Однофазный двигатель переменного тока схема подключения: Схемы подключения электродвигателей к сети переменного тока 220 вольт

Содержание

Схемы подключения электродвигателей к сети переменного тока 220 вольт

Для того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.

Принцип действия

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций.

Другими словами, стрелка равна векторной сумме своих теней.

Двухфазный синхронный электродвигатель

Расположим на статоре две обмотки под углом в 90 градусов, то есть взаимно перпендикулярно. Подадим в них синусоидальный переменный ток. Фазы токов сдвинем на 90 градусов. Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Суммарный вектор будет вращаться подобно часовой стрелке, делая один полный оборот за период частоты переменного тока.

У нас получился двухфазный синхронный электродвигатель. Откуда взять токи, сдвинутые по фазе для питания обмоток? Наверное, не всем известно, что вначале распределительные сети переменного тока были двухфазными. И лишь позднее, не без борьбы, уступили место трехфазным. Если бы не уступили, то наш двухфазный электромотор можно было подключить напрямую к двум фазам.

Но победили трехфазные сети, для которых были разработаны трехфазные электродвигатели. А двухфазные электромоторы нашли свое применение в однофазных сетях в виде конденсаторных двигателей.

Трехфазный синхронный двигатель

Современные распределительные сети переменного тока выполнены по трехфазной схеме.

  • По сети передаются сразу три синусоиды со сдвигом фаз на треть периода или на 120 градусов относительно друг друга.
  • Трехфазный двигатель отличается от двухфазного тем, что у него не две, а три обмотки на статоре, повернутых на 120 градусов.
  • Три катушки, подключенные к трем фазам, создают в сумме вращающееся магнитное поле, которое поворачивает ротор.

Трехфазный асинхронный двигатель

Ток в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.

  1. В момент старта ротор неподвижен, а поле статора вращается.
  2. Поле в контуре ротора меняется, наводя электрический ток.
  3. Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
  4. В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
  5. Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.

У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.

Однофазный асинхронный электродвигатель

Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.

На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.

Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.

Попутный вектор будет тянуть ротор за собой, встречный — тормозить.

Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.

Схема включения

Возможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.

В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.

При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.

Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.

Подсоединение к однофазной сети

Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.

Подключение на 220 вольт

В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Для получения сдвига фаз между обмотками включается рабочий конденсатор, поэтому двухфазные двигатели называют еще конденсаторными.

Емкость рабочего конденсатора рассчитывается по формулам для номинального рабочего режима. Но при отличии режима от номинального, например, при пуске баланс обмоток нарушается. Для обеспечения пускового режима на время старта и разгона параллельно рабочему подключается дополнительный пусковой конденсатор, который должен отключаться при выходе на номинальные обороты.

Как включить однофазный асинхронный двигатель

Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

однофазные и трёхфазные электродвигатели, возможность подключить

Принципом работы любого электрического двигателя является способность трансформировать электрическую энергию в механическую. Независимо от конструкции, каждая электрическая машина устроена одинаково: в неподвижной части (статор или индуктор) вращается подвижная часть (ротор или якорь). Для продолжительной бесперебойной эксплуатации оборудования необходимо правильное подключение электродвигателя.

Основные разновидности

Электрические двигатели обладают рядом очевидных достоинств. Они гораздо меньше по размеру, чем их тепловые аналоги идентичной мощности. Поэтому они отлично подходят для размещения в общественном электротранспорте или на заводских станках. Во время работы они не вредят окружающей среде выделением продуктов распада и паровыми испарениями.

Электрические двигатели можно разделить на две основных группы:

  1. Двигатели постоянного тока. Применяются для регулируемых электроприводов с эксплуатационными показателями высокого качества, такими как готовность к перезагрузке и вращательная равномерность. Ими оснащают вспомогательные агрегаты экскаваторов, полимерного оборудования, бурильных станков. Электродвигатели массово применяются в электротранспорте. Преобразователи постоянного тока дополнительно подразделяются на коллекторные и вентильные.
  2. Двигатели переменного тока. Являются более дешевыми и долговечными, с простым и надёжным конструкторским решением. Подавляющее большинство бытовой домашней техники укомплектовано этими электродвигателями. В промышленности они применяются в заводских станках, вентиляторах, компрессорах, насосах, лебёдках для поднятия и перемещения груза. По принципу работы эти механизмы делятся на синхронные и асинхронные.

Способы подключения

Электрические двигатели любой конструкции устроены одинаково. В статичной обмотке (статоре) осуществляется вращение ротора. В нём происходит возбуждение магнитного поля, отталкивающее его полюсы от статора. Бесперебойная работа этой конструкции обусловлена правильным подключением электродвигателя, зависящим от используемого вида.

Однофазный асинхронный

Этот двигатель получил такое название потому, что у него всего одна рабочая обмотка. Его мощность может составлять от пяти до десяти киловатт. Рабочая и пусковая обмотки располагаются между собой под прямым углом.

К цепи необходимо подключить фазовращающий элемент. Такая схема подключения однофазного электродвигателя с конденсатором отличается оптимальными пусковыми свойствами. Используя конденсатор,

электрический двигатель может быть оснащен следующими видами этого двухполюсника:

  • рабочим;
  • пусковым;
  • рабочим и пусковым.

На практике чаще всего применяется пусковой конденсатор. Применить этот вариант можно, используя реле времени или замкнув электрическую цепь через пусковую кнопку.

В случае выбора схемы подключения электродвигателя 220 В через конденсатор пусковые характеристики заметно ухудшаются. Третий вариант с пусковым и рабочим двухполюсником считается промежуточным.

Коллекторный вариант

Универсальность этого двигателя заключается в том, что он имеет возможность получать энергию от преобразователей переменной или постоянной разновидности тока. Он находит применение в швейных или стиральных машинах, бытовых электрических инструментах.

Однофазные коллекторные двигатели отличаются такими недостатками:

  1. Сложность ремонтных работ, невозможность их самостоятельного проведения.
  2. Высокий уровень шума.
  3. Сложное управление.
  4. Высокая стоимость.

Сначала необходимо убедиться, что параметры электрической сети соответствуют допустимым напряжению и частоте, указанным на корпусе электродвигателя. Система должна быть предварительно обесточена.

Для подключения коллекторного двигателя следует последовательно соединить статор и якорь. Клеммы 2 и 3 необходимо соединить, а 1 и 4 замкнуть в цепь 220 В. Включение без регулятора перепада давления может спровоцировать образование пускового тока значительной мощности, что приведёт к искрению в коллекторе.

Также стоит рассмотреть схему подключения электродвигателя через магнитный пускатель:

  1. Следует удостовериться, что контактная система пускателя выдержит эксплуатационные условия электрического двигателя. Есть восемь категорий величины нагрузочного тока от 6,3 А до 250 A. Величина в этом случае обозначает силу тока, которую в состоянии пропустить через рабочие контакты электромагнитный пускатель.
  2. Катушка управления может быть рассчитана на 36 В, 220 В, 380 В. Следует выбрать вариант 220 вольт.
  3. После сбора схемы электромагнитного пускателя следует подключить силовую часть. На выходе силовых контактов происходит включение электрического двигателя, параллельно присоединяется вход на 220 вольт.
  4. Затем следует подключить кнопки «Стоп» и «Пуск».
  5. На второй вывод электромагнитного пускателя необходимо присоединить «ноль».

Подключение «звездой»

Такой способ подходит для схемы подключения трёхфазного электродвигателя на 380 В. К началу обмоток (С 1, С 2, С 3) подсоединяются фазные проводники (А, В, С) через аппарат коммутации. Концы обмоток необходимо совместить в одной точке.

Такая схема электродвигателя не позволит развить всю его мощность, потому что на каждой обмотке напряжение будет равняться 220 В. Возможность подключить электрический двигатель по схеме «звезда» подтверждается на табличке символом Y.

Эту схема подключения двигателя можно без труда различить в клеммной коробке из-за перемычки, расположенной посреди выводов обмоток.

Соединение «треугольник»

Чтобы трёхфазная электромашина смогла развить максимально предусмотренную мощность, следует применять схему подключения асинхронного двигателя способом «треугольник».

Выводы обмоток необходимо соединить в следующем порядке:

  • С 2 с С 4;
  • С 3 с С 5;
  • С 6 с С 1.

Между проводами в трёхфазных сетях линейное напряжение будет равняться 380 В. С таким вариантом подключения может не справиться проводка, потому что она способствует возникновению пусковых токов. Такое соединение возможно в случае наличия на табличке двигателя значка Δ.

Для полного понимания того, как подключить электродвигатель с 3 проводами, следует знать о комбинированном подключении. В таком случае сперва применяется схема соединения «звездой», затем в рабочем режиме обмотки переключается на «треугольник».

Всегда нужно помнить в процессе работы с электрическими приборами о строгом соблюдении правил техники безопасности. Все действия необходимо производить лишь в режиме обесточенного оборудования.

Подключение однофазного двигателя: типы, различия, инструкция, подбор

Вначале выясним тип двигателя. Не всегда решим вопрос однозначно. Внешний вид мало говорит, шильдик старого двигателя способен не соответствовать реальной начинке агрегата. Предлагаем кратко рассмотреть, какие асинхронные и коллекторные двигатели выпускает промышленность. Расскажем отличия эксплуатации, ключевых свойств, внешних и внутренних. Обсудим подключение однофазного двигателя к сети переменного тока.

Коллекторные vs асинхронные двигатели

Вопрос – коллекторный двигатель или асинхронный – решаем первоочередно. Процесс несложный. Коллектором называется барабан, разделенный медными секциями, формой близкой прямоугольной, сделанными из меди. Формирует токосъемник, в коллекторных двигателях ротор всегда питается электрическим током. Постоянным, переменным – поле создается приложенным напряжением.

Коллекторный двигатель

Коллекторный двигатель содержит минимум две щетки. Трехфазные встретим редко. Сведения о таких агрегатах описаны литературой середины прошлого века. Применялись коллекторные трехфазные двигатели, регулируя скорость вращения вала в широких пределах. Мотор указанного типа снабжен щетками, медным барабаном, разделенным секциями. Пропустить признак и невооруженным глазом затруднительно. Примеры коллекторных двигателей:

  1. Пылесос, стиральная машина.
  2. Болгарка, дрель, электрический ручной инструмент.

Коллекторные двигатели широко используются, обеспечивая сравнительно простой реверс, реализуемый переменой коммутации обмоток. Скорость регулируется изменением угла отсечки питающего напряжения, либо амплитуды. К общим недостаткам коллекторных двигателей относятся:

  • Шумность. Трение щетками барабана неспособно происходить бесшумно. При переходе секцией идет искрение. Эффект вызывает помехи радиочастотного диапазона, издается сонм посторонних звуков. Коллекторные двигатели сравнительно шумные. Потрудитесь вспомнить пылесос. Стиральная машина, выполняя режим стирки работает не так громко? Низкие обороты коллекторных двигателей хороши.
  • Необходимость обслуживания обуславливается наличием трущихся деталей. Токосъемник чаще загрязнен графитом. Попросту недопустимо, может замкнуть соседние секции. Грязь повышает уровень шума, прочие негативные эффекты.

Все хорошо в меру. Коллекторные двигатели позволят получить заданную мощность (крутящий момент), на старте, после разгона. Сравнительно просто регулировать обороты. Названа причина увлечения бытовой техники коллекторными разновидностями, асинхронные двигатели выступают сердцем оборудования, обладающего повышенными требованиями к уровню звукового давления. Вентиляторы, вытяжки. Серьезные нагрузки потребуют внесения серьезных конструктивных изменений. Повышаются стоимость, размеры, сложность, делая невыгодным изготовление.

Коллекторный двигатель отличается наличием… коллектора. Даже если нельзя увидеть снаружи (скрыт кожухом), заметим непременные графитовые щетки, прижатые пружинками. Деталь требует замены со временем, поможет коллекторный двигатель от асинхронного отличить.

Однофазные и трехфазные д0вигатели асинхронного типа

Договорились – трехфазные коллекторные двигатели достать сложно, текущий раздел речь ведет касательно асинхронных машин. Разновидности перечислим:

  1. Трехфазные асинхронные двигатели снабжены числом выводов три-шесть рабочих обмоток за вычетом различных предохранителей, внутренних реле, разнообразных датчиков. Катушки статора внутри объединяются звездой, делая невозможным напрямую включение в однофазную сеть.
  2. Однофазные двигатели, снабженные пусковой обмоткой, помимо прочего снабжаются парой контактов, ведущих к концевому центробежному выключателю. Миниатюрное устройство обрывает цепь, когда вал раскручен. Пусковая обмотка катализирует начальный этап. Дальнейшим действием будет мешать, снижая КПД двигателя. Принято конструкцию называть бифилярной. Пусковая обмотка наматывается двойным проводом, снижая реактивное сопротивление. Помогает уменьшить емкость конденсатора – критично. Ярким примером однофазных двигателей асинхронного типа с пусковой обмоткой выступают компрессоры бытовых холодильников.
  3. Конденсаторная обмотка, отличаясь от пусковой, работает непрерывно. Двигатели найдем внутри напольных вентиляторов. Конденсатор дает сдвиг фаз 90 градусов, позволяя выбрать направление вращения, поддержать нужную форму электромагнитного поля внутри ротора. Типично на корпусе двигателя конденсатор крепится.

    Трехфазные асинхронные двигатели

  4. Мелкие асинхронные двигатели, применяемые вытяжками, вентиляторами, способны запускаться без конденсатора вовсе. Начальное движение образуется махом лопастей, либо искривлением проводки (бороздок) ротора в нужном направлении.

Научимся, как отличить однофазные двигатели асинхронного типа от трехфазных. В последнем случае внутри всегда имеется три равноценных обмотки. Поэтому можно найти три пары контактов, которые при исследовании тестером дают одинаковое сопротивление. Например, 9 Ом. Если обмотки объединены звездой внутри, выводов с одинаковым сопротивлением будет три. Из них любая пара дает идентичные показания, отображаемые экраном мультиметра. Сопротивление каждый раз равно двум обмоткам.

Поскольку ток должен выходить, иногда трехфазный двигатель имеет вывод нейтрали. Центр звезды, с каждым из трех других проводов дает идентичное сопротивление, вдвое меньшее, нежели демонстрирует попарная прозвонка. Указанные выше симптомы говорят красноречиво: двигатель трёхфазный, теме сегодняшнего разговора чуждый.

Рассматриваемые рубрикой моторы обмоток содержат две. Одна пусковая, либо конденсаторная (вспомогательная). Выводов обычно три-четыре. Отсутствуй украшающий корпус конденсатор, можно попробовать рассуждать, озадачиваясь предназначением контактов следующим образом:

  1. Выводов четыре штуки – нужно измерить сопротивление. Обычно звонятся попарно. Сопротивление ниже – нашли основную обмотку, подключаемую к сети 230 вольт без конденсатора. Полярность не играет роли, направление вращения задается способом включения вспомогательной обмотки, коммутацией катушек. Проще говоря, осуществите подключение однофазного электродвигателя характерного типа с одной лишь основной обмоткой – в начальный период времени вал стоит стоймя. Куда раскрутишь, туда пойдет вращение. Остерегайтесь производить старт рукой – поломает.

    Устройство асинхронного двигателя

  2. Видим три вывода. Внутри концы катушек соединены, образуя звезду. Подаётся нейтраль (схемный нуль). Касаемо двух других выводов, сопротивление попарное будет наибольшим (равняется обеим обмоткам, включенным последовательно). Самое маленькое значение, как прежде, будет рабочей обмотки, фазу пусковой проходит, минуя конденсатор. Обеспечит сдвиг в нужную сторону. Обычно такой двигатель вращается однонаправленно, нельзя физически изменить полярность включения емкости. Однако существуют сведения (проверим эпюры в другой раз): питая рабочую катушку напряжением через конденсатор, пусковую включив напрямую, выполним реверс. Возможность подключить электродвигатель 3-проводной, реализуя обратное вращение, литературой опускается.

Различение типов однофазных двигателей на практике

Научимся, как отличить бифилярный двигатель от конденсаторного. Следует сказать, разница чисто номинальная. Схема подключения однофазного двигателя схожа. Бифилярная обмотка не предназначена работать постоянно. Будет мешать, снижать КПД. Поэтому обрывается после набора оборотов пускозащитным реле (присуще бытовым холодильникам), либо центробежными выключателями. Считается, пусковая обмотка работает несколько секунд. По общепринятым нормам, обеспечит запуск 30 раз в час длительностью 3 секунды каждый. Дальше витки могут перегреться (сгореть). Причина, ограничивающая нахождение пусковой обмотки под напряжением.

Разница номинальная, но профессионалы отмечают любопытную особенность, по которой судят, находится перед нами бифилярный, либо конденсаторный двигатель. Сопротивление вспомогательной обмотки. Отличается номиналом от рабочей более чем в 2 раза, скорее всего, двигатель бифилярный. Соответственно, обмотка пусковая. Конденсаторный двигатель работает, пользуясь услугами двух катушек. Обе постоянно находятся под напряжением.

Однофазный асинхронный двигатель

Тест нужно проводить осторожно, при отсутствии термопредохранителей, других средств защиты пусковая обмотка может сгореть. Придется вал раскручивать вручную, явно нелегкая задачка. Иногда целесообразно подключение однофазного асинхронного двигателя к однофазной сети выполнить, используя аналогичную схему, как сделано в предшествующем оборудовании. Рядовой холодильник снабжен пускозащитным реле, отдельная тема разговора. Параметры устройства тесно связаны с типом используемого двигателя, взаимная замена возможна далеко не в каждом случае (нарушение простого правила может вызвать поломку).

Упомянем дважды: выводов обмоток может быть три-четыре. Число неинформативно. Допустима пара контактов термопредохранителя. Плюс описанное выше, включая центробежный выключатель. В случае при прозвонке сопротивление либо мало, либо наоборот – фиксируем разрыв. Кстати, не забудьте при определении сопротивления каждый конец катушки пробовать на корпус. Изоляция стандартно не ниже 20 МОм. В противном случае стоит задуматься о наличии пробоя. Также допускаем, что трехфазный двигатель, имеющий внутреннюю коммутацию обмоток по типу звезды, может иметь выход нейтрали на корпус. В этом случае двигатель требует непременного заземления, под которую предусматривается клемма (но более вероятно, что мотор просто вышел из строя из-за пробоя изоляции).

Как подобрать конденсатор для пуска однофазного двигателя

Уже рассказывали, как подобрать конденсатор для пуска трёхфазного двигателя, но методика в нашем случае не годится. Любители рекомендуют произвести попытку входа в так называемый резонанс. При этом потребление агрегата на 9 кВт составит порядка (!) 100 Вт. Это не значит, что вал потянет полную нагрузку, но в холостом режиме потреблением станет минимальным. Как подключить электродвигатель этим способом.

Любители рекомендуют ориентироваться на потребляемый ток. При оптимальном значении емкости мощность станет минимальной. Оценить потребляемый ток можно при помощи китайского мультиметра. А так, подключение однофазного двигателя с пусковой обмоткой выполняют, руководствуясь электрической схемой, указанной на корпусе. Там приведены, например, сведения:

  1. Цвет кембрика определённой обмотки.
  2. Электрическая схема коммутации для цепи переменного тока.
  3. Номинал используемой емкости.

Итак, если брать однофазный асинхронный двигатель, схема подключения чаще указана на корпусе.

Двигатель Однофазный Переменного Тока: Принцип Работы

Простое и крайне надежное устройство

Любой электрический двигатель – это устройство, способное преобразовывать электрическую энергию в кинетическую, то есть энергию вращения, которая по цепям передается на ведомые устройства. Применяются электрические двигатели сегодня практически везде. Эти устройства, которые практически не изменились за последние 150 лет, можно встретить даже в зубных щетках.

Сегодня мы поговорим с вами про электродвигатели переменного тока однофазные, узнаем, как они устроены и за счет каких сил приводятся в движение.

Основная информация

Синхронный однофазный двигатель переменного тока работает от общественной сети

Итак, особенностью однофазного двигателя является то, что он способен запитываться от стандартной электрической сети с частотой 50 Гц и напряжением 220 В.

  • Ставят такие электромоторы в основном в устройствах небольшой мощности, так как по эффективности они существенно уступают двухфазным и трехфазным аналогам.
  • Мощность данных агрегатов варьируется от 5 Вт до 10 кВт.
  • Однофазная схема подключения двигателя существенно влияет на его КПД, который приблизительно равен 70% от показателей такого же по мощности двигателя, но трехфазного. Также у них меньше пусковой момент, а перегрузочная способность выше.

Электрический двигатель в разрезе

  • На самом деле, если разобрать строение такого двигателя, то он будет иметь 2 фазы, но так как задействуется, фактически, лишь одна из них, то и называют его однофазным.
  • Строение мотор имеет самое что ни наесть классическое – подвижная часть (ротор или якорь) и неподвижная часть (статор).
  • Вращение подвижных частей двигателя происходит за счет взаимодействия магнитных полей – подробнее об этом чуть дальше.
  • Несомненным плюсом такого мотора можно считать простую и надежную конструкцию с короткозамкнутым ротором.
  • А главным минусом можно посчитать неспособность самостоятельно выработать магнитное поле, что не позволяет ему самостоятельно запускаться при подключении к сети питания.
  • Считается, что для того чтобы ротор пришел в движение требуется минимум 2 обмотки, а также смещение одной относительно второй на определенный градус.

Асинхронный двигатель переменного тока

  • Если сопоставить все эти моменты, то можно понять следующее.
  • На статоре однофазного электромотора располагается пусковая обмотка, которая смещена по отношению к рабочей, основной обмотке на 90 градусов.
  • В цепь, питающую обмотку, включаю фазосдвигающее устройство – конденсаторы, катушки индуктивности, резисторы активного типа.
  • То есть, фактически мы говорим про те же моторы двух- и трехфазного типа, только сдвиг фазы достигается не за счет подключения, а за счет схем согласования.

Принцип действия однофазного двигателя

Однофазный синхронный двигатель переменного тока

Теперь давайте попробуем систематизировать то, что мы понаписали в предыдущей главе, чтобы принцип работы таких устройств стал понятен каждому.

Как работает асинхронный электродвигатель однофазный

  • Итак, при подключении питания, ток начинает бежать по обмоткам статора. Движение тока порождаем пульсирующее магнитное поле. Почему пульсирующее, да потому что ток в общественных сетях имеет частоту в 50 Гц, то есть за секунду 50 раз меняет направление своего движения. Соответственно меняются и параметры магнитного поля
  • Мы все знаем про такое явление, как электромагнитная индукция. Если кто-то не знает, то бегом читать – вкратце, это явление порождает электрический ток в проводнике, который перемещается поперек магнитного поля, причем нет никакой разницы, что будет двигаться – проводник или поле.
  • Если устройство не будет иметь пусковых механизмов, то ротор останется неподвижным, так как в нем до сих пор нет тока, а значит и магнитного поля, а магнитные поля от тока в статора равнозначны, и тянут, так сказать, в разных направлениях, как лебедь, рак и щука.
  • Но если ротору дать толчок в любую из сторон, в нем моментально начнет расти электродвижущая сила (ЭДС), которая начнет генерировать свое магнитное поле. В результате взаимодействия этих полей двигатель продолжит вращаться в туже сторону, несмотря на то, что основное магнитное поле постоянно меняет свое направление.

Однофазный коллекторный электродвигатель переменного тока – принцип работы

  • Заставляет сдвинуться с места ротор пусковая обмотка, которую мы уже упоминали. Точнее делает это результирующее магнитное поле от основной и пусковой обмоток.
  • Эта обмотка требует включения только при пуске мотора.

Интересно знать! В маломощных моторах пусковая обмотка является короткозамкнутой.

  • Момент включения пусковой обмотки связан с пусковой кнопкой – обычно ее необходимо удерживать на протяжении нескольких секунд, пока двигатель не начнет вращаться с нормальной скоростью.
  • Когда контакт на кнопке размыкается, двигатель переходит полностью в однофазный режим.
  • Важно помнить, что пусковая фаза не предназначается для долгой работы – обычно время ее активного состояния составляет около 3 секунд. Если попытаться превысить данное значение обмотка начнет перегреваться, что может привести к выходу элемента из строя.
  • Становится понятным, что ручной контроль за пуском двигателя неэффективен и малонадежен, поэтому данный процесс в современных устройствах автоматизирован. В них устанавливаются тепловые реле и центробежные выключатели.
  • Первый элемент контролирует нагрев обеих обмоток и отключает питание, если температура достигает критического значения.
  • Второй отключает питание пусковой фазы, как только ротор разгонится до нужных оборотов.

Подключение двигателя

Как подключается коллекторный однофазный электродвигатель переменного тока

Итак, мы уже поняли, что для работы такому мотору требуется всего одна фаза на 220 В, то есть включается он в обыкновенную розетку, что, собственно, и делает эти устройства такими популярными несмотря на низкий КПД и прочие недостатки.

Интересно знать! Практически все бытовые приборы оборудованы именно такими двигателями.

Различные варианты подключения

  • Однофазные двигатели переменного тока по подключению делят на три типа: вариант с пусковой обмоткой и рабочим конденсатором.
  • В первом пусковая обмотка запитана через конденсатор только во время старта – собственно, его мы описали в предыдущей главе.
  • Во втором она подключена через конденсатор постоянно.
  • В третьем вместо конденсатора используется сопротивление.

Коллекторный однофазный двигатель переменного тока от стиральной машины

  • Для последнего типа подключения может использоваться пусковой резистор, который подключается к пусковой обмотке последовательно. За счет этого удается получить сдвиг фаз на 30 градусов, чего вполне хватает для раскрутки двигателя.
  • Также дополнительная обмотка может сама по себе иметь высокое активное сопротивление.
  • Сдвиг фаз также может быть получен за счет того, что пусковая фаза будет иметь высокое сопротивление и меньшую индуктивность.

Конденсаторный пуск имеет следующие особенности:

  • Чтобы достигнуть максимального значения пускового момента, достаточного для старта двигателя, нужно вращающееся круговое магнитное поле. Таковое возникает, когда обмотки сдвинуты относительно друг друга на 90 градусов – сразу становится понятно, что ни резистор, ни дроссель не смогут задать такое значение. А вот если правильно подобрать емкость конденсатора – ну вы поняли…
  • Конденсатор необходимо подбирать по потребляемому току.

Конденсатор и переменный ток

Интересно знать! На нашем сайте есть очень познавательная статья про то, как конденсаторы ведут себя в цепи переменного тока. Если интересно, обязательно ознакомьтесь.

Кстати, если вы пытаетесь самостоятельно подключить такой двигатель в сеть, но не знаете, какие выводы к какой обмотке относятся, просто замерьте их сопротивление. Для основной оно составит где-то 12 Ом, а для пусковой – 30.

Строение асинхронного однофазного двигателя

Однофазный коллекторный двигатель переменного тока

Итак, мы  вами в первой части статьи разобрали общие понятия об однофазных двигателях, принципе их работы и подключении. Такой информации хватило бы для поверхностного изучения, но нас такой подход не совсем устраивает. Для любителей технических подробностей, давайте разберем теперь все детальнее.

Асинхронный двигатель

Электрические моторы бывают синхронными и асинхронными. Разница между ними состоит в том, что в синхронном, скорость вращения якоря совпадает с вращением магнитного поля, а в асинхронном ротор несколько отстает.

  • Последний вариант является самым распространенным, так как имеет более простую конструкцию и очень надежен. Синхронные применяются лишь в тех сферах, где очень важен контроль за оборотами двигателя.
  • Вы уже, наверное, обратили внимание на то, что словом фаза называются разные понятия – и количество питающих проводов, и обмотки на статоре и сдвиг по углам. И мы даже сказали, что однофазные двигатели, фактически имеют две фазы, но называются они таковыми именно по количеству питающих проводов.
  • Мы также писали, что мотор имеет подвижную и неподвижную части. Давайте разберем их строение подробнее.

Коллекторные электродвигатели переменного тока однофазные

  • Ротор агрегата представляет собой вал, который держится в корпусе двигателя при помощи подшипников вращения. За счет них же он свободно крутится вокруг своей оси. Строение этого элемента будет отличаться в зависимости от того является двигатель коллекторным или бесколлекторным. Давайте начнем со второго.
  • На валу бесколлекторного фазного ротора закреплен магнитопровод, который набирается из шихтованных стальных пластин.
  • Снаружи магнитопровода имеются пазы, в которых находятся стержни обмоток – обычно из меди.

Двигатель с ротором фазного типа

  • С концов стержни соединяются с кольцами, которые накоротко их замыкают – их называют замыкающими кольцами.

Строение фазного ротора

  • Внутри данной обмотки будет течь ток, который индуктируется магнитным полем статора – никаких внешних подключений он не имеет.
  • Магнитопровод служит для лучшего прохождения магнитного поля, которое создается в роторе.
  • Для таких устройств характерна высокая надежность, так как они не имеют трущихся деталей. Управление скоростью вращения двигателя осуществляется только за счет тока на основной обмотке статора.
  • Коллекторный двигатель переменного тока однофазный по своему строению мало чем отличается от ротора двигателя постоянного тока. Собственно, такие двигатели являются универсальными и могут запитываться как переменным, так и постоянным током.
  • Фазы ротора подключаются к питающей сети через коллектор, который контактирует со щетками, которые в свою очередь уже соединяются с питающей цепью.
  • Строение таких двигателей более сложное, также их надежность будет ниже, но они являются более гибкими в управлении.

На фото – статор электродвигателя

  • Статор является пассивной частью электромотора – он неподвижен и состоит из магнитопровода и обмотки.
  • Назначение этого элемента – генерирование неподвижного или вращающегося магнитного поля.
  • У однофазного двигателя от статора будет отходить четыре вывода – два для рабочей обмотки и два для пусковой. Как их отличить мы уже писали.

Помимо этих элементов двигатели имеют следующие составляющие:

  • Станина и корпус устройства, которые удерживают в себе все рабочие части и позволяют закрепить устройство на поверхности;
  • Внешняя электрическая цепь – кнопка включения, устройство регулировки оборотов, провода и устройства для шунтирования дополнительной обмотки;
  • Крыльчатка – активное охлаждение двигателя, располагается также на валу;
  • Подшипники вращения.

Что происходит в обмотках при включении

Чтобы лучше понять принцип взаимодействия магнитных полей, давайте представим, что у нашего двигателя обмотка имеет всего один виток. Провод при этом уложен в магнитопроводе так, что его части разведены на 180 градусов, то есть уложены друг напротив друга.

  • Подключаем питание, и по нашему проводу начинает течь синусоидальный или переменный ток.

Полный период синусоидального тока

  • Период синусоидального тока состоит из двух полупериодов, при которых ток двигается в разных направлениях. Именно это изображено на схеме выше.
  • Как вы можете видеть, изначально значение тока равно нулю, затем он растет, достигая пика, после чего падает до нулевой отметки и опять возрастает, но уже в другом направлении.
  • Давайте представим, что ток и магнитное поле от него замерли в какой-то точке. Представьте, что смотрите на виток сбоку – он будет похож на букву «С».
  • Ток протекает в верхней горизонтальной части обмотки влево, соответственно, в нижней – вправо. При этом ток одинаков и получается так, что создаваемое им магнитное поле противодействует друг другу. Почему ротор и находится в неподвижном состоянии.
  • Итак, ток течет, меняется его величина и направление, как и у магнитного поля, но они всегда остаются в противовесном состоянии, поэтому ротор так и продолжает стоять.

Как же создается сила, заставляющая ротор вращаться?

Инструкция по работе однофазного двигателя переменного тока

  • Как вариант можно толкнуть его рукой и этого будет достаточно, чтобы совершить пуск, но мы же говорим про техническое решение вопроса!
  • Ну ладно, мы уже знаем, что нам потребуется еще одна обмотка.
  • Обмотка сделана из более толстого провода, чтобы она смогла пропустить большие токи. Фаза тока в этой обмотке отстает от основной на 90 градусов, то есть когда ток в основной обмотке уже опустился до нуля, здесь он буден на пике (отстает на четверть периода). В итоге разница магнитных полей придает ротору первый вращающий импульс. Направление вращения зависит от полярности подключения концов пусковой обмотки.
  • Как только ротор начинает вращаться, в нем создается ЭДС.
  • Направление тока в стержнях будет противоположно направленным, так как на них воздействуют разные магнитные поля.
  • За счет возникновения вращающего момента двигатель моментально подхватит направление вращения и начнет раскручивать ротор до достижения им максимальных оборотов. Но почему не происходит торможения, когда ток в статоре меняет свое направление на обратное?
  • Дело в том, что, по сути ничего не меняется. Просто подталкивающая вращение сила будет переходить с верхней части обмотки на нижнюю и обратно. А так как двигатель уже получил смещение в одну из сторон, а противодействующая сила может лишь уравновесить, то коэффициент ускорения будет несколько сильнее торможения.

То есть, в роторе будут наводиться токи с разной частотой, которые будут создавать моменты сил с разными направлениями, именно поэтому якорь продолжит вращаться в том же направлении.

На этом закончим наш материал. Мы узнали, как устроены электродвигатели переменного тока однофазные, если тема вам интересно, то посмотрите следующее увлекательное видео.

звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
— зачем шесть контактов в двигателе?
— а почему контактов всего три?
— что такое «звезда» и «треугольник»?
— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
— а как измерить ток в обмотках?
— что такое пускатель?
и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.


Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.


Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.


Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):


Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).


Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):



Двигатель для однофазной сети 220В
(~ 1, 220В)

Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)

Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)

Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)


3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
— использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

— использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:


При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса


Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).


Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

— регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
— при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.


Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).


Технический директор
ООО «Насосы Ампика»
Моисеев Юрий.


Схема подключения электродвигателя, подключение трехфазного двигателя в однофазную сеть

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД) и другие инженерно технические системы (ИТС)

Схема подключения электродвигателя во многом определяется условиями его эксплуатации.

Например, подключение «звездой» обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением «треугольником».

Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).

На рисунке 1 представлены две схемы соединения обмоток двигателя.

  1. Схема соединения «звездой». Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).

    Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.

  2. Соединение обмоток электродвигателя «треугольником». При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.

    В отличие от соединения «звездой» эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.

  3. Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.

Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.

Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.

Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.

В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.

  1. Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
  2. Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
  3. Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.

    Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.

ПОДКЛЮЧЕНИЕ ТРЕХФАЗНОГО ДВИГАТЕЛЯ В ОДНОФАЗНУЮ СЕТЬ

Такая необходимость возникает достаточно часто. Сразу замечу — мощность электродвигателя при этом теряется.

Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100.

Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.

Наиболее простая схема приведена на рисунке 3.

В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.

Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.

Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 — 500 кОм.

По этой схеме можно подключать электродвигатели с по схеме как «треугольник» так и «звезда».

Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.

При нажатии кнопки «пуск» срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими — включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.

После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки «стоп», размыкающей цепь питания.

Катушки пускателей должны быть рассчитана на напряжение 220В.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Однофазный асинхронный электродвигатель

Дмитрий Левкин

Однофазный асинхронный электродвигатель — это асинхронный электродвигатель, который работает от электрической сети однофазного переменного тока без использования частотного преобразователя и который в основном режиме работы (после пуска) использует только одну обмотку (фазу) статора.

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Основными компонентами любого электродвигателя являются ротор и статор. Ротор — вращающаяся часть электродвигателя, статор — неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Запустить

Остановить

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Запустить

Остановить

Разложение пульсирующего магнитного потока на два вращающихся

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Запустить

Остановить

Вращающееся магнитное поле пронизывающее ротор

Ток индуцируемый в роторе переменным магнитным полем

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 — активное сопротивление стержней ротора, Ом,
  • x2обр — реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

С помощью одной фазы нельзя запустить ротор

Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки

Разное сопротивление и индуктивность обмоток

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Ёмкостной сдвиг фаз с пусковым конденсатором

Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса. Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор — короткозамкнутый типа «беличья клетка».

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.


Схемы однофазных электродвигателей

и клеммные соединения

Уважаемый г-н электрик: Где я могу найти схемы подключения однофазного электродвигателя?

Ответ: Я собрал группу схем подключения однофазных внутренних электродвигателей и клеммных соединений ниже. Внизу поста также видео о шунтирующих двигателях постоянного тока. ПРИМЕЧАНИЕ. Некоторые текстовые ссылки ниже ведут к соответствующим продуктам на Amazon, EBay и Northern Tool and Equipment .

Клеммы вращения двигателя — одно напряжение

ВРАЩЕНИЕ L1 L2
По часовой стрелке 1,5 4,8
Против часовой стрелки 1,8 4,5

Вращение двигателя — двойное напряжение, только основная обмотка

НАПРЯЖЕНИЕ ВРАЩЕНИЕ L1 L2 СОЕДИНЕНИЕ
Высокая Против часовой стрелки 1 4, 5 2 и 3 и 8
Высокая CW 1 4, 8 2 и 3 и 5
Низкая Против часовой стрелки 1, 3, 8 2, 4, 5
Низкая CW 1, 3, 5 2, 4, 8

Вращение двигателя — двойное напряжение, основная и вспомогательная обмотки

НАПРЯЖЕНИЕ ВРАЩЕНИЕ L1 L2 СОЕДИНЕНИЕ
Высокая Против часовой стрелки 1, 8 4, 5 2 и 3, 6 и 7
Высокая CW 1, 5 4, 8 2 и 3, 6 и 7
Низкая Против часовой стрелки 1, 3, 6, 8 2, 4, 5, 7
Низкая CW 1, 3, 5, 7 2, 4, 6, 8

Подключения переключателя вспомогательной обмотки должны быть выполнены таким образом, чтобы обе вспомогательные обмотки были обесточены при размыкании переключателя.

СХЕМА ЭЛЕКТРОДВИГАТЕЛЯ

Внутренние электрические схемы электродвигателей малой и малой мощности

Индукция с разделенной фазой
Постоянно подключенный конденсатор с разделенной фазой
Запуск с разделенным фазным конденсатором
Работа с разделенным фазным конденсатором
Запуск с другой разделенной фазой с конденсатором Отталкивание
Индукция начала отталкивания (обратимая)
Затененный полюс
Каркасный затененный полюс
Универсальный

Асинхронный электродвигатель с расщепленной фазой.

Асинхронный электродвигатель с расщепленной фазой оснащен короткозамкнутым ротором для работы с постоянной скоростью и имеет пусковую обмотку с высоким сопротивлением, которая физически смещена в статоре от основной обмотки.

Последовательно с пусковой обмоткой находится центробежный пусковой выключатель, который размыкает пусковую цепь, когда двигатель достигает приблизительно 75-80 процентов синхронной скорости. Функция пускового выключателя заключается в том, чтобы предотвратить потребление двигателем чрезмерного тока, а также защитить пусковую обмотку от чрезмерного нагрева.Двигатель может быть запущен в любом направлении путем реверсирования основной или вспомогательной (пусковой) обмотки.

Эти двигатели подходят для масляных горелок, воздуходувок, рабочих машин, полировальных машин, шлифовальных машин , и т. Д.

Электродвигатель с постоянно подключенным конденсатором с расщепленной фазой.

Электродвигатель с постоянно подключенным конденсатором с расщепленной фазой также имеет короткозамкнутый ротор с основной и пусковой обмотками. Конденсатор постоянно включен последовательно со вспомогательной обмоткой.Двигатели этого типа запускаются и работают с фиксированным значением емкости последовательно с пусковой обмоткой.

Двигатель получает свой пусковой крутящий момент от вращающегося магнитного поля, создаваемого двумя физически смещенными обмотками статора. Основная обмотка подключается непосредственно к линии, а вспомогательная или пусковая обмотка подключается к линии через конденсатор , обеспечивающий электрическое смещение фаз.

Этот двигатель подходит для приводов с прямым подключением, требующих низкого пускового момента, таких как вентиляторы, нагнетатели, некоторые насосы и т. Д.

Электродвигатель запуска конденсатора с расщепленной фазой.

Электродвигатель с пусковым механизмом с разделением фаз с конденсатором можно определить как двигатель с разделенной фазой, в котором конденсатор включен последовательно со вспомогательной обмоткой. Вспомогательная цепь размыкается центробежным переключателем, когда двигатель достигает 70-80 процентов синхронной скорости.

Также известен как асинхронный двигатель с конденсаторным пуском. Ротор представляет собой беличью клетку. Основная обмотка подключается непосредственно через линию, в то время как вспомогательная или пусковая обмотка подключается через конденсатор, который может быть включен в схему через трансформатор с обмоткой соответствующей конструкции и конденсатором таких значений, что две обмотки будут разнесены примерно на 90 градусов. .

Двигатели этого типа подходят для систем кондиционирования и охлаждения, вентиляторы с ременным приводом, и т. Д.

Электродвигатель, работающий через конденсатор, разделенный фазой

Электродвигатель, работающий через конденсатор, разделенный фазой. A Конденсатор с разделенной фазой Электродвигатель рабочего типа имеет рабочий конденсатор, постоянно включенный последовательно со вспомогательной обмоткой. Пусковой конденсатор подключен параллельно рабочему конденсатору только во время пускового периода. Двигатель запускается при замкнутом центробежном выключателе.

Northern Tool продает различные электродвигатели и аксессуары

Когда двигатель достигает 70–80 процентов синхронной скорости, пусковой выключатель размыкается и отключает пусковой конденсатор. Рабочий конденсатор обычно представляет собой масляно-заполненный конденсатор с промежутками между бумагами, обычно рассчитанный на 330 В переменного тока для непрерывной работы. Они могут варьироваться от 3 до 16 микрофарад.

Пусковой конденсатор обычно электролитического типа и может находиться в диапазоне от 80 до 300 мкФ для двигателей на 110 вольт и частотой 60 Гц.

Эти двигатели подходят для применений, требующих высокого пускового момента, таких как компрессоры, нагруженные конвейеры, поршневые насосы, холодильные компрессоры и т. Д.

Другой электродвигатель, работающий на конденсаторе с расщепленной фазой.

Другой тип электродвигателя типа «Split Phase Capacitor Run » использует блок конденсаторного трансформатора и является короткозамкнутым ротором с расщепленной фазой, в котором основная и вспомогательная обмотки физически смещены в статоре. В нем используется однополюсный двухпозиционный переключатель для подачи высокого напряжения на конденсатор во время запуска.

После того, как двигатель достигнет скорости от 70 до 80 процентов синхронной, передаточный переключатель срабатывает для изменения отводов напряжения на трансформаторе. Напряжение, подаваемое на конденсатор с помощью трансформатора, может варьироваться от 600 до 800 вольт во время запуска. Для непрерывной работы выдается около 350 вольт.

Подходит для применений с высоким пусковым моментом, таких как компрессоры , нагруженные конвейеры, поршневые насосы, холодильные компрессоры и т. Д.

Асинхронный электродвигатель (реверсивный), работающий с расщепленным конденсатором.

Асинхронный электродвигатель, работающий с разделенным фазным конденсатором (реверсивный). Когда реверсивный переключатель находится в положении «B», вспомогательная обмотка становится основной обмоткой, а основная обмотка становится вспомогательной. В положении «A» обмотки работают, как показано на схеме.

В двигателях с расщепленной фазой смена обмотки заставляет двигатель работать в обратном направлении. Обе обмотки должны быть идентичны по сечению провода и количеству витков.

Используйте это, если вам нужен реверсивный двигатель конденсаторного типа с переменным номинальным током и высоким крутящим моментом.

Электродвигатель с разделенной фазой и запуском реактора.

Асинхронный электродвигатель с разделенной фазой и пуском реактора. Этот двигатель снабжен вспомогательной обмоткой, смещенной в магнитном положении относительно основной обмотки и включенной параллельно ей. Реактор снижает пусковой ток и увеличивает запаздывание по току в основной обмотке.

При примерно 75% синхронной скорости пусковой выключатель срабатывает, чтобы шунтировать реактор, отключая вспомогательную обмотку от цепи.

Это двигатель с постоянной скоростью вращения, который лучше всего подходит для легких работающих машин, таких как вентиляторы, небольшие воздуходувки, бизнес-машины, шлифовальные машины и т.д.

Щелкните здесь, чтобы просмотреть различные инструменты для работы с двигателями

Электродвигатель с однофазным конденсатором с расщепленной фазой (тип двойного напряжения).

Электродвигатель с однофазным конденсатором, разделенный фазой (тип двойного напряжения). Этот двигатель имеет две одинаковые основные обмотки, которые могут быть включены последовательно или параллельно. При параллельном включении основной обмотки напряжение в сети обычно составляет 240 Ом.Когда основные обмотки соединены последовательно, используется 120 вольт.

Вспомогательная пусковая обмотка смещена в пространстве от основной обмотки на 90 градусов. Он также имеет центробежный выключатель и пусковой конденсатор. Обмотка такого типа дает только половину пускового момента при 120 вольт, чем при подключении на 240 вольт.

Электродвигатель отталкивания.

Отталкивающий электродвигатель по определению является однофазным двигателем, который имеет обмотку статора, предназначенную для подключения к источнику энергии, и обмотку ротора, подключенную к коммутатору.Щетки и коммутаторы закорочены и расположены так, чтобы магнитная ось обмотки ротора была наклонена к магнитной оси обмотки статора.

Он имеет изменяющуюся характеристику скорости, высокий пусковой момент и умеренный пусковой ток. Благодаря низкому коэффициенту мощности, за исключением высоких скоростей, он может быть преобразован в двигатель с компенсированным отталкиванием, у которого есть еще один набор щеток, расположенный посередине между короткозамкнутым набором, и этот дополнительный набор соединен последовательно с обмотками статора.

Индукционный электродвигатель с отталкиванием (реверсивный).

Асинхронный электродвигатель с отталкивающим пуском (реверсивный) Асинхронный электродвигатель с отталкивающим пуском — это однофазный двигатель, имеющий ту же обмотку, что и отталкивающий двигатель, но при заданной скорости обмотка ротора замкнута накоротко или иным образом соединена для получения эквивалента обмотка беличьей клетки.

Этот двигатель запускается как отталкивающий двигатель, но работает как асинхронный двигатель с постоянной скоростью.Имеет однофазную обмотку с распределенным возбуждением, ось щеток которой смещена относительно оси обмотки возбуждения. Якорь имеет изолированную обмотку. Ток, индуцированный в якоре, переносится щетками и коммутатором, что приводит к высокому пусковому моменту.

Когда достигается почти синхронная скорость, коммутатор замыкается накоротко, так что якорь по своим функциям аналогичен якорю с короткозамкнутым ротором. На схеме изображен реверсивный тип, в котором две обмотки статора смещены, как показано.Реверс двигателя достигается путем перестановки соединений обмотки возбуждения.

Электродвигатель с экранированными полюсами.

Электродвигатель с экранированными полюсами — это однофазный асинхронный двигатель, снабженный вспомогательной короткозамкнутой обмоткой или обмоткой, смещенной в магнитном положении относительно основной обмотки. Используется несколько различных методов строительства, но основной принцип тот же.

Затеняющая катушка состоит из медных перемычек с низким сопротивлением, встроенных с одной стороны каждого полюса статора и используемых для обеспечения необходимого пускового момента.Когда ток увеличивается в основных катушках, в затеняющих катушках индуцируется ток, который противодействует магнитному полю, которое создается в части полюсных наконечников, которые они окружают.

Когда ток основной катушки уменьшается, ток в затеняющей катушке также уменьшается до тех пор, пока полюсные наконечники не будут намагничены равномерно. По мере того, как ток основной катушки и магнитный поток полюсного наконечника продолжают уменьшаться, ток в экранирующих катушках меняется на противоположный и стремится поддерживать магнитный поток в части полюсных наконечников.

Когда ток основной катушки падает до нуля, ток все еще течет в затеняющих катушках, создавая магнитный эффект, который заставляет катушки создавать вращающееся магнитное поле, вызывающее самозапуск двигателя.

Используется там, где требования к питанию невелики, например, в часах, приборах, фенах , маленьких вентиляторах и т. Д.

Каркасный электродвигатель с экранированными полюсами

Каркасный электродвигатель с экранированными полюсами. Электродвигатель с экранированными полюсами каркасного типа разработан для приложений, в которых требования к мощности очень малы. Цепь возбуждения с ее обмоткой построена вокруг обычного ротора с короткозамкнутым ротором и состоит из перфораций, которые поочередно уложены друг на друга, образуя перекрывающиеся соединения, таким же образом, как собираются сердечники небольших трансформаторов.

Такие двигатели могут работать только на переменном токе, они просты по конструкции, дешевы и чрезвычайно прочны и надежны. Однако их основными ограничениями являются низкий КПД и низкий пусковой и рабочий крутящий момент.

Двигатель с экранированными полюсами не является реверсивным, если на каждой стороне полюса не предусмотрены экранирующие катушки и не предусмотрены средства для размыкания одной и замыкания другой катушки. По своей сути высокое скольжение двигателя с экранированными полюсами позволяет удобно получать изменение скорости при нагрузке вентилятора, например, за счет снижения напряжения.

Ebay продает ручные пускатели двигателей

Универсальный электродвигатель.

Универсальный электродвигатель предназначен для работы от переменного или постоянного тока (AC / DC). Это двигатель с серийным заводом. Он снабжен обмоткой возбуждения на статоре, которая последовательно соединена с коммутирующей обмоткой на роторе. Обычно производится с дробными размерами в лошадиных силах.

Скорость при полной нагрузке обычно колеблется от 5000 до 10 000 об / мин, а на холостом ходу от 12 000 до 18 000 об / мин.Типичное применение — переносные инструменты, офисная техника, электрические чистящие средства, кухонная техника, швейные машины и т. Д.

Скорость универсальных двигателей можно регулировать, последовательно подключив к двигателю сопротивление соответствующего значения. Это делает его подходящим для таких приложений, как швейные машины, которые работают в диапазоне скоростей. Универсальные двигатели могут быть как компенсированными, так и некомпенсированными, причем последний тип используется только для более высоких скоростей и более низких номиналов.

Реверс этого двигателя достигается путем замены проводов щеткодержателя, при этом якорь подключен к нейтрали.В трехпроводном универсальном электродвигателе реверсивного типа с разделением последовательностей одна обмотка статора используется для получения одного направления, а другая обмотка статора — для получения другого направления, при этом в цепи одновременно находится только одна обмотка статора. Соединения якоря должны находиться в нейтральном положении, чтобы обеспечить удовлетворительную работу в обоих направлениях вращения.

РАЗМЕР РАМЫ

Ниже приведена таблица размеров корпуса двигателя, которую я нашел в старой книге.

Таблица размеров электродвигателя

Эту информацию о монтажных размерах двигателя я нашел в той же книге.

Таблица монтажных размеров электродвигателя NEMA C и J-Face.
НЕКОТОРЫЕ СВЕДЕНИЯ О ДВИГАТЕЛЯХ ПОСТОЯННОГО ТОКА Схема электрических соединений двигателя постоянного тока

Другие электрические схемы можно найти здесь .

типов однофазных асинхронных двигателей | Схема электрических соединений однофазного асинхронного двигателя

Поскольку жилые дома и многие коммерческие здания имеют только однофазное питание, однофазные асинхронные двигатели переменного тока находят множество применений.В домашних условиях стиральные и сушильные машины имеют по существу однофазный асинхронный двигатель мощностью около 1/3 лошадиных сил.

Типичный холодильный холодильник без замораживания имеет три двигателя: один является неотъемлемой частью компрессорного агрегата, один для вентилятора для циркуляции холодного воздуха и один для запуска таймера цикла размораживания.

В системах воздушного отопления имеется двигатель вентилятора. Кухонная техника, такая как блендеры и миксеры, инструменты, такие как дрели, и другие устройства могут легко иметь несколько десятков однофазных асинхронных двигателей.

Асинхронный двигатель с расщепленной фазой

На рисунке 1 показан асинхронный двигатель с расщепленной фазой. Электродвигатель с расщепленной фазой полагается исключительно на разницу в сопротивлении и реактивном сопротивлении обмоток для создания сдвига фаз.

В цепи вспомогательной обмотки есть центробежный переключатель, который размыкается, когда двигатель достигает полной скорости. Электродвигатель с расщепленной фазой характеризуется относительно низким пусковым моментом, возможно, 100% -150% от номинального момента.

РИСУНОК 1: Схема (проводка) однофазного асинхронного двигателя (SPIM) и кривая крутящего момента-скорости.

Асинхронные двигатели с конденсаторным запуском

На рисунке 2 показан асинхронный двигатель с конденсаторным запуском. Конденсаторный двигатель использует конденсатор для фазового сдвига.

Он рассчитан на обеспечение высокого пускового момента, до 300% от номинального. Конденсатор не предназначен для непрерывной работы, поэтому в этом двигателе есть центробежный выключатель для отключения вспомогательной обмотки после запуска.

РИСУНОК 2: Схема (проводка) асинхронного двигателя с конденсаторным пуском (CSIM) и кривая крутящего момента-скорости.

Однофазные двигатели по своей природе более шумные и менее плавные, чем многофазные двигатели. Поскольку существует компонент магнитного потока, вращающийся в обратном направлении, возникают пульсации крутящего момента, поэтому кривая крутящего момента-скорости на самом деле является просто представлением среднего крутящего момента.

Если мы оставим конденсатор во вспомогательной обмотке после запуска двигателя, мы сможем приблизиться к двухфазной работе и получить более плавный и тихий двигатель.

Двигатель с постоянным разделенным конденсатором

Поскольку реактивное сопротивление обмотки двигателя и конденсатора являются функциями частоты, мы можем получить истинную двухфазную работу только при одной скорости двигателя для данного конденсатора.

Двигатель с постоянным разделенным конденсатором, показанный на Рисунке 3, имеет конденсатор, рассчитанный на работу, что означает, что пусковой крутящий момент очень низкий, возможно, всего 75% от номинального крутящего момента.

РИСУНОК 3: Схема (электропроводка) двигателя с постоянным разделенным конденсатором (PSC) и кривая крутящего момента-скорости.

В реверсивном двигателе с постоянным разделенным конденсатором, показанном на рисунке 4, используются две идентичные обмотки, один конденсатор и селекторный переключатель. Селекторный переключатель используется для переключения конденсатора между двумя обмотками.

В положении переключателя 1 конденсатор помещается последовательно с обмоткой b, а в положении переключателя 2 конденсатор подключается последовательно с обмоткой a. В результате направление вращения меняется на противоположное.

РИСУНОК 4: Схема реверсивной цепи двигателя с постоянным разделенным конденсатором (проводка)

Конденсаторный пусковой конденсаторный двигатель

Для обеспечения хорошего пускового момента и хороших рабочих характеристик можно использовать два конденсатора, как показано на рисунке 5.

Один конденсатор обеспечивает высокий пусковой момент и отключается, когда двигатель достигает номинальной скорости. Другой конденсатор , меньшего размера, всегда остается в цепи. Этот тип двигателя называется конденсаторным пусковым конденсатором .

РИСУНОК 5: Схема (проводка) двигателя пускового конденсатора пускового конденсатора и кривая крутящего момента-скорости.

На рисунке 6 представлена ​​фотография асинхронного двигателя с конденсаторным пуском.Характерный выступ в верхней части двигателя — это место, где расположен конденсатор.

Асинхронный двигатель с расщепленной фазой не будет иметь горба, потому что в нем нет конденсатора. На рисунке 7 показана фотография конденсатора пробега , .

На рисунках 8 и 9 представлены фотографии ротора и статора, оборудованных центробежным переключателем. На рисунке 8 грузы на валу отклоняются, когда двигатель приближается к синхронной скорости, в результате чего шайба на конце перемещается к беличьей клетке.Это освобождает переключатель, который установлен в концевой раме двигателя, как показано на Рисунке 9.

РИСУНОК 6: Асинхронный двигатель с конденсаторным пуском (CSIM). ( Предоставлено Baldor Electric Company )

РИСУНОК 7: Рабочий конденсатор для PSC или двухконденсаторного двигателя.

РИСУНОК 8: Ротор с короткозамкнутым ротором с вращающейся частью центробежного переключателя.

РИСУНОК 9: Стационарная часть центробежного переключателя в концевом колпаке статора.

Электродвигатель с расщепленными полюсами

Другой член семейства асинхронных электродвигателей — электродвигатели с расщепленными полюсами. Обычно двигатель с экранированными полюсами представляет собой очень маленькую машину (0,05 л.с.), используемую для легко запускаемых нагрузок, таких как вентилятор.

Несмотря на то, что это не очень эффективный, это простой, дешевый и прочный аппарат. Тот факт, что это маленькая машина, как правило, компенсирует ее неэффективность. На рисунке 10 показан принцип работы двигателя с расщепленными полюсами.

Конструкция двигателя с экранированными полюсами

Часть железа статора обернута несколькими короткозамкнутыми витками медного проводника.Согласно закону Фарадея, ток в закороченных витках (затеняющей катушке) будет создавать магнитный поток, который будет противодействовать любому изменению потока через него.

Левое медное кольцо на Рисунке 10 показывает увеличение потока через кольцо. Изменение магнитного потока индуцирует ток в закороченном кольце, который противодействует изменению магнитного потока, как показано.

Кольцо справа показывает, что происходит, когда поток через кольцо уменьшается. Теперь индуцированный ток пытается поддерживать поток в кольце.В нижней половине рисунка 10 показан один тип двигателя с расщепленными полюсами. Пластины прямоугольные, с вырезом для катушки и еще одним вырезом для ротора, как показано. Катушка намотана через прямоугольное окно в стопке пластин.

РИСУНОК 10: Конструкция двигателя с экранированными полюсами и работа экранирующей вехи.

Работа двигателя с экранированными полюсами

Работа двигателя с прямоугольным экранированным полюсом показана на Рисунке 11.

Первый вид (1) показывает двигатель, когда ток увеличивается в положительном направлении, как показано на синусоиде в середине рисунка. В течение этого интервала большая часть потока проходит через центр ротора, а не через заштрихованные полюса.

В интервале секунд ток и магнитный поток уменьшаются. Таким образом, заштрихованный полюс пытается поддерживать поток, и большая часть потока проходит через заштрихованные полюса. Обратите внимание, что в результате общее направление потока изменилось с верхнего левого угла на нижний левый угол.

Процесс продолжается на видах 3 и 4, и в результате получается квази-вращающееся поле, которого достаточно для запуска и запуска двигателя. Направление вращения двигателя с экранированными полюсами можно изменить, только физически разобрав двигатель и изменив направление ротора на обратное.

РИСУНОК 11: Диаграммы магнитного потока в двигателе с расщепленными полюсами.

Главное преимущество двигателя с расщепленными полюсами заключается в том, что он очень дешевый. Многие читатели, возможно, купили в дисконтном магазине большой вентилятор с несколькими скоростями менее чем за 15 долларов.00.

Поскольку электродвигатель с расщепленными полюсами работает при больших значениях скольжения, регулирование скорости также очень дешево. Вспомните уравнение для напряжения, индуцированного в катушке:

$ {{E} _ {rms}} = 4.44fN {{\ phi} _ {\ max}} $

Управление скоростью двигателя с экранированными полюсами

напряжение, приложенное к двигателю, конечно, постоянно (или, по крайней мере, почти постоянное). Если бы количество витков в обмотке было изменено, то поток изменился бы в противоположном направлении. Таким образом, скоростью двигателя с экранированными полюсами можно управлять, изменяя количество вольт на виток обмотки статора, как показано на рисунке 12.

Регулировка скорости осуществляется с помощью отводной обмотки и селекторного переключателя, как показано на Рисунке 12 (а). Увеличение количества витков приведет к меньшему напряжению на виток и меньшему магнитному потоку; меньший поток означает меньший крутящий момент от машины, что приводит к работе с более высоким значением скольжения и более низкой скоростью.

РИСУНОК 12: Регулировка скорости двигателя с расщепленными полюсами.

Рисунок 13 — фотография ротора и статора двигателя с расщепленными полюсами. На рисунке 14 представлена ​​фотография круглого двигателя с расщепленными полюсами и шестью выступающими полюсами на статоре.

РИСУНОК 13: Ротор и статор с расщепленными полюсами.

РИСУНОК 14: Двигатель с круглыми расщепленными полюсами.

Универсальный двигатель

Универсальный двигатель, по сути, представляет собой двигатель постоянного тока, предназначенный для работы от переменного тока. Поскольку катушки возбуждения воспринимают переменный ток, статор должен быть сделан из пластин, как и якорь. Якорь и поле соединены последовательно, как показано на виде в разрезе на Рисунке 15.

Когда ток меняет полярность, поток, создаваемый обеими обмотками, также меняет полярность, что приводит к однонаправленному вращению.

Следуя за течением тока в каждом виде на Рисунке 15 и применяя правило левой руки для двигателей, можно увидеть, что направление вращения всегда против часовой стрелки для этого конкретного расположения обмоток.

РИСУНОК 15: Универсальный двигатель с источником переменного тока.

Универсальный двигатель, как и последовательный двигатель постоянного тока, имеет очень высокую скорость холостого хода, которая быстро падает с увеличением нагрузки.На рисунке 16 показаны скоростные характеристики универсального двигателя.

Скорость холостого хода может быть настолько высокой, что центробежная сила может разорвать двигатель. Таким образом, двигатель должен быть постоянно подключен к какой-либо механической нагрузке.

В отличие от асинхронного двигателя вариантов , универсальный двигатель не ограничивается работой со скоростью ниже синхронной. Универсальные двигатели используются в переносных дрелях, пилах, фрезерных станках, пылесосах и подобных устройствах.

РИСУНОК 16: Характеристика крутящего момента и скорости универсального двигателя.

Направление вращения универсального двигателя можно изменить, поменяв местами относительные полюса ротора и статора. Это достигается путем изменения щеточных соединений на коммутаторе, чтобы позволить току изменить свое направление в роторе, продолжая течь в том же направлении в статоре. Скорость универсального двигателя обычно регулируется с помощью электронных устройств.

Покажи и расскажи: асинхронные двигатели переменного тока

Двигатели переменного тока просты в управлении, надежны и экономичны для общего применения.По этим причинам они являются наиболее популярным типом электродвигателей в различных отраслях промышленности. В этом посте мы кратко представим асинхронные двигатели и продемонстрируем, как ими управлять.

Немного истории

Термин «индукция» в асинхронных двигателях (также известных как асинхронные двигатели) относится к электромагнитной индукции, которая является основной теорией работы асинхронных двигателей. Я объясню это в следующем разделе. Согласно Википедии, с изобретением асинхронного двигателя переменного тока связано несколько имен.В 1824 году французский физик Франсуа Араго открыл вращающиеся магнитные поля и ввел термин «Вращения Араго» (или «Диск Араго»). В 1831 году Майкл Фарадей смог объяснить эффекты, представив теорию электромагнитной индукции. В 1879 году Уолтер Бейли продемонстрировал первый примитивный асинхронный двигатель, включив и выключив его вручную. Первые трехфазные асинхронные двигатели переменного тока без коммутатора были независимо изобретены Галилео Феррарисом в 1885 году и Николой Тесла в 1887 году.Оба опубликовали статьи в 1888 году, объясняющие эти технологии. Тесла подал заявку на патенты в США в 1887 году и получил некоторые из этих патентов в 1888 году. Джордж Вестингауз, который в то время разрабатывал систему переменного тока, лицензировал патенты Теслы в 1888 году и приобрел опцион на патент США на концепцию асинхронного двигателя Феррариса, чтобы развивать технологию дальше. General Electric (GE) начала разработку трехфазных асинхронных двигателей в 1891 году. К 1896 году General Electric и Westinghouse подписали соглашение о взаимном лицензировании на конструкцию ротора со стержневой обмоткой, позже названного ротором с короткозамкнутым ротором.Та же концепция используется и сегодня.

Асинхронные двигатели

идеальны для приложений, требующих непрерывной работы в одном направлении , таких как конвейеры, миксеры и вращающиеся знаки. Они рассчитаны на продолжительный режим работы и обычно служат долгое время из-за своей простой конструкции.

Конструкция и теория эксплуатации

На этом изображении показана структура асинхронного двигателя переменного тока, который является основным типом двигателей переменного тока с постоянными разделенными конденсаторами.Вращающийся элемент, ротор, поддерживается в корпусе двигателя двумя шарикоподшипниками для длительного срока службы. Статор расположен вокруг ротора с тонким воздушным зазором. Выходной вал соединен с ротором. Подводящие провода подключаются к обмоткам статора. Фланцевый кронштейн запрессован в корпус двигателя для обеспечения качества.

Поскольку переменный ток подается на медные обмотки статора, вокруг ротора создается вращающееся магнитное поле со скоростью колебаний переменного тока.Согласно правилу левой руки Флеминга, движущееся магнитное поле индуцирует ток на алюминиевых стержнях (проводнике) в стальном роторе, который генерирует свои собственные противоположные магнитные поля (закон Ленца). Магнитные поля от ротора затем взаимодействуют с вращающимся магнитным полем от статора, и ротор начинает вращаться.

Теория работы асинхронного двигателя переменного тока может быть объяснена с помощью диска Arago , который представляет собой наблюдаемое явление, включающее правило правой руки Флеминга и правило левой руки Флеминга.

Хотите узнать больше о теории работы двигателей переменного тока?

Однофазные асинхронные двигатели

Однофазные асинхронные двигатели предлагаются с разным напряжением и частотой для разных регионов мира. Для США однофазные двигатели обычно предлагаются на 110/115 вольт или 220/230 вольт, которые легко доступны. 60 Гц — типичная частота источника питания.

Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI, направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.

Хотя принцип работы должен быть одинаковым для всех однофазных двигателей переменного тока с постоянным разделенным конденсатором, представленных на рынке, цвета выводных проводов могут быть разными для разных производителей.

Для стандартного 3-проводного двигателя цвета проводов обычно белый, красный и черный. Черный всегда связан с нейтралью (N). И белый, и черный подключены к 2 клеммам специального конденсатора.Когда ток (L) подключен либо к черному, либо к красному через клемму конденсатора, двигатель начнет вращаться в заданном направлении. Для двигателей с клеммной коробкой принцип работы такой же. Однако клеммы обозначены Z2, U2 и U1.

Подключение конденсатора

Для однофазных двигателей конденсатор важен для запуска. Без пускового момента, обеспечиваемого конденсатором, вам пришлось бы помогать запускать двигатель, вручную вращая вал.Это как старые пропеллеры старинного самолета. Убедитесь, что вы не забыли правильно подключить конденсатор. Это был очень распространенный случай устранения неполадок, когда я работал инженером службы поддержки.

Вот пример подключения 4-контактного конденсатора и однофазного двигателя.

Количество выводов на конденсаторе вас не смущает. На схеме внутренней проводки ниже показано, что две ближайшие клеммы имеют внутреннее соединение. В электрическом отношении это то же самое, что и у традиционных конденсаторов с двумя выводами, которые имеют только по одному выводу с каждой стороны.

Мы также сняли видео, чтобы продемонстрировать правильный способ подключения этих двигателей, включая автоматические выключатели, переключатели и конденсатор.

Трехфазные асинхронные двигатели

Трехфазные асинхронные двигатели обычно предлагаются в США на 220/230 В и 50/60 Гц. В некоторых случаях предлагается 460 вольт. Трехфазные двигатели могут работать либо с постоянной скоростью, либо с инвертором / частотно-регулируемым приводом для приложений с регулируемой скоростью.

Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI, направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.

Для трехпроводного трехфазного двигателя у нас такие же цвета проводов. Три фазы от источника питания обозначены L1 (R), L2 (S) и L3 (T). Подключите красный к L1 (R), белый к L2 (S) и черный к L3 (T). Для двигателей с клеммной коробкой клеммы имеют маркировку U, V и W.Теория работы такая же. Чтобы переключить направление вращения, переключите любое из 2 соединений между R, S и T.

При перегрузке или блокировке вала рекомендуется использовать либо электромагнитный переключатель, либо электронную тепловую функцию инвертора, чтобы предотвратить перегорание двигателя.

Вы наверное обратили внимание, что на схеме подключения нет конденсатора . Для однофазных двигателей требуется конденсатор для создания многофазного источника питания. Для трехфазных двигателей конденсатор не требуется.Мы также сняли видео, чтобы продемонстрировать правильную проводку.

И последнее, но не менее важное. Не забудьте электрически заземлить двигатели с помощью специальной клеммы защитного заземления (PE), чтобы избежать удара или травм со стороны персонала.

Вот и все, что касается подключения однофазных и трехфазных асинхронных двигателей. Следите за новостями в следующем посте, где я расскажу о подключении других типов двигателей переменного тока, таких как реверсивные и электромагнитные двигатели с тормозом.

Не забудьте подписаться!

Еще немного истории …

Вот видео, которое кратко объясняет историю развития двигателей переменного тока Oriental Motor с 1966 года, когда серия K считалась фактическим стандартом для всех двигателей переменного тока, до появления серий KII и KIIS.

Схемы подключения двигателя

Маркировка проводов электродвигателя и соединения

Для конкретных подключений двигателей Leeson перейдите на их веб-сайт и введите номер каталога Leeson в поле «Обзор», вы найдете данные подключения, размеры, данные паспортной таблички и т. Д.www.leeson.com

Однофазные соединения: (трехфазные — см. Ниже)
Однофазные соединения:

Вращение L1 L2
CCW 1,8 4,5
CW 1,5 4,8

Двойное напряжение: (только основная обмотка)

Напряжение Вращение L1 L2 Присоединиться к
Высокая против часовой стрелки 1 4,5 2 и 3 и 8
CW 1 4,8 2 и 3 и 5
Низкая против часовой стрелки 1,3,8 2,4,5 ——-
CW 1,3,5 2,4,8 ——-

Двойное напряжение: (основная и вспомогательная обмотки)

Напряжение Вращение L1 L2 Присоединиться к
Высокая против часовой стрелки 1,8 4,5 2 и 3,6 и 7
CW 1,5 4,8 2 и 3,6 и 7
Низкая против часовой стрелки 1,3,6,8 2,4,5,7 ———
CW 1,3,5,7 2,4,6,8 ———

Маркировка однофазных клемм по цвету: (Стандарты NEMA)
1-Синий 5-Черный P1-Цвет не назначен
2-Белый 6-Цвет не назначен P2-Коричневый
3-Оранжевый 7-Цвет не назначен
4- Желтый 8-Красный

Трехфазные соединения:

Деталь Начало намотки:
6 отведений Номенклатура NEMA:
WYE или Delta Connected

Т1 Т2 T3 T7 T8 T9
Выводы двигателя 1 2 3 7 8 9

9 отведений Номенклатура NEMA
WYE Connected (только низкое напряжение)

Т1 T2 T3 T7 T8 T9 Вместе
Выводы двигателя 1 2 3 7 8 9 4 и 5 и 6

12 выводов Номенклатура NEMA и IEC
Одно- или низковольтные двигатели с двойным напряжением

Т1 T2 T3 T7 T8 T9
NEMA 1,6 2,4 3,5 7,12 8,10 9,11
МЭК 1 2 3 7 8 9

Трехфазные односкоростные двигатели

Номенклатура Nema — 6 выводов:

Одно напряжение — внешнее соединение WYE

L1 L2 L3 Присоединиться к
1 2 3 4 и 5 и 6

Одно напряжение — внешнее соединение треугольником

Соединения одиночного напряжения WYE-треугольник

Режим работы Соединение L1 L2 L3 Присоединиться к
Старт WYE 1 2 3 4 и 5 и 6
Бег Дельта 1,6 2,4 3,5 ——-

Соединения WYE-треугольник с двойным напряжением

Напряжение Соединение L1 L2 L3 Присоединиться к
Высокая WYE 1 2 3 4 и 5 и 6
Низкая Дельта 1,6 2,4 3,5 ——-

Номенклатура NEMA — 9 выводов:
Двойное напряжение, соединение WYE

Напряжение L1 L2 L3 Присоединиться к
Высокая 1 2 3 4 и 7, 5 и 8, 6 и 9
Низкая 1,7 2,8 3,9 4 и 5 и 6

Двойное напряжение, соединение по треугольнику

Напряжение L1 L2 L3 Присоединиться к
Высокая 1 2 3 4 и 7, 5 и 8,6 и 9
Низкая 1,6,7 2,4,8 3,5,9 ————

Номенклатура NEMA — 12 выводов:
Двойное напряжение — Внешнее соединение WYE

Напряжение L1 L2 L3 Присоединиться к
Высокая 1 2 3 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12
Низкая 1,7 2,8 3,9 4 и 5 и 6, 10 и 11 и 12

Двойное напряжение
Пуск, соединение WYE
Работа, соединение треугольником

Напряжение Conn. L1 L2 L3 Присоединиться к
Высокая WYE 1 2 3 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12
Дельта 1,12 2,10 3,11 4 и 7, 5 и 8, 6 и 9
Низкая WYE 1,7 2,8 3,9 4 и 5 и 6, 10 и 11 и 12
Дельта 1,6,7,12 2,4,8,10 3,5,9,11 ————

Номенклатура IEC — 6 и 12 выводов:
Соединения WYE-треугольник с одним напряжением Соединения WYE-треугольник с одним напряжением

рабочий режим
Conn. L1 L2 L3 Присоединиться к
Старт WYE U1 V1 W1 U2 и V2 и W2
Бег Дельта U1, W2 В1, У2 W1, V2 —————

Соединения WYE-треугольник с двойным напряжением

Вольт Conn. L1 L2 L3 Присоединиться к
Высокая WYE U 1 V1 W1 U2 и V2 и W2
Низкая Дельта U1, W2 В1, У2 W1, V2 —————

Пуск с двойным напряжением, соединением по схеме «звезда»
Работа по схеме «треугольник»

Вольт Conn. L1 L2 L3 Присоединиться к
Высокая WYE U 1 V1 W1 U2 и U5, V2 и V5, W2 и W5, U6 и V6 и W6
Дельта U1, W6 V1, U6 W1, V6 U2 и U5, V2 и V5,
W2 и W5
НИЗКИЙ WYE U1, U5 V1, V5 W1, W5 U2 и V2 и W2,
U6 и V6 и W6
Дельта U1, U5,
W2, W6
V1, V5
U2, U6
W1, W5
V2, V6
——————————

Номенклатура NEMA — 6 выводов:
Соединение с постоянным крутящим моментом
(низкоскоростное HP составляет половину высокоскоростного HP)

Скорость L1 L2 L3 Типовое
Соединение
Высокая 6 4 5 1, 2 и 3 Присоединиться 2 WYE
Низкая 1 2 3 4-5-6 Открыть 1 Дельта

Соединение с регулируемым крутящим моментом (низкоскоростное HP составляет 1/4 высокоскоростного HP)

Скорость L1 L2 L3 Типовое
Соединение
Высокая 6 4 5 1, 2 и 3 Присоединиться 2 WYE
Низкая 1 2 3 4-5-6 Открыть 1 WYE

Подключение постоянной мощности (одинаковая мощность на обеих скоростях)

Скорость L1 L2 L3 Типовое
Соединение
Высокая 6 4 5 1-2-3 Открыть 1 Дельта
Низкая 1 2 3 4, 5 и 6 стыков 2 WYE

Номенклатура IEC — 6 выводов:
Соединение с постоянным крутящим моментом

Скорость L1 L2 L3 Типовое
Соединение
Высокая 2 Вт 2U 1U, 1V и 1W — ПРИСОЕДИНЯЙТЕСЬ 2 WYE
Низкая 1U 1 В 1 Вт 2U-2V-2W ОТКРЫТЬ 1 Дельта

Соединение с регулируемым крутящим моментом

Скорость L1 L2 L3 Типовое
Соединение
Высокая 2 Вт 2U 1U, 1V и 1W — ПРИСОЕДИНЯЙТЕСЬ 2 WYE
Низкая 1U 1 В 1 Вт 2U-2V-2W ОТКРЫТЬ 1 WYE

Реверсивные однофазные асинхронные двигатели

Реверсивные однофазные асинхронные двигатели

Начиная с моей статьи о двигателях переменного тока, Меня часто спрашивают о том, как изменить асинхронный двигатель переменного тока.Раньше я подробно не рассказывал, как запускаются асинхронные двигатели. потому что это обширная тема сама по себе.

Ротор асинхронного двигателя представляет собой проницаемый железный сердечник. с залитой алюминиевой обмоткой короткого замыкания. Ты можешь видеть алюминий на обоих концах ротора. Алюминий также проходит через продольные отверстия в роторе для укорочения типа «беличья клетка» обмотка цепи. Линии едва видны под небольшим углом на роторе где проходят обмотки.

Обмотка короткого замыкания заставляет ротор сопротивляться быстрым изменениям магнитного поля. полей, поэтому, если на него воздействует вращающееся магнитное поле, он попытается следовать за ним. (подробнее об этом здесь)

В трехфазном двигателе, естественно, три фазы на трех обмотках. создают вращающееся магнитное поле. Но для однофазных двигателей переменного тока магнитное поле только чередуется вперед и назад. Нужны некоторые хитрости для создания вращающегося поля.

Реверс двигателя с расщепленной фазой

В этом двигателе с расщепленной фазой основная обмотка (метка ‘M’) подключается непосредственно к источнику переменного тока 60 Гц, а другая обмотка (метка ‘O’) подключена последовательно с конденсатор (С).Взаимодействие индуктивности двигателя обмотки и емкость конденсатора приводят к тому, что обмотка составляет около 90 градусы не совпадают по фазе с основной обмоткой.

Основная обмотка создает магнитное поле, чередующееся по вертикали, а другая обмотка создает магнитное поле, чередующееся по горизонтали. но не в фазе, в сумме это вращающееся магнитное поле. Ротор пытается следовать за ним, заставляя его вращаться.

Реверс двигателя — это просто перестановка силового соединения. так что другая обмотка находится непосредственно на переменном токе.По сути, перемещение одна сторона силового соединения от (A) до (B), в результате чего обмотка (O) быть основной обмоткой, а обмотка (M) — фазосдвинутой.

На двигателях мощностью более 1/4 л.с. две обмотки обычно имеют разные количество оборотов, поэтому этот метод реверсирования может быть неприменим. Сначала убедитесь, что сопротивление двух обмоток одинаково.

Если обмотки не одинакового сопротивления, вы все равно можете его поменять местами. поменяв полярность одной из обмоток, при условии, что винты не связаны друг с другом внутри двигателя (например, более трех провода выходящие из обмоток).

Обмотки стартера на более мощных двигателях

Теперь, если мы заглянем внутрь более крупного двигателя, такого как этот двигатель мощностью 3/4 лошадиных сил, обмотки выглядят намного сложнее. Обмотки распределены по множеству пазов в статоре двигателя (C). Таким образом, там меньше резкого перехода от одного полюса к другому. Этот делает магнитное поле более гладким, что делает его тише, более эффективный мотор.

Этот двигатель имеет толстую главную обмотку (M), а также обмотку стартера. из более тонкой проволоки (S).Основная обмотка создает горизонтальную магнитное поле, а обмотка стартера создает вертикальное.

Эта обмотка стартера включена последовательно с конденсатором (C) и центробежным переключатель (S). В этом моторе установлен пусковой конденсатор. внутри основного корпуса. Обычно пусковой конденсатор монтируется сверху корпуса под металлическим куполом.

Центробежный выключатель (S) установлен на задней панели. и активируется диском (P), который нажимает на выступ на переключатель (слева от буквы S на фото).

Сняв ротор и посмотрев на диск, можно увидеть два металлических выступа. Когда двигатель вращается, центробежная сила толкает их наружу, что по очереди вытягивает диск обратно. Это освободит пластиковый язычок на переключателе, вызывая размыкание переключателя и отключение обмотки стартера. Диск отодвигается достаточно далеко, чтобы больше не контактировать с язычком, сводящим к минимуму трение и износ. Это умный способ активировать переключатель на основе центробежной силы без необходимости переключается на вращение.

Расположение центробежного переключателя издает отчетливый «щелчок». когда он сбрасывается после выключения двигателя. Щелчок переключателя вовлечение, когда оно начинается, различить гораздо труднее.

Если обмотка стартера помогает запускать двигатель, это обязательно поможет. мотор тоже работает. Так почему бы просто не оставить стартер обмотка подключена? Ну а Вся штука с фазовым сдвигом не так уж и элегантна. Размер конденсатора вы потребность очень сильно зависит от нагрузки двигателя. Для быстрого запуска мотора, вам нужна большая емкость, чем для эффективного непрерывного операция.Кроме того, конденсатор является электролитическим конденсатором и не является рассчитан на постоянную нагрузку. И потому что обмотка стартера только используется недолго, поэтому для экономии денег он сделан из более тонкой проволоки, потому что медь стоит дорого.

Некоторые двигатели используют большой конденсатор для запуска и конденсатор меньшего размера для непрерывной работы. Такие моторы часто имеют два внешних конденсатора (C), как видно на этом в моей настольной пиле. Эти двигатели называются двигателями с конденсаторным запуском и запуском конденсатора.Конденсаторные двигатели с конденсаторным запуском обычно имеют более одного Лошадиные силы. Это 1,75 лошадиных сил.

Двигатели можно удешевить, заменив их конденсатор на резистор. Хотя обычно отдельный резистор не добавляется. Вместо, обмотка стартера сделана из более тонкой (дешевой) медной проволоки, поэтому у него большее сопротивление в самой обмотке.

Это приводит к гораздо меньшему фазовый сдвиг, чем у конденсатора, но достаточный для запуска двигателя. Обмотки двигателя по существу образуют индуктор, а когда синусоидальная волна переменного тока (например, мощность переменного тока) подается на катушку индуктивности, ток отстает от напряжения на 90 градусов.И магнитное поле строго функция тока.

Для резистора ток синфазен с напряжением. Если бы у нас был большой последовательное сопротивление и малая индуктивность, падение напряжения и ток будет во многом определяться резистором. Итак, ток и магнитный поле будет в значительной степени синфазным с приложенным напряжением. С участием тока в основной обмотке, отставая на 90 градусов, мы имели бы Разница между ними 90 градусов, но обмотка стартера было бы крайне неэффективно.

На самом деле компромисс гораздо меньше. фазового сдвига и большей мощности. Этого достаточно, чтобы мотор заработал. Как бы то ни было, стартер на этих моторах довольно неэффективен, но он не имеет большого значения, когда двигатель работает. Однако лишний ток требуемый для стартера может сработать автоматический выключатель, поэтому этот метод обычно используется только для двигателей меньшего размера, от 1/4 до 1/2 л.с. В двигателях мощностью 3/4 или больше обычно используется пусковой конденсатор.

Если вы не знакомы с аналоговой электроникой, приведенное выше объяснение вероятно, неадекватен, и вы можете узнать больше об индукции моторы, если вы этого не понимаете.

В асинхронных двигателях изнашиваются только подшипники, выключатель стартера и конденсатор. Без конденсатора есть один меньше вещей потерпеть неудачу.

Совсем недавно я случайно зажал выключатель стартера на Мотор с резистивным запуском мощностью 1/4 л.с. от сушилки для белья (тот, что на этот вентилятор), и мотор отключился всего за 15 секунд. его схема тепловой защиты из-за перегрева обмотки стартера.

Реверс конденсаторного пускового двигателя

Так как же нам поменять местами конденсаторный двигатель? Как только началось, однофазная индукция мотор с радостью будет вращаться в любом направлении.Чтобы обратить это вспять, нам нужно изменить направление вращающегося магнитного поля, создаваемого основным и стартерные обмотки. И этого можно добиться, переставив полярность стартерной обмотки. По сути, нам нужно поменять местами соединения на обоих концах обмотки стартера. Иногда это только обмотка, Иногда обмотка, переключатель и конденсатор наоборот. Порядок выключателя и конденсатора не важно, если вы подключены последовательно.

Вы также можете перевернуть двигатель, перевернув основную обмотку. (тот же эффект).

Если бы вам пришлось поменять местами основную и стартерную обмотки, как это делают с двигателем с расщепленной фазой двигатель также будет реверсировать. Тем не мение, он не будет работать на полную мощность и также может сгореть. В обмотка стартера не предназначена для продолжительной работы.

Наклейка на этом двигателе указывает: «ДВИГАТЕЛЬ НЕРЕВЕРСИРУЕТСЯ».

Если вы посмотрите на предыдущие фотографии этого двигателя, вы увидите, что только три провода (красный, желтый и синий) выходят из обмоток.Один конец основной и пусковой обмоток соединен между собой. прямо на обмотках.

Чтобы перевернуть обмотку стартера, мне пришлось бы разорвать это соединение внутрь обмоток и вытащить другой конец стартера обмотка. Но я действительно не могу понять это из-за как это внутри мотора. Мне пришлось бы проделать дыру в ограждение, чтобы добраться даже до точки, где они связаны вместе. Это не то, чтобы этот двигатель нельзя было реверсировать, просто для экономии средств меры, они сделали его поворот более трудным, чем того стоит беда.

Но на реверсивных двигателях этикетка всегда указывает, что нужно поменять местами два провода, чтобы перевернуть его

Провода для реверса — это всегда провода, ведущие к обмотке стартера.

Если у вас двигатель, на котором отсутствует этикетка, обмотка стартера обычно имеет электрическое сопротивление примерно в три раза больше, чем основное обмотка и всегда включена последовательно с выключателем стартера и конденсатором (если есть). Если вы можете изолировать оба конца этой обмотки и поменять их местами, вы можете перевернуть мотор.Если, однако, есть только из обмоток выходят три провода, затем основная и пусковая обмотки один конец связан вместе, и двигатель не реверсивный.

Для 120-вольтового двигателя мощностью 1/2 л.с. основная обмотка обычно имеет около 1,5 Ом, а обмотка стартера около 4 Ом. Для 240 вольт 1/2 л.с. двигатели (только 240 вольт), вы должны ожидать около 6 Ом на основной обмотке и 16 Ом на обмотке стартера. Ожидайте, что сопротивление обмоток будет обратно пропорционально мощности.

У многих двигателей от обмоток отходят несколько дополнительных проводов. Часто к обмоткам прикрепляют термовыключатель, и этот выключатель может быть частично привязан к одной из обмоток. Также, если мотор можно переподключить на 120 и 240 вольт, основная обмотка будет состоять двух обмоток на 120 В, которые можно соединить последовательно или параллельно. Так что от обмоток может выходить довольно много проводов. Это может занять немного времени и поисков, чтобы понять это.

Для двигателей, которые могут быть подключены как на 120 В, так и на 240 В, стартер обмотка — обмотка на 120 вольт.Когда эти двигатели подключены к 240 вольт, основная обмотка используется как автотрансформатор, чтобы сделать 120 вольт для обмотки стартера. В противном случае переподключение мотора от 120 до 240 вольт было бы намного сложнее!

Схемы подключения

3 3 0 1 3
Схема подключения Описание
3226 381200, 416279 Две скорости, одна обмотка, ТН или ТТ M / S, одно напряжение
3233 Две скорости, одна обмотка, CHP M / S, одно напряжение
3251 344139, 416282 Две скорости, две обмотки, VT / CT / CHP M / S, одно напряжение
11658 344137, 416280 Соединение звезда-треугольник, одиночное напряжение
108323 Однофазный, двойное напряжение, 6 выводов, вращение против часовой стрелки
108324 Однофазный, одно напряжение, 4 вывода, вращение против часовой стрелки
109144 158802, 344136 Соединение звездой, двойное напряжение
109145 158803, 344122 Соединение треугольником, двойное напряжение
130274 381679 Соединение звездой, двойное напряжение, PWS на низком напряжении
137033 344138 Соединение звезда-треугольник, двойное напряжение
159833 344133 Соединение треугольником, двойное напряжение, PWS на низком напряжении
165975 377836, 416281, 896428 Соединение звездой или треугольником, одно напряжение, PWS
195759 96441 6 выводов, соединение звездой или треугольником, одно напряжение с полной обмоткой — начало через линию
356693 Однофазный, одно напряжение, 4 вывода, вращение против часовой стрелки
387151 7 выводов, две скорости, две обмотки, ТН / ТТ / ТЭЦ, одно напряжение
388299 Соединение звездой с нейтралью, одно напряжение
3 Соединение звездой, двойное напряжение, с термозащитой
414729 6 выводов, соединение звездой, одно напряжение, полная обмотка — начало через линию
434839 Одиночное напряжение звезды или треугольника с одинарным трансформатором тока
438252 438264 6 выводов, 1.Соотношение 73: 1, двойное напряжение или запуск по схеме звезда — треугольник при низком напряжении
453698 Однофазный, однофазный, 4 вывода, индукционный генератор
463452 2 скорости, 2 обмотки, одно напряжение, соединение звездой, с трансформаторами тока, грозозащитными разрядниками и конденсаторами импульсных перенапряжений; Низкоскоростная обмотка
466703 12 выводов, пуск звезда — треугольник или одно напряжение PWS, собранный в кабельной коробке
488075 Соединение звезда, треугольник или PWS, 12 выводов, двойное напряжение
488076 Пуск, треугольник, звезда или подключение PWS, 2 полюса, 12 выводов, одно напряжение
499495 (дельта) Соединение треугольником, одно напряжение
499495 (звезда) Соединение звездой, одно напряжение
587-13816 423622, 978576 Соединение треугольником, трансформаторы тока
587-18753 423555, 958798 Соединение звездой, трансформаторы тока
779106 Две скорости, две обмотки, CT / VT / CHP M / S, YD на обеих скоростях, одно напряжение
845929 Соединение звездой, трансформаторы тока, LA, SC, одиночное напряжение
872326 Две скорости, одна обмотка, яркость на высокой скорости, одно напряжение
897847 Подключение силового блока

1
Одна фаза, одно напряжение, 3 вывода, вращение по часовой или против часовой стрелки

3

Однофазный, 115/230 В, 7 выводов, с тепловой защитой, вращение по часовой стрелке
6 Соединение звездой, двойное напряжение, с термозащитой
0 12-проводный, двухполюсный, Y-D, ИЛИ 6-проводный, одинарный, Y-D
Однофазный, двойное напряжение, 11 выводов, с тепловой защитой, вращение по часовой стрелке
356692 Однофазный, однофазный, 5 выводов, с тепловой защитой, вращение по часовой стрелке
7 108323 Однофазный, двойное напряжение, 6 выводов, вращение по часовой стрелке

2

Две скорости, две обмотки, одно напряжение, PWS на обеих обмотках или полная обмотка — начало через линию
0 Соединение треугольником, одно напряжение, с 4 трансформаторами тока, LA и SC
Соединение звездой, двойное напряжение, PWS на оба напряжения
957238 Пуск, треугольник, звезда, соединение или PWS, 12 выводов, одно напряжение
965105 Соединение треугольником, 9 выводов, ТН, 2 скорости, 1 обмотка, одно напряжение
987241 Соединение треугольником, одно напряжение, с трансформаторами тока, LA и SC
9
Подключение двигателя с тройным расходом
2010950 Одно напряжение, соединение WYE, с частичной защитой трансформатора тока
2010964 Одно напряжение, соединение WYE, с частичной защитой трансформатора тока, грозозащитными разрядниками и конденсаторами импульсных перенапряжений
Воздуходувка Схемы подключения одно- и трехфазных воздуходувок,
* Термозащита

Символы электродвигателей — AC / DC, однофазные / трехфазные двигатели

Символы AC / DC, однофазные и трехфазные электродвигатели

Список всех символов электрических двигателей на одном изображении приведен ниже в качестве справки. в конце этого поста.

Обмотка / катушка электродвигателя

Этот символ представляет обмотку или катушку электродвигателя. Обмотка внутри двигателя создает необходимое магнитное поле при возбуждении электрическим током.

Обмотка серии

Обмотка возбуждения, соединенная последовательно с обмоткой якоря двигателя, называется последовательной обмоткой. Ток, потребляемый в таком двигателе, огромен, так как он работает последовательно и производит довольно большой крутящий момент.

Шунтирующая обмотка

Обмотка возбуждения, подключенная параллельно обмотке якоря двигателя, называется шунтирующей обмоткой. Сопротивление шунтирующей обмотки обычно велико, чтобы предотвратить протекание сильного тока.

Угольная щетка

Это компонент внутри электродвигателя, который передает электрический ток между статором (неподвижная часть) и ротором (вращающаяся часть). Обычно он сделан из графита, и его можно заменить во время технического обслуживания после износа.

Стандартный двигатель

Это обозначение стандартного электродвигателя, используемого в электрических схемах. Двигатель преобразует электрическую энергию в механическую.

Двухскоростной двигатель

Этот символ обозначает двухскоростной двигатель. Такой тип двигателей имеет две отдельные обмотки для разного передаточного числа. Каждая обмотка одновременно обеспечивает разную скорость и крутящий момент.

Двигатель переменного тока

Этот символ представляет двигатель переменного тока.Этот тип двигателя работает только на переменном токе. Он преобразует электрическую энергию переменного тока в механическую.

Двигатель постоянного тока

Этот символ используется для обозначения двигателя постоянного тока на любой электрической схеме. Он преобразует электрическую энергию постоянного тока в механическую. Работает только на постоянном токе.

Линейный двигатель

Это общий символ, используемый для обозначения линейного двигателя. Линейный двигатель имеет развернутый статор, что приводит к созданию линейной силы вместо вращающего момента.

Шаговый двигатель

Шаговый двигатель или шаговый двигатель — это тип бесщеточного двигателя постоянного тока, полное вращение которого делится на количество равных шагов. Он вращается пошагово, а не непрерывно. Они используются для точного позиционирования с помощью управляющего сигнала.

Электрическая машина

Этот тип символа используется для таких машин, которые могут использоваться как двигатель, так и генератор. Двигатель преобразует электрическую энергию в механическую, а генератор — наоборот.

Двигатель постоянного тока с постоянным магнитом

В бесщеточных двигателях постоянного тока такого типа для создания полюсов вместо обмоток возбуждения используется постоянный магнит. Символ выше представляет двигатель постоянного тока со значком магнита, обозначающим тип постоянного магнита.

Однофазный двигатель переменного тока

Этот символ обозначает однофазный двигатель переменного тока. Он работает от однофазного источника переменного тока, и его обмотка возбуждения включена последовательно с обмоткой якоря.Он также известен как модифицированный двигатель постоянного тока.

Двигатель постоянного тока

Двигатель постоянного тока, обмотка возбуждения которого соединена последовательно с обмоткой якоря, называется двигателем постоянного тока, и на схемах он представлен этим символом.

Однофазный асинхронный двигатель переменного тока с выведенными выводами обмотки

Он также известен как асинхронный двигатель с расщепленной фазой. Этот тип однофазного двигателя переменного тока имеет доступную отдельную обмотку, известную как пусковая обмотка, имеющая высокое сопротивление.Пусковая обмотка используется для пуска двигателя.

Однофазный отталкивающий двигатель

Это однофазный двигатель переменного тока, работающий по принципу отталкивания между магнитным полем статора и ротора. Магнитное поле ротора создается индуцированным током и может вращаться, вращая щетки вдоль своей оси. Это вращающееся магнитное поле используется для изменения направления двигателя.

Параллельный двигатель постоянного тока

Это обозначение, используемое для параллельного двигателя постоянного тока, обмотка возбуждения которого подключена параллельно обмотке якоря.Обе обмотки подключены к общему источнику постоянного тока.

Однофазный синхронный двигатель

Этот символ представляет однофазный синхронный двигатель переменного тока. Синхронные двигатели сначала запускаются как асинхронные, но позже достигают синхронной скорости, которая зависит только от входной частоты питания.

Двигатель постоянного тока с комбинированным возбуждением

Такой тип двигателя постоянного тока имеет как последовательную обмотку возбуждения, так и шунтирующую (или параллельную) обмотку возбуждения.Обмотка шунтирующего поля усиливает магнитное поле, создаваемое последовательной обмоткой. он имеет преимущества как двигателей постоянного тока с последовательной обмоткой, так и двигателей постоянного тока с параллельной обмоткой, то есть высокий пусковой момент и регулирование скорости.

Трехфазный двигатель переменного тока

Это общий символ, используемый для трехфазного двигателя переменного тока. Трехфазный источник переменного тока создает вращающееся магнитное поле, которое реагирует с магнитным полем, создаваемым ротором, таким образом вращая ротор.

Трехфазный двигатель в форме звезды

Это трехфазный двигатель, обмотки которого соединены вместе по схеме звезды или звезды.этот символ также обозначает функцию автоматического запуска двигателя.

Трехфазный двигатель с фазным ротором

Этот символ представляет трехфазный двигатель с фазным ротором. Это тип трехфазного двигателя переменного тока, ротор которого соединен с внешним сопротивлением через контактные кольца.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Весь товар подлежит гарантии и сертифицирован!Все права защищены .RU