Схема настольной лампы дневного света 11 ватт: Схема настольного светильника дневного света 11вт

Содержание

Ремонт настольных ламп с люминесцентной лампой 11W

Данная настольная лампа представляет собой светильник, установленный, как правило, на струбцине, с возможностью его регулировки по горизонтали и вертикали. Монтаж осуществляется двумя способами:

  1. Тяжелое основание в пластиковом корпусе;
  2. Пластиковый настольный зажим.

Источником света является люминесцентная лампа мощностью 11W с цоколем G23 (2 штырька) или 2G7 (4 штырька)

Люминесцентная лампа 11W с цоколем G23
Люминесцентная лампа 11W с цоколем 2G7

Обычно светильник выходит из строя, из-за перегорания ПРА или ЭПРА. Замену этих комплектующих следует производить только совместимыми либо идентичными ЭПРА.

Electronic ballast HF-1251 YF-19 DX1222

Электромагнитное ПРА 11W

Электромагнитное ПРА 11W в настольной лампе
Электромагнитное ПРА 11W

Есть три варианта размещения ЭПРА (ПРА) в светильнике:

1. В верхней части:

2. В нижней части:

3. В отдельном блоке:

Ни в коем случае нельзя превышать мощность устанавливаемой лампы (11W) – это однозначно приведет к выходу из строя ЭПРА или ПРА. Так же будьте внимательны к поддерживающему креплению лампы в патроне. Оно, как правило, пластиковое, а при длительной эксплуатации становится весьма хрупким.

Расположение крепления на лампе

Расположение крепления в верхней части лампы
Сломанное крепление

Еще одно слабое место – это крепление верхней части к струбцине:

Крепление верхней части лампы к струбцине (белое)
Крепление верхней части лампы к струбцине (черное)

Расположение крепления на лампе

Расположение крепления в верхней части лампы
Сломанное крепление

Иногда переламывается электрический провод в месте входа его в лампу

Творческая мастерская “Светотень” производит ремонт настольных ламп с люминесцентной лампой 11W в Минске в кратчайшие сроки по адекватным ценам.


Гарантия на работы по ремонту настольных ламп с люминесцентной лампой 11W до 12 месяцев.

Варианты расположения ЭПРА на лампе

В верхней части лампы сверху

В нижней части лампы

В верхней части лампы снизу

Ремонт настольной лампы дневного света

Благодаря оригинальным дизайнерским решениям, настольные лампы сочетают в себе практичность и функциональность. Использование этих приборов обеспечивает дополнительный комфорт и снижает нагрузку на зрение. Однако иногда возникают ситуации, когда требуется ремонт настольной лампы дневного света. При наличии определенных электротехнических навыков, ремонтные работы вполне возможно выполнить самостоятельно.

Как отремонтировать лампу

Каждый светильник, в котором используются лампочки дневного освещения, состоит из нескольких основных элементов, связанных между собой. Поэтому выход из строя любого из них может стать причиной неисправности всего прибора. Следовательно, перед началом ремонта нужно определить неисправный элемент. При этом светильник должен быть обязательно обесточен. До этого момента запрещается касаться любых компонентов.

В обесточенном приборе нужно проверить наличие конденсаторов и подключенных к ним резисторов. После того как напряжение будет отключено, резисторы обеспечивают разрядку конденсаторов. Отсутствие тока проверяется вольтметром, после чего можно приступать к ремонту лампы. Следует помнить, что конденсатор, не имеющий резистора, разряжается с помощью отвертки с изолированной ручкой. После этого производится параллельное подключение резистора с минимальной мощностью 0,5 Вт, сопротивлением в 1 МОм.

Если при включении светильника происходит срабатывание автомата и обесточивание всей проводки, то вполне вероятно, что причина этого заключается в пробое конденсатора. В этом случае нужно произвести его замену на аналогичный элемент с соответствующими рабочими характеристиками. Как правило, в процессе ремонта выполняется проверка установленных конденсаторов. Для этого поочередно отсоединяются провода вместе с разряжающим резистором, после чего подключается омметр. Происходит отклонение стрелки прибора с ее последующим возвратом в исходное положение. После проведения проверки все соединения должны быть восстановлены.

В том случае, когда лампа не может включиться, причиной этому может быть изнашивание стартера. Иногда эта неисправность связана с обрывом дросселя. Для ее выявления производится поочередная проверка стартера, дросселя и лампы. Неисправную деталь необходимо заменить.

Некоторые модели светильников предусматривают использование двух последовательно соединенных ламп, замыкающихся на общий дроссель. Для каждой из них используется собственный стартер. Нормальная работа этих приборов возможна только в случае исправности обеих ламп и стартеров.

Мигание лампы свидетельствует о возможном износе ее или стартера. Для определения неисправного элемента нужно провести проверку с использованием нормальной лампочки и исправного стартера. Каждое включение завершается обесточиванием светильника и разрядкой конденсаторов. В самых новых моделях работа лампы вместо стартера и дросселя обеспечивается электронным преобразователем. Обычно производится его полная замена, а неисправный преобразователь отдается для ремонта квалифицированным специалистам.

Дроссель в дневных настольных лампах

Нередко возникает ситуация, когда лампа дневного света загорается практически мгновенно, но через определенное время на ее выходах начинает появляться потемнение. Обычно эта неисправность не всегда может быть своевременно замечена. Тем не менее, это указывает на скорый выход лампы из строя.

Одна из основных причин чаще всего связана с неисправностью дросселя. Пусковой и рабочий ток достигает величины, превышающей вольтамперную характеристику. При проверке значений этих токов могут быть обнаружены неисправные катоды.

О ненормальной работе дросселя свидетельствует наличие так называемой огненной змейки, образующейся внутри лампы. При включенной лампе, пространство между электродами уже не заполняется электрическим разрядом. Происходит значительное усиление тока, что приводит к неравномерности разряда. В этом случае также необходимо проверить пусковой и рабочий ток и сравнить полученные данные с вольтамперной характеристикой. По итогам проверки ремонт настольной лампы дневного света может потребовать замены дросселя.

Если же ток не превышает допустимого значения, значит, дроссель исправен, а замена требуется катодам или самой лампе. Проверить исправность лампы можно путем неоднократного включения и выключения света. Затем ее нужно развернуть на 120 градусов и вновь несколько раз зажечь и погасить свет. Если лампочка не загорелась, значит, она полностью неисправна.

Ремонт настольных ламп — Секрет Мастера

Автор Master На чтение 3 мин. Просмотров 33k. Опубликовано

На всех рабочих местах с компьютером, еще с прошлого века, всегда устанавливал настольную лампу «Дельта» с электронным запуском (балластом). Кроме удобной шарнирной стойки, питание вставляемой лампы с частотой ~40кГц не создавало мерцаний связанных с разверткой монитора и не утомляло зрение. Лампа весьма надежна, за 10 с лишним лет эксплуатации лампы дома, только на одном светильнике была заменена лампа, да и только по причине механического повреждения, но вот начались проблемы и с электронным блоком. Естественно решил заглянуть внутрь светильника и своими руками отремонтировать. Простая прозвонка  не выявила явных неисправностей. Поиск в интернете привел к многостраничному форуму по ремонту этого светильника. Перепаяв несколько конденсаторов, получил отрицательный результат – лампа не работает. Схема преобразователя светильника, судя по элементам, ни чем не отличается от балластов устанавливаемых в широко применяемых энергосберегающих лампах. Тут и пришла мысль извлечь электронику из энергосберегающей лампы и установить вместо электронного блока с недиагностируемой поломкой.

Марка светильникаШтатная платаПроводники к электродам

Пластмассовый корпус энергосберегающей лампы легко вскрывается поддеванием крышки с вклеенной лампой. Работайте осторожно: во первых стекло, во вторых, хоть и очень мало, но ртуть внутри стеклянной трубки присутствует,  а этот химический элемент в организме накапливается. Для ремонта можно использовать недорогую новую энергосберегающую лампу такой же мощности  или электронику извлеченную из не зажигающейся лампы. Остановлюсь подробнее на выборе сгоревшей лампы. Из моей практике 4/5 ламп не зажигаются по причине перегорания одной из двух разогревающих нитей (это по два проводка выходящие из торцов  газоразрядной трубки). После вскрытия лампы проверяем тестером исправность нитей. Если разрыва нет, то лампы обычно бракую в утиль. А если разрыв есть, то закорачиваю перемычкой прямо на плате эти два проводка, собираю лампу и включаю в сеть. С высокой вероятностью лампа загорится. После такого ремонта лампой можно пользоваться от нескольких недель до года. Рекорд до года у меня поставила настоящая фирменная лампа  Siemens.

Энергосберегающая лампаЛампа вскрытаПроводники

После такой проверки извлекаем плату запуска и подпаиваем вместо удаленного родного электронного блока. Если все присоединено правильно, то светильник будет работать! На фотографии видно, что одна из нитей накаливания уже перегорела и закорочена внешней перемычкой, что не мешает лампе работать на рабочем месте уже 2 год.

Подпаиваем сетевые проводаПроводники к электродамЛампа работает!

Ремонт энергосберегающих ламп своими руками: инструкция и советы

На сегодняшний день ассортимент энергосберегающих светильников очень большой. Но лишь лампа дневного света отличается своей удивительной практичностью и экономностью в потреблении электроэнергии. Ремонт энергосберегающих ламп своими руками возможен, если разобраться в принципе её работы.

Работа осветительного устройства

Люминесцентный светильник (ЛС) – это газоразрядный источник света, в котором, благодаря взаимодействию нитей накаливания и ртути образуется электрический разряд, создающий ультрафиолетовое свечение, которое с помощью люминофора преобразуется в видимый свет. Стоит отметить, что ток, который проходит по нитям, равномерно распределяется по контурам лампы, способствуя шунтированию, уменьшая накал, поэтому данные устройства не нагреваются, что является одним из преимуществ.
Существуют следующие виды люминесцентных осветительных устройств:
1. ЛС с дросселями и стартерами.
Люминесцентные светильники по массовости использования пребывают на пике своей популярности. Они способны экономит до 50% электроэнергии, в отличие от обычных светильников. Для максимального увеличения срока эксплуатационного периода и бесперебойной работы устройства, необходимо использовать такие элементы как стартер и дроссель.


Стартер, аналогично тому, который используют для автомобилей, играет роль пускового механизма. Он нужен, чтобы лампа начала работать. Зачастую, напряжение в момент зажигания значительно выше, чем в сети, поэтому необходим стабилизатор. Также, стартером замыкается и размыкается электронная цепь сети лампы.


Дроссель играет роль трансформатора и способен стабилизировать работу светильника. Он предохраняет люминесцентною лампу от перепадов напряжения и перегревов.

Данный вид характерен и неудобен тем, что при запуске они начинают мигать (данный эффект даёт стартер, он пропускает ток и постепенно разжаривает нити накаливания) первые 2-3 секунды бьют по глазам резкими вспышками света, а потом разжигаются и горят нормально.
2. Люминесцентные лампы без стартера с баланстником.
В отличии от предыдущего вида, в таких устройствах отсутствует стартер. Это позволяет избежать мерцания светильника в первые 2-3 секунды, а запустить его сразу же после включения. Рассматривая схему, можно заметить, что вместо стартера здесь стоит баланстник. Данный элемент относится к пускорегулирующим устройствам, которые ограничивают ток. Но если сравнивать баланстник и стартер, то последний лучше.

3. Энергосберегающие лампы.
Не редко обычные ЛС путают с энергосберегающими, а это не совсем так. Конечно, если сравнивать с лампами накаливания, то любая люминесцентная в разы превосходит их по сроку службы. Но если выбирать между разновидностями ЛС, то среди них есть лидеры продаж – энергосберегающие модели.

Отличительной особенностью этих светильников является их форма, диаметр трубки и пониженное содержание ртути. Благодаря тому, что колба светильника изогнута (за частую она имеет форму спирали), а диаметр – уменьшен, это позволяет экономить электроэнергию на розжиг нитей накаливания, но при этом освещать достаточно большую площадь.

Во всех видах ламп современного типа используют новые технологии, которые обеспечивают надежную обратную связь инвертора, что даёт возможность контролировать силу тока. Инверторы используются в ЭПРА (электронный пускорегулирующий аппарат), что гарантирует их большую долговечность, экономичность и практичность.

Схема энергосберегающих ламп

В зависимости от того, какая именно ЛС, существуют разные виды схем. Рассмотрим распространённую из них для энергосберегающих ламп, чтобы разобраться с её внутренними составляющими.

Рассмотрев рисунок, видно что цепи питания включают: L2 (помехозащищающий дроссель), F1 (предохранитель), четырёх диодных мостов 1N4007 и C4 (фильтрующий конденсатор). В свою очередь схема запуска включает следующие элементы: динистора, R6, D1 и C2, в этой же схеме D2, D3, R1 и R3 являются защитой сети. В некоторых лампах эти диоды не установлены.

Как только светильник включают, динистор, R6 и C2 пускают импульс, который подаётся на транзистор Q2, что позволяет его открыть. После этого, диод D1 блокирует эту часть. Далее транзисторы возбуждают TR1 (трансформатор), и таким образом на нити поступает напряжение. Трубка на резонансной частоте загорается и в этот момент напряжение на С3 (конденсаторе) достигает порядка 700 В. После того, как газ ионизируется, С3 (конденсатор) практически шунтируется.
Рассмотрев данную схему, можно разобраться с принципом работы ЛС и его составляющими.

Типичные поломки

Существуют два варианта, при которых лампа ломается:

Ремонт энергосберегающих ламп своими руками возможен, однако многие не рискуют проводить его, предпочитая попросту заменить сломавшееся оборудование. В то же время ремонтировать подобные светильники достаточно легко, главное – определиться с источником проблемы. Рассмотрим наиболее частые поломки.

Тип поломкиПричинаСпособ устранения
Постоянное морганиеПо тому, как мигает лампа, определяется  характер поломи или степень ее износа.

Первой причиной поломки может быть разгерметизация корпуса, что позволяет выходить из основной колбы химический газ, который и дает осветительный эффект.

Второй причиной такой поломки может быть перегоранием электродов, которые находятся внутри ламп.

Третий вариант, если после включения лампочка загорается, но при этом продолжает мерцать, чаще неисправность заключается неисправности таких составляющих компонентов как дроссель или стартер.

Четвёртым вариантом, по которому энергосберегающая лампа мигает после включения может быть даже простые перепады напряжения в сети. Несмотря на то, что практически каждая настольная или обычная лампа имеет защиту, бывают случаи, когда ее недостаточно.

Пятым вариантом может быть случай, когда греется проводка.

 

В большинстве случаев оптимальным вариантом является полная замена лампы.

Но на настольной лампе мощностью в 11 ватт устранить неполадки легко, когда она сразу же видна, тогда нужно заменить внутреннюю деталь и всё вернётся в норму.

Если же лампа горит одна за одной, обратите  внимание на дросселя, на которых мог произойти обрыв проводки. Стоит лишь восстановить проводку или заменить необходимый компонент, после чего проблема будет решена. Однако для этого следует обратить внимание, на такой фактор, как схема энергосберегающей лампы, которая рассматривалась выше.

Если допустить ошибку, то возникают  серьезные проблемы, решение которых потребует много времени и сил. Лучше проверять проводку на каждом этапе работ тестером. В таком случае настольную лампу 11 ватт легко проверить и ремонтировать.

НагарОсновным признаком износа или поломки может служить нагар, который вызван выгоранием спиралейПри наличии данного признака, восстановлению скорее всего лампа не будет подлежать. В таком случае в светильнике следует заменить лампу и он по-прежнему будет нормально функционировать.

 

Перегорание нитей накаливанияОсновные причины неполадок осветительных приборов:

—                   проблемы в пускорегулирующем аппарате;

—                   старение лампы;

—                   износ основных пускорегулирующих соединений.

 

Нити сложно спаять самому в домашних условиях, легче заменить данный компонент лампы.

 

При первом запуске светильника может произойти проблема разрыва цепи в стартерЭто связано с тем, что когда происходит прохождение тока в светильнике, оно является недостаточным для нормального всплеска в ионизации молекул газа. Эта проблема возникает при малом напряжении в сети.В этом случае стоит направить свои усилия по нормализации напряжения в системе распределения электроэнергии.

 

После включения лампы, автомат полностью выбивает всю проводку.Причина, кроется в том, что пробит конденсатор,  который подключен  параллельно сети.Такой конденсатор нужно тут же заменить, заодно проверив остальные компоненты с помощью омметра.
Лампа не включаетсяПричиной того, что лампа не включается может быть обрыв дросселя или собственно поломка самой лампы.

 

Для начала — проверить непосредственно дроссель омметром. В случае, когда обрыв не был обнаружен — заменить стартер, и попробовать включить лампу. Если предыдущий вариант не помог, следует проверить саму лампу дневного света. Внимание стоит уделить на нити накаливания. В случае перегорания нити —  закоротить ее. Однако не стоит повторять этот процесс сразу с двумя нитями, ведь в таком случае перегорит дроссель.

Также данная проблема может свидетельствовать об неисправности в светильнике при ее старении. Это неисправности в проводке светильника, в патронах подключения ламп и стартера. В этом случае надо рассмотреть вопрос о целесообразности ремонта светильника.

Советы перед началом ремонта

Совет 1. Перед тем как приступить к осмотру светильника на наличие дефектов и поломок следует подготовить для себя рабочее место и взять инструменты: набор отвёрток, изолента, кусачки, мультиметр (тестер), он измеряет напряжение, тока и сопротивление, а некоторые виды проверяют и конденсаторы, диоды и транзисторы. Данный прибор позволяет проверить дроссель, стартер и непосредственно саму колбу лампы. В большинстве случаев причина кроется в этих элементах, однако возможен вариант с перегоранием вольфрамовой нити накалывания, но это бывает реже. Если таких инструментов нет, то их легко можно купить в любом строительном магазине.

Совет 2. Следует изучить модель лампы и разобраться в её структуре, так как из-за неосведомлённости в этом вопросе можно не вскрыть светильник, а попросту сломать его. На цоколе каждого ЛС указан производитель и модель, поэтому можно легко узнать эту информацию.

Совет 3. Обязательно придерживаться техники безопасности, так как ЛС имеет незначительное количество ртути. Поэтому всё следует делать предельно осторожно.

Отремонтировать балансника своими руками

Отремонтировать лампу своими руками

Ремонт ЛС в домашних условиях предполагает наличие минимальных знаний в электроприборах. Схема энергосберегающей лампы главное условие, при устранении поломок осветительного прибора самостоятельно.
Выше было перечислено основные причины имеющихся неисправностей в лампах дневного света. После того как причина была определена нужно приступать к ее исправлению.
1. Первое и самое главное – обесточьте светильник. Вскрываем лампу. Разбираем корпус и смотрим на внешние дефекты и неисправности, которые заметны невооружённым взглядом. Открывается лампа отверткой, после чего выясняется основная причина неисправности.

2. После вскрытия необходимо разглядеть компоненты лампы.

3. Осматриваем плату и замечаем на ней видимые повреждения, они и могут является причиной поломки.

Как видно на рисунке, стрелочками показаны места пригорания платы. Это означает, что где-то происходит замыкание схемы при включении лампы.
Если же плата в порядке продолжаем осмотр других деталей.
4. Следующим проверяем предохранитель. Найти его не составит труда, одним концом он припаян к плате, а вторым к цоколю. Если он повреждён или контакты не припайные, то причина поломки в предохранителе.
5. Следующий на очереди проверки – резистор. Для определения неисправности в этой части лампы, необходимо воспользоваться мультиметром и провести им замер. В случае нормальной работоспособности резистора, мультиметр покажет сопротивление 10 Ом, в не работающем случае – покажет единицу.

6. Следующим на очереди осмотра – нити накаливания.

Если нити отсоединены от платы или же на них налёт (следы горения), то вся проблема не работоспособности лампы кроется именно здесь.
После того, как поломка была определена, следует её устранить. Самостоятельно разбирать каждую запчасть и пробовать её паять или что-то делать – не вариант, так как на это пойдёт много усилий, а результата может не быть вовсе. К примеру, если проблема кроется в нитях накаливания, то следует заменить данную часть светильника, так как спаивать самостоятельно или ремонтировать их – дело не из лёгких и даже опытный специалист не всегда может справиться с данной задачей. Поэтому не стоит тратить на это время.
Все составляющие ЛС можно приобрести в любом специализированном строительном магазине. Если поломка была определена, а точной модели той детали, которая вышла из строя узнать не удалось из-за нагара или других причин, то квалифицированные сотрудники магазина помогут подобрать именно то, что нужно.

Вывод один – после того как причина была выявлена, стоит заменить неисправную часть, и лампа будет снова радовать вас своим ярким светом.

РЕМОНТ И ПЕРЕДЕЛКА ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП

РЕМОНТ И ПЕРЕДЕЛКА ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП

ЭНЕРГОСБЕРЕГАЮЩАЯ ЛАМПА ОТ 12В

    Мотал на глаз и на память интерпритируя размер сердечников, по схеме непрерывной обмотки. Первой намотал коллекторную обмотку 10 витков проводом 0.4мм, второй базовою 6 витков проводом 0.2мм, проложил слой изоляции намотал внахлест нагрузочную обмотку проводом 0.1 получилось около 330-340 витков. В нагрузку подключил лампу от сканера 7w, устройство сразу заработало, чему свидетельствовал исходящий от лампы свет. Рядом лежала 13-ваттная энергосберегающая лампа со сгоревшей спиралью, решил попробовать осилит это детище подобную нагрузку, был приятно удивлен, при токе в пол ампера при напряжении 12 вольт лампа светит достаточно ярко.

    Так же работает от двух литий-ионных аккумуляторов, правда потребляя на 150 ма больше. Во едино спаял навесным монтажом (4 деталюги) и все это чудесным образом разместилось в оригинальном корпусе из под балласта на 220.

    Транзистор не особо греется, через пять минут работы на нем можно держать палец. Теперь эта конструкция поедет прямиком на дачу, где как обычно постоянно перебои с электричеством, можно будет чай попить или постель разложить при дневном свете.

 

Что можно сделать, если у Вас сгорела компактная люминесцентная лампа

    Хотя на эконом лампы, в зависимости от производителя, существует гарантия и даже до 3-х лет. Но потребители могут столкнуться с тем что лампочка перегорела, а у вас не сохранилась упаковка, чек покупки, магазин переехал в другое место т.е по каким-то независящим от вас причинам вы не можете обменять поломанную вещь. Мы решили предложить Вам воспользоваться оригинальным решением по использованию, перегоревших эконом ламп которое мы нашли на просторах огромного Интернет-ресурса и предлагаем его Вам.

    Помните, вы подвергаете жизнь опасности, попав под напряжение 220В!

    Проще всего её выбросить в мусор, ну а можно из неё сделать … другую, а если ламп сгоревших накопилось несколько, то можно заняться и …. ремонтом.
    Если вы хотя бы раз держали паяльник в руках, то эта статья для Вас.
    Вы сделать самостоятельно электронный баласт для ламп дневного света и включить лампу до 30 Ватт, без стартёра и дросселя, с помощью маленькой платки снятой с нашей эконом лампы. При этом она будет зажигаться мгновенно, при понижении напряжения не будет ‘Моргать’.

    Данная лампа перегорает двумя способами:
    1) горит электронная схема

    2) перегорает спираль накала

    Для начала выясняем, что же произошло. Разбираем лампу (очень часто собраны на защелках, более дешовые варианты склены).

    Отключаем колбу, откусываем провода питания:

    Прозваниваем накалы колбы (для принятия решения выбросить колбу или нет)

    Мне не повезло, перегорели обе спирали накала (первый раз в моей немалой практике, обычно одна, а когда сгорает схема то и ни одной). В общем если хотя бы одна сгорела колбу выбрасываем, если нет, то она рабочая, а сгорела схема.
    Рабочую колбу отлаживаем на хранение (до следующей сгоревшей экономки) и потом к рабочей схеме цепляем колбу. Так из нескольких делаем 1, а может и больше (как повезёт).
    А вот вариант изготовления лампы дневного света. Можно подключить, как и 6 Ваттную лампу с «китайского» фонаря (например, я обмотал её пластиком с зелёной бутылки, а схему спрятал в сгоревшее зарядное устройство, от мобильного телефона и получилась классная подсветка для аквариума) так и 30 Ваттную лампу дневного света:

 

Можно ли отремонтировать электронный балласт?

    Люминесцентные лампы с электронным балластом сегодня можно встретить повсеместно. Очень популярны настольные лампы с прямоугольными плафонами и двухколенным держателем. Во всех магазинах электротоваров уже продаются лампы, вворачиваемые в обычные патроны с круглой резьбой вместо классических ламп накаливания. В частности, петербургский метрополитен в последнее время напрочь избавился от ламп накаливания, заменив их люминесцентными. Преимущество таких ламп очевидно — продолжительный срок службы, низкое потребление электроэнергии при высокой светоотдаче (достаточно сказать, что 11-Ваттная люминесцентная лампа заменяет 75-Вт лампу накаливания), мягкий свет со спектром, близким к естественному солнечному свету.
    Ведущими производителями люминесцентных ламп являются фирмы Philips, Osram и некоторые другие. К сожалению, на отечественном рынке имеется достаточно китайских ламп низкого качества, которые выходят из стоя гораздо чаще, чем их фирменные собратья. Подробный рассказ об электронных балластах, о принципах работы, преимуществах, схемотехнических решениях есть в книге «Силовая электроника для профессионалов и любителей». Раздел книги называется «Балласт, с которым не утонешь. Новые методы управления люминесцентными осветительными лампами». Поэтому читатели, которым необходимо получить первоначальные
сведения об электронных балластах, могут обратиться к книге, ну а здесь рассматривается достаточно частный вопрос ремонта вышедших из стоя ламп.
    История появления этой статьи связана с приобретением автором лампы неизвестной фирмы (фото 1). Данная лампа безотказно работала в люстре несколько месяцев, однако по истечении этого времени она просто перестала зажигаться. Ничего не оставалось сделать, как разобрать лампу, аккуратно (с боков) поддев тонкой отверткой корпус (он состоит из двух половинок, скрепляющихся между собой тремя выступами-защелками).

    Разобранная лампа показана на фото 2. Она состоит из круглого цоколя, схемы управления (собственно электронного балласта) и пластмассового кружка, в который вклеена трубка, которая дает свет. При разборке лампы следует соблюдать осторожность, чтобы, во-первых, не разбить баллон и не повредить себе руки, глаза и прочие части тела, а во-вторых, чтобы не повредить электронную схему (не оторвать «дорожки») и корпус (пластмассовый).

    Исследования, проведенные с помощью мультиметра, показали, что в баллоне лампы перегорела одна спираль. На фото 3, которое получено уже после вскрытия баллона, видно, что спираль перегорела, затемнив люминофор в окрестностях. Было сделано предположение, что с электронным балластом ничего не случилось (это позже подтвердилось). С большой долей уверенности можно утверждать, что нить лампы — самое слабое место, и в подавляющем большинстве вышедших из стоя ламп будет наблюдаться скорее перегорание нити, нежели выгорание электронной части схемы.
    Кстати, об электронной схеме электронного баласта. Она показана на фото 4. Схема перерисована с печатной платы. Кроме того, на ней не показаны некоторые элементы, не затрагивающие основ работы балласта, а также не приведены номиналы. Балласт лампы представляет собой двухтактный автогенератор полумостового типа с насыщающимся трансформатором. Такой автогенератор хорошо описан в книгах и дополнительных пояснений не требует. На входе установлен диодный мост VD1-VD4 с фильтром С1, С2, L1. Конденсатор C1 препятствует проникновению высокочастотных помех в питающую сеть, конденсатор C2 служит фильтром сетевых пульсаций, дроссель L1 ограничивает пусковой ток и фильтрует ВЧ помехи. Дроссель L2 и конденсатор C3 являются элементами резонансного контура, напряжение в котором «зажигает» лампу. Конденсатор C4 — пусковой. Понятно, что при обрыве одной из нитей лампа уже не загорится.

    Очень важный элемент схемы — предохранитель F1. Если в схеме электронного балласта что-то случится (например, «выгорят» транзисторы полумоста, создав «сквозной» ток, или пробьется конденсатор C1, С2, или пробьется диодный мост), предохранитель защитит сеть от короткого замыкания и возможного пожара. На фото 5 этот предохранитель показан.

    Он представляет собой колбочку без классического держателя с длинными выводами, один из которых припаян к цоколю, а другой, к печатной плате балласта. Так что если предохранитель перегорел, скорее всего, что-то случилось в схеме балласта, и нужно проверять его элементы. А если нет, балласт наверняка цел.
    Самое интересное, что такую энергосберегающую лампу можно отремонтировать, и обойдется это дешевле, чем приобрести новую лампу. Она будет выглядеть, конечно, не так красиво, как промышленная, но вполне прилично (если все делать аккуратно). Итак, нужно приобрести сменный элемент для настольной лампы, например, такой, как показан на фото 6. Производителем этой лампы является итальянская фирма Osram, мощность лампы — 11 Вт, что соответствует 75 Вт лампы накаливания.

    На коробочке лампы есть интересная информация о потребляемой мощности других ламп, а также по надежности. Данная лампа мощностью 9 Вт заменит 60-Ваттную лампу накаливания, 9 Вт — 40- Ваттную, а 5 Вт — 25-Ваттную. Гарантированное время наработки на отказ — 10000 часов, что соответствует 10 лампам накаливания. Это — примерно 13 месяцев непрерывной работы. Цоколь дампы должен содержать четыре вывода, то есть две спирали (фото 7). У данной лампы правые два вывода относятся к одной спирали, левые два — к другой спирали. Если расположение спиралей неочевидно, всегда можно разыскать нужные выводы с помощью мультиметра — спирали имеют низкое сопротивление порядка нескольким Ом.

    Выводы лампы необходимо осторожно, не допуская перегрева, облудить припоем.

    Теперь займемся подготовкой основания, к которому будем крепить лампу. Кружок, похожий на имеющийся, залитый белой массой (фото 8), нужно изготовить новый и напильником подготовить площадку, к которой будет приклеена лампа (фото 9). Колбу лампы разбивать категорически не рекомендуется.

    Дальше лучше проверить, как зажигается лампа. Подпаиваем выводы лампы к балласту (фото 11) и включаем балласт в сеть. Для приработки стоит его потренировать, включая-отключая несколько раз и выдержав во включенном состоянии несколько часов. Лампа светится достаточно ярким светом, и при этом греется, поэтому ее лучше положить на дощечку и накрыть несгораемым листом. Когда тренировка проведена, разбираем эту конструкцию и начинаем монтаж лампы.

    Берем тюбик суперклея «Момент» и наносим на сопрягаемые поверхности несколько капель. Потом вставляем выводы в отверстия и плотно прижимаем детали друг другу, выдерживая полчаса в таком виде. Клей надежно «схватит» детали (фото 10). Лучше использовать этот клей, или дихлорэтан, поскольку для надежного крепления пластмасса в сопрягаемом месте должна немного расплавиться.

    Осталось собрать лампу. Впаиваем балласт в цоколь, не забыв о предохранителе. Заранее (до впайки) нужно припаять четыре провода, которыми лампа будет связана с балластом. Подойдет любой провод, ну лучше, чтобы это был провод типа МГТФ во фторопластовой термостойкой изоляции (фото 12). Собирается лампа тоже просто — достаточно уложить провода внутри цоколя, или скрутить их жгутиком, и затем защелкнуть фиксаторы. Отверстия от прошлого баллона в целях электробезопасности лучше заклеить кружочками, ввырезанными из упаковки от молочных продуктов.

    Отремонтированная лампа готова (фото 13). Ее можно ввернуть в патрон.
    В заключение отмечу, что можно достаточно просторно фантазировать на тему электронных балластов. К примеру, вставить лампу в красивый светильник и подвесить его к потолку, используя части от сгоревшей лампы.

ИЗГОТОВЛЕНИЕ БЛОКОВ ПИТАНИЯ ИЗ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП

 


Адрес администрации сайта: [email protected]
   

 

Трансформаторный дроссель к настольной лампе. Подключение люминесцентных ламп с дросселем

Люминесцентные светильники намного экономнее ламп накаливания по электропотреблению, поскольку меньше тратят на образование тепла. Свет от них более рассеянный и может быть выбран по цвету в широком диапазоне, хотя наиболее популярны светильники белого дневного спектра.

Что касается недостатков люминесцентных ламп, то для их работы необходимы дополнительные устройства, обеспечивающие высокое напряжение до и ограничение тока после розжига.

Внутри лампы имеется азот, а как известно любой газ является плохим проводником электрического тока. Чтобы облегчить ионизацию газа внутрь закачивают небольшое количество паров ртути. Но для начального пробоя всё равно требуется напряжение выше сетевого. Также для облегчения пробоя внутри делаются спирали, которые во время первых секунд пуска накаляются и испускают массовый поток электронов из металла в газ.

Простое подключение лампы дневного света к сети 220 В не подойдет. Так как при таком подключении, во-первых, не может создаться импульс повышенного напряжения, необходимый для стартового розжига этого источника света; во-вторых, даже если лампа запустится, при искрении в розетке, то сразу же перегорит. Светящаяся лампа с плазмой внутри имеет отрицательное дифференциальное сопротивление, и за неимением в цепи другого импеданса, через неё течет ток короткого замыкания. Поэтому уже давненько придумали простую и надежную схему подключения с дросселем и стартером. Первым по этой схеме срабатывает стартер.


Стартер

Маленький бочонок внутри представляет собой газоразрядную лампу с нормально разомкнутыми биметаллическими электродами с параллельно соединенным конденсатором малой емкости 0,003–0,1 мкФ. Крошечный конденсатор растягивает скачок напряжения по фронту, чтобы хватило времени на создание газового разряда в лампе, а также он подавляет радиопомехи от замыкания электродов стартера.

Для запуска люминесцентной лампы требуется создать тлеющий разряд внутри неё. Тлеющий разряд случается при нагреве нитей лампы до температуры 800–900 градусов, когда через газ начинает проходить электрический ток порядка 30 мА. Только благодаря стартеру и происходит кратковременный накал спиралей при замыкании его внутренних электродов.

При размыкании биметаллических электродов стартера в работу подключается дроссель.

Дроссель

Катушка, включенная как электромагнитный балласт, ограничивает силу переменного тока, протекающего через неё за счет индуктивного сопротивления. Что спасает люминесцентную лампу от короткого замыкания, после того как в ней произойдет зажигание плазмы.

Дроссель крайне важен для запуска лампы, поскольку в предложенных схемах только он может повысить напряжение. Всё благодаря внутренней самоиндукции катушки. После того как электроды стартера размыкаются, дроссель выдает накопленную ЭДС импульсом на концы лампы.

Конденсатор

Электрическая емкость, подключенная на входе питания светильника, гасит реактивную мощность, которую всегда при работе тянет дроссель. Светильник без этого сетевого фильтра заработает, но будет потреблять больше электроэнергии из сети.

Конденсатор по напряжению следует подбирать с запасом выше сетевого, по емкости его выбор производится в зависимости от мощности люминесцентной лампы:

  • 2 мкФ — от 4 до 15 Вт;
  • 4 мкФ — от 15 до 58 Вт;
  • 7 мкФ — от 58 Вт до 100 Вт.

В случае подсоединения одной люминесцентной лампы подбирать элементы просто: лампа мощностью 40 Вт, значит и дроссель на 40 Вт, а стартер на напряжение 220 В.

При подсоединении двух ламп до одного дросселя, к работе нужно отнестись повнимательнее. В этом случае для двух 40 ваттных ламп нужен дроссель мощностью не ниже 80 Вт, также следует найти два стартера на напряжение 127 В. Если детально разобрать схему, то станет очевидно, что оба стартера соединены последовательно, следовательно, на каждый из них приходится лишь половина сетевого напряжения.

Предложенное тандемное подключение имеет лишь один недостаток — при выходе из строя одной лампы, вторая тоже перестанет работать.

Одним из наиболее часто встречаемых осветительных приборов, особенно в помещениях общественного назначения, является лампа дневного света. Такие осветительные изделия благодаря своему строению получили широкое применение в самых разнообразных сферах человеческой деятельности.

Но бывают ситуации, когда такие светильники выходят из строя и их нужно проверить на предмет обнаружения поломки. При этом очень большую роль в работоспособности такой осветительной продукции играет дроссель. О том, что и где следует искать, а также причем здесь мультиметр, расскажет наша статья.

Какое строение имеют источники светового потока

Дневное освещение является самым экономичным вариантом в плане освещения. При этом оно лучше всего подходит для глаз, благодаря чему служит отличной альтернативой всем существующим на сегодняшний день вариантам подсветки помещений.
Для создания дневного света сегодня используются различие виды люминесцентных ламп. Такие лампы могут классифицироваться по оттенку и яркости излучаемого света:

  • теплый белый;
  • холодный белый;
  • желтоватый тон.

Дроссель

Но для повышения их безопасности во время работы принято использовать специальный прибор – дроссель. Им оснащены все лампы дневного света.

Обратите внимание! Покупая светильник дневного света, обязательно поинтересуйтесь у продавца гарантией и другой сопроводительной документацией на приобретаемое изделие. Так вы точно купите качественный прибор для своих нужд.

Что же представляет собой дроссель? Внешне дроссель имеет вид катушки индуктивности, у которой имеется специальный ферримагнитный сердечник. Это такая деталь, которая необходима для стабильной работы любой лампы при создании дневного света. По сути, дроссель входит в состав энергосберегающего источника света, установленного в светильнике. При его неисправности или падении работоспособности на концах лампы появляются почернения. В задачи данной детали входит контроль напряжения, создаваемого на выходных контактах энергосберегающего источника света.
Очень часто дроссель входит в состав люминесцентных ламп. Здесь, для того чтобы источник дневного света не погас, создается балласт. Он способен поддерживать в контактах осветительного прибора ток на требуемом уровне.

Обратите внимание! По существующим на сегодняшний день стандартам, такой балласт нужно подключать последовательно. Затем к нему параллельно подсоединяют стартер. Он ответственен за зажигание лампы.

Такое строение и способ подключения играет важную роль в работоспособности лампы, используемой для создания дневного света в помещении. Поэтому если имеются неисправности, то в первую очередь нужно проверить дроссель. О том, как это сделать мы расскажем несколько ниже.

Люминесцентные светильники: строение и принцип работы

Чтобы понять, почему лампы дневного света перестали работать, необходимо быть знакомым с их конструкцией, а также принципом работы. Это нужно для того, чтобы по косвенным признакам проверить их работоспособность и определиться с вариантами починки.
На данный момент в продаже существует несколько типов люминесцентных ламп. Но все они имеют одинаковое строение.


Строение люминесцентной лампы

Такие источники дневного света в своей конструкции обязательно содержат стеклянную колбу различной формы. В ней находятся спиральные электроды и инертный газ (пары ртути).
Сверху колба покрыта специальным слоем из люминофоров.
Принцип работы лампы таков:

  • при поступлении электрического тока на электроды (спирали) они нагреваются;
  • в результате нагревания спиралей происходит зажигание газа;
  • под действием него начинает светиться люминофор.

Из-за того, что электроды имеют ограниченные размеры, имеющегося в сети напряжения недостаточно для розжига электродов. Вот для этого и используют дроссель. А чтобы предотвратить чрезмерный перегрев спирали в лампы устанавливают стартер. Он после зажигания газа запускает процессы, приводящие к отключению накала электродов.


Принцип работы люминесцентной лампы

Первым в работу вступает стартер. Его роль сводится к прогреванию биметаллических электродов. В результате этого наблюдается их короткое замыкание. Затем ток в цепи, ограниченный только внутренним сопротивлением дросселя, резко увеличивается (более чем в три раза). Электроды быстро разогреваются. В то же время у стартера его биметаллические контакты остывают и размыкают цепь запуска. Во время разрыва электрической цепи наблюдается эффект самоиндукции, который приводит к высоковольтному импульсу. Он и обеспечивает в среде инертного газа электрический разряд. Под влиянием созданного разряда формируется видимое ультрафиолетовое свечение находящихся в колбе паров ртути.
В дальнейшем при работе лампы происходит равномерное распределение электрического тока, а дроссель обеспечивает ее стабильную работу.

Какие неисправности возможны и как их устранить

В ситуации, когда уровень освещения, которое дают лампы дневного света, перестал быть стабильным, нужно искать причины дабы выяснить, подлежит ли источник света ремонту или нуждается в замене.

Обратите внимание! Поверку ламп дневного света (мультиметром) следует начинать со стартера или дросселя, так как это два наиболее важных элемента источника света.

Стоит отметить, что чаще всего из строя выходят стартеры. Поэтому проверить в первую очередь нужно именно их. У него обычно ломается конденсатор, который подключается параллельно источнику света. Делая замену конденсатора, необходимо учитывать напряжение, на которое рассчитан этот элемент. Здесь нет универсального решения и каждый случай нужно оценивать отдельно.
А вот дроссель ломается гораздо реже. Хотя такая ситуация не является исключением. Дроссель может престать функционировать из-за того, что произошел обрыв его обмотки. Это связано с тем, что при межвитковом замыкании данный элемент сильно нагревается. При этом можно почувствовать характерный запах, который источает горелая изоляция. В такой ситуации через некоторое время источник дневного света также выйдет из строя.


Почернение лампы

Также очень часто поломка люминесцентной лампы происходит из-за перегорания вольфрамовой спирали. Это вообще самая распространенная причина выхода источника света из строя.

О неисправности дросселя или постепенному, но верному перегоранию вольфрамовой спирали свидетельствует появление на концах изделия почернений разной площади. Если такие пятна появились, то лампе осталось функционировать уже чуть-чуть, и она подлежит замене в ближайшее время.
Но это все лишь домыслы, так как для определения причины поломки нужно прибегать к помощи специального прибора – мультиметра.

Как проводится проверка работоспособности ламп

Мультиметр

Проверка источника света сводится к тому, чтобы убедиться в сохранности целостности спирали с обеих сторон колбы. Для этих целей можно использовать цифровой мультиметр или тестер.*

Обратите внимание! Многие модели мультиметров оснащены функцией звуковой прозвонки. Вместо нее можно включить наименьший предел измерения сопротивлений.

Если прибор выдал значение (например, 10 ом), то лампа целая и нити не перегорели. А вот если мультиметр выдает полный обрыв, то нить перегорела.

Дополнительным визуальным способом определить неисправность дросселя, без помощи измерительного прибора, является наличие эффекта «огненной змейки». Она периодически «вьется» по колбе. Ее появление демонстрирует факт того, что ток в источнике света превышает свои допустимые значения. Поэтому электрический заряд стал нестабильным. В такой ситуации мультиметром нужно проверить вольт-амперные характеристики источника света. Если будут выявлены даже незначительные несоответствия с заданными производителями параметрам, то необходимо менять дроссель.

В данной ситуации проверка проводиться следующим образом:

  • два провода, идущие от дросселя, нужно отсоединить;
  • их соединяем с цоколем рабочей контрольной лампы;
  • подключаем полученную конструкцию к электросети.

Если люминесцентный осветительный прибор загорелся в полную силу, то значит дроссель исправен и причина поломки кроется в другом.
Самостоятельно ремонтировать устройство источников света дневного типа можно только людям, имеющим необходимые знания, а также набор инструментов. Заменяя дроссель нужно обязательно отключить осветительный прибор от сети электропитания.
Обратите внимание! Помните, что просто нажав на выключатель, вы не сможете полностью обесточить светильник. Напряжение в нем все равно останется.
При ремонте внимательно следите за схемой подключения определенных элементов устройства прибора, а также обязательно используйте мультиметр для проверки конечного результата ремонтных работ.

Заключение

При неисправности дросселя, находящегося в составе лампы дневного света, можно и нужно использовать такой измерительный прибор, как мультиметр. С его помощью вы сможете быстро и эффективно не только обнаружить причину поломки, но и своими руками провести необходимые ремонтные действия.

Проверка диодов мультиметром: тонкости от мастеров

К сожалению, даже подключенные к современной (ЭПРА) люминесцентные лампы перегорают. Такое случается с большими светильниками, и с компактными люминесцентными лампами (КЛЛ), более известными как экономлампы. И если сгоревшую электронику починить можно, то попросту выбрасывают.

Понятно, что если у лампы, подключенной до дросселя со стартером или к ЭПРА, перегорит одна из нитей накала, то светильник уже не включится. Кроме того, старая «брежневская» схема подключения имеет ещё несколько недостатков: затяжной запуск стартером, сопровождающийся раздражающими миганиями; мерцание лампы с удвоенной частотой сети.

Однако выход прост — запитать люминесцентную лампу не переменным, а постоянным током, и чтобы не использовать капризные стартеры, нужно приложить при запуске повышенное напряжение сети. Таким образом, мало того, что источник света перестанет мерцать, но и после подключения по новой схеме даже перегоревшая люминесцентная лампа проработает ещё не один год.

Для запуска с умноженным напряжением сети не понадобится нагревать спирали — электроны для начальной ионизации будут вырваны уже при комнатной температуре, даже из перегоревших спиралей. Так как не нужен нагрев до температуры 800–900 градусов для тлеющего стартового разряда, то резко продлевается срок службы любой люминесцентной лампы, и с целыми спиралями. После запуска, кусочки нитей становятся теплыми за счет стабильного потока электронов. Простейшая схема, имеющая эти преимущества, следующая:

На рисунке показана схема двухполупериодного выпрямителя с удвоением напряжения, здесь лампа загорается мгновенно

При подключении по такой схеме нужно соединить вместе оба внешних вывода каждой нити накала лампы — без разницы, перегоревшие они, или целые.

Конденсаторы С1, С4 нужны неполярные с рабочим напряжением более чем в 2 раза больше сетевого (например, МБМ не ниже 600 вольт). В этом и есть главный минус схемы — в ней применяются два конденсатора большой емкости, на высокое напряжение. Такие конденсаторы имеют значительные габариты.

Конденсаторы С2, С3 тоже нужны неполярные и желательно, чтобы они были слюдяными на напряжение 1000 В. На диодах Д1, Д4 и конденсаторах С2, С3 напряжение подскакивает до 900 В, чем обеспечивается надежное зажигание холодной лампы. Также эти две емкости способствуют подавлению радиопомех. Светильник можно зажечь и без этих конденсаторов и диодов, но с ними включение становится более безотказным.

Резистор нужно намотать самостоятельно из нихромовой или манганиновой проволоки. Рассеиваемая на нем мощность значительна, так как светящаяся люминесцентная лампа не имеет своего внутреннего сопротивления.

Подробные номиналы элементов схемы в зависимости от мощности светильника приведены в таблице:


Диоды можно использовать необязательно указанные в таблице, а аналогичные современные, главное, чтоб они подходили по мощности.

Чтобы зажечь неподдающуюся лампу на один из концов наматывают колечко из фольги и соединяют его проводком со спиралью на противоположной стороне. Такой ободок шириною в 50 мм вырезается из тонкой фольги и приклеивается к колбе лампы.

Следует заметить, что люминесцентная лампа вовсе не предназначена для работы на постоянном токе. При таком питании световой поток от неё со временем ослабевает из-за того, что пары ртути внутри трубки постепенно собираются возле одного из электродов. Хотя, восстановить яркость свечения достаточно легко, нужно лишь перевернуть лампу, поменяв местами плюс с минусом на её концах. А чтобы вовсе не разбирать светильник, имеет смысл заранее установить в нем переключатель.

Экономки или лампы дневного света встречаются сегодня практически в каждом доме. С их помощью можно хорошо экономить на электроэнергии. Но здесь экономия соседствует с достаточно сложной конструкцией такой продукции.

Дроссель для лампы люминесцентного типа

Достаточно важным компонентом устройства люминесцентных ламп является дроссель. Данная статья расскажет о том, что собой представляет этот элемент, а также какова схема его подключения к лампе дневного света.

Особенности экономки

Лампа дневного света представляет собой газоразрядное устройство, которое является более усовершенствованной лампочкой накаливания. В связи с этим в ее конструкции должен быть элемент, выполняющий роль ограничителя тока. Эту роль и выполняет дроссель (балласт). Без него сила тока в электроцепи будет нарастать лавинообразно, а это приведет к поломке лампы.

Обратите внимание! Дроссель, выступающий в роли ограничителя тока для люминесцентных ламп, может быть электромагнитным или электронным.


Строение экономки

Дроссель в лампе дневного света является балластом и поглощает лишнюю мощность, имеющуюся в электроцепи. В источнике свечения с мощностью в 36-40 Вт он забирается примерно 15 % или 6 Вт.
Дроссель в люминесцентных моделях выполняет следующие функции:

  • осуществляет прогрев катодов. Благодаря этому они подготавливаются в эмиссии электродов;
  • создает необходимо для стартового разряда напряжение;
  • выступает в роли ограничителя тока, который течет через электрическую систему после запуска лампы.

Чтобы балласт (электронный или электромагнитный) мог выполнять свои прямые обязанности, нужна правильная схема подключения. Если в ней будет допущена хотя бы одна ошибка, то свечение люминесцентных ламп не произойдет.
Схема подключения лампы дневного света может иметь различный вид. Она зависит от следующих параметров:

  • тип балласта (электронный или электромагнитный):
  • количество ограничителей тока;
  • тип и количество люминесцентных ламп (к одной, двум) и т. д.

Все эти параметры оказывают влияние на то, как будет выглядеть схема подключения балласта к электроцепи источника света. Каждая такая схема не очень сложная и ее можно использовать для подключения даже при отсутствии глубоких познаний в электротехнике.
Рассмотрим несколько наиболее востребованных вариантов подключения.

Балласт электронного вида

На сегодняшний день наиболее популярным и часто встречаемым видом балласта будет его электронный тип. Поэтому схема подключения электронного дросселя – самая востребованная.


Электронный балласт

Он имеет вид небольшого блока с выведенными клеммами. Внутри такого блока размещена печатная плата. На ней собрана вся система. По ней можно понять, сколько люминесцентных ламп к ней можно подключить.


Образец включения к одной лампе

Чтобы подсоединить электронный тип ограничителя тока необходимо:

  • первый и второй коннекторы на выходе блока нужно подключить к одной паре контактов экономки;
  • третий и четвертый ведутся к другой паре;
  • на вход подается питание.

Как видим, данный вариант достаточно прост в реализации. С ее помощью можно подключить одну лампу дневного света. Несколько сложнее выглядит вариант, используемый для включения двух источников освещения.


Образец включения к двум экономкам

Система, применяемая для запуска двух устройств дневного света к электронному типу балласта, реализуется следующим образом:

  • дроссель подсоединяют в разрыв цепи питания нитей, с помощью которых осуществляется накаливание экономки;
  • стартеры необходимо вести параллельно к электродам.

Обратите внимание! Соединять электронный балласт, стартерные коннекторы и нити накала необходимо в последовательном порядке.

Некоторые специалисты вместо стартера предлагают применять обычную кнопку от любого электрического звонка. В данной ситуации подача напряжения на прибор будет осуществляться путем нажатия и дальнейшего удерживания кнопки звонка. После того, как экономка зажегся, кнопку можно отпустить.

Балласт электромагнитного вида

Для электромагнитного балласта схема его соединения выглядит следующим образом:


Соединение электромагнитного балласта

Здесь процесс включения предполагает проведение следующих действий:

  • в момент поступления тока в дросселе происходит накопление энергии;
  • далее она идет на стартерные коннекторы;
  • ток направляется в стартер через нити нагрева электродов;
  • электроны и сам стартер нагреваются;
  • далее происходит размыкание биметаллических контактов на стартере;
  • размыкание коннекторов сопровождается выбросом электроэнергии, накопившейся в балласте;
  • в электродах напряжение изменяется, что приводит к свечению.

Таким образом будет происходить активация ламп при использовании вышеприведенного варианта соединения.

Включение пары светильников

Для подсоединения дросселя можно использовать вариант соединения как для одной, так и для двух экономок. Рассмотрим более детально, каким образом проделывается включение двух моделей 2х18.


Подсоединение к двум люминесцентным моделям 2х18

Чтобы включить два устройства с мощностью в 18 Вт, необходим индукционный тип устройства с мощностью не менее 36 Вт. Для этого можно использовать ПРА на 40 Вт, а также два стартера на 4-22 Вт. Как видим стартеры необходимо подсоединять параллельно к каждой экономке. Таким образом с каждой стороны будут использованы по одному контакту-штырю. Оставшиеся коннекторы следует присоединять к электрической сети только через индукционный дроссель.
Уменьшить помехи, а также компенсировать реактивную мощность в данной ситуации можно при помощи конденсатора. Его нужно подводить к питающим компонентам светильников параллельно. В ситуации, когда имеется встроенная защита, конденсатор может не использоваться.

Вариант включения с двумя балластами и двумя трубками

При наличии двух источников освещения, а также двух комплектов для их соединения, нужно использовать такой вариант.


Подключение с двумя комплектами

В данной ситуации соединение осуществляется следующим образом:

  • на вход дросселя подается фазный провод;
  • далее он с выхода дросселя направляется на один контакт экономки. При этом со второго коннектора он идет на первый стартер;
  • с первого стартера он направляется на вторую пару коннекторов этого же источника света;
  • свободный коннектор необходимо соединить с нулевым проводом питания, который на рисунке обозначен как N

Таким же образом происходит включение и второй трубки: вначале идет дроссель, далее с него один коннектор направляется на контакт лампочки, а второй – на стартер. Выход со стартера нужно соединить со второй парой контактов светильника, а свободный коннектор — вывести на нулевой провод.

Особенности соединения

Самым дорогостоящим элементом в электроцепи является дроссель. Поэтому многие люди, чтобы сэкономить, отдают предпочтение тем вариантам, где используется только один балласт.
При этом во время подсоединения всех элементов электрической схемы светильника необходимо помнить о технике безопасности, так как в данной ситуации, по незнанию, можно получить электротравму.

Заключение

Схема для подключения к люминесцентной лампе дросселя может иметь самый разнообразный вид. Она зависит от некоторых параметров. Поэтому, чтобы подобрать оптимальный вариант, нужно знать, какой тип балласта и устройства дневного света у вас имеется в наличии.

Решение проблемы мерцания светодиодных лент во включенном состоянии

Лампы дневного света (ЛДС) широко применяются для освещения как больших площадей общественных помещений, так и в качестве бытовых источников света. Популярность люминесцентных ламп обусловлена в большей мере их экономическими характеристиками. По сравнению с лампами накаливания у данного типа ламп высокий КПД, повышенная светоотдача и более долгий срок службы. Однако функциональным недостатком ламп дневного света является необходимость наличия пускового стартера или специального пускорегулирующего устройства (ПРА). Соответственно задача пуска лампы при выходе из строя стартера или при его отсутствии является насущной и актуальной.

Принципиальное отличие ЛДС от лампы накаливания в том, что преобразование электроэнергии в свет происходит благодаря протеканию тока через пары ртути, смешанные с инертным газом в колбе. Ток начинает протекать после пробоя газа высоким напряжением, приложенным к электродам лампы.

  1. Дроссель.
  2. Колба лампы.
  3. Люминесцентный слой.
  4. Контакты стартера.
  5. Электроды стартера.
  6. Корпус стартера.
  7. Биметаллическая пластина.
  8. Нити накала лампы.
  9. Ультрафиолетовое излучение.
  10. Ток разряда.

Образующееся ультрафиолетовое излучение лежит в невидимой для человеческого глаза части спектра. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Меняя состав этого слоя можно получать разные световые оттенки.
Перед непосредственным запуском ЛДС электроды на её концах разогреваются прохождением через них тока или же за счёт энергии тлеющего разряда.
Высокое напряжения пробоя обеспечивает ПРА, который может быть собран по известной традиционной схеме или же иметь более сложную конструкцию.

Принцип действия стартера

На рис. 1 представлено типовое подключение ЛДС со стартером S и дросселем L. К1, К2 – электроды лампы; С1 – косинусный конденсатор, С2 – фильтрующий конденсатор. Обязательным элементом таких схем является дроссель (катушка индуктивности) и стартер (прерыватель). В качестве последнего зачастую используется неоновая лампа с биметаллическими пластинами. Для улучшения низкого коэффициента мощности из-за наличия индуктивности дросселя применяют входной конденсатор (С1 на рис.1).

Рис. 1 Функциональная схема подключения ЛДС

Фазы запуска ЛДС следующие:
1) Разогрев электродов лампы. В этой фазе ток течёт по цепи «Сеть – L – К1 – S – К2 – Сеть». В этом режиме стартер начинает хаотично замыкаться / размыкаться.
2) В момент разрыва цепи стартером S энергия магнитного поля, накопленная в дросселе L, в виде высокого напряжения прикладывается к электродам лампы. Происходит электрический пробой газа внутри лампа.
3) В режиме пробоя сопротивление лампы ниже, чем сопротивление ветви стартера. Поэтому ток течёт по контуру «Сеть – L – К1 – К2 – Сеть». В этой фазе дроссель L выполняет роль реактивного токоограничивающего сопротивления.
Недостатки традиционной схемы пуска ЛДС: звуковой шум, мерцание с частотой 100 Гц, увеличенное время пуска, низкий КПД.

Принцип действия ЭПРА

Электронные ПРА (ЭПРА) используют потенциал современной силовой электроники и являются более сложными, но и более функциональными схемами. Такие устройства позволяют контролировать три фазы запуска и регулировать световой поток. В результате повышается срок службы лампы. Также, из-за питания лампы током более высокой частоты (20÷100 кГц) отсутствует видимое мерцание. Упрощённая схема одной из популярных топологий ЭПРА приведена на рис. 2.


Рис. 2 Упрощённая принципиальная схема ЭПРА
На рис. 2 D1-D4 – выпрямитель сетевого напряжения, С – фильтрующий конденсатор, Т1-Т4 – транзисторный мостовой инвертор с трансформатором Tr. Опционально в ЭПРА могут присутствовать входной фильтр, схема коррекции коэффициента мощности, дополнительные резонансные дроссели и конденсаторы.
Полная принципиальная схема одного из типовых современных ЭПРА приведена на рис 3.


Рис. 3 Схема ЭПРА BIGLUZ
В схеме (рис. 3) присутствуют основные выше названные элементы: мостовой диодный выпрямитель, фильтрующий конденсатор в звене постоянного тока (С4), инвертор в виде двух транзисторов с обвязкой (Q1, R5, R1) и (Q2, R2, R3), дроссель L1, трансформатор с тремя выводами TR1, схема запуска и резонансный контур лампы. Две обмотки трансформатора служат для включения транзисторов, третья обмотка входит в состав резонансного контура ЛДС.

Способы пуска ЛДС без специализированного ПРА

При выходе из строя лампы дневного света возможны две причины:
1) . В таком случае достаточно заменить стартер. Эту же операцию следует провести при появлении мерцания лампы. В таком случае при визуальном осмотре на колбе ЛДС нет характерных затемнений.
2) . Возможно, перегорела одна из нитей электродов. При визуальном осмотре могут быть заметны потемнения на концах колбы. Здесь можно применить известные схемы запуска для продолжения эксплуатации лампы даже с перегоревшими нитями электродов.
Для экстренного запуска лампу дневного света можно подключить без стартера по схеме, приведенной ниже (рис. 4). Здесь роль стартера выполняет пользователь. Контакт S1 замыкается на весь период работы лампы. Кнопка S2 замыкается на 1-2 секунды для зажигания лампы. При размыкании S2 напряжение на ней в момент зажигания будет значительно больше сетевого! Поэтому при работе с такой схемой следует проявлять повышенную осторожность.

Рис. 4 Принципиальная схема запуска ЛДС без стартера
Если требуется быстро зажечь ЛДС со сгоревшими нитями накала, то необходимо собрать схему (рис. 5).

Рис. 5 Принципиальная схема подключения ЛДС со сгоревшей нитью накала
Для дросселя 7-11 Вт и лампы 20 Вт номинал С1 – 1 мкФ с напряжением 630 В. Конденсаторы с меньшим номиналом использовать не стоит.
Автоматические схемы запуска ЛДС без дросселя предполагают использование в качестве ограничителя тока обыкновенной лампы накаливания. Такие схемы, как правило, являются умножителями и питают ЛДС постоянным током, что вызывает ускоренный износ одного из электродов. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов. Типовая схема подключения люминесцентной лампы без дросселя приведена на рис. 6.


Рис. 6. Структурная схема подключения ЛДС без дросселя


Рис. 7 Напряжение на ЛДС подключенной по схеме (рис. 6) до момента пуска
Как видим на рис. 7 напряжение на лампе в момент пуска доходит до уровня 700 В примерно за 25 мс. Вместо лампы накаливания HL1 можно использовать дроссель. Конденсаторы в схеме рис. 6 следует выбирать в пределах 1÷20 мкФ с напряжением не меньше 1000В. Диоды должны быть рассчитаны на обратное напряжение 1000В и ток от 0,5 до 10 А в зависимости от мощности лампы. Для лампы мощностью 40 Вт будет достаточно диодов, рассчитанных на ток 1.
Ещё один вариант схемы запуска показан на рис 8.

Рис. 8 Принципиальная схема умножителя с двумя диодами
Параметры конденсаторов и диодов в схеме на рис. 8 аналогичны схеме на рис. 6.
Один из вариантов использования низковольтного источника питания приведен на рис. 9. На основе такой схемы (рис. 9) можно собрать беспроводную лампу дневного света на аккумуляторе.


Рис. 9 Принципиальная схема подключения ЛДС от низковольтного источника питания
Для вышеприведенной схемы необходимо намотать трансформатор с тремя обмотками на одном сердечнике (кольце). Как правило, первой наматывают первичную обмотку, затем главную вторичную (на схеме обозначена, как III). Для транзистора необходимо предусмотреть охлаждение.

Заключение

При выходе из строя стартера лампы дневного света можно применить экстренный «ручной» запуск или простые схемы питания постоянным током. При использовании схем на основе умножителей напряжения есть возможность запускать лампу без дросселя, используя лампу накаливания. Работая на постоянном токе, отсутствует мерцание и шум ЛДС, однако уменьшается срок службы.
В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением.

Мигает настольная лампа.

А у вас, мигает настольная лампа ? У меня есть  светильник местного освещения, а точнее настольная лампа. Постоянно её пользуюсь и всё бы ничего, но применяемая лампа  дневного света на 11 вт ,временами, ну никак не хочет зажигаться, а вместо этого, просто  постоянно мигает.Как я понимаю, лампа не может выйти на нормальный режим работы. Нужна доработка. Чтобы её зажечь, вначале нужно подать повышенное напряжение на электроды,если этого нет вот и мигает настольная лампа.В вилке нашей настольной лампы установлен дроссель,он как раз это и делает вместе со стартером.

В больших лампах стартер ставиться отдельно, в моём случае находится в цоколе лампы. Однако проблема не в нём, не в лампе или дросселе, а плавающем напряжении сети и старой  электрической проводке в доме. Но, избавиться от того, что мигает настольная лампа всё таки можно,если сделать доработку. Сейчас многие используют  энергосберегающие лампы, в  разборном цоколе этой лампы находится электронная схема, которая называется электронный балласт. По моему опыту часто выгорает нить накала самой лампы , а электроника способна работать и дальше. Вот это я и использовал для доработки. Важно только чтобы мощности настольной и энергосберегающей ламп совпадали или отличались не значительно. Например для 11вт, на одной из доработанных ламп установил электронику от 9 ватной энергосберегающей. Но идеальный вариант один  к одному.Что необходимо сделать для доработки в настольной лампе:

  1. Поменять вилку на обычную
  2. Найти и разобрать одинаковую по мощности энергосберегающую лампу.
  3. Взять от туда электронную схему,аккуратно разобрав цоколь.
  4. Убедиться в исправности электроники.
  5. Установить плату в настольную лампу и подпаять провода от вилки к контактам,куда шли проводки от цоколя.
  6. Вытащить лампу из настольного светильника и аккуратно разобрать цоколь и убрать стартер
  7. На плате есть конденсатор, его нужно выпаять и установить в цоколь, вместо стартера. Вот как на схеме .
  8. Соединиться 2-мя проводками от лампы к схеме, туда откуда шли провода на колбу энергосберегающей лампы.
Всё… больше подобных проблему меня не было, доработка здорово помогла,  настольная лампа загорается сразу и работает уже несколько лет. Надеюсь объяснил, что делать, понятно. Хорошо и долго работающих, Вам ламп!

Нет похожих статей.

This entry was posted in РЕМОНТ and tagged доработка., Лампа. Bookmark the permalink.

Как согласовать мощность лампы с осветительными приборами

Когда лампочка перегорает, большинство людей просто хватают любую имеющуюся запасную лампочку. Если старая лампочка была слишком тусклой, они могли бы выбрать лампу большей мощности, чтобы улучшить освещение. Однако здесь есть опасность, потому что осветительные приборы имеют максимальную мощность, и если установлены лампы, превышающие этот номинал, существует вероятность перегрева светильника.

Потенциальная опасность

Установка лампочек с номинальной мощностью, превышающей номинальную мощность светильника, не обязательно приведет к повреждению проводов электрической цепи, а также к срабатыванию автоматического выключателя или возникновению других проблем с электропроводкой в ​​доме.Потенциальная опасность обычно заключается в самом приспособлении. У осветительных приборов есть провода, которые прикреплены к проводке цепи, и тепло, которое естественным образом генерируется лампочкой, может вызвать перегрев этих проводов и, возможно, расплавить изоляцию на выводах.

Некоторые светильники имеют внутреннюю изоляцию, которая предназначена для защиты проводов до определенной температуры. Если этот температурный предел будет превышен при эксплуатации прибора со слишком большими лампами, может произойти повреждение проводки.В случае встраиваемых светильников (светильников для банок) захваченное тепло может даже перегреть и опалить деревянные элементы каркаса.

Эта потенциальная опасность существует как для светильников с жестким монтажом, устанавливаемых в потолок или бра, так и для вставных ламп.

Перед тем, как начать

Каждый раз, когда вы обнаруживаете запах гари или видите ожоги на осветительном приборе или лампе, это означает, что вы превышаете номинальную мощность светильника. Выключите свет и отключите питание прерывателя или предохранителя.Если это лампа, отключите ее.

Затем внимательно посмотрите на приспособление. Если он очень теплый на ощупь, это знак опасности. На этом этапе недостаточно просто заменить лампочку на лампу меньшей мощности — вам также необходимо убедиться, что не произошло необратимого повреждения.

Можно ли использовать светодиодные лампы в любом светильнике?

Будучи энергосберегающим, технически подкованным и экономически разумным человеком в своей семье и на улице, вы готовы заменить старые лампы накаливания и галогенные лампы на лучшие светодиоды на рынке.

Перед покупкой 10 из тех светодиодов, которые вы видели, прочтите это руководство, чтобы узнать, можно ли использовать светодиоды в любом осветительном приборе.

Светодиоды могут использоваться в любом осветительном приборе, если он не закрыт, не герметичен и не является диммерной системой старого образца. Оба они сократят срок службы светодиодных ламп.

Можно ли ставить светодиодные лампы в галогенные светильники и лампы накаливания?

Если все подходит и правильное напряжение, то да, вы можете легко заменить все галогенные лампы и лампы накаливания в светильниках на светодиодные.

Установка цоколя лампы — это первое, о чем вам нужно помнить. Два наиболее распространенных цоколя лампы — это либо винтовой тип E27, либо штыревой тип GU10. Оба они также доступны в светодиодных лампах.

Иногда галогенная лампа или лампа накаливания должна быть декоративной и быть видимой за пределами светильника.

Если дело обстоит именно так, ваша запасная светодиодная лампа должна быть привлекательной. Например, лампы Эдисона (Amazon) или Globe (Amazon) — это модное место в эстетическом освещении.

И если вам интересно, как узнать, есть ли у вас нужная мощность при замене лампочек, читайте дальше.

При покупке запасных ламп для традиционных светильников помните, что мощность светодиодных ламп не обязательно должна быть такой же, как у старых ламп.

Следите за люменами, которые представляют собой светоотдачу, а не мощность, которая является потребляемой мощностью.

Например, светодиоды могут потреблять 8,5 Вт, а галогены могут использовать 30 Вт энергии, чтобы светить так же ярко, как традиционная лампа на 60 Вт.

Точно так же галогенная лампа мощностью 18 Вт излучает около 220 люмен, а светодиодная лампа мощностью 18 Вт — более 1300 люмен.

Вот таблица преобразования с дополнительными ответами на ваши вопросы о замене.

ТАБЛИЦА ПРЕОБРАЗОВАНИЯ ЛЮМОВ В ВАТУ
Яркость в люменах 220+ 400+ 700+ 900+ 1300+
Лампа накаливания 25 Вт 40 Вт 60 Вт 75 Вт 100 Вт
Галоген 18 Вт 28 Вт 42 Вт 53 Вт 70 Вт
КЛЛ 6 Вт 9 Вт 12 Вт 15 Вт 20 Вт
Светодиод 4 Вт 6 Вт 10 Вт 13 Вт 18 Вт

Кроме того, вы можете прочитать о различиях между галогенной и светодиодной лампой, чтобы увидеть, какая из них будет служить вам лучше.Думаю, ты знаешь ответ.

Можно ли использовать светодиоды вместе с лампами накаливания в одном приборе?

К сожалению, использование светодиодов вместе с лампами накаливания в закрытом светильнике с несколькими розетками может нанести вред вашему светодиоду, поскольку другие лампы повышают температуру окружающей среды внутри светильника.

Таким образом, даже если ваш светодиод хорошего качества с хорошо продуманным радиатором, он все равно может выйти из строя из-за неожиданно чрезмерного нагрева, на который он не был рассчитан.

Многие люди делают, и вы, возможно, думаете об этом: покупают светодиоды для одного прибора один за другим и постепенно их заменяют.

Но я должен вас предупредить, не делайте этого. Намного лучше заменить все лампочки за один раз. В противном случае вы рискуете значительно сократить срок службы ваших светодиодов.

Иметь сочетание светодиодов и других ламп — не лучшая идея.

Тепло от ламп накаливания постепенно разрушает чувствительные полупроводники, драйверы и электронные микросхемы внутри светодиодной лампы.

Светодиодные лампы

любят и процветают в прохладных условиях, и размещение их рядом с традиционной лампочкой означает их преждевременную смерть.

Это еще не все.

Лампа накаливания также потребляет больше энергии, чем светодиоды, и когда они оба подключены к одной цепи в приборе.

Светодиод будет иметь меньшую мощность, что сделает их широко открытыми для множества других проблем, таких как мерцание, жужжание или полный отказ.

Вы не хотите смешивать галогенные лампы и лампы накаливания со светодиодными лампами, если ваш светильник является регулируемым.

Вы можете заметить, что ваши светодиоды могут плохо тускнеть, мерцать или вообще не работать.

Диммер, который хорошо работает и совместим с традиционными лампами, может не работать с новыми светодиодными лампами, поскольку это более старая система.

И вы хотите винить светодиоды, но использовать диммеры для ламп накаливания со светодиодами — все равно что выращивать апельсины из семян яблока!

По этим причинам, на самом деле, даже лучше покупать все светодиоды в одном светильнике одной и той же марки, поскольку они будут рассчитаны на одинаковые условия и использование светильника.

Нужны ли светодиоды в специальном приспособлении?

Может быть несколько причин, по которым иногда нельзя просто вставить светодиоды в какой-либо старый светильник.

Как упоминалось ранее, если у существующего прибора есть функция затемнения, и ваши новые светодиоды несовместимы. Вы столкнетесь с проблемами с возможностью затемнения, такими как мерцание, стробирование или неполное затемнение.

Теперь о сильных сторонах светодиода. Любят прохладные условия. И любой светильник, который позволяет это, отлично подходит для светодиодов. Во-первых, вам нужно определить светильники, которые НЕ подходят для светодиодов.

Вот некоторые закрытые светильники, которые являются бичом светодиодных ламп и убивают их быстрее:

  • В ванных комнатах и ​​кухнях обычно есть полупрозрачные закрытые светильники, которые подвешиваются близко к потолку.
  • Наружные светильники для крыльца покрыты стеклом для защиты от непогоды.
  • Необычный корпус из каменной кувшины в стиле ретро, ​​который можно увидеть в ресторанах, герметичен.
  • Встраиваемые светильники, или светильники для горшков или банок, помещаются в потолок и закрываются стеклянной лицевой панелью и накладкой.
  • Даже направляющие головные фары и некоторые настольные лампы будут считаться закрытыми, поскольку в них недостаточно места для отвода тепла.

Итак, это все примеры герметичных закрытых приложений.Теперь вы знаете, во что НЕ ставить светодиоды.

Как определить, подходит ли светильник для светодиода?

И наоборот, любой светильник, который хорошо вентилируется, обеспечивает хорошее рассеивание тепла и открыт со всех сторон, является хорошим приспособлением для светодиодной лампы.

Но выход есть всегда!

Если вы купили закрытую светодиодную лампу с большим алюминиевым радиатором, который быстро и эффективно рассеивает тепло. Вы можете легко использовать их в уже имеющихся закрытых светильниках.

Заключительные слова

До тех пор, пока существующие системы и светильники не догонят растущую индустрию светодиодов, всегда разумно сначала купить одну новую лампу, опробовать ее, не смешивая ее с другими лампами, и, если все пойдет хорошо, купить партию. .

У вас есть стратегия по замене лампочек в ваших светильниках?

Установлены ли ваши существующие лампы на диммерные системы?

Электроэнергетика и энергия | Физика II

Цели обучения

К концу этого раздела вы сможете:

  • Рассчитайте мощность, рассеиваемую резистором, и мощность, подаваемую источником питания.
  • Рассчитайте стоимость электроэнергии при различных обстоятельствах.

Мощность в электрических цепях

Мощность ассоциируется у многих с электричеством. Зная, что мощность — это коэффициент использования или преобразования энергии, каково выражение для электроэнергии ? На ум могут прийти линии электропередач. Мы также думаем о лампочках с точки зрения их номинальной мощности в ваттах. Сравним лампочку на 25 Вт с лампой на 60 Вт.(См. Рис. 1 (а).) Поскольку оба работают от одного и того же напряжения, лампа мощностью 60 Вт должна потреблять больше тока, чтобы иметь большую номинальную мощность. Таким образом, сопротивление лампы на 60 Вт должно быть ниже, чем у лампы на 25 Вт. Если мы увеличиваем напряжение, мы также увеличиваем мощность. Например, когда лампочка мощностью 25 Вт, рассчитанная на работу от 120 В, подключена к 240 В, она на короткое время очень ярко светится, а затем перегорает. Как именно напряжение, ток и сопротивление связаны с электроэнергией?

Рис. 1. (a) Какая из этих лампочек, лампа мощностью 25 Вт (вверху слева) или лампа мощностью 60 Вт (вверху справа), имеет большее сопротивление? Что потребляет больше тока? Что потребляет больше всего энергии? Можно ли по цвету сказать, что нить накаливания мощностью 25 Вт круче? Является ли более яркая лампочка другого цвета, и если да, то почему? (кредиты: Дикбаух, Wikimedia Commons; Грег Вестфолл, Flickr) (б) Этот компактный люминесцентный светильник (КЛЛ) излучает такую ​​же интенсивность света, как и лампа мощностью 60 Вт, но с входной мощностью от 1/4 до 1/10.(кредит: dbgg1979, Flickr)

Электрическая энергия зависит как от напряжения, так и от перемещаемого заряда. Проще всего это выражается как PE = qV , где q — это перемещенный заряд, а V, — это напряжение (или, точнее, разность потенциалов, через которую проходит заряд). Мощность — это скорость перемещения энергии, поэтому электрическая мощность равна

.

[латекс] P = \ frac {PE} {t} = \ frac {qV} {t} \\ [/ latex].

Учитывая, что ток равен I = q / t (обратите внимание, что Δ t = t здесь), выражение для мощности принимает вид

P = IV

Электрическая мощность ( P ) — это просто произведение тока на напряжение.Мощность имеет знакомые единицы ватт. Поскольку единицей СИ для потенциальной энергии (PE) является джоуль, мощность выражается в джоулях в секунду или ваттах. Таким образом, 1 A ⋅V = 1 Вт. Например, в автомобилях часто есть одна или несколько дополнительных розеток, с помощью которых можно заряжать сотовый телефон или другие электронные устройства. Эти розетки могут быть рассчитаны на 20 А, так что цепь может выдавать максимальную мощность P = IV = (20 А) (12 В) = 240 Вт. {2} R \\ [/ latex].

Обратите внимание, что первое уравнение всегда верно, тогда как два других можно использовать только для резисторов. В простой схеме с одним источником напряжения и одним резистором мощность, подаваемая источником напряжения, и мощность, рассеиваемая резистором, идентичны. (В более сложных схемах P может быть мощностью, рассеиваемой одним устройством, а не полной мощностью в цепи.) Из трех различных выражений для электрической мощности можно получить различное понимание. Например, P = V 2 / R подразумевает, что чем ниже сопротивление, подключенное к данному источнику напряжения, тем больше передаваемая мощность.Кроме того, поскольку напряжение возведено в квадрат в P = V 2 / R , эффект от приложения более высокого напряжения, возможно, больше, чем ожидалось. Таким образом, когда напряжение увеличивается вдвое до лампочки мощностью 25 Вт, ее мощность увеличивается почти в четыре раза и составляет около 100 Вт, что приводит к ее перегоранию. Если бы сопротивление лампы оставалось постоянным, ее мощность была бы ровно 100 Вт, но при более высокой температуре ее сопротивление также будет выше.

Пример 1. Расчет рассеиваемой мощности и тока: горячая и холодная мощность

(a) Рассмотрим примеры, приведенные в Законе Ома: сопротивление и простые цепи и сопротивление и удельное сопротивление.Затем найдите мощность, рассеиваемую фарой автомобиля в этих примерах, как в горячую, так и в холодную погоду. б) Какой ток он потребляет в холодном состоянии?

Стратегия для (а)

Для горячей фары нам известны напряжение и ток, поэтому мы можем использовать P = IV , чтобы найти мощность. Для холодной фары нам известны напряжение и сопротивление, поэтому мы можем использовать P = V 2 / R , чтобы найти мощность.

Решение для (a)

Вводя известные значения тока и напряжения для горячей фары, получаем

P = IV = (2.{2}} {0,350 \ text {} \ Omega} = 411 \ text {W} \\ [/ latex].

Обсуждение для (а)

30 Вт, рассеиваемые горячей фарой, являются типичными. Но 411 Вт в холодную погоду на удивление выше. Начальная мощность быстро уменьшается по мере увеличения температуры лампы и увеличения ее сопротивления.

Стратегия и решение для (b)

Ток при холодной лампочке можно найти несколькими способами. Переставляем одно из уравнений мощности, P = I 2 R , и вводим известные значения, получая

[латекс] I = \ sqrt {\ frac {P} {R}} = \ sqrt {\ frac {411 \ text {W}} {{0.350} \ text {} \ Omega}} = 34,3 \ text {A} \\ [/ latex].

Обсуждение для (б)

Холодный ток значительно выше, чем установившееся значение 2,50 А, но ток быстро снизится до этого значения по мере увеличения температуры лампы. Большинство предохранителей и автоматических выключателей (используемых для ограничения тока в цепи) спроектированы так, чтобы выдерживать очень высокие токи на короткое время при включении устройства. В некоторых случаях, например, с электродвигателями, ток остается высоким в течение нескольких секунд, что требует использования специальных плавких предохранителей с замедленным срабатыванием.

Чем больше электроприборов вы используете и чем дольше они остаются включенными, тем выше ваш счет за электроэнергию. Этот знакомый факт основан на соотношении энергии и мощности. Вы платите за использованную энергию. Поскольку P = E / t , мы видим, что

E = Pt

— это энергия, используемая устройством, использующим мощность P в течение интервала времени t . Например, чем больше горит лампочек, тем больше используется P ; чем дольше они включены, тем больше т .Единицей измерения энергии в счетах за электричество является киловатт-час (кВт ч), что соответствует соотношению E = Pt . Стоимость эксплуатации электроприборов легко оценить, если у вас есть некоторое представление об их потребляемой мощности в ваттах или киловаттах, времени их работы в часах и стоимости киловатт-часа для вашей электросети. Киловатт-часы, как и все другие специализированные единицы энергии, такие как пищевые калории, можно преобразовать в джоули. Вы можете доказать себе, что 1 кВт ⋅ ч = 3.6 × 10 6 Дж.

Потребляемая электрическая энергия ( E ) может быть уменьшена либо за счет сокращения времени использования, либо за счет снижения энергопотребления этого прибора или приспособления. Это не только снизит стоимость, но и снизит воздействие на окружающую среду. Улучшение освещения — один из самых быстрых способов снизить потребление электроэнергии в доме или на работе. Около 20% энергии в доме расходуется на освещение, в то время как в коммерческих учреждениях эта цифра приближается к 40%.Флуоресцентные лампы примерно в четыре раза эффективнее ламп накаливания — это верно как для длинных ламп, так и для компактных люминесцентных ламп (КЛЛ). (См. Рис. 1 (b).) Таким образом, лампу накаливания мощностью 60 Вт можно заменить на КЛЛ мощностью 15 Вт, которая имеет такую ​​же яркость и цвет. КЛЛ имеют изогнутую трубку внутри шара или спиралевидную трубку, все они подключены к стандартному привинчиваемому основанию, которое подходит для стандартных розеток лампы накаливания. (В последние годы были решены исходные проблемы с цветом, мерцанием, формой и высокими начальными инвестициями для КЛЛ.) Теплопередача от этих КЛЛ меньше, и они служат до 10 раз дольше. В следующем примере рассматривается важность инвестиций в такие лампы. Новые белые светодиодные фонари (которые представляют собой группы небольших светодиодных лампочек) еще более эффективны (в два раза больше, чем у КЛЛ) и служат в 5 раз дольше, чем КЛЛ. Однако их стоимость по-прежнему высока.

Установление соединений: энергия, мощность и время

Отношение E = Pt может оказаться полезным во многих различных контекстах.Энергия, которую ваше тело использует во время упражнений, зависит, например, от уровня мощности и продолжительности вашей активности. Степень нагрева от источника питания зависит от уровня мощности и времени ее применения. Даже доза облучения рентгеновского изображения зависит от мощности и времени воздействия.

Пример 2. Расчет рентабельности компактных люминесцентных ламп (КЛЛ)

Если стоимость электроэнергии в вашем районе составляет 12 центов за кВтч, какова общая стоимость (капитальные плюс эксплуатация) использования лампы накаливания мощностью 60 Вт в течение 1000 часов (срок службы этой лампы), если стоимость лампы составляет 25 центов? (б) Если мы заменим эту лампочку компактной люминесцентной лампой, которая дает такой же световой поток, но составляет четверть мощности и стоит 1 доллар.50, но длится в 10 раз дольше (10 000 часов), какова будет общая стоимость?

Стратегия

Чтобы найти эксплуатационные расходы, мы сначала находим используемую энергию в киловатт-часах, а затем умножаем ее на стоимость киловатт-часа.

Решение для (a)

Энергия, используемая в киловатт-часах, определяется путем ввода мощности и времени в выражение для энергии:

E = Pt = (60 Вт) (1000 ч) = 60,000 Вт ч

В киловатт-часах это

E = 60.0 кВт ⋅ ч.

Сейчас стоимость электроэнергии

Стоимость

= (60,0 кВт ч) (0,12 долл. США / кВт час) = 7,20 долл. США.

Общая стоимость составит 7,20 доллара за 1000 часов (около полугода при 5 часах в день).

Решение для (b)

Поскольку CFL использует только 15 Вт, а не 60 Вт, стоимость электроэнергии составит 7,20 доллара США / 4 = 1,80 доллара США. КЛЛ прослужит в 10 раз дольше, чем лампа накаливания, так что инвестиционные затраты будут составлять 1/10 стоимости лампы за этот период использования или 0.1 (1,50 доллара США) = 0,15 доллара США. Таким образом, общая стоимость 1000 часов составит 1,95 доллара США.

Обсуждение

Следовательно, использование КЛЛ намного дешевле, даже несмотря на то, что первоначальные вложения выше. Повышенная стоимость рабочей силы, которую бизнес должен включать в себя для более частой замены ламп накаливания, здесь не учитывается.

Подключение: Эксперимент на вынос — Инвентаризация использования электроэнергии

1) Составьте список номинальной мощности для ряда приборов в вашем доме или комнате.Объясните, почему что-то вроде тостера имеет более высокий рейтинг, чем цифровые часы. Оцените энергию, потребляемую этими приборами в среднем за день (оценивая время их использования). Некоторые приборы могут указывать только рабочий ток. Если бытовое напряжение 120 В, используйте P = IV . 2) Проверьте общую мощность, используемую в туалетах на этаже или в здании вашей школы. (Возможно, вам придется предположить, что используемые длинные люминесцентные лампы рассчитаны на 32 Вт.) Предположим, что здание было закрыто все выходные, и что эти огни были оставлены включенными с 6 часов вечера.{2} R \\ [/ латекс].

  • Энергия, используемая устройством с мощностью P за время t , составляет E = Pt .

Концептуальные вопросы

1. Почему лампы накаливания тускнеют в конце жизни, особенно незадолго до того, как их нити оборвутся?

Мощность, рассеиваемая резистором, равна P = V 2 / R , что означает, что мощность уменьшается при увеличении сопротивления. Однако эта мощность также определяется соотношением P = I 2 R , что означает, что мощность увеличивается при увеличении сопротивления.Объясните, почему здесь нет противоречия.

Задачи и упражнения

1. Какова мощность разряда молнии 1,00 × 10 2 МВ при токе 2,00 × 10 4 A ?

2. Какая мощность подается на стартер большого грузовика, который потребляет 250 А тока от аккумуляторной батареи 24,0 В?

3. Заряд в 4,00 Кл проходит через солнечные элементы карманного калькулятора за 4,00 часа. Какова выходная мощность, если выходное напряжение вычислителя равно 3.00 В? (См. Рисунок 2.)

Рис. 2. Полоса солнечных элементов прямо над клавишами этого калькулятора преобразует свет в электричество для удовлетворения своих потребностей в энергии. (Источник: Evan-Amos, Wikimedia Commons)

4. Сколько ватт проходит через него фонарик с 6,00 × 10 2 за 0,500 ч использования, если его напряжение составляет 3,00 В?

5. Найдите мощность, рассеиваемую каждым из этих удлинителей: (a) удлинительный шнур с сопротивлением 0,0600 Ом, через который 5.00 А течет; (б) более дешевый шнур с более тонким проводом и сопротивлением 0,300 Ом.

6. Убедитесь, что единицами измерения вольт-ампер являются ватты, как следует из уравнения P = IV .

7. Покажите, что единицы 1V 2 / Ω = 1W, как следует из уравнения P = V 2 / R .

8. Покажите, что единицы 1 A 2 ⋅ Ω = 1 Вт, как следует из уравнения P = I 2 R .

9. Проверьте эквивалент единиц энергии: 1 кВт ч = 3,60 × 10 6 Дж.

10. Электроны в рентгеновской трубке ускоряются до 1,00 × 10 2 кВ и направляются к цели для получения рентгеновских лучей. Вычислите мощность электронного луча в этой трубке, если она имеет ток 15,0 мА.

11. Электрический водонагреватель потребляет 5,00 кВт за 2,00 часа в сутки. Какова стоимость его эксплуатации в течение одного года, если электроэнергия стоит 12,0 центов / кВт · ч? См. Рисунок 3.

Рисунок 3. Водонагреватель электрический по запросу. Тепло в воду подается только при необходимости. (кредит: aviddavid, Flickr)

12. Сколько электроэнергии необходимо для тостера с тостером мощностью 1200 Вт (время приготовления = 1 минута)? Сколько это стоит при 9,0 цента / кВт · ч?

13. Какова будет максимальная стоимость КЛЛ, если общая стоимость (капиталовложения плюс эксплуатация) будет одинаковой как для КЛЛ, так и для ламп накаливания мощностью 60 Вт? Предположим, что стоимость лампы накаливания составляет 25 центов, а электричество стоит 10 центов / кВтч.Рассчитайте стоимость 1000 часов, как в примере с КЛЛ по рентабельности.

14. Некоторые модели старых автомобилей имеют электрическую систему 6,00 В. а) Каково сопротивление горячему свету у фары мощностью 30,0 Вт в такой машине? б) Какой ток течет через него?

15. Щелочные батареи имеют то преимущество, что они выдают постоянное напряжение почти до конца своего срока службы. Как долго щелочная батарея с номиналом 1,00 А · ч и 1,58 В будет поддерживать горение лампы фонарика мощностью 1,00 Вт?

16.Прижигатель, используемый для остановки кровотечения в хирургии, выдает 2,00 мА при 15,0 кВ. а) Какова его выходная мощность? б) Какое сопротивление пути?

17. В среднем телевизор работает 6 часов в день. Оцените ежегодные затраты на электроэнергию для работы 100 миллионов телевизоров, предполагая, что их потребляемая мощность составляет в среднем 150 Вт, а стоимость электроэнергии составляет в среднем 12,0 центов / кВт · ч.

18. Старая лампочка потребляет всего 50,0 Вт, а не 60,0 Вт из-за истончения ее нити за счет испарения.Во сколько раз уменьшается его диаметр при условии равномерного утонения по длине? Не обращайте внимания на любые эффекты, вызванные перепадами температур.

Медная проволока калибра 19. 00 имеет диаметр 9,266 мм. Вычислите потери мощности в километре такого провода, когда он пропускает 1,00 × 10 2 A.

Холодные испарители пропускают ток через воду, испаряя ее при небольшом повышении температуры. Одно такое домашнее устройство рассчитано на 3,50 А и использует 120 В переменного тока с эффективностью 95,0%.а) Какова скорость испарения в граммах в минуту? (b) Сколько воды нужно налить в испаритель за 8 часов работы в ночное время? (См. Рисунок 4.)

Рис. 4. Этот холодный испаритель пропускает ток непосредственно через воду, испаряя ее напрямую с относительно небольшим повышением температуры.

21. Integrated Concepts (a) Какая энергия рассеивается разрядом молнии с током 20 000 А, напряжением 1,00 × 10 2 МВ и длиной 1.00 мс? (б) Какую массу древесного сока можно было бы поднять с 18ºC до точки кипения, а затем испарить за счет этой энергии, если предположить, что сок имеет те же тепловые характеристики, что и вода?

22. Integrated Concepts Какой ток должен вырабатывать подогреватель бутылочек на 12,0 В, чтобы нагреть 75,0 г стекла, 250 г детской смеси и 3,00 × 10 2 алюминия с 20º C до 90º за 5,00 мин?

23. Integrated Concepts Сколько времени требуется хирургическому прижигателю для повышения температуры 1.00 г ткани от 37º до 100, а затем закипятите 0,500 г воды, если она выдает 2,00 мА при 15,0 кВ? Не обращайте внимания на передачу тепла в окружающую среду.

24. Integrated Concepts Гидроэлектрические генераторы (см. Рисунок 5) на плотине Гувера вырабатывают максимальный ток 8,00 × 10 3 А при 250 кВ. а) Какая выходная мощность? (b) Вода, питающая генераторы, входит и покидает систему с небольшой скоростью (таким образом, ее кинетическая энергия не изменяется), но теряет 160 м в высоте.Сколько кубических метров в секунду необходимо при КПД 85,0%?

Рис. 5. Гидроэлектрические генераторы на плотине Гувера. (кредит: Джон Салливан)

25. Integrated Concepts (a) Исходя из 95,0% эффективности преобразования электроэнергии двигателем, какой ток должны обеспечивать аккумуляторные батареи на 12,0 В 750-килограммового электромобиля: отдых до 25,0 м / с за 1,00 мин? (b) Подняться на холм высотой 2,00 × 10 2 м за 2,00 мин при постоянной 25.Скорость 0 м / с при приложении силы 5,00 × 10 2 Н для преодоления сопротивления воздуха и трения? (c) Двигаться с постоянной скоростью 25,0 м / с, прилагая силу 5,00 × 10 2 Н для преодоления сопротивления воздуха и трения? См. Рисунок 6.

Рис. 6. Электромобиль REVAi заряжается на одной из улиц Лондона. (кредит: Фрэнк Хебберт)

26. Integrated Concepts Пригородный легкорельсовый поезд потребляет 630 А постоянного тока напряжением 650 В при ускорении.а) Какова его мощность в киловаттах? (b) Сколько времени нужно, чтобы достичь скорости 20,0 м / с, начиная с состояния покоя, если его загруженная масса составляет 5,30 × 10 4 кг, предполагая эффективность 95,0% и постоянную мощность? (c) Найдите его среднее ускорение. (г) Обсудите, как ускорение, которое вы обнаружили для легкорельсового поезда, сравнивается с тем, что может быть типичным для автомобиля.

27. Integrated Concepts (a) Линия электропередачи из алюминия имеет сопротивление 0,0580 Ом / км. Какова его масса на километр? б) Какова масса на километр медной линии с таким же сопротивлением? Более низкое сопротивление сократит время нагрева.Обсудите практические ограничения ускорения нагрева за счет снижения сопротивления.

28. Integrated Concepts (a) Погружной нагреватель, работающий на 120 В, может повысить температуру 1,00 × 10 2 -г алюминиевой чашки, содержащей 350 г воды, с 20 ° C до 95 ° C за 2,00 мин. Найдите его сопротивление, предполагая, что оно постоянно в процессе. (b) Более низкое сопротивление сократит время нагрева. Обсудите практические ограничения ускорения нагрева за счет снижения сопротивления.

29. Integrated Concepts (a) Какова стоимость нагрева гидромассажной ванны, содержащей 1500 кг воды, от 10 ° C до 40 ° C, исходя из эффективности 75,0% с учетом передачи тепла в окружающую среду? Стоимость электроэнергии 9 центов / кВт⋅ч. (b) Какой ток потреблял электрический нагреватель переменного тока 220 В, если на это потребовалось 4 часа?

30 . Необоснованные результаты (a) Какой ток необходим для передачи 1,00 × 10 2 МВт мощности при 480 В? (b) Какая мощность рассеивается линиями передачи, если они имеют коэффициент 1.00 — сопротивление Ом? (c) Что неразумного в этом результате? (d) Какие предположения необоснованны или какие посылки несовместимы?

31. Необоснованные результаты (a) Какой ток необходим для передачи мощности 1,00 × 10 2 МВт при 10,0 кВ? (b) Найдите сопротивление 1,00 км провода, которое вызовет потерю мощности 0,0100%. (c) Каков диаметр медного провода длиной 1,00 км, имеющего такое сопротивление? (г) Что необоснованного в этих результатах? (e) Какие предположения необоснованны или какие посылки несовместимы?

32.Создайте свою проблему Рассмотрим электрический погружной нагреватель, используемый для нагрева чашки воды для приготовления чая. Постройте задачу, в которой вы рассчитываете необходимое сопротивление нагревателя, чтобы он увеличивал температуру воды и чашки за разумный промежуток времени. Также рассчитайте стоимость электроэнергии, используемой в вашем технологическом процессе. Среди факторов, которые необходимо учитывать, — это используемое напряжение, задействованные массы и теплоемкость, тепловые потери и время, в течение которого происходит нагрев.Ваш инструктор может пожелать, чтобы вы рассмотрели тепловой предохранительный выключатель (возможно, биметаллический), который остановит процесс до того, как в погружном блоке будут достигнуты опасные температуры.

Глоссарий

электрическая мощность:
— скорость, с которой электрическая энергия подается источником или рассеивается устройством; это произведение тока на напряжение

Избранные решения проблем и упражнения

1. 2.00 × 10 12 Вт

5.{6} \ text {J} \\ [/ latex]

11. 438 $ / год

13. $ 6.25

15. 1.58 ч

17. 3,94 миллиарда долларов в год

19. 25,5 Вт

21. (а) 2,00 × 10 9 Дж (б) 769 кг

23. 45.0 с

25. (а) 343 A (б) 2,17 × 10 3 A (в) 1,10 × 10 3 A

27. (а) 1,23 × 10 3 кг (б) 2,64 × 10 3 кг

29. (a) 2,08 × 10 5 A
(b) 4,33 × 10 4 МВт
(c) Линии передачи рассеивают больше мощности, чем они должны передавать.
(d) Напряжение 480 В неоправданно низкое для напряжения передачи. В линиях передачи на большие расстояния поддерживается гораздо более высокое напряжение (часто сотни киловольт), чтобы уменьшить потери мощности.

Lamp Hack: Как сделать любую лампу беспроводной

В дизайне интерьера есть общая проблема, о которой никто не говорит. Понимаете, все это очень секретно. Проблема в шнуре лампы . (Да, я это сказал.)

Все всегда хотят притвориться, будто это не проблема.Как будто они могут просто поставить свой стол прямо в центре комнаты, и их лампам даже не понадобится доступ к розетке.

Разработано Armonia Decors
Как будто их лампы даже не поставляются со шнуром. Как они делают всю свою офисную работу под ярким полуденным солнцем, зачем им вообще нужна исправная лампа?

Но давайте поговорим о реальности. Конечно, размещение вашего стола по центру офиса кажется практичным:


Вы можете столкнуться с дверью комнаты с того места, где вы сидите за своим столом, что легко приносит вам пятерку от повелителей фэн-шуй.А если поставить стол подальше от стены, на стене появится много места для хранения вещей.

Но есть одна проблема. Если вы не хотите оплачивать свои счета, будучи окутанным самой темной кромешной ночью (а на самом деле, вы могли бы), вам понадобится лампа на этом столе …


И эта лампа будет поставляться с надоедливой шнур, который может споткнуться и, что наиболее важно — , конечно, — бельмо на глазу. Скажем честно, насколько неприятен и раздражает этот беспорядок?

Но если вы не желаете идти на компромисс с планировкой комнаты, которую хотите (и хотите успокоить фанатов фен-шуй), вы можете взять свою лампу и зажечь ее тоже… без шнура .

Вот как мы взяли нашу печальную маленькую спасательную лампу, находку на распродаже за 1 ярд, которую мы исправили в этом посте:


… и взломали ее, чтобы удалить шнур, чтобы она могла стоять на столе, который мы разместили по центру посередине. нашего офиса… без этого надоедливого золотого шнура.

Итак, вот небольшой урок о том, как сделать любую проводную лампу питаемой от батареи!

Необходимые материалы

  • Лампа. (Посмотрите, как это сделать с затемненной лампой в этом посте)
  • 9-вольтовая батарея или 8 батареек AA (для экономии используйте перезаряжаемые аккумуляторы) Обновление: задним числом мы рекомендуем 8 батареек AA.9 вольт было слишком тусклым.
  • 9-вольтовый зажим для батарейки (например, всего около 2 долларов в комплекте) или батарейный блок 8 AA (как это) Обновление : мы рекомендуем батарейный блок 8 AA, задним числом. 9V был слишком тусклым.
  • Устройства для зачистки проводов
  • Такие светодиодные лампы (подробнее об этом через секунду)
  • Паяльник (мы используем этот) и припой (вот так)
  • Дополнительно: липучка и войлок для покрытия нижней части лампа
  • Дополнительно: блестящий муж (недоступно на Amazon)

1.Откройте нижнюю часть лампы.

Внизу лампы был кусок войлока, который мы только что сняли:

2. Снимите верхнюю часть лампы.

Обновление: см. Сообщение о том, как сделать этот шаг для затененных ламп здесь.
Мы только что открутили эту круглую штучку (гайку?). Каждая лампа отличается, но должен быть способ открутить ее и снять верхнюю часть.

3. Подключите фонари к верхней части лампы

Мы используем эти волшебные, фантастические светодиодные катушечные фонари, которые нам очень нравятся.Вот как они выглядят, когда приходят по почте:

Это гибкая нить огней, которую можно отрезать любой длины, которая почти не потребляет энергии и стоит дешево . Мы использовали их для освещения наших книжных полок (см. Этот учебник здесь):
И просто для удовольствия, вот как они выглядят, когда вся полоса освещена этой 9-вольтовой батареей:

Конец световой полосы имеет красный и красный цвет. черный провод и выглядит так:

Хорошо, теперь посмотрим на ту часть лампы, куда вкручивается лампочка.

Вам нужно припаять красный провод световой полосы к одной металлической детали, а черный провод — к другой. На этом этапе не имеет значения, какой провод к какому металлическому элементу идет.

Отрежьте световую полосу до желаемой длины. Мы использовали около двух футов света. Если вы внимательно посмотрите на настоящую полосу, через каждые два дюйма есть линия, по которой ее можно безопасно разрезать. Вот небольшая диаграмма:

ОБНОВЛЕНИЕ: Марк только что оставил комментарий, указывающий нам на этот светодиодный светильник, который вкручивается прямо в патрон лампы.Мы не пробовали это сделать, но это может позволить вам пропустить этап припаивания полос к лампе и просто вкрутить ее прямо. Вам все равно потребуется подключить аккумулятор, как мы обсудим ниже.

5. Снова прикрепите верх лампы

Теперь, когда фонари подключены к лампе в патроне лампы, мы пропустили их через отверстие в верхней части лампы и снова прикрутили гайку.

Светодиодные ленты имеют липкую основу, поэтому вы снимаете бумажную основу…

И просто прикрепите свет к внутренней части лампы в любом месте.Это не должно быть красиво. Если это не важно для вас.

… Почти готово!

6. Подключите нижнюю часть лампы к батарее.

Вернувшись к нижней части лампы, отрежьте шнур на расстоянии нескольких дюймов от основания. (Страшно, я знаю! Но мы заставим этого плохого мальчика работать в кратчайшие сроки.)

И разорвите провода:

С помощью инструмента для зачистки проводов зачистите концы каждого провода:

Теперь вы собираетесь припаяйте концы этих проводов к 9-вольтовому зажиму для батареи, как это:

Они СУПЕР дешевы — примерно 2 доллара после доставки на Amazon здесь — или вы можете украсть один из старых 9-вольтных электронных устройств, как мы сделали с этот старый будильник:

ОБНОВЛЕНИЕ: Мы сделали этот свет, используя 9-вольтовый батарейный блок и 9-вольтовый аккумулятор, но мы собираемся переключить его на батарейный блок 8 AA и запустить его Батарейки AA, чтобы было немного ярче.Я бы порекомендовал вам работать от 8 батареек AA. Все инструкции одинаковы, вы просто используете батарейный блок на 8 АА вместо 9-вольтового батарейного блока и вставляете в него батарейки АА вместо 9-вольтового.)

Закрепите батарейный блок на 9 -вольт АКБ и подержать провода до проводов лампы. Посмотрите, загорится ли лампа. (Убедитесь, что переключатель включен!) Если это не так, поменяйте провода.

УРА! У нас есть СВЕТ!

Когда вы обнаружите, какой провод куда идет, снимите аккумулятор, скрутите провода вместе и заклейте их изолентой.Мы их тоже припаяли, но это необязательно.

Снова вставьте 9-вольтовую батарею и вставьте ее в лампу. Затем просто снова соберите лампу. Мы снова приклеили кусок войлока и добавили липучку, чтобы он оставался на месте, но его легко снять, чтобы заменить батарею.

Большая часть этого оборудования была у нас под рукой, единственной ценой для нас была нитка светодиодных фонарей. Мы использовали только 2 фута света, и у нас много планов насчет остатков!

Насколько хорошо это работает?

Пока все хорошо! Мы включили свет около 8 часов, и он все еще горит.Если вы хотите, чтобы ваша лампа была более яркой, выберите блок из 8 аккумуляторов, поскольку он обеспечивает питание 12 вольт. 9-вольтовый будет немного тусклее.

Обновление: Мы решили, что более яркий AA намного лучше, поэтому мы заменили нашу лампу. Чтобы дать вам представление о яркости, наша лампа немного ярче, чем лампа накаливания на 40 Вт, и немного тусклее, чем лампа на 60 Вт.

И это история о том, как наша грустная потерянная маленькая спасательная лампа отряхнула себя, нашла новый дом, все отремонтировала и теперь едет по местам со своей жизнью.На самом деле, идти туда, куда захочется. Потому что ему не нужен доступ к розетке.

ОБНОВЛЕНИЕ: ознакомьтесь с новым сообщением о том, как это сделать для ламп с абажурами здесь. Ознакомьтесь с другими нашими проектами освещения здесь, а также с нашими советами и рекомендациями здесь.



Этот пост содержит партнерские ссылки.

Этот светодиод мощностью 60 Вт: то, чего вы не знаете и о чем вам никто не скажет…

Большинство читателей в курсе всей недавней шумихи относительно 40- и 60-ваттных светодиодных версий стандартных 40- и 60-ваттных ламп.Цены резко упали, внешний вид стал несколько стандартизированным, а версии с регулируемой яркостью становятся обычным явлением. Так что теперь большая часть времени СМИ и блогосферы тратится на бесконечные спекуляции о плюсах и минусах и сроках, когда у нас появятся такие лампочки со встроенным Wi-Fi. -Fi, настройка цвета, гаджеты для смартфонов, розничная цена на уровне 1,50 доллара, а также плюсы и минусы версий в Wal-Mart по сравнению с версиями в Lowe’s и Home Depot.

Возможно, настало время для проверки реальности или двух… значимых для среднего потребителя, который не имеет практически никакого представления о CCT, CRI или теплоотводе, поскольку они покупают лампочки, чтобы просто включить свет, когда и где это необходимо и не нужно. он должен быть совместим с iTunes.

Сначала несколько фактов: на протяжении десятилетий потребители пришли к выводу (разумное предположение), что они могут купить почти любой КЛЛ и вкрутить его в любое место, где раньше была лампа накаливания мощностью 40 или 60 Вт. Может быть, это не позволило бы затемнять… возможно, нагревание происходило медленно… возможно, цветовая консистенция была не такой, как ожидалось… а некоторые «дворняги» не держались так долго, как предполагалось. Однако в большинстве случаев КЛЛ оказались хорошей окупаемостью, они служат намного дольше и резко сокращают затраты на электроэнергию.Сотни миллионов, проданных по всему миру, говорят о том, что они предоставили в значительной степени то, что ожидалось.

Отсюда следует, что потребители теперь ожидают того же от светодиодных версий, с еще более длительным сроком службы и большей экономией электроэнергии, затемнением и даже лучшей однородностью цвета. Что не нравится, когда цены продолжают снижаться?

Давайте переключим передачи на секунду. Вероятно, 95% всех одобренных UL утопленных светильников на протяжении десятилетий имеют простые недорогие «термовыключатели».Почему ? Потому что, если потребитель установит лампу накаливания более высокой мощности, чем рекомендовано, с осветительной арматурой могут произойти «плохие вещи». Производители светильников рано поняли, что, если есть розетка, многие потребители сочтут, что она годна для любой лампочки, что не имеет явных предупреждений.

Возвращаясь к нашей истории: оказывается, предположение потребителя неверно: светодиодная лампа — это просто еще одна модернизация, как и КЛЛ. Как уже отмечалось, люди предполагали, что везде, где у вас есть лампа накаливания мощностью 40 или 60 Вт, вы можете вкрутить КЛЛ.Это совсем не так для 40- или 60-ваттного эквивалента.

Внутри светодиодной лампы внутреннее генерирование и распределение тепла таково, что ей «отчаянно» нужен доступ к холодному окружающему воздуху. Тот факт, что у нее есть металлический корпус, не имеет значения в условиях ограниченного доступа воздуха.

У этой 60-ваттной лампы Wal-Mart, когда она работает с цоколем на открытом воздухе и даже без абажура, внутренний светодиодный корпус имеет температуру 85 ° C, что является абсолютным верхним пределом того, что считается «безопасным» для полного ожидаемого срока службы.То же самое и с лампами конкурентов. Оберните его в тени… и станет немного теплее. Поместите его в любую базовую розетку, и он станет намного горячее, и все цифры ожидаемой продолжительности жизни будут исключены из таблицы. Поместите его в любое крыльцо или в светильник для столба, и он может поджариться, а его внутренние компоненты источника питания окажутся на краю обрыва. Поместите лампу в полностью закрытый потолочный светильник и установите таймер, когда произойдет сбой.

Другими словами, в отличие от ламп накаливания и существенно отличных от КЛЛ, надежность и ожидаемый срок службы резко падают, как только вы устанавливаете их в любом месте, где ограничен воздух.Угадай, что? Большой процент мест, где лучше всего подходят светодиоды, находится в тех местах, где доступ затруднен и воздух ограничен. Светодиоды не нацелены на рынок «только настольных ламп».

Все производители светодиодов A-19 (эквивалент 60 Вт) могут немедленно решить проблему с помощью исправления в 25 центов — простой схемы термистора «поваренной книги», которая автоматически снижает яркость до безопасного уровня теплового равновесия, когда вещи становятся слишком горячими, и защищает неосведомленный потребитель против самого себя. Производители светодиодных светильников занимаются этим в течение некоторого времени, потому что пришли к выводу, что было бы безрассудно этого не делать.

За последние два года мы наблюдали очень много отзывов о крупных светодиодных лампах из-за небрежности в отношении теплового дизайна. Прежде чем мы слишком увлечемся мыслями о светодиодных лампах, которые можно использовать в качестве источников света для вечеринок или точек доступа Wi-Fi, давайте сначала убедимся, что они соответствуют основным ожиданиям как надежный, долговечный и энергосберегающий источник света для основных нужд. Мы еще не достигли этого, потому что эта реальная проблема игнорируется всеми без исключения поставщиками светодиодных ламп типа A-19, эквивалентных 40, 60 и 100 Вт.


См. Также :

Сколько энергии потребляет мое освещение? [Калькулятор]

Сколько энергии потребляет электрическая лампочка и как освещение влияет на ваш счет за электроэнергию? Сколько вам сэкономит модернизация освещения? Как начать оценивать потенциальную скидку на освещение?

Есть одна общая черта, которая проходит через каждый из этих вопросов: разница между ваттами (Вт), киловаттами (кВт) и киловатт-часами (кВтч).Вычисление ватт в киловатт-час может помочь вам понять ответы на поставленные выше вопросы.

Энергетическая отрасль почти так же плоха, как и светотехническая, в использовании сокращений и жаргона, поэтому мы попытаемся разбить каждую из них на нескольких практических примерах.

В этой статье я собираюсь использовать аналогию с приравниванием электричества к воде. Это распространенная аналогия, которую мы не можем назвать своей собственной, но, надеюсь, наши конкретные примеры помогут объяснить, сколько энергии на самом деле расходуется на освещение.

Если вы уже знаете разницу между кВт и кВтч, щелкните здесь, чтобы перейти к калькулятору.

Что такое ватт (Вт)?

Вы, вероятно, приняли множество решений по освещению, основываясь на мощности. Вы откручиваете перегоревшую лампочку, смотрите сверху и видите «60 Вт». Все, что у вас есть, — это лампочка с надписью «25 Вт», поэтому вы ее вкручиваете, и, к своему ужасу, она слишком тусклая. Вы идете в магазин и выбираете лампочку «60 Вт». Твой свет снова яркий. Кризис предотвращен.

Так что вообще такое ватт? Технически говоря, это единица электрической мощности, равная 1 джоуль в секунду. Лампочки измеряются в ваттах, чтобы указать, сколько энергии они потребляют.

Имеет ли какое-либо отношение мощность лампочки к яркости? Ну вроде как.

Долгое время многие из нас связывали ватт с количеством света, излучаемого лампочкой. В общем, это хорошо работает с традиционными лампами накаливания. Лампа накаливания мощностью 60 Вт обычно дает около 650-800 люмен.Лампа накаливания мощностью 25 Вт обычно дает около 150 люмен — гораздо меньше света.

Однако с появлением более эффективного освещения нередко можно увидеть лампу «эквивалент 60 Вт», которая потребляет гораздо меньше энергии и излучает примерно такое же количество света. Вот разбивка:

Лампа накаливания Галоген КЛЛ Светодиод
Мощность 60 Вт 42 Вт 13-16 Вт 5-9 Вт
Люмен на ватт (LPW) 13 18.5 60 75-100 +

(Фотографии выше представляют технологию, а не конкретные технические характеристики продукта.)

Итак, сравнивая электрические лампочки, помните, что мощность — это мера того, сколько энергии будет использовать лампочка для производства света, а люмены дадут вам меру того, сколько света она будет производить.

Готовы купить лампочки? Щелкните здесь и используйте фильтры слева для сортировки по люменам.

Что такое киловатт (кВт)?

Так же, как ватты, киловатты — это мера того, сколько энергии что-то будет потреблять. Переход от ватт (Вт) к киловаттам (кВт) — это довольно простой расчет: 1 кВт равен 1000 Вт. Чтобы преобразовать Вт в кВт, разделите общую мощность на 1000.

Вот пример: если вы включите десять лампочек мощностью 100 Вт, это будет равняться 1 кВт потребляемой энергии.

10 лампочек x 100Вт = 1000Вт

1000 Вт / 1000 = 1 кВт

Также стоит отметить, что кВт может быть синонимом «спроса», если вы разговариваете с коммунальной компанией.Представьте, что вы одновременно включаете десять лампочек и сушилку для белья на 3000 ватт. Коммунальная компания должна иметь возможность поставлять достаточно электроэнергии для удовлетворения этих 4 кВт потребности в момент, когда вы все включаете.

Однако ваше потребление энергии зависит от того, как долго вы все держите включенным, что приводит нас к…

Что такое киловатт-час (кВтч)?

В чем разница между кВт и кВтч? Измерение кВтч — это способ количественно определить, сколько энергии используется за определенный период времени.Это можно рассчитать, умножив потребляемую мощность в кВт на общее количество часов работы освещения.

Давайте вернемся к примеру с десятью лампочками по 100 Вт. Сколько энергии вы бы использовали в течение месяца, если бы включали их на 10 часов в день?

Вот где в игру вступает кВтч. Вот разбивка:

10 лампочек X 100Вт = 1000Вт или 1кВт освещения

10 часов ежедневного использования X 30 дней в месяце = 300 часов использования

1 кВт X 300 часов использования = 300 кВт-ч энергопотребления

Итак, почему кВтч так важен, если вы можете сравнивать осветительные приборы по мощности и светоотдаче? В конце концов, значительная часть вашего счета за электричество основана на потреблении энергии в киловатт-часах.Если вы хотите подсчитать долларовую экономию, которую вы получите от модернизации до более эффективного освещения, вам пригодится кВтч.

кВт против кВтч: практический пример

Ладно, хватит теории.

Как насчет практического примера, чтобы объяснить разницу между кВт и кВтч? (Вот здесь-то и приходит на помощь аналогия с водой.)

Представим, что у нас есть два садовых шланга, один диаметром 3/8 дюйма, а другой — диаметром 5/8 дюйма.

Шланг 5/8 дюйма имеет большую пропускную способность, чем шланг 3/8 дюйма, поэтому он может пропускать больше воды в любой момент.Это идея кВт — способности использовать электроэнергию.

А теперь представим, что мы хотим наполнить двухгаллонную лейку. Количество воды, которое мы используем для наполнения банки, составляет два галлона. Это идея кВтч — общего количества энергии, потребляемой с течением времени.

Сколько времени нужно, чтобы наполнить лейку? Это зависит от того, какой шланг мы выберем. Шланг 5/8 дюйма — из-за большей емкости — наполнит лейку быстрее, чем шланг 3/8 дюйма.

Точно так же лампочка мощностью 100 Вт потребляет в общей сложности 10 кВт · ч энергии быстрее, чем лампа мощностью 60 Вт.

Вот параллельный пример:


Вода Энергия
Шаг 1: Емкость
Давайте воспользуемся нашим шлангом диаметром 5/8 дюйма, который, как мы предположим, пропускает 16 галлонов в минуту

Давайте воспользуемся лампой накаливания мощностью 60 Вт (0,06 кВт).
Шаг 2: Время Дайте поработать шланг на 20 минут Даем лампочку поработать 2000 часов
Шаг 3: Расход 16 галлонов / мин x 20 мин
= 320 галлонов израсходовано
0.06 кВт x 2000 часов
= Потребление 120 кВтч

Давайте рассмотрим пример эффективности и сравним лампочку накаливания со светодиодной лампочкой:

Энергия Энергия
Шаг 1: Емкость
Лампа накаливания 60 Вт (0,06 кВт)

5W (0.005kW) LED лампа
Шаг 2: Время Даем лампочку поработать 2000 часов Дайте лампочке поработать 2000 часов.
Шаг 3: Расход 10,06 кВт x 2000 часов
= Потребление 120 кВтч
0,005 кВт X 2000 часов
= 10 кВтч потреблено

В этом примере мы получили тот же световой поток, и мы использовали лампочки в течение того же времени, но общее потребление энергии за 2000 часов работы было на 110 кВтч меньше для светодиодной лампы.

Вт против кВтч при скидках на освещение

Программы скидок на освещение — это одна из областей, где мы обычно видим разницу между снижением мощности и сокращением потребления кВтч на регулярной основе.

Как правило, мы встречаем два вида скидок на освещение:

1. Скидки на освещение для снижения спроса

Некоторые скидки на освещение направлены на снижение мощности при модернизации. Если вы замените лампу PAR38 мощностью 100 Вт на более эффективную светодиодную лампу PAR38 мощностью 14 Вт, коммунальное предприятие выплатит скидку, исходя из 76 Вт уменьшенной энергии.

2. Скидки на освещение, сокращающие объем использования

Прочие скидки на освещение направлены на общее снижение энергопотребления при модернизации.Если вы используете освещение в течение 4320 часов в год (12 часов в день, 360 дней в году), PAR38 мощностью 100 Вт будет использовать 432 кВтч в год, а светодиодный PAR38 мощностью 14 Вт будет использовать чуть более 60 кВтч в год.

В этом случае коммунальное предприятие будет платить скидку на основе 372 кВт-ч энергопотребления, сэкономленного в течение года за счет более эффективного освещения.

Пытаетесь разобраться в бесчисленных скидках на освещение, доступных по всей стране? Мы здесь, чтобы помочь.

Преобразование ватт в кВтч при освещении

Могу ли я использовать светодиод большей мощности в моем светильнике?

Распространенный вопрос при замене ламп накаливания на светодиодные, и так уж получилось, что у нас есть ответ, так что читайте дальше…..

Многие существующие фитинги будут иметь маркировку с указанием макс. 40 Вт, 100 Вт и т. Д.

Если возникает вопрос: «Могу ли я использовать светодиодную лампу на 20 Вт и выходную мощность 100 Вт в осветительной арматуре с максимальной мощностью 60 Вт?» Это хорошо.

Обычно максимальная мощность больше связана с тепловой мощностью традиционных ламп, чем с потребляемым током, но вы должны принять это во внимание, а не предполагать, что вы можете использовать более высокую мощность (только эквивалент с более высокой выходной мощностью).

Когда дело доходит до замены старых ламп накаливания на светодиодные, клиенты часто задают вопрос: « Могу ли я использовать светодиод с более высокой эквивалентной мощностью, чем позволяет мой прибор? ”Простой ответ — да, если светодиодная лампа потребляет меньше мощности, чем ваш светильник.

Если вы видите этикетку с надписью «100-ваттный светодиодный эквивалент», что не означает, что лампа на самом деле потребляет 100 Вт, это означает, что она производит количество света, эквивалентное 100-ваттной лампе накаливания.Если в вашей розетке указано, что мощность не должна превышать 60 Вт, это означает, что высокая тепловая мощность связана с лампами накаливания.

Однако светодиоды

не излучают опасного тепла. Итак, если на вашем приборе указано «не более 60 Вт», но вы хотите использовать светодиодную лампу, эквивалентную 100 Вт, это безопасно.

Итак, почему светодиоды ТАКОЕ эффективнее?

Это потому, что они не используют прямое тепло для получения света. Лампы накаливания излучают гораздо более широкий спектр излучения, потому что они нагревают металл как источник света — они излучают видимый свет, но они также испускают невидимое излучение, такое как УФ и инфракрасный свет, поэтому они потребляют больше энергии.С другой стороны, светодиоды испускают только излучение видимого света, который имеет гораздо более узкий спектр, и это делает их намного более эффективными.

Как мне узнать, будет ли моя светодиодная лампа достаточно яркой?

Когда речь идет о яркости светодиодных ламп, вы должны думать о люменах, а не о ваттах. Обычно светодиодная лампа мощностью 800 люмен излучает такое же количество света, как и лампа накаливания мощностью 60 Вт.

Если вам нужно что-то еще более яркое, то для светильника на 60 Вт вы можете использовать эквивалент светодиода мощностью 100, 125 или 150 Вт — все они потребляют менее 60 Вт.Светодиодные лампы мощностью 150 Вт производят около 2600 люмен, но потребляют всего около 30 Вт. Важность этого заключается в том, что использование светодиода мощностью 150 Вт в розетке на 60 Вт даст вам в три раза больше яркости, чем лампа накаливания на 60 Вт.

Яркость в люменах

220+ 400+ 700+ 900+ 1300+

Стандартный

25 Вт 40 Вт 60 Вт 75 Вт 100 Вт

Галоген

18 Вт 28 Вт 42 Вт 53 Вт 70 Вт

КЛЛ

6 Вт 9 Вт 12 Вт 15 Вт 20 Вт

Светодиод

4 Вт 6 Вт 10 Вт 13 Вт 18 Вт

Как правильно выбрать лампочку:

• Гостиная: 100–20 люмен на квадратный метр

• Столовая: 300–400 люмен на квадратный метр

• Спальня: 100–200 люмен на квадратный метр

• Ванная комната: 700–800 люмен на квадратный метр

• Коридоры: 50–100 люмен на квадратный метр

• Кухня (общее освещение): 300–400 люмен на квадратный метр

• Кухня (рабочие зоны): 700–800 люмен на квадратный метр

• Прачечная: 700–800 люмен на квадратный метр

Все еще немного запутались или просто остались вопросы? Тогда почему бы не посетить наш технический отдел , где мы можем вам помочь;

1.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *