Схема подключения трансформаторов тока: Подключение счетчика через трансформаторы

Содержание

Схемы соединений трансформаторов тока: схем, звезда, треугольник, параллель

Назначение трансформаторов тока

Счётчики для однофазных и трёхфазных сетей рассчитаны на номинальные токи до 100 А. Использование приборов с большими токами затруднено по причине необходимости использования проводов слишком большого сечения. Таким образом, для измерения характеристик в линиях с большими токами необходимо использовать специальные устройства, понижающие ток до приемлемого значения. Для этой цели используются трансформаторы тока (ТТ).

Первичная обмотка трансформатора тока включается последовательно в линейный провод, по которому проходит высокий ток, а ко вторичной обмотке подключается измерительный прибор. Для удобства выводы маркируются обозначениями. Для начала и, соответственно, конца первичной обмотки применяются обозначения Л1 и Л2. Для вторичной обмотки — И1 и И2. При подключении необходимо строго соблюдать полярность первичной и вторичной обмоток ТТ.

Чаще всего величина вторичного тока равна 5 А, иногда применяются ТТ со вторичным током 1 А. Для измерения же напряжения в высоковольтных сетях используется подключение через трансформатор напряжения, который понижает напряжение до 100 или 57.7 вольт.

Орлов Анатолий Владимирович

Начальник службы РЗиА Новгородских электрических сетей

Задать вопрос

Измерительные трансформаторы вносят свою погрешность в измерения. Здесь важно соблюдать правильную схему подключения с соблюдением обозначений. Например, если изменить местами выводы вторичных цепей И1 и И2, то за этим последует существенный недоучёт электроэнергии.

Трансформаторы тока подключаются в трёхфазных цепях по схеме неполной звезды (сети с изолированной нейтралью). При наличии нулевого провода подключение осуществляется с помощью полной звезды. В дифференциальных защитах силовых трансформаторов ТТ подключаются по схеме «Треугольник».

Это позволяет скомпенсировать сдвиг фаз вторичных токов, что уменьшит ток небаланса. В трёхфазных сетях без нулевого провода обычно трансформаторы тока подключаются только на две ведущие линии, поскольку измерив ток в двух фазах, можно легко рассчитать величину тока в третьей фазе.

Если сеть имеет глухозаземлённую нейтраль (как правило, сети 110 кВ и выше), то обязательно подключение ТТ ко всем трём фазам. Соединение обмоток реле и трансформаторов тока в полную звезду. Эта схема соединения трансформаторов представлена в виде векторных диаграмм, которые иллюстрируют работу трансформатора на рис. 2.4.1 и на схемах 2.4.2, 2.4.3, 2.4.4.

Если трансформатор работает в нормальном режиме, или если он симметричный, то будет проходить ток небаланса или небольшой ток, который появляется из–за разных погрешностей трансформаторов тока.

Представленная выше схема применяется против всех видов КЗ (междуфазных и однофазных) во время включения защиты.
Трехфазное КЗ
Двухфазное КЗ

Однофазное КЗ
Отношение Iр/Iф (ток в реле)/ (ток в фазе) называется коэффициентом схемы, его можно определить для всех схем соединения. Для данной схемы коэффициент схемы kсх будет равен 1.

На рис. 2.4.5 предоставлена схема соединения обмоток реле и трансформаторов тока в неполную звезду, а на рис. 2.4.6, 2.4.7. ее векторные диаграммы, которые иллюстрируют работу этой схемы.

Трехфазное КЗ — когда токи могут идти в обратном проводе по обоим реле.
Двухфазное КЗ — когда токи, могут протекать в одном или в двух реле в соответствии с повреждением тех или иных фаз.

КЗ фазы В одной фазы может происходить тогда, когда токи не появляются в этой схеме защиты.

Схему неполной звезды можно применять только в сетях с нулевыми изолированными точками при kсх=1 с целью защиты от КЗ междуфазных, и может реагировать только на некоторые случаи КЗ однофазного.

На рис. 2.4.8. можно изучить схему соединения в звезду и треугольник обмоток реле и трансформаторов соответственно.

Во время симметричных нагрузок в реле и в период возникновения трехфазного КЗ может проходить линейный ток, сдвинутый на 30* по фазе относительно тока фазы и в разы больше его.

Особенности схемы этого соединения:

  1.  при разных всевозможных видах КЗ проходят токи в реле, при этом защита которая построена по такой схеме, будет реагировать на все виды КЗ;
  2. ток в реле относится к фазному току в зависимости от вида КЗ;
  3. ток нулевой последовательности, который не имеет путь через обмотки реле для замыкания, не может выйти за границы треугольника трансформаторов тока.

Выше приведенная схема применяется чаще всего для дистанционной или во время дифференциальной защиты трансформаторов.

Схема восьмерки или включение реле на разность токов двух фаз.

На рис. 2.4.9 представлена сама схема соединения, а на рис. 2.4.10, 2.4.11.векторные диаграммы, которые иллюстрируют работу этой схемы.

Соединение трансформаторов тока и обмоток реле в неполную звезду

Симметричная нагрузка при трехфазном КЗ.

Двухфазное КЗ Двухфазно КЗ АВ или ВС
При разных видах КЗ, ток в реле и его чувствительность будут разными. Ток в реле будет равен нулю во время однофазного КЗ фазы В. Эту схему можно применять, тогда, когда не требуется действий трансформатора для защиты от разных междуфазных КЗ с соединением обмоток Y/* – 11 группа, и когда эта защита обеспечивает необходимую чувствительность.

Соединение трансформаторов тока в фильтр токов нулевой последовательности

На рис. 2.4.12. можно изучить схему соединения трансформаторов тока в фильтр токов нулевой последовательности. Только во время однофазных или двуфазных КЗ на землю появляется ток в реле. Эту схему можно применять во время защиты от КЗ на землю. КЗ IN=0 при двухфазных и трехфазных нагрузках. Но часто ток небаланса Iнб появляется из–за погрешности трансформаторов тока в реле.

Последовательное соединение трансформаторов тока


На рис. 2.4.13. представлена схема последовательного соединения трансформаторов тока. Подключенная к трансформаторам тока, нагрузка, распределяется поровну. Напряжение, которое приходится на любой трансформатор тока и на вторичный ток остается неизменным.

Орлов Анатолий Владимирович

Начальник службы РЗиА Новгородских электрических сетей

Задать вопрос

Во время использования трансформаторов тока малой мощности применяется эта схема.

Параллельное соединение трансформаторов тока


На рис. 2.4.14. представлена схема параллельного соединения трансформаторов тока. Эту схему можно использовать с целью получения разных нестандартных коэффициентов трансформации. Схемы подключения счетчиков электроэнегии, как однофазных, так и 3-х фазных Вы можете найти тут.

Основные схемы подключения трансформатора

Основные схемы подключения трансформатора

Что такое трансформатор тока?
Трансформатор тока (ТТ) представляет собой индуктивное устройство, преобразующее напряжение в сети. Его первичная обмотка подключается к источнику электроэнергии, а вторичная замыкается на защитный прибор с малым внутренним сопротивлением. Ток протекает через первичную обмотку, преодолевая ее сопротивление.

В процессе движения по виткам первичной обмотки возникает магнитный поток, который улавливается магнитопроводом. Витки вторичной обмотки расположены перпендикулярно виткам первичной обмотки. Под воздействием электродвижущей силы ток во вторичной обмотке преодолевает сопротивление в катушке, в результате чего падает напряжение на зажимах вторичной цепи.

Коэффициент трансформации определяется на стадии проектирования трансформатора, поэтому важно правильно выбрать модель устройства и заказать трансформатор в Бресте в зависимости от назначения и особенностей эксплуатации.

Сфера применения трансформаторов
Трансформаторы тока устанавливаются во многих бытовых электроприборах и промышленном электрооборудовании, для работы которых требуется более высокое или низкое напряжение, чем 220 В или 380 В. Для питания галогенных светильников необходимо напряжение 12 В, то есть почти в 20 раз ниже, чем в сети, и ТТ его понижает до требуемой величины.

Также трансформатор используются для учета электроэнергии. Широко распространены измерительные ТТ, которые подключаются к приборам измерения (вольтметрам, амперметрам и прочим) и осуществляют передачу токов на них. Выпускаются как компактные модели, которые помещаются в корпус бытовых приборов, так и модели для установки под открытым небом на линиях электросетей.

Основные преимущества изделий
Использование трансформаторов тока дает следующие преимущества:

Унификация измерительных приборов, градуировка их шкал в соответствии с измеряемым первичным током;
Повышается уровень безопасности при работе с различными реле и измерительными приборами за счет разделения цепей высшего и низшего напряжения;
Увеличивается максимальный диапазон напряжений и пределов измерения для различных измерительных приборов;
Обеспечивается питание токовых обмоток реле защиты и измерительных приборов;
Надежная изоляция от высокого первичного напряжения.

Параметры для выбора схемы подключения
Подключить самостоятельно трансформатор, предназначенный для бытового использования несложно – достаточно строго следовать схеме подключения. Но для эффективной и безопасной работы электроприборов необходимо правильно подобрать саму схему. При выборе необходимо учитывать:

Количество фаз в сети – трехфазные модели имеют 4 выхода, а однофазные только 2, поэтому схема подключения трехфазного трансформатора имеет ряд отличий;
Тип трансформатора тока – повышающий или понижающий;
Какой параметр тока необходим потребителю – для работы бытовой техники нужен постоянный ток, а в сети – переменный, и для его преобразования требуется подключение вторичной обмотки трансформатора тока через выпрямитель.

Популярные схемы подключения
Если ТТ используется для подключения через них вольтметров, амперметров и других высокочувствительных приборов, измеряющих ток небольшой силы, подключение трансформаторов тока производится по следующей схеме:

Схема подключения трансворматора для тока небольшой силы.

Первичная обмотка Л1-Л2 соединяется с линейным проводом, а вторичная обмотка ТТ И1-И2 соединена с токовой обмоткой измерительного прибора. Выводы Л1, И1 соединены перемычкой и подключены к фазному проводу. Третий зажим соединяется с нулевым проводом.

Для трехфазной электросети чаще всего используются три однофазных трансформатора, которые подключаются по схеме:

Если требуется подключение понижающего устройства, следует руководствоваться схемой:

Схема подключения понижающего трансворматора.

Чаще всего она используется для создания систем освещения. Небольшой размер ТТ дает возможность монтировать их непосредственно в каркасе потолка. Трансформатор располагается между выключателем и светильниками. Светильники подключаются параллельно.

Что важно учитывать при подключении?
Для облегчения монтажа производители наносят на них маркировку: ТАа, ТА1, КА1, что позволяет без ошибок соединить элементы.

При установке трансформатора на трехфазные линии необходимо учитывать, что, если напряжение в сети составляет от 6 до 35 кВ, трансформаторы могут быть установлены только на двух фазах, поскольку в таких сетях отсутствует нулевой провод.

Схема подключения электросчетчика с двумя трансформаторами напряжения. Схемы подключения трехфазного электросчётчика, варианты, методы.

Прежде чем рассмотрим вопрос, как подключить трехфазный электросчетчик своими руками, оговоримся, что с трехфазными счетчиками дело обстоит сложнее, чем с однофазными, где схема подключения, в принципе, однозначна.

Схема подключения трехфазного счетчика зависит от его типа. В любом случае, трехфазные счетчики поддерживают однофазное измерение.

Существует 4 типа трехфазных счетчиков

Это приборы:

  • Прямого включения (называют так же непосредственного включения)
  • Косвенного включения
  • Полукосвенного включения
  • Учета реактивной энергии

Соответственно и способы подключения у них разные, рассмотрим их по порядку.

Трехфазный счетчик прямого включения

Приборы такого типа подключаются в сеть напрямую, так как рассчитаны на сравнительно небольшую пропускную мощность, до 60кВт (соответственно ток до 100 А). Подключить счетчик электроэнергии прямого включения на мощность, превышающую указанную в паспорте просто не удастся, так как их входные и выходные колодки рассчитаны на сечение подключаемых проводов 16 или 25 мм.


Схема подключения cчетчика прямого включения, также, как и у однофазных счетчиков, кроме паспорта, указана на обратной стороне крышки.

Провода, слева-направо:

  • Первый — фаза А вход
  • Третий — фаза В вход
  • Пятый — фаза С вход
  • Седьмой — ноль вход

Как видим, сложности никакой здесь нет.

Счетчик полукосвенного включения

Это приборы учета электроэнергии, которые ориентированы на измерение потребляемой мощности, превышающей 60 кВт. Использование возможно только в связке с трансформатором тока, а подключение осуществляется по четырем схемам.

Оцифровка прибора учета здесь отличается от прибора прямого (непосредственного) включения.

Схема подключения — провода, слева направо:

  1. вход токовой обмотки фазы А
  2. вход обмотки измерения напряжения фазы А
  3. выход токовой обмотки фазы А
  4. вход токовой обмотки фазы В
  5. вход обмотки измерения напряжения фазы В
  6. выход токовой обмотки фазы В
  7. вход токовой обмотки фазы С
  8. вход обмотки измерения напряжения фазы С
  9. выход токовой обмотки фазы С
  10. нейтраль
  11. нейтраль

Рассмотрим контакты трансформаторов тока. Их четыре:

  • Л1 — вход силовой линии
  • И1 — вход измерительной обмотки счетчика
  • И2 — выход измерительной обмотки счетчика

Контакты Л1 и Л2 всегда подключаются к силовой сети.

При использовании токовых трансформаторов показания счетчика умножаются на коэффициент трансформации. Межповерочный срок трансформатора тока составляет 4-5 лет.

Схемы подключения счетчиков полукосвенного включения

Выделяют несколько способов подключения:

Эта схема хороша тем, что здесь не связаны между собой цепи измерения тока и напряжения, что повышает ее электробезопасность. Однако, она требует большего количества проводов, чем другие схемы.


Последовательность:

  • Контакт 3 подключается на И2 фазы А
  • Контакт 6 подключается на И2 фазы В
  • Контакт 9 подключается на И2 фазы С
  • Контакт 10 подключается на нулевой провод

Позволяет сэкономить на монтаже вторичных проводов.


Последовательность выполнения:

  • Контакты 3, 6, 9 и 10 замыкаются между собой и подключаются на нулевой провод
  • Все контакты И2 замыкаются между собой и на контакт 11
  • Контакт 1 подключается на И1 фазы А
  • Контакт 4 подключается на И1 фазы В
  • Контакт 7 подключается на И1 фазы С
  • Контакт 2 подключается на Л1 фазы А
  • Контакт 5 подключается на Л1 фазы В
  • Контакт 8 подключается на Л1 фазы С
Подключение счетчика с совмещенными цепями тока и напряжения

Эта схема устарела, так как является электронебезопасной, и сегодня не применяется.

Подключение счетчика через испытательную клеммную коробку

По сути дела, повторяет десятипроводную схему подключения, только в разрыве между электросчетчиком и остальными элементами устанавливается переходная коробка, позволяющая безболезненно снимать и устанавливать учетный прибор.

Счетчики косвенного включения

Такие счетчики используются для учета расхода электроэнергии при напряжениях выше 6кВ, поэтому рассматривать их мы здесь не будем.

Счетчики реактивной энергии

По способу подключения не отличаются от приборов учета активной энергии. Хотя еще существуют индукционные счетчики, учитывающие отдельно реактивную составляющую, но в настоящее время их уже не устанавливают.

В следующих статьях мы рассмотрим , постараемся разобраться с их достоинствами и недостатками, по возможности выявить лучшие марки электросчетчиков.

Специалист по электротехнике может легко объяснить, почему схемы подключения трехфазного счетчика бывают разными.

В зависимости от типа прибора применяются: схема подключения через трансформаторы тока или схема прямого включения счетчика.

Промышленностью выпускаются приборы учета, которые рассчитаны на подключение по следующим схемам:

  • прямого включения;
  • полукосвенного подключения;
  • косвенного включения;
  • с возможностью учета реактивной мощности.

Своевременная установка прибора и правильно выбранная схема подключения — обеспечивают абонентам точный учет потребляемой электроэнергии.

Действующие схемы подключения

С теоретической точки зрения, для учета электроэнергии в трехфазных системах можно использовать однофазные устройства учета.

Трансформаторов тока или других дополнительных элементов здесь не требуется. Однако такой способ сложен при реализации и дает большую погрешность.

Для того чтобы упростить монтаж приборов учета и обеспечить соответствующие эксплуатационные параметры, промышленностью стали выпускаться трехфазные счетчики.

Схема включения прибора определяется мощностью нагрузки. Или, говоря по-другому, величиной тока, который протекает через прибор.

Прежде чем выполнять монтаж устройства, необходимо ознакомиться с правилами его установки.

При варианте прямого подключения счетчик «врезается» в электрическую линию. Через него протекает тот же объем тока, который потребляется нагрузкой.

Установка проста в исполнении – нужно только подключить концы кабеля с входной и выходной стороны.


Очень важно не перепутать коммутацию проводов:

  • выходной конец фазы «А» — к клемме №2;
  • входной конец фазы «В» — к клемме №3;
  • выходной конец фазы «В» — к клемме №4;
  • входной конец фазы «С» — к клемме №5;
  • выходной конец фазы «С» — клемме №6;
  • входной «нулевой» конец – к клемме №7;
  • выходной «нулевой» конец – к клемме №8.

Надо учитывать имеющиеся ограничения. Схема прямого включения применяется в сетях, где величина протекающего тока не превышает 100 ампер.

Контрольные расчеты показывают, что установленная мощность потребителей энергии, в этом случае, не должна превышать 60 кВт.

При таком объеме потребления, величина протекающего через прибор тока будет рана 92 ампера.

Когда в доме или квартире имеется стандартный набор бытовых устройств – холодильник, телевизор, посудомоечная машина и кондиционер – то данная схема подключения счетчика вполне себя оправдывает.

Если же среди потребителей электроэнергии значится котел отопления, то приходится выбирать иной способ.

Полукосвенное включение прибора

Полукосвенная схема включения счетчика в электросеть применяется при установленной мощности потребления более 60 кВт. Для этого используются трансформаторы тока.

Особенностью трансформаторов данного типа является то, что вместо первичной обмотки используется электрический провод.

При протекании тока по проводнику во вторичной обмотке, по законам индукции, возникает электрическое напряжение. Величину именно этого напряжения и фиксирует прибор учета.


Подключить приборы учета таким способом можно по разным схемам. В любой из них используются трансформаторы тока, как своеобразные источники информации.

Наиболее распространенной считается — десятипроводная схема подключения. Положительным фактором этой схемы является наличие гальванической развязки силовых и измерительных цепей.

Такую развязку, как дополнение к основной функции, и обеспечивают трансформаторы. Это очень важно для обеспечения безопасности при эксплуатации и обслуживании прибора учета.

Недостатком схемы можно назвать большое количество проводов.

Последовательность подключения трансформаторов и счетчика в целом следующая:

  • входной конец фазы «А» — к клемме №1;
  • входной конец измерительной обмотки фазы «А» — к клемме №2;
  • выходной конец фазы «А» — к клемме №3;
  • входной конец фазы «В» — к клемме №4;
  • входной конец измерительной обмотки фазы «В» — к клемме №5;
  • выходной конец фазы «В» — к клемме №6;
  • входной конец фазы «С» — к клемме №7;
  • входной конец измерительной обмотки фазы «С» — к клемме №8;
  • выходной конец фазы «С» — к клемме №9;
  • входной «нулевой» провод – к клемме №10;
  • «нулевой» провод со стороны нагрузки – к клемме №11.

Когда выполняется установка счетчика, для включения трансформаторов в разрыв цепи используются специальные клеммы, которые обозначаются Л1 и Л2.

Еще одна полукосвенная схема установки счетчика называется — сведение трансформаторов тока в конфигурацию похожую на звезду.

В этом случае, установка прибора облегчается, поскольку используется меньшего количества проводов. Этот результат достигается тем, что усложняется внутренняя схема прибора.

На качество и точность показаний эти усложнения никак не влияют. Существует еще одна схема подключения, в которой используются трансформаторы тока.

Называется она семипроводной, по числу проводов используемых для включения. На сегодняшний день она окончательно устарела, хотя и встречается в реальных условиях.

Ее основной недостаток заключается в отсутствии гальванической развязки технологических и измерительных цепей. Эта особенность делает схему измерений опасной при обслуживании.

Для приборов учета, которые функционируют с использованием трансформаторов, в правилах учета электроэнергии сформулировано особое требование. Смысл этого требования прост.

Между электрическим проводом и счетчиком необходимо установить контактную панель или колодку. Через эту панель выполняются все необходимые соединения.

При необходимости, вторичная обмотка токовых трансформаторов шунтируется и в систему измерений подключается эталонный счетчик. При наличии колодки — облегчается монтаж прибора.


Счетчик можно снять и заменить на другой, при этом не отключая основную линию электроснабжения.

Распределение и учет электроэнергии считается сложной технической задачей. Установка счетчиков, монтаж электропроводки выполняется по определенным и очень строгим правилам.

Измерительные трансформаторы, которые используются в приборах учета, не всегда имеют заданные параметры. Через определенный период времени их необходимо проверять.

Эти детали приходится учитывать при снятии показаний со счетчика. Полукосвенные схемы включения требуют дополнительного внимания.

Сбытовым организациям удобнее работать со счетчиками прямого включения.

Косвенное включение прибора

Косвенные схемы подключения измерительных приборов в бытовой сфере не используются. Они рассчитаны для учета электроэнергии на шинах генерирующих предприятий.

К числу таких предприятий относятся тепловые электростанции, гидравлические и атомные. Трансформаторы тока устанавливаются непосредственно на шинах, отходящих от генератора.

Данные с клемм этих трансформаторов поступают на счетчик, который фиксирует количество выработанной электрической энергии.

Установка трехфазного прибора учета

В том случае, когда монтаж счетчика выполняется своими руками, необходимо внимательно следить за тем, чтобы цветная маркировка строго соблюдалась.

Счетчики прямого включения используются в городских квартирах. С установкой таких приборов может справиться, практически, каждый дееспособный гражданин.

Через ремонт квартир и электрической проводки проходят большое число людей.

Качественно другая ситуация складывается, когда нужно установить прибор, для работы которого нужны трансформаторы тока.

В этом случае — надежнее будет делегировать работу квалифицированным специалистам.

Прежде чем приступить к установке, специалисты рекомендуют выполнить монтаж входного автоматического выключателя.

Через этот автомат будет осуществляться электроснабжение дома или квартиры. Прямого нарушения технических условий и правил монтажа в такой схеме не наблюдается.

Наличие в сети электроснабжения входного выключателя облегчает выполнение различных ремонтных и профилактических работ.


В этом контексте важно подчеркнуть, что замена одного трехфазного выключателя тремя однофазными не допускается.

Соединение проводов, через которые протекает электрический ток, должна происходить одновременно.

Счетчик крепится в специальном шкафу, с помощью специальных винтов. В стенке или дверце шкафа можно вырезать отверстие, через которое удобно вести наблюдение за показаниями прибора.

Предварительно необходимо осмотреть его и проверить целостность корпуса. После установки нужно обязательно проверить работоспособность прибора.

Если на табло не появляются показания, то значит трансформаторы не выдают сигнал. Следовательно, нужно еще раз проверить правильность подключения или пригласить специалистов.

Счетчики нового поколения

Традиционные схемы подключения приборов учета с использованием трансформаторов тока — постепенно уступают место более эффективным решениям.

Современные квартиры и коттеджи оснащены электрическими устройствами разного назначения, которые потребляют большие объемы энергии.


Даже состоятельные владельцы вынуждены задуматься над проблемой экономии электричества.

И трехфазные счетчики нового поколения способны внести свою лепту в решение этой задачи.

Новые приборы можно запрограммировать на определенные режимы работы.

Если днем действует один тариф, а ночью другой, то счетчик легко программируется на такую работу.

Содержание:

В электрических сетях, с напряжением 380 вольт, потребляемой мощностью свыше 60 кВт и током более 100 ампер, используется схема подключения трехфазного счетчика через трансформаторы тока. Данный вариант известен как косвенное подключение. Подобная схема дает возможность измерения высокой потребляемой мощности приборами учета, рассчитанными на низкие показатели мощности. Разница между высокими и низкими значениями компенсируется с помощью специального коэффициента, определяющего окончательные показатели счетчика.

Принцип работы измерительных трансформаторов

Принцип действия данных устройств довольно простой. По первичной обмотке трансформатора, включенной последовательно, протекает фазовый ток нагрузки. За счет этого возникает электромагнитная индукция, создающая ток во вторичной обмотке устройства. В эту же обмотку осуществляется включение токовой катушки трехфазного электросчетчика.

В зависимости от коэффициента трансформации, ток во вторичной цепи будет значительно меньше фазного тока нагрузки. Именно этот ток обеспечивает нормальную работу счетчика, а снимаемые показатели умножаются на величину коэффициента трансформации.

Таким образом, трансформаторы тока или измерительные трансформаторы преобразуют высокий первичный ток нагрузки в безопасное значение, удобное для проведения измерений. Трансформаторы тока для электросчетчиков нормально функционируют при рабочей частоте в 50 Гц и вторичном номинальном токе в 5 ампер. Поэтому, если составляет 100/5, это означает максимальную нагрузку в 100 ампер, а значение измерительного тока — 5 ампер. Следовательно, в этом случае показания трехфазного счетчика умножаются в 20 раз (100/5). Благодаря такому конструктивному решению, отпала необходимость в изготовлении более мощных приборов учета. Кроме того, обеспечивается надежная защита счетчика от коротких замыканий и перегрузок, поскольку сгоревший трансформатор меняется значительно легче по сравнению с установкой нового счетчика.


Существуют определенные недостатки при таком подключении. Прежде всего, измерительный ток в случае малого потребления, может быть меньше стартового тока счетчика. Следовательно, счетчик не будет работать и выдавать показания. В первую очередь это касается с очень большим собственным потреблением. Современные электросчетчики такого недостатка практически не имеют.

Особое внимание при подключение нужно обращать на соблюдение полярности. Первичная катушка имеет входные клеммы. Одна из них предназначена для подключения фазы и обозначается Л1. Другой выход — Л2 необходим, чтобы подключиться к нагрузке. Измерительная обмотка также имеет клеммы, обозначаемые соответственно, как И1 и И2. Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку.


Для вторичных цепей используется проводник, поперечное сечение которого должно быть не ниже 2,5 мм2. Рекомендуется применять разноцветные промаркированные провода с обозначенными выводами. Нередко подключение вторичной обмотки к счетчику осуществляется с помощью опломбированного промежуточного клеммника. Использование клеммника позволяет проводить замену и обслуживание счетчика без отключения электроэнергии, поступающей к потребителям.

Схемы подключения

Подключение измерительного трансформатора к счетчику может быть выполнено разными способами. Запрещается использовать трансформаторы тока с приборами учета, предназначенными для прямого включения в электрическую сеть. В подобных случаях вначале изучается сама возможность такого подключения, выбирается наиболее подходящий трансформатор, в соответствии с индивидуальной электрической схемой.

Если измерительные трансформаторы имеют различный коэффициент трансформации, они не должны подключаться к одному и тому же к счетчику.

Перед подключением необходимо внимательно изучить схему расположения контактов, имеющихся на трехфазном счетчике. Общий принцип действия электросчетчиков является одинаковым, поэтому контактные клеммы располагаются на одних и тех же местах во всех приборах. Контакт К1 соответствует питанию цепи трансформатора, К2 — подключение цепи напряжения, К3 является выходным контактом, подключаемым к трансформатору. Таким же образом подключается фаза «В» через контакты К4, К5 и К6, а также фаза «С» с контактами К7, К8, К9. Контакт К10 является нулевым, к нему подключаются обмотки напряжения, расположенные внутри счетчика.

Чаще всего применяется наиболее простая схема раздельного подключения вторичных токовых цепей. К фазному зажиму от входного автомата сети подается фазовый ток. Для удобства монтажа с этого же контакта выполняется подключение второй клеммы катушки напряжения фазы на счетчике.

Выход фазы является окончанием первичной обмотки трансформатора. Его подключение осуществляется к нагрузке распределительного щита. Начало вторичной обмотки трансформатора соединяется с первым контактом токовой обмотки фазы счетчика. Конец вторичной обмотки трансформатора соединяется с окончанием токовой обмотки прибора учета. Таким же образом подключаются остальные фазы.


В соответствии с правилами выполняется соединение и заземление вторичных обмоток в виде полной звезды. Однако это требование отражено не в каждом паспорте электросчетчиков, поэтому во время ввода в действие иногда приходится отключать заземляющий шлейф. Выполнение всех монтажных работ должно происходить в строгом соответствии с утвержденным проектом.

Существует и другая схема подключения трехфазного счетчика через трансформаторы тока, применяемая очень редко. В данной схеме используются совмещенные цепи тока и напряжения. Возникает большая погрешность в показаниях. Кроме того, при такой схеме невозможно своевременно выявить обмоточный пробой в трансформаторе.

Большое значение имеет правильный выбор трансформатора. Максимальная нагрузка требует величины тока во вторичной цепи не менее 40% от номинала, а минимальная нагрузка — 5%. Все фазы должны чередоваться в установленном порядке и проверяться специальным прибором — фазометром.

Установка счетчика с трансформаторами тока

Доброе время суток, дорогие читатели!

Давненько я ничего не писал. Тому есть причина. Делаю ремонт.

Хотел было снять несколько роликов о монтаже проводки в квартире, но понял что это не совсем интересно.

Поэтому сегодня статья о счетчиках электрической энергии.

Пафосный и занудный вариант ее я выбросил и решил писать, как будто рассказываю рядовому гражданину, например Вам, который ничего о счетчиках е знает.

Когда-то у меня в перечне работ лаборатории был вид работ: проверка и наладка цепей учета. Даже методика была. А в электрических сетях служба по контролю за учетом электроэнергии вообще входила в состав лаборатории, по крайней мере у нас в Рязани…

Впрочем, начнем.

Итак, счетчики бывают однофазные и трехфазные. Первые в основном применяются в частном секторе (дома, квартиры, гаражи), вторые везде.

По типу подключения счетчики делятся на:

счетчики прямого включения

на рисунке изображено подключение однофазного счетчика.

счетчики включаемые через трансформаторы тока. Про трансформаторы тока статья уже на сайте. Читайте с удовольствием.



на рисунке изображено подключение трехфазного счетчика через трансформаторы тока.

Чем обуславливается выбор типа подключения? Ожидаемым током нагрузки .

Обычно счетчики прямого включения рассчитаны не более чем на 100 А. Обращайте внимание на максимальный допустимый ток счетчика в паспорте или на самом счетчике, т.к. бывают счетчики на 6 А, которые применяют либо для подключения через трансформаторы тока, либо там где нагрузка мала.

Чем обусловлен выпуск счетчиков на разный максимальный возможный ток? Минимизацией погрешности измерений . Предпочтительнее всего когда нагрузка счетчика не превышает 2/3 максимального возможного тока.

Почему бы не выпускать счетчики подключаемые только через трансформаторы тока? Потому что трансформаторы тока так же вносят ошибку в результат измерений.

Поэтому энергоснабжающие организации выбрали золотую середину: стараются убрать трансформаторы тока с коэффициентом трансформации менее 100/5, предписывая установку счетчиков прямого включения в этом случае.

Какие часто возникают вопросы по однофазным счетчикам?

Благодаря тому, что межповерочный интервал счетчика электрической энергии составляет 16 лет (уточнить его можно в паспорте на счетчик) о нем благополучно забыли. Но счетчик это измерительный прибор, который необходимо поверять через определенный промежуток времени, чтобы удостовериться, что он все еще правильно учитывает электроэнергию. С недавних пор об этом вспомнили и пошли гражданам предписания о необходимости поверить прибор учета, а то и заменить.

Чем обосновано требование замены счетчика? Ранее класс точности счетчика должен был быть не хуже 2,5, теперь требования ужесточились, и требуются счетчики с классом точности не хуже 2,0.

Отмечу, что чем меньше число обозначающее класс точности, тем точнее измерение.

В процессе своей деятельности я сталкивался со счетчиками класс точности которых 0,2.

Кроме самого счетчика имеется куча требований к антуражу:

— Высота установки счетчика 0,8 – 1,7 м от пола до клемной колодки.

— Провода для подключения должны быть сечением не менее 2,5 мм 2 если они из меди и не менее 4 мм 2 если они из алюминия. И желательно чтобы жила была не многопроволочной.

— Перед счетчиком должно быть коммутирующее устройство – автоматический выключатель или выключатель нагрузки – это сейчас, а ранее применялись пакетные выключатели. Лучше если оно будет двухполюсным. Т.е. при отключении коммутирующего устройства обрывается не только фаза,но и ноль.

Для чего это нужно? Для безопасного обслуживания прибора учета.

— После счетчика обычно ставятся автоматические выключатели.

Советую замену счетчика отдать на откуп энергоснабжающей организации.

Почему? Дело в том что эта услуга не так дорога, зато работа будет выполнена настоящими профессионалами, которые потом еще счетчик и опломбируют. Если же Вы сами счетчик поменяете или установите, с Вас все равно возьмут те же деньги за проверку правильности подключения и последующую опломбировку.

Схема подключения счетчика всегда приводится в паспорте на счетчик и часто дублируется на обратной стороне крышки клемной колодки:


На рисунке обратная сторона крышки однофазного счетчика.

Гораздо больше вопросов по трехфазным счетчикам.

Трехфазные счетчики бывают на 380 В и на 100 В. Вторые применяются для установки приборов учета на стороне 6 – 10кВ с питанием их от трансформаторов напряжения.

Читайте статью о трансформаторах напряжения на сайте с удовольствием.

Кроме того есть масса особенностей при включении счетчика через трансформаторы тока. Кстати, схемы их подключения так же приводятся в паспорте на счетчик.



На рисунке простейшая схема включения счетчика через трансформаторы тока.

Следует учитывать обязательно направление протекания тока через трансформаторы тока. Если один из трансформаторов перевернуть (Л1 и Л2 поменять местами), а И1 и И2 оставить подключенными по прежнему, то показания счетчика будут неверны.

Аналогично будет и если И1 и И2 одного из трансформаторов тока поменять местами.

Так же нельзя напряженческие проводники и токовые от разных фаз подключать на одну группу контактов счетчика. (например, контакты 1, 2, 3 предназначены для подключения фазы “А” и если на клеммах 1 и 3 подключены токовые цепи фазы “А”, то на клемму 2 сажать проводник с напряжением фазы “В” нельзя)

Для правильности измерений электронными счетчиками так же важна правильность чередования фаз. Правильность чередования фаз у современных счетчиков можно легко определить используя специальное программное обеспечение или прибор “ВАФ”.

Это не касается электромагнитных счетчиков.

Еще Вы можете столкнуться со счетчиком для измерения только реактивной энергии. Их легко определить по типу. В нем обязательно будет буква “Р”, а на клеммнике не будет клеммы для подключения нуля.

Современные электронные счетчики измеряют и активную и реактивную мощность и еще много чего.

А на возникшие у Вас вопросы по поводу учета электроэнергии я обязательно отвечу.

На сем прощаюсь и желаю успехов!

В этой статье решил подробно рассмотреть схемы подключения однофазных и трехфазных счетчиков.

Для начала надо сразу сказать, что электросчетчики могут быть нескольких типов подключения — прямого (непосредственного) включения, через трансформаторы тока, через трансформаторы тока и измерительные трансформаторы напряжения. В быту подавляющее большинство счетчиков, будь то однофазных или трехфазных, имеют схему прямого включения. Это обусловлено тем, что величина тока нагрузки не превышает 100 А. В случае, если величина протекающего тока более 100 А используется схема полукосвенного включения с трансформаторами тока. Схема косвенного включения с трансформаторами тока и измерительными трансформаторами напряжения применяется в сетях 6 (10) кВ и выше, поэтому в данной статье не рассматривается.

Подключение однофазного электросчетчика

Самая распространенная и простая схема прямого подключения однофазного счетчика. Практически все однофазные счетчики подключаются именно по этой схеме, очень редко может использоваться схема полукосвенного включения.

На первую клемму счетчика приходит фазный провод. Со второй клеммы фаза уходит на нагрузку. На третью клемму подключен нулевой ввод, с четвертой нулевой провод идет на нагрузку.

Схема подключения счетчика всегда указывается на обратной стороне крышки, закрывающей клеммную колодку.

Подключение трехфазного электросчетчика

Схема подключения трехфазного счетчика прямого включения не сильно отличается от схемы однофазного.


На клемму 1 приходит фаза А (желтый). Со 2 клеммы фаза А (желтый) уходит на нагрузку. На 3 клемму приходит фаза B (зеленый). С 4 клеммы фаза B (зеленый) уходит в нагрузку. На 5 клемму приходит фаза С (красный). С 6 клеммы фаза С (красный) уходит. 7 и 8 клеммы — нулевой провод.

При подключении важно соблюдать правильное чередование фаз и цветовую маркировку.

Как я уже сказал выше, полукосвенное подключение через трансформаторы тока применяется в случае, если величина тока нагрузки превышает 100 А. В данной схеме трансформаторы тока предназначены для преобразования первичного тока нагрузки до значений, безопасных для его измерений. Такие схемы сложнее, чем прямого включение и требуют определенных знаний и навыков.

При подключении счетчика через трансформаторы тока необходимо соблюдать полярность начала и конца обмоток трансформатор, как первичной (Л1, Л2), так и вторичной (И1, И2). Общую точку вторичных обмоток трансформаторов необходимо заземлять.

Схема с подключением трансформаторов тока в «звезду»


Фазы А, B, C приходят на клеммы Л1 первичной обмотки трансформаторов тока ТТ1, ТТ2 и ТТ3. От Л1 ТТ1 подключается клемма 2 счетчика, от Л1 ТТ2 — клемма 5 счетчика и от Л1 ТТ3 — клемма 8 счетчика. Клеммы Л2 всех ТТ подключаются к нагрузке.

Клемма 1 счетчика подключается к началу вторичной обмотки И1 ТТ1, клемма 4 — к контакту И1 ТТ2 и клемма 7 — к контакту И1 ТТ3. Клеммы 3, 6, 9 и 10 соединены между собой перемычкой и подключены к нейтральному проводу. Все концы вторичной обмотки И2 также соединены между собой и подключаются на 11 клемму.

В цепях с изолированной нейтралью применяется схема с двумя трансформаторами тока (неполная «звезда»).

Десятипроводная схема подключения

Такая схема визуально более наглядная, чем схема соединения «звездой».


В данной схеме фазы А, B, C приходят на клеммы Л1 первичной обмотки трансформаторов тока ТТ1, ТТ2 и ТТ3. Клеммы Л2 всех ТТ подключены к нагрузке. От Л1 ТТ1 подключается клемма 2 счетчика, от Л1 ТТ2 — клемма 5 счетчика и от Л1 ТТ3 — клемма 8 счетчика.

На 1 клемму счетчика заходит начало вторичной обмотки И1 ТТ1, а конец обмотки И2 на 3 клемму счетчика. На 4 клемму приходит начало вторичной обмотки трансформатора И1 ТТ2, конец И2 — на 6 клемму счетчика. На 7 клемму — начало И1 трансформатора ТТ3, на 9 — конец И2 ТТ3. Нулевой проводник отдельным проводом заходит на 10 клемму счетчика, а с 11 клемму уходит на нагрузку.

Схема подключения трехфазного счетчика через испытательную клеммную коробку

В соответствии с действующими Правилами устройства электроустановок — ПУЭ (раздел 1, п.1.5.23) цепи учета электрической энергии необходимо выводить на специальные зажимы или испытательные коробки.

Коробка испытательная переходная применяется для подключения трехфазных индукционных и электронных счетчиков, обеспечивая закорачивание вторичных цепей измерительных трансформаторов тока, отключение токовых цепей и цепей напряжения в каждой фазе счетчиков при их замене, а также включение образцового счетчика для поверки без отключения нагрузки потребления.

Схема подключения через испытательную клеммную коробку


Выбор трансформаторов тока

Номинальный ток вторичных обмоток трансформатора обычно выбирается 5А. Номинальный ток первичной обмотки выбирается по расчетной нагрузке с учетом работы в аварийном режиме.

Согласно ПУЭ 1.5.17 допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

Например электроустановка в нормальном режиме потребляет 140А, минимальная нагрузка 14А. Выбираем измерительный трансформатор 200/5. Коэффициент трансформации у него 40.

140/40=3,5А – ток вторичной обмотки при номинальном токе.

5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.

Из расчета видно, что 3,5А >2А – требование выполнено.

14/40=0,35А – ток вторичной обмотки при минимальном токе.

5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А – требование выполнено.

140*25/100=35А ток при 25%-ной нагрузке.

35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А – требование выполнено.

Из этого делаем вывод, что трансформатор тока с коэффициентом трансформации 200/5 для нагрузки 140А выбран правильно.

При снятии показаний со счетчика с токовыми трансформаторами 200/5 необходимо умножить показания счетчика на 40 (коэффициент трансформации) и получаем реальный расход электроэнергии.

Выбор класса точности ТТ определяется согласно ПУЭ п 1.5.16 — для систем технического учета допускается применение ТТ с классом точности не более 1,0, для расчетного (коммерческого) учета — не более 0,5.

Электрик от плоскогубцев недалеко падает!

Схемы включения однофазных и трехфазных электросчетчиков

Схемы включения однофазных и трехфазных электросчетчиков

Для определения и контроля количество потребленной электроэнергии необходимо выполнить грамотное подключение счетчика. Рассмотрим, как это сделать.

Посадочные отверстия для крепления обоих видов электросчётчиков тоже должны быть абсолютно одинаковы, однако некоторые производители не всегда придерживаются этого требования, поэтому иногда могут возникнуть проблемы с установкой электронного электросчётчика вместо индукционного именно в плане крепления на панели.

Зажимы токовых обмоток электросчётчиков обозначаются буквами Г (генератор) и Н (нагрузка). При этом генераторный зажим соответствует началу обмотки, а нагрузочный — ее концу.

При подключении счетчика необходимо следить за тем, чтобы ток через токовые обмотки проходил от их начал к концам. Для этого провода со стороны источника питания должны подключаться к генераторным зажимам (зажимам Г) обмоток, а провода, отходящие от счетчика в сторону нагрузки, должны быть подключены к нагрузочным зажимам (зажимам Н).

Для счетчиков, включаемых с измерительными трансформаторами, должна учитываться полярность как трансформаторов тока (ТТ), так и трансформаторов напряжения (ТН). Это особенно важно для трехфазных счетчиков, имеющих сложные схемы включения, когда неправильная полярность измерительных трансформаторов не всегда сразу обнаруживается на работающем счетчике.

Если счетчик включается через трансформатор тока, то к началу токовой обмотки подключается провод от того зажима вторичной обмотки трансформаторов тока, который однополярен с выводом первичной обмотки, подключенным со стороны источника питания. При этом включении направление тока в токовой обмотке будет таким же, как и при непосредственном включении. Для трехфазных счетчиков входные зажимы цепей напряжения, однополярные с генераторными зажимами токовых обмоток, обозначаются цифрами 1, 2, 3. Тем самым определяется заданный порядок следования фаз 1-2-3 при подключении счетчиков.

Основные схемы включения однофазных счетчиков

На рисунке 1 изображены принципиальные схемы включения однофазного счетчика активной энергии. Первая схема (а) – непосредственного включения – является наиболее распространенной. Иногда, однофазный электросчётчик включают и полукосвенно – с использованием трансформатора тока (б).

Рисунок 1. Схемы включения однофазного счетчика активной энергии: а — при непосредственном включении; б — при полукосвенном включении. Далее рассмотрим схемы включения трёхфазных электросчётчиков.

Самыми распространёнными являются схемы непосредственного (рис.2) и полукосвенного (рис.3) включения в четырехпроводную сеть:

Рисунок 2. Схема непосредственного включения трёхфазного счетчика активной энергии

Рисунок 3. Схема полукосвенного включения трёхфазного счетчика активной энергии.

При полукосвенном включении используют трансформаторы тока. Выбор трансформаторов тока проводят исходя из потребляемой мощности. Промышленностью выпускаются трансформаторы тока с различным коэффициентом трансформации – 50/5, 100/5 …. 400/5 и т.д.

Основные схемы включения трёхфазных электросчётчиков

Кроме полукосвенной схемы, часто применяется и схема косвенного включения трёхфазных электросчётчиков. При этой схеме используют не только трансформаторы тока, но и трансформаторы напряжения.

На рисунке 4 показана схема включения с тремя однофазными трансформаторами напряжения в трёхпроводную сеть, первичные и вторичные обмотки которых соединены в звезду. При этом общая точка вторичных обмоток в целях безопасности заземляется. Это же относится и к вторичным обмоткам трансформаторов тока.

Здесь необходимо обратить внимание на наличие обязательной связи нулевого проводника сети с нулевым зажимом счетчика, т.к. отсутствие такой связи может вызывать дополнительную погрешность при учете энергии в сетях с несимметрией напряжений.

Рисунок 4. Схема косвенного включения трёхфазного счетчика активной энергии в трёхпроводную сеть

Помимо трёхэлементных трёхфазных электросчётчиков, используют и двухэлементные. Принципиальные схемы включения трехфазного двухэлементного счетчика активной энергии типа САЗ (САЗУ) приведены на рисунке 5.

Здесь особо отметим, что к зажиму с цифрой 2 обязательно подключается средняя фаза, т.е. та фаза, ток которой к счетчику не подводится. При включении счетчика с трансформаторами напряжения зажим этой фазы заземляется.

На схеме заземлены зажимы со стороны источника питания (т.е. зажимы И1 трансформаторов тока), но можно было бы заземлять зажимы и со стороны нагрузки.

Счетчики типа САЗ применяются главным образом с измерительными трансформаторами (НТМИ), и поэтому приведенная схема является основной при учете активной энергии в электрических сетях 6 кВ и выше.

Рисунок 5. Схема полукосвенного включения трёхфазного двухэлементного счетчика активной энергии в трёхпроводную сеть

Необходимо отметить один момент, который я упустил раньше. Рабочее напряжение индукционных электросчётчиков, включаемых по схеме непосредственного и полукосвенного включения, равно 220/380 В. В схемах косвенного включения, т.е. с трансформаторами напряжения, применяют электросчётчики на рабочее напряжение 100 В. Некоторые электронные электросчётчики имеют диапазон входного напряжения 100-400 В, что теоретически позволяет использовать их в схемах с любым типом включения.

При монтаже учётов электроэнергии по схеме полукосвенного или косвенного включения, очень большое значение имеет правильное чередование фаз. Для определения чередования фаз применяют различные приборы, например Е-117 «Фаза-Н».

Схемы включения счетчиков реактивной энергии

Довольно часто, вместе с индукционными электросчётчиками активной энергии, применяют электросчётчики реактивной энергии.

На рисунке 6 приведены схемы полукосвснного включения счетчиков в четырехпроводную сеть (380/220 В). Эта схема требует для монтажа меньшего количества провода или контрольного кабеля. При ее сборке значительно уменьшается риск неправильного включения счетчиков, так как исключается несовпадение фаз (А, В, С) тока и напряжения.

Проверить правильность схемы можно упрощенными способами без снятия векторной диаграммы. Для этого достаточным является измерение фазных напряжений, определение порядка следования фаз и проверка правильности включения токовых цепей с помощью поочередного вывода двух элементов счетчиков из работы и фиксацией при этом правильного вращения диска.

Рисунок 6. Схема полукосвенного включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную сеть с совмещенными цепями тока и напряжения.

Недостаток схемы заключается в том, что проверка правильности включения токовых цепей вызывает необходимость трижды отключать потребителей и принимать особые меры по технике безопасности при производстве работ, так как вторичные цепи трансформаторов тока находятся под потенциалами фаз первичной сети.

Другим серьезным недостатком рассматриваемой схемы является то, что необходимо зануление или заземления вторичных обмоток измерительных трансформаторов.

В отличие от предыдущей схема на рисунке 7 имеет раздельные цепи тока и напряжения, поэтому она позволяет производить проверку правильности включения счетчиков и их замену без отключения потребителей, так как в этой схеме цепи напряжения могут быть отсоединены. Кроме этого, в ней соблюдены требования ПУЭ к занулению и заземлению вторичных обмоток трансформаторов тока.

Рисунок 7. Схема полукосвенного включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную сеть с раздельными цепями тока и напряжения.

И в заключение рассмотрим схему косвенного включения двухэлементных электросчётчиков активной и реактивной энергии в трехпроводную сеть свыше 1 кВ. Принципиальная схема данного включения приведена на рисунке 8.

Рисунок 8. Схема косвенного включения двухэлементных счетчиков активной и реактивной энергии в трехпроводную сеть свыше 1 кВ.

В данной схеме в качестве счетчика реактивной энергии принят двухэлементный электросчетчик с разделенными последовательными обмотками. Так как в средней фазе сети отсутствует трансформатор тока, то вместо тока Ib к соответствующим токовым обмоткам этого счетчика подведена геометрическая сумма токов Ia +Ic равная — Id.

На рисунке была показана схема включения с использованием трехфазного трансформатора напряжения типа НТМИ. На практике может применяться трехфазный трансформатор напряжения и с заземлением вторичной обмотки фазы В. Вместо трехфазного трансформатора напряжения также могут применяться два однофазных трансформатора напряжения, включенных по схеме открытого треугольника.

Как правило, схема включения счетчика обычно нанесена на крышке клеммной коробки. Однако, в условиях эксплуатации, крышка может оказаться снятой со счетчика другого типа. Поэтому необходимо всегда убедиться в достоверности схемы путем ее сверки с типовой схемой и с разметкой зажимов.

Монтаж цепей напряжения электросчётчика полукосвенного и косвенного включения должен выполняться в соответствии с ПУЭ — медным проводом сечением не менее 1,5 мм, а токовых цепей – сечением не менее 2,5 мм.

При монтаже электросчётчиков непосредственного включения, монтаж должен быть выполнен проводом, рассчитанным на соответствующий ток.

На этом обзор схем включения электросчётчиков будем считать оконченным. Разумеется, нами были рассмотрены далеко не все существующие схемы, а только те, которые наиболее часто используются на практике.

Ранее ЭлектроВести писали, что создана технология беспроводной передачи энергии на большие расстояния.

По материалам: electrik.info.

Назначение, устройство и схема трансформаторов тока

Автор Фома Бахтин На чтение 3 мин. Просмотров 7.2k. Опубликовано Обновлено

Назначение трансформаторов тока заключается в преобразовании (пропорциональном уменьшении) измеряемого тока до значений, безопасных для его измерения. Другими словами, трансформаторы тока расширяют пределы измерения измерительных приборов – электросчётчиков.

Простой пример необходимости использования трансформаторов тока – когда ввиду большой потребляемой мощности, значение измеряемого тока превышает допустимое, безопасное для прибора учёта. Т. е. при прямом включении нагрузки такой потребляемой мощности, токовые катушки счётчика попросту сгорят, что приведёт к его выходу из строя.

В этом случае электросчётчик подключается через трансформаторы тока. См. ПОДКЛЮЧЕНИЕ ЭЛЕКТРОСЧЁТЧИКОВ.

Устройство и схема трансформатора тока. Основной элемент конструкции трансформатора тока – это магнитопровод с двумя несвязанными между собой обмотками (первичная W1 и вторичная W2).

Первичная обмотка – имеет большее сечение и меньшее количество витков,  включается последовательно – в разрыв цепи (контакты Л1 и Л2), вторичная – к токовым катушкам электросчётчика (контакты И1, И2).

Первичная обмотка трансформатора тока может быть рассчитана  на ток от 5 до 15 000 А. Вторичная, включаемая в измерительную цепь – обычно, на 5 А. Их отношение (тока первичной обмотки к токам вторичной) называют коэффициентом трансформации.

Таким образом, для правильного расчёта потреблённой электроэнергии разницу в показаниях электросчётчика нужно умножить на коэффициент трансформации. Например, для трансформаторов тока 100/5, коэффициент трансформации будет равен 20.

Стоит заметить, что по исполнению и способу подключения в качестве  первичной обмотки трансформатор тока может иметь проходную шину, которая проходит через его корпус, или-же отсутствовать вовсе. В этом случае имеется «окно» – отверстие, в которое пропускается питающий провод или шина.

Применение трансформаторов тока должно быть обоснованным, т. к. предполагает  дополнительные материальные расходы, помимо затрат на их  приобретение.

Согласно новых правил, при наличии в измерительном комплексе трансформаторов тока и трансформаторов напряжения для ввода в эксплуатацию электроустановки необходим паспорт-протокол измерительного комплекса.

Паспорт-протокол измерительного комплекса должен выдаваться после соответствующей проверки лицензированной организацией – электролабораторией, зарегистрированной в Ростехнадзоре.

Документ этот далеко не бесплатный, кроме того, периодически требующий продление. Таким образом, применение трансформаторов тока в измерительных цепях электроустановок целесообразно, скорее, на крупных предприятиях с действительно большой нагрузкой.

В быту же, проще всего установить электросчётчик прямого включения, т. е. обойтись без трансформаторов тока. В настоящее время выпускаются трёхфазные электросчётчики с номинальным электрическим током до 100 А.

Электросчётчик с таким резервом по амперажу способен выдержать практическую любую нагрузку, применяемую в быту. Никакой дополнительной документации и измерений и в этом случае не требуется.

Трансфоматоры тока- устройство и сборка схемы.


Работа и устройство трансформаторов тока.


Трансформаторы тока. Подключение. Ассортимент


Подключение трансформатора тока — swoofe.ru

Схемы подключения трансформаторов тока для электросчетчиков, как правильно установить

Применяя энергосистемы различного вида нужно быть готовым к особым моментам. Из-за них нужно совершить преобразование электрических величин в идентичные с обозначенным соотношением. Трансформаторы тока для электросчетчиков разработаны с целью существенного расширения типовых границ измерений устройствами учета.

Общие требования

Энергомер разработан специально для определения величины расходуемой мощности электрических устройств и для упрощения расчетов нагрузки на розетку. Обучение тому, как им пользоваться происходит быстро. Ведь помогает инструкция по использованию.

Принцип работы и назначение измерительного трансформатора

Нужны достижения определенных показателей, при которых верно функционирует оборудование. Монтаж приборов нужно поручить опытным специалистами. Они должны обладать группой допуска к электротехническим работам как минимум третьего уровня. А перед монтированием трансформаторов тока (ТТ) нужно проверить механизм на присутствие изъянов. Они могут возникнуть в результате неправильной сборки или повреждений.

Измерительные трансформаторы превращают базовые сведения электрических цепей (напряжение или ток), сокращая их количество до предписанного значения. Работают аппараты по-разному. Это обусловлено их внутренним механизмом и предназначением.

Обозначение упрощает обращение с ними. Оно поможет выбрать наиболее подходящий механизм. Маркировка прибора обусловливается типом механизма. Например, ТТ свойственны такие обозначения, как: «Т» (1-ая буква) – трансформатор тока. А 2-ая буква в названии указывает на тип механизма.

Обозначения и их значения:

Третья буква обозначается вещество изоляции. Правильное изолирование токопроводящих деталей способствует безопасности.

Обозначения веществ изоляции и их значения:

После букв есть числовые обозначения. Эти обозначения указывают коэффициент трансформации, климат и класс изоляции.

Схемы подключения трехфазного счетчика электроэнергии

Только верно присоединенный счетчик правильно определяет и контролирует количество используемого тока. Поэтому прибор следует верно присоединить. Схема монтирования обусловливается видом.

Полукосвенная

В сеть монтируется с ТТ. Поэтому возможно присоединять в сети с высокими мощностями. Разрешается до 60 кВт. Применяя этот метод учета, для установления трат стоит разность показателей умножать на определенное значение трансформации.

Десятипроводная

Она пользуется большой популярностью. Именно ее эксперты советуют устанавливать сейчас. Ведь она имеет ряд преимуществ. У них нет гальванической связи токовых цепей прибора учета и цепей напряжения. Поэтому подключать ее гораздо безопаснее. А еще благодаря ей удобнее проводить манипуляции.

Не нужно отключать установки при смене счетчика или при проведении различных манипуляций. Он отличается правильностью. Ведь сбор сведений по всем фазам происходит независимо. Если происходит нарушение цепей учета по какой-то из фаз, функционирование учета на других фазах продолжается.

3х-фазный счетчик для правильного функционирования монтировать аккуратно. Особенное внимание стоит уделить маркировке. 10-проводная требует больше проводов, чем остальные схемы.

10-проводная имеет недостаток: значительный расход проводника для сборки вторичных цепей учета.

Семипроводная

Свое название получила из-за числа проводов, применяемых во время присоединения. Считается устаревшей, хоть и встречается.

Трансформаторный счетчик должен иметь контактную панель. Если ее нет, то должна присутствовать колодка. Они служат проводником соединения. Их располагают посреди электрического шнура и счетчика.

С совмещенными цепями

Во время этого способа цепи напряжения подсоединяют к токовым цепям монтажом соединений на ТТ.

  • все типы КЗ проводят ток индивидуально. А гарантия безопасности и функционирования, созданная данным способом, откликается на любое КЗ;
  • ток в реле принадлежит к фазному;
  • ток нулевой последовательности, не проходящий через реле, не выйдет за грани треугольника ТТ.

Устанавливать неполную звезду стоит лишь в сетях, где есть нулевые изолированные точки. Они ограждают от междуфазных КЗ. Она откликается лишь на отдельные появления КЗ однофазного.

Если есть глухозаземлённая нейтраль, то нужно присоединение ТТ к трём фазам.

Если в сети аппараты, использующие энергию электричества, тратят ее больше номинального значение силы тока, проходящего сквозь счётчик тогда стоит вмонтировать разделительные ТТ. Присоединяют их в разрыв силовых токоведущих шнуров.

С двумя ТТ

В сетях 380 В, при образовании систем учёта расходуемой мощи больше 60кВт, 100А электросчетчик устанавливают, применяя косвенную схему присоединения трехфазного через ТТ. Это помогает измерять большую используемую мощь при помощи аппаратов учёта для меньшей мощи, используя коэффициент пересчёта показателей устройства.

Меркурий 230

Схемы сборки счетчика Меркурий с применением ТТ отличаются сложностью. Подключающий не должен забывать в процессе об ответственности. Обычно он применяется в сети 380 вольт.

В фильтр токов нулевой последовательности

Если есть однофазовое и двухфазное КЗ “земля”, то выявляются токовые объемы в реле.

Как правильно подключить счетчик через трансформаторы тока и напряжения

Почти у всех счетчиков присутствует изображение того, как верно устанавливать их. Там есть обозначение контактов. А еще подробные обмоточные данные есть в паспорте.

Как выбрать трансформатор

Перед тем, как отдать предпочтение какому-то виду счетчика следует прочитать пункт 1.5.17 ПУЭ. Там написано, что объем вторичной обмотки не должен опускаться меньше 40% от установленного при самой большой нагрузке, ниже 5% при минимальной.

Стоит проследить за тем, чтобы была установлен лишь верный порядок фаз A, B, C. Фазометр определит это.

Еще стоит наблюдать за U и I. Первое значение должно быть равно напряжению или быть выше его, а второе, силе тока.

3 однофазных аппарата заменят трехфазный. Но, стоит знать, что каждый нуждается в своем преобразователе, что делает монтаж сложнее.

Прямого или непосредственного включения

Прямым включением агрегата называется непосредственное присоединение к системе в 220 и 380 В. Данное монтирование счетчика в электрическую линию отличается простотой. Нужно подсоединить окончания кабеля с обеих сторон.

При обычном наборе приборов этот метод подключения себя эффективен.
Но если среди приборов есть котел отопления, то метод нужно поменять на другой.

Однофазная цепь

Однофазная цепь состоит из двух шнуров. По одному из них ток поступает к пользователю, а по-другому идет обратно. При разъединении цепи ток не пройдет.

Узел счета — место соединения трансформатора тока с несущим проводником. Обычно им является электрошкаф со счетчиком.

Класс точности

Если верно выбрать ТТ, то покупатель сможет подключить замерные и защитные устройства к линиям высокого напряжения. Степень класса точности — самый важный параметр. Он указывает на погрешность измерения. Она не должна превышать критерии установленных государственных норм. Класс точности обусловливается базовыми особенностями. Туда входят погрешность по току и углу, а также индекс относительной полной погрешности. 2 первых коэффициента обусловливаются током намагничивания.

В аппаратах промышленного применения применяются несколько видов точности: 0.1, 0.5, 1.0, 3.0 и 10Р.

Согласно ГОСТу, класс точности должен быть ориентирован на токовые погрешности. Например, для коэффициента в ± 40 необходим класс 0.5, а для ±80—класс 1.0. Необходимо заметить, что классы 3.0 и 10Р согласно правилам не нормируются. Буква “S” указывает на класс точности в границах 0.01-1.2. Класс 10Р применяется для защиты. Относительная полная погрешность нормирования не превышает 10%.

Разрешается применения аппаратов с классом точности 1.0. Но применять их можно лишь, если у счетчика класс точности в две единицы.

Замена трансформаторного устройства нужна, если:

  • электросчетчики с классом точности ниже 2.0. В частности, аппараты фиксирования с показателем погрешности 2,5;
  • просроченной датой обязательной проверки;
  • с прошедшим сроком использования;
  • отсутствует пломба государственной инспектирующей организации.

Использование переходной испытательной коробки

  • монтирование в узел учета эталонного устройства учета;
  • ориентирование тока в электрической цепи через токовые петли;
  • выключение токовых цепей;
  • присоединение фазных проводников на устройстве учета.

Испытательная переходная коробка (КИП) создана для «закоротки» (шунтирования) токовых цепей.

Особенности монтажа электронного счетчика

Электрический счетчик разрешено монтировать прямым способом. А еще его можно смонтировать с помощью ТТ, применяющиеся в предприятиях.

Выбирая электросчетчик стоит обязательно учитывать общую мощь расходуемой энергии. Если расход составляет при одновременно включенных устройствах порядка 7 кВт, счетчик можно установить на 5-40А, но лучше, если поставить его на 5-60А.

Щит в квартиру выбирают в соответствии с номенклатурой и габаритами планируемого оборудования.

В отличие от трансформатора напряжения у трансформатора тока режим холостого хода является аварийным. Результирующий магнитный поток в магнитопроводе ТТ равен разности магнитных потоков, создаваемых первичной и вторичной обмотками. В нормальных условиях работы трансформатора он невелик. Однако при размыкании цепи вторичной обмотки в сердечнике будет существовать только магнитный поток первичной обмотки, который значительно превышает разностный магнитный поток. Потери в сердечнике резко возрастут, трансформатор перегреется и выйдет из строя («пожар стали»). Кроме того, на концах оборванной вторичной цепи появится большая ЭДС, опасная для работы оператора. Поэтому трансформатор тока нельзя включать в линию без подсоединённого к нему измерительного прибора. В случае необходимости отключения измерительного прибора от вторичной обмотки трансформатора тока, её обязательно нужно закоротить. Согласно ПУЭ вторичная обмотка ТТ обязательно должна заземляться (для защиты от поражения электрическим током при пробое изоляции, либо при индуктировании высокого напряжения из-за обрыва вторичной цепи).

Как подключить трансформатор тока

Сегодня обсудим, как подключить трансформатор тока. Рассмотрим некоторые особенности измерительных приборов. Должны называть инструмент вспомогательным. Используется совместно со счетчиками электрической энергии, защитными цепями. Ток вторичной обмотки пропорционален потребляемому полезной нагрузкой – электрическими двигателями, нагревательными приборами, освещением. Позволит оценить параметры мощной промышленной сети без риска порчи контрольного оборудования. Косвенной выгодой становится безопасность обслуживающего персонала, снимающего показания, ведущего контроль. Значительно уменьшает требования к квалификации, снимает другие ограничения.

Общие сведения о трансформаторах тока

Трансформаторы тока создаются согласно нормативной документации. Параметры регламентированы. Например, стандартами:

Дело касается коэффициента трансформации. Главный параметр, показывающий отношение меж токами первичной, вторичной обмоток. Цифра позволит сопрягать трансформатор тока с счетчиком, защитным автоматом. Причем требования значительно снижаются. Сеть потребляет 200 А, коэффициент трансформации равен 100, достаточно наличия защитного автомата 2 А. Видите, очень выгодно. Безопасность персонала расписали.

Получается, во вторичной цепи напряжение сетевое. Выгоды не получается. Собственно, поэтому прибор называется трансформатором тока. Не меняет напряжения. Напоминаем, действующее значение фазы напряжения 380 вольт составляет 220 вольт. Работа с промышленной сетью напоминает однофазные. Трансформаторов тока понадобится три. Счетчик измеряет напряжение, ток, определяя параметры:

  • Полную мощность потребления в ВА.
  • Реактивную мощность в вар.
  • Активную мощность Вт.

Часто нужен нейтральный провод (даже в трехпроводных промышленных сетях). К трансформатору тока не относится. Включается не так, как обычный. Первичная обмотка малого сопротивления, чтобы не вносить возмущений в цепь. Включается последовательно полезной нагрузке (двигателям).

Типичный трансформатор включается следующим образом: нагрузка находится в цепи вторичной обмотки. Позволит развязать потребителя, источник по постоянному току (гальваническая развязка), получить нужные параметры. В нашем случае (!) манипуляций с входными напряжениями, токами не производится.

В цепь вторичной обмотки включается прибор измерения, контроля. Счетчики снабжены двумя катушками: тока, напряжения. В цепь вторичной обмотки включается первая. Катушка напряжения одним концом заводится на фазу, на второй подается нейтраль. Комплексный подход позволит оценить мощность. На нейтраль положено заводить один конец токовой катушки. Как узнать последовательность действий более подробно? Схема дается на приборе контроля, измерения. Трансформатор тока является изделием универсальными, тонкости нужно искать на корпусе (шильдике) стороннего оборудования.

Первичная обмотка включается последовательно полезной нагрузке, вторичная используется для внедрения в сеть устройств контроля, измерения. Подробная схема включения зависит от типа сопрягаемых устройств, приводится на корпусе, шильдике, инструкцией. Рассмотрим, как трансформатор тока обозначается электрическими схемами. На просторах сети встретим много ошибок. В предыдущих обзорах приводили рисунок трансформатора тока, просто копируем из предыдущей локации:

    Прямой толстой линией показана первичная обмотка. К одному концу подводится фаза, к другому подключается потребитель. Холодильник, кондиционер, завод. Чертеж дан показывает трехфазное напряжение 380 вольт. Показана одна ветка. Прочие подключаются аналогично. В нижнем правом углу можем видеть измерительные катушки счетчика. Одна из возможных схем, не является догмой. Подробно электрические карты приводятся корпусами, шильдиками приборов. Можно достать на специализированном форуме.

Подключение трансформатора тока

Что касается приборов, применяемых за пределами лабораторий, разброс ниже. Обратите внимание, нагрузка вторичной цепи ученых должна быть по возможности активной. Точнее говоря, если коэффициент мощности меньше 1, следует подключать только индуктивные сопротивления. По большей части выполняется, в особенности для трехфазных цепей. Сварочный аппарат на входе содержит обмотку трансформатора, двигатель подключается на катушку статора, ротора. Касается счетчиков, где витой провод послужит для оценки параметров напряжения, тока. Примеры индуктивных сопротивлений. В реальности лучше перестраховаться, если коэффициент мощности меньше 1 (реактивное сопротивление обусловило возникновение потерь), пусть лучше импеданс (комплексное сопротивление) будет индуктивным, не емкостным.

Маркировка трансформаторов тока

Прежде, чем произвести подключение трансформатора, убедитесь, что годится выбранным целям. Из сказанного выше понятно, как оценить количественно параметры, для применения знаний на практике следует уметь читать маркировку изделия. Код регламентируется стандартом. Приводим перечень параметров, указываемых производителем на шильдике трансформатора тока:

  1. Логотип производителя с последующей надписью «трансформатор тока». Достаточно сложно промахнуться, выбрав в магазине другой прибор.
  2. Тип трансформатора характеризуется конструктивными особенностями, видом изоляции. Расшифровка приводится в стандартах, указанных выше. Рядом в маркировке идет климатическое исполнение. Есть сомнения в умении читать шильдик, проще дома заранее распечатать таблицы ГОСТ. При необходимости следует изучить конструктивные особенности. Поможет понять, как подключить трансформатор, оценить пригодность для цепи в принципе.
  3. Порядковый номер по реестру предприятия-изготовителя понадобится при обращении в службу поддержки (иностранные компании), используется для отчетности, если покупку осуществит не физическое лицо.
  4. Номинальное напряжение первичной обмотки указывается для всех трансформаторов тока за исключением встроенных. Потому что в последнем случае электрические параметры должны быть соблюдены внешним по отношению к прибору устройством.
  5. Номинальная частота может отсутствовать, если (по значению напряжения) можно понять: стандартна для государства (РФ – 50 Гц).
  6. В природе встречаются трансформаторы с несколькими выводами вторичной обмотки. Позволит получить два-три прибора в одном. В зависимости от электрической схемы будет меняться коэффициент трансформации. Напротив параметров указывается номер вторичной обмотки.

Характеристики трансформатора тока

Надеемся, читатели теперь знают, чем рассматриваемая задача отличается от вопроса о том, как подключить понижающий трансформатор 220/12 В. Совершенно разные вещи. Обмотки идут последовательно с нагрузкой, измерителем. Коэффициент трансформации показывает, какой прибор контроля можно использовать во вторичной цепи.

Что такое трансформатор тока, принцип работы, типы, схемы

В данной статье мы подробно рассмотрим что такое трансформатор тока, опишем принцип его работы, какие бывают типы, а так же расчеты и схемы трансформатора тока.

Описание и принцип работы

Трансформатор тока представляет собой тип «измерительного трансформатора», который предназначен для производства переменного тока в его вторичной обмотки, которое пропорционально току измеряется в его первичном. Трансформаторы тока уменьшают токи высокого напряжения до гораздо более низкого значения и обеспечивают удобный способ безопасного контроля фактического электрического тока, протекающего в линии электропередачи переменного тока, с использованием стандартного амперметра. Принцип работы основного трансформатора тока немного отличается от обычного трансформатора напряжения.

В отличие от трансформатора напряжения или мощности, рассматриваемого ранее, трансформатор тока состоит из одного или нескольких витков в качестве своей первичной обмотки. Эта первичная обмотка может иметь либо один плоский виток, либо катушку из сверхпрочного провода, намотанного на сердечник, либо просто проводник или шину, расположенную через центральное отверстие, как показано на рисунке. Купить трансформатор тока вы можете в популярном интернет магазине Алиэкспресс:

Из-за такого типа расположения трансформатор тока часто называют также «последовательным трансформатором», поскольку первичная обмотка, которая никогда не имеет более нескольких витков, соединена последовательно с проводником с током, питающим нагрузку.

Однако вторичная обмотка может иметь большое количество витков катушки, намотанных на многослойный сердечник из магнитного материала с малыми потерями. Этот сердечник имеет большую площадь поперечного сечения, так что создаваемая плотность магнитного потока является низкой при использовании провода с меньшей площадью поперечного сечения, в зависимости от того, какой ток должен быть понижен, когда он пытается выдать постоянный ток, независимо от подключенной нагрузки.

Вторичная обмотка будет подавать ток либо на короткое замыкание, в виде амперметра, либо на резистивную нагрузку, пока напряжение, наведенное во вторичной обмотке, не станет достаточно большим, чтобы насытить сердечник или вызвать отказ из-за чрезмерного пробоя напряжения.

В отличие от трансформатора напряжения, первичный ток трансформатора тока не зависит от тока вторичной нагрузки, а контролируется внешней нагрузкой. Вторичный ток обычно оценивается в стандартный 1 Ампер или 5 Ампер для больших значений первичного тока.

Существует три основных типа трансформаторов тока: обмоточный, тороидальный и стержневой.

  • Обмоточный трансформатор тока — первичная обмотка трансформатора физически соединена последовательно с проводником, который несет измеренный ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента оборотов трансформатора.
  • Тороидальный трансформатор тока — они не содержат первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разделенный сердечник», который позволяет открывать, устанавливать и закрывать его, не отключая цепь, к которой они подключены.
  • Трансформатор тока стержневого типа — в этом типе трансформатора тока используется фактический кабель или шина главной цепи в качестве первичной обмотки, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения системы и обычно крепятся болтами к токонесущему устройству.

Трансформаторы тока могут снизить или «понизить» уровни тока с тысяч ампер до стандартного выходного сигнала с известным отношением либо к 5 А, либо к 1 А для нормальной работы. Таким образом, небольшие и точные приборы и устройства управления могут использоваться с трансформаторами тока, потому что они изолированы от любых высоковольтных линий электропередач. Существует множество применений для измерения и использования для трансформаторов тока, таких как ваттметры, измерители коэффициента мощности, защитные реле или в качестве катушек отключения в магнитных выключателях или MCB.

Конструкция и схема трансформатора тока

Обычно трансформаторы тока и амперметры используются вместе как согласованная пара, в которой конструкция трансформатора тока такова, чтобы обеспечить максимальный вторичный ток, соответствующий полномасштабному отклонению амперметра. В большинстве трансформаторов тока существует приблизительное соотношение обратных витков между двумя токами в первичной и вторичной обмотках. Вот почему калибровка трансформатора тока обычно для определенного типа амперметра.

Большинство трансформаторов тока имеют стандартную вторичную номинальную мощность 5 А, при этом первичные и вторичные токи выражаются в таком соотношении, как 100/5. Это означает, что ток первичной обмотки в 20 раз больше, чем ток вторичной обмотки, поэтому, когда в первичном проводнике протекает 100 ампер, во вторичной обмотке будет протекать 5 ампер. Трансформатор тока, скажем, 500/5, будет производить 5 А во вторичной обмотке при 500 А в первичной обмотке, что в 100 раз больше.

Увеличивая количество вторичных обмоток Ns, ток вторичной обмотки можно сделать намного меньшим, чем ток в измеряемой первичной цепи, потому что, когда Ns увеличивается, Is уменьшается пропорционально. Другими словами, число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Трансформатор тока, как и любой другой трансформатор, должен удовлетворять уравнению ампер-виток, и мы знаем из нашего учебника по трансформаторам напряжения с двойной обмоткой, что это отношение витков равно:

из которого мы получаем:

Коэффициент тока устанавливает коэффициент витков, и, поскольку первичный обычно состоит из одного или двух витков, тогда как вторичный может иметь несколько сотен витков, соотношение между первичным и вторичным может быть довольно большим. Например, предположим, что номинальный ток первичной обмотки составляет 100А. Вторичная обмотка имеет стандартный рейтинг 5А. Тогда соотношение между первичным и вторичным токами составляет 100А-5А или 20: 1. Другими словами, первичный ток в 20 раз больше вторичного тока.

Однако следует отметить, что трансформатор тока с номиналом 100/5 не совпадает с трансформатором с номиналом 20/1 или подразделениями 100/5. Это связано с тем, что отношение 100/5 выражает «номинальный ток на входе / выходе», а не фактическое соотношение первичных и вторичных токов. Также обратите внимание, что число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Но относительно большие изменения в соотношении витков трансформаторов тока могут быть достигнуты путем изменения первичных витков через окно трансформатора ток, где один первичный виток равен одному проходу, а более одного прохода через окно приводит к изменению электрического соотношения.

Так, например, трансформатор тока с отношением, скажем, 300 / 5А можно преобразовать в другой из 150 / 5А или даже 100 / 5А, пропустив основной первичный проводник через его внутреннее окно два или три раза, как показано ниже. Это позволяет более высокому значению трансформатора тока обеспечивать максимальный выходной ток для амперметра, когда используется на меньших первичных линиях тока.

Пример трансформатора тока

Трансформатор тока стержневого типа, который имеет 1 виток на своей первичной обмотке и 160 витков на своей вторичной обмотке, должен использоваться со стандартным диапазоном амперметров с внутренним сопротивлением 0,2 Ом. Амперметр необходим для полного отклонения шкалы, когда первичный ток составляет 800 А. Рассчитайте максимальный вторичный ток и вторичное напряжение на амперметре.

Напряжение через амперметр:

Выше мы видим, что, поскольку вторичная обмотка трансформатора тока подключена к амперметру с очень малым сопротивлением, падение напряжения на вторичной обмотке составляет всего 1,0 В при полном первичном токе.

Однако, если амперметр был удален, вторичная обмотка фактически разомкнута, и, таким образом, трансформатор действует как повышающий трансформатор. Это частично связано с очень большим увеличением намагничивающего потока во вторичном сердечнике, поскольку реактивное сопротивление вторичной утечки влияет на вторичное индуцированное напряжение, потому что во вторичной обмотке нет противоположного тока, чтобы предотвратить это.

Результатом является очень высокое напряжение, наведенное во вторичной обмотке, равное отношению: Vp (Ns / Np), развиваемое через вторичную обмотку. Например, предположим, что наш трансформатор тока сверху используется на трехфазной линии электропередачи напряжением 480 вольт. Следовательно:

Это высокое напряжение связано с тем, что отношение вольт на витки в первичной и вторичной обмотках практически постоянно, а поскольку Vs = Ns * Vp, значения Ns и Vp являются высокими значениями, поэтому Vs чрезвычайно велико.

По этой причине трансформатор тока никогда не следует оставлять разомкнутым или работать без нагрузки, когда через него протекает основной первичный ток, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании. Если амперметр (или нагрузка) должен быть удален, сначала следует установить короткое замыкание на вторичных клеммах, чтобы исключить риск удара током.

Это высокое напряжение объясняется тем, что когда вторичная обмотка разомкнута, железный сердечник трансформатора работает с высокой степенью насыщения и ничто не может его остановить, он создает аномально большое вторичное напряжение, и в нашем простом примере выше это было рассчитано на 76,8 кВ ! Это высокое вторичное напряжение может повредить изоляцию или привести к поражению электрическим током при случайном прикосновении к клеммам трансформатора тока.

Ручные трансформаторы тока

В настоящее время доступно много специализированных типов трансформаторов тока. Популярный и портативный тип, который может быть использован для измерения нагрузки цепи, называется «клещами», как показано на рисунке.

Измерители зажимов открывают и закрывают вокруг проводника с током и измеряют его ток, определяя магнитное поле вокруг него, обеспечивая быстрое считывание результатов измерений, как правило, на цифровом дисплее без отключения или размыкания цепи.

Наряду с ручным зажимом типа трансформатора тока имеются трансформаторы тока с разделенным сердечником, у которых один конец съемный, поэтому нет необходимости отсоединять проводник нагрузки или шину для его установки. Они доступны для измерения токов от 100 до 5000 ампер, с квадратными размерами окна от 1 ″ до более 12 ″ (от 25 до 300 мм).

Подводя итог, можно сказать, что трансформатор тока (ТТ) представляет собой тип измерительного трансформатора, используемого для преобразования первичного тока во вторичный ток через магнитную среду. Его вторичная обмотка обеспечивает значительно уменьшенный ток, который можно использовать для обнаружения условий сверхтока, пониженного тока, пикового или среднего тока.

Первичная катушка трансформатора тока всегда соединена последовательно с главным проводником, в результате чего ее также называют последовательным трансформатором. Номинальный вторичный ток рассчитан на 1А или 5А для простоты измерения. Конструкция может представлять собой один первичный виток, как в типах тороидальных, кольцевых или стержневых, или несколько витков первичной обмотки, как правило, для малых коэффициентов тока.

Трансформаторы тока предназначены для использования в качестве устройств пропорционального тока. Поэтому вторичная обмотка трансформаторов тока никогда не должна эксплуатироваться в разомкнутой цепи, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании.

Очень высокое напряжение возникает в результате разомкнутой цепи вторичной цепи трансформатора тока под напряжением, поэтому их клеммы должны быть замкнуты накоротко, если амперметр должен быть удален или когда ТТ не используется перед включением питания системы.

В следующей статье о трансформаторах мы рассмотрим, что происходит, когда мы соединяем вместе три отдельных трансформатора в конфигурации «звезда» или «треугольник», чтобы получить более мощный силовой трансформатор, называемый трехфазным трансформатором, который используется для питания трехфазных источников питания.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Схема подключения трансформатора тока – варианты монтажа

Токовые трансформаторы являются важными защитным устройством релейного типа.

Схема подключения трансформатора тока предполагает использование первичной и вторичной обмотки с учетом коэффициента относительной погрешности.

В статье подробно о монтаже счетчика через трансформатор тока.

Схема подключения счетчика через трансформаторы тока

Установка электрического счетчика осуществляется в соответствии с основными правилами и требованиями, предъявляемыми к схеме подключения прибора. Счетчик устанавливается при температурном режиме не ниже 5 о С.

Приборы энергоучета, наряду с любой другой электроникой, крайне тяжело переносят низкотемпературное воздействие. Установка электрического счетчика на улице потребует сооружения специального герметичного утепленного шкафа. Прибор учета фиксируется на высоте не более 100-170 см, что облегчает эксплуатацию и его обслуживание.

Схема подключения счетчиков МЕРКУРИЙ

Подключение однофазного прибора

При монтаже однофазного прибора учета, особое внимание необходимо уделить порядку подключения кабелей на клеммные элементы:

  • на первую клемму производится подсоединение фазного провода. Вводимый кабель чаще всего обладает белым, коричневым или черным окрашиванием;
  • на вторую клемму осуществляется подключение фазного провода, испытывающего силовую нагрузку. Такой кабель обычно бывает белого, коричневого или черного цвета;
  • на третью клемму выполняется подсоединение электропровода «ноль». Этот вводной кабель имеет голубую или синевато-голубую маркировку;
  • на четвертую клемму производится подключение нулевого провода, имеющего голубое или синевато-голубое окрашивание.

Подключение однофазного прибора

Обеспечивать защиту на заземление для устанавливаемого и подключаемого электрического прибора учета не потребуется.

Схема подключения трехфазного счетчика через трансформаторы тока

Трёхфазные устройства учета электроэнергии комплектуются, как правило, DIN-рейкой, двумя видами панелей, которые прикрывают подключаемые клеммы, а также руководство и пломбы. Технология самостоятельной установки:

  • монтаж на DIN-рейке электрического щита вводного автомата и трехфазного счетчика электроэнергии;
  • спуск фиксаторов на оборотной стороне трёхфазного прибора энергоучета, с последующей установкой и поднятием фиксаторов;
  • подсоединение вводного автомата с необходимыми вводными клеммами на электросчетчике, в соответствии со схемой подключения.

Схема монтажа трехфазного счетчика

Удобным является использование токопроводящих жил из медных проводов, сечение которых не меньше, чем стандартные размеры вводного кабеля.

Соединение обмоток реле и трансформаторов тока

Принцип воздействия токового трансформатора не имеет существенных отличий от подобных характеристик стандартного силового прибора. Особенностью первичной трансформаторной обмотки является последовательное включение в измеряемую электрическую цепь. Кроме всего прочего, обязательно присутствует замыкание на вторичную обмотку на разные, подключенные друг за другом приборы.

В полную звезду

В условиях стандартного симметричного уровня токового протекания, трансформатор устанавливается на всех фазах. В этом случае вторичная трансформаторная и релейная обмотка объединяются в звезду, а связка их нулевых точек выполняется посредством одной жилы «ноль», а зажимы на обмотках подсоединяются.

Соединение трансформаторов тока и обмоток реле в полную звезду

Таким образом, трехфазное короткое замыкание характеризуется протеканием токов в обратном кабеле в условиях двух реле. Для двухфазного короткого замыкания, протекание тока отмечается в единственном или сразу в паре реле, согласно фазовому повреждению.

В неполную звезду

Особенностью двухфазной двухрелейной схемы подсоединения с образованием неполной звезды. К достоинствам такой схемы можно отнести реагирование на любой вид короткого замыкания, кроме земли фазы, а также вероятность применения данной схемы на междуфазных защитах.

Соединение трансформаторов тока и обмоток реле в неполную звезду

Таким образом, в условиях различных типов короткого замыкания, токовые величины в реле, а также уровень его чувствительности, будут разнообразными.

Недостаток подсоединения в неполную звезду представлен слишком низким коэффициентом чувствительности, по сравнению со схемой полной звезды.

Проверка трансформатора на работоспособность требуется, если имеются подозрения на его неисправность. Как проверить трансформатор мультиметром – инструкцию вы найдете в статье.

Как правильно установить заземление на даче, расскажем тут.

Как правильно выбрать провод заземления и какие марки наиболее популярны, читайте далее.

Подсоединение трансформаторов тока в фильтр токов нулевой последовательности

Такой вариант находит широкое применение в защите от замыкания «земля».

В условиях нагрузки трехфазного и двухфазного короткого замыкания показатели IN=0.

Тем не менее, при наличии погрешности токовых трансформаторов, в реле наблюдается проявление небаланса или Iнб.

Подсоединение трансформаторов тока

В процессе выполнения последовательного подключения вторичной обмотки в условиях параллельного подсоединения, позволяет уменьшать трансформирующий коэффициент и увеличивать уровень тока на вторичной цепи. Первичные обмотки подсоединяются исключительно в последовательности, а вторичные — в любом положении.

Последовательное подсоединение

При варианте последовательного подключения токовых трансформаторов, обеспечивается повышение нагрузочных показателей. В этом случае применяются трансформаторы, имеющие идентичные показатели kТ.

Соединение обмоток трансформатора последовательно

При протекающем через прибор одинаковом токе, величина поделится на коэффициент два, а уровень нагрузки снизится в пару раз. Применение такой схемы актуально при подсоединении Y/D с целью обеспечения защиты дифференциального типа.

Если устройству требуется напряжение в 12 Вольт, необходимо подключать его через трансформатор. Трансформатор 220 на 12 Вольт – назначение и принцип действия рассмотрим подробно.

Об особенностях использования и монтажа шины заземления вы узнаете из этой информации.

Параллельное подсоединение

При использовании токовых трансформаторов, обладающих одинаковым уровнем kТ, отмечается появление результативного трансформирующего коэффициента, сниженного в пару раз.

Таким образом, при последовательном подсоединении вторичных обмоток обеспечивается повышение уровня выходного напряжения и показателей мощности в условиях сохранения номинальных значений выходного тока.

Если обмотка вторичного типа на каждом трансформаторе предполагает напряжение на выход 6,0 В при номинальных токовых показателях 1,0 А, то последовательное подсоединение позволяет сохранить номинал, а уровень мощности повышается в два раза.

Параллельное подключение вторичной обмотки в таком варианте помогает обеспечивать показатели напряжения на выходе 6,0 В, а также уровень тока — в два раза выше.

Видео на тему

Подключение счетчика через трансформаторы

Общие требования

Схемы подключения счетчиков через трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.

При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.

При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.

Счетчик трансформаторного включения имеет 10 либо 11 выводов:

Как видно на картинке выше выводы №1, 3, 4, 6, 7 и 9 используются для подключения токовых цепей (от трансформаторов тока), а выводы №2, 5, и 8 — для подключения цепей напряжения (от трансформаторов напряжения — при косвенной схеме включения либо напрямую от сети — при полукосвенном включении). 10 вывод, как и 11 (при его наличии), служит для подключения нулевого проводника к счетчику.

В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. При этом токовые цепи должны выполняться сечением не менее 2,5 мм 2 по меди и не менее 4 мм 2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ). (Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)

Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?

Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:

ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме.

Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

Подключения счетчика через трансформаторы тока

Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:

Примечание: Расчет трансформатора тока можно произвести с помощью нашего онлайн калькулятора.

Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:

2.1 Десятипроводная схема

Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:

Фактически десятипроводная схема будет иметь следующий вид:

Преимущества десятипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Высокая надежность. Учет по каждой фазе собирается независимо друг от друга. В случае нарушения цепей учета по одной из фаз работа учета на других фазах не нарушается.

Недостатки десятипроводной схемы:

  1. Большой расход проводника, для сборки вторичных цепей учета.

2.2 Семипроводная схема

Принципиальная семипроводная схема подключения электросчетчика через трансформаторы тока:

Фактически семипроводная схема будет иметь следующий вид:

Примечание: Обратите внимание в принципиальной схеме закорочены и заземлены выводы «И2» трансформаторов тока, в то время как в фактической семипроводной схеме закорочены и заземлены выводы «И1». Для правильной работы схемы учета не имеет значения какую группу выводов заземлять (И1 или И2), главное что бы заземлены они были только с одной стороны, поэтому оба варианта схем верны.

Преимущества семипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Экономия проводника, для сборки вторичных цепей учета за счет объединения вторичных токовых цепей.

Недостатки семипроводной схемы:

  1. Низкая надежность. В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз.

2.3 Схема с совмещенными цепями

Принципиальная схема подключения электросчетчика через трансформаторы тока с совмещенными цепями.

При данной схеме цепи напряжения объединяются с токовыми цепями путем установки перемычек на трансформаторах от контакта Л1 к контакту Л2.

Фактически схема с совмещенными цепями будет иметь следующий вид:

Схема с совмещенными цепями не соответствует требованиям действующих правил и в настоящее время не применяется, однако она все еще встречается в старых электроустановках.

3. Подключение счетчика через трансформаторы тока и напряжения

В случае необходимости организации учета электрической энергии в сети выше 1000 Вольт применяется схема косвенного включения счетчика при которой токовые цепи подключаются к счетчику через трансформаторы тока, а цепи напряжения подключаются через трансформаторы напряжения:

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Как подключить трансформатор тока к счетчику

Не во всех случаях есть возможность измерять израсходованную электроэнергию с помощью простого подключения устройства учёта, то есть счётчика, в сеть. В электрических цепях с переменным напряжением 0,4 кВ (380 Вольт), силой тока больше чем 100 Ампер и с потреблением мощности соответственно больше 60 кВт применяется подключение трёхфазного электросчётчика через измерительный трансформатор тока. Такое подключение называется косвенным и только оно даёт точные показатели при измерении таких мощностей. Для начала перед рассмотрением самих схем соединения, нужно разобраться в принципе работы измерительного трансформатора.

Принцип работы измерительных трансформаторов

Принцип измерительного и обычного трансформатора тока (ТТ) не имеют различия кроме точности передачи тока во вторичной обмотке. Не измерительные ТТ применяются в цепях токовой релейной защиты, однако, в любом случае принцип их работы одинаков. По первичной обмотке, включенной последовательно в линию, будет протекать электрический ток такой же, как и в нагрузке. Иногда, это зависит от конструкции ТТ, первичной обмоткой может служить алюминиевая или медная шина, идущая от источника энергии, к потребителю. За счёт прохождения тока и наличия магнитопровода во вторичной обмотке возникает тоже ток но уже меньшей величины, который уже можно измерять с помощью обычных измерительных приборов, или же счётчиков. При расчете израсходованной электроэнергии нужно учитывать коэффициент, определяющий окончательную величину затрат. Фазный ток, протекающий по линии, будет в разы больше чем ток вторичной обмотки, и зависит он от коэффициента трансформации.

Таким образом, данная манипуляция и установленный трансформатор тока обеспечивает не только возможность измерять большие тока, но и способствуют безопасности проведения таких измерений.

Интересным является тот факт что все ТТ выдают при определённом номинале, на который он рассчитан в первичной обмотке, всего лишь 5 Ампер во вторичной. Например, если номинальный ток первичной обмотки будет 100А, то во вторичной будет 5 А. Если оборудование более мощное и выбирается измерительный трансформатор 500А, то всё равно коэффициент трансформации выбран таким образом, что во вторичной обмотке будет опять-таки 5 Ампер. Поэтому выбор счётчика здесь очевиден и несложен, главное, чтоб он был рассчитан на 5 Ампер. Вся ответственность лежит на выборе именно измерительного трансформатора. Ещё один важный фактор работы такой цепочки это частота переменного напряжения, она должна быть строго 50 Гц. Это стандартная величина частоты, которая чётко контролируется компанией поставщиком электроэнергии и её отклонение недопустимо для работы любого, применяемого в странах постсоветского пространства стандартного электрооборудования. По всей плане эта частота регламентируется другими величинами.

Одной из важных особенностей ТТ является также невозможность работы его без нагрузки, а когда это необходимо какими-либо мероприятиями, то стоит закоротить концы вторичной обмотки, чтобы не было пробоя.

Схема подключения к трёхфазной цепи

Существует несколько схем предназначенных для подключения счетчика через трансформаторы тока, вот самая распространённая из них

Как видно, измерительный трансформатор имеет клеммы, которые обозначены Л1 и Л2. Л1 обязательно подключается к источнику электроэнергии, а Л2 к нагрузке. Перепутывать их и переставлять местами нельзя.

А также имеются и клеммы идущие непосредственные на подключение непосредственно к счётчику, они обозначены как И1 и И2. Для цепей измерительного трансформатора рекомендуется использовать провода с сечением не меньше 2,5 мм2. Желательно иметь и выполнять монтаж соответствующего цвета проводами, для упрощения их коммутации. Стандартная раскраска жил и токоведущих шин:

  • Жёлтый — это фаза А;
  • Зелёный — В;
  • Красный — С;
  • Синий проводник или чёрный обозначает земляной или нулевой провод.

При монтаже лучше использовать клеммные коробки для соединения, чтобы было легче в случае неисправности производить диагностику или замену какого-либо узла или элемента. Это связано с тем что сами счётчики пломбируются.

Схема подключения соединенных ТТ звездой также применяется в электроустановках, как видно вторичная обмотка подлежит заземлению. Это делается для того, чтобы обезопасить, и устройства учета, и персонал обслуживающий их от возможного появления, в результате пробоя во вторичных цепях, высокого напряжения.

Недостатки такого подключения

  1. Ни в коем случае в трёхфазной цепи нельзя использовать трансформаторы с разными коэффициентами трансформации, подключаемые к одному и тому же счётчику.
  2. Существенный недостаток, который был замечен при применении устаревших индукционных электросчётчиков. При низких показателях тока в первичной цепи его вращающийся механизм может оставаться без движения, а значить не учитывать электроэнергию. Такой эффект получается из-за того, что сам индукционный прибор имеет значительное потребление и возникающий в его цепи ток уходил в его электромагнитный поток. С цифровыми современными приборами учёта такая ситуация невозможна.

Как подключить через ТТ счётчик в однофазной цепи

Очень редко появляется необходимость подключать счетчик через трансформаторы тока в однофазных сетях, так как токи в них не достигают больших величин. Но всё же если такая необходимость есть нужно воспользоваться схемой, приведённой ниже.

На рисунке «а» изображено обычное прямое подключение счётчика, на рисунке «б» через измерительный ТТ. Катушки напряжения в этих схемах подключены идентично, а вот токовые цепи подключаются через трансформатор тока. В таком случае производится гальваническая развязка, за счёт которой и возможно данное подключение.

В любом случае измерение затраченной электроэнергии необходимо, так как только так можно законно покупать этот вид продукции.

Электросчетчик, который стоит в подъезде, своими обмотками умножает ток на напряжение, и получается мощность, с которой квартирные электроприборы расходуют энергию. А ток и напряжение счетчик измеряет, будучи включенным в нашу питающую сеть. Только такое не всегда разумно, например, в высоковольтных сетях нашей энергосистемы. В них показания снимают косвенным способом

Косвенное измерение на электрической линии состоит в том, что сама питающая сеть электроэнергия через прибор не пропускается, а с нее снимается индуктивным способом вторичное электричество. Для измерения в счетчике используются две обмотки — обмотка измерения тока и обмотка измерения напряжения. В одном приборе действие этих обмоток и дает произведение тока и напряжения, то есть мощность.

Способов отбора этих измерительные токов/напряжений из первичной сети несколько, отсюда и несколько схем подключения счетчиков.

Во всех этих конфигурациях задействуются измерительные трансформаторы.

Измерительные трансформаторы

Измерительные трансформаторы могут быть по крайней мере двух разных видов:

  • трансформатор напряжения;
  • трансформатор тока.

Конструктивно по своему действию, а также режимам работы они прямо противоположны друг другу.

Трансформатор напряжения — это устройство, подобное обычным силовым трансформаторам, которые используются всюду для подключения нагрузки к питающей линии переменного тока. Так как в линиях электропитания напряжение выбрано для уменьшения потерь при передаче энергии, то такие трансформаторы обычно обладают понижающим действием: в электроприборах для хорошего потребления энергии нужно не высокое напряжение, а определенный номинальный ток. Поэтому напряжение снижают, ток при этом увеличивается.

Включается в одну фазу или три однофазных, рассчитанных на подключение к трехфазному счетчику электроэнергии

Отличие измерительных трансформаторов напряжения от силовых трансформаторов состоит в том, что при измерении ток, поступающий в счетчик, нужен только для того, чтобы вызвать действие в измерительной обмотке прибора, которая регистрирует напряжение. Он не должен быть большим, и его малой величины добиваются высоким сопротивлением измерительной обмотки.

Как мы знаем из лабораторных работ по физике, чтобы измерить напряжение, вольтметр подключается к участку цепи, где происходит измерение падения напряжения, параллельно. А для того, чтобы само измерение влияло на результаты как можно меньше, надо, чтобы сопротивление прибора было максимально возможным. То есть, когда

Характерной особенностью обоих этих трансформаторов напряжения — и силового, и измерительного — является то, что если разомкнуть вторичную цепь, в которой работают нагрузки, силовая или измерительная, то трагедии не будет. Трансформатор перейдет в режим холостого хода, на клеммах будет не очень большое напряжение (номинал вторичной обмотки трансформатора), а ток ХХ будет нулевым.

С трансформаторами тока (тт) все наоборот.

Если мерить ток в цепи, то амперметр включается в схему последовательно. И чтобы он не оказывал влияния на ток — и свои же собственные показания — сопротивление его должно быть как можно меньше. То есть на месте измерителя тока схема «должна чувствовать» просто кусок провода почти без сопротивления.

Измерительный трансформатор позволяет прибору не включаться в схему, по которой течет измеряемый ток. Он снимает с токонесущей шины электричество индуктивно, своей вторичной обмоткой, при этом ток значительно уменьшается — масштабируется в меньшую сторону, до мыслимых величин, чтобы можно было провести измерение, не сжигая измерителя.

А что произойдет при этом с напряжением во вторичной обмотке? Если вторичную, измерительную цепь разорвать, то на месте разрыва получится напряжение… Правильно, огромной величины — оно станет «масштабировано» в другую сторону — увеличения. А от разрыва цепи энергии деваться будет некуда и она начнет разогревать магнитный сердечник трансформатора до запредельных величин. Все, будет авария!

И получается, если трансформатор напряжения боится короткого замыкания, то трансформатор тока наоборот, боится разрыва. А во время нормальной работы напряжение все «разряжается» через «почти нулевую» обмотку прибора. И обмотка эта делается так, чтобы ее сопротивление было как можно меньше. Это как бы шунт, «почти» короткозамкнутая цепь вторичной обмотки. Ток в ней будет не таким уж и большим, вполне приемлемым для измерений и безопасным.

Принцип работы трансформаторов тока (ТТ)

Измерительный трансформатор (трансформатор тока, ТТ) в принципе работает, как и обычный трансформатор. За исключение одного — он всегда включен и в отношении напряжения работает как повышающий. Ток же он понижает согласно коэффициенту трансформации (w2/w1)

Схема подключения электросчетчика

Индукционные счетчики производят действие умножения остроумно сконструированной конфигурацией магнитных потоков от двух обмоток и одного магнита, вместе вращающих измерительный диск.

Несмотря на разницу в принципах работы, действие приборов сходно, поэтому на схемах подключения они обозначаются одинаково — в виде двух перпендикулярных друг другу измерительных обмоток.

В трехфазных сетях подключаемый трехфазный счетчик рисуют на схемах подключения как три однофазных, которые подключаются каждый двумя обмотками к своей отдельной фазе. Способ снятия напряжения — трансформаторный или прямой — зависит от выбранной конфигурации подключения.

Предпочтение в конфигурации зависит от сетей, которые они обслуживают, их токов, напряжений. Отсюда получаются некоторые выгоды каждой конфигурации в конкретном случае.

Подключение счетчика через трансформаторы тока

Самая простая схема подключения трансформаторов тока

На этой схеме показано подключение трансформатора тока каждой фазной шины к клеммам счетчика. С помощью перемычек Л1-И1 (на ТТ) достигается совмещение шин: фазные шины подаются на обмотки напряжения счетчика (на счетчике для этого также установлены перемычки между контактами 1-2, 4-5 и 7-8) которые другим полюсом идут на нулевую шину линии.

Таким образом, счетчик через трансформаторы тока получает масштабированный ток для измерения. Обмотки тока счетчика подсоединены к вторичным обмоткам трансформаторов тока, а на обмотки напряжения счетчика заводятся фазы линии, подключение их другим проводом через клемму 10 к нулевой шине реализует подключение типа звезда.

Подключить трансформатор тока можно и иначе

В данной схеме вторые контакты обмоток — токовой и напряжения — подключены к контакту 10 счетчика (перемычка между 3, 6, 9 и 10 контактами), присоединенного к нулю линии.

Приведенные схемы подключения используются, когда ведут учет электроэнергии в низковольтных сетях 380/220 В. Для высоковольтных сетей используются как ТТ, так и трансформаторы напряжения.

В данной схеме к счетчику подводятся только вторичные обмотки измерительных трансформаторов. Таким образом, подключение электросчетчика выполнено при полном схемном разделении с линией, от ее опасного тока и напряжения. В данной схеме использованы 6 измерительных трансформаторов, но бывают схемы и с другим числом трансформаторов тока, как и трансформаторов напряжения.

Приборы используют в сетях 380 В для создания работоспособной системы с высоким потреблением энергии. Подключение электросчетчика через трансформаторы тока производят не напрямую, что позволяет измерять показатели, превышающие допустимые.

ТТ для электросчетчиков

Принцип работы заключается в создании электричества во вторичной цепи благодаря прохождению электрических зарядов через обмотку трансформатора. Последняя подключается последовательно, благодаря чему начинает работать электромагнитная индукция, создающая электрические заряды.

Важно! Счетчик работает с повышенным током нагрузки благодаря трансформатору: устройство преобразует электричество, позволяя снять показания при мощности, превышающей допустимую.

Большинство преобразователей рассчитано на рабочую частоту 50 Гц с номинальным током 5 А. Устройство преобразовывает первичный заряд в безопасный для работы измерителя. Для получения реального результата требуется умножить показания счетчика на коэффициент трансформации. Это позволяет использовать прибор с низкой номинальной мощностью.

Устройство обладает недостатком: измерительный ток может быть ниже стартового — тогда показания не будут сняты. Подобный эффект имеет место при установке старых счетчиков, потребляющих электроэнергию. Современные модели используют электричество для работы, но в минимальных количествах.

Провод, использующийся для обмотки вторичной токовой цепи, должен иметь площадь более 2,5 мм² в поперечном сечении. Подключение происходит через опломбированный клеммник. Он позволяет:

  • сменить неисправное устройство, не останавливая подачу электричества к потребителям;
  • произвести технический осмотр.

Соединения выполняются маркированными проводниками. Каждый выход обозначается отдельным цветом, что облегчает будущий ремонт.

Перед подключением необходимо ознакомиться с паспортом, в котором указаны все необходимые сведения.

Подключение измерительного прибора через ТТ

При включении преобразователя обязательно соблюдение полярности. На картинках, представленных ниже, входные клеммы обозначены как Л1 и Л2, а измерительные — как И1 и И2. Обязательно использование проводника, подходящего к системе по допустимой нагрузке.

Существует две основных схемы. В паспорте устройства указана рекомендуемая. Большинство приборов не рассчитано на прямое включение.

К одному устройству запрещается подключать несколько преобразователей с разными коэффициентами.

Схематичные варианты монтажа

Схемы подключения трехфазных счетчиков через трансформаторы тока представлены на картинках:

  • Семипроводная опасна для цепи, поскольку оба проводника связаны под общим напряжением.

  • Десятипроводная отличается отсутствием связи между цепями, что делает систему безопаснее.


Большинство трехфазных счетчиков подключают по второй схеме, если система не требует иного.

Переходная испытательная коробка для электросчетчиков

Как подключить трехфазный счетчик через трансформаторы тока при использовании испытательной коробки показано на схеме ниже. Согласно пункту 1.5.23 ПУЭ, она используется при использовании образцового электросчетчика. Наличие коробки позволяет производить манипуляции над системой без снятия нагрузки на сеть. Могут быть произведены:

  • шунтирование;
  • отключение проводников;
  • включение нового прибора без предварительного отключения;
  • пофазное снятие напряжения.


В основе схемы лежит десятипроводной тип подключения. Отличие заключается в размещении испытательной коробки между ТТ и счетчиком, а также усложнении монтажа.

Выбор трансформатора

Чтобы выбрать устройство, нужно ознакомиться с пунктом 1.5.17 ПУЭ. В нем указано, что расход вторичной обмотки не должен падать ниже 40% от номинального при максимальной загруженности, ниже 5% при минимальной. Необходимо создать правильную последовательность фаз A, B, C. Для определения используют фазометр.

Важно! Обращают внимание на U и I. Первое число должно быть равно напряжению или превышать его, второе, соответственно силу тока.

Вместо трехфазного электросчетчика можно установить три однофазных. К каждому потребуется отдельный преобразователь, что многократно усложняет монтаж.

Для чего используют

Трансформаторы применяют для защиты от перегорания. Трёх фазные счетчики пропускают низкий номинальный ток. Поэтому нельзя измерить энергопотребление системы с десятикратной и большей нагрузкой. Преобразователь позволяет вычислить потребление электричества, затем умножить на коэффициент и получить реальный расход. Умножив на стоимость, человек получает счет за электрическую энергию.

Расчеты нагрузки

В пункте 1.5.1 ПУЭ описаны нормативы, которым должны соответствовать электросчетчик и трансформаторы тока. Описаны нормативные расчетные мощности.

Измерение по нагрузке схоже со следующим(в качестве примера взят ТТ с коэффициентом 200/5, система потребляет 140(14) ампер):

  • номинальная:
    1. 140/40 = 3,5.
    2. 0,05*200/5 = 2.
    3. минимальная:
      1. 14/40 = 0,35.
      2. 5*0,05 = 0,25.
      3. 25%:
        1. 140*0,25/40 = 0,875.
        2. 0,05 А умножают на отношение номинального к минимальному: 0,05*140/14 = 0,5.

Первые числа должны быть соответственно больше вторых.

Важно! Вычисления производятся в амперах. Выполнение условия из пункта 4 означает допустимость использования ТТ.

Выбирая преобразователь, следует учитывать следующие факторы:

  1. Определяя размеры проводки, учитывают класс точности ТТ. Для 0.5 допустимая потеря напряжения составляет четверть процента, для 1.0 — половина процента. В технических электросчетчиках допускается падение напряжения на величину до 1,5%.
  2. В АИИС КУЭ используют высокоточные устройства класса S. ТТ подобного типа способны снимать точные показания при низком уровне тока.
  3. Для технического учета и для счетчиков с классом точности 2.0 нужны ТТ с показателем 1.0. В остальных случаях рекомендуют устанавливать ТТ с классом точности 0.5 или менее.
  4. Прибор с повышенным коэффициентом используется, если максимальный показатель системы не падает ниже 40% от номинального, указанного на устройстве.
  5. Во время расчета потребления электроэнергии учитывают площадь сечения проводки, расчетную мощность и коэффициент преобразователя.

CT Установка и подключение — Continental Control Systems, LLC

ПРЕДУПРЕЖДЕНИЕ О БЕЗОПАСНОСТИ! Трансформаторы тока (ТТ) обычно устанавливаются в электрооборудование со смертельно опасным высоким уровнем напряжения. Перед тем, как пытаться установить трансформаторы тока, прочтите страницу безопасности при установке трансформаторов тока.

ВНИМАНИЕ! Измерители WattNode предназначены для работы только с трансформаторами тока с выходным напряжением 0,333 В переменного тока. Этот тип ТТ имеет встроенный нагрузочный резистор, который выдает безопасный выходной сигнал низкого напряжения.Использование любого другого типа трансформатора тока приведет к неправильным измерениям мощности и может необратимо повредить измеритель WattNode.

  • В отличие от трансформаторов тока с передаточными числами с токовыми выходами, эти трансформаторы тока имеют внутреннюю нагрузку для обеспечения безопасного выходного напряжения 0,333 В переменного тока, поэтому закорачивающие блоки не требуются.

Ключевые моменты

  • Установите трансформаторы тока на фазный провод, соответствующий фазе входного напряжения.
  • Установите трансформаторы тока так, чтобы стрелка или этикетка «Эта сторона по направлению к источнику» была обращена к выключателю, питающему нагрузку.
  • Подключите белый и черный выводы ТТ к соответствующим входным клеммам ТТ с белыми и черными точками.

Загрузить: Инструкция по установке и подключению ТТ (AN-130) (PDF, 3 страницы)

Открытие и закрытие CT

ТТ Accu-CT Series с разъемным сердечником открываются, сжимая рифленые панели, чтобы освободить защелку и потянуть / повернуть верхнюю часть. Убедитесь, что сопрягаемые поверхности чистые. Обломки увеличивают зазор, снижая точность.Оберните трансформатор тока вокруг проводника и поверните верхнюю часть обратно в закрытое положение, пока защелка не закроется. Закрепите проводник в нижней части U-образной секции ТТ, используя кабельную стяжку через окно ТТ и вокруг проводника.

CTML Series CTML с разъемным сердечником открываются, потянув за защелку. Убедитесь, что сопрягаемые поверхности чистые. Обломки увеличивают зазор, снижая точность. Оберните трансформатор тока вокруг проводника и сожмите его до тех пор, пока не услышите щелчок защелки.

Модели ТТ серии CTS и CTBL серии могут быть открыты для установки вокруг проводника или шины. Эти трансформаторы тока состоят из двух частей: C-образного корпуса и I-образной секции, которая снимается для установки. Чтобы открыть ТТ с разъемным сердечником модели CTS, вытяните I-образную секцию прямо из C-образного корпуса. Чтобы открыть трансформатор тока шины модели CTBL, сначала удалите винты с накатанной головкой, которыми крепится I-образная секция. Требуется сильное усилие, особенно если ТТ новый.

Съемная секция подходит только для одной стороны, поэтому при ее снятии обратите внимание на то, как части стального сердечника подходят друг к другу.При закрытии ТТ обязательно совместите концы таким же образом. Если кажется, что ТТ заклинивает и не закрывается, возможно, детали стального сердечника выровнены неправильно. Не применяйте чрезмерную силу! Вместо этого переместите или раскачивайте съемную часть, пока ТТ не закроется без чрезмерного усилия.

После повторной сборки трансформатора тока с разъемным сердечником модели CTS можно закрепить нейлоновую кабельную стяжку по периметру трансформатора тока, чтобы предотвратить случайное открывание. На моделях шин CTBL установите на место нейлоновые винты и затяните их пальцами.Не используйте отвертку!

Обратите внимание, что С-образный корпус и съемная I-образная секция ТТ с открыванием калибруются как единое целое. Для обеспечения максимальной точности эти части не следует заменять местами с другими трансформаторами тока.

ТТ с твердым сердечником требует, чтобы измеряемый фазный провод был отключен на одном конце, чтобы его можно было пропустить через отверстие в ТТ. Это несложно, когда калибр провода небольшой, но становится непрактичным с проводами большего калибра и несколькими параллельными проводниками.

Фазовые жилы

Для правильных измерений трансформаторы тока должны быть установлены на фазном проводе, соответствующем подключению входа напряжения. Подключения входа напряжения находятся на пятипозиционной зеленой клеммной колодке с винтовыми зажимами. Например, трансформатор тока ØA должен быть установлен на том же фазовом проводе, который подключен к входу напряжения ØA. Аналогично, ØB CT устанавливается на той же фазе, что и вход ØB Voltage, а вход ØC CT устанавливается на входе ØC Voltage. Для идентификации проводов может помочь использование цветной ленты или этикеток.

Чтобы уменьшить магнитные помехи между трансформаторами тока на соседних фазах, рекомендуется разделять их примерно на 1 дюйм (25 мм). Это также помогает предотвратить образование перемычки между выводами фазных проводов или шин и пылью и мусором, что может вызвать пробой дуги.

Для обеспечения максимальной точности отверстие ТТ не должно быть больше чем на 50% больше, чем фазовый провод. Если отверстие ТТ намного больше, чем проводник, расположите провод по центру отверстия ТТ.Если это невозможно, попробуйте расположить проводник в нижней части U-образной половины трансформатора тока, подальше от конца отверстия, где происходит утечка магнитного потока.

Пластиковые кабельные стяжки могут использоваться для фиксации положения ТТ на фазном проводе. Кабельная стяжка также может быть закреплена по периметру некоторых моделей трансформаторов тока, чтобы предотвратить их случайное размыкание. Проводник находится вдали от открытого конца трансформатора тока.

См. Страницу выбора ТТ для получения дополнительной информации о выборе ТТ.

Ориентация и полярность

ТТ помечены символом (стрелкой) или этикеткой, которая указывает правильную механическую ориентацию ТТ на измеряемом проводе. Найдите на ТТ стрелку или метку «Эта сторона по направлению к источнику» и установите ТТ этикеткой или стрелкой в ​​сторону источника тока: обычно счетчика электросети или автоматического выключателя.

В дополнение к установке трансформаторов тока с правильной механической ориентацией, электрическая полярность, на что указывают их белый и черный провода, также должна быть правильной.Каждая пара проводов ТТ подключается к соответствующей клемме на черной шестипозиционной клеммной колодке с винтовыми зажимами. Клеммы обозначены ØA CT, ØB CT и ØC CT. Полярность каждой пары клемм обозначена белой и черной точкой на этикетке. Обязательно подключите белый провод к фазной клемме, совмещенной с белой точкой, а черный провод — к клемме с черной точкой.

Помните, что для правильной работы и физическая ориентация, и электрическая полярность каждой фазы должны быть правильными.Если фаза перевернута электрически или механически, и ток течет в обратном направлении, измеритель WattNode будет измерять, в зависимости от модели, нулевую или отрицательную энергию для этой фазы.

Провода отведения ТТ

Если подводящие провода ТТ длиннее, чем необходимо, их можно укоротить. Короткие подводящие провода ТТ помогают минимизировать помехи от электрических помех. Если подводящие провода ТТ должны быть длиннее 8 футов, их можно удлинить. Как правило, лучше установить WattNode рядом с измеряемыми проводниками, а не удлинять провода трансформатора тока.

Однако можно удлинить провода трансформатора тока на 100 футов (30 м) или более, используя экранированный кабель витой пары. Чтобы свести к минимуму шум линии электропередачи от помех чувствительным сигналам трансформатора тока, удлинительные провода следует прокладывать в кабелепроводах (кабелепроводах) без каких-либо силовых проводов. Дополнительную информацию см. На странице «Удлинение провода трансформатора тока».

Диаметр выводных проводов витой пары ТТ составляет около 0,213 дюйма. Это примерно диаметр изолированного проводника №8 AWG THWN или THHN.Три витые пары подойдут для кабелепровода диаметром 1/2 дюйма, но если вы бежите на любое расстояние и имеете изгибы, кабельный канал диаметром 3/4 дюйма может быть лучшим выбором.

Выполнение подключений

Поскольку входы CT датчика WattNode чувствительны к повреждению из-за электростатического разряда (ESD), всегда заземляйте себя на мгновение, прикоснувшись к электрическому корпусу или другому заземленному металлическому объекту, прежде чем прикасаться к датчику. Это хорошая практика для всего электронного оборудования, чувствительного к электростатическому разряду.

Для подключения выводных проводов ТТ к входным клеммам ТТ сначала снимите примерно 6 мм изоляции с конца одного из проводов, скрутите оголенные жилы вместе, вставьте конец в клеммную колодку и надежно затяните винт. Подключить провода к клеммной колодке будет проще, если сначала вставить колодку в счетчик.

Неиспользуемые входы ТТ могут вызывать электрические помехи, поэтому рекомендуется закоротить неиспользуемые входные клеммы ТТ, подключив проволочную перемычку длиной около 1 дюйма между белой и черной клеммами ТТ.Обычно это не вызывает беспокойства, если к соответствующей входной клемме напряжения не подключено сетевое напряжение.

См. Также


Ключевые слова: ТТ, трансформатор тока, установка, электромонтаж, подключение

Трансформатор тока

и трансформатор напряжения, принципиальная схема, рабочая

Привет, ребята, добро пожаловать в мой блог. В этой статье я расскажу о трансформаторе тока и трансформаторе напряжения, принципиальную схему трансформатора тока и трансформатора напряжения, почему вторичная сторона трансформатора тока не должна быть открыта и т. Д.

Если вам нужна статья по другим темам, оставьте комментарий ниже в поле для комментариев. Вы также можете поймать меня в Instagram — Четан Шидлинг.

Также читайте:

  1. Разница между линиями передачи LT, HT и используемыми проводниками.
  2. Разница между единством, запаздыванием, опережающим коэффициентом мощности, определением.
  3. Отключаемый реактивный двигатель (SRM), конструкция, работа, система привода.

Трансформатор тока и трансформатор напряжения

Измерительные трансформаторы предназначены для преобразования напряжения или тока высоких значений в системах передачи и распределения в низкие значения, которые могут использоваться устройствами измерения низкого напряжения.Измерительный трансформатор также изолирует схемы защиты, измерения и управления от высоких токов или напряжений, присутствующих в измеряемых или проверяемых схемах. Существует два типа измерительных трансформаторов, оба приведены ниже:

  1. Трансформатор тока
  2. Трансформатор потенциала

Трансформатор тока (CT) вместе с трансформатором напряжения (PT) признается измерительными трансформаторами.

Трансформатор тока

Трансформатор тока (ТТ) используется для анализа электрических токов.В то время как ток в цепи также высок для прямого подключения к измерительным приборам, трансформатор тока обеспечивает пониженный ток, точно пропорциональный току в цепи, который можно удобно подключить к регистрирующим и измерительным приборам. Он используется вместе с устройствами измерения тока, его первичная обмотка предназначена для последовательного включения с линией.

Важно, чтобы полное сопротивление первичной обмотки было как можно меньше. Количество витков вторичной обмотки больше, чем у первичной.Отношение первичного тока к вторичному обратно пропорционально отношению витков первичной обмотки к вторичному. Этот трансформатор обычно является повышающим трансформатором с точки зрения соотношения витков первичной и вторичной обмоток.

В трансформаторе тока сопротивление нагрузки или нагрузка на вторичную обмотку намного меньше, поэтому трансформатор тока работает в условиях короткого замыкания. Ток во вторичной обмотке зависит от тока, протекающего в первичной обмотке. Трансформатор тока дополнительно изолирует измерительные приборы от очень высокого напряжения в контролируемой цепи.Трансформатор тока обычно используется в реле измерения и защиты в электроэнергетике.

Как показано на рисунке, первичная обмотка трансформатора включена последовательно с линией, по которой проходит большой ток. Вторичная обмотка трансформатора состоит из большого количества витков тонкой проволоки с малой площадью поперечного сечения. Он подключен к катушке амперметра нормального диапазона.

Трансформатор — это, прежде всего, повышающий трансформатор, повышающий напряжение от первичной к вторичной.Таким образом, он снижает ток от первичной до вторичной. С текущей точки зрения конструкции это понижающий трансформатор. В конструкции класса с обмоткой первичная обмотка намотана на сердечник более чем на один полный оборот. В модельном трансформаторе тока с низковольтной обмоткой вторичная обмотка намотана на бакелитовый формирователь.

Массивная первичная обмотка наматывается непосредственно на верхнюю часть вторичной обмотки с надлежащей изоляцией между ними. В противном случае первичную обмотку наматывают полностью отдельно, а затем отводят подходящим изоляционным материалом и соединяют с вторичной обмоткой на сердечнике.В конструкции стержневого класса первичная обмотка представляет собой стержень подходящего размера. Он проходит через центр полого металлокорда. Пруток может иметь круглое или прямоугольное сечение. На этот сердечник намотана вторичная обмотка.

Почему вторичная обмотка трансформатора тока не должна быть открыта?

Вторичная обмотка трансформатора тока не должна оставаться разомкнутой. Либо они должны быть закорочены, либо должны быть подключены последовательно с катушкой с низким сопротивлением, такой как токовые катушки ваттметра, катушка амперметра и т. Д.Если оставить его открытым, ток через вторичную обмотку позже станет нулевым, следовательно, ампер-витки, обеспечиваемые вторичной обмоткой, которые обычно противостоят первичным ампер-виткам, становятся равными нулю. Поскольку нет ни противодействующей магнитодвижущей силы (MMF), ни противодействующей первичной MMF (ампер-витки), он обеспечивает высокий магнитный поток в сердечнике.

Это приводит к чрезмерным потерям в сердечнике и чрезмерному нагреву сердечника. Подобным образом большая электродвижущая сила будет создаваться на первичной и вторичной сторонах. Это может повредить изоляцию обмотки.Обычно трансформатор тока заземляют на вторичной обмотке, чтобы избежать риска поражения оператора электрическим током.

Поэтому никогда не размыкайте цепь вторичной обмотки трансформатора тока, пока его первичная обмотка находится под напряжением. Следовательно, большая часть трансформатора тока имеет перемычку короткого замыкания или переключатель на клеммах вторичной обмотки. Когда первичная обмотка должна быть под напряжением, перемычка короткого замыкания должна быть замкнута, чтобы не было риска разрыва вторичной цепи.

Трансформатор потенциала

Это также называется трансформатором напряжения (ТН).Трансформатор напряжения используется для измерения высоких напряжений с помощью вольтметра низкого диапазона. Как первичная, так и вторичная обмотки изготовлены из высококачественной стали, обмотка низкого напряжения расположена рядом с заземляющим сердечником, а обмотка высокого напряжения находится снаружи. Они снижают напряжение до разумного рабочего значения. Первичная обмотка состоит из большого количества витков, а вторичная — из меньшего.

Первичная обмотка подключается к линии высокого напряжения, а вторичная обмотка подключается к катушке вольтметра нижнего диапазона.Подключение трансформатора напряжения показано на рисунке. Трансформатор напряжения всегда понижающий трансформатор

.

Измеряемое напряжение подключается к первичной обмотке, имеющей большое количество витков, и подключается по цепи. Вторичная обмотка с очень меньшим числом витков магнитно связана с первичной обмоткой через магнитную цепь. Передаточное число регулируется таким образом, чтобы вторичное напряжение составляло 110 В, когда к первичному подключено полное номинальное первичное напряжение.

Разница между трансформатором тока и потенциала

SI. No. Трансформатор тока Трансформатор потенциала
01 Это повышающий трансформатор. Это понижающий трансформатор.
02 Обмотка проходит полный ток. Обмотка находится под полным напряжением.
03 Первичный ток не зависит от состояния вторичной цепи
.
Первичный ток зависит от состояния
вторичной цепи.
04 Вторичная обмотка никогда не должна открываться.
Это должно быть короткое замыкание.
Вторичная обмотка почти разомкнута.
цепь.

Преимущества трансформатора тока и трансформатора напряжения

01. Вольтметр и амперметр могут использоваться с этими трансформаторами для измерения высокого напряжения и тока.

02. Рейтинг нижнего диапазона может быть зафиксирован независимо от измеряемого значения высокого напряжения или тока.

03. Их можно использовать для управления многими видами защитных устройств, например реле.

04. Эти трансформаторы изолируют измерения от цепей высокого напряжения и тока. Это обеспечивает безопасность оператора и делает работу с оборудованием очень простой и безопасной.

Недостатки трансформатора тока и трансформатора напряжения

Единственным недостатком этих измерительных трансформаторов является то, что они используются для a.c. цепей, но не для постоянного тока схемы.

Я надеюсь, что эта статья может вам всем очень помочь. Если у вас есть сомнения по поводу статьи «Трансформатор тока и трансформатор напряжения», оставьте комментарий ниже. Спасибо за чтение.

Также читайте:

  • 10 шагов для подготовки к трудоустройству и получения высокой годовой зарплаты
  • 10 советов по обслуживанию батареи для длительного срока службы
  • 10 советов, как сэкономить на счетах за электроэнергию, сэкономить деньги за счет экономии электроэнергии
  • 100+ Электрооборудование MCQ для интервью
  • 200+ Проекты электромобилей для инженеров, MTech, Ph.Д., Диплом
  • 50 советов по экономии электроэнергии дома, в магазине, в промышленности, офисе
  • 50+ Вопросы и ответы по подстанции, вопрос по электрике
  • 500+ Идеи проектов Matlab Simulink для инженеров, MTech, диплом
  • Активная балансировка ячеек с использованием моделирования обратного преобразователя в Matlab Simulink
  • Базовая электротехника, термины, определения, единица СИ, формула
  • Базовый тест по электрике, пройдите онлайн-тест по основному электричеству, тест по электричеству
  • Лучшее инженерное направление для будущего
  • Лучший инвертор и аккумулятор для покупки в 2021 году
  • Лучшие языки программирования для инженеров-электриков
  • Двигатель BLDC, преимущества, недостатки, применение, работа
  • Блок-схема системы управления батареями (BMS)
  • Карьерные возможности для инженеров-электриков
  • Потолочный вентилятор работает, цена, почему используется конденсатор
  • Расчет номинальной мощности автоматического выключателя
  • Сравнение внутренней и внешней подстанции, достоинства и недостатки

Я энтузиаст обучения, блоггер, ютубер, специалист по цифровому маркетингу, фрилансер и создатель контента.Мне всегда нравится делиться своими знаниями через блоги, Instagram и YouTube.

Как подключить ТТ? Электрическая схема CT — прецизионный миниатюрный трансформатор тока, миниатюрный трансформатор напряжения, датчик Холла — Shenzhen Deheng Technology Co., Ltd.

Трансформатор тока используется в контуре переменного тока, где направление тока изменяется со временем. Полярность трансформатора тока означает, что полярность первичной стороны такая же, как полярность одного конца вторичной стороны в определенный момент, то есть она одновременно является положительной или одновременно отрицательной, и полярность называется концом той же полярности или концом того же имени.Символ «*», «-» или «. указывает. (Это также можно понимать как соотношение направлений между первичным и вторичным токами).

Согласно правилам, первичный конец трансформатора тока трансформатора тока обозначен L1, а задний конец обозначен как L2; головной конец вторичной обмотки обозначен как K1, а задний конец обозначен как K2. В разводке L1 и K1 называются концом с одинаковой полярностью, а L2 и K2 также являются концом с одинаковой полярностью.Три метода аннотации показаны на рисунке 1.

Дискриминация той же полярности на трансформаторе тока такая же, как и определение полярности катушки связи. Более простой метод — подключить первичную катушку к сухой батарее 1,5 В и подключить вторичную катушку с большим внутренним сопротивлением вольтметром постоянного тока с большим диапазоном. Когда переключатель замкнут, если обнаруживается, что стрелка вольтметра отклоняется в прямом направлении, можно сделать вывод, что 1 и 2 имеют одинаковую полярность.Когда переключатель замкнут, если обнаруживается, что стрелка вольтметра отклоняется в обратном направлении, можно сделать вывод, что 1 и 2 не имеют одинаковой полярности.


Рисунок 1 Три метки полярности для трансформаторов тока

Рисунок 2 Однофазное подключение

Однофазные трансформаторы тока с защитой от тока в основном используются для измерения однофазного тока в трехфазном устройстве с симметричной трехфазной нагрузкой или малым балансом фазной нагрузки.Электропроводка трансформатора тока имеет мало отношения к полярности, но следует отметить, что вторичная сторона должна иметь защитное заземление, чтобы предотвратить выход трансформатора тока из строя при возникновении сверхтока на первичной стороне, а прибор вторичной стороны сгореть. Электрическое оборудование. Однако многоточечное заземление категорически запрещено. Вторичный ток двухточечного заземления образует шунт перед реле, который вызывает последовательность

Прибор не выполняет никаких действий.Поэтому в «Техническом регламенте на релейную защиту» предусмотрено, что для устройства защиты с несколькими соединенными вместе комплектами трансформаторов тока оно должно быть заземлено через вывод на экране защиты. Например, дифференциальная защита трансформатора и комбинация нескольких комплектов трансформаторов тока имеет только одну независимую точку заземления.

2, двухфазное неполное соединение звездой

Двухфазные неполные соединения звездой используются в трехфазных системах со сбалансированной и несимметричной фазовой нагрузкой.Как показано на рисунке 3. Если имеется вторая полярность фазы, то ток, протекающий через 3KA, равен IAI e, разность токов в 3 раза превышает значение тока Ia, а фаза отстает на I на 300 градусов. Если три реле совпадают, 3КА продвинется. Действие, вызывающее неправильное срабатывание защиты.

Рисунок 3 двухфазная разводка

Рис.4.Проводка двухфазной разности токов.

3, двухфазная разностная проводка

Ток, протекающий через реле KA на рисунке 4, равен I A I e с коэффициентом подключения 3.Если вторичная полярность фазы C изменена, ток, протекающий через реле KA, равен I A I e. Когда фазы A и C замкнуты накоротко, первичные токи I AD и I CD становятся равными и противоположными направлениями. То есть I AD = — I CD, предполагая, что опорное направление I AD положительное, и ток, протекающий во вторичную сторону через реле KA, равен нулю. Это означает, что из-за обратной полярности фазы C реле KA может не работать, когда фазы A и C первичной стороны замкнуты накоротко.

4, трехфазное соединение звездой

Трехфазное соединение полной звездой показано на рисунке 5. Он используется для измерения тока трехфазной нагрузки с большим балансом фазной нагрузки и трехфазного четырехпроводного измерительного прибора с напряжением 380/220 В. Он контролирует асимметрию каждой фазы нагрузки. Если какая-либо фаза перевернута, она проходит через нейтраль. Сила тока в линии увеличится. При отсутствии нейтрального соединения нейтралью звездой дефект заключается в том, что при несимметричной нагрузке во время работы произойдет смещение нейтральной точки вторичной стороны.Рис. 5 Трехфазное соединение звездой приводит к неправильному отражению тока, протекающего через реле. Величина фазного тока также вызовет неисправность.

5. Проводка трансформатора тока для релейной защиты.

Проводка трансформатора тока для релейной защиты обычно представляет собой соединение звездой, когда оно используется в качестве устройства защиты в энергосистеме, где нейтральная точка напрямую заземлена.В энергосистемах, где нейтральная точка не заземлена напрямую, широко используется неполное соединение звездой, поскольку оно позволяет выполнять кратковременное однофазное заземление и, в большинстве случаев, сигнальное устройство однофазного заземления. Соединение треугольником трансформатора тока защиты применяется к дифференциальной защите трансформатора Y / проводки.

6, следует обратить внимание на проблему в работе трансформатора тока

(1) Трансформатор тока не должен размыкать цепь на вторичной стороне во время работы.Когда вторичная сторона открыта, потери в стали слишком велики, температура слишком высока для возгорания, или напряжение вторичной обмотки увеличивается, чтобы нарушить изоляцию, и происходит поражение электрическим током высокого напряжения. Опасность. Следовательно, при замене измерителя, например, при замене амперметра, активного измерителя, реактивного измерителя и т. Д., Токовая петля должна быть замкнута перед заменой измерителя.

Физическая схема подключения трансформатора тока — Knowledge

Трансформатор тока подключается к амперметру и способу подключения вольтметра.

Во-первых, физическая схема подключения выглядит следующим образом:

Описание сопутствующего продукта: трансформатор тока 3, только амперметр 3, три световых индикатора, один вольтметр, один универсальный переключатель LW2.

Основной метод подключения такой же, как указано выше, с некоторыми соответствующими инструкциями:

2 5 7 подключено к источнику питания, 3, 6 подключено к вольтметру

Линия фаз A, B, C, A подключена к 5, B подключен к 7, а C подключен к 2. Проводка, показанная на карте знаний, в общем, любое соединение. Поворотный переключатель преобразуется в измеритель напряжения для отображения значений напряжения соответствующих двух фаз.

Обычно используемые трансформаторы имеют сквозные трансформаторы, изнашиваемые трансформаторы и трансформаторы для проводки. Трансформаторы здесь используются в системе низкого напряжения AC380V. У датчиков тока, независимо от типа трансформатора, принцип один и тот же.

Конструкция трансформатора тока состоит из первичной обмотки, вторичной обмотки, сердечника и рамы, корпуса, клеммы проводки и т.п., изолированных друг от друга. Принцип работы в основном такой же, как и у трансформатора.Число витков (N1) первичной обмотки меньше, и она последовательно включается непосредственно в линию питания. Когда ток первичной нагрузки проходит через первичную обмотку, создается переменный магнитный поток. Вторичный ток с пониженным коэффициентом; количество витков вторичной обмотки (N2) велико, а вторичная нагрузка токовой катушки, такая как прибор, реле и передатчик (Z), образуют последовательно замкнутый контур, см. рисунок 1.

Электромонтаж трансформатора относительно прост и понятен.Поскольку у этих трансформаторов один и тот же принцип, все они имеют одно и то же место. Например, есть две вторичные клеммы S1 и S2 для вывода. Токовый сигнал подается на амперметр, а также есть метка P1, указывающая текущее направление нарезания резьбы или проводки. Кроме того, характеристики амперметра аналогичны, например, AC100 / 5A, AC500 / 5A, AC2000 / 5A и т. Д. Эти трансформаторы тока имеют стандартный выходной сигнал 0-5A, но он используется при большом токе. и ток небольшой.

Схема подключения трансформатора тока:

Первичный ток трансформатора тока поступает с клеммы P1 и выходит с клеммы P2; то есть клемма P1 подключается к стороне источника питания, а клемма P2 подключается к стороне нагрузки.

Вторичный ток трансформатора тока вытекает из S1 и поступает на положительный вывод амперметра. После выхода отрицательной клеммы амперметра она течет во вторичную клемму S2 трансформатора тока.В принципе, требуется клемма S2. Заземление.

Примечание: Некоторые трансформаторы тока имеют однократное номинальное значение, L1, L2, номинальное значение вторичной стороны K1, K2

Блок-схема, схема подключения:

Вышеупомянутые трансформаторы обычно относятся к 0,5. с ним есть однофазный амперметр, трехфазный амперметр или многофункциональный измеритель, счетчик и т. п. Внешний вид трансформаторов от разных производителей может быть разным, модели тоже разные, а резьба и ношение разные.Это нужно четко понимать при покупке.

Все о трансформаторе тока (CT) и трансформаторе напряжения (PT)

Все о трансформаторе тока (CT) и трансформаторе напряжения (PT)

Трансформатор тока (CT) и Трансформатор потенциала (PT) — очень полезные и важные измерительные трансформаторы. В этом посте мы узнаем, что такое CT, что такое PT, как используются CT и PT, символы CT и PT, а также многие важные вещи о CT и PT, особенно почему вторичная обмотка CT не должна быть разомкнутой. .


Зачем нам нужны трансформатор тока (ТТ) и трансформатор напряжения (РТ)?




На самом деле, когда мы хотим измерить высокое напряжение и большой ток, возникает проблема, заключающаяся в том, что нам нужны вольтметр и амперметр с очень высоким номиналом. Но недоступны вольтметр и амперметр с очень высокими номиналами или очень сложно изготовить амперметр и вольтметр с очень высокими номиналами. Итак, чтобы преодолеть эту проблему, мы должны использовать трансформатор потенциала (PT) и трансформатор тока (CT).

С другой стороны, реле, которые используются для защиты, также имеют низкий номинальный ток и напряжение. Итак, для работы реле мы использовали трансформатор тока и трансформатор напряжения.

Что такое трансформатор тока (ТТ)?


Вы уже знаете, что CT означает трансформатор тока. Трансформатор тока — это измерительный трансформатор, который используется для измерения высокого тока. Это повышающий трансформатор. Поскольку это повышающий трансформатор, он имеет меньший вторичный ток, чем его первичный ток.

Некоторые трансформаторы тока имеют очень мало витков в первичной обмотке, и они подключены к источнику питания и нагрузке для измерения тока.

У некоторых трансформаторов тока нет первичной обмотки, есть только вторичная обмотка. В трансформаторах тока этого типа используется проводник, ток которого должен измеряться в качестве первичной обмотки. Для лучшего понимания см. Рисунок ниже.







Как вы видите на приведенном выше рисунке, когда ток, протекающий через проводник, создает магнитный поток и разрезает вторичную обмотку, во вторичной обмотке индуцируется ЭДС.Когда амперметр подключен к его вторичной обмотке, через амперметр протекает ток, и он показывает показания. Коэффициент текущей ликвидности зависит от числа оборотов. Поскольку это уменьшает ток, мы можем использовать амперметр с низким номиналом для измерения высокого тока.

Что такое трансформатор напряжения (ПТ)?

Трансформатор потенциала
— это понижающий трансформатор. Он подключается параллельно источнику питания, напряжение которого необходимо измерить. У него больше витков в первичной обмотке, чем во вторичной обмотке при определенном соотношении.Он понижает напряжение от высокого до низкого. Таким образом, мы можем подключить вольтметр с низким номиналом к ​​его вторичной обмотке и измерить высокое напряжение. Трансформатор напряжения также известен как трансформатор напряжения.






Обозначение трансформатора тока (CT) и трансформатора напряжения (PT):

Почему вторичная обмотка трансформатора тока (ТТ) не должна быть разомкнутой?


Поскольку трансформатор тока соединен последовательно с источником питания и нагрузкой, его первичный ток зависит от тока нагрузки.Его первичный ток не зависит от вторичного тока. В силовом трансформаторе первичный ток зависит от вторичного тока, но в случае ТТ вторичный ток зависит от первичного тока при коротком замыкании.

В нормальных условиях поток первичной обмотки, создаваемый первичным током, противостоит потоку вторичной обмотки, создаваемому вторичным током. Таким образом, во вторичной обмотке будет индуцироваться очень низкая ЭДС.Но когда вторичная обмотка трансформатора тока разомкнута, ток через вторичную обмотку не протекает, а также не создается магнитный поток. Но первичный ток, который очень велик, соответствует предыдущему состоянию. Таким образом, будет образовываться огромное количество магнитного потока, поскольку нет встречного потока, и он перережет вторичную обмотку. Поскольку вторичная обмотка имеет большое количество витков, она создает большое напряжение на вторичной обмотке, что очень опасно.

Подключение трансформатора тока (CT) и трансформатора напряжения (PT):





Щелкните изображение, чтобы просмотреть оригинал.





Читайте также:




Спасибо, что посетили сайт. продолжайте посещать для получения дополнительных обновлений.

Подключение трансформаторов тока для дифференциальной защиты »PAC Basics

Подключение трансформаторов тока — очень важный этап при установке дифференциальной защиты трансформатора. Любое неправильное подключение может привести к нежелательному отключению. Предыдущее обсуждение векторной группы трансформаторов показало, как включение трансформатора может вызвать сдвиг фаз в обмотке низкого напряжения.Это приведет к неправильному срабатыванию дифференциальной защиты, если ее не компенсировать. На рисунке 1 показано соединение трансформатора звезда-треугольник векторной группы YNd11.

Рисунок 1. Подключение трансформатора YNd11

На основании предыдущего обсуждения это подключение показывает, что обмотка низкого напряжения опережает обмотку высокого напряжения на 30 °. На рисунке 2 показано соединение трансформатора треугольником-звездой векторной группы Dyn1. Это соединение указывает на то, что обмотка НН отстает от обмотки ВН на 30 °.

Рисунок 2. Подключение трансформатора Dyn1

Этот фазовый сдвиг необходимо компенсировать, чтобы избежать неправильного срабатывания дифференциальной защиты.Фазовая компенсация выполняется посредством подключения трансформаторов тока треугольником или звездой или посредством внутренней релейной компенсации в микропроцессорных реле. Для этого трансформаторы тока подключаются таким образом, чтобы сдвиг фазы на 30 ° был обратным. Это показано на рисунке 3.

Можно видеть, что ТТ на стороне треугольника трансформатора подключены звездой, в то время как ТТ на стороне звезды трансформатора подключены по схеме DAB. При использовании трансформаторов тока, подключенных к DAB, вторичные токи, видимые от реле, будут опережать фактические токи на 30 °, тем самым компенсируя сдвиг фазы на 30 ° (запаздывание НН HV), вносимый векторной группой трансформатора Dyn1.

Рис. 3. Фазовая компенсация с использованием трансформаторов тока с подключением по протоколу DAB

Для дальнейшей иллюстрации допустим, что

мы можем рассчитать I A , используя,

Затем мы можем рассчитать вторичные токи, видимые от реле,

Эти значения настраиваются с использованием I AW1 в качестве эталона.

Рис. 4. Фазорная диаграмма. Первичный и вторичный токи

Вторичные токи, видимые от реле, приведут к I OP , равному нулю.См. Обсуждение рабочего количества.

Теперь, если мы исследуем, как мы получили I AW2 , мы можем создать уравнение, которое связывает фактические токи с вторичными токами, видимыми от реле.

Проделав то же самое для I BW2 и I CW2 , мы можем получить матрицу, которая связывает фактические токи с вторичными токами, видимыми от реле. Полученная матрица показывает, как подключенные к DAB трансформаторы тока компенсируют сдвиг фазы на 30 в трансформаторе Dyn1.

Процесс, который обсуждался до сих пор, включает изменение физических подключений ТТ путем подключения трансформаторов тока таким образом, чтобы компенсировать фазовый сдвиг. В современных микропроцессорных реле фазовая компенсация выполняется численно. На рисунке 5 показано соединение трансформатора с обоими трансформаторами тока, соединенными звездой.

Рисунок 5. Компенсация фаз с использованием трансформаторов тока, подключенных звездой

Чтобы вывести вторичные токи, видимые от реле, мы снова положим

и решите для I AW1 и I AW2,

Эти значения настраиваются с использованием I AW1 в качестве эталона.

Рисунок 6. Фазорная диаграмма. Первичный и некомпенсированный вторичный токи

Без компенсации вторичные токи, видимые от реле, будут давать I OP ≠ 0 во время нормальной работы. Чтобы выполнить фазовую компенсацию численно, мы используем полученную ранее матрицу для определения I AW2C , I BW2C и I CW2C . Поскольку наши трансформаторы тока соединены звездой, мы можем видеть, что I AW2 , I BW2 и I CW2 равны I a , I b и I c соответственно.

I AWC2 вычисляется следующим образом:

Эти значения настраиваются с использованием I AW1 в качестве эталона.

Рис. 7. Фазорная диаграмма. Первичный и компенсированный вторичный токи

Вторичные токи, видимые от реле, теперь приведут к I OP , равному нулю.

Фазовая компенсация очень важна при реализации дифференциальной защиты трансформатора. Однако это только одна часть обеспечения вашей защиты, поэтому оставайтесь на связи, чтобы перейти к следующей теме.

Артикул:

SEL-387A Инструкция по эксплуатации. Доступно на веб-сайте SEL, Inc.

Нравится:

Нравится Загрузка …

Трансформатор тока: конструкция и принципы работы

— Реклама —

Трансформатор тока — это прибор, который используется для преобразования тока от большего значения к пропорциональному выходному сигналу к меньшему. Он преобразует ток высокого напряжения в ток низкого напряжения, благодаря чему сильный ток, протекающий по линиям передачи, надежно контролируется амперметром.

Что такое трансформатор тока?

Трансформатор тока (C.T) представляет собой разновидность «измерительного трансформатора», который предназначен для генерации переменного тока во вторичной обмотке, который связан с током, измеряемым в его первичной обмотке. Трансформаторы тока снижают значения высокого напряжения до гораздо более низкого тока и предоставляют удобный метод безопасного измерения фактического электрического тока, протекающего в линии передачи переменного тока, с использованием стандартного амперметра.Принцип работы стандартного трансформатора тока умеренно отличается от обычного трансформатора напряжения.

Трансформатор тока используется в устройствах переменного тока, счетчиках или контрольных приборах, где измеряемый ток имеет такую ​​величину, что измерительную катушку или счетчик невозможно создать с помощью адекватной пропускной способности по току.

В отличие от силового трансформатора или трансформатора напряжения, трансформатор тока включает только один или несколько витков в качестве первичной части.Эта первичная часть может быть либо простым плоским витком, либо катушкой из прочной проволоки, намотанной вокруг сердечника, либо просто шиной или проводником, пропущенным через центральное отверстие.

Исходя из этой формы конфигурации, трансформатор тока всегда вводится как «последовательный трансформатор», поскольку первичная секция, у которой никогда не бывает более нескольких витков, последовательно соединена с токонесущим проводником, обеспечивающим нагрузку.

Первичный ток и вторичный выход трансформаторов тока связаны друг с другом.Трансформатор тока используется для измерения тока высокого напряжения из-за сложности недостаточной изоляции самого счетчика. Трансформатор тока используется в счетчиках для измерения тока до 100 А.

Вторичная часть, однако, может иметь большое количество рулонов, намотанных на многослойный компонент из магнитного материала с низкими потерями. Этот компонент имеет большую область поперечного сечения, так что создаваемая плотность магнитного потока низкая, при этом используется зонный провод с гораздо меньшим поперечным сечением, в зависимости от того, насколько ток должен быть понижен, поскольку он хочет создать постоянный ток, не связанный с подключенная нагрузка.

Вторичная часть будет подавать ток на резистивную нагрузку или на короткое замыкание в форме амперметра до тех пор, пока напряжение, генерируемое во вторичной обмотке, не станет достаточно большим, чтобы насыщать сердечник или привести к отказу из-за дополнительного пробоя напряжения.

В отличие от трансформатора напряжения, первичный выход трансформатора тока не связан с током вторичной нагрузки, а определяется внешней нагрузкой. Вторичный выход обычно рассчитан на 1 А или 5 А для большего номинального тока первичной обмотки.

Что такое трансформатор тока (Ссылка: electronics-tutorilas.ws )

Существует три основных типа трансформаторов тока: тороидальные, с обмоткой и стержневые.

Тороидальные трансформаторы тока: без первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в системе, проходит через отверстие или окно в тороидальном трансформаторе. Некоторые трансформаторы тока содержат «разъемный сердечник», который позволяет их открывать, устанавливать и закрывать без отключения системы, к которой они присоединены.

Трансформаторы тока с обмоткой: первичная часть трансформатора физически сконфигурирована последовательно с проводником, по которому протекает обнаруженный ток, протекающий в системе. Величина вторичного выхода зависит от коэффициента трансформации инструмента.

Трансформаторы тока стержневого типа: в этой форме трансформаторов тока используется фактический провод или шина главной цепи в качестве первичной части, которая идентична однооборотной. Они полностью изолированы от высокого рабочего напряжения системы и обычно прикрепляются болтами к токоведущему компоненту.

Трансформаторы тока могут понижать или понижать уровни с тысяч ампер до нормального выходного сигнала с известным коэффициентом до 1 А или 5 А для стандартной функции. Таким образом, с трансформаторами тока могут применяться точные и небольшие приборы и устройства контроля, поскольку они изолированы от любых высоковольтных линий электропередач. Существует несколько измерительных корпусов и вариантов использования трансформаторов тока, таких как измерители коэффициента мощности, ваттметры, защитные реле, счетчики ватт-часов или в качестве катушек отключения в автоматических выключателях или магнитных выключателях.

Конструкция трансформатора тока

Центр трансформатора тока сосредоточен слоем кремнистой стали. Mumetal или Permalloy используются для изготовления стержней с высокой степенью точности. Первичная часть трансформаторов тока проходит через измеряемый ток и подключается к главной цепи. Вторичные обмотки трансформатора пропускают ток, пропорциональный измеряемому току, и он подключается к токовым обмоткам счетчиков или приборов.Посетите здесь, чтобы узнать больше о конструкции трансформатора тока.

Первичная и вторичная части изолированы от жил и друг от друга. Первичная часть представляет собой простую обмотку витков (также представленная как первичная шина) и несет ток полной нагрузки, в то время как вторичная часть трансформаторов имеет несколько витков.

Строительство трансформатора тока (Ссылка: circuitglobe.com )

Уровень первичного и вторичного выходов вводится как коэффициент трансформатора тока системы.Норма тока трансформатора обычно высока. Значения вторичного тока составляют порядка 0,1 A, 1 A и 5 A. Необычные значения первичного тока отличаются от 10 A до 3000 A или более. Символическое обозначение трансформатора тока представлено на рисунке ниже.

Представление трансформатора тока (Ссылка: circuitglobe.com )

Подробнее о Linquip

Типы трансформаторов: статья о различиях конструкции и конструкции трансформаторов

Принцип работы трансформатора тока

Принцип работы трансформатора тока особенно отличается от силового трансформатора.Полное сопротивление нагрузки или нагрузка на вторичный компонент умеренно отличались от типов мощности в трансформаторе тока. Следовательно, трансформатор тока работает на основе состояний вторичной цепи.

Бремя нагрузки

Нагрузка трансформатора тока — это величина нагрузки, генерируемой во вторичной обмотке. Он представлен как выходной сигнал в ВА (вольт-амперы). Номинальная нагрузка на нагрузку может быть рассчитана как значение нагрузки, указанное на паспортной табличке трансформатора тока.Номинальная нагрузка системы — это напряжение и ток на вторичной обмотке, когда трансформатор тока поддерживает реле или прибор с максимальной номинальной величиной тока.

Уравнение трансформатора тока

Как правило, трансформаторы тока и амперметры используются вместе как особая пара, в которой модель прибора такова, что она обеспечивает максимальный вторичный ток, контролируемый полным отклонением амперметра. Приблизительный уровень обратных витков существует между двумя токами в большинстве трансформаторов тока во вторичной и первичной обмотках.Вот почему калибровка ТТ обычно применяется для амперметра особого типа.

Большинство трансформаторов тока имеют нормальный номинальный ток вторичной обмотки 5 А, при этом вторичный и первичный токи представлены в виде отношения, например 5/100. Это означает, что первичный ток в 20 раз выше, чем вторичный, поэтому, когда 100 ампер движутся по первичному проводнику, это приведет к генерации 5 ампер во вторичной обмотке. Трансформатор тока, скажем, 5/500 будет создавать 5 ампер во вторичной обмотке и 500 ампер в первичной части, что в 100 раз больше.

Вторичный выход можно создать намного ниже, чем ток в первичной обмотке, увеличив количество измеряемых вторичных обмоток, Ns, потому что по мере увеличения Ns Is (ток вторичной части) уменьшается на соответствующую величину. Другими словами, ток и количество витков во вторичной и первичной обмотках пропорциональны обратной форме.

Трансформатор тока, как и любой другой тип трансформатора, должен удовлетворять формуле ампер-виток. Это передаточное число равно:

т.R = n = \ frac {{N} _ {P}} {{N} _ {S}} = \ frac {{I} _ {S}} {{I} _ {P}}

откуда получаем:

Вторичный ток, {I} _ {S} = {I} _ {P} (\ frac {{N} _ {P}} {{N} _ {S}})

Скорость тока будет определять коэффициент витков, и, поскольку первичная обмотка обычно включает один или два витка, тогда как вторичная обмотка может включать несколько сотен витков, скорость между первичной и вторичной обмоткой может быть относительно большой. Например, предположим, что ток первичной части составляет 100 А, а вторичная обмотка имеет нормальный ток 5 А.Типы 100 к 5 и 20 к 1 являются наиболее распространенными формами существующей трансформации на рынке.

Однако следует учитывать, что трансформатор тока, представленный как 100/5, не идентичен трансформатору, выраженному как 20/1 или делениям 100/5. Это связано с тем, что соотношение 100/5 представляет собой «номинальный входной / выходной ток», а не практическое соотношение первичных и вторичных выходов. Также учтите, что количество валков и ток во вторичной и первичной обмотках связаны обратным соотношением.

Но относительно большие вариации в соотношении витков трансформатора тока могут быть получены путем изменения валков первичной обмотки в пределах окна ТТ, где один виток первичной обмотки идентичен одному проходу, а более одного прохода через окно вызывает изменение электрического коэффициента.

Так, например, трансформатор тока с отношением, скажем, 300/5, может быть изменен на другой, равный 150/5 или даже 100/5, путем прохождения основного первичного проводника внутри его внутреннего окна два или три раза.Это представляет собой трансформатор тока большей величины для обеспечения максимального выходного тока для амперметра при использовании в меньших системах первичного тока.

Влияние открытых вторичных обмоток трансформатора тока

В нормальных рабочих состояниях вторичная обмотка трансформатора тока присоединена к его нагрузке и нормально замкнута. Когда ток проходит через первичную часть, он часто течет во вторичных обмотках, и ампер-витки каждой секции впоследствии идентичны и противоположны.

Вторичные валки будут на 1% и 2% меньше, чем первичные, и разница будет использоваться в намагничивающем сердечнике. В результате, если вторичный компонент разомкнут и ток течет по первичным обмоткам, размагничивающей среды из-за вторичного тока не будет.

Из-за отсутствия противоамперных роликов вторичной секции, не имеющая сопротивления первичная MMF (магнитодвижущая сила) создаст необычно большой магнитный поток в системе.Этот поток будет генерировать отходы активной зоны с последующим нагревом, и большое напряжение будет стимулироваться через клемму вторичной обмотки.

Это напряжение привело к пробою изоляции, а также к потере точности в будущем, поскольку дополнительный MMF оставляет остаточный магнетизм в системе. Следовательно, вторичная обмотка трансформатора тока никогда не может быть разомкнута, когда по первичной части проходит ток.

Векторная диаграмма трансформатора тока

Векторная диаграмма трансформатора тока показана на рисунке ниже.Базовый поток взят за эталон. Создаваемые вторичные и первичные напряжения отстают от основного потока на 90º. Величина первичного и вторичного напряжений зависит от количества валков на обмотках. Ток возбуждения стимулируется частями намагничивающего и рабочего тока.

Фазорная диаграмма трансформатора тока (Ссылка: circuitglobe.com )

Где I s — вторичный ток, E s — вторичное индуцированное напряжение, I p — первичный ток, E p — первичное индуцированное напряжение, K t — коэффициент трансформации, или число витков вторичной обмотки / число витков первичной обмотки, I 0 — ток возбуждения, I m — ток намагничивания, I w — рабочий компонент, а Φ s — главный поток.

Вторичный выход отстает от вторичного стимулированного напряжения на определенный угол (θº). Вторичный ток заменяет первичную сторону, реверсируя вторичный выход и умножая на частоту вращения. Ток, протекающий через первичную обмотку, является произведением вторичного тока, отношения витков I s K t и суммы возбуждающего тока I 0 вместе с ними.

Ошибки соотношения и фазового угла CT

Трансформатор тока включает две проблемные ошибки: ошибку соотношения и ошибку угла сдвига фаз.

Ошибки коэффициента тока

Трансформатор тока в основном основан на энергетической составляющей выхода возбуждения и получается как

Ratio_ {Error} = \ frac {{K} _ {t} {I} _ {s} — {I} _ {P}} {{I} _ {P}}

Где K t — коэффициент трансформации, I p — первичный ток, а I s — вторичный ток.

Ошибка угла сдвига фаз

В идеальном трансформаторе тока векторный угол между обратным вторичным и первичным токами равен нулю.Но в практическом трансформаторе тока существует разность фаз между вторичным и первичным токами, поскольку первичный выход также поставляет часть возбуждающего тока. Следовательно, разница между двумя фазами вводится как ошибка угла сдвига фаз.

Коэффициент трансформации первичной обмотки трансформатора тока

Коэффициент трансформации первичной обмотки трансформатора тока (Код: electronics-tutorilas.ws )

Трансформатор тока никогда не должен оставаться в разомкнутом состоянии или работать без нагрузки, когда через него проходит основной первичный ток, точно так же, как трансформатор напряжения никогда не должен работать в условиях короткого замыкания.Если нагрузку (или амперметр) необходимо снять, необходимо установить короткое замыкание на клеммах вторичной обмотки, прежде всего, чтобы исключить риск поражения электрическим током.

Это высокое напряжение связано с тем, что, когда вторичная секция находится в разомкнутой цепи, железный сердечник системы работает с высокой степенью насыщения и ничем не управляет, поэтому он генерирует необычно большое вторичное напряжение. Это высокое вторичное напряжение может повредить изоляцию или привести к поражению электрическим током при случайном прикосновении к клеммам трансформатора тока.

Переносные трансформаторы тока

Сейчас на рынке доступно несколько специализированных форм трансформаторов тока. Распространенный и портативный тип, который может использоваться для обнаружения нагрузки в цепи, представлен как «токоизмерительные клещи» или «портативный тип», как показано.

Переносной трансформатор тока

(Ссылка: electronics-tutorilas.ws )

Токоизмерительные клещи замыкаются и размыкаются вокруг токопроводящего проводника и контролируют его ток, определяя магнитное поле вокруг него, обеспечивая быстрое измерение, обычно на цифровом дисплее, без размыкания или отключения цепи.

Помимо портативного трансформатора тока, присутствуют трансформаторы тока с разъемным сердечником, которые имеют одну съемную секцию, так что шину или провод нагрузки не нужно отсоединять для ее установки. Они используются для измерения токов от 100 до 5000 А с квадратными окнами от 25 до 300 мм. (От 1 до более 12 дюймов).

Сводка

Подводя итог, трансформатор тока (ТТ) — это разновидность трансформаторов, используемых для преобразования первичного тока во вторичный выход через магнитную среду.Его вторичная секция затем подает значительно уменьшенный ток, который можно использовать для измерения пониженного тока, сверхтока, пикового тока или среднего тока.

Первичная обмотка трансформатора тока часто соединяется последовательно с основным проводником. Он также вводится как «серийный трансформатор». Стандартный вторичный ток обычно составляет 5 А или 1 А для простоты измерения. Их структура может представлять собой один единственный виток первичной обмотки, как в кольцевых, тороидальных или стержневых формах, или несколько витков первичной обмотки, обычно для приложений с низким током.

Трансформаторы тока считаются применяемыми как пропорциональные приборы тока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *