Схема подключения реверса трехфазного двигателя: Схема реверса трехфазного двигателя — советы электрика

Содержание

Реверс трехфазного двигателя в однофазной сети

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Несколько дней назад от одного из читателей сайта я получил письмо с просьбой подробно рассказать о том, как осуществить реверс трехфазного асинхронного двигателя 380/220 (В), подключенного в однофазную сеть 220 (В).

Действительно, я как то упустил этот момент из виду и про реверс совсем забыл. Дело в том, что у меня уже имеется статья, где я рассказывал про выбор емкости рабочих и пусковых конденсаторов, собирал схему подключения трехфазного двигателя  в однофазную сеть 220 (В) и даже снял видео на конкретном примере.

Обо всем этом читайте здесь.

А сейчас вернемся к реверсу. Мудрить сложную схему я не буду, а покажу самый простой и самый распространенный вариант с помощью кнопки управления КУ-110111. Эту кнопку еще называют кнопочным выключателем или переключателем.

Вот так она выглядит.

Суть в том, что нам нужно две пары контактов: нормально-разомкнутый и нормально-замкнутый. И самое главное, чтобы управление этими контактами было фиксированным.

Вот как раз таки в этой кнопке имеется две пары контактов:

  • (1-2) — нормально-разомкнутый
  • (3-4) — нормально-замкнутый

В нашем случае управление контактами осуществляется с помощью рукоятки-переключателя, которая имеет два положения.

Когда переключатель установлен (зафиксирован) в вертикальном положении, то его контакт (1-2) разомкнут, а (3-4) замкнут. И наоборот, когда переключатель находится в горизонтальном положении (поворот рукоятки на 90° по часовой стрелке), то его контакт (1-2) замкнут, а (3-4) — разомкнут.

Номинальный ток контактных пар составляет 10 (А). На это стоит обращать внимание, т.к. при выборе кнопки с заниженным номинальным током контакты могут выгореть.

Вместо кнопки управления КУ-110111 можно использовать тумблеры, ключи управления, кнопки с фиксацией положения и т.п.

Например, для реверса двигателей мощностью до 0,4 (кВт) можно применять тумблер ТВ1-2. У него имеется 4 контактные группы: 2 нормально-разомкнутые и 2 нормально-замкнутые. Номинальный ток контактов составляет 5 (А).

 

Реверс асинхронного трехфазного двигателя, подключенного в однофазную сеть

Все просто. Реверс осуществляется путем переключения питания конденсаторов с одного полюса питающего напряжения на другой. Это как раз и осуществляется с помощью кнопки управления. На схеме она показана в красном прямоугольнике.

В качестве примера рассмотрим уже известный нам трехфазный двигатель АОЛ 22-4 мощностью 0,4 (кВт) напряжением 220/127 (В). Для его запуска необходим рабочий конденсатор емкостью не ниже 25 (мкФ). Я использовал конденсатор чуть меньшей емкости — МБГО-1, 20 (мкФ), напряжение 500 (В).

Собираем схему.

В моем примере взят двигатель напряжением — 220/127 (В). Т.к. питающая сеть у нас 220 (В), то его обмотки должны быть соединены в звезду. Звезда уже собрана внутри этого двигателя и на клеммник выведено всего 3 вывода.

Для тех кто забыл, то читайте статью о схемах соединения обмоток двигателя (звезда и треугольник).

Сначала я устанавливаю на кнопке управления перемычку между клеммами (2) и (3). Затем к клемме (2) подключаю один вывод конденсатора.

Второй вывод конденсатора подключаю на обмотку электродвигателя, которая не соединена с сетью, т.е. по схеме это вывод С1 (U1).

Теперь нужно соединить переключатель с двигателем. Для этого клемму (1) я соединяю с выводом двигателя С3 (W1), а клемму (4) — с С2 (V1).

Если на Вашем двигателе отсутствует маркировка выводов обмоток, то ее можно найти самостоятельно — вот Вам в помощь моя статья об определении начала и конца обмоток электродвигателя.

Питающее напряжение 220 (В) подводим к С2 (V1) и С3 (W1). Пробуем включать двигатель и проверяем реверс.

Работу реверса смотрите в видеоролике:

P.S. На этом, пожалуй, все. Если у Вас возникли вопросы по материалу статьи, то пишите их в комментариях или мне на почту. Спасибо за внимание.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Схема реверса трехфазного двигателя — Всё о электрике

Реверсивная схема подключения электродвигателя

Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.

Переменная сеть: мотор 380 к сети 380

Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

Для подключения дополнительно понадобятся:

  • Магнитный пускатель (или контактор) – КМ2;
  • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».

Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

Для запуска двигателя:

  1. Включите автоматы АВ1 и АВ2;
  2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
  3. Двигатель работает.

Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

Переменная сеть: электродвигатель 220 к сети 220

Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.

В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

Переменная сеть: 380В к 220В

Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

Постоянный электроток: особенности

Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.

Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:

  • с возбуждением независимым,
  • с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).

Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.

В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.

В электротранспорте применяются агрегаты с последовательным возбуждением.

Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.

Все способы включения электродвигателей постоянного тока могут реверсироваться:

  • Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
  • В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.

Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.

Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.

Реверсивная схема подключения магнитного пускателя

Для того, чтобы запускать электродвигатель в прямом и обратном направлении применяется реверсивная схема управления на магнитном пускателе.

В этой статье подробно рассмотрена пошаговая работа схемы. Схему, в которой двигатель работает только в одном направлении, без реверса, смотрите в статье нереверсивная схема подключения магнитного пускателя.

В заключении этой статьи смотрите видео, демонстрирующее детальную работу схемы реверсного пуска двигателя.

Вначале рассмотрим реверсивную схему подключения с катушкой магнитного пускателя на 220В, а затем работу схемы.

Фазы А,В и С питающего напряжения подводятся к клеммам асинхронного двигателя через:

— 3-х полюсный автоматический выключатель, который защищает всю схему и позволяет отключать питающее напряжение;

— поочередно через три пары силовых контактов магнитных пускателей КМ1 и КМ2;

— тепловое реле Р, которое служит для защиты от перегрузок.

Для того, чтобы изменить направление вращения трехфазного электродвигателя, необходимо поменять местами подключение любых двух фаз!

Для этого в цепь обмотки двигателя включены силовые контакты от двух пускателей, которые подключаются поочередно, меняя чередование фаз. В нашей схеме при вращении вперед последовательность фаз такая — А, В, С. При вращении назад — С, В, А. Т.е. чередование фаз А и С меняется местами.

Катушки магнитных пускателей с одной стороны подключены к нулевому рабочему проводнику N через нормально-замкнутый контакт теплового реле Р, с другой, через кнопочный пост к фазе С.

Кнопочный пост состоит из 3-х кнопок:

1) нормально-разомкнутой кнопки ВПЕРЕД ;

2) нормально-разомкнутой кнопки НАЗАД ;

3) нормально-замкнутой кнопки СТОП .

К кнопке ВПЕРЕД параллельно подключен нормально-разомкнутый вспомогательный контакт пускателя КМ1, и соответственно, к кнопке НАЗАД — нормально-разомкнутый вспомогательный контакт пускателя КМ2.

Также в цепь питания обмотки пускателя КМ1 включен нормально-замкнутый контакт пускателя КМ2, а в цепь обмотки пускателя КМ2, включен нормально-замкнутый контакт пускателя КМ1. Это сделано для блокировки, чтобы предотвратить запуск двигателя назад, когда он вращается вперед, и наоборот. Т.е. запустить двигатель в любую из сторон можно только из положения останова.

Работа схемы

Переводим рычаг трехполюсного автоматического выключателя во включенное положение , его контакты замыкаются, схема готова к работе.

Запуск вперед

Нажимаем кнопку ВПЕРЕД . Цепь питания обмотки магнитного пускателя КМ1 замыкается, якорь катушки втягивается, замыкает силовые контакты КМ1 и вспомогательный нормально-открытый контакт КМ1, который шунтирует кнопку ВПЕРЕД .

Одновременно вспомогательный нормально-замкнутый контакт КМ1 размыкает цепь управления магнитным пускателем КМ2, блокируя тем самым возможность запуска реверса двигателя.

Три питающих фазы в последовательности А,В,С подаются на обмотки двигателя и он начинает вращаться вперед.

Отпускаем кнопку ВПЕРЕД , она возвращается в исходное нормально-разомкнутое состояние. Теперь питание на обмотку пускателя КМ1 подается через замкнутый вспомогательный контакт КМ1. Двигатель запущен и вращается вперед.

Останов двигателя из положения ВПЕРЕД

Для остановки двигателя или для запуска в другую сторону, необходимо сначала нажать кнопку СТОП . Питание цепи управления размыкается. Якорь магнитного пускателя КМ1 под действием пружины возвращается в исходное состояние. Силовые контакты размыкаются, отключая питающее напряжение от электродвигателя. Двигатель останавливается.

Одновременно с этим размыкается вспомогательный контакт КМ1 в цепи питания обмотки пускателя КМ1 и замыкается вспомогательный контакт КМ1 в цепи питания пускателя КМ2.

Отпускаем кнопку СТОП . Она возвращается в исходное, нормально-замкнутое положение. Но поскольку вспомогательный контакт КМ1 разомкнут, питание на обмотку пускателя КМ1 не подается, двигатель остается выключенным и схема готова к следующему запуску.

Реверс двигателя

Чтобы запустить двигатель в обратном направлении, нажимаем кнопку НАЗАД .

Питание подается на обмотку пускателя КМ2. Он срабатывает, замыкая силовые контакты КМ2 в цепи питания двигателя, и вспомогательный контакт КМ2, который шунтирует кнопку НАЗАД . Одновременно с этим, другой вспомогательный контакт КМ2 разрывает цепь питания пускателя КМ1.

На обмотки двигателя подаются три фазы в порядке С,В,А, он начинает вращаться в другую сторону.

Отпускаем кнопку НАЗАД . Она возвращается в исходное положение, но питание на обмотку пускателя КМ2 продолжает поступать через замкнутый вспомогательный контакт КМ2. Двигатель продолжает вращаться в обратном направлении.

Останов двигателя из положения НАЗАД

Для останова повторно нажимаем кнопку СТОП . Цепь питания обмотки пускателя КМ2 размыкается. Якорь возвращается в исходное положение, размыкая силовые контакты КМ2. Двигатель останавливается. Одновременно с этим, вспомогательные контакты КМ2 возвращаются в исходное состояние.

Отпускаем кнопку СТОП , схема готова к следующему пуску.

Защита от перегрузок

Работу теплового реле Р и назначение предохранителя FU я подробно рассмотрел в статье Нереверсивная схема пускателя, поэтому в этой статье описание опускаю. Для пускателей с обмотками, рассчитанными на 380В, схема подключения будет следующая.

Обмотки пускателей подключается к любым двум фазам, на схеме к фазам В и С.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

Если видео понравилось, не забывайте нажать НРАВИТЬСЯ при просмотре на YouTube. Подписывайтесь на мой канал, узнайте первым о выходе новых интересных видео по электрике!

Не забудьте посмотреть новые статьи сайта.

Рекомендую также прочитать:

Реверс электродвигателя

Для электродвигателя режим работы с периодическим изменением направления вращения (реверсирование) является наиболее благоприятным. По той причине, что ликвидируется паразитное намагничивание, вызывающее перегрев и потерю мощности электрической машиной. Кроме того, схемы реверсивного пуска намного проще, чем механические трансмиссии, состоящие из системы зубчатых шестерней. Наибольшее число вопросов вызывает способ изменения направления вращения двигателей переменного тока, ведь изменить полярность питающего напряжения невозможно. В этой статье мы представим вам основные схемные решения для запуска асинхронных и коллекторных электродвигателей, в которых предусмотрена возможность их реверсирования.

Реверс трехфазных асинхронных машин

Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником. Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее. Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.

Трехфазные асинхронные машины на 380 вольт принято подключать магнитным пускателем, в котором три контакта находятся на одной раме и замыкаются одновременно, подчиняясь действию так называемой втягивающей катушки – магнитного соленоида, работающего как от 380, так и от 220 вольт. Это избавляет оператора от близкого контакта с токоведущими частями, что при токах свыше 20 ампер может быть небезопасно.

Для реверсивного пуска используется пара пускателей. Клеммы питающего напряжения на входе соединяются по прямой схеме: 1–1, 2–2, 3–3. А на выходе встречно: 4–5, 5–4, 6–6. Чтобы избежать короткого замыкания при случайном одновременном нажатии двух кнопок «Пуск» на пульте управления, напряжение на втягивающие катушки подается через дополнительные контакты противоположных пускателей. Так, чтобы при замкнутой основной группе контактов линия, которая идет на соленоид соседнего прибора, была разомкнута.

На пульте управления устанавливается трехкнопочный пост с однопозиционными – одно действие за одно нажатие – кнопками: одна «Стоп» и две «Пуск». Разводка проводов в нем следующая:

  • один фазный провод подается на кнопку «Стоп» (она всегда нормально замкнута) и перемычками с нее на кнопки «Пуск», которые всегда нормально разомкнуты.
  • С кнопки «Стоп» два провода на дополнительные контакты пускателей, которые при их срабатывании замыкаются. Так обеспечивается блокировка.
  • С кнопок «Пуск» перекрестно по одному проводу на дополнительные контакты пускателей, которые при их срабатывании размыкаются.

Подробнее о схемах подключения магнитных пускателей для трехфазных электродвигателей читайте здесь.

Реверс однофазных синхронных машин

Для запуска этим моторам необходима вторая обмотка на статоре, в цепь которой включен фазосдвигающий элемент, обычно бумажный конденсатор. Реверсировать можно только те, у которых обе статорных обмотки равнозначны – по диаметру провода, числу витков, а также при условии, что одна из них не отключается после набора оборотов.

Суть схемы реверсирования в том, что фазосдвигающий конденсатор будет подключаться то к одной из обмоток, то к другой. Для примера рассмотрим асинхронный однофазный двигатель АИРЕ 80С2 мощностью 2,2 кВт.

В его клеммной коробке шесть резьбовых выводов, обозначенных литерами с цифрами W2 и W1, U1 и U2, V1 и V2. Чтобы двигатель вращался по часовой стрелке, коммутация производится следующим образом:

  • Сетевое напряжение подается на клеммы W2 и V1.
  • Концы одной обмотки соединяются с клеммами U1 и U2. Чтобы ее запитать, они соединяются перемычками по схеме U1–W2 и U2–V1.
  • Концы второй обмотки подключают к клеммам W2 и V2.
  • Фазосдвигающий конденсатор подключают к клеммам V1 и V2.
  • Клемма W1 остается свободной.

Чтобы вращение происходило против часовой стрелки, изменяют положение перемычек, они ставятся по схеме W2–U2 и U1– W1. Схема автоматического реверса строится так же на двух магнитных пускателях и трех кнопках – двух нормально разомкнутых «Пуск» и одной нормально замкнутой «Стоп».

Реверс коллекторных двигателей

Схема включения его обмоток аналогична той, что используется в двигателях постоянного тока с последовательным возбуждением. Одна токоснимающая щетка коллектора подключается к обмотке статора, а питающее напряжение подается на другую щетку и второй вывод статорной обмотки.

При изменении положения штепсельной вилки в розетке происходит одновременная переполюсовка магнитов ротора и статора. Поэтому направление вращения не изменяется. Так же, как это происходит в двигателе постоянного тока при одновременном изменении полярности питающего напряжения на обмотке возбуждения и якоря. Изменить порядок следования фаза – ноль надо только в одном элементе электрической машины – коллекторе, который обеспечивает не только пространственное, но электрическое разделение проводников – обмотки якоря изолированы друг от друга. На практике это выполняется двумя способами:

  1. Физической переменой места установки щеток. Это нерационально, поскольку связано с необходимостью внесения изменений в конструкцию устройства. Кроме того, приводит к преждевременному выходу щеток из строя, поскольку форма выработки на их рабочем конце не совпадает с формой поверхности коллектора.
  2. Изменением положения перемычки между щеточным узлом и обмоткой возбуждения в клеммной коробке, а также точки подключения сетевого провода. Можно реализовать с помощью одного многопозиционного выключателя или двух магнитных пускателей.

Не забудьте, что все работы по перестановке перемычек в клеммной коробке или подключению схемы реверсирования должны проводиться при полностью снятом напряжении.

{SOURCE}

Схема подключения двигателя с реверсом

Схема реверса трехфазного двигателя

Трехфазные электродвигатели широко используются на многих объектах. В силу специфических условий эксплуатации, довольно часто возникает необходимость изменения направления вращения вала того или иного агрегата. Для этих целей лучше всего подходит стандартная схема реверса трехфазного двигателя, применяемая для открытия и закрытия гаражных ворот, обеспечения работы лифтов, погрузчиков, кран-балок и другого оборудования.

Общая схема реверса электродвигателей

В промышленности и сельском хозяйстве нашли широкое применение различные типы трехфазных асинхронных электродвигателей. Они устанавливаются в электроприводах оборудования, служат составной частью автоматических устройств. Трехфазные агрегаты завоевали популярность, благодаря высокой надежности, простому обслуживанию и ремонту, возможности работы напрямую от сети переменного тока.

Специфика работы устройств, работающих с электродвигателями, предполагает необходимость изменения направления вращения вала, называемого реверсом. Для таких ситуаций разработаны специальные схемы, в состав которых включены дополнительные электрические приборы. Прежде всего, это вводный автомат, имеющий соответствующие параметры, контакторы (2 шт.), тепловое реле и элементы управления в виде трех кнопок, объединенных в общий кнопочный пост.

Для того чтобы вал начал вращаться в противоположную сторону, необходимо изменить расположение фаз подаваемого напряжения. Необходим постоянный контроль над значением напряжения, поступающего на электродвигатель и катушки контакторов. Непосредственное выполнение реверса в трехфазном двигателе осуществляется контакторами (КМ) № 1 и № 2. При срабатывании контактора № 1, фазы поступающего напряжения будут располагаться иначе, нежели при срабатывании контактора № 2.

Для управления катушками обоих контакторов предусмотрены три кнопки – ВПЕРЕД, НАЗАД и СТОП. Они обеспечивают питание катушек в зависимости от расположения фаз. Порядок включения контакторов влияет на замыкание электрической цепи таким образом, что вращение вала двигателя в каждом случае происходит строго в определенную сторону. Кнопку НАЗАД необходимо только нажать, но не удерживать, так как она сама оказывается в нужном положении под действием самоподхвата.

На всех трех кнопках установлена блокировка, предотвращающая их одновременное включение. Несоблюдение этого условия может привести к возникновению в электрической цепи короткого замыкания и выходу из строя оборудования. Для блокировки кнопок используется специальный блок-контакт, расположенный в соответствующем контакторе.

Схема реверса трехфазного двигателя и кнопочного поста

В каждой системе, обеспечивающей реверс трехфазного электродвигателя, имеются специфические кнопочные контакты, объединенные в общий кнопочный пост. Работа этой системы тесно связана с функционированием остальных элементов схемы.

Всем известно, что включение контактора магнитного пускателя осуществляется с помощью управляющего импульса, поступающего после нажатия на пусковую кнопку. Данная кнопка в первую очередь обеспечивает подачу напряжения на катушку управления.

Включенное состояние контактора удерживается и сохраняется, благодаря принципу самоподхвата. Он заключается в параллельном подключении (шунтировании) к пусковой кнопке вспомогательного контакта, обеспечивающего подачу напряжения на катушку. В связи с этим уже нет необходимости удерживать кнопку ПУСК в нажатом состоянии. Таким образом, магнитный пускатель может отключиться только после разрыва цепи катушки управления, поэтому в схеме необходима кнопка с размыкающим контактом. В связи этим, кнопки управления, объединенные в кнопочный пост, оборудуются двумя парами контактов – нормально открытыми (NO) и нормально закрытыми (NC).

Все кнопки выполнены в универсальном варианте для того, чтобы обеспечить моментальный реверс двигателя, если в этом возникнет срочная необходимость. Отключающая кнопка, в соответствии с общепринятыми нормами, имеет название СТОП и маркируется красным цветом. Кнопка включения известна как стартовая или пусковая, поэтому она именуется по-разному с помощью слов ПУСК, ВПЕРЕД или НАЗАД.

В некоторых случаях кнопочный пост может использоваться в нереверсивной схеме работы электродвигателя, когда его вал вращается лишь в одном направлении. Запуск производится кнопкой пуск, а остановка произойдет через определенный промежуток времени после нажатия кнопки СТОП, когда вал преодолеет инерцию. Подключение такой схемы может быть выполнено в двух вариантах, с помощью катушек управления на 220 и 380 вольт.

Во всех случаях перед подключением кнопочного поста составляется схема его монтажа. В первую очередь выполняется подключение контактора, при отсутствии напряжения на входном кабеле. Для непосредственного управления напряжение может сниматься с любой фазы, какая будет наиболее удобна для использования. Проводник, соединяемый с кнопкой СТОП, подключается совместно с проводом фазы к соответствующей клемме контактора. Во избежание путаницы, нормально разомкнутые контакты маркируются цифрами 1 и 2, а нормально замкнутые – цифрами 3 и 4.

По завершении монтажа в кнопочном посте устанавливается перемычка, затем подключается провод, соединяющий клемму 1 кнопки ПУСК и вывод катушки управления контактора.

Схема реверса трехфазного двигателя в однофазной сети

Довольно часто трехфазные электродвигатели используются в бытовых условиях и включаются в однофазную сеть. Для таких случаев предусмотрена реверсивная схема подключения электродвигателя в однофазной сети. Принцип действия такой схемы очень простой: для выполнения реверса используются конденсаторы, питание которых переключается между полюсами питающего напряжения. Управление схемой осуществляется кнопкой.

Поскольку питающее напряжение составляет 220 В, соединение обмоток двигателя будет выполнено звездой, а на клеммник подведено три вывода. На кнопке управления между клеммами устанавливается перемычка, после чего к одной из них подключается вывод конденсатора. Второй вывод конденсатора подключается к обмотке электродвигателя, не соединенной с сетью.

Затем переключатель соединяется с двигателем, затем подводится питающее напряжение. Готовую систему нужно включить и проверить работу реверса.

Реверсивная схема подключения электродвигателя

Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.

Переменная сеть: мотор 380 к сети 380

Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

Для подключения дополнительно понадобятся:

  • Магнитный пускатель (или контактор) – КМ2;
  • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».

Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

Для запуска двигателя:

  1. Включите автоматы АВ1 и АВ2;
  2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
  3. Двигатель работает.

Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

Переменная сеть: электродвигатель 220 к сети 220

Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.

В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

Переменная сеть: 380В к 220В

Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

Постоянный электроток: особенности

Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.

Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:

  • с возбуждением независимым,
  • с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).

Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.

В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.

В электротранспорте применяются агрегаты с последовательным возбуждением.

Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.

Все способы включения электродвигателей постоянного тока могут реверсироваться:

  • Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
  • В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.

Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.

Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.

Как осуществить реверс электродвигателя постоянного и переменного тока

Реверсивное включение двигателей постоянного тока

Наиболее просто осуществить реверс двигателя постоянного тока, у которого статор с постоянными магнитами. Достаточно изменить полярность питания, чтобы ротор начал вращаться в обратную сторону.

Сложнее осуществить реверсирование мотора с электромагнитным возбуждением (последовательным, параллельным). Если просто поменять полярность питающего напряжения, то направление вращения ротора не изменится. Чтобы изменить направление вращения, достаточно поменять полярность только в обмотке возбуждения или только на щетках ротора.

Для осуществления реверса двигателей большой мощности полярность следует менять на якоре. Разрыв обмотки возбуждения на работающем моторе может привести к неисправности, т.к. возникающая ЭДС имеет повышенное напряжение, которое способно повредить изоляцию обмоток. Что приведет к выходу электродвигателя из строя.

Для осуществления обратного направления вращения ротора применяют мостовые схемы на реле, контакторах или транзисторах. В последнем случае можно и регулировать скорость вращения.

На рисунке представлена схема на транзисторах. В качестве иллюстрации работы транзисторы заменены контактами переключателя. Аналогично выполняются мостовые схемы не на биполярных, а на полевых транзисторах.

КПД такой схемы значительно выше, чем на транзисторах. Управление осуществляется микроконтроллером или простыми логическими схемами, предотвращающими одновременную подачу сигналов.

Изменение направления вращения ротора асинхронного двигателя

Наибольшее распространение в промышленности получили асинхронные двигатели, запитанные от трехфазного напряжения 380 вольт. Для того чтобы осуществить реверс, достаточно поменять две любые фазы.

Получила распространение схема подключения, выполненная на двух магнитных пускателях. Собственно для двигателей постоянного тока она аналогична, но используются двухполюсные контакторы или пускатели. Эту схему так и называют «схема реверсивного пускателя» или «реверсивная схема пуска асинхронного трёхфазного электродвигателя».

При включении пускателя КМ1 кнопкой «Пуск 1», происходит прямая подача напряжения на обмотки и блокируется кнопка «Пуск 2» от случайного включения, посредством размыкания нормально-замкнутых контактов КМ-1. Двигатель вращается в одну сторону.

После отключения пускателя КМ1 кнопкой «Стоп» или полным снятием напряжения, можно включить КМ2 кнопкой «Пуск 2». В результате через контакты линия L2 подается напрямую, а L1 и L3 меняются местами. Кнопка «Пуск 1» заблокирована, так как нормально-замкнутые контакты пускателя КМ2 приводятся в движение и размыкаются. Двигатель начинает вращаться в другую сторону.

Схема применяется повсеместно и по сей день для подключения трехфазного двигателя в трехфазной сети. Простота схемного решения и доступность комплектующих — её весомые преимущества.

Наибольшее распространение находят электронные системы управления. Коммутационные схемы, которых собранные на тиристорах без пускателей. Хотя пускатели могут быть и установлены для дистанционного включения или выключения в этой цепи.

Они сложнее, но и надежнее устройств на контакторах. Для управления используется системы импульсно-фазного управления (СИФУ), системы частотного управления. Это многофункциональные устройства, с их помощью можно не только осуществлять реверс асинхронного электродвигателя, но и регулировать частоту вращения.

В домашних условиях возникает необходимость подключения двигателя 380В на 220 с реверсом. Для этого необходимо произвести переключение обмоток звезда треугольник. Подробнее мы рассматривали различия этих схем в статье размещенной на сайте ранее: https://samelectrik.ru/chto-takoe-zvezda-i-treugolnik-v-elektrodvigatele.html.

Однако, если предполагается подключение трехфазного электродвигателя к однофазной сети, то для этого применяется конденсатор, который подключается по нижеприведенной схеме.

При этом чтобы осуществить реверс, достаточно переключить провод сети с В на клемму А, а конденсатор отсоединить от А и подсоединить к клемме В. Удобно это сделать с помощью 6-контактного тумблера. Это типовое включение асинхронного электродвигателя к сети 220В с конденсатором.

Схема подключения коллекторного двигателя с реверсом

Чтобы осуществить реверс коллекторного двигателя, необходимо знать:

  1. Не на каждом коллекторном моторе можно осуществить реверс. Если на корпусе указана стрелка вращения, то его нельзя применять в реверсивных устройствах.
  2. Все двигатели, имеющие высокие обороты предназначены для вращения в одну сторону. Например, у электродвигателя, устанавливаемого в болгарках.
  3. У двигателя, который имеет небольшие обороты, вращение может осуществляться в разные стороны. Такие моторы смонтированы в электроинструментах, например, электродрелях, шуруповертах, стиральных машинах и т.п.

На рисунке представлена схема универсального коллекторного двигателя, который может работать как от постоянного, так и переменного тока.

Чтобы изменилось вращение ротора, достаточно поменять полярность напряжения на обмотке ротора или статора, как и в двигателях постоянного тока, от которых универсальные машины практически не отличаются.

Если просто изменить полярность подводящего напряжения на коллекторном двигателе, направление вращения ротора не изменится. Это необходимо учитывать при подключении электродвигателя к сети.

Также следует знать, что в моторах большой мощности коммутируют обмотку якоря. При переключении обмоток статора возникает напряжение самоиндукции, которое достигает величин, способных вывести двигатель из строя.

Конструктора-любители в своих поделках применяют различные типы двигателей. Зачастую они используют щеточный электродвигатель от стиральной машинки автомат. Это удобные моторчики, которые можно подключать непосредственно к сети 220 вольт. Они не требуют дополнительных конденсаторов, а регулировку оборотов можно легко производить с помощью стандартного диммера. На клеммную колодку выводятся шесть или семь выводов.

Зависит от типа двигателя:

  • Два идут на щетки коллектора.
  • От таходатчика на колодку приходит пара проводов.
  • Обмотки возбуждения могут иметь два или три провода. Третий служит для изменения скорости вращения.

Чтобы выполнить реверс двигателя от стиральной машины, следует поменять местами выводы обмотки возбуждения. Если имеется третий вывод, то его не используют.

Схема реверса электродвигателя на ардуино

В конструировании моделей или робототехнике часто применяются небольшие щеточные электродвигатели постоянного тока, для управления которыми используется программируемый микроконтроллер ардуино.

Если вращение двигателя предполагается только в одну сторону, и мощность электродвигателя небольшая, а напряжение питания от 3,3 до 5 вольт, то схему можно упростить и запитать непосредственно от ардуино, но так делают редко.

В моделях с дистанционным управлением, где необходимо использовать реверс моторов с напряжением более 5В, применяют ключи, собранные по мостовой схеме. В этом случае схема подключения двигателя с реверсом на ардуино будет выглядеть подобно тому что изображено ниже. Такое включение применяется чаще всего.

В мостовой схеме могут применяться полевые транзисторы или специальное согласующее устройство — драйвер, с помощью которого подключаются мощные моторчики.

В заключение отметим, что собирать схему реверса электродвигателя должен подготовленный специалист. Однако, при самостоятельном подключении необходимо соблюдать условия техники безопасности, выбрать подходящую схему соединения и подобрать необходимые комплектующие, строго следуя инструкции по монтажу. В этом случае у конструктора не возникнет трудностей в подключении и эксплуатации электродвигателя.

Теперь вы знаете, что такое реверс электродвигателя и какие схемы подключения для этого используют. Надеемся, предоставленная информация была для вас полезной и интересной!

{SOURCE}

Реверс электродвигателя | Заметки электрика

Приветствую Вас, уважаемые гости сайта «Заметки электрика».

Сегодня я Вам расскажу про реверс электродвигателя.

В данной статье Вы познакомитесь со схемой реверса электродвигателя, а также узнаете как она работает. А в конце я снял для Вас специальный видео-ролик, где покажу Вам принцип работы схемы реверса электродвигателя на специальном стенде.

В процессе эксплуатации трехфазного асинхронного электродвигателя возникают моменты, когда необходимо изменить вращение вала электродвигателя. Чтобы осуществить задуманное, мы подключаем электродвигатель по схеме реверса.

Что нам для это потребуется?

  • Вводной питающий автомат — в данном примере я использовал автоматический выключатель марки АП-50 с номинальным током 4А
  • Контакторы или магнитные пускатели в количестве 2 штуки
  • Кнопочный пост с 3 кнопками (красная — «стоп», черные — «вперед», «назад»)
  • Тепловое реле
  • Асинхронный электродвигатель

В моем примере (видео) отсутствует тепловое реле и сам электродвигатель, т.к. данный стенд предназначался для тренировки для студентов колледжей по сборке схемы реверса электродвигателя без силовой части.

Перед тем, как перейти к реверсу электродвигателя рекомендую прочитать и досконально изучить следующие статьи:

А теперь перейдем к реверсу. Чтобы изменить вращение вала (направление) электродвигателя, необходимо изменить чередование (следование) фаз питающего напряжения.

Как это сделать?

Схема реверса электродвигателя

Схема реверса электродвигателя при напряжении сети 220(В) и при напряжении цепей управления 220(В)

Хочу сразу заметить, что следует обращать внимание на уровень напряжение питания электродвигателя (380В или 220В) и напряжение катушек контакторов (380В и 220В).

Ниже смотрите еще 2 схемы реверса электродвигателя с разными номинальными напряжениями.

Схема реверса электродвигателя при напряжении сети 380(В) и при напряжении цепей управления 380(В)

Схема реверса электродвигателя при напряжении сети 380(В) и при напряжении цепей управления 220(В)

В моем примере уровень напряжения силовой цепи составляет 220(В), поэтому контакторы я использую с катушками, соответственно, на 220 (В).

Контакторы КМ1 и КМ2 используем для организации реверса электродвигателя. При срабатывании контактора КМ1 фазировка питающего напряжения будет различаться от фазировки при срабатывании контактора КМ2.

Управление катушками контакторов КМ1 и КМ2 осуществляется кнопками «стоп», «вперед» и «назад».

Давайте рассмотрим принцип работы схемы реверса электродвигателя.

 

Принцип работы схемы реверса

При нажатии кнопки «вперед» получает питание катушка контактора КМ1 по цепи: фаза С — н.з. контакт кнопки «стоп» — н.з. контакт КМ2.2 контактора КМ2 — н.о. контакт нажатой кнопки «вперед» — катушка контактора КМ1 — фаза В.

Контактор КМ1 подтягивается и замыкает свои силовые контакты КМ1.1. Двигатель начинает вращаться в прямом направлении.

Кнопку «вперед» держать не нужно, т.к. катушка контактора КМ1 встает на «самоподхват» через свой же контакт КМ1.3.

Н.о. — нормально-открытый контакт, н.з. — нормально-закрытый контакт

Для остановки электродвигателя используем кнопку «стоп». Контактами этой кнопки мы разрываем питание катушки («самоподхват») контактора КМ1. Катушка КМ1 теряет питание и контактор КМ1 отпадывает, отключая электродвигатель от сети.

При нажатии кнопки «назад» получает питание катушка контактора КМ2 по цепи: фаза С — н.з. контакт кнопки «стоп» — н.з. контакт КМ1.2 контактора КМ1 — н.о. контакт нажатой кнопки «назад» — катушка контактора КМ2 — фаза В.

Контактор КМ2 подтягивается и замыкает свои силовые контакты КМ2.1. Двигатель начинает вращаться в обратном направлении.

Кнопку «назад» держать не нужно, т.к. катушка контактора КМ2 встает на «самоподхват» через свой же контакт КМ2.3.

В этой схеме выполнена блокировка кнопок от одновременного нажатия, иначе в силовой цепи возникнет короткое замыкание, которое приведет к повреждению электрооборудования. Блокировка выполняется последовательным включением н.з. контакта (блок-контакта) соответствующего контактора.

Силовая цепь схемы реверса электродвигателя снабжена защитным коммутационным вводным автоматическим выключателем АП-50 с номинальным током 4(А). Также желательно выполнить защиту и цепи управления, путем установки автоматических выключателей или предохранителей на фазу В и С.

В примере (видео) защита цепей управления отсутствует.

Существуют заводские сборные контакторы для схем реверса электродвигателя с механической блокировкой в виде перекидного рычажка, который блокирует одновременное включение контакторов.

Если у Вас однофазный двигатель, то схемы приведенные в данной статье не подойдут. Переходите по ссылке, чтобы узнать более подробно о реверсе однофазного двигателя.

В комментариях регулярно пишут, что в данной статье не в полном объеме раскрыта сборка схемы реверса. Исправляюсь и представляю Вашему вниманию пошаговую инструкцию по сборке схемы реверса асинхронного двигателя (переходите по ссылочке). Прочитав эту инструкцию, Вы самостоятельно соберете схему реверса электродвигателя.

P.S. Для более наглядного »живого» примера реверса электродвигателя я приготовил для Вас видео-ролик. Не судите строго. Это мое первое созданное видео на сайте. В дальнейшем буду стараться для каждой статьи добавлять видео-уроки.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Реверсивный пуск асинхронного трехфазного электродвигателя | Полезные статьи

В процессе эксплуатации трехфазного асинхронного электродвигателя может возникнуть ситуация, когда требуется поменять направление вращения вала.

Процесс реверсивного пуска электродвигателя

Реверсивный пуск трехфазного асинхронного электродвигателя осуществляется посредством предварительной остановки. То есть сначала следует отключить вращающийся двигатель, после чего нужно дождаться полной его остановки. Лишь после остановки двигателя следует включать обратное вращение. В таком случае пускатель управляет электродвигателем. Мощность пускателя при включении реверса должна быть в 1,5–2 раза больше, чем максимальная коммутационная мощность пускателя. Это во многом зависит от состояния контактов, их устойчивости к износу. В таком режиме пускатель работает без механической блокировки.

Особенности магнитных пускателей реверсивного пуска

Пускатели магнитные реверсивные Для осуществления реверсивного пуска применяют специальные пускатели. Магнитные пускатели для реверса электродвигателя — это обычные пускатели, которые укреплены на основании двигателя и посредством электрических соединений обеспечивают электрическую блокировку. Она осуществляется посредством нормально-замкнутых блокировочных контактов, которые есть на пускателях, предотвращающих возможность включения одного пускателя при включенном состоянии другого.

При включении реверсивного магнитного пускателя предусматривается нулевая защита, реализуемая с помощью нормально-открытого контакта пускателя, который предотвращает случайное его включение при возникновении напряжения.

Некоторые реверсивные пускатели также оснащаются блокировкой, располагающейся на основании. Она также необходима, чтобы предотвращать возможное одновременное включение пускателей. Следует отметить, что нормальная электрическая блокировка позволяет отказаться от механической.

 

Тепловые реле и защита от пыли и влаги

Часто магнитные пускатели имеют защиту от пыли и брызг. Такие варианты оснащаются оболочкой в виде резиновых уплотнений, которая не допускает попадания внутрь прибора пыли и влаги.

Некоторые пускатели имеют также тепловые реле. Они необходимы для обеспечения тепловой защиты электродвигателя от перегрузок, которые длятся недопустимое для данной конструкции время. Тепловые реле защищают трехфазный асинхронный двигатель при обрыве фазы питающего напряжения и при токовой перегрузке большой продолжительности.

Монтаж магнитных пускателей асинхронных электродвигателей

Монтаж магнитных пускателей должен происходить на жесткой, хорошо укрепленной вертикальной поверхности. При наличии теплового реле такие конструкции следует монтировать таким образом, чтобы разность температуры воздуха, который окружает пускатель и электродвигатель, была наименьшей.

Для недопущения случайных срабатываний очень важно не ставить пускатели в тех местах, которые подвержены резким толчкам, ударам и тряске. Важно также, чтобы пускатели не были установлены рядом с приборами, которые отличаются большим тепловыделением.

Перед началом использования магнитного пускателя производится наружный осмотр приборов, для того чтобы убедиться в том, что все его части исправны. Также следует проверить номинальное напряжение, которое подается на катушку. Во включенном состоянии допускается небольшое характерное гудение электромагнита.

Уход за магнитными пускателями в процессе эксплуатации

Уход за магнитными пускателями в процессе эксплуатации в первую очередь подразумевает их защиту от попаданий влаги, пыли и грязи. Следует контролировать, чтобы винты контактных зажимов всегда были затянуты. Время от времени нужно проверять состояние контактов. В случае их оплавления последующая зачистка может значительно уменьшить время эксплуатации всего прибора.

Срок службы пускателя во многом зависит от тех условий, в которых он работает, — чем реже им пользуются и чем менее агрессивна окружающая его среда, тем ниже вероятность его поломки.

Реверс электродвигателя — ElectrikTop.ru

Реверс электродвигателя

Для электродвигателя режим работы с периодическим изменением направления вращения (реверсирование) является наиболее благоприятным. По той причине, что ликвидируется паразитное намагничивание, вызывающее перегрев и потерю мощности электрической машиной. Кроме того, схемы реверсивного пуска намного проще, чем механические трансмиссии, состоящие из системы зубчатых шестерней. Наибольшее число вопросов вызывает способ изменения направления вращения двигателей переменного тока, ведь изменить полярность питающего напряжения невозможно. В этой статье мы представим вам основные схемные решения для запуска асинхронных и коллекторных электродвигателей, в которых предусмотрена возможность их реверсирования.

Реверс трехфазных асинхронных машин

Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником. Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее. Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.

Трехфазные асинхронные машины на 380 вольт принято подключать магнитным пускателем, в котором три контакта находятся на одной раме и замыкаются одновременно, подчиняясь действию так называемой втягивающей катушки – магнитного соленоида, работающего как от 380, так и от 220 вольт. Это избавляет оператора от близкого контакта с токоведущими частями, что при токах свыше 20 ампер может быть небезопасно.

Для реверсивного пуска используется пара пускателей. Клеммы питающего напряжения на входе соединяются по прямой схеме: 1–1, 2–2, 3–3. А на выходе встречно: 4–5, 5–4, 6–6. Чтобы избежать короткого замыкания при случайном одновременном нажатии двух кнопок «Пуск» на пульте управления, напряжение на втягивающие катушки подается через дополнительные контакты противоположных пускателей. Так, чтобы при замкнутой основной группе контактов линия, которая идет на соленоид соседнего прибора, была разомкнута.

На пульте управления устанавливается трехкнопочный пост с однопозиционными – одно действие за одно нажатие – кнопками: одна «Стоп» и две «Пуск». Разводка проводов в нем следующая:

  • один фазный провод подается на кнопку «Стоп» (она всегда нормально замкнута) и перемычками с нее на кнопки «Пуск», которые всегда нормально разомкнуты.
  • С кнопки «Стоп» два провода на дополнительные контакты пускателей, которые при их срабатывании замыкаются. Так обеспечивается блокировка.
  • С кнопок «Пуск» перекрестно по одному проводу на дополнительные контакты пускателей, которые при их срабатывании размыкаются.

Подробнее о схемах подключения магнитных пускателей для  трехфазных электродвигателей читайте здесь.

Реверс однофазных синхронных машин

Для запуска этим моторам необходима вторая обмотка на статоре, в цепь которой включен фазосдвигающий элемент, обычно бумажный конденсатор. Реверсировать можно только те, у которых обе статорных обмотки равнозначны – по диаметру провода, числу витков, а также при условии, что одна из них не отключается после набора оборотов.

Суть схемы реверсирования в том, что фазосдвигающий конденсатор будет подключаться то к одной из обмоток, то к другой. Для примера рассмотрим асинхронный однофазный двигатель АИРЕ 80С2 мощностью 2,2 кВт.

В его клеммной коробке шесть резьбовых выводов, обозначенных литерами с цифрами W2 и W1, U1 и U2, V1 и V2. Чтобы двигатель вращался по часовой стрелке, коммутация производится следующим образом:

  • Сетевое напряжение подается на клеммы W2 и V1.
  • Концы одной обмотки соединяются с клеммами U1 и U2. Чтобы ее запитать, они соединяются перемычками по схеме U1–W2 и U2–V1.
  • Концы второй обмотки подключают к клеммам W2 и V2.
  • Фазосдвигающий конденсатор подключают к клеммам V1 и V2.
  • Клемма W1 остается свободной.

Чтобы вращение происходило против часовой стрелки, изменяют положение перемычек, они ставятся по схеме W2–U2 и U1– W1. Схема автоматического реверса строится так же на двух магнитных пускателях и трех кнопках – двух нормально разомкнутых «Пуск» и одной нормально замкнутой «Стоп».

Реверс коллекторных двигателей

Схема включения его обмоток аналогична той, что используется в двигателях постоянного тока с последовательным возбуждением. Одна токоснимающая щетка коллектора подключается к обмотке статора, а питающее напряжение подается на другую щетку и второй вывод статорной обмотки.

При изменении положения штепсельной вилки в розетке происходит одновременная переполюсовка магнитов ротора и статора. Поэтому направление вращения не изменяется. Так же, как это происходит в двигателе постоянного тока при одновременном изменении полярности питающего напряжения на обмотке возбуждения и якоря. Изменить порядок следования фаза – ноль надо только в одном элементе электрической машины – коллекторе, который обеспечивает не только пространственное, но электрическое разделение проводников – обмотки якоря изолированы друг от друга. На практике это выполняется двумя способами:

  1. Физической переменой места установки щеток. Это нерационально, поскольку связано с необходимостью внесения изменений в конструкцию устройства. Кроме того, приводит к преждевременному выходу щеток из строя, поскольку форма выработки на их рабочем конце не совпадает с формой поверхности коллектора.
  2. Изменением положения перемычки между щеточным узлом и обмоткой возбуждения в клеммной коробке, а также точки подключения сетевого провода. Можно реализовать с помощью одного многопозиционного выключателя или двух магнитных пускателей.

Не забудьте, что все работы по перестановке перемычек в клеммной коробке или подключению схемы реверсирования должны проводиться при полностью снятом напряжении.

Простая схема реверса двигателя постоянного тока с концевыми переключателями

Что-то не так?
Пожалуйста, отключите Adblock.

Портал QRZ.RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Спасибо.

Как добавить наш сайт в исключения AdBlock

При использовании двигателя постоянного тока в различных устройствах иногда возникает необходимость остановки двигателя в любом положении, а также в крайних положениях позиционирования с последующим реверсом.

 

 

Эту задачу решает предлагаемая схема. 

В1 — тумблер со средним положением для реверса двигателя. В зависимости от задачи он может иметь фиксацию в крайних положениях или без неё.

Диоды Д1 и Д2 подбираются по максимальному току двигателя при его нагрузке. 

SA – концевики, установленные в устройстве.

 

Работа схемы

В исходном состоянии питание на двигатель не поступает и он не вращается.

Если тумблер перевести в верхнее по схеме положение двигатель вращается (допустим) влево. В крайнем левом положении SA левый размыкается и диод Д1 не пропускает напряжение питания. Двигатель останавливается.

Если тумблер перевести в нижнее положение —  то происходит переполюсовка напряжения питания.    Двигатель тогда вращается  в правую сторону.    Д1 этому уже не препятствует.

Далее концевик SA левый замыкается.  При достижении крайнего правого положения  SA правый размыкается и диод Д2 не пропускает напряжение питания. Двигатель останавливается.

Переключением положения  тумблера меняется направление вращения двигателя.

Схему можно применить для вращения антенн, КПЕ, вариометров и т.п.

 

Матвийчук Валерий US3UT. 098-553-7459


Комментарии

Отзывы читателей — Скажите свое мнение!

Оставьте свое мнение


Отзывы читателей — Скажите свое мнение!

Подключение трехфазного двигателя звезда / треугольник (Y-Δ) назад / вперед с таймером Схема питания и управления

Подключение трехфазного двигателя звезда / треугольник (Y-Δ) назад и вперед с таймером Схема питания и управления

Как у нас уже использовали метод пуска трехфазного двигателя с помощью пускателя со звезды на треугольник со схемой таймера (схемы питания и управления). На приведенных ниже диаграммах трехфазный двигатель будет вращаться в двух направлениях, а именно вперед и назад. Но мы контролировали направление вращения этого трехфазного двигателя с помощью схемы таймера.

Сокращения:
O / L = реле перегрузки
NO = нормально разомкнутый
NC = нормально замкнутый
FOR = вперед
REV = обратный
T = таймер

Подключение трехфазного двигателя звезда / треугольник (Y-Δ) Реверс / вперед с таймером Power Схема

Схема питания:

Three Phase Motor Star/Delta (Y-Δ) Reverse / Forward with Timer Power Diagram Three Phase Motor Star/Delta (Y-Δ) Reverse / Forward with Timer Power Diagram

Подключение трехфазного двигателя звезда / треугольник (Y-Δ) Реверс / вперед с таймером Управление Схема

Схема управления:

3 Phase Motor Connection Star/Delta (Y-Δ) Reverse / Forward with Timer Control Diagram  3 Phase Motor Connection Star/Delta (Y-Δ) Reverse / Forward with Timer Control Diagram  .

REV / FOR Схема подключения питания и управления трехфазным двигателем

Схема подключения трехфазного двигателя в обратном и прямом направлении и управления
(Двунаправленная, одна скорость)

Сокращения:
O / L = Реле перегрузки
NO = Нормально открытый
NC = нормально закрытый
REV = обратный
FOR = вперед

REV / FOR Схема питания и управления трехфазного двигателя

REV / FOR Подключение трехфазного двигателя Схема питания
Схема питания: REV / FOR Three-Phase Motor Connection Power and Control diagrams REV / FOR Three-Phase Motor Connection Power and Control diagrams

REV / FOR Схема управления подключением трехфазного двигателя
Схема управления : REV / FOR Three-Phase Motor control REV / FOR Three-Phase Motor control Проверьте другие схемы, подобные этим здесь: Схемы подключения трехфазного двигателя и системы управления

.

Что такое DOL Starter? Подключение и работа стартера с прямым подключением к сети

Пускатель прямого включения для двигателей — схема прямого пуска, работа, типы и применение

Асинхронный двигатель потребляет огромное количество тока при запуске. Этот пусковой ток может повредить обмотки двигателя. Во избежание повреждений мы используем различные методы снижения пускового тока с помощью пускателя двигателя. Эти методы зависят от номинальных характеристик двигателя и нагрузки, подключенной к двигателю. Помимо этого, пускатель двигателя также защищает двигатель от перегрузки и перегрузки по току.

В пускателе с прямым подключением или прямым пуском используется метод пуска с полным напряжением или по сети, когда двигатель напрямую подключается к полному напряжению через автоматический выключатель или автоматический выключатель и реле для защиты от перегрузки. Поэтому такой стартер используется с асинхронными двигателями мощностью менее 5 л.с.

Что такое стартер Direct Online (DOL)?

DOL Starter (Direct Online Starter) также известен как «стартер через линию». Пускатель DOL представляет собой устройство, состоящее из главного контактора, защитных устройств и реле перегрузки, которое используется для запуска двигателя .Он используется для двигателей с низким номиналом, обычно ниже 5 л.с.

При прямом пуске двигателя через пускатель обмотки статора двигателя напрямую подключаются к основному источнику питания, где DOL защищает цепь двигателя от высокого пускового тока, который может повредить всю схему, поскольку начальный ток намного больше, чем полный номинальный ток.

Ниже приводится основная схема подключения DOL (устройства прямого запуска).

Direct Online (DOL) Motor Starter Direct Online (DOL) Motor Starter

Защита, обеспечиваемая DOL Starter:

Пускатели двигателя не только обеспечивают безопасный пусковой ток, но и обеспечивают защиту для обеспечения безопасности двигателя во время работы.Понятно, что DOL-пускатель обеспечивает полное линейное напряжение, но он обеспечивает следующую защиту:

Защита от перегрузки по току:

Состояние, которое вызывает протекание тока неисправности в большом количестве, в основном из-за короткого замыкания или замыкание на землю называется перегрузкой по току.

Перегрузка по току может вызвать повреждение двигателя, линий электропередач и может представлять опасность для операторов. Такое количество тока слишком опасно для кратковременного использования.

В пускателе DOL мы используем автоматический выключатель или предохранители для защиты от сверхтока.Они размыкают цепь и мгновенно прерывают ток, пока проблема в системе не будет решена. Предохранитель или автоматический выключатель тщательно выбирается с учетом его номинальных характеристик. Потому что мы не хотим, чтобы предохранитель сломался, но чтобы он выдерживал пусковой ток, а также ток большой нагрузки. Номинальные параметры автоматического выключателя немного превышают номинальный пусковой ток двигателя.

Защита от перегрузки:

Состояние, при котором нагрузка, подключенная к двигателю, превышает допустимые пределы, и двигатель потребляет чрезмерный ток, называется состоянием перегрузки.Во время перегрузки ток выходит за допустимые пределы, что приводит к повреждению как проводов, так и обмоток двигателя. Он плавит обмотки и может стать причиной возгорания.

Чтобы защитить двигатель от перегрузки, мы используем реле перегрузки, которое отключает питание и защищает систему от перегрева. Реле перегрузки контролирует ток и прерывает ток, когда он превышает определенный предел в течение определенного периода времени. Механизм отключения может быть разным и зависит от применения двигателя.

Ниже приведены несколько типов реле перегрузки, используемых для защиты двигателя:

Тепловое реле перегрузки : Этот тип реле перегрузки работает по принципу расширения за счет тепла, выделяемого током. Биметаллическая полоса используется с различным тепловым расширением для разрыва или замыкания цепи в зависимости от температуры.

Магнитное реле перегрузки : такие реле работают по принципу магнитного поля, создаваемого током, протекающим через катушку.Чрезмерный ток, потребляемый двигателем (то есть заранее заданная величина), создает достаточное магнитное поле для размыкания контактных выводов и прекращения подачи тока.

Электронное реле перегрузки : Электронное реле — это твердотельное устройство без каких-либо движущихся частей или контактов. Он использует датчики тока для контроля тока двигателя и имеет регулируемую настройку, которая позволяет отключать в широком диапазоне номинальных значений тока.

Конструкция стартера DOL:

Стартер DOL или Direct Online имеет просто две кнопки; Зеленый и красный, где зеленая кнопка используется для запуска, а красная — для остановки двигателя.Зеленая кнопка соединяет клеммы и замыкает цепь, а красная кнопка отключает клеммы и разрывает цепь.

Пускатель DOL состоит из автоматического выключателя или MCCB или предохранителя, реле перегрузки и контактора или катушки. Автоматический выключатель используется для защиты от коротких замыканий, а реле перегрузки защищает двигатель от перегрузки. Контактор используется для запуска и остановки двигателя, к которому подключены зеленая и красная кнопки. Подключение кнопок пуска и останова кратко объясняется в этой статье ниже.

Части DOL-стартера:

DOL-стартер состоит из следующих частей:

Автоматический выключатель или предохранитель:

Автоматический выключатель или плавкий предохранитель напрямую подключается к электросети и используется для защиты от короткие замыкания. Он отключает источник питания в случае короткого замыкания, чтобы защитить систему от любых потенциальных опасностей.

Магнитные контакторы:

Магнитный контактор — это электромагнитный переключатель, который действует в электромагнитном режиме для переключения мощности, подаваемой на двигатель.Он удобно соединяет и отключает несколько контактов, обеспечивая дистанционное управление работой.

Магнитное поле, создаваемое катушкой, используется для переключения клемм. Проходящий через катушку ток намагничивает железный сердечник, окруженный катушкой. Магнитная сила воздействует на якорь, замыкая или размыкая контакты.

Магнитные контакторы имеют три НО (нормально разомкнутых) главных контакта, используемых для питания двигателя, и вспомогательные контакты (НО и НЗ) с меньшим номиналом, используемым для цепи управления.Катушка подключается к источнику напряжения через вспомогательные контакты. Кроме того, имейте в виду, что катушка, используемая для однофазного и трехфазного питания, различается, так как напряжения питания различаются.

Реле перегрузки:

OLR или реле перегрузки — последняя деталь, используемая в пускателе DOL, и она используется для защиты от перегрузки двигателя. Он прерывает прохождение тока, когда он превышает определенный предел, но он также выдерживает высокий пусковой ток. Таким образом, OLR тщательно выбирается таким образом, чтобы его предел тока отключения не падал ниже диапазона пускового тока.

Чрезмерный ток может повредить изоляцию электрических проводов, а также обмотку двигателя. Ожидаемый срок службы двигателя уменьшается, и это может привести к короткому замыканию обмоток и возникновению опасности возгорания.

Простой предохранитель или автоматический выключатель не может защитить систему от перегрузки, потому что они используются для защиты от перегрузки по току (короткого замыкания). OLR имеет свойства измерения тока, которые могут различать пусковой ток и ток перегрузки.

Схема подключения стартера DOL:

Подключение трехфазной и однофазной проводки немного отличается друг от друга.Ниже приведена электрическая схема трехфазного и однофазного пускателя:

Схема электрических соединений трехфазного прямого стартера :

Это электрическая схема прямого пускателя

Three Phase Direct Online DOL Starter Wiring Diagram Three Phase Direct Online DOL Starter Wiring Diagram

MCCB или автоматического выключателя : R , Фазы Y и B подключены через MCCB к контакторам.

Магнитный контактор : Контактор имеет 3 типа контактов:

1) Главные контакты : Контактор имеет 3 главных (замыкающих) контакта, известных как L1, L2 и L3.

  • L1 подключен к фазе R через MCCB
  • L2 подключен к фазе Y через MCCB
  • L3 подключен к фазе B через MCCB
  • Точка 1 подключена к фазе R, а точка-2 подключена перегрузить точку реле Т1.
  • Точка 3 подключена к фазе Y, а точка-4 подключена к точке реле перегрузки T2.
  • Точка 5 подключена к фазе B, а точка-6 подключена к точке реле перегрузки T3.

2) Вспомогательные замыкающие контакты : вспомогательные замыкающие контакты 53 и 54 замыкаются при подаче питания на катушку.Он подключается через зеленую и красную кнопки.

  • Точка-53 подключается к кнопке запуска точки-96
  • Точка-54 подключается через кнопку остановки.

3) Вспомогательные нормально замкнутые контакты : нормально замкнутые контакты 95 и 96 реле перегрузки размыкаются, когда ток превышает определенный предел.

  • Точка-96 подключена к кнопке остановки.

Катушка реле : Точки катушки реле A1 и A2 подключены к источнику напряжения через OLR, кнопку пуска и кнопку остановки.

  • Точка A1 подключена к R-фазе из точки 1.
  • Точка A2 подключена к NC клемме реле перегрузки точки 95.

Реле перегрузки: Реле перегрузки имеет нормально подключенные клеммы T1, T2 и T3, который питает двигатель.

  • T1 подключен к точке 2 контактора.
  • T2 подключен к точке 4 контактора.
  • T3 подключен к точке 6 контактора.
Схема электрических соединений однофазного прямого пускателя:

Однофазный пускатель двигателя прямого тока может быть спроектирован с использованием тех же компонентов, что показаны на следующей схеме.

Single Phase Direct Online DOL Starter Wiring Diagram Single Phase Direct Online DOL Starter Wiring Diagram

Мы должны использовать все 3 полюса реле перегрузки, иначе дисбаланс из-за протекания тока только в 2 из них вызовет ненужное отключение.

Работа DOL-стартера:

DOL-стартер подключает 3-фазный источник питания i.е. R-фаза, Y-фаза и B-фаза к клеммам асинхронного двигателя.

На приведенной выше схеме стартера DOL есть два типа цепей; Схема управления и силовая цепь.

Цепь управления :

Она питается только от 2 фаз источника питания и отвечает за запуск и остановку питания, подаваемого на двигатель.

Зеленая кнопка пуска и красная кнопка останова подключены к цепи управления. Кратковременное нажатие на зеленую кнопку запускает двигатель, и питание подается, когда он отпускается.Нажатие на красную кнопку прекращает подачу питания и останавливает двигатель.

Нажатие кнопки пуска (зеленая) :

Зеленая кнопка подключена к источнику питания фазы B через точку 5 и точку 53, и она подключает его к точке-A2 катушки реле через точку 96- OLR. 95.

Нажатие зеленой кнопки замыкает контакты и подает напряжение на катушку реле, которая питает ее. Катушка перемещает контактор в закрытое положение, и питание подается на асинхронный двигатель.

Отпускание кнопки пуска (зеленой) :

Когда кнопка пуска отпущена, подача напряжения на катушку реле сохраняется. Подача напряжения подается от точки 54 контактора (замкнутое положение) через точку 95-96 OLR.

В случае перегрузки точка 95-96 OLR размыкается и обесточивает катушку для размыкания контакторов.

Нажатие кнопки останова (красной) :

После отпускания кнопки запуска нажатие на кнопку останова размыкает ее контакты и прерывает подачу напряжения на катушку реле.следовательно, катушка обесточивается, и контактор переключается в разомкнутое положение и прекращает подачу питания на двигатель.

Силовая цепь:

Силовая цепь отвечает за подачу питания на двигатель. Его задача — проводить большой ток, необходимый для питания двигателя. Переключение этой схемы контролируется схемой управления.

Принцип прямого пуска:

Пускатель с прямым подключением работает от полного напряжения или от сети, когда двигатель напрямую подключается к источнику полного напряжения.Поскольку нет снижения напряжения, пусковой ток очень высок, что приводит к высокому пусковому моменту.

Когда двигатель запускается, он потребляет большой ток, обычно в 5–6 раз превышающий его номинальный ток на полной скорости. Огромное потребление тока вызовет падение напряжения в сети. Постепенное увеличение скорости приведет к уменьшению тока, потребляемого от линий, но не ниже определенной скорости (обычно на 75%). Как только двигатель достигнет номинальной скорости, потребляемый ток и линейное напряжение вернутся в норму.

Поскольку dol обеспечивает высокий пусковой ток, двигатель создает высокий пусковой момент. Создаваемый крутящий момент также зависит от номинальной мощности двигателя. Нагрузка, подключенная к двигателю, влияет на ускорение и время, необходимое для достижения полной скорости. Если нагрузка, подключенная к двигателю, имеет высокий крутящий момент, чем крутящий момент, передаваемый двигателем, двигатель не будет ускоряться. И вам нужно заменить его на двигатель с большим пусковым моментом.

Также имейте в виду, что пусковой ток может повредить обмотки двигателя.Таким образом, двигатели малой мощности подключаются через пускатель DOL.

Характеристики, преимущества / недостатки и применение DOL Starter

Преимущества

  • Он очень прост в проектировании, эксплуатации и обслуживании.
  • Самый дешевый и экономичный стартер.
  • Имеет компактный дизайн и занимает меньше места.
  • Обеспечивает 100% пускового момента.
  • Схема управления (зеленая и красная кнопки) проста, и непрофессионал может ею управлять.
  • Понимание и устранение неисправностей в системе проще.
  • Соединяет треугольную обмотку двигателя.

Недостатки

  • Пусковой ток очень велик, поскольку в нем используется метод пуска при полном напряжении.
  • Пусковой высокий ток может повредить двигатель, поэтому следует использовать только двигатели с низким номиналом.
  • Высокий пусковой ток вызывает падение напряжения в линиях электропередач, что может быть опасным для других параллельно подключенных устройств.
  • В некоторых случаях высокий пусковой крутящий момент может быть ненужным.
  • Высокий пусковой момент вызывает механическое напряжение, сокращая срок службы самого двигателя.
  • Нет контроля пускового тока и крутящего момента.

Характеристики:

Ниже перечислены некоторые особенности пускателей прямого запуска;

  • Обеспечивает высокий пусковой ток.
  • Обеспечивает высокий пусковой момент.
  • Это вызывает падение напряжения в электросети.
  • Имеет самый простой механизм управления.
  • Подходит для двигателей малой мощности.

Приложения:

  • Пускатели DOL используются для двигателей с малой мощностью.
  • Где пусковой ток не повредит обмотки двигателя.
  • Для приложений, в которых пусковой ток не вызывает сильных провалов сетевого напряжения.
  • Устройства прямого пуска в режиме онлайн используются для небольших водяных насосов, конвейерных лент, вентиляторов и компрессоров.

Похожие сообщения:

.

Определение размеров деталей пускателя двигателя прямого тока (контактор, предохранитель, автоматический выключатель и реле тепловой перегрузки)

Рассчитайте размер каждой части пускателя двигателя прямого тока на напряжение системы 415 В, трехфазный асинхронный двигатель домашнего применения мощностью 5 л.с., код A, КПД двигателя Перед двигателем ставится 80%, частота вращения двигателя 750, коэффициент мощности 0,8 и реле перегрузки стартера.

Sizing The DOL Motor Starter Parts (Contactor, Fuse, Circuit Breaker and Thermal Overload Relay) Определение размеров деталей пускателя двигателя прямого тока (контактор, предохранитель, автоматический выключатель и реле тепловой перегрузки)

Базовый расчет крутящего момента двигателя и тока

  • Номинальный крутящий момент двигателя (момент полной нагрузки) = 5252xHPxRPM Номинальный
  • Момент двигателя (полный Момент нагрузки) = 5252x5x750 = 35 фунт-футов.
  • Номинальный крутящий момент двигателя (крутящий момент полной нагрузки) = 9500xKWxRPM
  • Номинальный крутящий момент двигателя (крутящий момент полной нагрузки) = 9500x (5 × 0,746) x750 = 47 Нм
  • Если мощность двигателя меньше 30 кВт, то пусковой момент двигателя равен 3x ток полной нагрузки двигателя или 2x ток полной нагрузки двигателя.
  • Пусковой момент двигателя = 3x Ток полной нагрузки двигателя.
  • Пусковой крутящий момент двигателя = 3 × 47 = 142 Нм.
  • Ток ротора блокировки двигателя = 1000xHPx, рисунок снизу Таблица / 1.732 × 415

Ток заторможенного ротора

900
Код Мин. Макс.
A 1 3,14
B 3,15 3,54
C 3,55 3,99
D 4,49
E 4.5 4,99
F 5 2,59
G 2,6 6,29
H 6,3 7,09
I 7,1 7,99
K 8 8,99
L 9 9,99
M 10 11.19
N 11,2 12,49
P 12,5 13,99
R 14 15,99
S 17,99
T 18 19,99
U 20 22,39
V 22.4
  • Согласно приведенной выше таблице Минимальный ток заторможенного ротора = 1000x5x1 / 1,732 × 415 = 7 А
  • Максимальный ток заторможенного ротора = 1000x5x3,14 / 1,732 × 415 = 22 А.
  • Ток полной нагрузки двигателя (линия) = кВтx1000 / 1,732 × 415
  • Ток полной нагрузки двигателя (линия) = (5 × 0,746) x1000 / 1,732 × 415 = 6 А.
  • Ток полной нагрузки двигателя (фаза) = Ток полной нагрузки двигателя (линия) / 1,732
  • Ток полной нагрузки двигателя (фаза) = 6/1.732 = 4А
  • Пусковой ток двигателя = от 6 до 7x ток полной нагрузки.
  • Пусковой ток двигателя (линия) = 7 × 6 = 45 А

1. Размер предохранителя

Предохранитель согласно NEC 430-52

Тип двигателя Предохранитель с выдержкой времени Предохранитель без временной задержки
Однофазный 300% 175%
3 фазы 300% 175%
Синхронный 300% 175 %
Ротор с обмоткой 150% 150%
Постоянный ток 150% 150%
  • Максимальный размер предохранителя с выдержкой времени = 300% x ток полной нагрузки .
  • Максимальный размер предохранителя с выдержкой времени = 300% x6 = 19 ампер.
  • Максимальный размер предохранителя без временной задержки = 1,75% x ток полной нагрузки.
  • Максимальный размер плавкого предохранителя без выдержки времени = 1,75% 6 = 11 А.

2. Размер автоматического выключателя

Автоматический выключатель в соответствии с NEC 430-52

Тип двигателя Мгновенное отключение Обратное время
Однофазный 800% 250%
3 фазы 800% 250%
Синхронный 800% 250%
Ротор с обмоткой 800% 150%
Постоянный ток 200% 150%
  • Максимальный размер автоматического выключателя с мгновенным срабатыванием = 800% x ток полной нагрузки.
  • Максимальный размер автоматического выключателя с мгновенным срабатыванием = 800% x6 = 52 А.
  • Максимальный размер автоматического выключателя с обратным срабатыванием = 250% x ток полной нагрузки.
  • Максимальный размер автоматического выключателя с обратным срабатыванием = 250% x6 = 16 ампер.

Реле тепловой перегрузки (фаза):

  • Мин. Тепловой Перегрузка Настройка реле = 70% x ток полной нагрузки (фаза)
  • Мин. Настройка реле тепловой перегрузки = 70% x4 = 3 А
  • Макс.Thermal Overload Настройка реле = 120% x ток полной нагрузки (фаза)
  • Макс. Настройка реле тепловой перегрузки = 120% x4 = 4 А

Реле тепловой перегрузки (фаза):

  • Настройка реле тепловой перегрузки = 100% x ток полной нагрузки (линия).
  • Уставка реле тепловой перегрузки = 100% x6 = 6 А

4. Размер и тип контактора

Применение Контактор Размыкающий конденсатор
Не- Индуктивная или слегка индуктивная резистивная нагрузка AC1 1.5
Мотор с контактным кольцом AC2 4
Мотор с короткозамкнутым ротором AC3 10
Rapid Start / Stop AC4 12
Включение электроразрядной лампы AC5a 3
Переключение электрической лампы накаливания AC5b 1,5
Переключение трансформатора AC6a 12
Переключение блока конденсаторов 12b 12b
Слабоиндуктивная нагрузка в домашнем хозяйстве или нагрузка того же типа AC7a 1.5
Нагрузка двигателя в быту AC7b 8
Герметичный мотор компрессора хладагента с ручным сбросом O / L AC8a 6
Герметичный мотор компрессора хладагента с автоматическим сбросом O / L AC8b 6
Управление активной и твердотельной нагрузкой с изоляцией оптопары AC12 6
Управление активной нагрузкой и твердотельной нагрузкой с изоляцией Т / К AC13 10
Контроль малой электромагнитной нагрузки (<72 ВА) AC14 6
Контроль малой электромагнитной нагрузки (> 72 ВА) AC15 10

Согласно приведенной выше таблице :

  • Тип контактора = AC7b
  • Размер главного контактора = 100% X полная нагрузка Текущий (Линия).
  • Размер главного контактора = 100% x6 = 6 ампер.
  • Включающая / отключающая способность контактора = значение, указанное в таблице, x ток полной нагрузки (линия).
  • Включающая / отключающая способность контактора = 8 × 6 = 52 Ампер.
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *