Схема кнопки пуск стоп: Схема подключения через кнопку пуск стоп – АвтоТоп

Содержание

Кнопка пуск-стоп в корпусе. Узнаем как подключить?

Кнопки управления «пуск-стоп» довольно часто встречаются на производстве. Указанные устройства применяются для запуска станков. Перед подключением модели важно узнать тип переключателя. Существуют контактные и беспроводные модификации. Дополнительно играет роль контроллер, который используется при установке. Чтобы разобраться в указанном вопросе, в первую очередь необходимо рассмотреть стандартную схему подключения переключателя.

Схема подключения

Стандартная схема подключения кнопки пуска-стопа подразумевает применение замыкающего контактора. Триггеры подбираются с проводимостью от 4.5 См. Некоторые специалисты устанавливают устройства напрямую через реле. Для этого подходят только проводные модификации. Если расставить устройства с компаратором, то триггер используется с изоляторами. Первые провода от переключателя замыкаются на обмотке реле. Непосредственно контактор подводится к трансиверу.

Рассмотрение выключателей QF1

Подключение пускателя через кнопку «пуск-стоп» осуществляется при помощи реле. Если рассматривать схему с проводным контроллером, то тиристор используется на две фазы. Непосредственно конденсатор потребуется на 4 пФ. Специалисты говорят о том, что регуляторы можно использовать на два и три выхода. Однако в данном случае многое зависит от типа выпрямителя. В стандартных станках он устанавливается с положительным зарядом.

Сопротивление у него равняется не менее 50 Ом. Также важно отметить, что у него предусмотрена замыкающая пластина. В такой ситуации первые контакты от переключателя подводятся к реле. При этом контролер замыкается по первой фазе. Перед проверкой сопротивления важно убедиться в заземлении цепи. Также рекомендуется заранее подключить изолятор. Второй контакт от переключателя подводится к расширителю. Стабилизатор для подключения потребуется волнового типа.

Схема с нереверсивным пускателем

Нереверсивные пускатели в последнее время часто встречаются. Подключение кнопок «пуск-стоп» разрешается делать напрямую через реле. В данном случае триггеры не применяются. Также надо отметить, что установку переключателя можно сделать через компаратор. В такой ситуации появится возможность установить регулятор. Дополнительно устанавливается стабилизатор.

Специалисты говорят о том, что преобразователь применяется двунаправленного типа. Подключение первого контакта осуществляется по первой фазе. Также надо отметить, что конденсаторы в цепи применяются емкостного типа. Стабилизатор при этом понадобится однополюсного типа. Если рассматривать двуканальные преобразователи, то для них используются только контактные расширители. Переключатели в данном случае замыкаются с обкладкой. Первые контакты подводятся по второй фазе.

Применение реверсивных пускателей

Подключение кнопки пуска-стопа через реверсивные пускатели осуществляется с преобразователями и без них. Если рассматривать первый вариант, то конденсаторы применяются с полупроводниковыми изоляторами. Непосредственно обмотка используется на 15 В. Показатель сопротивления на ней должен составлять не менее 30 Ом.

Компаратор для переключателя используется на два выхода. Первый контакт замыкается по первой фазе. Стабилизатор при этом должен находиться в разомкнутом состоянии. Некоторые модификации продаются с фильтрами. Также стоит отметить, что существуют контакторы с однопереходными резисторами.

Инструкция по пускателям серии ПМЛ-1100

Как подключить кнопку «пуск-стоп»? Это довольно просто сделать через канальный тиристор. Преобразователи для устройства подбираются на два фильтра. Показатель сопротивления в среднем равняется 55 Ом. Динисторы разрешается использовать двунаправленного типа.

Специалисты говорят о том, что контакторы важно тщательно зачистить. Дополнительно стоит отметить, что проводники должны быть хорошо изолированы. Первый контакт замыкается на второй фазе. Проводимость цепи в среднем равняется 4.5 См. Расширитель при установке применяется широкополосного типа.

Подключение модульного пускателя

К модульным пускателям подключается только проводная кнопка «пуск-стоп». В данном случае преобразователи часто используются с переходниками. Первый контакт от переключателя замыкается по первой фазе. Непосредственно изолятор устанавливается в последнюю очередь. Тиристор применяется с выпрямителем. Однако в данном случае многое зависит от контроллера. Если рассматривать модели на три выхода, у них имеются два динистора. Первый контакт от переключателя замыкается по второй фазе. Стабилизатор в конце устанавливается с одним фильтром.

Пускатели открытого исполнения

Кнопка «пуск-стоп» в корпусе к пускателю открытого типа подключается с проводным триггером. Трансивер применяется с одним или несколькими расширителями. При подключении преобразователя проверяется сопротивление, поскольку конденсатор может не выдерживать токовой нагрузки.

Данный параметр в среднем равняется 33 Ом. Если устанавливать переключатель с трехконтактным контроллером, то трансивер используется многоканального типа. Проводимость у него должна составлять примерно 4.5 См. Дополнительно важно отметить, что второй контакт от переключателя замыкается по первой фазе. Специалисты говорят о том, что проводник на пластине необходимо тщательно зажимать. Изолятор устанавливается за расширителем. Если припаять проходной трансивер, то для цепи используется два фильтра.

Подключение пускателей закрытого исполнения

Кнопка «пуск-стоп» к данным пускателям устанавливается напрямую через реле. Транзисторы с этой целью подбирают низкой проводимости. Перед подключением компонентов тестируется выходное сопротивление. Указанный параметр в цепи не должен превышать 45 Ом. При высоких перегрузках рекомендуется поменять фильтр. Также стоит отметить, что проблемы могут наблюдаться из-за малой проводимости транзистора. Первый контакт от переключателя замыкается по первой фазе. Стабилизатор для цепи используется только однополюсного типа. Показатель пороговой перегрузки у представленного компонента равняется не менее 5 А.

Подключение переключателя через однопереходный триггер

Однопереходные триггеры обладают большой проводимостью. Изоляторы для устройств подбираются двунаправленного типа. Простая кнопка «пуск-стоп» устанавливается напрямую через реле. Также надо отметить, что установку устройства можно сделать через блок управления. Если рассматривать обычный фрезерный станок, то трансивер используется одноканального типа. Первый контакт от переключателя подводится по второй фазе. На данном этапе работы важно протестировать выходное сопротивление. При перегрузке 3 А проводимость не должна превышать 5.5 См.

Если используются полупроводниковые контроллеры, то сопротивление в среднем равняется 55 Ом. Дополнительно важно отметить, что часто устанавливаются замыкающие контакторы на два выхода. В такой ситуации изолятор устанавливается за преобразователем. Таким образом, перегрузка в конечном счете не превысит значение 6 А. Триггеры часто применяются с расширителем. Контакты к ним разрешается подключать напрямую.

Применение двухпереходных триггеров

Довольно часто кнопка «пуск-стоп» устанавливается с двухпериодными триггерами. Подключаются они через реле на 12 В. Блок питания применяется импульсного типа. Реле разрешается использовать на 4 А. Триггер для установки переключателя монтируется за преобразователем. Сопротивление на выходе равняется не более 40 Ом. Если элемент сильно перегревается, значит проблема кроется в перегруженности триггера. Для этого используются только проводные конденсаторы. При этом компараторы замыкаются по первой фазе.

Устройства с емкостными контроллерами можно подключать только через динисторы. В данном случае подходят модификации только на три выхода. Изолятор устанавливается на выходе цепи. При этом преобразователь подбирается с двунаправленным блокиратором. Выходное напряжение в цепи составляет около 15 В. В данном случае коэффициент перегрузки не должен превышать 4 А. Если используется дипольный контроллер, то переходник можно применять на два выхода. Первый контакт от переключателя замыкается по второй фазе. При этом сопротивление должно составлять не более 30 Ом.

Схема подключения пускателя — Статьи по электротехнике — Каталог статей


Это простейшая схема пускателя (упрощенный вариант), которая лежит в основе всех или, по крайней мере, большинства схем запуска асинхронных электродвигателей, применяемых очень широко, как в промышленности, так и в обычном быте. Плох тот электрик, который не знает данной схемы (как ни странно, но есть и такие люди). Хоть Вы, возможно, конечно знаете принцип её  работы, но для освежения памяти или для новичков все же опишу вкратце эту работу. И так, вся схема кроме электродвигателя, который установлен непосредственно на конкретном оборудовании или устройстве, монтируется либо в щитке или в специальной коробке (ПМЛ).

Кнопки ПУСКА и СТОПА, могут находится как на передней стороне этого щитка, так в не его (монтируются на месте, где удобно управлять работой), а может быть и там и там, в зависимости от удобства. К данному щитку подводится трёхфазное напряжение от ближайшего места запитки (как правило, от распределительного щита), а с него уже выходит кабель, идущий на сам электродвигатель.

Схема пускателя упрощенный вариант

А теперь о принципе работы: на клеммы Ф1, Ф2, Ф3 подается трехфазное напряжение. Для запуска асинхронного электродвигателя требуется срабатывание магнитного пускателя(ПМ) и замыкания его контактов ПМ1, ПМ2 и ПМ3. Для срабатывания ПМ, необходимо подать на его обмотку напряжение (кстати, величина его зависит от самой катушки, то есть, на какое именно напряжение она рассчитана. Это так же зависит от условий и места работы оборудования. Они бывают на 380в, 220в, 110в, 36в, 24в и 12в) (данная схема рассчитана на напряжение 220в, поскольку берётся с одной из имеющихся фаз и нуля). Подача электропитания на катушку магнитного пускателя осуществляется по такой цепи: С ф1 поступает фаза на нормально замкнутый контакт тепловой защиты электродвигателя ТП1, далее проходит через катушку самого пускателя и выходит на кнопку ПУСК (КН1) и на контакт само подхвата ПМ4 (магнитного пускателя). С них питание выходит на нормально замкнутую кнопку СТОП и после замыкается на нуле.

Для запуска требуется нажать кнопку ПУСК, после чего цепь катушки магнитного пускателя замкнётся и притянет (замкнёт) контакты ПМ1-3 (для пуска двигателя) и контакт ПМ4, который даст возможность при отпускании кнопки пуска, продолжать работу и не отключить магнитный пускатель (называется само подхватом). Для остановки электродвигателя, требуется всего лишь нажать кнопку СТОП (КН2) и тем самым разорвать цепь питания катушки ПМ. В результате контакты ПМ1-3 и ПМ4 отключатся, и работа будет остановлена до следующего запуска Пуска.

Для защиты обязательно ставятся тепловые реле (на нашей схеме это ТП). При перегрузки электродвигателя, соответственно повышается ток, и двигатель резко начинает  нагреваться, вплоть до выхода из строя. Данная защита срабатывает именно при повышении тока на фазах, тем самым размыкает свои контакты ТП1, что подобно нажатию кнопки СТОП.
Данные случаи бывают в основном при полном заклинивании механической части или при большой механической перегрузки в оборудовании, на котором работает электродвигатель. Хотя и не редко причиной становится и сам движок, из-за высохших подшипников, плохой обмотки, механического повреждения и т.д. Думаю для тех, кто этого не знал, данная статья: Схема пускателя упрощенный вариант, была весьма полезна и однажды не раз пригодится в жизни.

Подключения пускателя по схеме — реверс

Вариант приведенной выше схемы, используется для запуска электродвигателей, работающих в одном режиме, т. е. не меняя вращения (насосы, циркулярки, вентиляторы). Но для оборудования которое должно работать в двух направлениях, это кран  — балки, тельферы, лебедки, открывание-закрывание ворот и др. необходима другая электрическая схема. Для такой схемы нам понадобится не один, а два одинаковых пускателя и кнопка ПУСК-СТОП трех кнопочная, т. е. две кнопки ПУСК и одна СТОП. Могут в схемах реверс, использоваться пульты и на две кнопки, это участки, где промежутки работы очень короткие. Например небольшая лебедка, промежутки работы 3-10 секунд, для работы этого оборудования, вариант на две кнопки более подходящий, но кнопки обе пусковые, т. е. только с нормально открытыми контактами, и в схеме блок контакты  (пм1 и пм2) самоподхвата не задействуются, а именно  пока вы держите кнопку нажатой –  оборудование работает, как отпустили – оборудование остановилось. В остальном схема реверс аналогична схеме упрощенный вариант.

Подключения пускателя по схеме – реверс

Пускатель со схемой звезда – треугольник

Переключение двигателя со звезды на треугольник применяют для защиты электрических цепей от перегрузок. В основном переключают со звезды на треугольник мощные трехфазные асинхронные двигатели от 30-50 кВт, и высокооборотные ~3000 об/мин, иногда 1500 об/мин.

Если двигатель соединен в звезду то на каждую его обмотку подается напряжение 220 Вольт, а если двигатель соединен в треугольник, то на каждую его обмотку приходиться напряжение 380 Вольт. Здесь в действие вступает закон Ома «I=U/R» чем выше напряжение, тем выше ток, а сопротивление не изменяется.

Проще говоря, при подключении в треугольник (380) ток будет выше, чем при подключении в звезду(220).

Когда электродвигатель разгоняется и набирает полные обороты, картина полностью меняется. Дело в том что двигатель имеет мощность которая не зависит от того подключен он в звезду или на треугольник. Мощность двигателя зависит в большей степени от железа и сечения провода. Здесь действует другой закон электротехники «W=I*U»

Мощность равна сила тока, умноженная на напряжение, то есть чем выше напряжение, тем ниже ток. При подключении в треугольник(380), ток будет ниже, чем в звезду (220). В двигателе концы обмоток выведены на «клеммник»  таким образом что в зависимости от того каким образом поставить перемычки получится подключение в звезду или в треугольник.  Такая схема обычно на рисована на крышке. Для того чтобы производить переключения со звезды на треугольник, мы вместо перемычек будем использовать контакты магнитных пускателей.

Схема звезда – треугольник

 Схема подключения трехфазного асинхронного двигателя, в пусковом положении которого обмотки статора соединяются звездой, а в рабочем положении — треугольником.

К двигателю подходит шесть концов. Магнитный пускатель КМ служит для включения и отключения двигателя. Контакты магнитного пускателя КМ1 работают как перемычки для включения асинхронного двигателя в треугольник. Обратите внимания, провода от клеммника двигателя должны быть включены в таком же порядке, как и в самом двигателе, главное не перепутать.

Магнитный пускатель КМ2 подключает перемычки для включения в звезду к одной половине клеммника, а к другой половине подается напряжение.

При нажатии на кнопку «ПУСК» питание подается на магнитный пускатель КМ он срабатывает и на него подается напряжение через  блок контакт теперь кнопку можно отпустить. Далее напряжение подается на реле времени РВ, оно отсчитывает установленное время. Также напряжение через замкнутый контакт реле времени подается на магнитный пускатель КМ2 и двигатель запускается в«звезду».

Через установленное время срабатывает реле времени РТ. Магнитный пускатель Р3 отключается. Напряжение через контакт реле времени подается на нормально-замкнутый (замкнутый в отключенном положении) блок контакт магнитного пускателя КМ2, а от туда на катушку магнитного пускателя КМ1. И 

электродвигатель включается в треугольник. Пускатель КМ2 следует также подключать через  нормально-замкнутый блок контакт пускателяКМ1, для защиты от одновременного включения пускателей.

Магнитные пускатели КМ1 и КМ2 лучше взять сдвоенные с механической блокировкой одновременного включения.

Кнопкой «СТОП» схема отключается.

Схема состоит:
— Автоматический выключатель;
— Три магнитных пускателя КМ, КМ1, КМ2;
— Кнопка пуск – стоп;
— Трансформаторы тока ТТ1, ТТ2;
— Токовое реле РТ;
— Реле времени РВ;
— БКМ, БКМ1, БКМ2– блок контакт своего пускателя.

fazaa.ru


Схема кнопки пуск-стоп запуска двигателя

В этой статье рассмотрим несложную схему для установки кнопки пуск/стоп в автомобиль. Схема не сложная, повторить может каждый, кого интересует данная поделка.

Устройство можно устанавливать в автомобили, как в виде дополнительного модуля к имеющемуся замку зажигания (c учётом нейтрализации блокиратора рулевой колонки), так и взамен ему.

В устройстве можно использовать продаваемые в интернет-магазинах кнопки, конструктивно предназначенные для функции запуска/остановки двигателя автомобиля, а также любую подходящую для этого кнопку, которую можно установить в любом удобном месте, в том числе, в целях безопасности и скрытно.

Основу составляет недорогой микроконтроллер PIC12F629. Микроконтроллер настроен на работу с внутренним RC генератором частотой 4МГц. В своём составе указанный МК имеет встроенный модуль компаратора, который используется в нашем случае как пороговое устройство для определения запуска автомобиля по напряжению в бортовой сети.

В этом случае, напряжение на входе компаратора (выв.7 DD1) становиться выше порогового значения в 3,6 вольта, что в свою очередь определяется микроконтроллером и после двукратной программной проверки МК отключает транзистор VT4 и соответственно питание катушки реле стартера К3, независимо от того нажата кнопка или нет.

Основу устройства составляет недорогой микроконтроллер PIC12F629 производства фирмы « Microchip». Микроконтроллер настроен на работу с внутренним RC генератором частотой 4МГц. В своём составе указанный МК имеет встроенный модуль компаратора, который используется в нашем случае как пороговое устройство для определения запуска автомобиля по напряжению в бортовой сети.

В этом случае, напряжение на входе компаратора (выв.7 DD1) становиться выше порогового значения в 3,6 вольта, что в свою очередь определяется микроконтроллером и после двукратной программной проверки МК отключает транзистор VT4 и соответственно питание катушки реле стартера К3, независимо от того нажата кнопка или нет.

При разработке алгоритма работы устройства, с целью создания максимального удобства управления запуском/остановкой двигателя с помощью кнопки, автор постарался учесть все возможные ситуации, которые могут возникнуть при эксплуатации автомобиля.

Определяющим фактором для выполнения той или иной процедуры являются соблюдение комбинации длинного (более 2 с) или короткого (менее 2с) нажатия кнопки в зависимости от положения педали тормоза (нажата или отпущена). Все возможные варианты сведены в таблицу.

Налаживание заключается в установке на входе компаратора МК порогового напряжения, по которому определяется, запущен двигатель или нет.

Для этого необходимо:

  1. Временно, соблюдая полярность, подключить любой светодиод с токоограничивающим резистором к катушке реле К1. С помощью отвертки переместить ползунок построечного резистора R6 в нижнее по схеме (рис.1) положение.
  2. К контакту 4 разъёма Х2 подключить провод от вывода АСС или IGN замка зажигания. К контактам 1-3 разъёма Х2 провода не подключать!!!. К разъёму Х1 подключить сигнальные провода от кнопки и минусовой провод питания от бортовой сети автомобиля. Сигнальный провод к контакту 2 разъёма Х1 (положительный сигнал от стоповых огней автомобиля) можно временно не подключать.
  3. Нажать кнопку и только потом подать напряжение на устройство, повернув ключ зажигания в нужное положение.
  1. Затем отпустить кнопку и запустить двигатель автомобиля с помощью штатного ключа зажигания.
  2. Теперь перемещая отвёрткой ползунок R6 в верхнее положение, добиться включения (мигания) светодиода (реле К1 будет «щёлкать»).
  3. Отключить устройство от бортовой сети автомобиля.

После окончания процедуры устройство подключить согласно схемы.

Если автомобиль не оснащён какой-либо охранной системой, то для блокировки запуска двигателя можно использовать любой скрытно установленный микротумблер, контакты которого подключаются в разрыв провода идущего к контакту 2 разъёма Х1 (сигнал от стоповых огней автомобиля). Через разомкнутые контакты микротумблера сигнал поступать на устройство не будет, что соответственно будет блокировать запуск двигателя автомобиля.

Устройство выполнено на печатной плате из фольгированного стеклотекстолита толщиной 1мм, размерами 60х80мм и помещено в пластмассовый корпус G1018 , в котором она закреплена с помощью термоклея. На плате также предусмотрены отверстия, через которые плату шурупами можно закрепить в нужном месте.

Детали и замена. Учитывая, что реле К1-К3 устройства должно гарантировано работать при снижении напряжения питания до 9в, в устройстве применены транзисторы VT2-VT4 с малым напряжением насыщения цепи коллектор-эмиттер BC337, которые можно заменить на отечественные КТ530А. Вместо стабилитрона VD1 — 1N4745A желательно использовать защитный диод — 1.5KE18A . Подстроечный резистор – PVC6A102. Разъёмы Х1- WF-4R, Х2 — 2-х контактные винтовые клеммники 305-021-12 с шагом 5мм. В качестве исполнительного реле К1-К3 использованы реле HK3FF-DC12V-SHG фирмы «HUI KE» с рабочим напряжением катушки 12 вольт и током потребления около 35мА. Группа контактов указанных реле способна коммутировать ток до 10А при рабочем напряжении 30в.

Архив к статье; скачать.

Схема асинхронного электродвигателя — white-santa.ru

Представленная выше схема является самой простой и распространенной, которая обладает простейшей пускозащитной аппаратурой, которая без проблем позволяет управлять работой асинхронного электродвигателя, а так же защищает от недопустимых режимов работы, таких как короткое замыкание и перегрузки.
На данной схеме имеются две части: силовая цепь, посредством которой осуществляется питание электродвигателя  и цепь управления непосредственно участвующую в управлении электродвигателя (пуск, остановка). Необходимо уточнить, что по силовой цепи протекает рабочий ток электродвигателя, другими словами эта цепь должна выдерживать пусковые токи. Цепь управления в свою очередь, в зависимости от используемой пусковой и регулирующей аппаратуры может получать питание от одного источника вместе с силовой цепью или от независимого источника, причем цепь управления может питаться постоянным током. В зависимости от катушки магнитного пускателя цепь управления может питаться фазным или линейным напряжениями.

Схема состоит из следующих составных частей: 

Два автоматических выключателя АВ1 и АВ2. Первый АВ1 устанавливается в силовой цепи, им осуществляется подача напряжения на контакты магнитного пускателя. Также от этого автоматического выключателя получает питание второй выключатель АВ2 расположенный в цепи управления. Автомат АВ1 является не только коммутирующим устройством, но и аппаратом защиты от коротких замыканий и перегрузки. Автоматический выключатель АВ2 подает напряжение на цепь управления и защищает ее от короткого замыкания.

Магнитного пускателя КМ, силовые контакты которого включены в силовую цепь, блок контакт КМ1 осуществляет шунтирование кнопки Пуск. Также в цепь управления включается катушка КМ данного магнитного пускателя. Магнитный пускатель осуществляет подачу напряжения на электродвигатель, а также препятствует повторного пуска  электродвигателя при кратковременном исчезновении напряжения.

Тепловое реле КК, биметаллические пластины, которого включены последовательно в силовую цепь питания статора асинхронного электродвигателя. Отключающий контакт КК этого реле включен в цепь управления. Реле КК осуществляет защиту электродвигателя от перегрузки.

Сам асинхронный двигатель  Д, которым осуществляется управление.

Кнопочная станция (кнопка управления), состоящая из двух кнопок Стоп — нормально замкнутый контакт, и кнопка Пуск – нормально разомкнутый контакт.

Все вышеперечисленные устройства изображены на схеме.

Работа схемы

shema puska ad1

В текущем состоянии, напряжение подается только на верхние контакты (губки) автоматического выключателя АВ1, это можно заметить  по окраске линий в синий цвет.

При включенном автоматическом выключателе АВ1, напряжение поступает на силовые контакты магнитного пускателя КМ и автоматического выключателя АВ2. При замыкании Автомата АВ2, напряжение поступит через замкнутый контакт кнопки Стоп на контакт кнопки Пуск, и блок контакт магнитного пускателя КМ1.

shema puska ad2

 

Все выше перечисленные манипуляции являются подготовительными.  В текущем состоянии все готово к пуску электродвигателя.

shema puska ad3

 

При замыкании контакта кнопки Пуск, питание получит катушка магнитного пускателя КМ, при этом через нее начнет протекать ток, так как образовалась замкнутая цепь: фаза С, автоматический выключатель АВ2, кнопка Стоп, кнопка Пуск, катушка КМ, контакт реле КК, фаза В.

При протекании тока по катушке магнитного пускателя, замкнутся его контакты в силовой цепи, кроме этого срабатывает блок контакт КМ1, который шунтирует катушку магнитного пускателя КМ, он срабатывает, то есть замыкает свои контакты в с кнопку Пуск. После размыкания контакта кнопки Пуск, катушка не потеряет питание.

При срабатывании, магнитный пускатель замыкает свои силовые контакты КМ и подает напряжение на статор двигателя через тепловое реле.  Асинхронный двигатель, получив питание, запустится, его ротор начнет вращаться.

shema puska ad4

Для выполнения остановки электродвигателя, необходимо отключить катушку магнитного пускателя  КМ, для этого нажимают кнопку Стоп, размыкая его контакт. При этом цепь, по которой питалась катушка КМ, размыкается, вследствие чего размыкаются силовые контакты магнитного пускателя КМ, электродвигатель теряет питание и останавливается, при этом размыкается шунтирующий блок контакт КМ1. При возврате кнопки Стоп в замкнутое положение, состояние схемы возвращается в исходное положение и готова для очередному пуска.

Стоит отметить, что данная схема не приспособлена для обеспечения плавного пуска асинхронного электродвигателя, выполнения регулировки частоты вращения и реверса. Все эти операции требуют усложнения схемы путем включения дополнительных устройств.

Асинхронные двигатели — самый распространенный вид электрических машин. Выше представленную схему пуска электродвигателей так же называют самой простой и распространенной.

 

Инструкции | Прямой пуск трехфазного электродвигателя

Главная
Инструкции
Информация
Таблицы
Безопасность
Заземление
УЗО
Стандарты
Книги

Услуги
Контакты
Прайс

Загрузить
Сайты
Форум

Применяется в промышленности, на насосных станциях, в вентиляции и кондиционировании, в обрабатывающих станках, в строительстве

Схема управления

Схема подключения прямого пуска трехфазного электродвигателя состоит из: кнопок управления Пуск и Стоп; контакта концевого выключателя КS1; контакта самоподпитки К1.1 и катушки магнитного пускателя K1.
Рассмотрим направление электрического тока в работе схемы и ее элементов, при нажатии кнопки Пуск.
При нажатии кнопки Пуск: через замкнутую кнопку Стоп, контакт кнопки Пуск, катушку магнитного пускателя K1 и контакт концевого выключателя КS1, цепь замкнулась.
Катушка K1 магнитного пускателя K1 втягивает якорь, замыкает контакт К1.1, катушка становится на самоподпитку, кнопку Пуск можно отпустить, электродвигатель AD работает.
При достижении механизма концевого выключателя, размыкается его контакт КS1 схема разрывается, катушка K1 отключается, электродвигатель AD остановился.
Кнопкой Стоп, можно воспользоваться в любой момент работы электродвигателя AD, для размыкания цепи питания катушки K1 и контакта самоподпитки К1.1

Схема питания

Схема питания прямого пуска трехфазного электродвигателя AD, состоит из одного магнитного пускателя с силовыми контактами K1
При включении катушки K1, включаются силовые контакты К1, которые при коммутации, подают электропитание на электродвигатель AD

Схемы включения реле и пускателей

Схемы включения реле и пускателей

Программа КИП и А

Здесь представлены и рассматриваются типовые схемы включения реле / пускателей в устройствах КИП и А.

Схемы достаточно тривиальны и широко распространены, но тем не менее могут представлять интерес для начинающих работников КИП и А.

Внимание! Так как все схемы работают под напряжением 220 Вольт, опробование и наладка должна производиться квалифицированным персоналом с соответствующей группой допуска по электробезопасности.

Простая схема управления реле / пускателем

Простая схема управления (включение / выключение) трехфазным электродвигателем приведена на рисунке 1.


Рисунок 1. Простая схема управления реле / пускателем


K1 – реле / пускатель ~220 Вольт с 4 нормально разомкнутыми контактами.
SB1 – кнопка «Пуск» с 1 нормально разомкнутым контактом
SB2 – кнопка «Стоп» с 1 нормально замкнутым контактом
K1.1 – нормально разомкнутый контакт реле K1
K1.2…K1.4 – контакты реле K1 для коммутации силовых цепей

Принцип действия

При нажатии кнопки «Пуск» (SB1), напряжение ~220 Вольт между фазой и нулевым проводом подается через нормально замкнутый контакт SB2 кнопки «Стоп» на катушку реле / пускателя K1.

Реле срабатывает и замыкает как три силовых контакта, подключая электродвигатель к трехфазной цепи, так и контакт самоподхвата K1.1, удерживающий реле во включенном состоянии.

При нажатии кнопки «Стоп» (SB2), питание катушки реле K1 прекращается, и оно переходит в исходное состояние разрывая как контакты силовой цепи, так и контакт самоподхвата K1.1.

Хотя на схеме показан процесс включения трехфазного электродвигателя, эта схема является классической и пригодна для различных целей, где используются две кнопки «Пуск» и «Стоп», с соответствующими изменениями в силовой части схемы.

Схема управления реверсивным электродвигателем

Еще одна широко используемая схема включения реле / пускателей для управления реверсивным электродвигателем приведена на рисунке 2.


Рисунок 2. Схема управления реверсивным электродвигателем


K1, K2 – реле / пускатель ~220 Вольт с 4 нормально разомкнутыми контактами и одним нормально замкнутым.
SB1, SB2 – кнопки «Вперед», «Назад» с одним нормально разомкнутым контактом.
SB3 – кнопка «Стоп» с 1 нормально замкнутым контактом

Принцип действия

При нажатии кнопки SB1Вперед»), напряжение ~220 Вольт подается через нормально замкнутый контакт SB3 кнопки «Стоп» и нормально замкнутый контакт K2.2 реле K2 на катушку реле K1.

Оно замыкает свой контакт самоподхвата K1.1, удерживая таким себя во включенном состоянии.

Кроме того, оно размыкает нормально замкнутый контакта K1.2 в цепи кнопки SB2 «Назад», предотвращая этим самым срабатывание реле K2 при нажатии кнопки «Назад». Иначе бы произошло короткое замыкание между фазами «B» и «С».

При нажатии кнопки SB3Стоп»), цепь питания катушки реле K1 разрывается, оно переходит в исходное состояние, отключая силовые цепи питания электродвигателя.

При нажатии кнопки SB2Назад»), напряжение ~220 Вольт подается через нормально замкнутый контакт SB3 кнопки «Стоп» и нормально замкнутый контакт K1.2 реле K1 на катушку реле K2. Оно замыкает свой контакт самоподхвата K2.1, удерживая таким себя во включенном состоянии.

Кроме того, оно размыкает нормально замкнутый контакта K2.2 в цепи кнопки SB2 «Вперед», предотвращая этим самым срабатывание реле K1 при нажатии кнопки «Вперед».

Силовые цепи питания электродвигателя собраны так, что при срабатывании реле K2, фазы «B» и «С» меняются местами и электродвигатель вращается в обратную сторону.

При нажатии кнопки SB3Стоп»), цепь питания катушки реле K2 разрывается, оно переходит в исходное состояние, отключая силовые цепи питания электродвигателя.

Замечания.

Для повышения надежности схемы, существуют промышленные блоки управления реверсивным электродвигателем, в которых кроме электрического блокирования включения противоположных реле / пускателей, применяются и механические рычаги блокирования одновременного срабатывания двух реле K1 и K2. В редких случаях это может происходить, когда силовые контакты одного из реле подгорели (залипли).

 

Схема подключения кнопочного поста к магнитному пускателю — советы электрика

Схема подключения кнопочного поста

СХЕМА ПОДКЛЮЧЕНИЯ МАГНИТНОГО ПУСКАТЕЛЯ

Прежде чем приступить к практическому подключению пускателя — напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления.

Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом.

Обратите внимание

Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)

Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя.

Общепринято называть отключающую кнопку словом: «Стоп » и маркировать её красным цветом.

Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск », «Вперёд », «Назад ».

Если катушка рассчитана на срабатывание от 220 В, то цепь управления коммутирует нейтраль. Если рабочее напряжение электромагнитной катушки 380 В, то в цепи управления протекает ток, «снятый» с другой питающей клеммы пускателя.

Схема подключения магнитного пускателя на 220 В

Здесь ток на магнитную катушку КМ 1 подается через тепловое реле и клеммы, соединенных в цепь кнопок SB2 для включения — «пуск» и SB1 для остановки — «стоп». Когда мы нажимаем «пуск» электрический ток поступает на катушку.

Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку.

Важно

При отпускании «пуск» не происходит размыкание цепи, поскольку параллельно этой кнопке выполнено подключение блок-контакта КМ1 с замкнутыми магнитными контактами. Благодаря этому на катушку поступает фазное напряжение L3.

При нажатии «стоп» питание отключается, подвижные контакты приходят в исходное положение, что приводит к обесточиванию нагрузки. Те же процессы происходят при работе теплового реле Р – обеспечивается разрыв ноля N, питающего катушку.

Схема подключения магнитного пускателя на 380 В

Подключение к 380 В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки. В данном случае питание осуществляется с использованием двух фаз L2 и L3, тогда как в первом случае — L3 и ноль.

На схеме видно, что катушка пускателя (5) питается от фаз L1 и L2 при напряжении 380 В. Фаза L1 присоединяется напрямую к ней, а фаза L2 – через кнопку 2 «стоп», кнопку 6 «пуск» и кнопку 4 теплового реле, соединенные последовательно между собой.

Принцип действия такой схемы следующий: После нажатия кнопки 6 «пуск» через включенную кнопку 4 теплового реле напряжение фазы L2 попадает на катушку магнитного пускателя 5. Происходит втягивание сердечника, замыкающее контактную группу 7 на определенную нагрузку (электродвигатель М), при этом подается ток, напряжением 380 В.

В случае выключения «пуск» цепь не прерывается, ток проходит через контакт 3 – подвижный блок, замыкающийся при втягивании сердечника.

При аварии в обязательном порядке должно сработать теплового реле 1, его контакт 4 разрывается, отключается катушка и возвратные пружины приводят сердечник в исходное положение. Контактная группа размыкается, снимая напряжение с аварийного участка.

Подключение магнитного пускателя через кнопочный пост

В данную схему включены дополнительные кнопки включения и остановки. Обе кнопки «Стоп» подключены в цепь управления последовательно, а кнопки «Пуск» соединяются параллельно.Такое подключение позволяет производить коммутацию кнопками с любого поста.

Вот ещё вариант. Схема состоит из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220 В. Питание кнопок взято с клеммы силовых контактов пускателя, цифра 1. Напряжение подходит до кнопки “Стоп” цифра 2. Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра 3.

Совет

Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра 4. Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Вспомогательный блок контакт 6 шунтирует контакт кнопки “пуск” 4, для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился. Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра 7, снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.

Подключение двигателя через пускатели

Нереверсивный магнитный пускатель

Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая – «Пуск», другая замкнутая – «Стоп».

Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов – одну нормально разомкнутую, другую замкнутую.

Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.

Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп».

Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй – подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода – «прямой» и «блокирующий».

Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

Реверсивный магнитный пускатель

Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1–3–5, а те, к которым подключен двигатель как 2–4–6.

Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

Обратите внимание

При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом – через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

Советы и хитрости установки

  • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
  • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 – значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
  • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
  • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.

А ещё вам понадобится полезный прибор — пробник электрика. который легко можно сделать самому.

Пост кнопочный: назначение и схема

Пост кнопочный — предназначен для коммутации электрических цепей управления переменного тока напряжением до 660 В частоты 50 и 60 Гц и постоянного тока напряжением до 440 В, и/или подачи сигналов управления, как на месте, так и дистанционно; применяется для дистанционного управления различными механизмами и электрическими машинами.
Это несложное изделие, состоящее из минимального количества деталей, но с очень важной функцией — подача команд и индикация их исполнения.

Применение кнопочных постов достаточно разнообразно и соответственно он имеет разные виды и схемы исполнения.
Пример: пост управления тельфером (правильнее конечно было бы назвать «пульт управления») Рис. 1. При помощи пускателя этого типа производится контроль работы различных тяговых механизмов. В основном это подъемный кран, лифтовой эскалатор, балки и т. д.

Однако темой данной статьи будет именно стандартный кнопочный пост для управления различными силовыми устройствами (в основном это различные электродвигатели).

«Старт-Стоп» кнопочный пост, сразу отмечу, что схема применима не только к магнитным пускателям но и к любому виду реле.
Итак, что представляет собой «кнопочный пост»? «Кнопочный пост» конструктивно состоит из корпуса и двух кнопок «Пуск» и «Стоп».

Внешний вид кнопок для кнопочных постов представлены на рис.1. на рисунке 2 представлен корпус кнопочного поста.

  • Обе кнопки без фиксации положения.
  • Копка «Пуск» (обычно зелёного цвета и может иметь подсветку при включение) имеет нормально разомкнутые контакты и предназначена для включения КМ;
  • Кнопка «Стоп» (обычно красного цвета) имеет нормально замкнутые контакты и предназначена для снятия напряжения с КМ;

Схема включения — выключения показана на рис. 4. ничего сложного: при замыкании контактов SB1.1 происходит подача напряжения на катушку контактора КМ1 и его срабатывание, при этом контакты SB1.1 копки «Пуск» блокируются нормально разомкнутыми контактами (НО) КМ1.4 контактора КМ1.

Всё, силовые контакты контактора КМ1 замкнулись и напряжение на силовую установку подано. Вы можете отпустить кнопку «Пуск» и силовая установка останется под напряжением (не отключится), так как контакты КМ1.4, подключенные параллельно кнопке «Пуск», замкнулись и катушка пускателя КМ1 находится во включенном состояние постоянно.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через собственную пару контактов КМ1.4.Для остановки механизма служит кнопка «Стоп», при её нажатии контакты ST2 размыкаются напряжение с катушки контактора КМ1 снимается, его контакты КМ1.

4 размыкаются и одновременно разблокируя, тем самым, контакты кнопки «Старт», двигатель остановлен.

На рисунке 5 стрелкой показано движение фазы «L3» (для питания катушки магнитного контактора можно выбрать, произвольно, любую из фаз).

Точек включения конкретной системы может быть несколько (например, система вентиляции…). Схема подключения нескольких кнопочных постов показана на рис.6.

При такой схеме включения «исполнительный» магнитный контактор (КМ 1) может быть как включен так и выключен с любого из «постов», в такой схеме конечно желательна подсветка кнопки пуск, чтобы с любого из постов было видно состояние системы. Как Вы понимаете, уважаемый читатель, кнопками «Пуск», «Стоп», осуществляется как местное (со щита управления и автоматики) так и дистанционное управление магнитным пускателем, а значит и нагрузкой, которую он коммутирует.

Причем вместо двигателя Вы можете подключать любую нагрузку, например, мощный ТЭН.

Важно

Ну вот и всё, если у вас возникли вопросы воспользуйтесь нашей электронной почтой [email protected] . попробуем на них квалифицированно ответить. В строке письма «тема» пишите: «Системы полива».
P.S. просьба, не задавать вопросов на которые последует ответ: «читайте внимательно статью».

Подключаем магнитный пускатель через кнопочный пост, кнопки “Пуск” и “Стоп”. Для тех, кто читает электрические схемы и может представить, как работает схема в динамике, подключить магнитный пускатель не составит труда. На сайт, не раз поступали просьбы, подсказать, как подключить пускатель к двигателю с кнопками пуск — стоп в сеть 220В.

Постараюсь объяснить буквально на пальцах, что куда и зачем идет. Разобраться с монтажной схемой на первый взгляд трудно. Все будет понятно, когда внимательно изучишь схему, но не всю сразу, а по частям элемент за элементом, задавая себе вопросы, какую роль выполняет данный контакт или элемент в схеме.

Параллельно изучая схему найти, например, у магнитного пускателя катушку управления, её контактные вывода. Найти на пускателе силовые – рабочие контакты, вспомогательные контакты (нормально разомкнутые и нормально замкнутые), необходимые для блокировки или шунтирования контактов.

Разобрать кнопочный пост и разобраться с принципом работы. При нажатии кнопки один контакт замыкается, а другой размыкается. Найти контакты в монтажной схеме и на элементах — пускателя и кнопочного поста. Только после одновременного изучения схемы и её элементов будет понятна логика, и принцип работы схемы.

Общий вид кнопочного поста на две кнопки “Пуск” и “Стоп”.

Снимаем контактный механизм одной кнопки.

Из чего состоит контактный механизм.
Две пары выводов, нормально замкнутого и разомкнутого контакта. При нажатии кнопки нормально замкнутый контакт размыкается, а нормально разомкнутый замыкается. При отпускании кнопки контакты возвращаются в исходное положение.

Подвижный, нормально разомкнутый контакт.

Схема подключения магнитного пускателя
через кнопочный пост.

Схема состоит:
Из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220В.

Принцип работы схемы.
Питание кнопок взято с клеммы силовых контактов пускателя, цифра № [1].

Напряжение подходит до кнопки “Стоп” цифра № [2].

Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра № [3].

Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра № [4].

Напряжение достигает цели, цифра № [5], катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Вспомогательный блок контакт № [6] шунтирует контакт кнопки “пуск” № [4], для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился.

Совет

Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра № [7], снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.

Реверсивная схема с катушками управления 380В
1) Блок контакты; 2) Катушка магнитного пускателя 380В; 3) Контакт теплового расцепителя, токового реле; 4) Токовое реле; 5) Силовые контакты.

Реверсивная схема с катушками управления 220В

Источники: http://el-shema.ru/publ/skhemy_podkljuchenija/skhema_podkljuchenija_magnitnogo_puskatelja/13-1-0-429, http://premiumsk.narod.ru/post_button.htm, http://www.skrutka.ru/sk/tekst.php?id=39

Источник: http://electricremont.ru/shema-podklyucheniya-knopochnogo-posta.html

Магнитный пускатель: назначение, устройство, схемы подключения

Питание на электродвигатели лучше подавать через магнитные пускатели (называются еще контакторы). Во-первых, они обеспечивают защиту от пусковых токов.

Во-вторых, нормальная схема подключения магнитного пускателя содержат органы управления (кнопки) и защиты (тепловые реле, цепи самоподхвата, электрической блокировки и т.п.).

С помощью этих устройств можно запустить двигатель в обратном направлении (реверс) нажатием соответствующей кнопки. Все это организуется при помощи схем, причем они не очень сложны и их вполне можно собрать самостоятельно.

Назначение и устройство

Магнитные пускатели встраиваются в силовые сети для подачи и отключения питания. Работать могут с переменным или постоянным напряжением. Работа основана на явлении электромагнитной индукции, имеются рабочие (через них подается питание) и вспомогательные (сигнальные) контакты. Для удобства эксплуатации в схемы включения магнитных пускателей добавляют кнопки Стоп, Пуск, Вперед, Назад.

Так выглядит магнитный пускатель

Магнитные пускатели могут быть двух видов:

  •  С нормально замкнутыми контактами. Питание на нагрузку подается постоянно, отключается только когда срабатывает пускатель.
  • С нормально разомкнутыми контактами. Питание подается только в то время, когда пускатель работает.

Более широко применяется второй тип — с нормально разомкнутыми контактами. Ведь в основном, устройства должны работать небольшой промежуток времени, остальное время находится в покое. Потому далее рассмотрим принцип работы магнитного пускателя с нормально разомкнутыми контактами.

Состав и назначение частей

Основа магнитного пускателя — катушка индуктивности и магнитопровод. Магнитопровод разделен на две части. Обе они имеют вид буквы «Ш», установлены в зеркальном отражении.

Нижняя часть неподвижная, ее средняя часть является сердечником катушки индуктивности.  Параметры магнитного пускателя (максимальное напряжение, с которым он может работать) зависят от катушки индуктивности.

Могут быть пускатели малых номиналов — на 12 В, 24 В, 110 В, а наиболее распространенные — на 220 В и на 380 В.

Устройство магнитного пускателя (контактора)

Верхняя часть магнитопровода — подвижная, на ней закреплены подвижные контакты. К ним подключается нагрузка. Неподвижные контакты закреплены на корпусе пускателя, на них подается питающее напряжение. В исходном состоянии контакты разомкнуты (за счет силы упругости пружины, которая удерживает верхнюю часть магнитопровода), питание на нагрузку не подается.

Принцип работы

В нормальном состоянии пружина приподнимает верхнюю часть магнитопровода, контакты разомкнуты.

При подачи питания на магнитный пускатель, ток, протекающий через катушку индуктивности, генерирует электромагнитное поле.

Сжимая пружину, оно притягивает подвижную часть магнитопровода, контакты замыкаются (на рисунке картинка справа). Через замкнутые контакты питание подается на нагрузку, она находится в работе.

Принцип работы магнитного пускателя (контактора)

Обратите внимание

При отключении питания магнитного пускателя электромагнитное поле пропадает, пружина выталкивает верхнюю часть магнитопровода вверх, контакты размыкаются, питание на нагрузку не подается.

Подавать через магнитный пускатель можно переменное или постоянное напряжение. Важна только его величина — оно не должно превышать указанный производителем номинал. Для переменного напряжения максимум — 600 В, для постоянного — 440 В.

Схема подключения пускателя с катушкой 220 В

В любой схеме подключения магнитного пускателя есть две цепи. Одна силовая, через которую подается питание. Вторая — сигнальная. При помощи этой цепи происходит управление работой устройства. Рассматривать их надо отдельно — проще понять логику.

В верхней части корпуса магнитного пускателя находятся контакты, к которым подключается питание для этого устройства. Обычное обозначение — A1 и A2. Если катушка на 220 В, сюда подается 220 В. Куда подключить «ноль» и «фазу» — без разницы. Но чаще «фазу» подают на А2, так как тут этот вывод обычно продублирован в нижней части корпуса и довольно часто подключать сюда удобнее.

Подключение питания к магнитному пускателю

Ниже на корпусе расположены несколько контактов, подписанных L1, L2, L3. Сюда подключается источник питания для нагрузки. Тип его не важен (постоянное или переменное), важно чтобы номинал не был выше чем 220 В. Таким образом через пускатель с катушкой на 220 В можно подавать напряжение от аккумулятора, ветрогенератора и т.д. Снимается оно с контактов T1, T2, T3.

Назначение гнезд магнитного пускателя

Самая простая схема

Если к контактам A1 — A2 подключить сетевой шнур (цепь управления), подать на L1 и L3 напряжение 12 В с аккумулятора, а к выводам  T1 и T3 — осветительные приборы (силовая цепь), получим схему освещения, работающую от 12 В. Это лишь один из вариантов использования магнитного пускателя.

Но чаще, все-таки эти устройства используют для подачи питания на элетромоторы. В этом случае к L1 и L3 подключается тоже 220 В (и снимаются с T1 и T3 все те же 220 В).

Простейшая схема подключения магнитного пускателя — без кнопок

Недостаток этой схемы очевиден: чтобы выключить и включить питание, придется манипулировать вилкой — вынимать/вставлять ее в розетку. Улучшить ситуацию можно, если перед пускателем установить автомат и включать/выключать подачу питания на цепь правления с его помощью. Второй вариант — в цепь управления добавить кнопки — Пуск и Стоп.

Схема с кнопками «Пуск» и «Стоп»

При подключении через кнопки изменяется только цепь управления. Силовая остается без изменения. Вся схема подключения магнитного пускателя изменяется незначительно.

Кнопки могут быть в отдельном корпусе, могут  в одном. Во втором варианте устройство называется «кнопочный пост». Каждая кнопка имеет два входа и два выхода. Кнопка «пуск» имеет нормально разомкнутые контакты (питание подается когда она нажата), «стоп» — нормально замкнутые (при нажатии цепь обрывается).

Схема подключения магнитного пускателя с кнопками «пуск» и «стоп»

Встраиваются кнопки перед магнитным пускателем последовательно. Сначала — «пуск», затем — «стоп». Очевидно, что при такой схеме подключения магнитного пускателя, работать нагрузка будет только пока удерживается кнопка «пуск».

Как только ее отпустят, питание пропадет. Собственно, в данном варианте кнопка «стоп» лишняя. Это не тот режим, который требуется в большинстве случаев.

Необходимо, чтобы после отпускании пусковой кнопки питание продолжало поступать до тех пор, пока цепь не будет разорвана нажатием кнопки «стоп».

Схема подключения магнитного пускателя с цепью самоподхвата — после замыкания контакта шунтирующего кнопку «Пуск», катушка становиться на самоподпитку

Данный алгоритм работы реализуется с помощью вспомогательных контактов пускателя NO13 и NO14. Они подключаются параллельно с пусковой кнопкой. В этом случае все работает как надо: после отпускания кнопки «пуск» питание идет через вспомогательные контакты. Останавливают работу нагрузки нажав «стоп, схема возвращается в рабочее состояние.

Подключение к трехфазной сети через контактор с катушкой на 220 В

Через стандартный магнитный пускатель, работающий от 220 В, можно подключить трехфазное питание. Такая схема подключения магнитного пускателя используется с асинхронными двигателями. В цепи управления отличий нет. К контактам A1 и A2 подключается одна из фаз и «ноль». Фазный провод идет через кнопки «пуск» и «стоп», также ставится перемычка на  NO13 и NO14.

Как подключить асинхронный двигатель на 380 В через контактор с катушкой на 220 В

В силовой цепи отличия незначительные. Все три фазы подаются на L1, L2, L3, к выходам T1, T2, T3 подключается трехфазная нагрузка. В случае с мотором в схему часто добавляют тепловое реле (P), которое не допустит перегрев двигателя.

Тепловое реле ставят перед электродвигателем. Оно контролирует температуру двух фаз (ставят на самые нагруженные фазы, третья), размыкая цепь питания при достижении критических температур. Эта схема подключения магнитного пускателя используется часто, опробована много раз.

Порядок сборки смотрите в следующем видео.

Схема подключения двигателя с реверсным ходом

Для работы некоторых устройств необходимо вращение двигателя в обе стороны. Смена направления вращения происходит при переброске фаз (надо поменять местами две произвольные фазы). В цепи управления также необходим кнопочный пост (или отдельные кнопки) «стоп», «вперед», «назад».

Схема подключения магнитного пускателя для реверса двигателя собирается на двух одинаковых устройствах. Желательно найти такие, на которых присутствует пара нормальнозамкнутых контактов. Устройства подключаются параллельно — для обратного вращения двигателя, на одном из пускателей фазы меняются местами. Выходы обоих подаются на нагрузку.

Сигнальные цепи несколько сложнее. Кнопка «стоп» — общая. Поле нее стоит кнопка «вперед», которая подключается к одному из пускателей, «назад» — ко второму. Каждая из кнопок должна иметь цепи шунтирования («самоподхвата»)  — чтобы не было необходимости все время работы держать нажатой одну из кнопок (устанавливаются перемычки на NO13 и NO14 на каждом из пускателей).

Важно

Схема подключения двигателя с реверсным ходом с использованием магнитного пускателя

Чтобы избежать возможности подачи питания через обе кнопки, реализуется электрическая блокировка. Для этого после кнопки «вперед» питание подается на нормально замкнутые контакты второго контактора. Аналогично подключается второй контактор — через нормально замкнутые контакты первого.

Если в магнитном пускателе нет нормально замкнутых контактов, их можно добавить, установив приставку. Приставки, при установке, соединяются с основным блоком и их контакты работают одновременно с другими.

То есть, пока питание подается через кнопку «вперед», разомкнувшийся нормально замкнутый контакт не даст включить обратный ход. Чтобы поменять направление, нажимают кнопку «стоп», после чего можно включать реверс, нажав «назад».

Обратное  переключение происходит аналогично — через «стоп».

Источник: https://elektroznatok.ru/oborudovanie/magnitnyj-puskatel

Схемы подключения магнитного пускателя

Подключения магнитного пускателя и малогабаритных его вариантов, для опытных электриков не представляет никакой сложности, но для новичков может оказаться задачей над которой пройдется задуматься. Магнитный пускатель является коммутационным устройством для дистанционного управления нагрузкой большой мощности.

На практике, зачастую, основным применением контакторов и магнитных пускателей есть запуск и остановка асинхронных электродвигателей, их управления и реверс оборотов двигателя. Но свое использование такие устройства находят в работе и с другими нагрузками, например компрессорами, насосами, устройствами обогрева и освещения.

При особых требованиях безопасности (повышенная влажность в помещении) возможно использования пускателя с катушкой на 24 (12) вольт. А напряжение питания электрооборудования при этом может быть большим, например 380вольт и большим током.

Кроме непосредственной задачи, коммутации и управления нагрузкой с большим током, еще одной немаловажной особенностью есть возможность автоматического “отключения” оборудования при “пропадание” электричества.

Наглядный пример. При работе какого то станка, например распиловочного, пропало напряжение в сети. Двигатель остановился.

Рабочий полез к рабочей части станка, и тут напряжение опять появилось. Если бы станок управлялся просто рубильником, двигатель сразу бы включился, в результате — травма. При управлении электродвигателем станка с помощью магнитного пускателя, станок не включится, пока не будет нажата кнопка “Пуск”.

Стандартная схема. Применяется в случаях когда нужно осуществлять обычный пуск электродвигателя. Кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Вместо двигателя может быть любая нагрузка подключенная к контактам, например мощный обогреватель.

В данной схеме силовая часть питается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В случаях однофазного напряжения, задействуются лишь две клеммы.

В силовую часть входит: трех полюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный электродвигатель М. Цепь управления получает питание от фазы «А».

В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, подключенный параллельно кнопке «Пуск». При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят.

Совет

Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на “3” контакт кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах.

Обратите внимание. В зависимости от номинала напряжения самой катушки и используемого напряжения питающей сети, будет разная схема подключения катушки.

Например если катушка магнитного пускателя на 220 вольт – один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз. Если номинал катушки на 380 вольт – один вывод к одной из фаз, а второй, через цепь кнопок к другой фазе.

Существуют также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение. При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются.

Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на электродвигатель. Двигатель начинает вращаться. Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО. В случае если не будет самоподхвата, будет необходимо все время держать нажатой кнопку «Пуск» чтобы работал электродвигатель или другая нагрузка.

Для отключения электродвигателя или другой нагрузки достаточно нажать кнопку «Стоп»: цепь разорвется и управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат электродвигатель от напряжения сети.

Чтобы не тянуть лишний провод на кнопку «Пуск», можно поставить перемычку между выводом катушки и одним из ближайших вспомогательных контактов, в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на “3” контакт кнопки «Пуск».

Как выбрать автоматический выключатель (автомат) для защиты схемы?

Прежде всего выбираем сколько “полюсов”, в трехфазной схеме питания естественно нужен будет трехполюсный автомат, а в сети 220 вольт как правило, двохполюсный автомат, хотя будет достаточно и однополюсного.

Следующим важным параметром будет ток сработки.

Обратите внимание

Например если электродвигатель на 1,5 кВт. то его максимальный рабочий ток — 3А (реальный рабочий может быть меньше, надо измерять).  Значит, трехполюсный автомат надо ставить на 3 или 4А.

Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный (бытовой) автомат с током в 3А будет срабатывать сразу при пуске такого двигателя.

Характеристику теплового расцепителя нужно выбирать D, чтобы при пуске автомат не срабатывал.

Или же, если такой автомат не просто найти, можно по подбирать ток автомата, чтобы он был на 10-20% больше рабочего тока электродвигателя.

Можно и удаться в практический эксперимент и с помощью измерительных клещей замерить пусковой и рабочий ток конкретного двигателя.

Например для двигателя на 4кВт, можно ставить автомат на 10А.

Для защиты от перегрузки двигателя, когда ток возрастает выше установленного (например пропадания фазы) — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя разрывается.

В данном случае, тепловое реле выполняет роль кнопки «Стоп», и стоит в той же цепи, последовательно. Где его поставить — не особо важно, можно на участке схемы L1 — 1, если это удобно в монтаже.

С использованием теплового расцепителя, отпадает надобность так тщательно подбирать ток вводного автомата, так как с тепловой защитой вполне должно справится тепловое реле двигателя.

Важно

Данная необходимость возникает, тогда когда нужно чтобы движок вращался поочередно в обоих направлениях.

Смена направления вращения реализуется простим способом,  меняются местами любые две фазы.

Когда включен пускатель КМ1, это будет «правое» вращение. Когда включается КМ2 — первая и третья фазы меняются местами, движок будет крутиться «влево». Включение пускателей КМ1 и КМ2 реализуется разными кнопками «Пуск вперед» и «Пуск назад«, выключение — одной, общей кнопкой «Стоп» , как и в схемах без реверса.

В таких схемах запуска всегда должна быть защита от одновременного включения кнопок “вперед” и “назад”.

Реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними должен стоять специальный механический блокиратор.

Вторая защита – электрическая. Контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если случайно нажать обе кнопки “пуск”, ничего не получится — электродвигатель будет слушаться той кнопки, которая нажата раньше.

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но так-как пятого контакта, в большинства магнитных пускателей нет, можно поставить дополнительный контакт. Например приставка ПКИ.

с катушкой на 220 вольт

с катушкой на 380 вольт

Источник: http://elektt.blogspot.com/2016/09/podklyucheniya-magnitnogo-puskatelya.html

Как подключить пускатель?Видео

Я не буду вдаваться в подробности что такое пускатель или контактор, для чего они нужны и т.д.

Сразу покажу как их подключать.

Схема включения у них совершенно одинаковая независимо от размера и назначения, так как одинаков и принцип действия. Для дистанционного управления включения/отключения контактора применяется кнопочный пост ПКЕ с кнопками “Стоп” красного цвета и кнопкой “Пуск” черного.

Кнопки с возвратом, то есть после их нажатия они возвращаются в исходное положение сами. Внутри кнопки есть контакт, который размыкается или замыкается при нажатии.

Пуск” наоборот- замыкается.

Совет

Логика работы схемы включения контактором проста: при нажатии на кнопку “Пуск” подается напряжение на катушку контактора и он включается, силовые контакты замыкаются и остаются во включенном положении даже после возврата кнопки “Пуск” в исходное состояние.

Отключение контактора производится нажатием на кнопку “Стоп”.

То есть обе кнопки нажимаются кратковременно.

Каким образом контактор остается включенным после отпускания кнопки “Пуск”?

Ведь контакт на включение вроде как разомкнут?

Для этого у контактора есть блок-контакт или вспомогательный, не силовой контакт который замыкается или размыкается совместно с силовыми контактами контактора.

Для схемы включения нужен нормально-разомкнутый контакт.

После того как кнопку “Пуск” отпущена, фаза управления на катушку идет именно через этот замкнувшийся при включении блок-контакт. Катушки контакторов есть на разное напряжение- 220 или 380 Вольт.

Независимо от напряжения подключение катушки одинаково- на один вывод напряжение питания подключается напрямую.

На второй вывод фаза управления на катушку идет через кнопки.

Я рассказываю самую упрощенную схему для дистанционного управления пускателем, на самом деле в схеме еще могут быть контакты тепловых реле и других защитных аппаратов.

Итак, сборка схемы:

Для подключения кнопок надо трехжильный кабель.

Фаза управления берется обычно сразу с силовых контактов, куда приходит вводной кабель и идет на кнопку “Стоп”.

После кнопки “Стоп” фаза управления подключается: -перемычкой на кнопку “Пуск” -на блок-контакт контактора После кнопки “Пуск”- на второй конец блок-контакта контактора и уже отсюда- на катушку контактора.

То есть кнопка “Пуск” и блок-контакт подключены паралельно друг другу.

Но тут важно не перепутать провода местами иначе контактор не включится.

Надо запомнить: провод фазы управления, подключенный после кнопки “Стоп”(между ней и кнопкой “Пуск”) НЕ ДОЛЖЕН подключаться на катушку.

Обратите внимание

У кого быстрый интернет- смотрите видео, которое я заснял буквально вчера специально для вас:

Я считаю что как подключить пускатель должен знать и уметь каждый электрик.

 Узнайте первым о новых материалах сайта!

Просто заполни форму:

Источник: http://ceshka.ru/novosti/kak-podklyuchit-puskatel

Как подключить магнитный пускатель. Схема подключения

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем. В первой части статьи мы с Вами познакомились с устройством, назначением и работой магнитного пускателя, а сегодня рассмотрим его электрическую схему подключения.

Но прежде чем собирать схему, давайте сделаем небольшое отступление и познакомимся с одним важным элементом схемы управления работой магнитного пускателя – кнопка.

Как Вы уже догадались кнопками «Пуск», «Стоп», «Вперед», «Назад» осуществляется дистанционное управление магнитным пускателем, а значит и нагрузкой, которую он коммутирует. Управляющие кнопки выпускают двух видов: с размыкающим и замыкающим контактом.

Кнопка «Стоп»

Кнопку «Стоп» легко отличить по красному цвету.
В кнопке используется размыкающий (нормально замкнутый) контакт, через который проходит напряжение питания в схему управления пускателем.

В начальном положении, когда кнопка не нажата, подвижный контакт кнопки поддавливается снизу пружиной и собой замыкает два неподвижных контакта, соединяя их между собой.

И если кнопка стоит в электрической цепи, то в этот момент через нее протекает ток.

Когда же необходимо разомкнуть цепь — кнопку нажимают, подвижный контакт отходит от неподвижных контактов и цепь размыкается.

При отпускании кнопка опять возвращается в исходное положение пружиной, поддавливающей подвижный контакт, и он опять замыкает собой оба неподвижных контакта. На рисунке показаны контакты кнопки в нажатом и не нажатом положении.

Кнопка «Пуск»

Как правило, кнопку «Пуск» раскрашивают в черный или зеленый цвета.
В кнопке используется замыкающий (нормально разомкнутый) контакт, при замыкании которого через кнопку начинает проходить электрический ток.

Кнопка «Пуск» устроена так же, как и кнопка «Стоп», и отличается лишь только тем, что в начальном положении ее подвижный контакт не замыкает неподвижные контакты — то есть всегда находится в не замкнутом состоянии. В левой части рисунка видно, что подвижный контакт не замкнут и пружиной поддавливается вверх.

При нажатии на кнопку подвижный контакт опускается и замыкает оба неподвижных контакта. Когда же кнопка отпускается, то ее подвижный контакт под действием пружины возвращается в исходное верхнее положение и контакты размыкаются.

Схемы подключения магнитного пускателя

Первая, классическая схема, предназначена для обычного пуска электродвигателя: кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Причем вместо двигателя Вы можете подключать любую нагрузку, например, мощный ТЭН.

Для удобства понимания схема разделена на две части: силовая часть и цепи управления.

Силовая часть запитывается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В силовую часть входит: трехполюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный эл. двигатель М.

Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, включенный параллельно кнопке «Пуск».

При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на контакт №3 кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах. Схема готова к работе.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на эл. двигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО. На нижнем рисунке стрелкой показано движение фазы «А».

А если не будет самоподхвата, придется все время держать нажатой кнопку «Пуск» пока будет работать эл. двигатель или любая другая нагрузка, питающаяся от магнитного пускателя.

Важно

Чтобы отключить эл. двигатель достаточно нажать кнопку «Стоп»: цепь разорвется, управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель от трехфазного питающего напряжения.

А теперь рассмотрим монтажную схему цепи управления пускателем.
Здесь все практически так же, как и на принципиальной схеме, за небольшим исключением реализации самоподхвата.

Чтобы не тянуть лишний провод на кнопку «Пуск», ставится перемычка между выводом катушки и одним из ближних вспомогательных контактов: в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на контакт №3 кнопки «Пуск».

Ну вот, мы с Вами и разобрали простую классическую схему подключения магнитного пускателя. Также на одном пускателе можно собрать схему автоматического ввода резерва (АВР), которая предназначена для обеспечения бесперебойного электроснабжения потребителей электроэнергией.

Ну а если остались вопросы или сомнения по работе пускателя, то посмотрите видеоролик, из которого Вы дополнительно подчерпнете нужную информацию.

Следующая схема будет немного сложнее этой, так как в ней будут задействованы два магнитных пускателя и три кнопки и называется эта схема реверсивной. При помощи такой схемы можно будет, например, вращать двигатель влево – вправо, поднимать и опускать лебедку.

А пока досвидания.
Удачи!

Источник: https://sesaga.ru/kak-podklyuchit-magnitnyj-puskatel-sxema-podklyucheniya.html

Как подключить кнопочный пост к магнитному пускателю

Магнитный пускатель (контактор) используется, чтобы запускать и останавливать двигатель. Он также применяется для управления самыми разнообразными нагрузками (освещение, нагрев и так далее). Пускатель регулирует работу приборов, которые имеют дистанционное управление.

Принцип его работы основан на подаче рабочего напряжения на электромагнитную катушку. После этого ее сердечник, скрепленный с контактами, втягивается, что приводит к замыканию контактов. После снятия нагрузки контакты размыкаются вновь.

Подключаем кнопочный пост управления

На магнитном пускателе есть 4 пары контактов, замыкающихся при срабатывании электрического прибора. Первые три принимают участие в коммутации напряжения.

Четвертая пара призвана подавать нагрузку на катушку в момент отпускания кнопки пуска. Сверху находятся контакты (А1, А2), к которым подается рабочее напряжение.

Для повышения удобства работы А2 внизу продублирован. Это подходящее место для доступа.

Совет

Схема подключения предполагает использование обычного кнопочного поста, оснащенного кнопками «Стоп», «Пуск». Внутри поста имеются как нормально открытые, так и закрытые контакты.

Функциональные возможности контактов различаются ввиду разности в подключении. После нажатия кнопки одни контакты замыкаются (на рисунке ниже – под номерами 1 и 2), а другие – размыкаются (под номерами 3 и 4).

Чтобы вы представили картину, проиллюстрируем описание:

Сначала подключаем питающие провода к главным клеммам трехфазного пускателя. Берем одну фазу и ведем ее к посту для подключения к клемме 4 в основании кнопки «Стоп». Между постом и пускателем протягиваем три провода. Из выхода 3 кнопки «Стоп» протягиваем провод на выход 2 кнопки «Пуск». К выходам 1, 2 кнопки «Пуск» присоединяем два других провода.

Вернувшись к пускателю, присоединяем к А1 нулевой проводник. Далее подключаем провод от кнопочного поста (от выхода 1) к А2. При запуске поста пускатель замкнется.

Отпущенный «Пуск» должен оставить пускатель включенным, а потому из четвертой пары контактов ведем проводник. К дополнительной клемме А2 (что внизу) протягиваем провод от противолежащей клеммы блок-контакта.

Вся совокупность подключений будет составлять примерно такую картину:

В итоге в момент запуска ток идет к клемме А2, что замыкает катушку. Срабатывает пускатель. После отпускания кнопки «Пуск» ток минует эту кнопку и через включенный блок-контакт попадает также к катушке. Система начинает работать. После нажатия на кнопку «Стоп» мы прерываем подачу посредством блок-контакта и размыкаем пускатель. Такая схема актуальна для питания электродвигателя.

Источник: http://remcran.ru/articles/article/how-to-connect-the-button-post-to-a-magnetic-starter/

Схема подключения магнитного пускателя

Источник: https://electric-220.ru/news/skhema_podkljuchenija_magnitnogo_puskatelja/2018-08-25-1552

Содержание:

Для нормальной работы электродвигателей используются различные электронно-механические приборы, успешно выполняющие защитные и управляющие функции.

Среди них широкое распространение получила схема подключения магнитного пускателя, конструктивно состоящая из электронных и механических устройств, системы блокировок и прочих элементов.

Использование специальных кнопок делает возможным пуск агрегата в заданном направлении. Конструкция пускателя отличается простотой и надежностью эксплуатации.

Назначение магнитных пусковых устройств

Первоочередной функцией магнитных пускателей, используемых в электрических сетях, является своевременное включение и последующее выключение питающего напряжения в соответствии с рабочими режимами агрегата. Это полностью касается и моделей ПМЕ.

Рассматриваемые устройства выпускаются в двух вариантах:

  • В приборе установлены нормально замкнутые контакты. В данном варианте питание к нагрузке подается постоянно, а отключение происходит лишь после срабатывания прибора.
  • В пусковых устройствах задействованы нормально разомкнутые контакты. Такой вариант предусматривает подачу напряжения исключительно в процессе функционирования прибора.

В большинстве случаев используется именно второй вариант, поскольку пускатель непосредственно работает в течение очень короткого времени, а в основном он находится в стадии ожидания.

Общее управление осуществляется различными типами контактов. Рабочие служат для подачи питающего напряжения, а вспомогательные выполняют сигнальные функции.

Включение контактов производится кнопками – ПУСК, СТОП, ВПЕРЕД и НАЗАД.

Нередко магнитному пускателю присваивают название контактора. Такая постановка вопроса не совсем правильная, хотя назначение обоих приборов практически одно и то же.

Оба аппарата предназначены для использования в силовых электрических цепях, а разница между ними определяется степенью защиты.

Обратите внимание

Основная функция контактора заключается в его работе с электросетями, где присутствуют очень высокие токи, поэтому данные приборы оборудуются мощными камерами гашения дуги. Соответственно они отличаются большими размерами и весом.

Магнитные пускатели рассчитываются на небольшие величины токов – до 10 ампер, которые используются при эксплуатации всех типов электрооборудования.

Конструкция и работа пускателей

Конструктивно электромагнитный прибор содержит в себе две главные детали – магнитопровод пускателя с катушкой индуктивности.

При дальнейшем рассмотрении видно, что магнитопровод разделяется на две составные части, изготовленные в виде буквы Ш. Обе детали устанавливаются и закрепляются зеркально, напротив друг друга.

Магнитопровод снизу фиксируется в неподвижном положении, а средняя часть представляет собой сердечник, находящийся внутри катушки индуктивности.

Общим параметрам катушки полностью соответствуют технические характеристики пусковых устройств. Они могут рассчитываться и применяться с малыми токами – 12, 24 и 110 вольт, а для большинства подобных устройств применяется схема подключения магнитного пускателя на 220 В или 380 В.

Подвижной является деталь магнитопровода, установленная сверху. На ней закрепляются подвижные контакты, через которые выполняется подключение непосредственно к двигателю.

Подача питающего напряжения осуществляется в направлении неподвижных контактов, закрепленных на самом корпусе прибора. Первоначальное положение контактов будет разомкнутым, зафиксированным с помощью пружины.

На данном этапе питание не будет поступать к нагрузке.

Когда к магнитному пусковому устройству, в том числе ПМЕ-211, подается питание, внутри катушки индуктивности начинается движение электрического тока. Под его воздействием происходит генерация электромагнитного поля.

Важно

Сила поля сжимает пружину и начинает притягивать движущийся элемент магнитопровода.

В результате такого воздействия, контакты замыкаются, и через них питание подключается и поступает к нагрузке, после чего она начинает работать.

После того как питание окажется отключенным, действие электромагнитного поля прекращается, и верхняя деталь под влиянием пружинной силы совершает переход в первоначальную позицию. Контакты отключаются, и ток к нагрузке перестает поступать. По такому же принципу функционирует обычная схема подключения для магнитного пускателя.

Электрическая цепь разрывается кнопкой со специальными контактами, выполняющими размыкание. Их совместное действие осуществляется через кнопочный пост, оборудованный двумя контактными управляющими парами – нормально открытыми и нормально закрытыми. Универсальность действия кнопочного управления позволяет мгновенно переводить агрегат в нужное состояние, в том числе и на реверсивный ход.

Варианты подключения пусковых устройств на 220 и 380 вольт

Как подключить магнитный пускатель к сети на 220 вольт (рис. 1). Работа пускателя будет происходить следующим образом. Поступление тока на катушку КМ 1 наблюдается через тепловое реле и клеммы, объединенные в общую кнопочную цепь SB 2 и SB 1. Они соответствуют действиям ПУСК и СТОП, выполняя включающую и выключающую функцию.

С нажатием кнопки ПУСК, начинается движение электротока внутри катушки. Одновременно с этим, сердечник пускателя воздействует на якорь и притягивает его к себе.

В конечном итоге, подвижные контакты замыкаются, и сетевое напряжение на 220В идет к нагрузке.

После возврата кнопка ПУСК она становится отпущенной, а цепь продолжает оставаться замкнутой за счет того, что параллельно с ней установлен блок-контакт КМ 1, оборудованный замкнутыми контактами.

Нажатием кнопки СТОП начинается короткий период отсутствия напряжения, а позиция подвижных контактов принимает свой первоначальный вид. По такому же принципу осуществляется действие теплового реле Р, разрывающего нулевой провод N, подведенный к катушке.

Подсоединение пускового механизма к электросети на 380 вольт (рис. 2), в общем то аналогично предыдущему варианту. Здесь будет лишь другая форма подаваемого напряжения, поступающего в катушку.

Для его подачи используются две фазы L1 и L2, а для первого варианта 220 В это были фаза L3 и ноль. Соединение фазы L1 с катушкой осуществляется напрямую, а со второй фазой L2 – через имеющиеся кнопки, а также через коммутацию теплового реле.

Совет

Все задействованные кнопки соединяются с использованием последовательной схемы.

Данная схема подключения магнитного пускателя на 380 В работает следующим образом. После того как выполнено нажатие кнопки ПУСК и включилась кнопка теплового реле, напряжение в фазе L2 подходит к катушке пускателя. Начинается втягивание сердечника и замыкание контактной группы, предусматривающей работу с определенным агрегатом. Вследствие этого, в цепи начинает двигаться ток 380В.

Использование тепловых реле вместе с магнитными пускателями

Возможность сработки теплового реле (1) предусмотрена на случай создания аварийной ситуации. Контакт цепи (4) разрывается с последующим отсоединением катушки и возвратом сердечника в первоначальное состояние специальными возвратными пружинами. После такого отключения контактов, на аварийно-опасном участке снимается опасное напряжение.

Подключение магнитного пускателя совместно с тепловым реле обеспечивает надежную защиту электрических агрегатов от возможных перегрузок. Эти приборы служат эффективным дополнением к автоматам, биметаллические пластинки которых не всегда могут защитить во время аварии.

Хотя, принцип работы теплового реле такой же, как и у теплового элемента автоматического защитного выключателя. Однако, тепловое реле не производит самостоятельного отключения, а лишь подает установленный сигнал на выполнение этой операции.

Его необходимо точно и грамотно распознать, и вовремя применить на практике.

Тепловое реле, оборудованное силовыми контактами, может быть напрямую подключено к магнитному пусковому устройству, без использования проводников. Тем не менее, продукция разных производителей может не совпадать, не подходить и не взаимодействовать между собой.

Каждое тепловое реле оборудуется двумя группами контактов, независимых друг от друга – нормально замкнутыми и нормально разомкнутыми. Для разрыва цепи используется замкнутый контакт, действующий через кнопку СТОП. Все рабочие контакты присутствуют в схеме, предназначенной для управления. Они подключаются непосредственно возле катушки, но могут размещаться и в прочих удобных местах.

Процесс срабатывания теплового реле внешне совершенно незаметен. Возврат в первоначальное состояние осуществляется посредством небольшой кнопки, расположенной на панели.

Обратите внимание

Перекидывать контакты нужно не сразу, а лишь после того как реле остынет, в противном случае не произойдет их надежной фиксации.

Перед самым первым использованием кнопку рекомендуется нажать, во избежание неосторожных переключений при транспортировке.

Как подключается кнопочный пост

Кнопочный пост играет ведущую роль в процессе выполнения управляющих функций в отношении магнитного пускателя. В связи с этим, его конструкцию и принцип работы следует рассмотреть более подробно. Представленная схема включает в себя дополнительные кнопки. Нажимая на них, можно поочередно осуществлять включение и остановку двигателя.

Схема подключения кнопки СТОП в управляющую цепочку выполняется в последовательном варианте, а для кнопки ПУСК предусмотрено параллельное подключение. Вся конструкция состоит из двухкнопочного поста с функциями пуска и отключения. Он включает две пары контактных групп, состоящих из нормально замкнутых и нормально разомкнутых контактов.

Напряжение на кнопки подается через клеммы, установленные внутри силовых контактов магнитного пускателя. Вначале ток поступает на кнопку СТОП, затем продолжает путь по нормально замкнутому контакту и двигается по перемычке к кнопке ПУСК.

Когда кнопка включения ПУСК оказывается нажатой, это приводит к замыканию нормально замкнутого контакта. Таким образом, напряжение доходит до нужного места, что вызывает срабатывание катушки и втягивание сердечника под влиянием электромагнитного поля.

После этого в действие вступают силовые и вспомогательные контакты, обведенные на представленной схеме пунктиром.

Использование вспомогательного блок-контакта позволяет выполнить шунтирование контакта пусковой кнопки, чтобы при ее отпускании прибор оставался во включенном состоянии. Магнитный пускатель может быть отключен через кнопку СТОП, при этом с управляющей катушки убирается напряжение, и пружины возвращают контакты в первоначальное положение.

Схема подключения: рабочая или нет

После выполнения всех соединений рекомендуется проверить, как будет функционировать собранная схема подключения пускателя. Данная процедура выполняется без подключения нагрузки, то есть силовые клеммы, расположенные снизу, остаются свободными. Таким образом, оборудование будет в безопасности в случае возникновения каких-либо проблем.

С помощью автоматического выключателя к объекту испытаний подается напряжение. До запуска, на все время монтажа, электрическая сеть полностью обесточивается. После того как вновь подано напряжение, пускатель не должен включаться самостоятельно. При правильном подсоединении он соблюдает свое исходное положение.

Далее нажимается пусковая кнопка, а затем должно произойти включение прибора. Если же такого не произошло, следует проверить, в каком положении находятся контакты у кнопки СТОП, которые должны быть в замкнутом состоянии.

Важно

Кроме того, нужно проверить тепловое реле. Диагностирование предполагаемой неисправности выполняется однополюсным указателем напряжения, определяющего наличие или отсутствие фазы на участке между кнопками СТОП и ПУСК.

Если при отпущенной кнопке ПУСК магнитное действие не наблюдается, контакты не фиксируются, а отпадают, следовательно, все дело в их неправильном подключении. Они подключаются параллельно с кнопкой запуска и фиксируются во включенном состоянии после нажатия на подвижный элемент магнитопровода.

Проверка теплового реле происходит следующим образом. После включения пускателя от контактов реле аккуратно отсоединяется какой-либо проводник. В этом случае контакты не держатся и отпадают.

Кнопочное управление Пуск-Стоп



ЦЕЛИ :

  • Опишите работу цепи управления реле старт-стоп.
  • Опишите работу основных вентилей, используемых в этом разделе.
  • Опишите работу полупроводниковой цепи управления.
  • Обсудите практические способы подключения цифровых логических схем.
  • Подключите кнопочное управление старт-стоп с помощью логических вентилей.


Пуск-стоп, кнопочная схема.


Кнопка ПУСК включает реле «М» катушка.


Контакты «М» поддерживают цепь.


Кнопка СТОП нарушает схема.

В этом разделе цифровая схема будет спроектирована так, чтобы выполнять те же функции. функционируют как общая релейная цепь. Схема реле — это базовая остановка-пуск, кнопочная схема с защитой от перегрузки.

Прежде чем приступить к проектированию электронной схемы, которая будет выполнять та же функция, что и эта релейная цепь, работа релейной цепи следует сначала обсудить. В цепи на реле не может течь ток катушка M, потому что нормально разомкнутая кнопка ПУСК и нормально разомкнутый контакт управляются катушкой реле М.

При нажатии кнопки СТАРТ ток течет через катушку реле и обычно замкнутый перегрузочный контакт с источником питания.Когда ток течет через катушка реле М, контакты, подключенные параллельно кнопке СТАРТ, замыкаются. Эти контакты поддерживают цепь к катушке M, когда кнопка START повторно сдает в аренду и возвращается в открытую позицию.

Цепь будет продолжать работать, пока кнопка СТОП не будет нажата и не разорвется. цепь к катушке. Когда ток в катушке прекращается, реле обесточивается, и контакт M снова открывается. Поскольку кнопка СТАРТ теперь открыта и свяжитесь с M разомкнут, полное замыкание на катушку реле при СТОП кнопка возвращается в нормальное закрытое положение.Если реле на быть перезапущенным, необходимо снова нажать кнопку СТАРТ, чтобы обеспечить полное цепь к катушке реле.

Единственное другое логическое условие, которое может возникнуть в этой цепи, вызвано: двигателем, подключенным к нагрузочным контактам реле М. Предположим, что двигатель подключается последовательно с нагревателем реле перегрузки. Когда катушка M подает питание, он замыкает контакт нагрузки M. Когда контакт нагрузки замыкается, он подключает двигатель к сети переменного тока на 120 вольт.


Нагреватель реле перегрузки включен последовательно с двигателем.


Перегрузочные контакты размыкают цепь.

Перегрузка двигателя приведет к тому, что через него будет протекать слишком большой ток. схема. Когда через перегрузку протекает ток, превышающий нормальный обогреватель, обогреватель производит больше тепла, чем при нормальных условиях. Если ток становится достаточно высоким, это вызовет нормально замкнутую перегрузку. контакт, чтобы открыть.


Логические вентили позволяют нажимать кнопки для включения или выключения схемы.

Обратите внимание, что контакт перегрузки электрически изолирован от нагревателя. Таким образом, контакт может быть подключен к другому источнику напряжения. чем мотор.

Если контакт перегрузки размыкается, цепь управления разрывается и реле обесточивается, как если бы была нажата кнопка СТОП. После перегрузки контакт был сброшен в нормальное закрытое положение, катушка будет остаются обесточенными, пока снова не будет нажата кнопка СТАРТ.

Теперь, когда логика схемы понятна, цифровая логическая схема которые будут работать таким образом, могут быть спроектированы. Первая проблема найти схему, которую можно включить одним нажатием кнопки и повернуть прочь с другим. Показанная схема может выполнять эту функцию. Эта схема состоит из логического элемента ИЛИ и логического элемента И. Вход А логического элемента ИЛИ подключен к нормально разомкнутой кнопке, которая подключена к 5 вольт постоянного тока. Вход B логического элемента ИЛИ соединен с выходом логического элемента И.Выход логического элемента ИЛИ подключен к входу А логического элемента И. Вход B логического элемента И подключается через нормально замкнутую кнопку к _5 вольт постоянного тока. Этот нормально закрытая кнопка используется как кнопка СТОП. Выход логический элемент И является выходом схемы.


Логический элемент И используется для добавления в схему контакта перегрузки.


Перекомпоновка цепи устраняет неисправность.

Резистор, используемый для понижения входа затвора.

Резистор, используемый для увеличения входа затвора.

Кнопка выдает высокий уровень на входе.


Кнопки и контакт перегрузки заземлены.

Чтобы понять логику этой схемы, предположим, что выход логического элемента И низкий. Это создает низкий уровень на входе B логического элемента ИЛИ. Поскольку кнопка подключенный к входу A разомкнут, на этом входе также вырабатывается низкий уровень. Когда все входы логического элемента ИЛИ низкие, его выход также низкий.Низкая производительность логического элемента ИЛИ подключен к входу А логического элемента И. Вход B логического элемента И подключен к высокому уровню через нормально замкнутый кнопочный переключатель. Поскольку на входе А логического элемента И низкий уровень, выход логического элемента И равен вынужден оставаться в низком состоянии.

Когда нажата кнопка START, на вход A ИЛИ ворота. Это приводит к изменению выходного сигнала логического элемента ИЛИ на высокий. Этот Высокий выход подключен к входу А логического элемента И.Ворота AND сейчас имеет высокий уровень на обоих входах, поэтому его выход меняется с низкого на высокий. штат. Когда выход логического элемента И переходит в высокое состояние, вход B ворот ИЛИ также становится высоким. Поскольку вентиль ИЛИ теперь имеет высокое соединение на вход B, его выход будет оставаться высоким при возврате кнопки в открытое состояние, и на входе A становится низкий уровень. Обратите внимание, что эта схема при нажатии кнопки СТАРТ работает так же, как и цепь реле. Выход переключается с низкого состояния на высокое, и схема блокируется. в этом состоянии, чтобы можно было снова нажать кнопку СТАРТ.

Когда нажата нормально закрытая кнопка СТОП, вход B логического элемента И меняется с высокого на низкий.

Когда вход B переходит в низкое состояние, выход логического элемента И изменяется. в низкое состояние тоже. Это приводит к появлению низкого уровня на входе B логического элемента ИЛИ. Теперь логический элемент ИЛИ имеет низкий уровень на обоих входах, поэтому его выход изменяется с от высокого состояния до низкого состояния. Поскольку на входе A логического элемента И теперь низкий уровень, выход вынужден оставаться на низком уровне, когда кнопка СТОП возвращается в свое закрытое положение и вход B становится высоким.Схема, разработанная здесь, может включаться кнопкой СТАРТ и выключаться кнопкой СТОП.

Следующая задача проектирования — подключить к цепи перегрузочный контакт. Контакт перегрузки должен быть подключен таким образом, чтобы выход схемы отключать при размыкании. Первый импульс может заключаться в подключении контакта перегрузки к цепи, как показано. В этом В цепи выход логического элемента И # 1 был подключен к входу А логического элемента И. №2.

Вход B логического элемента И # 2 был подключен к высокому уровню через нормальный замкнутый контакт перегрузки. Если контакт перегрузки остается замкнутым, введите B останется высоким. Таким образом, выход логического элемента И # 2 управляется. входом A. Если выход логического элемента И # 1 переходит в высокое состояние, выход логического элемента И №2 также перейдет в высокое состояние. Если на выходе логического элемента И # 1 становится низким, выход логического элемента И # 2 становится низким. также.

Если на выходе логического элемента И # 2 высокий уровень и контакт перегрузки размыкается, вход B станет низким, а выход изменится с высокого на низкий штат.Эта схема работает с той же логикой, что и реле. цепь, пока логика не будет внимательно изучена. Предположим, что контакты перегрузки закрыты, а на выходе логического элемента И # 1 высокий уровень. Поскольку оба входа логического элемента И # 2 имеют высокий уровень, выходной сигнал также высокий. Теперь предположим, что Контакт перегрузки размыкается, и вход B переходит в состояние низкого уровня. Это заставляет выход логического элемента И # 2 также перейти в низкое состояние. Вход Однако логический элемент И №2 по-прежнему высокий.Если контакт перегрузки сброшен, выход немедленно вернется в высокое состояние. Если перегрузка контакт размыкается, а затем сбрасывается в цепи реле, реле не срабатывает. перезапустить сам. Чтобы перезапустить цепь, необходимо нажать кнопку START. Хотя это небольшая разница в схемной логике, она может стать угроза безопасности в некоторых случаях.

Эту неисправность можно исправить небольшим изменением конструкции. В этой схеме нормально закрытая кнопка СТОП была подключена к входу А логического элемента И # 2, и нормально замкнутый выключатель перегрузки был подключен к входу Б.Пока оба этих входа имеют высокий уровень, выход логического элемента И # 2 обеспечит высокий вход B логического элемента И №1. Если либо кнопка СТОП или размыкается контакт перегрузки, выход логического элемента И # 2 изменится в низкое состояние. Когда вход B логического элемента И # 2 переходит в низкое состояние, он приведет к тому, что выход логического элемента И # 1 перейдет в низкое состояние и разблокируется цепь, точно так же, как нажатие кнопки СТОП сделало в цепи. Логика Эта цифровая схема теперь такая же, как и схема реле.

Хотя логика этой схемы теперь верна, некоторые проблемы, которые необходимо исправить.

Когда используются вентили, их входы должны быть подключены к определенному высокому уровню. или низкий. Когда кнопка СТАРТ находится в нормальном положении, введите A ИЛИ ворота ни к чему не подключены. Когда вход остается в этом состоянии, гейт может быть не в состоянии определить, должен ли вход быть высоким или низким. Следовательно, ворота могут принять любое из условий.Чтобы предотвратить это, входы всегда должен быть связан с определенным максимумом или минимумом.

Резистор, используемый для понижения входа затвора. Резистор, используемый для повышения вход калитки. Нажатие кнопки выдает высокий вход.

При использовании логики TTL входы всегда подтягиваются к высокому уровню с помощью резистора, как против того, чтобы быть низко затянутым. Если резистор используется для понижения уровня входа, это вызовет падение напряжения на выходе затвора. Это означает что в высоком состоянии на выходе затвора может быть всего 3 или 4 вольта вместо 5 вольт.Если этот выход используется как вход другого вентиля, а другой затвор был понижен с помощью резистора, выход второго на воротах может быть всего 2 или 3 вольта. Обратите внимание на то, что каждый раз, когда проходят ворота резистор, его выходное напряжение становится низким. Это было сделано через несколько шагов, выходное напряжение скоро станет настолько низким, что не сможет использоваться для управления входом других ворот.

— показывает резистор, используемый для высокого уровня входа затвора.В этой схеме кнопка используется для подключения входа ворот к земле, или низкий.

Кнопка может быть адаптирована для создания высокого уровня на входе вместо минимума, добавив ИНВЕРТОР, как показано. В этой схеме подтягивающий резистор подключен ко входу ИНВЕРТОРА.

Поскольку на входе ИНВЕРТОРА высокий уровень, на его выходе будет низкий уровень. на входе А логического элемента ИЛИ. Когда нажата нормально разомкнутая кнопка, низкий уровень будет произведен на входе ИНВЕРТОРА.Когда ввод ИНВЕРТОР становится низким, его выход становится высоким.

Обратите внимание, что кнопка теперь производит высокий вход A OR ворота, когда их толкают.

Поскольку обе кнопки и нормально замкнутый контакт перегрузки используются для обеспечения высоких входов, схема изменена.

Обратите внимание, что нормально закрытая кнопка и нормально закрытый выключатель перегрузки, подключенный ко входам логического элемента И №2, подключены на землю вместо Vcc.Когда переключатели подключены к земле, на вход ИНВЕРТОРОВ, к которым они подключены, подается низкий уровень. Таким образом, ИНВЕРТОРЫ создают высокий уровень на входе логического элемента И. Если один из этих нормально замкнутых переключателей размыкается, будет обеспечен высокий уровень. на вход ИНВЕРТОРА. Это приведет к выходу ИНВЕРТОРА стать низким. Если проверить логику схемы, можно увидеть, что это то же самое, что и логика показанной схемы.

Последняя проблема конструкции этой схемы касается выхода.Так далеко, в качестве нагрузки использован светодиод. Светодиод используется для индикации когда выход высокий, а когда низкий. Однако исходная схема использовался для управления двигателем переменного тока на 120 вольт. Этот контроль может быть осуществлен подключив к выходу твердотельное реле вместо светодиода. В В этой схеме выход логического элемента И # 1 соединен с входом оптоизолированное твердотельное реле. Когда выход логического элемента И переходит в высокое состояние, твердотельное реле включается и подключает нагрузка 120 В переменного тока на линию.


Полупроводниковый, старт-стоп, кнопочное управление.

ВИКТОРИНА:

1. Какую функцию в релейной цепи выполняют удерживающие контакты?

2. Какова функция реле перегрузки в цепи управления двигателем?

3. Какие условия входа должны существовать, если логический элемент ИЛИ должен производить высокий выход?

4. Какие условия ввода должны существовать, если логический элемент И должен производить высокая производительность?

5.Почему при подключении логики TTL вводятся высокие значения, а не низкие?

6. Ссылаясь на то, как эта схема будет работать, если вход B Элемент ИЛИ был повторно подключен к входу A элемента И № 1 вместо его выхода?

7. Какие функции выполняет ИНВЕРТОР в этой цепи?

Двухпроводное управление | Цепь управления толчковым режимом запуска и остановки

Двухпроводное управление

Кнопочные переключатели останова и пуска в двигателях и других цепях управления представляют собой удобные способы управления цепями.Легче нажать кнопку, чем использовать тумблер или повернуть ручку.

Чтобы обеспечить дополнительные стартовые позиции, все, что необходимо, — это подключить дополнительные пусковые кнопки параллельно с первой. Для остановки или обесточивания цепи дополнительные кнопочные выключатели остановки размещаются последовательно с первыми.

В Рисунок 1 есть два пусковых и два кнопочных переключателя. Как обычно, кнопки пуска нормально разомкнуты, а кнопки останова нормально замкнуты.Они были помечены как «начало 1», «начало 2», «стоп 1» и «стоп 2» для ясности.

Рисунок 1 Два положения управления запуском и остановом в цепи

Вариант схемы управления в Рисунок 1 — это обеспечение только одной начальной позиции с несколькими положениями остановки. Это может возникнуть, когда на установке может потребоваться несколько положений аварийной остановки.

Только один кнопочный переключатель запускает работу, но в случае неисправности на установке он может быть остановлен операторами в любом количестве положений.Для этого необходимо, чтобы все кнопочные выключатели останова были подключены последовательно (см. Рисунок 2 ).

Рис. 2 Несколько положений управления остановом

Местное или дистанционное управление

В некоторых операциях может потребоваться смещение рабочего положения кнопочных переключателей стоп – старт. Чтобы избежать возможности того, что кто-то будет управлять машиной в неправильном положении, схема Рисунок 2 изменена таким образом, чтобы одновременно можно было использовать только одно положение.Это часто называют «локальной» или «удаленной работой». Рисунок 3 — схематичное представление этого типа. В левой части схемы находится ручной переключатель, который включает в цепь либо верхние местные, либо нижние дистанционные кнопочные переключатели. Этот тип схемы требует дополнительного контактора , контактора и только простого переключающего переключателя.

Рисунок 3 Дистанционное или местное управление

Двухпроводное управление

Многие схемы управления двигателем используют автоматическое управление пуском.Это может быть, например, термостат на холодильнике, поплавковый выключатель на резервуаре для воды или реле давления на воздушном компрессоре. Поскольку другого управления пуском-остановом нет, и к исполнительному устройству нужно подвести только два провода, это обычно называют «двухпроводным управлением».

Рисунок 4 — простая двухпроводная схема управления. В этом случае регулирующим устройством является реле давления, которое обозначено строчной буквой p в квадрате.

Рисунок 4 Двухпроводное управление с помощью реле давления

Двухпроводное и кнопочное управление

В некоторых случаях может потребоваться запустить устройство с моторным управлением с помощью кнопочного переключателя но позвольте другому элементу управления выключить его.Этот тип схемы показан на рисунке Рисунок 5 . Он имеет обычное управление пуском-остановом с поплавковым выключателем, соединенным последовательно с кнопкой останова. Это позволит запустить насос, а затем автоматически выключить его при заполнении бака.

Двигатель можно было остановить в любой момент во время работы, но его нельзя было снова запустить после автоматической остановки до тех пор, пока уровень воды не упадет и поплавковый выключатель снова не замкнется.

Рисунок 5 Комбинированное стоп-старт и автоматическое управление

Старт Стоп Толчковое управление

Когда кнопочный переключатель подключен так, что цепь работает только при удержании переключателя в нажатом состоянии, это называется толчковой работой. контроль’.Иногда необходимо «толкать» машину в определенное положение, чтобы можно было выполнить регулировку. Можно было бы жонглировать кнопками пуска и останова двумя руками, но это не является хорошей практикой, не надежно и может быть опасно. Более эффективно установить специальную кнопку для этой функции.

На принципиальной схеме в Рисунок 6 толчковый кнопочный переключатель представляет собой кнопочный переключатель с нормально замкнутым и нормально разомкнутым положениями.

В нормальном положении схема работает как простое управление остановом / пуском. При нажатии кнопки толчкового режима удерживающий контакт K1.4 изолируется, а кнопочный переключатель запуска блокируется. Пока кнопка толчкового режима нажата, катушка К1.4 находится под напряжением.

Когда кнопка отпускается, цепь катушки размыкается, а затем замыкается нормально замкнутый контакт, так что возможна нормальная работа. Кнопка толчкового режима иногда включает небольшую задержку при повторном включении, чтобы дать контактору время для размыкания контакта K1.4.

Рисунок 6 Кнопочный переключатель толчкового режима в цепи управления

Реверсивные цепи

Чтобы реверсировать трехфазный двигатель, все, что необходимо, — это поменять местами две линии питания к двигателю. Это может быть выполнено с помощью двух контакторов, как показано на принципиальной схеме на рис. , рис. , , 7, .

Когда замыкаются контакты K1.1, K1.2 и K1.3 или K2.1, K2.2 и K2.3, двигатель будет работать либо в прямом, либо в обратном направлении.Осмотр силовой цепи покажет, что две линии питания будут закорочены, если оба контактора замкнуты одновременно.

Рисунок 7 Принципиальная электрическая схема реверсивного контактора

Этого можно избежать двумя способами. Маленький равносторонний треугольник и пунктирные линии между двумя наборами силовых контактов означают, что два контактора «механически заблокированы». Это означает, что если один контактор замкнут, другой механически невозможно замкнуть.

Второй метод заключается в использовании «электрических блокировок» в каждой цепи катушки контактора. Это можно увидеть на рис. 7 , где нормально замкнутый контакт K2.5 находится в цепи прямой катушки, а нормально замкнутый контакт K1.5 находится в цепи обратной катушки. Это означает, что при подаче напряжения на катушку контактора K1 / 5 контакт K1.5 размыкается. Затем, если нажать кнопку реверса, катушка K2 / 5 не может быть запитана. То же касается и обратной операции.

Используется только одна кнопка останова, а контакт тепловой защиты также включен последовательно с кнопкой останова.По необходимости, кнопочный переключатель останова находится перед кнопками прямого и обратного хода, так что он может управлять обоими.

Релейные диаграммы

Цепи управления, в частности, могут быть нарисованы как «лестничные» диаграммы. Они называются так, потому что линии питания нарисованы с каждой стороны, а компоненты схемы — поперек них, поэтому в результате получается, что это похоже на стойки лестницы.

Лестничные диаграммы также следуют требованию, чтобы поток энергии и последовательность событий были слева направо и сверху вниз, когда это возможно, аналогично обычной практике рисования в этой стране.

Эти схемы являются шагом к программированию логических контроллеров и в основном используются с учетом программирования. Схема управления Figure 7 была перерисована в горизонтальной ориентации и показана на Figure 8 . Используются символы, рекомендованные в AS / NZS 1102. Однако схема идентична схеме управления на рисунке Рисунок 7 .

Рисунок 8 Схема управления Рисунок 7 с горизонтальной компоновкой

В других странах часто используются другие стандартные символы.В США используется более одного набора стандартов, но один популярный из них называется стандартом NEMA. Название является сокращением от Национальной ассоциации производителей электрооборудования.

Схема управления Рисунок 8 , перерисованная в соответствии со стандартами NEMA, показана на Рисунок 9 . Это все та же схема, за исключением того, что теперь каждая перегрузка отображается отдельно как три нормально замкнутых контакта.

Рисунок 9 Схема управления реверсом, соответствующая стандартам NEMA

Многие программируемые логические контроллеры в этой стране и других странах используют этот стандарт, и программисты ориентированы на этот стандарт.Принципиальные схемы, поставляемые с контроллерами, чаще всего соответствуют стандартам NEMA.

Цепь пуска-останова — что это такое, где они используются и как подключать

Цепь пуска-останова

Цепи пуска-останова широко используются в электрических системах для систем управления и управления машинами. Их можно использовать для включения или выключения двигателя, запуска или остановки машины или запуска / остановки процесса.

В этой статье мы обсудим, что это такое, как работают схемы старт-стоп, а также покажем схемы, как вы можете сделать свои собственные.

Что такое схема остановки запуска?

Цепь старт-стоп — это электрическая цепь, которая предназначена для «запуска» или «остановки» двигателей, компонентов или электрического оборудования.

Они состоят из ряда компонентов и проводки. Цепи управления пуском и остановом используются на простых конвейерных лентах для управления лентой через двигатель.

Теперь давайте обсудим, какие компоненты используются в цепи старт-стоп.

Какие компоненты используются в цепи запуска и остановки?

Цепь пуска-останова состоит из ряда различных компонентов.Ниже мы обсудим, почему каждый компонент необходим в схеме:

Кнопки / контакты

Кнопки и контакты необходимы в цепи запуска и остановки для подачи питания на схему и разрыва цепи. Они используются для «запуска» и «остановки» электрической цепи с помощью кнопок или переключателей.

Реле / Контактор

Реле и контакторы используются в цепи запуска и остановки для управления другими электрическими компонентами, подключенными к реле или контактору.

Например, катушка контактора должна быть подключена к цепи управления пуском и остановом с более низким напряжением. Когда кнопка пуска нажата, будет запитана катушка и подано напряжение на двигатель.

Двигатель

Двигатели обычно используются в цепях управления пуском и остановом. Управление пусковой остановкой требуется на конвейерных лентах и ​​технологическом оборудовании, требующем движения. Электродвигатели могут производить кинетическую энергию из электрической энергии.

Перегрузка

Устройства защиты от перегрузки используются для защиты компонентов и проводки цепи в случае перенапряжения или перегрузки по току.

Теперь мы понимаем, какие компоненты используются для создания цепи старт-стоп, мы можем взглянуть на электроснабжение.

Какое электрическое питание требуется для цепи старт-стоп?

В большинстве цепей управления используется постоянный ток 24 В, который считается управляющим напряжением. Уровень напряжения зависит от того, как вы управляете схемой запуска и остановки, а также от того, как компоненты сконфигурированы в схеме.

Если вы используете схему пуска-останова для управления катушкой контактора 24 В, вы можете сохранить напряжение питания двигателей отдельно от управляющего напряжения.Делая это, вы сохраняете свое управляющее напряжение на низком уровне, и если бы у вас был подключен трехфазный двигатель, питание было бы просто подключено к контактору (который будет контролироваться вашим пусковым остановом 24 В). Затем контактору будет сказано, когда подать питание на ваш двигатель катушкой 24 В, управляемой цепью запуска и остановки.

Если вы используете контакты с более высоким номиналом, вы можете напрямую связать их со своим двигателем или компонентом. В некоторых системах используются контакты с номиналом 240 В, которые могут напрямую управлять однофазным двигателем.

Как работает схема запуска и остановки?

Теперь посмотрим, как работает схема запуска и остановки. Используя все перечисленные выше компоненты, мы можем создать следующую схему старт-стоп.

Для наглядности синими линиями показан текущий ток. Уровень напряжения для цепей управления может быть от 24 В до 400 В +. Обычно для стороны управления используется 24 В.

Цепь пуска-останова

На изображении выше показана цепь пуска-останова в состоянии по умолчанию.Как видите, кнопка пуска не нажата. Это означает, что на катушку реле не подается питание, поэтому по цепи не течет ток.

Пуск, останов цепи с нажатой кнопкой запуска.

Когда мы нажимаем кнопку запуска, это позволяет току течь по цепи и активировать реле или катушку контактора.

Примером использования контактора является управление двигателем. Когда катушка контактора активируется, она позволяет току течь к двигателю, это запускает двигатель.

Цепь пуска-останова при подаче напряжения на катушку

Когда катушка реле или контактора находится под напряжением, он запитывает контакт. Это фиксирует цепь и означает, что нам не нужно удерживать кнопку пуска нажатой, чтобы позволить току течь по цепи. Схема будет продолжать работать до тех пор, пока не будет нажата кнопка останова или в случае неисправности (перегрузка отключится).

Пуск и останов цепи при нажатой кнопке останова

Если кнопка останова нажата, ток полностью прекращается и цепь обесточивается.Это отключает все питание катушки и снимает защелку. Схема не может быть запущена снова, пока не будет нажата кнопка «пуск».

Цепь пуска-останова с подключенным двигателем

Когда цепь пуска-останова используется для управления, диаграмма должна выглядеть следующим образом:

Цепь пуска-останова при работающем двигателе

На изображении выше показан двигатель в его рабочем состоянии, когда контактор по катушке течет ток.

Когда мы нажимаем кнопку останова или если кнопка запуска еще не была нажата, схема будет выглядеть следующим образом:

Пуск, остановка цепи при неработающем двигателе

На двигатель не подается питание, поэтому он не будет работать.

Цепь толчкового режима запуска и остановки | Схема цепи управления двигателем

Определение контура толчкового режима

Цепь толчкового режима важна для создания цепи, которая позволит оператору на мгновение включить цепь без необходимости нажимать кнопку останова. Цепи толчковой подачи позволяют оператору перемещать грузы в заданное положение, предотвращая перемещение груза в заданное положение. Цепь толчкового режима может использоваться практически в любой цепи управления, поскольку она основана на мгновенном включении и выключении управляющего устройства.

Толчок или толчковый режим определяется как быстро повторяющееся замыкание цепи для запуска двигателя из состояния покоя с целью выполнения небольших перемещений вращающейся машины.

Термин «толчковый режим» часто используется для обозначения пуска нагрузок при полном напряжении; термин «толчковый» можно использовать для обозначения пускателей пониженного напряжения. Как правило, эти термины используются взаимозаменяемо, потому что они оба предотвращают использование герметичной цепи.

Есть много способов разработать схему управления толчковым режимом.При разработке беговой дорожки важно помнить, что общий результат состоит в том, чтобы заставить нагрузку работать во время нажатия кнопки пуска. Это означает, что схема управления спроектирована таким образом, что нагрузка не может быть запитана и оставаться под напряжением через контакт памяти / герметизации.

Одной из схем толчкового режима является двухконтурная кнопка. Схема будет работать как обычная трехпроводная схема, если используются кнопки пуска / останова. Нажатие кнопки толчкового режима создает путь тока непосредственно к нагрузке, минуя уплотнение цепи управления.Однако существует потенциальная опасность, поскольку кнопка толчкового режима потенциально может стать активным уплотнением, в результате чего нагрузка останется включенной без посторонней помощи. Если есть возможность исключить использование кнопок, которые одновременно замыкают и размыкают цепь управления в одной и той же цепи.

Работа контура толчкового режима

Конфигурация 1. Цепь толчкового режима

Цепь толчкового режима в Конфигурации 1 работает следующим образом:

  • Переключатель подключается последовательно с пломбой пилотного устройства.
  • При замкнутом переключателе цепь управления действует как обычная остановочная / пусковая станция, управляющая нагрузкой, подключенной к управляющему устройству, питание находится на пусковых и запечатанных клеммах кнопки.
  • Нажатие кнопки пуска немедленно передает питание на кнопку пуска и запечатывающий контакт, запитывающий катушку.
  • Запечатанный контакт теперь поддерживает питание катушки, игнорируя кнопку пуска, и его больше не нужно удерживать.
  • Катушку пускателя двигателя можно обесточить несколькими способами.
    • Двигатель может перегрузиться, это означает, что нормально замкнутые контакты перегрузки разомкнутся, разомкнув цепь.
    • Кнопка останова может быть нажата, отключив питание от герметичного контакта, что приведет к обесточиванию катушки.
    • Следующий способ остановки цепи управления — это повернуть переключатель в положение толчкового режима. Это немедленно обесточит катушку.
      • Когда переключатель находится в толчковом положении, управляющее устройство больше не будет получать питание через герметичный контакт.
    • Катушка может быть запитана только с помощью кнопки пуска и только на время, в течение которого кнопка нажата.

ЦЕПЬ ПУСКА-ОСТАНОВА ОТКЛЮЧЕНА

ЦЕПЬ ПУСКА-ОСТАНОВА ВЫКЛЮЧЕНА

, чтобы сократить выбросы и соответствовать этикетке ECO, почти все современные автомобили оснащены системой ECO «СТАРТ-СТОП», которая выключает двигатель, когда автомобиль останавливается на светофоре или стоит в очереди в бампере в пробку бампера…

В этих автомобилях есть кнопка, которая позволяет отключите функцию СТАРТ-СТОП., если, например, вы много ездите по город и двигатель постоянно глохнет и перезапускается, чего нет в пользу экологии и уделяя большое внимание механической части двигателя. части.

Я разработал небольшую схему, которая автоматически «подавляет» функцию отключения СТАРТ-СТОП на пару секунд каждую время после запуска двигателя.

Предусмотрены две версии:

  • 2-проводная версия: в этой версии схема размещается над кнопкой отключения. Поскольку схема вырабатывала импульс a через пару секунд после включения обязательно, чтобы на провода, ведущие к кнопке отключения, не подается питание, если двигатель не это работает. Напряжение при работающем двигателе должно быть между 4 и 15в примерно, способный обеспечить ток в пару мА. Если это не так, то единственный вариант — 4-проводная схема!

  • 4-проводная версия: в этой версии на цепь подается питание при работающем двигателе. Пульс предусмотрен на оптроне, поэтому гальванически изолирован — так что автомобиль СТАРТ-СТОП устройство автомобиля не может быть повреждено! 4Н35 выход оптопары должен быть размещен над фактическим выключателем отключения, соблюдая полярность.

Задержка импульса (от запуска двигателя / контура при включении питания) можно отрегулировать с помощью значения C1, длина импульса может регулируется значением C2. Может потребоваться отрегулировать / увеличить C2, если цепь СТАРТ-СТОП не обнаруживает имитацию нажатия кнопки …

Цепи управления двигателем

| Релейная логика

Блокирующие контакты, установленные в схеме управления двигателем в предыдущем разделе, работают нормально, но двигатель будет работать только до тех пор, пока каждый кнопочный переключатель удерживается нажатым.

Если бы мы хотели, чтобы двигатель работал даже после того, как оператор убирает руку с переключателя (-ов) управления, мы могли бы изменить схему двумя разными способами: мы могли бы заменить кнопочные переключатели тумблерами или мы могли бы добавить еще немного релейной логики, чтобы «зафиксировать» схему управления однократным мгновенным срабатыванием любого переключателя.

Давайте посмотрим, как реализуется второй подход, поскольку он широко используется в промышленности:

При нажатии кнопки «Вперед» срабатывает M 1 , замыкая нормально разомкнутый вспомогательный контакт параллельно этому переключателю.

Когда кнопка отпущена, замкнутый вспомогательный контакт M 1 будет поддерживать ток на катушке M 1 , таким образом блокируя цепь «Вперед» во включенном состоянии.

То же самое произойдет при нажатии кнопки «Реверс». Эти параллельные вспомогательные контакты иногда называют контактами с уплотнением , слово «уплотнение» означает по существу то же самое, что и слово защелка .

Однако возникает новая проблема: как остановить двигатель! Поскольку цепь существует прямо сейчас, двигатель будет вращаться либо вперед, либо назад после нажатия соответствующего кнопочного переключателя и будет продолжать работать, пока есть питание.

Чтобы остановить любую цепь (вперед или назад), нам требуются некоторые средства для оператора, чтобы отключить питание контакторов двигателя. Назовем этот новый коммутатор Stop :

.

Теперь, если прямая или обратная цепи заблокированы, они могут быть «разблокированы» кратковременным нажатием кнопки «Стоп», которая размыкает прямую или обратную цепь, обесточивая контактор под напряжением и возвращая герметичный контакт. в нормальное (открытое) состояние.

Переключатель «Стоп», имеющий нормально замкнутые контакты, при отпускании подает питание либо на прямую, либо на обратную цепи.

Пока все хорошо. Давайте рассмотрим еще один практический аспект нашей схемы управления моторикой, прежде чем мы перестанем ее дополнять.

Если наш гипотетический двигатель вращал механическую нагрузку с большим импульсом, такую ​​как большой воздушный вентилятор, двигатель мог бы продолжать двигаться по инерции в течение значительного времени после нажатия кнопки останова.

Это может быть проблематично, если оператор попытается изменить направление вращения двигателя, не дожидаясь остановки вращения вентилятора.

Если бы вентилятор продолжал вращаться по инерции и была нажата кнопка «Реверс», двигателю было бы трудно преодолеть инерцию большого вентилятора, когда он пытался начать вращаться в обратном направлении, потребляя чрезмерный ток и потенциально сокращая срок службы двигателя. приводные механизмы и вентилятор.

Нам, возможно, хотелось бы иметь в этой системе управления двигателем какую-то функцию задержки по времени, чтобы предотвратить такой преждевременный запуск.

Давайте начнем с добавления пары катушек реле с выдержкой времени, по одной параллельно каждой катушке контактора двигателя.

Если мы используем контакты, которые задерживают возврат в нормальное состояние, эти реле предоставят нам «память» о том, в каком направлении двигатель последний раз был запитан.

То, что мы хотим, чтобы каждый контакт с выдержкой времени делал, так это размыкать ногу пускового выключателя цепи противоположного вращения на несколько секунд, пока вентилятор останавливается выбегом.

Если двигатель вращался в прямом направлении, то и M 1 , и TD 1 будут запитаны.

В этом случае нормально замкнутый, замкнутый по времени контакт TD 1 между проводами 8 и 5 немедленно размыкается в момент подачи питания на TD 1 .

Когда кнопка останова нажата, контакт TD 1 ожидает в течение указанного времени, прежде чем вернуться в свое нормально замкнутое состояние, таким образом удерживая цепь кнопки реверса разомкнутой в течение этого времени, так что M 2 не может быть запитан.

По истечении времени ожидания TD 1 контакт замыкается, и цепь позволяет запитать M 2 при нажатии кнопки реверса.

Аналогичным образом TD 2 не позволит кнопке «Вперед» активировать M 1 до тех пор, пока не будет обесточена заданная временная задержка после отключения M 2 (и TD 2 ).

Внимательный наблюдатель заметит, что функции временной блокировки TD 1 и TD 2 делают дублирующие контакты M 1 и M 2 избыточными. Мы можем избавиться от вспомогательных контактов M 1 и M 2 для блокировок и просто использовать контакты TD 1 и TD 2 , поскольку они немедленно размыкаются при подаче напряжения на соответствующие катушки реле, таким образом «блокируя» ”Один контактор, если другой находится под напряжением.

Каждое реле с выдержкой времени служит двойной цели: предотвращение включения другого контактора при работающем двигателе и предотвращение включения того же контактора в течение заданного времени после отключения двигателя.

Полученная схема имеет то преимущество, что она проще, чем в предыдущем примере:

ОБЗОР:

  • Катушки контактора двигателя (или «пускателя») обычно обозначаются буквой «M» на схемах лестничной логики.
  • Непрерывная работа двигателя с мгновенным переключателем «пуск» возможна, если нормально разомкнутый «герметичный» контакт контактора подключен параллельно пусковому переключателю, так что после подачи питания на контактор он поддерживает питание и сам себя «Зацепился» за.
  • Реле с выдержкой времени обычно используются в больших цепях управления двигателем, чтобы предотвратить запуск двигателя (или реверсирование) до тех пор, пока не пройдет определенное время с момента возникновения события.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Как работает кнопка аварийной остановки?


1.Что такое кнопочный переключатель аварийной остановки?

Выключатель аварийного останова, также известный как выключатель аварийного останова, выключатель аварийного останова, аварийный выключатель, аварийный выключатель или аварийная кнопка, кнопочный выключатель аварийного останова, это аварийный выключатель управления, который обеспечивает безопасность оборудования и для человека, использующего технику.

В европейском стандарте определены следующие требования: EN 418 и международный стандарт: ISO13850. Выключатель аварийной остановки должен быть хорошо виден по цвету, этикетке и форме, чтобы легко работать в аварийных ситуациях.Таким образом, кнопка должна быть красной шляпкой гриба с символом стрелки, АВАРИЙНОЙ СИТУАЦИИ или СТОП. Обычные размеры шляпок гриба — 29 мм, 30 мм, 40 мм или 60 мм. ( Расширенное обучение: Как выбрать цвет электрического кнопочного переключателя? )

Механизм прямого действия должен быть установлен на контакте NC и иметь функцию самоудержания. Чтобы разблокировать электрические контакты и перезапустить оборудование, требуется повернуть, потянуть или повернуть ключ. (Расширенное обучение: В чем разница между НО и НЗ кнопочных переключателей? )

2.Какова функция переключателя кнопки аварийного останова?

Выключатель аварийной остановки — это предохранительный механизм, используемый для отключения оборудования в аварийной ситуации, когда его нельзя отключить обычным способом.

Назначение аварийной кнопки — быстро остановить оборудование, когда есть риск травмы или рабочий процесс требует остановки. Он предназначен для предотвращения вреда или уменьшения существующих опасностей для людей, механизмов или рабочих, поэтому люди также говорят о кнопочном переключателе безопасности или переключателе безопасности с кнопкой.

3. Как работает кнопочный переключатель аварийной остановки?

Кнопочный выключатель аварийного останова является важным компонентом системы, который защищает безопасность операторов и оборудования в различных ситуациях аварийного отключения. Кнопки аварийной остановки соединены последовательно с цепью управления машинным оборудованием. При нажатии на грибовидную головку кнопки аварийного останова размыкается цепь машинного оборудования и отключается питание. ( Расширенное обучение: Каков принцип работы кнопочных переключателей? )

Для освобождения кнопки аварийной остановки необходимо потянуть, повернуть или использовать ключ в строго разрешенных условиях для обеспечения безопасности людей и оборудования во избежание повторных травм .Степень защиты обычной кнопки электронного останова составляет IP54, но водонепроницаемая кнопка аварийного останова может достигать IP65 или IP67.

4. Сколько типов переключателей аварийной остановки?

Существует три типа наиболее распространенных выключателей аварийной остановки в зависимости от режима действия привода. Разблокировка при вытягивании: привод вдавливается до остановки и отпускается, когда он отводится назад. Отпускание при повороте: привод вдавливается до остановки и отпускается путем поворота привода. Отпускание ключа: привод нажимается до упора и отпускается только ключом.

5. Где используется кнопочный выключатель аварийной остановки?

Кнопки аварийного останова можно найти в любой отрасли, включая промышленные, коммерческие и общественные объекты. Они должны быть четко видимы для всех, кто ими пользуется. Также возможно наличие нескольких кнопок аварийной остановки на одной машине в зависимости от того, какая часть машины должна быть остановлена. Например, лифт, упаковочная машина, лифтовое оборудование.

6.Все ли машины требуют кнопки аварийного останова?

В соответствии с требованиями нормативных документов и стандартов в разных странах или отраслях, машинное оборудование может иметь или не иметь систему аварийной остановки. Также сказано, что стандарты базового уровня не требуют, чтобы аварийная машина имела системы аварийной остановки. Во-первых, перед проектированием комплекта машин необходимо провести оценку риска машины. После завершения оценки риска машины (или ее части) и определения уровня ее опасности необходимо принять ряд мер для снижения риска.В соответствии с европейским стандартом безопасности машин EN954-1 уровни опасности делятся на пять уровней: B, 1, 2, 3 и 4, причем уровни опасности последовательно увеличиваются, а уровень 4 является наивысшим уровнем опасности. Конструкция цепи управления безопасностью также должна соответствовать требуемому уровню безопасности, поэтому уровень безопасности цепи управления также делится на B, 1, 2, 3, 4, всего пять уровней. (Расширенное обучение: О классификации цепей управления безопасностью )

7.Почему кнопка аварийной остановки должна иметь грибовидную головку?

В соответствии со стандартами IEC и требованиями промышленной безопасности кнопка аварийного останова должна быть безопасной, надежной и удобной, чтобы операторы могли управлять ею одной рукой. Голова гриба — лучший выбор.

8. В чем разница между кнопочным переключателем и кнопочным переключателем аварийного останова?

Кнопочный переключатель используется для запуска машины или переключения режимов. Кнопочный выключатель аварийной остановки используется в качестве меры безопасности для остановки нагрузок с опасными частями.

Кнопка аварийной остановки должна быть хорошо видна по цвету и форме, с ней легко работать в аварийных ситуациях. Следующие требования указаны в европейском стандарте EN 418 и международном стандарте ISO13850.

-Привод должен иметь грибовидную форму или что-то такое же простое в использовании.

-Крышка привода должна быть красного цвета, а фон должен быть желтым.

-На размыкающем контакте должен быть установлен механизм прямого размыкания. ( Расширенное обучение: Почему безопаснее использовать нормально замкнутые контакты для кнопок аварийного останова? )

— Должна быть функция самоудержания.

— кнопка аварийного останова с кожухом или крышка кнопки аварийного останова будет использоваться в некоторых условиях, чтобы предотвратить неправильное срабатывание.

9. Где производители кнопочного выключателя аварийной остановки в Китае?

Здесь представлены многие производители выключателей аварийной остановки в Китае, в том числе EAO, Mouser, IDEC, Schneider Electric, имеют завод по производству и исследования и разработки в Китае.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *