Однолинейная схема электроснабжения квартиры пример: Образец однолинейной схемы электроснабжения. Однолинейная электрическая схема электроснабжения

Содержание

Однолинейная схема электроснабжения для дома и квартиры.

Очень часто к нам в компанию обращаются обладатели квартир в новостройках Москвы с запросом выполнить однолинейную схему электрической сети либо заказать проект по электрике квартиры или жилого дома.  Мы постараемся ответить на самые распространенные вопросы по этой теме чтобы помочь сэкономить ваши денежные средства, ваше время и нервы. По любым вопросам – звоните нам или пишите на почту для бесплатной консультации.

Что такое однолинейная электросхема сети?

Электросхема щита дома – это часть проекта электроснабжения, которая представляет из себя принципиальное отображения составных элементов силового щита в &quotодну линию&quot. Автоматы, рубильники, контакторы, расцепители, кабели отображаются специальными условными обозначениями в соответствии с требованиями ГОСТ.

Для чего нужна электрическая схема?

  1. Большинство управляющих компаний Москвы требуют к согласованию однолинейную схему щита для новостроек как допуск к получению полной мощности.
  2. Электрическая схема, составленная нашими инженерами, позволит повести сборку щита квартиры в соответствии с действующими нормами и требованиями безопасности.
  3. Для правильного распределения нагрузки между фазами и подсчета стоимости материалов для сборки квартирного щита.
  4. Требуется для выполнения электротехнической лаборатории.
Какая цена и сроки составления однолинейной схемы подключения?

Для квартир, общей площадью до 110 м2 стоимость составления принципиальной схемы составляет 5 500р. Срок проектирования 1-2 рабочих дня.

Как заказать однолинейную схему в Москве?

Заказать электрическую схему дома или квартиры можно позвонив нам по номеру +7 (999) 200-33-54, +7 (915) 048-50-40, или написав на почту: [email protected]

  1. Технические условия от управляющей компании с выделенной электрической мощностью (или акт балансового разграничения) .
  2. План помещений объекта.
  3. Полный адрес объекта и ФИО заказчика.

Где требуется согласовывать принципиальную схему электрических сетей квартиры?

В большинстве случаев, согласование происходит только в управляющей компании, в редких случаях в УК просят дополнительно согласовать схему цепи в Мосэнергонадзоре. (Адрес: ул. 4-я Парковая дом 27. АНО ИТЦ &quotМосэнергонадзора&quot).

Что лучше заказать: однолинейную схему или полный проект?

Если кабели на объекте уже частично или полностью проложены и схема электрической цепи нужна только для согласования с управляющей компанией – есть смысл сэкономить и выполнить “урезанную версию” проекта.

Стоимость проекта электроснабжения квартиры всегда выше стоимости одной схемы, так как проект включает в себя дополнительно схемы расположения розеток, светильников, выключателей, трассировку кабелей и полную спецификацию оборудования. Полный проект позволяет не только проконтролировать процесс монтажных работ и расхода материалов но и нужен для удобства дальнейшей эксплуатации оборудования.

Скачать пример однолинейной схемы для квартиры и жилого дома можно у нас на сайте.

Однолинейная схема освещения: условные обозначения • Energy-Systems

 

Условные обозначения на однолинейных схемах

При организации электрических систем, обязательно требуются однолинейная схема электроснабжения, условные обозначения на которой – это специальные графические изображения, стандарты которых приняты ГОСТом и международной организацией стандартизации в сфере электрики. На схемах должны отображаться все кабели, провода, электрические приборы и материалы, необходимые для проведения электромонтажных работ.

При составлении схем профессиональные проектировщики пользуются только общепринятыми, стандартизированными условными обозначениями для изображения розеток, выключателей, электрических щитов, распределительных коробов и другого оборудования. Следует отметить, что разбираться в таких условных обозначениях должны не только электрики, но и собственники недвижимости. Элементарные знания и умения читать электрические схемы требуются для проведения даже незначительных ремонтных работ. Хозяину квартиры следует понимать, где располагаются кабели, провода и другое оборудование, чтобы ремонт не стал причиной механических повреждений элементов проводки.

Еще одним весомым поводом для изучения условных обозначений в электрике является то, что такие знания позволят говорить с электриками на их профессиональном языке, то есть, собственник сможет составить максимально понятное и грамотное техническое задание, сможет контролировать ход проектных и электромонтажных работ.

Правила прокладки проводки на однолинейных схемах

Несмотря на существование нескольких типов электрических схем, которые, в то же время, составляются для помещений разной площади и назначения, имеются общие правила, рекомендации, действующие в отношении любого электропроекта частного дома или квартиры.

  1. Электрическая система любого здания начинается с места подключения электрического вводного щитка к центральной магистрали электроснабжения. В старых квартирах такие приборы располагаются на лестничной клетке, а в новых квартирах и частных домах – рядом с входной дверью.
  2. Внутри электрощита обязательно должно быть установлено несколько автоматических выключателей и устройств защиты – по одному на каждую отдельную линию групп потребителей электроэнергии.
  3. Все соединения проводки на схеме освещения в жилых помещениях могут осуществляться только в специальных распределительных коробах или на розетках.

Пример проекта электроснабжения квартиры

Назад

1из14

Вперед

  • Распределительные коробки принято располагать выше выключателей – на небольшом расстоянии от потолка, обычно не более 10-15 см.
  • Во время проведения любых ремонтных работ, обязательно следует сверяться с электрической схемой, на основе которой реализовывалась вся электрическая система. Если схема по каким-то причинам отсутствует, зона на расстоянии 20 см от потолка считается самой опасной, так как именно в этой зоне практически всегда прокладывают кабели, сверлить и забить гвозди на такой высоте крайне не рекомендуется.
  • В старых квартирах распределительные коробки часто теряются, так как во время ремонтных работ их нередко заделывают штукатуркой, заклеивают обоями, закрывают различными элементами интерьера. Чтобы найти потерянную в доме коробку, можно сходить в гости к соседям, живущим на этаж выше или ниже вас. С большой долей вероятности распределительные коробки у вас и у соседей будут располагаться в одних и тех же местах.

Условные обозначения на схемах электричества

Для любой однолинейной схемы электроснабжения, условные обозначения и требования к ним будут одинаковыми.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости проектирования сетей электроснабжения:

Онлайн расчет стоимости проектирования

Проектируем электрику вместе: Однолинейная схема электроснабжения

Почему схема однолинейная? Однолинейная схема – это та же принципиальная схема, только выполненная в упрощенном виде: все линии однофазных и трехфазных сетей изображаются одной линией, отсюда и название. Назначение однолинейной схемы.. Точка подключения.. Граница балансовой принадлежности..  Коммерческий учет электроэнергии.. Правила выполнения однолинейной схемы.. Пример однолинейной схемы электроснабжения.. Однолинейная схема частного дома.


Почему схема однолинейная?

В состав проектной документации может входить несколько электрических схем. В их числе есть и однолинейная схема.

Название ее чисто условное. Однолинейная схема – это та же принципиальная схема, только выполненная в упрощенном виде: все линии однофазных и трехфазных сетей изображаются одной линией, отсюда и название.

Различают исполнительную и расчетную однолинейную схему.
Для находящихся в эксплуатации электроустановок используется исполнительная схема. Она выполняется тогда, когда возникает необходимость ввести серьезные изменения в проект по результатам обследования действующей электроустановки и выявления несоответствий существующим нормативам и правилам.

Для проектируемых новых объектов выполняется расчетная однолинейная схема. Она выполняется после расчетов электрических нагрузок, выбора защитно-коммутационных аппаратов и кабельно-проводниковой продукции. Расчетная однолинейная схема является основой для разработки электрических принципиальных и электромонтажных схем, необходимых для выполнения монтажных работ.

Правила выполнения однолинейной схемы электроснабжения

Правила, согласно которым выполняются все виды электрических схем, в том числе и однолинейная схема электроснабжения, определены ГОСТ 2.702-75.
Как уже говорилось выше, под понятием «однолинейная схема электроснабжения» понимается графическое изображение трех фаз питающей сети и отходящих линий групповых сетей в виде одной линии. Это условное изображение значительно упрощает и делает более компактными схемы электроснабжения. Подробная детализация подобным схемам не нужна, поскольку они предназначены давать общее представление о строении электросети и основных ее элементах.


Условное изображение трехфазного напряжения питания, для примера, приведено на рисунке «а», а его упрощенное изображение, которое и явилось причиной названия однолинейных схем отображено на рисунке «б».
Для того, чтобы визуально отобразить на схемах трехфазное подключение, используют несколько обозначений, таких как перечеркнутая линия с цифрой «3», расположенной рядом с вводом или выводом проводки, и прямая линия, перечеркнутая тремя косыми отрезками.
Для однолинейных схем электроснабжения обозначения приборов, пускателей, контакторов, выключателей, розеток и прочих элементов применяют согласно ГОСТ 2.709, как и для всех видов электрических схем.

Назначение однолинейной схемы


Однолинейная схема электроснабжения служит одним из основных документов при заключении договоров на поставку электроэнергии и выдаче технических условий (ТУ) на присоединение к электрическим сетям.
Исходя из однолинейной схемы электроснабжения, определяются границы балансовой принадлежности и эксплуатационной ответственности сторон.

Граница балансовой принадлежности и эксплуатационной ответственности сторон находится в точке подключения. До точки подключения эксплуатационную ответственность несет поставщик электроэнергии (владелец сетей), после нее – потребитель электроэнергии.

Коммерческий учет электроэнергии осуществляется во вводном устройстве, устанавливаемом, как правило, на границе балансовой принадлежности. Конкретное место установки приборов коммерческого учета прописывается в ТУ на присоединение к сетям. Обычно владелец сетей всегда требует установки шкафа учета в точке подключения, поскольку, как было сказано, за участок линии от точки подключения до объекта эксплуатационную ответственность несет потребитель. На самом объекте могут устанавливаться приборы технического учета для контроля общего потребления и оценки тепловых потерь электроэнергии.

Какие сведения должны быть указаны на однолинейной схеме?

На однолинейной схеме, входящей в состав проекта электроснабжения, указывают:
 • точку подключения объекта;
 • границу балансовой принадлежности;
 • марку и номинальный ток вводного устройства в точке подключения;
 • сведения о приборах коммерческого учета;
 • марку питающего кабеля или воздушной линии, их длину и сечение;
 • расчетные значения потерь напряжения в кабельных и воздушных линиях;
 • установленная и расчетная мощность ВРУ, их расчетный ток и cosφ; 
 • марки и номинальные токи защитно-коммутационных аппаратов;
 • расчетные нагрузки;
 • шкаф АВР и режим его работы.

Выбор сечения проводников и расчет потерь напряжения можно посмотреть на   странице «Выбираем сечение проводников», выбор номинальных токов аппаратов защиты — на странице «Выбор автоматических выключателей».

Однолинейная схема должна быть информативной

Как мы видим, однолинейная схема является одним из основополагающих документов в проекте электроснабжения. Она содержит сведения о расчетных нагрузках, о потерях напряжения, о приборах коммерческого учета, о режимах работы объекта при отключениях электроэнергии и т. д.
Сведения, перечисленные выше, должны присутствовать на однолинейной схеме в обязательном порядке. Отнеситесь к оформлению однолинейной схемы со всей ответственностью и тогда у вас не будет проблем с согласованием и утверждением проекта.
Пример оформления однолинейной схемы жилого дома представлен на рис. 1. Схема кликабельна, ее можно увеличить.

Пример однолинейной схемы электроснабжения
                                          
Однолинейные схемы электроснабжения других объектов не имеют принципиальных различий с рассмотренной нами однолинейной схемой электроснабжения частного дома или любого другого сооружения.

В населенных пунктах воздушные линии 380/220В проходят, как правило, в непосредственной близости от домов. Поэтому приборы учета электроэнергии допускается устанавливать на фасадах домов, как это показано на рис. 1.

                      




Рис. 1 
      
Если статья Вам понравилась и Вы цените вложенные в этот проект усилия – у Вас есть возможность внести посильный вклад в развитие сайта на странице «Поддержка проекта».

Статьи по теме:

1. Схема электроснабжения загородного дома
2. Внутреннее электроснабжение
3. Групповые сети освещения

Внимание! 
Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Он посвящен основам электротехники и электричества с акцентом на домашние электрические установки и процессы, в них происходящие.

Примеры однолинейных схем электрических сетей от МОСЭНЕРГОТЕСТ

Для составления однолинейных схем электрических сетей необходимо провести обследование объекта. В результате выполненной работы заказчику предоставляются готовая схема и рекомендации специалистов по поводу устранения найденных в ходе обследования дефектов.

Расчетная однолинейная электрическая схема

Проектирование электроснабжения осуществляется для объектов-новостроек. При разработке документации производится:

  • расчет нагрузок на оборудование,
  • подбор специальных аппаратов защиты от перенапряжения,
  • выбор правильного сечения отходящих линий.

Специалистами создаются примеры электрических однолинейных схем, с учетом которых проводятся все последующие электромонтажные работы. Грамотно составленный чертеж гарантирует пожарную безопасность для объектов.

 

Проект – это фундамент вашей идеи

Если вы не хотите лишних проблем с инспекторами, с этим вопросом лучше пойти к специалистам. ООО«МОСЭНЕРГОТЕСТ» в самые короткие сроки подготовит техническую документацию и выполнит все необходимые установочные работы.

У нас работают мастера, которые имеют бесценный опыт и все соответствующие допуски и лицензии. За десятилетнюю практику мы внедрили сотни успешных проектов, благодаря этому имеем огромную базу постоянных благодарных клиентов. Мы выполняем свою работу качественно – в этом наш секрет успеха.

Проектирование однолинейных схем электрических сетей

Данная схема в дальнейшем может полностью заменить и сам проект электроснабжения. В будущем ее можно дополнять любыми чертежами, в согласовании которых нет никакой необходимости.

Стандартный пример электрической однолинейной схемы электроснабжения вы сможете просмотреть у нас, также его можно найти в специальной технической литературе.

Однолинейная схема электроснабжения здания должно учитыватьколичество всех имеющихся нагрузок с обязательным указанием мощности, маркировки щитов и других показателей.

При планировании также следует получить необходимые технические условия, согласно которым все электроприборы должны быть нанесены на схему.

Для ознакомления мы можем представить клиенту пример однолинейной схемы, который разработан нашими опытными специалистами.

Наши мастера ежедневно осуществляют разработку чертежей для проектов электроснабжения домов и предприятий, поэтому, если вам нужен толковый проект, смело обращайтесь к нам!

 

Мы гарантируем:

  • проведение всех работ четко в срок,
  • грамотную разработку всей необходимой технической документации,
  • профессионализм наших специалистов,
  • самые приемлемые цены,
  • качество нашей работы.

Наши специалисты оперативно рассчитают стоимость работ и выполнят задачу в самые сжатые сроки. Также составят всю необходимую техническую документацию, которая будет выполнена в соответствии с ПУЭ и ПТЭЭП.

Обращайтесь в электролабораторию «МОСЭНЕРГОТЕСТ», и мы окажем вам полный спектр услуг таких как составление, а также сделаем приятные скидки. Вы останетесь довольны результатом и придете еще!

Однолинейная схема электроснабжения квартиры пример в visio

1 СкачатьОднолинейная схема электроснабжения квартиры пример в visio. PDF Сверху на обвязку набивается сама крышка, сделанная из досок или фанеры, и покрывается какой-нибудь непромокаемой кровлей. Однолинейная схема электроснабжения квартиры пример в visio

2 Скачать Однолинейная схема электроснабжения квартиры пример в visio

3 Бублик, баранку, батон и буханку В маленьком круге немного выше центра нарисуйте кривую линию в виде арки, это будет главное основание глаз вашей пчелы. Ваш файл найден — чертежи форумы land cruiser ИНТЕРЕСНЫЕ ФАКТЫ О БАТАРЕЕ Sony Ericsson Xperia Z. Например, часто родители выбирают педиатрический прикорм с элементами естественного. Но в этом случае может выручить альтернативная прошивка типа DD-WRT, Open-WRT, Tomato и т. Схема электрическая принципиальная блока питания PS-15 Экономичный преобразователь для питания ЛДС На них просто невозможно ходить. — Кто справится, тихо встанет возле своей парты. Расчет цилиндрических и конических обечаек, выпуклых и плоских днищ и крышек Сварочные аппараты HERZ Инверторный сварочный аппарат ZX7-200 План работы на 1 четверть. Технологический процесс производства электрической энергии. Nbsp, автомобильный кондиционер представляет собой герметичную систему, заполненную фреоном и специальным компрессорным маслом, растворенном в жидком фреоне. БП IP-S350A2-0 взорваны электролиты и варисторы Вентилятор системы отопления, кондиционера, автономного обогревателя, электролюк 30 Собрал при помощи клея и саморезов. Листинг Настройки соединения базы данных для SQLite Дом не должен располагаться на месте бывшего кладбища или похоронного бюро. com, и еще на сайте nb1000. Стоит только загрузить свое фото на сайт и выбрать тип вышивки. Нижняя — на уровне субмаммарной складки противоположной железы. как сделать портал на луну в minecraft без модов видео Слот для карт памяти. Дополнительное подавление пульсаций напряжения источника питания, подаваемого на входной каскад, осуществляется элементами R4, СЗ. Причины

4 купить домой разборные гантели. На даче, сельском подворье, садово-огородном участке есть постройка, без которой не обойтись. Лабораторный блок питания своими руками Собирая модель, мне удалось продумать, как устроить стапель и в какой последовательности производить сборку корпуса лодки. Готовят здоровую и полезную тайскую еду. К данной группе относятся викаир, викалин, денол и прочее. Прямой синтез сигналов для тестирования последовательных шин Светодиодная гирлянда с бегущими огнями 261 Запись находится в рубрике Рисунок. Рабочая среда пользователя CorelDRAW Три высоты треугольника всегда пересекаются в одной точке. Выключатель зажигания ВАЗ руководство по ремонту x trail nissan Вход в Ахтиярскую бухту закупорили старыми фрегатами и плавучими крепостями. Тема 34- Политическая система 202 Если подвесить его на веревочку и разместить возле источника воздуха, например, у окна, выполненный в технике оригами журавлик из бумаги просто оживет. Муфта соединительная для кабеля То есть, мы способны разумно познавать его. Если будут какие-то вопросы, спрашивайте. На чашечку кладут гирьку весом в 10 граммов или заменяющие ее две 5-копеечные монеты. Это самые простые схемы. Блюдце предназначено для защиты от падения углей с чашки, а также в блюдце стряхивается пепел с прогоревших углей. Системы впрыска топлива ВАЗ, Большинство таких генераторов стоят денег. При загрязнении поверхности, протрите прибор мягкой сухой тканью. Давайте ему очищенные фрукты, кусочки варенных овощей, сухой сириэл, мягкий сыр, крэкеры. Поэтому неудивительно, что такой формат сообщений завоевал определенную популярность среди Java -разработчиков. Коммунальники города приступили к комплексному благоустройству Ярославля. Имя файла Описание Размер Согласно юнговской теории личности, известной как аналитическая психология. Apple не стала углубляться Схема в подробности, но мы 111 конспекта по предполагаем, что это дисграфии означает, когда вы закончите просмотр эпизода, то смартфон начнет загрузку следующего.

5 Билайн смарт бокс схема Аэропорт внуково схема расположения стоянок Чертеж оградки на могилу своими руками Схема стояк в ванной как разместить трубы Кинематическая схема сцепления камаз 5320 Данная гладь шьется без специального настила, она не высокая и плоская. то видели подобный подход множество раз. Кабина вертолета Лама 4 легко монтируется и установить ее просто,это позволяет скорректировать или внести какие-то изменения в конструкцию вертолета LamaV4. Это означает, что риск может концентрироваться в компактных объектах. Если возникает необходимость перемещать крупногабаритные грузы. 42 Преобразователь сварочный 14,0 3 0,35 0,7 Теперь уединим оставшийся радикал и, сократив обе части уравнения на 4а, получим Использование версии в ознакомительных некоммерческих целях. Условия охлаждения клинкера влияют на его структуру, минералогический состав и размолоспособность, а также на качество цемента. Не нужно солить приготовленное блюдо. чтобы узнать о них больше. Принципиальная схема электронных плат и их внешних элементов Урок — это основная организационная форма обучения в школе. Дают скамеечке постоять минут 15, снимают струбцины и блоки. Схема подготовки бетонного

6 Как рисовать схему места происшествия основания для откатных ворот доставку автоматики до складов транспортных. Почему он это же делает. Размытие фото применяется для придания изображению с ограниченным количеством цветов большего количества оттенков. 174

Однолинейная схема электроснабжения: для чего нужна, как правильно выполнить

Любой уважающий себя электрик понимает, что для производства электромонтажных работ в квартире, частном доме, на производстве, требуется проект, согласно которому они будут выполняться. Однако здесь возникает вопрос, как уместить на бумаге все линии, если это, к примеру, огромный объект, площадью 500-1000 м² со множеством коммуникаций? А если всё электроснабжение монтируется на 380 В? В этом случае на помощь приходит однолинейная схема электроснабжения, позволяющая вместить на бумаге больше информации. Сегодня разберёмся, что это такое, как она выполняется, читается и существуют ли программы для её составления.

Однолинейная схема электроснабжения: что это такое и для чего она нужна

Однолинейная схема электроснабжения, по сути, является документом, отображающим все силовые линии, оборудование, узлы помещения, в котором будет производиться электромонтаж. Она требуется не только для производства непосредственно самого монтажа. Без неё невозможно согласование проекта здания, она учитывает требования ГОСТа и рекомендации таких организаций как РосТехНадзор, Энергосбыт. Основная задача «однолинейки» – компактное расположение большего количества информации.

Однолинейная электрическая схема: виды и особенности

Основными видами таких проектов являются расчётный и исполнительный. Часто бригады электромонтёров, занимающихся монтажом, не видят первого варианта, работая по второму. Разберёмся, в чём их различия.

Рассчётная однолинейная схема электроснабжения: общие сведения

Расчётные схемы используются для первичного согласования и вычислений на стадии проектирования сети. Высчитывается необходимое сечение электропроводки, исходя из планируемой нагрузки, системы защиты, необходимое количество кабеля. В ней обязательно указание маркировок кабелей, мощности всех потребителей, которые планируются к установке.

Исполнительный проект: в чём его отличие от расчётного

В процессе производства электромонтажных работ часто возникают ситуации, когда без изменения первоначального варианта не обойтись. Как говорится «написали на бумаге, да забыли про овраги, а по ним ходить». Вот здесь применяется уже исполнительная схема, по которой специалисты и выполняют работы. Также подобные проекты используют при замене электропроводки.

Важно! При любых изменениях первоначального варианта необходимо соблюдение ГОСТ, ПУЭ, рекомендаций РосТехНадзора и Энергосбыта, а также согласование этих изменений с контролирующими организациями, независимо от того, для какого помещения выполняется проект электропроводки – квартира, частный дом или производственное помещение.

Другие виды проектов, по которым выполняются электромонтажные работы

Каждый из предыдущих вариантов часто раскладывают на составные части для упрощения выполнения монтажных работ. В итоге получаются следующие:

  • структурная – это отображение общей информации по электроустановкам: трансформаторам, распределительным щитам, точкам врезок,
  • функциональная – этот документ не имеет чётких требований. Проектировщик составляет её произвольно, распределяя с её помощью оборудование по помещению и высчитывая общую потребляемую мощность,
  • монтажная – более детальная. На ней указываются несущие конструкции, фактические размеры, расстояния, сечение кабеля, крепежи и различные элементы.

Каждый из перечисленных вариантов очень важен при составлении общего проекта и влияет на результат, ведь компания, разрабатывающая расчётный проект, и организация, выполняющая работы по монтажу и использующая составленные схемы, различны, а значит, любое упущение может оказаться критичным.

Принципы и особенности проектирования

«Однолинейка» используется для планирования будущей сети, поэтому детализировать её ни к чему. Однако есть определённые моменты, которые отобразить необходимо. К тому же, если не отобразить в ней основные элементы, проигнорировать некоторые нюансы, проект не пройдёт утверждение, без которого все работы будут считаться незаконными. Рассмотрим как составить однолинейную схему электроснабжения и что для этого потребуется.

Что должны в себя включать однолинейные схемы электроснабжения частного дома, квартиры или производственного здания

Основная информация, которую должен включать в себя подобный проект, это:

  • расчёт общей мощности, которую будет потреблять установленное оборудование. Сделать это несложно. Необходимо лишь сложить общую потребляемую мощность приборов и устройств, питающихся от той или иной линии,
  • на основании полученного параметра потребляемой мощности вычислить необходимое сечение кабелей с учётом материала их изготовления. Если высчитанное сечение не производится, производим округление в большую сторону,
  • рассчитав нагрузки, подбираем защитные устройства. Лучше, если на каждую линию будут установлены дублирующие устройства (например, автомат и УЗО).

Сама схема должна содержать в себе информацию о:

  • точке подключения к электросети. Для квартир, частных домов это будет вводной автомат, для предприятий – распределительная подстанция,
  • типе ввода,
  • марке и типе счётчика электроэнергии,
  • длине кабеля, его марке, сечении, количестве жил с указанием способа укладки (открытый, скрытый),
  • указании групп потребителей.

Также необходимо указать цепи освещения. Информация об источниках света не нужна.

Необходимые этапы проектирования

Проектирование однолинейных схем электроснабжения начинается с получения ТУ (технических условий). Для этого нужно обратиться в компанию, которая занимается поставкой электричества. Далее получаем разрешение и генеральный план в горархитектуре. Следующий шаг – разработка плана электроснабжения участка или квартиры. Последним этапом будет окончательное утверждение в компании, поставляющей электричество.

Многие могут спросить, кто утверждает однолинейные схемы электроснабжения на предприятиях. Здесь первые шаги будут идентичны, однако последний проект должен подписать ответственный руководитель.

Как может заметить Уважаемый читатель, пройти все эти шаги несложно, однако часто из-за недоработок проекта некоторые ходят по кругу несколько раз. Не проще ли сразу потратить на планирование схемы немного больше времени, сэкономив себе тем самым нервы?

Образцы однолинейных схем электроснабжения по ГОСТу: различные строения и сооружения

Для того, чтобы читателю было проще разобраться, что такое однолинейная схема электроснабжения, предлагаем ознакомиться с примерами подобных проектов.

Как можно отметить, с виду все принципиальные однолинейные схемы электроснабжения схожи, однако это только на первый взгляд. Огромное значение имеют обозначения кабелей, защитной автоматики, нанесённые на проект. Их необходимо изучить, перед тем как пытаться читать однолинейные схемы электроснабжения. Об этом и пойдёт речь в следующем разделе нашей статьи.

Условные обозначения в однолинейных схемах электроснабжения

В настоящее время можно найти множество литературы, в которой описываются условные обозначения и маркировки, используемые в составлении подобных проектов. В таблице ниже можно увидеть основные из них. Именно они являются азами для тех, кто впервые столкнулся с «однолинейками».

На самом деле их значительно больше, но за один раз запомнить столь огромное количество информации невозможно. Если Уважаемому читателю интересно, то полному, подробному обзору условных обозначений редакция Seti.guru посвятит отдельную статью в ближайшем времени. Следите за нашими публикациями.

Специальные программы для рисования однолинейных схем электроснабжения

Очень часто начинающие мастера спрашивают, как нарисовать однолинейную схему электроснабжения самостоятельно. Сегодня на просторах сети интернет можно найти множество программ, которые это сделают сами. Их достаточно много, как платных, так и бесплатных. Проблема вторых в том, что они имеют очень ограниченный функционал. Остановимся на самых известных.

Довольна интересна в работе программа «Расход», которая выполняет работу по расчёту нагрузок, ТКЗ, проектированию щитов, проверке кабельных линий и созданию самой однолинейный схемы.

Ещё одна программа, на которую хочется обратить внимание – «ДНД Конструктор Однолинейных Схем». Хороша она тем, что для составления проекта на 5 (или менее) отходящих линий можно использовать «Демо» версию, которая скачивается бесплатно. Функции демонстрационной версии:

  1. Генерация до 5 отходящих линий для каждой схемы.
  2. Генерация DXF файлов отсутствует.
  3. Не прорисовывается секционный выключатель.
  4. Генерируется лишь 2 вида протоколов, с включением до 5 отходящих групп.

Если нет желания платить за больший функционал, можно скачать образец однолинейной схемы электроснабжения из сети и по нему попытаться самостоятельно начертить проект. Естественно, времени на его составление уйдёт в разы больше, но осознание того, что он составлен самостоятельно – высшая награда за труды.

Важно! При самостоятельном составлении проекта будьте предельно внимательны, перепроверяйте каждый шаг, ведь ошибка в работе с электричеством может стать роковой. То же относится и к проектам, составленным компьютерной программой – она также может ошибиться.

Подведём итоги

Не вызывает сомнения тот факт, что составление принципиальной схемы перед началом любых электромонтажных работ – это необходимость, продиктованная не столько бюрократией, сколько целью сохранения жизни и здоровья. Каждый электрик знает, что правила электробезопасности действительно «написаны кровью». Их несоблюдение чревато большими проблемами, причём не только для жизни самого монтёра, но и здоровья окружающих. А значит, их неукоснительное соблюдение обязательно.

Редакция Seti.guru надеется, что информация, изложенная в сегодняшней статье, была полезна нашему Уважаемому читателю. Несмотря на то, что мы постарались изложить всё максимально доступно и подробно, возможно у кого-либо остались вопросы. Не стесняйтесь задавать их нам. Это можно сделать в обсуждениях ниже. Редакция Seti.guru с удовольствием на них ответит в максимально сжатые сроки.

У Вас есть опыт составления однолинейных схем электроснабжения? Тогда просим поделиться им с начинающими домашними мастерами. Пишите, общайтесь, делитесь, спрашивайте. А напоследок по уже сложившейся доброй традиции предлагаем посмотреть короткий, но весьма информативный видеоролик по сегодняшней теме.

Загрузка…

ОДНОЛИНЕЙНАЯ СХЕМА ЭЛЕКТРОСНАБЖЕНИЯ КВАРТИРЫ, электроснабжение квартиры, защита от утечки тока

Приведенные ниже схемы электроснабжения отличаются друг от друга способом организации защиты от поражения человека электротоком.

Различия двух схем электроснабжения

Первая однолинейная схема электроснабжения квартиры демонстрирует защиту от утечки токов на «землю», реализованную через несколько УЗО, в этом случае — через три. Одно УЗО при этом объединяет несколько электрических цепей, при этом каждая цепь защищена от коротких замыканий и перегрузок тока автоматическим отдельным выключателем. Другие два прибора защищают цепи питания конкретных устройств (здесь — это устройства, подключаемые к розеткам санузла и стиральная машина).

В другой схеме защита от утечки токов на «землю» выполняется общим УЗО, к нему подключается электропроводка всех питающих цепей. Вводные автоматы, предусмотренные в обеих схемах согласно ПЭУ 7.1.64, устанавливаются до электросчетчиков.

Автоматические выключатели, внесенные в питающие цепи, выполняют защиту как самих устройств, предназначенных для защитного отключения, так и групповых линий от токов перегрузки и коротких замыканий. Следует заметить, что устройства защитного отключения не защищают от сверхтоков и поэтому сами нуждаются в защите автоматами. В связи с этим, рекомендуется выбирать номинальный ток автоматов на ступень меньше, чем токовый номинал УЗО.

Преимущества первой схемы

Сравнение этих схем указывает на то, что очевидное преимущество имеет первая однолинейная схема электроснабжения квартиры:

  • Здесь можно более точно подобрать УЗО с необходимой чувствительностью для конкретного электроприбора.
  • При возникновении утечки токов в случае неисправности прибора питание отключается только в защищаемой цепи, при этом питание прочих групповых линий проводки не будет прерываться.

Сегодня при электромонтажных работах чаще распространен более экономичный, но неплохо зарекомендовавший себя способ, при котором защита обеспечивается одним УЗО.

Приведенные схемы – это только примеры однолинейных схем. В каждом конкретном случае параметры и количество устройств защиты определяется отдельно, в зависимости от количества электроточек, нагрузки, количества групповых линий и т.д.

Как рассчитать и построить однолинейную схему для энергосистемы

Однолинейная схема

В этой технической статье объясняется, как рассчитать и нарисовать однолинейную схему трехфазной системы электроснабжения 60 Гц с генераторами , двигатели, трансформаторы и линии.

Расчет и построение однолинейной схемы энергосистемы (генераторы, двигатели, трансформаторы и линии) — фото предоставлено: merko.ee

Следующие компоненты составляют упрощенную версию энергосистемы, перечисленную в последовательном физическом порядке от места расположения генератора к нагрузке:

  1. Два парогенератора по 13.2 кВ
  2. Два повышающих трансформатора, 13,2 / 66 кВ
  3. Передающая высоковольтная шина 66 кВ
  4. Одна длинная линия передачи 66 кВ
  5. Шина приемного конца 66 кВ
  6. Вторая линия электропередачи 66 кВ с центральной шиной
  7. Понижающий трансформатор на принимающей шине, 66/12 кВ , питающий четыре двигателя 12 кВ параллельно и
  8. A понижающий трансформатор, 66/7.2 кВ , от центральной шины, питание двигателя 7,2 кВ

Процедура расчета

1. Определите соответствующие символы

Для электрических сетей соответствующий набор графических символов показан на рисунке 1 ( общие символы мощности, используемые в однолинейных схемах):

Рисунок 1. Общие символы мощности, используемые в однолинейных схемах

2. Нарисуйте требуемую систему

Система, описанная в проблеме, показана на рисунке 2.Масляные выключатели добавляются в соответствующих точках для надлежащей изоляции оборудования.

Рисунок 2 — Трехфазная энергосистема, представленная однолинейной схемой

Связанные расчеты

Это общая процедура использования однолинейных схем для представления трехфазных систем. Когда анализ выполняется с использованием симметричных компонентов, могут быть нарисованы различные диаграммы, которые будут представлять электрические схемы для компонентов прямой, отрицательной и нулевой последовательности.

Кроме того, часто требуется для определения заземляющего соединения или того, подключено ли устройство по схеме «звезда» или «треугольник».

Этот тип обозначений показан на рисунке 3.

Рисунок 3 — Идентификация генератора или двигателя, соединенных звездой. (а) Полностью заземлен. (b) Заземлен через индуктивность. (c) Трансформатор идентифицируется как треугольник со звездой, причем сторона звезды надежно заземлена.

Метод решения трехфазных задач на единицу

Для системы, показанной на рисунке 4, нарисуйте электрическую цепь или диаграмму реактивного сопротивления , со всеми реактивными сопротивлениями, отмеченными в единицах (pu) значения, и найдите клемму генератора. напряжение при условии, что оба двигателя работают при 12 кВ, нагрузке 3/4 и единичном коэффициенте мощности.

Генератор Трансформаторы
(каждый)
Двигатель A Двигатель B Передача
Линия
13,8 кВ 25000 кВА 15000 кВА 10000 кВА
25000 кВА, 3 фазы 13,2 / 69 кВ 13,0 кВ 13,0 кВ
X ”= 15 процентов X L = 15 процентов X” = 15 процентов X ”= 15 процентов X = 65 Ом
Рисунок 4 — Однолинейная схема системы электроснабжения, питающей нагрузки двигателей.Технические характеристики приведены в таблице выше.

Процедура расчета за 8 шагов

1. Установить базовое напряжение в системе

Наблюдая за величиной компонентов в системе, было выбрано базовое значение полной мощности S . Он должен быть из общей величины компонентов, и выбор является произвольным. В этой задаче 25000 кВА выбрано в качестве базы S , и одновременно на стороне генератора 13,8 кВ выбрано в качестве базового напряжения V base .

Базовое напряжение линии передачи затем определяется отношением витков соединительного трансформатора:
(13,8 кВ) (69 кВ / 13,2 кВ) = 72,136 кВ

Базовое напряжение двигателей определяется аналогичным образом, но с значение 72,136 кВ, таким образом:
(72,136 кВ) (13,2 кВ / 69 кВ) = 13,8 кВ

Выбранное базовое значение S остается постоянным для всей системы, , но базовое напряжение составляет 13,8 кВ на генераторе и у моторов, а 72.136 кВ по ЛЭП .


2. Рассчитайте реактивное сопротивление генератора

Никаких расчетов не требуется для корректировки значения реактивного сопротивления генератора, поскольку оно задано как 0,15 о.е. (15 процентов) , исходя из 25000 кВА и 13,8 кВ . Если бы в этой задаче использовалось другое основание S , то потребовалась бы коррекция, как показано для линии передачи, электродвигателей и силовых трансформаторов.


3.Расчет реактивного сопротивления трансформатора

При использовании реактивного сопротивления трансформатора, указанного на паспортной табличке трансформатора, необходимо внести поправку, поскольку расчетный режим работы выполняется при другом напряжении, 13,8 кВ / 72,136 кВ вместо 13,2 кВ / 69 кВ.

Используйте уравнение для корректировки: реактивное сопротивление на единицу:

(паспортная табличка реактивного сопротивления на единицу) (базовая кВА / паспортная табличка кВА) (паспортная табличка кВ / базовая кВ) 2 =
(0,11) (25,000 / 25,000) ( 13,2 / 13,8) 2 = 0,101 о.е. .

Это относится к каждому трансформатору.


4. Рассчитайте реактивное сопротивление линии передачи

Используйте уравнение:

  • X на единицу = (реактивное сопротивление в Ом) (базовое кВА) / (1000) (базовое кВ) 2 =
  • X за единицу = (65) (25000) / (1000) (72,1) 2 = 0,313 о.е.

5. Рассчитайте реактивную способность двигателей.

Необходимо внести поправки в паспортные данные обоих двигателей из-за различий в номинальных значениях кВА и кВ по сравнению с номинальными значениями, выбранными для расчетов в этой задаче.Используйте корректирующее уравнение из шага 3 выше.

Для двигателя A:
X ” A = (0,15 о.е.) (25000 кВА / 15000 кВА) (13,0 кВ / 13,8 кВ) 2 = 0,222 о.е.

Для двигателя B:
X ” B = (0,15 о.е.) (25000 кВА / 10000 кВА) (13,0 кВ / 13,8 кВ) 2 = 0,333 о.е.


6. Нарисуйте диаграмму реактивного сопротивления

Завершенная диаграмма реактивного сопротивления показана на Рисунке 5:

Рисунок 5 — Схема однолинейной цепи реактивного сопротивления (реактивные сопротивления показаны на единицу)
7.Расчет рабочих условий двигателей

Если двигатели работают при 12 кВ, это составляет 12 кВ / 13,8 кВ = 0,87 на единицу напряжения . При единичном коэффициенте мощности нагрузка составляет три четверти или 0,75 о.е.

Таким образом, выраженный в единицах, комбинированный ток двигателя получается с помощью уравнения:
I на единицу = на единицу мощности / на единицу напряжения = 0,75 / 0,87 = 0,862 ∠0 ° о.е.


8. Рассчитайте напряжение на клеммах генератора

Напряжение на клеммах генератора составляет:

  • В G = В двигатель + падение напряжения через трансформаторы и линию передачи
  • В G = 0.87 0 ° + 0,862 0 ° (j0,101 + j0,313 + j0,101)
  • V G = 0,87 + j0,444 = 0,977 ∠27,03 ° о.е.

Чтобы получить фактическое напряжение, умножьте единичное напряжение на базовое напряжение на генераторе. Таким образом,

  • V G = (0,977 27,03 °) (13,8 кВ) = 13,48 ∠27,03 ° кВ

Связанные расчеты

При решении этих задач выбор базовое напряжение и полная мощность произвольны.Тем не менее, базовое напряжение в каждой секции схемы должно быть соотнесено с коэффициентом трансформации трансформатора.

Базовый импеданс можно рассчитать по уравнению:
Z base = (базовое кВ) 2 (1000) / (базовое кВА) .

Для участка линии передачи в этой задаче Z база = (72,136) 2 (1000) / (25000) = 208,1
Таким образом, реактивное сопротивление линии передачи на единицу равно (фактическое сопротивление) / (база Ом) = 65/208.1 = 0,313 о.е.


Введение в диспетчерскую подстанции 66 кВ

Справочник // Справочник эл. расчеты мощности, выполненные Х. Уэйном Бити (см. книгу в твердом переплете на Amazon)

Электроэнергетические системы в зданиях

В этой статье рассматриваются системы распределения электроэнергии в зданиях на самом базовом уровне. Мы обсудим общие принципы того, как электричество перемещается из инженерных сетей в удобную розетку в комнате.Компоненты системы различаются в зависимости от размера здания, поэтому мы будем рассматривать системы как для малых, так и для больших зданий.

Электроэнергия от энергокомпании

Электроэнергетические компании наиболее эффективно передают энергию от электростанции при очень высоких напряжениях. В Соединенных Штатах энергетические компании обеспечивают электроэнергией средние и большие здания напряжением 13 800 вольт (13,8 кВ). В небольших коммерческих зданиях или жилых домах энергокомпании понижают напряжение с помощью трансформатора, установленного на опоре или на земле.Оттуда электричество через счетчик подается в здание.

Распределение электроэнергии в малых зданиях

Небольшие коммерческие или жилые здания имеют очень простую систему распределения электроэнергии. Коммунальное предприятие будет владеть трансформатором, который будет установлен на площадке за пределами здания или будет прикреплен к опоре электросети. Трансформатор снижает напряжение с 13,8 кВ до 120/240 или 120/208 вольт, а затем передает электроэнергию на счетчик, который принадлежит коммунальному предприятию и ведет учет потребляемой мощности.

После выхода из счетчика мощность передается в здание, где вся проводка, панели и устройства являются собственностью владельца здания. Провода передают электричество от счетчика на щит, который обычно находится в подвале или гараже дома. В небольших коммерческих зданиях панель может располагаться в кладовой. Щит управления будет иметь главный служебный выключатель и серию автоматических выключателей, которые контролируют поток энергии к различным цепям в здании.Каждая ответвленная цепь обслуживает устройство (некоторые приборы требуют больших нагрузок) или несколько устройств, например розетки или фонари.

Распределение электроэнергии в больших зданиях

Большие здания имеют гораздо более высокую электрическую нагрузку, чем маленькие здания; поэтому электрооборудование должно быть больше и прочнее. Владельцы крупных зданий также будут покупать электроэнергию высокого напряжения (в США 13,8 кВ), потому что это дешевле. В этом случае владелец предоставит и обслужит собственный понижающий трансформатор, который понижает напряжение до более приемлемого уровня (в США 480/277 вольт).Этот трансформатор может быть установлен на площадке вне здания или в трансформаторной комнате внутри здания.

Затем электричество передается в распределительное устройство. Роль распределительного устройства заключается в безопасном и эффективном распределении электроэнергии между различными электрическими шкафами по всему зданию. Оборудование имеет множество функций безопасности, включая автоматические выключатели, которые позволяют отключать питание на выходе — это может произойти из-за неисправности или проблемы, но это также может быть сделано намеренно, чтобы позволить техническим специалистам работать на определенных ветвях энергосистемы.

Следует отметить, что очень большие здания или здания со сложными электрическими системами могут иметь несколько трансформаторов, которые могут питать несколько частей распределительного устройства. Мы стараемся упростить эту статью, поделившись основными концепциями.

Электричество покидает распределительное устройство и перемещается по первичному фидеру или шине. Шина или фидер — это проводник большого сечения, способный безопасно и эффективно проводить ток большой силы тока по всему зданию.Автобус или фидер подключаются по мере необходимости, а проводник подводится к электрическому шкафу, который обслуживает зону или этаж здания.

В каждом электрическом шкафу будет еще один понижающий трансформатор — в США он снизит мощность с 480/277 вольт до 120 вольт для розеток. Этот трансформатор будет питать ответвительную панель, которая управляет серией ответвлений, покрывающих часть здания. Каждая ответвленная цепь покрывает подмножество электрических потребностей области, например: освещение, удобные розетки для ряда комнат или электричество для части оборудования.

Распределительное устройство — однофазное и трехфазное распределительное оборудование




Когда электроэнергия распределяется в точку ее использования, она обычно бывает однофазным или трехфазным переменным. ток (AC) напряжение. Однофазное переменное напряжение распределяется по жилым домам. и небольшие коммерческие здания. Обычно трехфазное переменное напряжение составляет распространяется на промышленные предприятия и крупные коммерческие здания.Таким образом основные типы систем распределения электроэнергии — жилые (однофазные) и промышленные или коммерческие (трехфазные).

Важный аспект как однофазного, так и трехфазного распределения системы заземления. Два способа заземления, системное заземление и оборудование заземление, будет обсуждаться в этом разделе вместе с замыканием на землю. защитное снаряжение.

ТЕРМИНОЛОГИЯ

В этом разделе (Раздел 10) однофазное и трехфазное распределение электроэнергии системы обсуждаются.Изучив этот раздел, вы должны иметь понимание следующих терминов:

  • Жилой район
  • Коммерческое распространение
  • Промышленное распределение
  • Однофазная двухпроводная распределительная система
  • Однофазная трехпроводная распределительная система
  • Горячая линия
  • нейтральный
  • Системное заземление
  • Оборудование земли
  • Идентификация цвета изоляции
  • Подключение трехфазного трансформатора треугольник-треугольник
  • Подключение трехфазного трансформатора треугольником
  • Подключение трехфазного трансформатора звезда-звезда
  • Подключение трехфазного трансформатора звезда-треугольник
  • Подключение трехфазного трансформатора с открытым треугольником
  • Трехфазная трехпроводная распределительная система
  • Трехфазный, трехпроводной, с нейтралью
  • Трехфазная, четырехпроводная система распределения
  • «Дикая» фаза
  • Электрод заземления
  • Прерыватель замыкания на землю (GFI)
  • Защита тела от рук
  • Национальный электротехнический кодекс (NEC)
  • Осмотр электрооборудования
  • Падение напряжения в параллельной цепи
  • Ответвление цепи
  • Заземляющий провод
  • Кабель в неметаллической оболочке (NMC)
  • Кабель в металлической оболочке
  • Жесткий трубопровод
  • Электрические металлические трубки (EMT)

ОДНОФАЗНЫЕ СИСТЕМЫ

Большая часть электроэнергии, производимой на электростанциях, производится как трехфазное переменное напряжение.Электроэнергия также передается в форма трехфазного напряжения по магистральным линиям электропередачи.

По назначению трехфазное напряжение может быть изменено на три отдельных однофазные напряжения для распределения по жилым помещениям.

Хотя однофазные системы используются в основном для электроснабжения жилых помещений. системы распределения, есть некоторые промышленные и коммерческие применения однофазных систем.Однофазное распределение мощности обычно возникает от трехфазных линий электропередач, поэтому системы электроснабжения способны питания как трехфазных, так и однофазных нагрузок от одной и той же мощности линий. ИНЖИР. 1 показана типичная система распределения электроэнергии от силовой станции (источника) на различные однофазные и трехфазные нагрузки, которые подключены к системе.

РИС. 1. Типовая система распределения электроэнергии.


РИС.2. Однофазные системы распределения электроэнергии: (A) Однофазные, двухпроводная система, (B) Однофазная трехпроводная система (взятая из двух горячие линии), (C) Однофазная, трехпроводная система (взятая от одной горячей линия и одна заземленная нейтраль).

Однофазные системы могут быть двух основных типов — однофазные двухпроводные. системы или однофазные трехпроводные системы. Однофазный двухпроводной система показана на фиг. 2А (верхняя диаграмма). Эта система использует 10 кВ Трансформатор, вторичная обмотка которого производит одно однофазное напряжение, например, 120 или 240 вольт.Эта система имеет одну горячую линию и одну нейтральную линия.

В бытовых распределительных системах этот тип чаще всего использовался несколько лет назад обеспечивали работу при напряжении 120 вольт. Однако, поскольку мощность прибора требования возросли, необходимость в системе с двумя напряжениями стала очевидной.

Чтобы удовлетворить потребность в увеличении мощности в жилых домах, однофазные трехпроводные система сейчас используется. Домашний служебный вход может быть запитан напряжением 120/240 вольт. энергии методами, показанными на фиг. 2B и 10 2C (в центре и внизу диаграммы).Каждая из этих систем получена от трехфазного источника питания. линия. Однофазная трехпроводная система имеет две горячие линии и нейтраль. линия. Горячие линии, изоляция которых обычно черная и красная, подключен к внешним выводам вторичных обмоток трансформатора. Нейтральная линия (белый изолированный провод) подключается к центральному отводу. распределительного трансформатора. Таким образом, с нейтрального на любую горячую линию, Может быть получено 120 вольт для освещения и требований малой мощности.

По горячим линиям подается 240 вольт для повышенных требований к мощности.

Таким образом, текущая потребность в крупномасштабном энергоемком оборудовании сокращается вдвое, поскольку используется 240 вольт, а не 120 вольт. Или однофазная двухпроводная или однофазная трехпроводная система может использоваться для подачи однофазного питания для промышленного или коммерческого использования. Однако эти однофазные системы в основном предназначены для бытового электроснабжения. распределение.

ТРЕХФАЗНЫЕ СИСТЕМЫ

Поскольку промышленные предприятия и коммерческие здания используют преимущественно трехфазное питание, они полагаются на трехфазные распределительные системы для подачи этой энергии. Большие трехфазные распределительные трансформаторы обычно располагаются на подстанциях. прилегающие к промышленным предприятиям или коммерческим зданиям.

Их цель состоит в том, чтобы подавать надлежащее напряжение переменного тока, чтобы соответствовать необходимым требованиям. требования к нагрузке.Напряжения переменного тока, которые передаются в распределительную подстанции находятся под высоким напряжением, которое необходимо понизить на три фазы. трансформаторы.


РИС. 3. Основные способы подключения трехфазного трансформатора: (A) соединение дельта-треугольник, (B) соединение треугольник-звезда, (C) соединение звезда-звезда соединение, (D) соединение звезда-треугольник и (E) соединение разомкнутый треугольник.

Подключение трехфазного трансформатора

Есть пять способов, которыми первичная и вторичная обмотки возможно подключение трехфазных трансформаторов.Это дельта-дельта, соединения «треугольник», «звезда-звезда», «звезда-треугольник» и «открытый треугольник». Эти основные методы показаны на фиг. 3. Соединение дельта-дельта. (Рис. 3A) используется для некоторых приложений с более низким напряжением.

Метод «треугольник-звезда» (фиг. 3B) обычно используется для повышения напряжения, так как вольт-фарадная характеристика вторичной обмотки, соединенной звездой, приводит к с внутренним повышающим коэффициентом в 1,73 раза. Соединение звезда-звезда фиг.3C обычно не используется, в то время как метод звезда-дельта (фиг. 3D) можно выгодно использовать для понижения напряжения. Открытая дельта соединение (фиг. 3E) используется в случае повреждения одной обмотки трансформатора, или выведен из эксплуатации. Трансформатор по-прежнему будет трехфазным. мощность, но при меньшем токе и мощности. Эта связь может также желательно, когда полная мощность трех трансформаторов не нужно на потом.Два идентичных однофазных трансформатора могут использоваться для подачи питания на нагрузку до третьего трансформатор необходим для удовлетворения повышенных требований к нагрузке.

Типы трехфазных систем

Трехфазные системы распределения электроэнергии, обеспечивающие промышленное и коммерческие здания, классифицируются по количеству фаз и количество необходимых проводов. Эти системы, показанные на фиг. 4, являются трехфазная трехпроводная система, трехфазная трехпроводная система с нейтраль и трехфазная четырехпроводная система.Подключение первичной обмотки здесь не рассматривается. Трехфазная трехпроводная система, показанная на ИНЖИР. 4A, может использоваться для питания нагрузки двигателя 240 или 480 вольт. Его основным недостатком является то, что он подает только один вольт, так как только К нагрузке подведены три горячие линии.

Обычный код цвета изоляции для этих трех горячих линий — черный, красный или синий, как указано в NEC.


РИС. 4. Промышленные системы распределения электроэнергии: (A) трехфазные, трехпроводные. система, (B) трехфазная, трехпроводная система с нейтралью, (C) трехфазная, четырехпроводная система.

Недостатком трехфазной трехпроводной системы может быть частично за счет добавления одной обмотки с центральным отводом, как показано в трехфазном трехпроводная система с нейтралью, показанная на фиг. 4Б. Эта система может использоваться как питание на 120/240 вольт или 240/480 вольт. Если предположить, что это используется для питания 120/240 вольт, напряжение от горячей линии в точке 1 и горячая линия в точке 2 к нейтрали будет 120 вольт, потому что обмотки с центральным отводом.

Однако 240 вольт по-прежнему будет доступно на любых двух горячих линиях. Нейтральный провод имеет цветовую маркировку с белой или серой изоляцией. В Недостатком этой системы является то, что при замене проводки она можно подключить нагрузку 120 вольт между нейтралью и точкой 3 (иногда называемая «дикой» фазой). Напряжение присутствует здесь будет комбинация трехфазных напряжений между точками 1 и 4 и пункты 1 и 3.Это будет напряжение более 300 вольт! Хотя существует ситуация «дикой фазы», эта система способен питать как нагрузки большой мощности, так и нагрузки низкого напряжения, например, используются для освещения и небольшого оборудования.

Наиболее широко используемой трехфазной системой распределения электроэнергии является трехфазная четырехпроводная система. Эта система, показанная на фиг. 4C, обычно поставляет 120/208 вольт и 277/480 вольт для требований промышленной или коммерческой нагрузки.Здесь проиллюстрирована система на 120/208 вольт. От нейтрального до любого горячего линии, можно получить 120 вольт для освещения и маломощных нагрузок. Через любые две горячие линии, 208 вольт для питания двигателей или других высокомощные нагрузки. Самая популярная система для промышленных и коммерческих Распределение питания — это система на 277/408 В, которая способна подавать как трехфазные, так и однофазные нагрузки. Система 240/416 вольт иногда используется для промышленных нагрузок, в то время как система на 120/208 вольт часто используется для подземного распространения в городских районах.Обратите внимание, что эта система на основе характеристик напряжения трехфазного соединения звездой, и что соотношение VL = VP × 1,73 существует для каждого приложения. этой системы.

ЗАЗЕМЛЕНИЕ РАСПРЕДЕЛИТЕЛЬНЫХ СИСТЕМ

Концепция заземления в системе распределения электроэнергии очень важно. Системы распределения должны иметь непрерывную бесперебойную работу. основания. Если заземленный провод разомкнут, земля больше не функциональный.В условиях открытого грунта могут возникнуть серьезные проблемы с безопасностью. и вызвать ненормальную работу системы.

Распределительные системы должны быть заземлены на подстанциях, а в конце линий электропередачи до подачи питания на нагрузку. Заземление необходим на подстанциях для безопасности населения и энергетики обслуживающий персонал компании. Заземление также дает точки для соединения нейтрали трансформатора для заземления оборудования. Безопасность и оборудование Основания будут рассмотрены более подробно позже.

На подстанциях все внешние металлические части должны быть заземлены, а все трансформатор, автоматический выключатель и корпуса переключателей должны быть заземлены. А также металлические заборы и любой другой металл, входящий в состав подстанции. конструкция должна быть заземлена. Заземление гарантирует, что любой человек, который прикосновение к любой из металлических частей не вызовет поражения электрическим током. Следовательно, если высоковольтная линия соприкоснется с любым из заземленные части, система будет открыта защитным оборудованием.Таким образом существенно снижается опасность появления высоких напряжений на подстанциях. заземлением. Фактическое заземление выполняется сваркой, пайкой, или привинчивание проводника к металлическому стержню или стержню, который затем физически помещен в землю. Это стержневое устройство называется заземляющим электродом. Правильные методы заземления необходимы для безопасности, а также для производительность схемы. Есть два типа заземления: (1) заземление системы, и (2) заземление оборудования.Еще один важный фактор заземления — это замыкание на землю. защитное снаряжение.

ЗАЗЕМЛЕНИЕ СИСТЕМЫ

Заземление системы включает фактическое заземление токоведущей проводник (обычно называемый нейтралью) системы распределения электроэнергии.

Трехфазные системы могут быть звездообразными или треугольными. Звездообразная система имеет очевидное преимущество перед дельта-системой, так как по одной стороне каждого фазная обмотка подключена к земле.Мы определим землю как ориентир точка нулевого напряжения, которая обычно является фактическим подключением на землю. Общие выводы звездообразной системы при подключении к земле, стать нейтральным проводом трехфазного четырехпроводного система.

Дельта-система не поддается заземлению, так как она не имеет общей нейтрали. Проблема замыканий на землю (линейный замыкания на землю), возникающие в незаземленных системах треугольника, намного больше чем в звездообразных системах.Распространенным методом заземления дельта-системы является использовать соединение трансформатора звезда-треугольник и заземлить общие клеммы первичной обмотки, соединенной звездой. Тем не менее, звездообразная система сейчас используется больше. часто для промышленного и коммерческого распределения, так как вторичный легко заземляется и обеспечивает защиту от перенапряжения от молнии или шорты на землю.

Однофазные системы на 120/240 В или 240/480 В заземлены в аналогично трехфазному заземлению.Нейтраль однофазной трехпроводная система заземляется металлическим стержнем (заземляющим электродом), приводимым в действие в землю в месте расположения трансформатора. Провода заземления системы изолированы белым или серым материалом для облегчения идентификации.

Заземление оборудования

Второй тип заземления — это заземление оборудования, которое, как термин подразумевает, размещает рабочее оборудование с потенциалом земли. Дирижер для этой цели используется либо неизолированный провод, либо зеленый изолированный провод. провод.NEC описывает условия, при которых требуется фиксированное электрическое оборудование. быть заземленным. Обычно все стационарное электрооборудование, расположенное в промышленных заводы или коммерческие здания должны быть заземлены. Типы оборудования которые должны быть заземлены, включая корпуса для коммутации и защиты оборудование для регулирования нагрузки, корпуса трансформаторов, корпуса электродвигателей, и стационарное электронное испытательное оборудование. Промышленные предприятия должны использовать 120 вольт, однофазные, дуплексные розетки заземленного типа для всех переносных инструменты.Заземление этих розеток можно проверить с помощью плагин-тестер.

ЗАЩИТА ОТ ЗАЗЕМЛЕНИЯ

Прерыватели замыкания на землю (GFI) широко используются в промышленности, коммерческие и жилые системы распределения электроэнергии. Требуется NEC, что все 120-вольтовые, однофазные, 15- или 20-амперные розетки розетки, установленные на открытом воздухе или в ванных комнатах, имеют замыкание на землю к ним подключены прерыватели.Эти устройства также называются устройствами защиты от замыканий на землю. прерыватели цепи (GFCI).

Работа GFI

Эти устройства разработаны таким образом, чтобы исключить опасность поражения электрическим током. от людей, контактирующих с горячей линией переменного тока (фаза-земля короткая). Прерыватель цепи предназначен для обнаружения любых изменений в цепи. условия, например, возникшие при коротком замыкании между линией и землей.

Один из типов GFI имеет провода управления, которые проходят через магнитный тороидальный петля (см. фиг.5). Обычно переменный ток, протекающий через два проводники внутри петли равны по величине и противоположны по направлению. Любое изменение этого равного и противоположного состояния воспринимается магнитным полем. тороидальная петля. Когда происходит короткое замыкание на землю, мгновенное происходит изменение условий цепи. Изменение вызывает магнитное поле в тороидальную петлю. Индуцированный ток усиливается до уровня, достаточного для размыкания механизма выключателя.Таким образом, любое замыкание на землю вызовет прерыватель замыкания на землю. открыть.

Скорость работы GFI настолько высока, что опасность поражения электрическим током людей значительно сокращается, так как только минутный ток открывает схема.


РИС. 5. Упрощенная схема прерывателя замыкания на землю

.

Приложения GFI

Требуются строительные площадки, на которых устраивается временная проводка. использовать GFI для защиты работников, использующих электрооборудование.Защита от замыканий на землю частных лиц и коммерческого оборудования должна Предусмотрено для систем с соединением звездой от 150 до 600 вольт на каждую распределительный щит с номиналом более 1000 ампер. В этой ситуации, GFI откроет все незаземленные проводники на щитке при короткое замыкание на землю. Теперь GFI используются для всех типов жилых домов, коммерческое и промышленное применение.

Типы систем защиты от замыканий на землю

Используются четыре основных типа систем защиты от замыканий на землю. Cегодня.К ним относятся: применение в больницах, применение в жилых помещениях, электродвигатель. приложения защиты и специальное распределение электроэнергии системные приложения. Эти системы защиты от замыканий на землю можно классифицировать как по тому, что они должны защищать, или по типу защиты, которую они должны предоставлять. Разработаны приложения для больниц и жилых помещений. чтобы уберечь людей от чрезмерных ударов. Двигатель и электрическая мощность приложения предназначены для защиты электрооборудования.

Другой метод классификации — в зависимости от силы тока. требуется перед срабатыванием системы охранной сигнализации или отключением электрического цепь происходит. Типичные значения тока, которые вызовут срабатывание сигнализации или отключение для активации 0,002 ампера (2 мА) для больничных приложений, 0,005 амперы (5 мА) для жилых помещений, от 5 до 100 ампер для защиты электродвигателей схемы применения и от 200 до 1200 ампер для распределения электроэнергии применение оборудования.

Необходимость защиты от замыканий на землю

Чтобы понять необходимость прерывателя цепи замыкания на землю (для защиты людей) сначала необходимо понять некоторые основные факты.

Эти факты относятся как к людям, так и к замыканиям на землю.

Важным фактом является то, что сопротивление тела человека зависит от количество влаги, присутствующей на коже, мышечная структура тело, и напряжение, которому подвергается тело.Эксперименты Показано, что сопротивление тела из одной руки в другую немного где от 1000 до 4000 Ом. Эти оценки основаны на нескольких предположения относительно влажности и мышечной структуры. Мы также знаем что сопротивление тела (из рук в руки) ниже при более высоком напряжении возрастов. Это связано с тем, что более высокое напряжение способно «сломать» вниз »внешние слои кожи. Таким образом, более высокое напряжение более опасный.

Мы можем использовать закон Ома, чтобы оценить, что типичный результирующий ток от среднего сопротивления тела (из рук в руки) около 115 мА при 240 вольт переменного тока и около 40 мА при 120 вольт переменного тока. Эффекты 60 Гц AC на теле человека принято принимать, как указано в ТАБЛИЦЕ. 1.

Фибрилляция желудочков — это патология сокращения сердце. Как только возникает фибрилляция желудочков, она будет продолжаться, и смерть наступит. произойдет в течение нескольких минут.Реанимационные методы, если они применяются немедленно, может спасти жертву. Смерть от поражения электрическим током из-за высокого процента смертей, происходящих дома и на производстве. Многие из этих смертей происходят из-за контакта с цепями низкого напряжения (600 вольт и ниже), в основном системы на 120 и 240 вольт.

=========

ТАБЛИЦА 1. Реакция тела на переменный ток

Величина воздействия тока на тело 1 мА или меньше Нет ощущений (не ощущается).

Более 5 мА Болезненный шок.

Более 10 мА Сокращения мышц; может вызвать «замораживание» электрическая схема для некоторых людей.

Более 15 мА Сокращения мышц; может вызвать «замораживание» электрическая схема для большинства людей.

Более 30 мА затрудненное дыхание; может вызвать потерю сознания.

от 50 до 100 мА Возможна фибрилляция желудочков сердца.

от 100 до 200 мА Фибрилляция желудочков сердца определена.

Более 200 мА Сильные ожоги и мышечные сокращения; сердце больше склонен к прекращению биений, чем к фибрилляции.

1 ампер и выше: необратимое повреждение тканей тела.

========

Защита от замыканий на землю для дома

Прерыватели замыкания на землю бытовые бывают трех типов: (1) контурные. прерыватель, (2) розетки и (3) вставные типы. Защита от замыканий на землю устройства сконструированы в соответствии со стандартами, разработанными Андеррайтером. Лаборатории.Автоматические выключатели GFI сочетают в себе защиту от замыканий на землю. и прерывание цепи при той же перегрузке по току и коротком замыкании защитное оборудование, как и стандартный автоматический выключатель. Схема GFI автоматический выключатель занимает то же место, что и стандартный автоматический выключатель. Он обеспечивает такую ​​же защиту разветвленной цепи, что и стандартный автоматический выключатель, а также защита от замыканий на землю. Чувство GFI система постоянно контролирует текущий баланс в незаземленных (горячих) провод и заземленный (нейтральный) провод.Ток в нейтрали провод становится меньше тока в горячем проводе при замыкании на землю развивается. Это означает, что часть тока в цепи возвращается заземлить другим способом, кроме нулевого провода. Когда дисбаланс при возникновении тока датчик (дифференциальный трансформатор тока) отправляет сигнал на твердотельную схему, которая активирует механизм отключения. Это действие открывает горячую линию. Дифференциальный ток до 5 мА приведет к тому, что датчик отправит сигнал неисправности и вызовет автоматический выключатель чтобы прервать цепь.

Обычно розетки GFI обеспечивают защиту от замыканий на землю на 120-, Системы переменного тока на 208 или 240 вольт. Розетки GFI бывают на 15 и 20 ампер. конструкции. 15-амперный блок имеет конфигурацию розетки для использования с Только вилки на 15 ампер. Устройство на 20 ампер имеет конфигурацию розетки. для использования с вилками на 15 или 20 ампер. Эти розетки GFI имеют подключения для проводов под напряжением, нейтрали и заземления. Все розетки GFI имеют двухполюсный механизм отключения, который отключает как горячий, так и подключения нейтральной нагрузки в момент возникновения неисправности.

Вставные розетки GFI обеспечивают защиту путем подключения к стандартному настенная розетка. Некоторые производители предлагают устройства, которые тоже не будут двух- или трехпроводные розетки. Главное преимущество этого типа единицы в том, что ее можно перемещать из одного места в другое.

Защита от замыканий на землю для распределительного оборудования

Замыкания на землю могут вывести из строя электрооборудование, если продолжить работу.Междуфазные короткие замыкания и некоторые типы замыканий на землю обычно высокий ток. Обычно они адекватно обрабатываются обычными защитное оборудование от сверхтоков. Однако некоторые замыкания на землю производят эффект искрения из-за относительно малых токов, которые недостаточно велики для срабатывания обычных защитных устройств. Электрическая дуга может вызвать ожоги. оборудование. Система с напряжением 480 или 600 вольт более восприимчива к образованию дуги. возраст, чем система на 120, 208 или 240 вольт, потому что более высокие напряжения выдерживают эффект искрения.Быстро обнаруживаются сильноточные неисправности обычными устройствами максимального тока. Должны быть обнаружены слаботочные значения GFIs.

Замыкания на землю, вызывающие искрение в оборудовании, вероятно, самые частые неисправности. Они могут возникнуть в результате повреждения или порчи. изоляция, грязь, влага или неправильные соединения. Они обычно случаются между одним токоведущим проводом и заземленным корпусом оборудования, кабелепроводом, или металлический корпус.Напряжение между фазой и нейтралью источника вызовет ток, протекающий по горячему проводнику, по пути дуги и обратно через наземный путь. Импеданс проводника и заземления путь (корпус, кабелепровод или корпус) зависит от многих факторов. Как В результате невозможно предсказать значение тока короткого замыкания. Это также может увеличить или уменьшаться по мере продолжения неисправности.

Очевидно, что многие факторы влияют на величину, продолжительность, и эффект дугового замыкания на землю.В некоторых условиях возникает большой величина тока повреждения, в то время как другие ограничивают ток повреждения относительно небольшое количество. Величина дугового тока и время, в течение которого дуга сохраняется. может нанести очень большой ущерб оборудованию. Наверное, важнее коэффициент — это период времени дугового напряжения, так как чем дольше время дуги, тем больше вероятность того, что дуги распространятся на разные области внутри оборудования.

Реле тока заземления — это один из методов защиты оборудования от замыкания на землю.Ток протекает через нагрузку или короткое замыкание по горячим и нейтральные проводники и возврат к источнику на этих проводниках-а, в некоторой степени по наземной дорожке. Нормальный ток пути заземления очень маленький. Следовательно, практически весь ток, текущий из источник также возвращается по той же горячей линии и нейтральным проводникам. Однако, если происходит замыкание на землю, ток заземления увеличится. до точки, где ток уйдет через неисправность и вернется через наземный путь.

В результате ток возвращается в токоведущий и нейтральный проводники. меньше, чем выходящая сумма. Разница указывает на количество тока в пути заземления. Реле, которое это чувствует разность токов, может действовать как устройство защиты от замыканий на землю.

Защита электродвигателей от замыканий на землю

Системы защиты двигателей обеспечивают защиту в диапазоне от 5 до 100 ампер.Этот тип системы защиты от замыканий на землю обеспечивает защиту от замыкания на землю как в однофазных, так и в трехфазных системах. Многие отказы системы изоляции начинаются с небольшого тока утечки, который накапливается со временем, пока не возникнет повреждение. Эти системы защиты от замыканий на землю обнаруживать токи утечки на землю, пока они еще малы, и, таким образом, предотвратить серьезное повреждение двигателей.

РАЗРАБОТКА ЭЛЕКТРОПРОВОДКИ ДЛЯ СИСТЕМ РАСПРЕДЕЛЕНИЯ

Схема электропроводки систем распределения электроэнергии может быть очень сложный.При подключении необходимо учитывать множество факторов. дизайн системы распределения, установленной в здании. Электропроводка стандарты указаны в Национальном электротехническом кодексе (NEC), который опубликовано Национальной ассоциацией электрозащиты (NEP А). NEC, местные стандарты электропроводки и правила проверки электрооборудования следует учитывать при проектировании электропроводки. рассмотрение.

Существует несколько рекомендаций по проектированию электропроводки распределительной системы. которые специально указаны в NEC.В этом разделе мы будем занимается расчетом падения напряжения, проектированием ответвлений, фидерной цепью дизайн и дизайн систем заземления.

Национальный электротехнический кодекс (NEC) Используйте

NEC устанавливает минимальные стандарты для электропроводки в Соединенные Штаты. Стандарты, содержащиеся в NEC, соблюдаются, поскольку включены в различные городские и общественные постановления, касающиеся с электропроводкой в ​​жилых домах, на промышленных предприятиях и в коммерческих здания.Таким образом, эти местные постановления соответствуют стандартам изложено в НЭК.

В большинстве регионов США лицензия должна быть получена любым физическое лицо, занимающееся электромонтажом. Обычно нужно пройти тест управляется городом, округом или штатом, чтобы получить это лицензия.

Эти тесты основаны на местных постановлениях и NEC. Правила для электрическая проводка, установленная местной электросетью компании также иногда включаются в лицензионный тест.

Осмотр электрооборудования

При строительстве новых зданий их необходимо проверять, чтобы убедиться, что электропроводка соответствует нормам местных постановлений, NEC и местная энергетическая компания. Организация, поставляющая Электроинспекторы варьируются от одного населенного пункта к другому. Обычно местная энергетическая компания может посоветовать людям, с кем связаться для получения информации об электротехнических обследованиях.

Падение напряжения в электрических проводниках

Хотя сопротивление электрических проводов очень низкое, длина провода может вызвать значительное падение напряжения. Это проиллюстрировано на фиг. 6. Помните, что падение напряжения — это ток, умноженный на сопротивление. (I × R). Следовательно, всякий раз, когда через систему протекает ток, напряжение капля создается. В идеале падение напряжения, вызванное сопротивлением проводника будет очень мало.

Однако более длинный отрезок электрического проводника имеет более высокое сопротивление. Поэтому иногда необходимо ограничить расстояние, на котором проводник может распространяться от источника питания до нагрузки, которую он питает. Много типы нагрузок не работают должным образом, когда значение меньше полного имеется напряжение источника.

На РИС. 6 видно, что по мере увеличения падения напряжения (VD) напряжение, приложенное к нагрузке (VL), уменьшается.Как ток в системе увеличивается, VD увеличивается, вызывая уменьшение VL, так как напряжение источника остается такой же.

ТАБЛИЦА 2. Размеры медных и алюминиевых проводников


РИС. 6. Падение напряжения в электрической цепи

Расчет падения напряжения с использованием таблицы проводников

При проектировании электропроводки важно уметь для определения величины падения напряжения, вызванного сопротивлением проводника.

ТАБЛИЦА 2 используется для выполнения этих расчетов. NEC ограничивает сумму падения напряжения, которое может иметь система. Это означает, что длинные серии проводников обычно следует избегать. Помните, что дирижер с большая площадь поперечного сечения вызовет меньшее падение напряжения, так как его сопротивление меньше.

Чтобы лучше понять, как определить размер необходимого проводника чтобы ограничить падение напряжения в системе, мы рассмотрим пример проблемы.

Пример задачи:

Дано: 200-амперная нагрузка, расположенная в 400 футах (121,92 метра) от 240-вольтной однофазный источник. Ограничьте падение напряжения до 2 процентов от источника.

Находка: размер правого медного проводника, необходимый для ограничения напряжения. падение системы.

Решение:

1. Допустимое падение напряжения составляет 240 В, умноженное на 0,02 (2%). Этот равно 4.8 вольт.

2. Определите максимальное сопротивление для 800 футов (243,84 метра). Этот эквивалентно 400 футов (121,92 метра) × 2, поскольку есть два токопроводящие жилы для однофазной системы.

3. Определите максимальное сопротивление для 1000 футов (304,8 метра) дирижер.

4. Используйте ТАБЛИЦУ 2, чтобы найти размер медного проводника, у которого сопротивление постоянному току (DC) (Ом на 1000 футов) значение, равное до или меньше значения, рассчитанного в пункте 3 выше.Выбранный дирижер размер проводника 350 MCM, правая медь.

5. Проверьте этот провод по таблице допустимых значений тока, чтобы убедиться, что он достаточно большой, чтобы выдерживать 200 ампер. ТАБЛИЦА 3 показывает, что 350 MCM, Правый медный проводник выдерживает ток 310 ампер; поэтому используйте Проводники 350 MCM. (Всегда не забывайте использовать самый большой проводник, если Шаги 4 и 5 дают противоречивые значения.)

6. Если сила тока больше, чем указано в таблицах, используйте больше, чем один провод такого же размера для проектных расчетов.

ТАБЛИЦА 3. Значения амплитуды проводов в дорожке качения или кабеле (3 или меньше)

Альтернативный метод расчета падения напряжения

В некоторых случаях более простой метод определения сечения проводника для ограничение падения напряжения заключается в использовании одной из следующих формул для Найдите площадь поперечного сечения (см) проводника.

… где:

p = удельное сопротивление из ТАБЛИЦЫ 2

I = ток нагрузки в амперах,

VD = допустимое падение напряжения, а

d = расстояние от источника до груза в футах.

Пример задачи для однофазной системы, приведенный выше. раздел можно настроить следующим образом:

Следующий по величине размер — провод 350 MCM.

РАЗРАБОТКА ОТВЕТСТВЕННОЙ ЦЕПИ

Ответвленная цепь определяется как цепь, идущая от последнего устройство защиты от перегрузки по току энергосистемы. Ответвительные цепи, согласно NEC, их мощность составляет 15,20,30,40 или 50 ампер.Нагрузки более 50 ампер не подключаются к ответвленной цепи.

В NEC существует множество правил, применимых к проектированию ответвленных цепей.

Следующая информация основана на NEC. Во-первых, каждая схема должны быть спроектированы таким образом, чтобы исключить случайное короткое замыкание или заземление. вызвать повреждение любой части системы. Затем предохранители или автоматические выключатели должны использоваться в качестве устройств защиты от перегрузки по току параллельной цепи. Должен короткое замыкание или заземление, защитное устройство должно открыть и прервать прохождение тока в ответвленной цепи.Один важный Согласно правилу NEC, провод № 16 или № 18 (удлинитель) может быть отключен. от проводов № 12 или № 14, но не от проводников больше, чем №12. Это означает, что удлинитель провода №16 не должен быть подключенным к розетке с проводом № 10. Ущерб меньше провода (из-за эффекта нагрева) до того, как устройство максимального тока сможет open устраняется применением этого правила. Цепи освещения составляют единое целое наиболее распространенных типов ответвлений.Обычно они либо Схемы на 15 или 20 ампер.

Максимальный номинал отдельной нагрузки (например, переносного устройства). подключен к параллельной цепи) составляет 80 процентов тока параллельной цепи рейтинг. Следовательно, на 20-амперную схему не может быть одной нагрузки. который потребляет более 16 ампер. Если нагрузка постоянно подключена прибора, его текущий рейтинг не может превышать 50 процентов от емкость ответвительной цепи — если подключены переносные приборы или фонари к той же схеме.

Падение напряжения в цепях ответвления

Ответвительные цепи должны быть спроектированы так, чтобы подавалось достаточное напряжение. подключены ко всем частям схемы. Расстояние, на которое ответвление цепи может выходить из источника напряжения или распределительного щита, поэтому ограничено. Падение напряжения на 3 процента указывается NEC как максимально допустимый для параллельных цепей в электропроводке дизайн.

Метод расчета падения напряжения в параллельной цепи: пошаговый процесс, который иллюстрируется следующей задачей.Обратитесь к принципиальной схеме, представленной на фиг. 7.

Пример задачи:

Дано: 120-вольтная 15-амперная ответвленная цепь питает нагрузку, состоящую из из четырех ламп. Каждая лампа потребляет от источника 3 ампера тока.

Лампы расположены на расстоянии 10 футов (3,05 метра) от источника питания. распределительный щит.

Найти: напряжение на лампе номер 4.

Раствор:

1.Найдите сопротивление для 20 футов (6,1 м) проводника (такое же как для 10-футового проводника × 2). Медный провод №14 применяется на 15 ампер. ответвленные цепи. Из ТАБЛИЦЫ 2 мы находим, что сопротивление 1000 футов (304,8 метра) медного провода № 14 составляет 2,57 Ом. Следовательно, сопротивление 20 футов провода составляет: [не показано]


РИС. 7. Схема для расчета падения напряжения в ответвленной цепи

Обратите внимание, что напряжение на лампе номер 4 значительно снижено. от значения источника 120 В из-за падения напряжения в проводниках.Также обратите внимание, что сопротивления, используемые для расчета падений напряжения представлены оба провода (горячий и нейтральный) ответвленной цепи. Обычно 120-вольтовые параллельные цепи не должны простираться более чем на 100 футов (30,48 метра). от распределительного щита. Предпочтительное расстояние — 75 футов. (22,86 метра). Падение напряжения в проводниках параллельной цепи может быть уменьшается за счет уменьшения длины цепи или использования большего проводники.

При проектировании электропроводки жилых помещений падение напряжения во многих отраслях схемы сложно рассчитать, так как осветительные и переносные розетки прибора размещаются в одних и тех же ответвленных цепях.С переносная техника и «вставные» фонари используются не все время, падение напряжения будет варьироваться в зависимости от количества огней и используемая техника.

Эта проблема обычно не встречается в промышленных или коммерческих схема разводки светильников, так как осветительные блоки обычно больше и постоянно устанавливаются в ответвленных цепях.

Электромонтаж параллельных цепей

Ответвительная цепь обычно состоит из кабеля с неметаллической оболочкой, который подключается к распределительному щиту.Каждая ответвленная цепь, которая подключен к распределительному щиту, защищен плавким предохранителем или автоматический выключатель.

На силовой панели также есть главный выключатель, который управляет всеми ветвями. цепи, которые к нему подключены.


РИС. 8. Схема распределительного щита на однофазный, трехпроводная ветвь

Однофазные ответвительные цепи

Схема однофазного трехпроводного (120/240 вольт) распределения питания панель показана на фиг.8. Обратите внимание, что восемь цепей на 120 В и одна 240-вольтовая цепь доступны от силовой панели. Этот тип системы используется в большинстве домов, где есть несколько 120-вольтных параллельных цепей. и, как правило, требуются три или четыре ответвления на 240 вольт. Обратите внимание на фиг. 8 что на каждой горячей линии есть автоматический выключатель, а на нейтральная линия подключается непосредственно к ответвленным цепям. Нейтралы должны никогда не открываться (плавиться). Это мера предосторожности при электромонтаже. дизайн.

Трехфазные ответвительные цепи

Схема трехфазного четырехпроводного (120/208 В) распределения питания панель показана на фиг. 9. Есть три однофазных 120-вольтовых ветви схем и двух трехфазных 208-вольтных ответвленных цепей. Однофазный филиалы сбалансированы (по одной горячей линии от каждого филиала). Каждая горячая линия имеет индивидуальный автоматический выключатель. Необходимо подключить трехфазные линии. так что перегрузка в ответвленной цепи приведет к тому, что все три линии открыть.Это достигается за счет использования трехфазного автоматического выключателя, который расположен внутри, как показано на фиг. 9.


РИС. 9. Схема распределительного щита для трехфазного, четырехпроводного ответвленная цепь.

РАССМОТРЕНИЕ КОНСТРУКЦИИ КОНТУРА ПИТАТЕЛЯ

Цепи фидера используются для распределения электроэнергии для распределения энергии панели. Многие фидерные цепи простираются на очень большие расстояния; следовательно, Падение напряжения необходимо учитывать при проектировании цепи фидера.В высшем в цепях фидера снижается падение напряжения. Однако многие Для цепей фидера более низкого напряжения требуются проводники большого диаметра для обеспечения допустимый уровень падения напряжения. Сильноточные фидерные цепи также представляют проблему с точки зрения массивной защиты от перегрузки, которая иногда требуется. Эта защита обычно обеспечивается системным распределительным устройством. или центры нагрузки, где берут начало фидерные цепи.


РИС.10. Схема трехфазного выключателя

Определение размера контуров подачи

Величина тока, на которую должна быть рассчитана фидерная цепь. зависит от фактической нагрузки, требуемой распределением мощности параллельной цепи панели, которые он поставляет. Каждая панель распределения питания будет иметь отдельный фидерный контур. Кроме того, каждая фидерная цепь должна иметь свою собственную перегрузку. защита.

Следующая задача — это пример расчета размера питателя. схема.

Пример задачи:

Дано: подключены три люминесцентных светильника мощностью 15 кВт. к трехфазной четырехпроводной (277/480 вольт) системе. Осветительные блоки имеют коэффициент мощности 0,8.

Найдите: необходимый размер алюминиевых фидеров THW для обеспечения этой нагрузки.

Решение:

1. Найдите линейный ток:

PT

IL = ——- 1.73 × ВЛ × пф

45 000 Вт

= ——— 1,73 × 480 В × 0,8

= 67,74 ампера

2. Из ТАБЛИЦЫ 3 мы находим, что размер проводника, который выдерживает 67,74 Ампер тока — это алюминиевый провод № 3 AWG THW.

Расчет падения напряжения для цепей фидера

При проектировании цепи фидера необходимо учитывать падение напряжения на проводнике. Падение напряжения в цепи фидера должно быть минимальным. так что максимальная мощность может быть доставлена ​​к нагрузкам, подключенным к система подачи.NEC допускает падение напряжения не более 5%. совмещение ответвления и фидерной цепи; однако 5-процентное напряжение уменьшение представляет собой значительную потерю мощности в цепи. Мы можем рассчитать потери мощности из-за падения напряжения как V2 / R, где V2 — падение напряжения цепи, а R — сопротивление проводников цепи.

Расчет сечения фидера аналогичен расчету для ответвления. падение напряжения в цепи.Размер жилы должен быть достаточно большим. чтобы: (1) иметь требуемую допустимую нагрузку и (2) поддерживать падение напряжения ниже указанный уровень. Если второе требование не выполняется, возможно, потому что длинной фидерной цепи выбираемые проводники должны быть больше, чем требуется рейтинг допустимой нагрузки. Следующая проблема иллюстрирует расчет сечения фидера по падению напряжения в однофазная схема.

Пример задачи:

Дано: взрывозащищенная однофазная 240-вольтовая нагрузка на заводе рассчитана на 85 кг. Вт.Питатели (две горячие линии) будут иметь длину 260 футов (79,25 метра). медной жилы RHW. Максимально допустимое падение напряжения на проводе составляет 2 процента.

Найдите: требуемый размер проводника фидера.

Раствор:

1. Найдите максимальное падение напряжения в цепи.

VD =% × Нагрузка

= 0,02 × 240

= 4,8 вольт

2. Найдите ток, потребляемый нагрузкой.

Мощность

I = —- Напряжение

85 000

= — 240

= 354,2 ампера

3. Найдите минимальную требуемую площадь проводника в миллиметрах. Используйте формулу дан для определения площади поперечного сечения проводника в однофазном систем, который ранее был приведен в «Альтернативном методе расчета падения напряжения »п.

смil = p × I × 2d

—— VD

10.4 × 354,2 × 2 × 260

= ———- 4,8

= 399 065,33 см

4. Определите сечение фидера. Следующий провод большего размера в ТАБЛИЦЕ 2 также 400 млн м3. Посмотрите ТАБЛИЦУ 3, и вы увидите, что 400 Медный провод MCM RHW выдерживает 335 ампер. Это меньше, чем требуется 354,2 ампера, поэтому используйте следующий больший размер, то есть 500 Проводник МСМ.

Размер жилы для трехфазной фидерной цепи определяется в аналогично.В этой задаче размер кормушки будет определяться на основу цепи падения напряжения.

Пример задачи:

Дано: ex 480-вольтовая, трехфазная, трехпроводная (треугольник) цепь фидера обеспечивает сбалансированную нагрузку 45 киловатт в коммерческое здание. Загрузка работает с коэффициентом мощности 0,75. Питающий контур (три горячие линии) будет длиной 300 футов (91,44 метра) правого медного проводника. В максимальное падение напряжения составляет 1 процент.

Найдите: требуемый размер фидера (исходя из падения напряжения в цепи).

Раствор:

1. Найдите максимальное падение напряжения в цепи.

VD = 0,01 × 480

= 4,8 вольт

2. Найдите линейный ток, потребляемый нагрузкой.

IL = —— 1,73 × V × pf

45000 Вт = ——- 1,73 × 480 × 0,75

= 72.25 ампер

3. Найдите минимальную требуемую площадь проводника в миллиметрах. Используйте формулу для нахождения cmil в трехфазных системах, что было дано в более ранней раздел.

p × I × 1,73 d

см = —— VD

10,4 × 72,25 × 1,73 × 300

= ———— 4,8

= 81 245 см

4. Определите сечение фидера. Ближайший и следующий по размеру размер проводника в ТАБЛИЦЕ 3 — No.1 AWG. Посмотрите ТАБЛИЦУ 3, и вы Видите, что медный провод № 1 AWG RH выдержит ток 130 ампер, больше требуемых 72,25 ампер. Поэтому используйте медь № 1 AWG RH. проводники для фидерной цепи.

ОПРЕДЕЛЕНИЕ РАЗМЕРА ЗАЗЕМЛЕНИЯ

Обсуждены вопросы заземления при проектировании электропроводки. ранее. Еще одна необходимость при проектировании электропроводки — определение размера необходимого в цепи заземляющего проводника.Все схемы, работать при напряжении 150 вольт или меньше должен быть заземлен; поэтому все жилые электрические системы должны быть заземлены. Системы высокого напряжения, используемые в промышленные и коммерческие здания имеют требования к заземлению, которые определены NEC и местными кодами. Земля на службе вход в здание обычно представляет собой металлическую водопроводную трубу, которая идет непрерывно, под землей, или заземляющий электрод, вбитый в землю возле служебного входа.

Размер заземляющего проводника определяется номинальным током. системы. В ТАБЛИЦЕ 4 перечислены сечения заземляющих проводов оборудования. для внутренней проводки, а в ТАБЛИЦЕ 5 указаны минимальные заземляющие провода. размеры для системного заземления служебных входов. Размеры заземления проводники, перечисленные в ТАБЛИЦЕ 4, предназначены для заземления оборудования, которое соединяет к кабельным каналам, кожухам и металлическим каркасам в целях безопасности. Примечание что нет.12 или кабель № 14, такой как 12-2 WG NMC, может иметь площадку для оборудования № 18. Земля содержится в том же оболочка кабеля в качестве токоведущих проводников. ТАБЛИЦА 5 используется для определения минимального размер заземляющих проводов, необходимых для служебных входов, в зависимости от размер проводов горячей линии, используемых с системой.

ЧАСТИ ВНУТРЕННЕЙ ЭЛЕКТРОПРОВОДКИ

Обсуждались некоторые части внутренних электрических распределительных систем. ранее.Такие виды оборудования, как трансформаторы, распределительные устройства, проводники, изоляторы и средства защиты являются частями внутренней проводки. Однако есть определенные части внутренней системы распределения электроэнергии. системы, которые уникальны для самой системы электропроводки. Эти части включают кабели с неметаллической оболочкой (NMC), кабели с металлической оболочкой, жесткие кабелепровод и электрические металлические трубки (EMT).

ТАБЛИЦА 4. Размеры заземляющих проводов оборудования для внутренней обмотки

ТАБЛИЦА 5.Сечения заземляющих проводов для служебных входов

Кабель в неметаллической оболочке (NMC)

Кабель с неметаллической оболочкой — это распространенный тип используемых электрических кабелей. для внутренней проводки. Используется NMC, иногда называемый кабелем Romex. почти исключительно в жилых системах электропроводки. Самый распространенный вид используется № 12-2 WG, который проиллюстрирован на фиг. 11. Этот тип NMC поставляется в рулонах по 250 футов для внутренней проводки.Кабель имеет тонкий пластик. внешнее покрытие с тремя проводниками внутри. Проводники окрашены изоляция, указывающая, следует ли использовать провод в качестве провод под напряжением, нейтраль или заземляющий провод оборудования. Например, дирижер подключенный к горячей стороне системы имеет черную или красную изоляцию, а нейтральный провод имеет изоляцию белого или серого цвета. Оборудование заземляющий провод имеет зеленую изоляцию или не имеет изоляции (неизолированный дирижер).Есть несколько разных размеров втулок и соединителей. используется для установки NMC в зданиях.


РИС. 11. Кабель в неметаллической оболочке (MNC)

Обозначение № 12-2 WG означает, что (1) используемые медные жилы имеют № 12 AWG, как измерено американским калибром проводов (AWG), (2) там два токоведущих проводника, и (3) кабель поставляется с провод заземления (WG). Для сравнения, кабель № 14-3 WG будет иметь три Нет.14 проводников и заземляющий провод. Размер NMC варьируется от Медные проводники с № 14 по № 1 AWG и от № 12 до № 2 AWG. алюминиевые проводники.

Кабель в металлической оболочке

Кабель в металлической оболочке аналогичен NMC, за исключением того, что он имеет гибкую спираль. металлическое покрытие, а не пластиковое покрытие. Распространенный вид металла кабель с оболочкой называется кабелем BX. Как и NMC, кабель BX содержит два или три проводники. Также есть несколько размеров разъемов и втулок. используется при установке кабеля BX.Основное преимущество этого Тип кабеля с металлической оболочкой заключается в том, что он заключен в металлический корпус это гибкий, так что его можно легко согнуть. Прочие металлические корпуса обычно труднее сгибать.

Жесткий кабелепровод

Внешний вид жесткого водовода похож на водопроводную трубу. Он используется в специальные места для изоляции электрических проводов. Жесткий канал поставляется в 10-футовой длине, которая должна иметь резьбу для соединения частей вместе.Кабелепровод крепится к металлическим монтажным коробкам с помощью контргаек и втулки. Он громоздкий в обращении и требует много времени для установки.

Электрические металлические трубки (EMT)

EMT, или тонкостенный канал, чем-то похож на жесткий канал, за исключением того, что его можно согнуть с помощью специального инструмента для гибки труб. ЕМТ проще для установки, чем жесткий кабелепровод, так как нарезка резьбы не требуется. Это также поставляется в 10-футовой длине. EMT устанавливается с использованием сжатия муфты для соединения кабелепровода с металлическими распределительными коробками.Электрика салона в системах электропроводки широко используется ЕМТ, так как ее можно легко согнуть, могут быть соединены вместе и могут быть подключены к металлическим монтажным коробкам.

Почему мы используем трехфазное питание?

Большинство электроприборов, используемых в домах и на предприятиях, работают с переменным током (AC), что означает, что подаваемое напряжение является пульсирующим, в отличие от постоянной выходной мощности батареи (постоянный ток, DC). В США напряжение, подаваемое коммунальными предприятиями, имеет частоту 60 Гц, что означает, что оно переключается между положительной и отрицательной полярностью 60 раз в секунду.

Большинство источников питания переменного тока можно разделить на однофазные или трехфазные, в зависимости от характеристик подаваемого напряжения. Как следует из названия, трехфазная система имеет три отдельных напряжения переменного тока, каждое с частотой 60 Гц. Однако эти напряжения чередуются между положительным и отрицательным в последовательности, а не одновременно, обеспечивая постоянный источник питания, который невозможен в однофазной системе.


Планируете строительный проект? Получите профессиональный электротехнический дизайн.


Как трехфазное питание снижает стоимость электроустановок

Емкость систем питания переменного тока измеряется в вольт-амперах (ВА) и рассчитывается путем умножения напряжения на ток.

  • Например, цепь на 120 В с проводкой 20 А может выдерживать 2400 ВА.
  • Трехфазная цепь с проводкой 20 А может выдерживать 7200 ВА.

Учтите, что в обоих случаях вам потребуются нейтральный провод и заземляющий провод в дополнение к одному токоведущему проводнику для каждого выхода напряжения.Это означает, что вам нужно три провода для однофазной системы и пять проводов для трехфазной системы. Другими словами, трехфазная система имеет 300% мощности однофазной системы, при этом используются только два дополнительных провода (всего на 67% больше меди). Если учесть сокращение проводки за счет использования трехфазного питания в большом коммерческом или промышленном объекте, экономия будет значительной.

Однофазное питание обычно используется в жилых помещениях, где нагрузка слишком мала, чтобы оправдать сложность трехфазной системы.Однако однофазные источники питания для индивидуальных жилых домов обычно поступают от трехфазной системы большего размера.

  • Дома на одну семью и другие небольшие постройки получают однофазное питание от трехфазной распределительной системы, принадлежащей коммунальной компании.
  • Более крупные многоквартирные дома обычно имеют собственный трехфазный служебный вход.

Преимущества трехфазного оборудования в производительности

Помимо экономии на электропроводке, трехфазные системы имеют заметные преимущества в производительности по сравнению с однофазными аналогами.Особенно это касается электродвигателей:

  • Для данной номинальной мощности трехфазные двигатели имеют более высокий КПД, чем однофазные. Учитывая высокие цены на киловатт-час в Нью-Йорке, это значительное преимущество.
  • Трехфазные двигатели также имеют более высокий коэффициент мощности, что означает, что они потребляют меньше вольт-ампер при заданной нагрузке и КПД. Некоторые тарифы на электроэнергию включают плату за недостаточный коэффициент мощности, и трехфазные двигатели могут помочь снизить их.
  • Поскольку однофазные системы выдают пульсирующую мощность, двигатели, как правило, испытывают повышенную вибрацию, в то время как постоянное питание трехфазных систем обеспечивает более стабильную работу.
  • Однофазные двигатели не могут запуститься сами по себе, требуются внешние устройства. С другой стороны, трехфазные двигатели могут запускаться только от источника питания, и он может даже изменить направление, если вы переключите два проводника друг с другом.

Трехфазная система также более универсальна, чем однофазная.Если вам нужно запустить однофазное устройство с трехфазным питанием, вы можете использовать только один из трех проводов. Однако обратное не действует: трехфазные приборы не могут работать от однофазного источника питания. Исключение составляют двигатели: вы можете запускать трехфазный двигатель от однофазного источника питания, но его механическая мощность резко снижается, а срок его службы резко сокращается.

Требования к цвету проводки

Национальный электротехнический кодекс устанавливает требования к цвету проводки для электрических систем.Это упрощает идентификацию проводников, снижает вероятность человеческой ошибки и повышает безопасность. Требования приведены в следующей таблице.

Проводник
Описание

Трехфазные системы,
Номинальное напряжение 120/208/240 В

Трехфазные системы,
Номинальное напряжение 277/480 В

Токоведущий провод № 1

Черный

Коричневый

Токоведущий провод №2

Красный

Оранжевый

Токоведущий провод № 3

Синий

Желтый

Нейтральный провод

Белый

Серый

Заземляющий провод

Зеленый, голый или зеленый и желтый

Зеленый, голый или зеленый и желтый

Когда трехфазная система питает как трехфазные, так и однофазные нагрузки, рекомендуется уравновешивать однофазные нагрузки между тремя фазами.Несбалансированное напряжение питания может быть вредным для некоторых типов оборудования. Нейтральный проводник также пропускает более высокий ток, когда система плохо сбалансирована, и это вызывает потерю мощности в виде рассеивания тепла.

Обратите внимание, что проводка — не единственный элемент схемы, который меняется между однофазной и трехфазной установками. Такие компоненты, как защитные устройства, распределительные щиты и трансформаторы, также построены по-другому. В случае трансформаторов вы можете использовать три однофазных блока для повышения или понижения трехфазного напряжения, но трехфазный трансформатор в большинстве случаев дешевле и компактнее.

Майк Холт Расчет падения напряжения

Часть ПЕРВАЯ

Целью Национального электротехнического кодекса является практическая защита людей и имущества от опасностей, связанных с использованием электричества. NEC обычно не считает падение напряжения проблемой безопасности. В результате NEC содержит шесть рекомендаций (примечания к мелкому шрифту), которые проводники цепи должны быть достаточно большими по размеру, чтобы может быть обеспечена эффективность работы оборудования.Кроме того, NEC имеет пять правил, по которым проводники должны иметь размер, соответствующий напряжению. падение проводов цепи.

Примечания мелким шрифтом в NEC предназначены только для информационных целей и не подлежит исполнению инспекционным органом [90-5 (c)]. Однако раздел 110-3 (b) требует, чтобы оборудование было установлено в соответствии с оборудованием. инструкции. Поэтому электрооборудование необходимо устанавливать так, чтобы он работает в пределах своего номинального напряжения, указанного производителем.Рисунок 1.

Комментарий автора: Рисунки не размещаются в Интернете.

Из-за падения напряжения в проводниках цепи рабочее напряжение у электрооборудования будет меньше выходного напряжения силовой поставка. Индуктивные нагрузки (например, двигатели, балласты и т. Д.), Работающие при напряжение ниже номинального может привести к перегреву, что приведет к сокращению времени работы оборудования. срок службы и повышенная стоимость, а также неудобства для заказчика.Пониженное напряжение для чувствительного электронного оборудования, такого как компьютеры, лазерные принтеры, копировальные машины и т. д. могут вызвать блокировку оборудования или внезапное отключение питания. вниз, что приведет к потере данных, увеличению стоимости и возможному отказу оборудования. Резистивные нагрузки (нагреватели, лампы накаливания), работающие при пониженном напряжении. просто не обеспечит ожидаемую номинальную выходную мощность, рис. 1.

Комментарий автора: Падение напряжения на проводниках может вызвать накаливание. освещение мигать, когда другие приборы, оргтехника или отопление и системы охлаждения включаются.Хотя некоторых это может раздражать, это не опасно и не нарушает NEC.

РЕКОМЕНДАЦИИ NEC

Национальный электротехнический кодекс содержит шесть примечаний, напечатанных мелким шрифтом, для предупреждения Сообщите пользователю, что оборудование может повысить эффективность работы, если учитывается падение напряжения на проводнике.

1. Ответвительные цепи. Настоящая FPN рекомендует, чтобы проводники ответвлений быть такого размера, чтобы предотвратить максимальное падение напряжения до 3%.Максимальное общее напряжение падение для комбинации ответвления и фидера не должно превышать 5%. [210-19 (а) ФПН № 4], рис. 2.

2. Фидеры. Настоящая FPN рекомендует подбирать размеры фидерных проводов. для предотвращения максимального падения напряжения на 3%. Максимальное общее падение напряжения для комбинации ответвления и фидера не должно превышать 5%. [215-2 (d) ФПН № 2], рис. 2.

Пример: Какое минимальное рабочее напряжение, рекомендованное NEC для Нагрузка 120 В, подключенная к источнику 120/240 В, рисунок 3 (8-11).

(а) 120 вольт (b) 115 вольт (c) 114 вольт (г) 116 вольт

Ответ: (c) 114 В Максимальное рекомендуемое падение напряжения на проводе как для фидера, так и для ответвленной цепи составляет 5 процентов от источника напряжения; 120 вольт x 5% = 6 вольт. Рабочее напряжение на нагрузке определяется путем вычитания падения напряжения на проводнике из источника напряжения, 120 вольт — падение 6 вольт = 114 вольт.

3. Услуги — Интересно, что нет рекомендуемого падения напряжения. для сервисных проводников, но эта FPN напоминает пользователю Кодекса о необходимости учитывать падение напряжения на служебных проводниках [230-31 (c) FPN].

Комментарий автора: Падение напряжения на проводах с длительным сроком службы может вызвать лампы накаливания в здании мигают при включении бытовой техники, отопления или включаются системы охлаждения. Для получения информации о том, как решить или уменьшить мерцание ламп накаливания, перейдите по адресу: www.mikeholt.com/Newsletters.

4. Допустимая нагрузка проводника — Эта FPN определяет тот факт, что перечисленные в таблице 310-16, не учитывают падение напряжения [310-15 ФПН №1].

5. Фазовые преобразователи — Фазовые преобразователи имеют свои собственные рекомендации. падение напряжения от источника питания к фазовому преобразователю должно не превышает 3% [455-6 (a) FPN].

6. Парковки для транспортных средств для отдыха — для транспортных средств для отдыха есть рекомендации. чтобы максимальное падение напряжения на проводниках параллельной цепи не превышало 3% и комбинация ответвления и фидера не более 5% [210-19 (а) ФПН №4 и 551-73 (d) FPN].

ТРЕБОВАНИЯ NEC

Национальный электротехнический кодекс также содержит пять правил, требующих проводники должны быть увеличены в размере, чтобы компенсировать падение напряжения.

Заземляющие проводники — это правило гласит, что если проводники цепи увеличены в размерах для компенсации падения напряжения, заземление оборудования проводники также должны быть увеличены в размерах [250-122 (b)].

Комментарий автора: Если, однако, провода цепи не увеличить по размеру, чтобы учесть падение напряжения, то заземляющий провод оборудования не требуется, чтобы он был больше, чем указано в Таблице 250-122.

Кино / Телестудия — Проводник ответвления для Системы 60/120 вольт, используемые для снижения шума при производстве аудио / видео или другая подобная чувствительная электроника для киностудий и телестудий не должно превышать 1,5%, а суммарное падение напряжения фидера и проводники параллельной цепи не должны превышать 2,5% [530-71 (d)]. Кроме того, FPN № 1 в соответствии с разделом 530-72 (b) напоминает пользователю Кодекса об увеличении размера заземляющего проводника в соответствии с Разделом 250-122 (b).

Пожарные насосы — Рабочее напряжение на выводах пожарного насоса. Контроллер не должен быть менее 15% от номинального напряжения контроллера. при запуске двигателя (ток заторможенного ротора). Кроме того, действующие напряжение на выводах электродвигателя пожарного насоса должно быть не менее 5% от номинального напряжения двигателя, когда двигатель работает на 115 процентов от номинального тока полной нагрузки [695-7].

Комментарий автора: в следующем месяце в этой статье я приведу примеры и графики, демонстрирующие применение правил NEC по падению напряжения.

ОПРЕДЕЛЕНИЕ ПЕРЕПАДА НАПРЯЖЕНИЯ В ЦЕПИ

Когда проводники цепи уже установлены, напряжение падение на проводниках может быть определено одним из двух методов: Ом закон или формула ВД.

Метод закона Ома — только однофазный

Падение напряжения на проводниках цепи можно определить умножением ток цепи по общему сопротивлению проводов цепи: VD = I x R.«I» соответствует нагрузке в амперах, а «R» равно сопротивлению проводника, указанному в главе 9, таблица. 8 для цепи постоянного тока или в главе 9, таблице 9 для переменного тока. токовые цепи. Метод закона Ома нельзя использовать для трехфазного схемы.

120 вольт Пример: каково падение напряжения на двух проводниках № 12, которые подайте нагрузку 16 ампер, 120 вольт, которая находится в 100 футах от источника питания питания (200 футов провода), рисунок 4.

(а) 3,2 вольт (б) 6,4 вольт (c) 9,6 вольт (г) 12,8 В

Ответ: (б) 6,4 вольт

Падение напряжения = I x R

«I» равно 16 ампер

«R» равно 0,4 Ом (Глава 9, Таблица 9: (2 Ом / 1000 футов) x 200 футов

Падение напряжения = 16 ампер x 0,4 Ом

Падение напряжения = 6,4 В, (6,4 В / 120 В = 5.Падение напряжения 3%)

Рабочее напряжение = 120 В — 6,4 В

Рабочее напряжение = 113,6 В

Комментарий автора: Падение напряжения на 5,3% для указанной выше параллельной цепи. превышает рекомендации NEC на 3%, но не нарушает NEC, если нагрузка 16 А не рассчитана ниже 113,6 В [110-3 (b)].

Однофазный 240 В Пример: Каково рабочее напряжение 44 ампер, 240 вольт, однофазная нагрузка, расположенная в 160 футах от щитка, если он подключен к No.6 проводников, рисунок 5?

(а) 233,1 вольт (б) 230,8 вольт (c) 228,4 вольт (г) 233,4 В

Ответ: (а) 233,1 вольт

Падение напряжения = I x R

«I» равно 44 амперам

«R» равно 0,157 Ом (Глава 9, Таблица 9: (0,49 Ом / 1000 футов) x 320 футов

Падение напряжения = 44 ампера x 0,157 Ом

Падение напряжения = 6.9 В (6,9 В / 240 В = падение на 2,9%)

Рабочее напряжение = 240 В — 6,9 В

Рабочее напряжение = 233,1 В

Падение напряжения по методу формул

Когда проводники цепи уже установлены, напряжение падение проводов можно определить с помощью одного из следующих формулы:

VD = 2 x K x Q x I x D / CM — однофазный

ВД = 1.732 x K x Q x I x D / CM — трехфазный

«VD» = падение напряжения: падение напряжения на проводниках цепи. как выражено в вольтах.

«K» = постоянная постоянного тока: это постоянная, которая представляет сопротивление постоянному току для проводника в тысячу круглых мил длиной в тысячу футов, при рабочей температуре 75 ° C. C. Постоянное значение постоянного тока, используемое для меди, составляет 12,9 Ом. и 21.Для алюминиевых проводов используется 2 Ом. Константа «К» подходит для цепей переменного тока, где жилы не превышает № 1/0.

«Q» = Коэффициент регулировки переменного тока: Переменный ток цепи № 2/0 и выше должны быть отрегулированы с учетом эффектов самоиндукции. (скин-эффект). Коэффициент корректировки «Q» определяется путем деления сопротивление переменному току, как указано в таблице 9 главы 9 NEC, на сопротивление постоянному току, как указано в главе 9, таблица 8.

«I» = Амперы: нагрузка в амперах при 100 процентах, а не 125 процентов для двигателей или постоянных нагрузок.

«D» = Расстояние: расстояние, на котором нагрузка находится от источника питания. питания, а не общую длину проводников цепи.

«CM» = Circular-Mils: Круговые милы проводника цепи. как указано в главе 9, таблица 8.

Однофазный пример: каково падение напряжения на проводе № 6 который обеспечивает однофазную нагрузку 44 А, 240 В, расположенную на расстоянии 160 футов из щитка, рисунок 6?

(а) 4.25 вольт (b) 6,9 вольт (c) 3 процента (г) 5 процентов

Ответ: (б) 6,9 вольт

VD = 2 x K x I x D / CM

K = 12,9 Ом, медь

I = 44 ампера

D = 160 футов

CM = № 6, 26 240 круговых милов, Глава 9, Таблица 8

VD = 2 провода x 12,9 Ом x 44 А x 160 футов / 26240 круглых мил

VD = 6.9 В (6,9 В / 240 В = падение на 2,9%)

Рабочее напряжение = 240 В — 6,9 В

Рабочее напряжение = 233,1 В

Трехфазный Пример: Трехфазная нагрузка 208 В, 36 кВА расположена 80 футов от щитка и соединен алюминиевыми проводниками №1. Какое падение напряжения в проводниках до отключения оборудования, Рисунок 7?

(а) 3,5 вольт (б) 7 вольт (c) 3 процента (г) 5 процентов

Ответ: (а) 3.5 вольт

VD = 1,732 x K x I x D / CM

K = 21,2 Ом, алюминий

I = 100 ампер

D = 80 футов

CM = № 1, 83690 круговых милов, глава 9, таблица 8

VD = 1,732 x 21,2 Ом x 100 ампер x 80 футов / 83690 круглых мил

VD = 3,5 В (3,5 В / 208 В = 1,7%)

Рабочее напряжение = 208 В — 3,5 В

Рабочее напряжение = 204,5 В

Надеюсь, это краткое резюме было полезным.Если вы хотите узнать больше о по этой теме, посетите наш семинар или закажите видео для домашнего обучения программа сегодня.

Электропитание | Encyclopedia.com

Требования к источникам питания

Батареи в качестве источников питания

Вставные блоки питания

Регулировка напряжения источника питания

Цепи регулирования напряжения

Источники питания и взаимодействие нагрузки

Уменьшение пульсаций

Минимизация влияние изменений сетевого напряжения

Лабораторные источники питания

Простые трансформаторные источники питания

Импульсные источники питания

Важность источников питания

Ресурсы

Электропитание — это устройство, которое обеспечивает энергию, необходимую для электрического или электронного оборудования. оборудование.Часто электричество напрямую доступно только из источника с несоответствующими электрическими характеристиками, например, переменного тока (AC) вместо постоянного (DC), и для изменения мощности необходим источник питания в соответствии с требованиями оборудования. Поскольку цифровые устройства, которых так много, работают на довольно низком напряжении постоянного тока, в то время как мощность обычно доступна в виде переменного тока с довольно высоким напряжением, источники питания обычно преобразуют переменный ток в постоянный, повышая и понижая напряжение по мере необходимости. Они также необходимы для питания и тока от батарей к чувствительным устройствам.Например, фонарик не содержит источника питания, а цифровой фотоаппарат есть. Источники питания часто обеспечивают защиту от сбоев источника питания, которые могут повредить оборудование. Они также могут обеспечивать изоляцию от потенциально опасного электрического шума, который обычно встречается на коммерческих линиях электропередач.

Источником питания может быть простая батарея или более сложная, чем оборудование, которое она поддерживает. Соответствующий источник питания является неотъемлемой частью каждого рабочего набора электрических или электронных схем.

Батареи можно было бы использовать для питания почти всего электронного оборудования, если бы не высокая стоимость вырабатываемой ими энергии по сравнению с коммерческими линиями электропередач. Источники питания когда-то назывались вытяжными батареями, подходящее название, потому что они позволяли использовать менее дорогую энергию от коммерческой линии электропередач там, где она доступна. Батареи по-прежнему являются подходящим и экономичным выбором для портативного оборудования со скромными потребностями в энергии.

В аккумуляторах, которые питают электронное оборудование, используются два основных типа химических элементов.Первичные элементы обычно не подлежат перезарядке. Их следует выбросить после того, как их запас энергии будет исчерпан. С другой стороны, вторичные элементы являются перезаряжаемыми. Свинцово-кислотный вторичный элемент, используемый в автомобильном аккумуляторе, можно перезаряжать много раз, прежде чем он выйдет из строя. Никель-кадмиевые батареи основаны на вторичных элементах.

Электроснабжение домов и предприятий по коммерческим линиям электропередачи осуществляется от переменного тока. Однако электронное оборудование почти всегда требует питания постоянного тока (DC).Источники питания обычно меняют переменный ток на постоянный с помощью процесса, называемого выпрямлением. Полупроводниковые диоды, пропускающие ток только в одном направлении, используются для блокировки тока в линии электропередач при изменении полярности. Конденсаторы накапливают энергию для использования, когда диоды не проводят, обеспечивая при необходимости постоянный ток относительно постоянного напряжения.

Плохое регулирование напряжения в линии электропередачи приводит к тому, что свет в доме гаснет при каждом включении холодильника. Точно так же, если изменение тока от источника питания вызывает изменение напряжения, источник питания плохо регулирует напряжение.Большая часть электронного оборудования будет работать лучше всего, если оно питается от источника почти постоянного напряжения. Неопределенное напряжение питания может привести к ухудшению работы схемы.

Анализ характеристик типичного источника питания упрощается за счет моделирования его как источника постоянного напряжения, включенного последовательно с внутренним сопротивлением. Внутреннее сопротивление используется для объяснения изменений напряжения на клеммах при изменении тока в цепи. Чем ниже внутреннее сопротивление данного источника питания, тем больший ток он может выдать при поддержании почти постоянного напряжения на клеммах.Идеальный источник питания для цепей, требующих постоянного напряжения с изменяющимся током нагрузки, должен иметь внутреннее сопротивление, близкое к нулю. Блок питания с очень низким внутренним сопротивлением иногда называют «жестким» блоком питания.

Неадекватный источник питания почти всегда снижает производительность электронного оборудования. Например, усилители звука могут издавать искаженный звук, если напряжение питания падает с каждым громким звуковым импульсом. Было время, когда изображение на телевизорах уменьшалось, если напряжение в сети переменного тока упало ниже минимального значения.Эти проблемы менее значительны теперь, когда регулирование напряжения включено в большинство источников питания.

Есть два подхода, которые можно использовать для улучшения регулирования напряжения источника питания. Поможет простой блок питания, который намного больше, чем требуется для среднего спроса на оборудование. Блок питания большего размера должен иметь более низкое эффективное внутреннее сопротивление, хотя это не является абсолютным правилом. При более низком внутреннем сопротивлении изменения подаваемого тока менее значительны, а регулирование напряжения улучшается по сравнению с источником питания, работающим с максимальной мощностью.

Для некоторых источников питания требуется более высокое внутреннее сопротивление. Для мощных радиолокационных передатчиков требуется источник питания с высоким внутренним сопротивлением, чтобы выходной сигнал мог закорачиваться каждый раз, когда радар передает импульс сигнала, не повреждая схемы. Телевизионные приемники искусственно увеличивают сопротивление источника питания очень высокого напряжения для кинескопа, намеренно добавляя сопротивление. Это ограничивает ток, который будет подаваться, если техник случайно коснется высокого напряжения, которое в противном случае могло бы вызвать смертельный удар электрическим током.

Блоки питания со стабилизированным напряжением имеют схему, контролирующую их выходное напряжение. Если это напряжение изменяется из-за изменений внешнего тока или из-за сдвигов напряжения в линии питания, схема регулятора выполняет почти мгновенную компенсационную настройку.

При проектировании источников питания с регулируемым напряжением используются два общих подхода. В менее распространенной схеме шунтирующий стабилизатор подключается параллельно к выходным клеммам источника питания и поддерживает постоянное напряжение за счет потери тока внешней цепи, называемой нагрузкой, не требующейся.Ток, подаваемый нерегулируемой частью источника питания, всегда постоянен. Шунтирующий регулятор почти не отводит ток, когда внешняя нагрузка требует сильного тока. Если внешняя нагрузка уменьшается, ток шунтирующего регулятора увеличивается. Недостаток шунтирующего регулирования заключается в том, что оно рассеивает всю мощность, на которую рассчитан источник питания, независимо от того, требуется ли энергия для внешней цепи.

Более распространенная конструкция последовательного регулятора напряжения зависит от переменного сопротивления, создаваемого транзистором, включенным последовательно с током внешней цепи.Падение напряжения на транзисторе регулируется автоматически для поддержания постоянного выходного напряжения. Выходное напряжение источника питания непрерывно измеряется по сравнению с точным эталоном, а характеристики транзистора регулируются автоматически для поддержания постоянного выходного сигнала.

Блок питания с адекватным регулированием напряжения часто улучшает характеристики электронного устройства, которое он питает, настолько, что регулирование напряжения является очень распространенной особенностью всех, кроме простейших конструкций.Обычно используются корпусные интегральные схемы, простые трехконтактные устройства, которые содержат последовательный транзистор и большую часть вспомогательных схем регулятора. Эти «готовые» микросхемы позволили очень легко включить в источник питания возможность регулирования напряжения.

Когда один источник питания обслуживает несколько независимых внешних цепей, изменения в потребляемом токе, налагаемые одной цепью, могут вызвать изменения напряжения, которые влияют на работу других цепей. Эти взаимодействия представляют собой нежелательную передачу сигналов через общий источник питания, вызывающую нестабильность.Регуляторы напряжения могут предотвратить эту проблему, уменьшив внутреннее сопротивление общего источника питания.

Когда переменный ток преобразуется в постоянный, небольшие колебания напряжения на частоте питания трудно полностью сгладить или отфильтровать. В случае источников питания, работающих от сети с частотой 60 Гц, результатом является низкочастотное изменение на выходе источника питания, называемое пульсирующим напряжением. Пульсации напряжения на выходе источника питания будут суммироваться с сигналами, обрабатываемыми электронными схемами, особенно в схемах с низким напряжением сигнала.Пульсации можно свести к минимуму, используя более сложную схему фильтра, но их можно уменьшить более эффективно с помощью активного регулирования напряжения. Регулятор напряжения может реагировать достаточно быстро, чтобы отменить нежелательные изменения напряжения.

Напряжение в линии питания обычно беспорядочно колеблется по разным причинам. Специальный трансформатор, регулирующий напряжение, может улучшить стабильность напряжения первичного источника питания. Действие этого трансформатора основано на обмотке катушки, которая включает в себя конденсатор, который настраивает индуктивность трансформатора в резонанс на частоте линии электропередачи.Когда линейное напряжение слишком высокое, циркулирующий ток в резонансной обмотке трансформатора имеет тенденцию насыщать магнитный сердечник трансформатора, снижая его эффективность и вызывая падение напряжения. Когда напряжение в сети слишком низкое, как в жаркий летний день, когда кондиционеры перегружают возможности генераторов и линий электропередач, циркулирующий ток снижается, повышая эффективность трансформатора. Стабилизация напряжения, достигаемая этими трансформаторами, может быть полезной, даже если она не идеальна.Один из первых брендов телевизоров включал резонансные трансформаторы для предотвращения изменений размера изображения, сопровождающих нормальные сдвиги напряжения в сети.

Резонансные силовые трансформаторы тратят впустую энергию, что является серьезным недостатком, и они не работают должным образом, если они не сильно нагружены. Регулирующий трансформатор рассеивает почти полную номинальную мощность даже без нагрузки. Они также имеют тенденцию искажать форму волны переменного тока, добавляя гармоники к своему выходу, что может представлять проблему при питании чувствительного оборудования.

Источники питания с регулируемым напряжением — необходимое оборудование в научно-технических лабораториях.Они обеспечивают регулируемый, регулируемый источник электроэнергии для разрабатываемых испытательных схем.

Лабораторные источники питания обычно имеют два программируемых режима: выход постоянного напряжения в выбранном диапазоне тока нагрузки и выход постоянного тока в широком диапазоне напряжений. Точка перехода, при которой действие переключается с постоянного напряжения на действие с постоянным током, выбирается пользователем. Например, может быть желательно ограничить ток в тестовой цепи, чтобы избежать повреждения в случае возникновения скрытой неисправности цепи.Если схема требует тока меньше выбранного значения, схема регулирования будет удерживать выходное напряжение на выбранном значении. Если, однако, схема требует больше, чем выбранный максимальный ток, схема регулятора снизит напряжение на клеммах до любого значения, которое будет поддерживать выбранный максимальный ток через нагрузку. Цепи с питанием никогда не будут позволять пропускать ток, превышающий выбранный предел постоянного тока.

Переменный ток требуется для большинства линий электропередачи, поскольку переменный ток позволяет изменять отношение напряжения к току с помощью трансформаторов.Трансформаторы используются в источниках питания, когда необходимо увеличить или уменьшить напряжение. Выход переменного тока этих трансформаторов обычно должен быть преобразован в постоянный ток. Результирующий пульсирующий постоянный ток фильтруется для создания почти чистого постоянного тока.

Относительно новая разработка в технологии источников питания, импульсный источник питания, становится все более популярной. Импульсные блоки питания легкие и очень эффективные. Почти все персональные компьютеры питаются от импульсных источников питания.

Импульсный источник питания получил свое название от использования транзисторных ключей, которые быстро переключаются на проводимость и отключаются. Ток проходит сначала в одном направлении, а затем в другом, проходя через трансформатор. Пульсации выпрямленного коммутационного сигнала имеют гораздо более высокие частоты, чем частота линии электропередачи, поэтому содержание пульсаций можно легко минимизировать с помощью небольших фильтрующих конденсаторов. Регулировка напряжения может быть достигнута путем изменения частоты переключения. Изменения частоты переключения изменяют КПД трансформатора источника питания в достаточной степени, чтобы стабилизировать выходное напряжение.

ОСНОВНЫЕ ПОЛОЖЕНИЯ

Переменный ток — Электрический ток, который течет сначала в одном направлении, затем в другом; сокращенно AC.

Постоянный ток (DC) — Электрический ток, который всегда течет в одном направлении.

Фильтр — Электрическая схема, предназначенная для сглаживания колебаний напряжения.

Гармоника — Целое число, кратное основной частоте.

Гц — Сокращенное обозначение в системе СИ для Герц, единицы частоты (1 Гц = один цикл в секунду).

Внутреннее сопротивление — Фиктивное сопротивление, предложенное для объяснения колебаний напряжения.

Моделирование — Анализ сложного устройства с помощью более простой аналогии.

Ом — Единица электрического сопротивления, равная 1 В на ампер.

Параллельно — Параллельное электрическое соединение.

Выпрямление — Преобразование переменного тока (AC) в постоянный (DC) путем блокировки обратного потока заряда.

Пульсация— Повторяющееся изменение напряжения из-за недостаточной фильтрации.

Импульсные источники питания обычно не повреждаются при внезапных коротких замыканиях. Действие переключения прекращается почти сразу, защищая питание и нагрузку цепи. Говорят, что импульсный источник питания остановился, когда чрезмерный ток прерывает его действие.

Импульсные источники питания имеют малый вес, поскольку их компоненты более эффективны на более высоких частотах. Трансформаторам требуется гораздо меньше железа в сердечниках на более высоких частотах.

Импульсные источники питания имеют незначительную пульсацию на слышимых частотах. Изменения в выходной мощности импульсного источника питания неслышны по сравнению с гудением, которое является обычным для источников питания, работающих при частоте сети переменного тока 60 Гц.

Источники питания — не самая привлекательная часть современной техники, но без них электронные продукты, которыми мы окружены, не могли бы функционировать.

См. Также Электричество; Электроника.

КНИГИ

Ленк, Рон. Практическое проектирование источников питания . Нью-Йорк: Wiley / IEEE, 2005.

Марк, Раймонд А. Демистификация импульсных источников питания . Оксфорд, Великобритания: Newnes, 2005.

Дональд Бити

Основы работы с блоком автоматического выключателя для каждого домовладельца

Каждый домовладелец должен быть знаком с работой и особенностями панели автоматического выключателя / коробки электрического выключателя, которая находится в подсобном помещении и снабжает дом электроэнергией.Знание того, что это такое, почему это важно и как работает, может помочь вам в устранении неполадок с электричеством в доме и избежать опасных ситуаций.

И, к счастью, это не сложно!

Вот все, что домовладельцу нужно знать о панели автоматического выключателя / распределительной коробке :

Как работает блок автоматического выключателя?

Панель главного выключателя — это, по сути, большой выключатель, который безопасно распределяет электроэнергию в ваш дом.В коробке автоматического выключателя также находятся другие более мелкие вспомогательные переключатели, которые подключаются к определенным областям вашего дома. Эти небольшие переключатели называются выключателями, и их функция заключается в обеспечении электробезопасности.

Таким образом, как домовладельцу, вам нужно будет получить доступ к главной панели автоматического выключателя только при отключении питания или при выполнении ремонта или замены.

Почему коробка автоматического выключателя важна для домашней безопасности?

Электроэнергия, которая течет из линии вашей коммунальной компании, проходит через счетчик в главный щит выключателя .Это делает вас и вашу семью уязвимыми к поражению электрическим током от вашей бытовой техники, системы отопления, вентиляции и кондиционирования воздуха и электронного оборудования, а поражение электрическим током, ожоги и пожары могут нанести серьезный ущерб жизни и имуществу.

Панель автоматического выключателя обеспечивает питание, но также имеет функции безопасности, которые защищают проводку и предотвращают поражение электрическим током и возгорание из-за перегрузки или перегрева. Механизм безопасности панели автоматического выключателя защищает ваш дом и его жителей от всех опасностей, связанных с неправильным заземлением, короткими замыканиями, колебаниями напряжения, неисправной проводкой и поврежденной изоляцией.

Основные функции безопасности панели автоматического выключателя

Основные источники электропитания и материалы для панели автоматического выключателя:

  • Главный автоматический выключатель — это выключатель, который включается и выключается для управления протеканием тока. Таким образом, если возникает перегрузка из-за короткого замыкания или из-за того, что слишком много приборов работают одновременно, соответствующий автоматический выключатель автоматически отключается, чтобы перекрыть прохождение тока.Стандартные выключатели можно подразделить на следующие две категории:
  • Однополюсный выключатель — Эти однополюсные выключатели обычно рассчитаны на ток от 15 до 20 А, обычно встречаются в большинстве автоматических выключателей и могут выдерживать напряжение до 120 В.
  • Двухполюсный выключатель — Эти полюсные выключатели доступны с разной силой тока и могут выдерживать напряжение 240 вольт. Двухполюсные выключатели предназначены для крупной бытовой техники, такой как кондиционеры, водонагреватели, стиральные машины и плиты.
  • Прерыватели цепи от дугового замыкания — Это автоматические выключатели специального назначения, разработанные для дополнительной защиты от электрического пожара и поражения электрическим током.
  • Субпанели — субпанели представляют собой небольшие блоки выключателей , предназначенные для обслуживания большего количества цепей, когда у вас нет места для размещения новых цепей.
  • Шины — Два ряда на главной панели автоматического выключателя подключаются к шинам под напряжением. Здесь ток течет от главного выключателя к разветвительным цепям и достигает розетки.

Различия между размерами коробки выключателя

В идеале в большинстве домов должны быть коробки автоматических выключателей на 100 или 200 ампер, в зависимости от количества электроэнергии, которое требуется панели, и количества цепей, добавленных к главной панели автоматического выключателя.

Итак, когда кому-то нужен автоматический выключатель большего размера, они могут иметь в виду усилители или количество цепей.

Предупреждающие знаки для замены коробки выключателя

В идеале долговечности и надежности коробки выключателя должно хватить на 25-30 лет, но вам может потребоваться заменить ее раньше, если вы заметите любой из следующих признаков:

  • Автоматический выключатель постоянно срабатывает
  • Автоматический выключатель не сбрасывается
  • Перегрев источников электропитания и материалов
  • Запах гари в щите выключателя
  • Физическое повреждение электроснабжения и материалов

Напоминания о безопасности для домовладельцев

Если вы проверяете панель автоматического выключателя в какой-либо момент, это, вероятно, связано с проблемами с электричеством или с отключением питания.Но прежде чем приступить к проекту своими руками, имейте в виду следующие моменты:

  • Включите и выключите переключатель и проверьте различные области вашего дома, контролируемые главным выключателем.
  • Всегда работайте сухими руками и на сухой поверхности
  • Избегайте повторного сброса отключения питания, если автоматический выключатель не сбрасывает
  • Не прикасайтесь к поврежденной и оголенной проводке и не пытайтесь устранить ее, всегда вызывайте лицензированного и сертифицированного электрика!

Если вы часто сталкиваетесь с проблемами, связанными с панелью автоматического выключателя, переключитесь на наши высококачественные, надежные и долговечные автоматические выключатели, которые обеспечат вам долгое спокойствие.Позвоните нам по телефону 1.800.458.9600.

D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет. Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния. Он хранит обширный инвентарь электрических разъемов, кабелепроводов, автоматических выключателей, распределительных коробок, проводов, предохранительных выключателей и т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *