практике может применяться трехфазный трансформатор напряжения и с заземлением вторичной обмотки фазы В. Вместо трехфазного трансформатора напряжения также могут применяться два однофазных трансформатора напряжения, включенных по схеме открытого треугольника.
Как правило, схема включения счетчика обычно нанесена на крышке клеммной коробки. Однако, в условиях эксплуатации, крышка может оказаться снятой со счетчика другого типа. Поэтому необходимо всегда убедиться в достоверности схемы путем ее сверки с типовой схемой и с разметкой зажимов.
Монтаж цепей напряжения электросчётчика полукосвенного и косвенного включения должен выполняться в соответствии с ПУЭ — медным проводом сечением не менее 1,5 мм, а токовых цепей – сечением не менее 2,5 мм.
При монтаже электросчётчиков непосредственного включения, монтаж должен быть выполнен проводом, рассчитанным на соответствующий ток.
На этом обзор схем включения электросчётчиков будем считать оконченным. Разумеется, нами были рассмотрены далеко не все существующие схемы, а только те, которые наиболее часто используются на практике.
Электрик.Инфо
% PDF-1.3 % 204 0 объект > эндобдж xref 204 108 0000000016 00000 н. 0000003062 00000 н. 0000003147 00000 н. 0000003381 00000 н. 0000004157 00000 н. 0000004955 00000 н. 0000005768 00000 н. 0000006156 00000 н. 0000006654 00000 н. 0000011932 00000 п. 0000012565 00000 п. 0000012963 00000 п. 0000013093 00000 п. 0000014584 00000 п. 0000014630 00000 п. 0000014676 00000 п. 0000014722 00000 п. 0000014768 00000 п. 0000014814 00000 п. 0000014860 00000 п. 0000014897 00000 п. 0000014950 00000 п. 0000015017 00000 п. 0000015281 00000 п. 0000015638 00000 п. 0000015716 00000 п. 0000015792 00000 п. 0000015869 00000 п. 0000016193 00000 п. 0000020535 00000 п. 0000021010 00000 п. 0000021387 00000 п. 0000026419 00000 п. 0000031266 00000 п. 0000031690 00000 н. 0000032016 00000 п. 0000032757 00000 п. 0000033089 00000 п. 0000033232 00000 н. 0000033501 00000 п. 0000033839 00000 п. 0000039367 00000 п. 0000039507 00000 п. 0000045745 00000 п. 0000051767 00000 п. 0000057464 00000 п. 0000063425 00000 п. 0000069101 00000 п. 0000071794 00000 п. 0000072750 00000 п. 0000073706 00000 п. 0000075144 00000 п. 0000077934 00000 п. 0000077987 00000 п. 0000078043 00000 п. 0000078096 00000 п. 0000078149 00000 п. 0000078205 00000 п. 0000078261 00000 п. 0000078366 00000 п. 0000079535 00000 п. 0000079804 00000 п. 0000080142 00000 п. 0000080215 00000 п. 0000080738 00000 п. 0000080982 00000 п. 0000081281 00000 п. 0000081371 00000 п. 0000081804 00000 п. 0000082043 00000 п. 0000082246 00000 п. 0000082333 00000 п. 0000085630 00000 п. 0000085887 00000 п. 0000086104 00000 п. 0000086412 00000 п. 0000091766 00000 п. 0000091805 00000 п. 0000097374 00000 п. 0000097563 00000 п. 0000097748 00000 п. 0000097930 00000 н. 0000098101 00000 п. 0000098275 00000 п. 0000098453 00000 п. 0000098628 00000 п. 0000098808 00000 п. 0000098991 00000 п. 0000099166 00000 н. 0000105192 00000 п. 0000105362 00000 п. 0000105530 00000 н. 0000105715 00000 н. 0000105885 00000 н. 0000106054 00000 н. 0000106252 00000 н. 0000106442 00000 н. 0000106623 00000 н. 0000106803 00000 п. 0000106980 00000 п. 0000109484 00000 н. 0000109667 00000 н. 0000118020 00000 н. 0000118190 00000 н. 0000118358 00000 н. 0000119196 00000 н. 0000119365 00000 н. 0000002456 00000 н. трейлер ] / Назад 365771 >> startxref 0 %% EOF 311 0 объект > поток hb« ea80s} U7g´b6_iG.MzcN 錬 & ˿zc; K @ 9 {Oo% ύE_DT ޯ fLJ3TMpY + 1S $ 9 & = 2_I ‘(Ggv_: K @ qEGgut4
Services Support — FAQ — Почему мой измеритель мощности DPM-C530A показывает отрицательные показания в кВт?
Почему мой измеритель мощности DPM-C530A показывает отрицательные показания в кВт?
Неправильная механическая ориентация или электрическая полярность трансформатора тока (ТТ) может привести к отрицательным показаниям в кВт после подачи питания.Пожалуйста, проверьте механическую ориентацию и электрическую полярность внешних трансформаторов тока и проверьте, все ли фазы подключены правильно для правильной работы. Когда фаза меняется механически или электрически, и ток течет в обратном направлении, измеритель мощности измеряет нулевое или отрицательное энергопотребление для этой фазы. Условие 1. После измерения трехфазной мощности одна фаза неправильно отображает отрицательные киловатты, а две другие фазы правильно показывают положительные киловатты. Это указывает на то, что фаза, показывающая отрицательные киловатты, может быть перевернута, и ток течет в обратном направлении. Пожалуйста, проверьте как механическую ориентацию, так и электрическую полярность внешних трансформаторов тока, и внесите исправления в установку и подключение внешних трансформаторов тока, чтобы убедиться, что ток течет в правильном направлении. Условие 2: после измерения трехфазной мощности на трех фазах неверно отображается отрицательное значение в кВт. Это означает, что все три фазы могут быть поменяны местами и ток течет в обратном направлении.Помимо установки внешних трансформаторов тока с правильной механической ориентацией и электрической полярностью, убедитесь, что все соединения между трехфазным питанием и внешними трансформаторами тока правильные, а фазные проводники трансформаторов тока соответствуют правильному направлению потока тока. Пожалуйста, обратитесь к схеме подключения ниже и выполните подключения в соответствии со следующими инструкциями. Клеммы первичной обмотки P1 и P2 соединены для входящего первичного тока. Первичный ток поступает на клемму P1 и течет на клемму P2.Вторичный ток поступает на клемму I1 + измерителя мощности и выходит из клеммы K1 трансформатора тока, а затем течет на клемму I1- измерителя мощности через клемму L1 трансформатора тока. Следуя направлению тока, показанному стрелками на схеме подключения ниже, подключите клеммы I2 и I3, чтобы завершить проводку между трансформатором тока и измерителем мощности и подать трехфазное питание на цепь питания.Основы измерения электроэнергии
Основные измерения электрической мощностиПонимание выработки электроэнергии, потерь мощности и различных типов измеряемой мощности может быть пугающим.Ниже приведен обзор основных измерений электрической и механической мощности.
Электрический ток, напряжение и сопротивлениеЛюбое обсуждение электричества неизбежно приводит к электрическому току, напряжению и сопротивлению. Эти концепции показаны ниже на рисунке 1. Электрический ток — это сам поток электричества, который измеряется в единицах, называемых амперами (A). Напряжение — это сила, которая заставляет электричество течь, и измеряется в единицах, называемых вольтами (В или U). Сопротивление выражает сложность, с которой течет электричество, и измеряется в единицах, называемых омами (Ом).
На рисунке ниже эти взаимосвязи показаны в виде электрических цепей. В электрической цепи электрический ток проходит через различные типы нагрузки, включая сопротивление, индуктивность и емкость, от положительной полярности источников питания, таких как батареи, а затем возвращается к отрицательной полярности источника питания. Нагрузка — это термин, который обычно используется для обозначения чего-то, что получает электричество от источника питания и действительно работает (обеспечивает свет, в случае лампочки).
Рисунок 1 — Основные элементы электрической схемы Мощность
Электрическая энергия может быть преобразована в другие формы энергии и использована.Например, его можно преобразовать в тепло в электронагревателе, в крутящий момент в двигателе или в свет люминесцентной или ртутной лампы. В таких примерах работа, которую электричество выполняет за определенный период (или затраченная электрическая энергия), называется электрической мощностью. Единица измерения электрической мощности — ватт (Вт). 1 ватт эквивалентен 1 джоуля работы, выполняемой за 1 секунду.
В электрических системах напряжение — это сила, необходимая для перемещения электронов. Ток — это скорость потока заряда в секунду через материал, к которому приложено определенное напряжение.Умножив напряжение на соответствующий ток, можно определить мощность.
Постоянный ток (DC) МощностьПостоянный ток, или постоянный ток, относится к системам питания, в которых используется одна полярность напряжения и тока, однако амплитуда может изменяться (циклическая или случайная).
Рисунок 2 — Базовая схема, показывающая напряжение и ток с источником постоянного напряжения Закон Ома
При расчетах электрических цепей используется ряд формул, но именно закон Ома показывает наиболее фундаментальную взаимосвязь: взаимосвязь между электрическим током, напряжением и сопротивлением.Закон Ома гласит, что электрический ток течет пропорционально напряжению. Ниже показана формула для выражения отношения между током (I) и напряжением (U).
По этой формуле ток (I) уменьшается при увеличении значения R и, наоборот, ток (I) увеличивается при уменьшении значения R. R здесь представляет собой сопротивление (или электрическое сопротивление). Другими словами, мы видим, что по мере увеличения или уменьшения сопротивления (R) ток течет с большей или меньшей легкостью.Эту формулу можно переписать, как показано ниже. Если известны два значения: ток, напряжение и сопротивление, вы можете получить оставшееся значение.
Мощность постоянного тока (DC) P (W) определяется умножением приложенного напряжения (U) на ток I (A), как показано выше. В приведенном ниже примере количество электроэнергии, определяемое предыдущим уравнением, извлекается из источника питания и потребляется сопротивлением R (в омах) каждую секунду. По закону Ома формулу можно переписать следующим образом:
Электрические цепи постоянного тока поддерживают постоянный ток и напряжение без циклических изменений ни в одном из них.Таким образом, получить мощность постоянного тока (P) с полученной формой волны, приведенной ниже, несложно.
Мощность переменного тока (AC)Электропитание, обычно используемое в Японии, работает от 100 В переменного тока. Эти 100 В представляют собой напряжение, выраженное как среднеквадратичное значение (СКЗ).
100 В от настенных розеток воспринимаются как чистые синусоидальные волны, как показано на рисунке ниже. Мы можем видеть, что полярность меняется циклически, и что напряжения постоянно колеблются.Волны переменного напряжения имеют чистые синусоидальные волны, как график на рисунке 3, а также множество других волн, таких как искаженные волны, такие как обычные формы, такие как треугольная и прямоугольная волна. Чтобы определить размер этих волн переменного тока и напряжения, нам нужны значения, соответствующие одному стандарту. Поэтому используется среднеквадратичное значение (среднеквадратичное значение), которое было получено на основе постоянного тока и напряжения.
Рисунок 3 — Полярность переменного напряжения циклически изменяется в синусоидальной, треугольной и прямоугольной форме Среднеквадратичное значение (СКЗ)
Среднеквадратичное значение обычно используется при выражении значений переменного тока и напряжения и измеряется в единицах амплитуды и единицах.В приведенном выше примере 100 В — это напряжение, выраженное как среднеквадратичное значение (СКЗ).
Простое среднее значение синусоиды равно нулю, поэтому требуется другое уравнение. Вот почему используется среднеквадратичное значение (среднеквадратичное значение), которое было установлено на основе постоянного тока и напряжения. Он основан на объеме работы, выполняемой определенным количеством постоянного тока и напряжения, и выражает — используя те же значения, что и постоянный ток и напряжение — величину переменного тока и напряжения, которые выполняют такой же объем работы.
Если теплотворная способность при подаче напряжения постоянного тока на резистор такая же, как теплотворная способность при подаче переменного тока другой формы волны, действующее значение этого напряжения переменного тока будет таким же, как и для напряжения постоянного тока.
Например, теплотворная способность при приложении постоянного напряжения 100 В к резистору 10 Ом такая же, как теплотворная способность при подаче переменного тока 100 В на тот же резистор. Концепция среднеквадратичного значения для электрического тока такая же.
Рисунок 4 — Равная теплотворная способность сигналов постоянного и переменного тока
Теплотворная способность — это объем выполненной работы, поэтому по следующей формуле мощность рассчитывается как теплотворная способность.
В качестве примера на следующей диаграмме показаны колебания мощности в зависимости от времени, когда на резистор 10 Ом подается постоянный ток 1 А и переменный ток 1 Ампер.
Рисунок 5 — Зависимость мощности от времени при постоянном и переменном токе
Поскольку при постоянном токе нет колебаний значения тока, значение мощности остается постоянным 10 Вт.Однако, поскольку значение тока постоянно колеблется с переменным током, значение мощности колеблется со временем. То, что эти два типа мощности (теплотворная способность) равны, равносильно утверждению, что средние значения Pdc и P1 — Pn равны. Это выражается нижеприведенной формулой.
Здесь резистор (R) постоянный, поэтому им можно пренебречь. Следующее выражает результирующую взаимосвязь между постоянным током и переменным током.
Делая интервал между I1 и In как можно меньшим в этой формуле, в конечном итоге Irms дает квадратный корень из площади части, заключенной в форме волны, деленной на время.Это выражается нижеприведенной формулой.
Важно знать, что постоянный ток 1 А выполняет ту же работу, что и переменный среднеквадратичный ток 1 Ампер. При постоянном и установившемся постоянном токе вы можете получить значение мощности, просто умножив ток на напряжение.
Однако переменный ток не так прост, как постоянный, из-за разницы фаз между током и напряжением. Ниже приведены три типа питания переменного тока.Обычно мощность и потребляемая мощность относятся к активной мощности.
Электропитание в системах переменного токаКак и в случае постоянного тока, значение мощности (мгновенное значение мощности) в определенный момент времени для переменного тока может быть получено путем умножения напряжения и тока для этого момента времени.
При переменном токе, поскольку и ток, и напряжение периодически меняются, значения мощности также постоянно меняются. Это показано на следующей диаграмме.
В качестве энергии в секунду мощность может быть получена из среднего значения мгновенной энергии, то есть площади участка, заключенного в форме волны, по времени. Формула выглядит следующим образом:
Например, если к резистору приложен ток 1 А и напряжение 100 Ом, как показано ниже, мощность станет 100 Вт при вычислении по приведенной выше формуле.
При подаче тока и напряжения на резистор результирующие формы сигналов показаны на Рисунке 6 ниже.
Рисунок 6 — Отсутствие разности фаз в чисто резистивной нагрузке
Считается, что ток и напряжение находятся «в фазе» по полярности и времени, когда формы сигналов тока и напряжения проходят нулевое значение. Ток и напряжение всегда совпадают по фазе, когда нагрузка состоит только из сопротивления.
Когда нагрузка имеет катушку в дополнение к сопротивлению, происходит фазовый сдвиг между сигналом напряжения и тока. Это отставание называется разностью фаз, как показано на рисунке 7.
Рисунок 7 — Разности фаз, представляющие индуктивную и емкостную нагрузку
Разность фаз обычно выражается как Φ (фи), а единица измерения — радианы, но часто указывается в градусах.В приведенном ниже примере точка A начинается из точки P и делает один оборот по окружности круга O. Расстояние между точкой A и прямой линией, проходящей через центр O и точку P (красная линия) как ось Y и ∠AOP (φ), поскольку ось X дает синусоидальную волну ниже.
Рисунок 8 — Синусоидальная волна с фазой
На рис. 9 показаны кривые тока и напряжения, сдвинутые по фазе на 60 °. При рассмотрении положения на окружности напряжения (u) и тока (i) в соответствии с приведенным выше примером, ∠uoi постоянна в каждый момент времени.Угол этого ∠uoi указывает величину разности фаз между напряжением (u) и током (i).
Рисунок 9 — Синусоидальные волны напряжения и тока с разностью фаз
Три типа нагрузки цепи переменного тока показаны на рисунке 10. Как показано ниже, разность фаз между током и напряжением возникает в зависимости от типа нагрузки.
Рисунок 10 — Фазовое и векторное представление цепей переменного тока с резистивной, индуктивной или емкостной нагрузкой
Для фаз ток может отставать от напряжения или опережать.Ток отстает на 90 °, когда нагрузка включает только индуктивность, и опережает на 90 °, когда только емкость. Когда существуют все три типа, разность фаз колеблется в соответствии с соотношением размеров каждого компонента. Затем давайте посмотрим на мощность, когда есть разность фаз между током и напряжением.
Электропитание переменного тока с разностью фазКогда существует разность фаз между током и напряжением, происходит мгновенное изменение энергии, как показано на рисунке 11.
Когда ток или напряжение равны 0, мгновенная мощность становится равной 0.Поскольку полярности тока и напряжения в промежутках между ними меняются, мгновенная мощность становится отрицательной. Мощность — это среднее значение мгновенной энергии, поэтому мощность становится меньше, чем когда ток и напряжение совпадают по фазе (пунктирная линия).
Рисунок 11 — Мгновенная энергия, когда напряжение и ток имеют разность фаз Треугольник мощности и коэффициент мощности
Цепи переменного тока, содержащие емкость, индуктивность или и то, и другое, содержат активную и реактивную мощность.Треугольник мощности, показанный на рисунке 12, помогает проиллюстрировать потребление энергии в индуктивной или емкостной цепи. Треугольник мощности представляет собой прямоугольный треугольник, показывающий соотношение четырех основных элементов, активной мощности, реактивной мощности, полной мощности и коэффициента мощности.
Рисунок 12 — Треугольник мощности показывает соотношение активной и реактивной мощности. Активная мощность
Активная мощность (P) — это истинная мощность, которую устройство потребляет и выполняет реальную работу в электрической цепи.Активная мощность рассчитывается ниже в ваттах (Вт).
Реактивная мощностьРеактивная мощность (Q) — это мощность, которая не потребляется устройством и передается между источником питания и нагрузкой. Реактивная мощность, которую иногда называют мощностью без мощности, забирает мощность из цепи из-за фазового сдвига, создаваемого емкостными и / или индуктивными компонентами. Этот фазовый сдвиг уменьшает количество активной мощности для выполнения работы и усложняет расчет мощности.Реактивная мощность рассчитывается ниже и измеряется в вольт-амперах реактивной мощности (ВАр). В цепи постоянного тока нет реактивной мощности.
Полная мощностьПолная мощность (S) — это гипотенуза треугольника мощности, состоящая из векторного сложения активной мощности (P) и реактивной мощности (Q). Расчет полной мощности представляет собой умножение действующего напряжения на среднеквадратичный ток с единицей измерения вольт-ампер (ВА).
Коэффициент мощностиПри определении коэффициента мощности для синусоидальных волн коэффициент мощности равен косинусу угла между напряжением и током (Cos Φ).Это определяется как коэффициент мощности «смещения» и подходит только для синусоидальных волн. Для всех других форм сигналов (несинусоидальных волн) коэффициент мощности определяется как мощность в ваттах, деленная на полную мощность в амперах напряжения. Это называется «истинным» коэффициентом мощности и может использоваться для всех форм сигналов, как синусоидальных, так и несинусоидальных, с использованием квалификатора λ (лямбда).
Коэффициент мощности (λ) увеличивается или уменьшается в зависимости от величины разности фаз (φ). Рисунок 13 иллюстрирует это явление.
Рисунок 13 — Коэффициент мощности при различных разностях фаз
Для идеальных синусоидальных волн ток и напряжение совпадают по фазе, полная мощность и активная мощность становятся равными, а коэффициент мощности равен 1. Коэффициент мощности уменьшается по мере увеличения разности фаз; коэффициент мощности составляет 0,5 (активная мощность равна 1/2 полной мощности) при разности фаз 60 ° и 0 при разности фаз 90 °. Коэффициент мощности 0 означает, что ток течет к нагрузке, но она не работает.
Векторное отображение переменного токаВременной сдвиг между напряжением и током называется разностью фаз, а Φ — фазовым углом. Смещение по времени в основном вызвано нагрузкой, на которую подается питание. Как правило, разность фаз равна нулю, когда нагрузка является чисто резистивной. Ток отстает от напряжения, когда нагрузка индуктивна. Когда нагрузка емкостная, ток опережает напряжение.
Рисунок 14 — Сдвиг фаз между напряжением и током при чисто индуктивной или емкостной нагрузке
Векторный дисплей используется для четкого отображения зависимости величины и фазы между напряжением и током.Положительный фазовый угол представлен углом против часовой стрелки по отношению к вертикальной оси.
Рисунок 15. Векторная диаграмма показывает соотношение амплитуды и фазы между напряжением и током
Системы питания переменного тока
Питаниепеременного тока может быть однофазным или многофазным. Однофазное электричество используется для питания обычных бытовых и офисных электроприборов, но для распределения электроэнергии и подачи электричества непосредственно на оборудование более высокой мощности почти повсеместно используются трехфазные системы переменного тока.
Однофазные электрические схемыСуществуют две распространенные схемы подключения для однофазных цепей. Наиболее распространена однофазная двухпроводная схема. Другой — однофазная трехпроводная схема, обычно встречающаяся в бытовых приборах.
Однофазная 2-проводная система (1P2W)Обеспечивает однофазное питание переменного тока по двум проводам. Самая простая система, она используется при подключении источников питания ко многим электрическим устройствам, например, бытовой электронике.При подключении ваттметра к однофазной двухпроводной системе необходимо учесть несколько моментов перед подключением.
Рисунок 16. Различные схемы подключения однофазной двухпроводной системы Влияние паразитной емкости
При измерении однофазного устройства влияние паразитной емкости на точность измерения можно минимизировать, подключив токовый входной терминал прибора к стороне, которая ближе всего к потенциалу земли источника питания.
Рисунок 17 — Схема подключения для минимизации паразитной емкости
Влияние измеренных амплитуд напряжения и тока
Когда измеряемый ток относительно велик, подключите клемму измерения напряжения между клеммой измерения тока и нагрузкой. Когда измеренный ток относительно невелик, подключите клемму измерения тока между клеммой измерения напряжения и нагрузкой.
Рисунок 18 — Схема подключения при относительно большом измеряемом токе Двухфазная трехпроводная система (1P3W)
Обеспечивает однофазное питание переменного тока по трехпроводным проводам.Однофазная 3-проводная система является наиболее распространенной системой распределения электроэнергии. Электроэнергия, подаваемая в большинство домохозяйств, поставляется с использованием этой системы. В следующем примере требуются два ваттметра для измерения двух напряжений (U1, U2) и двух токов (I1, I2).
Рисунок 19 — Трехпроводная система с разделением фаз Трехфазные электрические схемы
В отличие от однофазных систем, по проводам трехфазного источника питания проходит переменный ток той же частоты и амплитуды напряжения относительно общего эталона, но с разностью фаз в одну треть периода.Трехфазные системы имеют преимущества перед однофазными, что делает их пригодными для передачи энергии и в таких приложениях, как асинхронные двигатели.
Характеристики трехфазных систем- Ток и напряжение на каждой фазе имеют разность фаз 120 ° в сбалансированной системе.
- Линейное напряжение — это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.
- Фазное напряжение — это напряжение, измеренное на нагрузке в фазе .
- Линейный ток — это ток через любую линию между трехфазным источником и нагрузкой.
- Фазный ток — это ток через любой компонент трехфазного источника или нагрузки.
- При соединении треугольником линейное напряжение совпадает с фазным напряжением. Для синусоидальных волн линейный ток в √3 раз больше фазного тока.
- При соединении звездой линейное напряжение в √3 раз больше фазного напряжения, а токи одинаковы.
- Трехфазные источники питания могут передавать в три раза больше мощности, используя всего в 1,5 раза больше проводов, чем однофазные источники питания (т.е.е., три вместо двух). Таким образом, соотношение емкости к материалу проводника увеличивается вдвое.
- Трехфазные системы также могут создавать вращающееся магнитное поле с заданным направлением и постоянной величиной, что упрощает конструкцию электродвигателей.
До сих пор мы обсуждали, что источник питания и нагрузка соединены двумя проводниками. Это известно как однофазная двухпроводная система. При питании от переменного тока существует однофазное и трехфазное питание, доступны следующие системы электропитания.Трехфазное питание может использоваться в трех- или четырехпроводной конфигурации в звездообразном или треугольном режиме.
Диаграммы на Рисунке 20 показывают источник и нагрузку в конфигурации треугольником или звездой (WYE).
Рисунок 20 — Конфигурации трехфазного треугольника и звезды (WYE) Теорема Блонделя
При обсуждении измерения мощности с помощью ваттметров часто ссылаются на теорему Блонделя при определении правильного метода подключения ваттметров и количества, необходимого для наиболее точного измерения.Теорема утверждает, что мощность, подаваемая в систему из N проводников, равна алгебраической сумме мощности, измеренной N ваттметрами. Кроме того, если общая точка находится на одном из проводов, счетчик этого проводника может быть удален, и потребуется только N-1 счетчик.
Трехфазное соединение звездой (3P4W)Измерение относительно просто, если объектом измерения является трехфазная 4-проводная система. Как показано на схеме ниже, трехфазный 4-проводный включает в себя подключение ваттметров к каждой фазе на основе нейтрального проводника.Получите мощность для каждой фазы, измерив напряжение (фазное напряжение) и ток (фазный ток) для каждой фазы с помощью разных ваттметров. Суммирование даст значение мощности трехфазного переменного тока. Для измерения трехфазной 4-проводной мощности требуется три ваттметра.
Рисунок 21 — Трехфазное соединение звездой (3P4W)
Полная мощность, активная мощность и реактивная мощность для трехфазной мощности — это сумма каждой фазы.
Трехфазный дельта-двухваттметр (3P3W)Измерение в трехфазной трехпроводной системе немного сложнее, поскольку нейтральный проводник, который использовался в качестве основы для трехфазной четырехпроводной системы, отсутствует и фазное напряжение невозможно измерить.Измерение в трехфазной трехпроводной системе включает получение значения мощности трехфазного переменного тока с использованием метода, называемого методом 2-ваттметра.
Применяя теорему Блонделя и используя метод двух ваттметров, мы можем получить значения мощности трехфазного переменного тока. Схема подключения метода двух ваттметров и векторная карта показаны ниже.
Вывод теоремы Блонделя приводится ниже.
Приведенный выше расчет показывает, что мы можем получить значения мощности трехфазного переменного тока из значений мощности в двух линиях и значений тока в двух фазах.Поскольку этот метод требует контроля только двух значений тока и двух напряжений вместо трех, установка и конфигурация проводки упрощаются. Он также может точно измерять мощность в сбалансированной или несбалансированной системе. Его гибкость и низкая стоимость установки делают его подходящим для производственных испытаний, при которых требуется измерить только мощность или несколько других параметров.
Другими словами, для измерения трехфазной мощности мощность может быть получена путем измерения мощности для каждой фазы и вычисления общей мощности.Для метода двух ваттметров уравнение показано ниже.
Трехфазное соединение по схеме треугольник (3V3A)Существует еще один метод измерения при трехфазной трехпроводной системе: измерение трех напряжений и трех токов (3V3A). Как и метод двух ваттметров, этот метод измеряет ток фазы T и линейное напряжение между R и S. Ниже представлена схема подключения.
Рисунок 22 — Трехфазное соединение треугольником (3V3A)
Поскольку метод трех напряжений и трех токов (3V3A) измеряет ток фазы T, он позволяет увидеть баланс тока между фазами, что было невозможно при использовании метода двух ваттметров.Для инженерно-исследовательских и опытно-конструкторских работ трехфазный
Трехпроводной методс использованием трех ваттметров лучше всего, поскольку он предоставляет дополнительную информацию, которая может использоваться для балансировки нагрузки и определения истинного коэффициента мощности. В этом методе используются все три напряжения и все три тока. Измеряются все три напряжения (R — T, S — T, R — S).
Векторный дисплей измерений трехфазного переменного токаМы будем использовать трехфазную систему Y «звезда», чтобы проиллюстрировать концепцию трехфазного векторного дисплея.В звездообразной системе напряжения и токи каждой фазы смещены на 120 °. Нейтральная точка Y-системы находится в центре, где все напряжения и токи теоретически равны нулю.
При проведении измерений в звездообразной системе, где присутствует физический нейтральный провод; напряжения будут измеряться относительно этой нейтральной точки, это называется «фазным напряжением». При проведении измерений в звездной системе, где физический нейтральный провод отсутствует; напряжения будут измеряться относительно друг друга, это называется «линейное напряжение» или «соединение треугольником».Разводка треугольником образует равносторонний треугольник с интервалом между напряжениями 60 градусов, в отличие от проводки звездой, где напряжения изменяются на 120 градусов. Величина линейных напряжений в √3 раз превышает фазные напряжения. Токи в звездной системе всегда измеряются последовательно относительно нейтральной точки, при этом угловые измерения относительно векторов напряжения обозначаются Φ. Рисунок 23 иллюстрирует взаимосвязь между измерениями напряжений при соединении треугольником и звездой с помощью векторной диаграммы.
Рисунок 23 — Векторная диаграмма измерений трехфазного треугольника и звезды. Измерение трехфазного коэффициента мощности
Общий коэффициент мощности для трехфазной цепи определяется путем суммирования общего ватта, деленного на общее измерение в ВА.
Используя метод двух ваттметров, сумма общих ватт (W1 + W2) делится на измерения VA. Однако, если нагрузка несимметрична (фазные токи разные), это может привести к ошибке при вычислении коэффициента мощности, поскольку в расчете используются только два измерения ВА.Два VA усредняются, потому что предполагается, что они равны; однако, если это не так, будет получен ошибочный результат. Следовательно, лучше всего использовать метод трех ваттметров для несимметричных нагрузок, поскольку он обеспечит правильный расчет коэффициента мощности как для сбалансированных, так и для несимметричных нагрузок.
При использовании метода трех ваттметров в приведенном выше вычислении коэффициента мощности используются все три измерения ВА.
ГармоникиГармоники относятся ко всем синусоидальным волнам, частота которых является целым кратным основной волны (обычно это синусоидальный сигнал линии электропередачи с частотой 50 Гц или 60 Гц или от 0 до 2 кГц для вращающихся машин).Гармоники — это искажение формы нормального электрического тока, обычно передаваемого нелинейными нагрузками. В отличие от линейных нагрузок, где потребляемый ток пропорционален и следует форме волны входного напряжения, нелинейные нагрузки, такие как двигатели с регулируемой скоростью, потребляют ток короткими резкими импульсами. Когда основная волна и последующие гармонические составляющие объединяются, формы волны искажаются, и возникает интерференция.
Рисунок 24. Искаженные формы сигнала состоят из нескольких гармонических составляющих Гармоники
необходимо контролировать, поскольку они могут вызвать необычный шум, вибрацию, нагрев или неправильную работу устройств и сократить их срок службы.Внутренние и международные стандарты, такие как IEC61000-3, существуют для контроля гармоник. Поэтому инженерам необходимо обнаруживать гармоники и оценивать их влияние на компоненты, системы и подсистемы в приложении. Размер и разность фаз следует измерять не только для основной частоты, но и для каждой более высокочастотной составляющей. Высокоточные анализаторы мощности могут измерять гармоники до 500-го порядка.
Для вращающихся машин основные амплитуды являются единственными составляющими, которые эффективно способствуют вращению оси. Все остальные гармонические составляющие приводят к потерям в виде тепла и вибрации.
Измерение гармоникИспользуя режим измерения гармоник, можно измерить размер и разность фаз для каждой основной частоты, а также гармоники для каждого градуса, включенного в ток, напряжение и мощность. Например, в случае основной частоты (основной составляющей) 50 Гц третья составляющая составляет 150 Гц, пятая составляющая 250 Гц и так далее, и возможно измерение до 500-й составляющей на частоте 2,5 кГц.
Рисунок 25. Сумма нечетных гармонических составляющих в искаженный сигнал
Для отображения результатов измерения гармоник анализатор мощности может отображать размер каждого градуса, как показано на рисунке 26 ниже, или отображать такие параметры, как размер, соотношение содержания и фаза в списке.
Рисунок 26 — Гистограмма, показывающая зависимость энергии гармоник от порядка Заключение
При измерении мощности необходимо учитывать множество факторов, включая входную мощность, КПД инвертора, КПД, гармоники и коэффициент мощности. Эти измерения включают сложные уравнения, поэтому большинство компаний используют анализаторы мощности для автоматического получения результатов.
Прецизионный высокочастотный анализатор мощности — важный инструмент для измерения как механической, так и электрической мощности.Его функции анализа и показания могут помочь улучшить работу и даже продлить срок службы двигателя. Выбор подходящего анализатора и его правильная реализация требуют знаний; однако при правильном использовании данные анализатора мощности предоставят точные и очень ценные данные.
Установите трехфазный счетчик электроэнергии D103 / Main / smart-MAIC support
D101 можно установить в электрическую панель на DIN-рейке или на стене с помощью полосы DIN-рейки, которая входит в комплект.
Устройство должно подключаться к электросети обученным персоналом, имеющим допуск как минимум группы III по электробезопасности при работе на установках с напряжением до 1000 В.
В зависимости от комплектации устройство может комплектоваться трансформаторами разных типов:
- Тип 1 — трансформаторное кольцо, подключается к контактам 3-4 устройства.
- Тип 2 — вставной трансформатор, подключается к розетке 5 устройства.
Чтобы подключить устройство, выполните следующие действия:
- Наденьте трансформатор тока на фазный провод.
Трансформатор имеет указатель направления энергии от счетчика электроэнергии к потребителям. - Подключите провода трансформатора тока к устройству в соответствии со схемой подключения.
- Подключите фазный и нулевой провода к прибору в соответствии со схемой подключения.
Общая схема подключения
Схема подключения кольцевых (неразъемных) трансформаторов тока
Верхняя группа контактов
1 — управляемый выход
2 — регулируемый выход
3 — трансформатор тока №1, красный провод
Трансформатор 4-токовый №1, черный провод
5 — трансформатор тока №2, красный провод
Трансформатор тока 6 №2, черный провод
7 — трансформатор тока №3, красный провод
Трансформатор тока 8 №3, черный провод
Нижняя группа контактов
9 — фаза 1
10 — фаза 2
11 — фаза 3
12 — ноль
ВНИМАНИЕ:
Неправильная разводка фазного провода может привести к повреждению устройства.
Схема подключения съемных трансформаторов тока
Верхняя группа контактов
1 — управляемый выход
2 — регулируемый выход
3 — трансформатор тока №1, белый провод
4-х трансформатор тока №1, красный провод
5 — трансформатор тока №2, белый провод
Трансформатор 6-токовый №2, красный провод
7 — трансформатор тока №3, белый провод
Трансформатор тока 8 №3, красный провод
Нижняя группа контактов
9 — фаза 1
10 — фаза 2
11 — фаза 3
12 — ноль
Удачных измерений!
ТТ и РТ — Изучение измерений
ТТ, или трансформаторы тока, и РТ, или трансформаторы напряжения используются в измерениях для понижения тока и напряжения до более безопасных и более управляемых уровней.Многие хотят знать, что такое трансформатор тока и трансформатор напряжения. Здесь я попытаюсь развенчать заблуждение о CT PT. Еще я хочу отметить, что счетчики с номинальным током трансформатора тока используются не только как вторичный счетчик электроэнергии, но и как первичный счетчик электроэнергии. Счетчики с рейтингом CT также обычно являются счетчиками потребления.
Когда трансформаторы тока и трансформаторы используются в измерительной установке, такая установка считается трансформаторной. Некоторые люди называют измерители, в которых используется комбинация ТТ, ПТ или просто ТТ, измерителем с трансформатором тока.Услуги, рассчитанные на трансформатор, работают параллельно с услугой. Это означает, что, в отличие от автономных услуг, питание потребителя не прерывается при снятии счетчика. Причина, по которой они необходимы, заключается в том, что ток и / или напряжение измеряемой услуги слишком высоки. Это также зависит от политики и процедур утилиты. Например, некоторые коммунальные предприятия требуют, чтобы трансформатор был рассчитан на напряжение более 480 В. Пока других утилит нет.
Щелкните здесь, чтобы ознакомиться с руководством по энергоэффективности.
Кроме того, некоторые коммунальные службы вообще не используют СТ для обслуживания 480 Вольт. Я не рекомендую эту практику для обеспечения безопасности техников счетчиков или линейного мастера, которым может потребоваться установка или снятие этих счетчиков с эксплуатации. Прочтите здесь, почему вам следует использовать PT.
Итак, что делают CT? Как указывалось ранее, они служат для понижения высокого тока до безопасного управляемого уровня. Трансформаторы тока коммерческого класса спроектированы так, чтобы вырабатывать 5 ампер при номинальном значении усилителей на сервисе. Например, типичная установка в сети 120/208 на 400 ампер содержит 200: 5 ТТ.Когда через первичную обмотку трансформатора тока проходит 200 ампер, через клеммы вторичной обмотки выходит 5 ампер.
CT имеют паспортные таблички и номиналы, как и любое другое электрическое оборудование. Наиболее важные моменты, которые следует отметить на паспортной табличке, — это коэффициент и номинальный коэффициент. Соотношение будет напечатано большими буквами на боковой стороне CT. Типичные соотношения: 200: 5, 400: 5, 600: 5, 800: 5 и так далее. Опять же, это означает, что когда заявленное значение в амперах протекает через первичную сторону трансформатора тока, через вторичную сторону протекает 5 ампер.
Коэффициент мощности используется при определении ТТ размера, используемого в конкретной установке. Некоторые CT имеют рейтинг 4, 3, 2 или 1,5. Это означает, что производитель заявляет, что точность ТТ превышает значения, указанные на паспортной табличке. Например, ТТ 200: 5 с номинальным коэффициентом 4 будет точно измерять мощность до 800 ампер. Итак, если бы эта конкретная служба была бы на 800 ампер, на вторичной стороне трансформатора тока и в базе счетчика выходило бы 20 ампер.Это важно, потому что мы хотим, чтобы наши трансформаторы тока были полностью насыщенными. Это означает, что мы хотим, чтобы ТТ 200: 5 имел такой размер, чтобы токи, протекающие через первичную обмотку, имели как можно ближе к 200 ампер. Когда сердечник ТТ полностью насыщен, он является наиболее точным. CT имеют тенденцию терять часть своей точности при более низких уровнях усилителя.
Большинство трансформаторных счетчиков сегодня — это счетчики класса 20. Это означает, что катушки тока внутри счетчика рассчитаны на постоянный ток 20 ампер.Вы не хотите перегрузить измеритель, поместив более 20 ампер в основание измерителя, потому что вы неправильно рассчитали трансформатор тока. Например, вы не захотите вводить в эксплуатацию трансформаторы тока 200: 5, которые, как вы знаете, будут потреблять 1000 ампер на первичной стороне. Это приведет к тому, что на базе счетчика будет 25 ампер, превышающих номинальную мощность счетчика. Это приводит к потере дохода.
Чтобы правильно рассчитать ТТ, важно знать, какой будет фактическая подключенная нагрузка. Лучший способ сделать это — проконсультироваться с инженером.Если трансформаторы тока должны быть размещены в трансформаторе, устанавливаемом на подставке или на столбе, и от этих трансформаторов требуется только одна услуга, лучше всего подбирать трансформаторы тока таким образом, чтобы они выдерживали максимальный ток, на который рассчитан трансформатор. Это делает две вещи: во-первых, это гарантирует, что ваш трансформатор тока никогда не будет перегружен, и, во-вторых, это способ найти перегруженные трансформаторы.
Еще одна вещь, которую хотят знать многие, — это расчет размеров трансформатора тока. Я знаю, что я сказал ранее, что вам следует проконсультироваться с инженером, и вам следует это сделать, но формула, которую мы используем для определения размеров трансформатора тока для однофазного трансформатора, следующая:
кВА x 1000
линейное напряжение
Теперь, чтобы Чтобы найти трансформатор тока правильного размера для трехфазной сети, мы воспользуемся этим расчетом размеров трансформатора тока.
кВА x 1000
линейное напряжение x √3
Фактически это формула для определения максимальной допустимой нагрузки трансформаторов. Имея эту информацию, мы можем затем измерить трансформаторы тока на основе предоставленной информации.
Довольно о CT, давайте поговорим о PT. PT — это трансформаторы потенциала. Их также называют трансформаторами напряжения или трансформаторами напряжения. Они используются для понижения напряжения до безопасного уровня, чтобы его можно было измерить. ПТ обычно используются в любой установке, где напряжение в сети составляет 480 В или выше.Некоторые типичные СТ составляют 2,4: 1 и 4: 1.
Теперь, когда мы знаем, что такое CT и PT, мы можем поговорить о множителях счетчиков. Множители счетчиков используются, когда счетчики устанавливаются в трансформаторных установках. Если соотношение CT составляет 200: 5, то множитель измерителя равен 40, что составляет просто 200/5. Если у услуги есть и CT, и PT, то эти два значения умножаются, чтобы получить множитель биллинга. Например, если услуга имеет 200: 5 CT и 2,4: 1 PT, множитель будет 96. Это потому, что 40 x 2.4 = 96.
Мы также много знаем о ТТ и измерителях благодаря теореме Блонделя. Перейдите по ссылке, чтобы узнать больше об этой теореме.
Измерение тока нагрузки двигателя с помощью трансформатора тока — FLEX-CORE®
Точное измерение тока нагрузки двигателя (чтобы определить, работает ли двигатель при малой нагрузке, полной нагрузке или перегрузке) является обычным требованием для конечного пользователя и может быть выполнено быстро с помощью трансформатора тока, предназначенного для измерительных приложений. .
Для определения того, какой трансформатор тока использовать, необходимо, чтобы установщик знал ток полной нагрузки (FLC или FLA) двигателя.Чтобы узнать ток полной нагрузки, найдите на двигателе табличку с паспортной табличкой и запишите указанный коэффициент тока. Если паспортная табличка двигателя нечитаема или вообще отсутствует, обратитесь к таблице данных о нагрузке двигателя из Справочника NEC на основе номинальной мощности, номинального напряжения системы и того, является ли двигатель однофазным или трехфазным.
Например, если номинал трехфазного асинхронного двигателя с номинальным напряжением 460 В составляет 110 А, то, согласно руководству NEC, мы должны выбрать трансформатор тока с соотношением 150: 5 А.ВАЖНО — не забудьте убедиться, что внешний диаметр вашего проводника меньше внутреннего диаметра трансформатора тока.
Используя модель 180RL-151 (для вышеприведенного примера) с номинальной мощностью 5 А (150: 5 А) и оконным проемом с внутренним диаметром 2,5 дюйма, мы получим:
- Предположим, что внешний диаметр проводника меньше 2,5 дюйма внутреннего диаметра трансформатора тока 180RL.
- Определите фактическую нагрузку двигателя, убедившись, что шкала измерителя соответствует коэффициенту передачи трансформатора тока.В этом случае шкала счетчика должна быть 0-150А.
- Выберите аналоговый панельный измеритель для отображения тока нагрузки. Если ток нагрузки трех фаз должен контролироваться и считываться одновременно, можно использовать три отдельных трансформатора тока 180RL-151, каждый с аналоговым панельным измерителем. В качестве альтернативного варианта можно использовать три трансформатора тока (180RL-151), один аналоговый приборный щиток (HST905A150A) и селекторный переключатель (N25-61328-37S или N25-61325-37S) для получения показаний тока каждой фазы.
В случаях, когда кабели не могут быть удалены, как правило, в установках среднего напряжения, следует использовать трансформатор тока с разъемным сердечником, такой как модель FCL, для контроля тока нагрузки двигателя.
Обратите внимание, что трансформаторы тока оконного типа рассчитаны на 600 В, но могут использоваться на более высоких напряжениях с полностью изолированными кабелями. Следует проявлять осторожность при правильной установке оконного типа номинальным током 600 В на более высокие напряжения. Если ТТ оконного типа низкого напряжения предназначен для использования в приложениях с более высоким напряжением, покупатель несет ответственность за соблюдение рабочих условий и принятие необходимых мер предосторожности.Обычно это подтверждается проведением испытаний изоляции при соответствующем уровне напряжения системы с установленными трансформаторами тока низкого напряжения.
Для некоторых приложений, таких как установки для испытания двигателей под нагрузкой, которые требуют высокой точности измерения, рекомендуется использовать трансформатор тока более высокой точности (и более прочную конструкцию), такой как модели JAK-0C или JAK-0S. Эти модели имеют точность измерения уровня дохода 0,3% и 0,15%.
Для приложений, в которых измерительное устройство размещается отдельно от трансформатора тока, стандартный трансформатор тока 2RL, который имеет низкую нагрузку, не подходит, и потребуется трансформатор тока с более высокой нагрузкой для компенсации дополнительного импеданса длинного подводящие провода.