Драйвер люминесцентной лампы схема: Схема драйвера для питания светодиодных ламп экономка. Ремонт импульсного блока питания энергосберегающей лампочки. Используем драйвер энергосберегающей лампы

Содержание

Устройство энергосберегающей лампы. Схема и ремонт.

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 %. Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц. В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом

Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные

n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003. Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост, выполненный на элементах

VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя

FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как

T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Опасность люминесцентных ламп и рекомендации по использованию.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности.

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью.

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

Драйвер для светодиодов из энергосберегающей лампы

Энергосберегающие лампы активно позиционировались как замена низкоэкономичным и ненадежным лампам накаливания. Постепенное снижение цен на «экономки» привело к тому, что они получили практически повсеместное распространение.

Прогресс не стоит на месте и на смену энергосберегающим люминесцентным лампам приходят светодиодные источники света. Имея большую экономичность, они превосходят энергосберегающие лампы по экологичности, поскольку люминесцентные лампы содержат ядовитую ртуть, а светодиоды абсолютно безопасны (подробнее о вреде светодиодных ламп).

Самый большой минус светодиодов – их высокая стоимость. Не удивительно, что многие занимаются переделкой энергосберегающих ламп в светодиодные, используя по максимуму доступную и недорогую элементную базу.

Использование платы питания энергосберегающей лампы в качестве драйвера для светодиодов

Теоретическое обоснование

Светодиоды работают при низком напряжении – порядка 2-3В. Но самое главное, для нормальной работы требуется не стабильность напряжения, а стабильность тока, по ним протекающего. При понижении тока снижается яркость свечения, а превышение приводит к выходу из строя диодного элемента. Полупроводниковые устройства, к которым относятся светодиоды, имеют ярко выраженную зависимость от температуры. При нагреве сопротивление перехода падает и возрастает прямой ток.

Простой пример: источник стабильного напряжения выдает 3В, при токе потребления светодиода 20мА. При повышении температуры напряжение на светодиоде остается неизменным, а ток возрастает вплоть до недопустимых значений.

Для исключения описанной ситуации, источники света на полупроводниках запитывают от стабилизатора тока, он же драйвер. По аналогии с люминесцентными лампами драйвер иногда называют балластом для светодиодов.

Наличие входного напряжение 220В вместе с требованием стабилизации тока приводит необходимости создания сложной схемы питания светодиодных ламп.

Практическая реализация идеи

Простейший источник питания светодиодов от сети 220В имеет следующий вид:

Примитивный источник питания для светодиодов от сети 220В

На приведенном рисунке резистор обеспечивает падение излишка напряжения питающей сети, а диод, включенный параллельно, защищает LED элемент от импульсов напряжения обратной полярности.

Как видно из рисунка, что можно проверить расчетами, требуется гасящий резистор большой мощности, выделяющий во время работы много тепла.

Ниже приведена схема, где вместо резистора используется гасящий конденсатор

Схема с гасящим конденсатором

Использование в качестве балласта конденсатора позволяет избавиться от мощного резистора и повысить КПД схемы. Резистор R1 ограничивает ток в момент включения схемы, R2 служит для быстрого разряда конденсатора в момент выключения. R3 дополнительно ограничивает ток через группу светодиодов.

Конденсатор С1 служит для гашения излишков напряжения, а С2 сглаживает пульсации питания.

Диодный мост образован четырьмя диодами типа 1N4007, которые можно выпаять из негодной энергосберегающей лампы.

Расчет схемы произведен для светодиодов HL-654h345WC с рабочим током 20мА. Не исключено применение аналогичных элементов с таки током.

Так же, как и в предыдущей схеме, здесь не обеспечивается стабилизация тока. Чтобы исключить выход светодиодов из строя, в схеме балласта для светодиодных ламп емкость конденсатора С1 и сопротивление резистора R3 выбраны с запасом, чтобы при максимальном входном напряжении и повышенной температуре светодиодов, ток через них не превышал допустимых значений. В нормальном режиме ток через диоды несколько менее номинального, но на яркости лампы это практически не сказывается.

Недостаток подобной схемы заключается в том, что использование более мощных светодиодов потребует увеличение емкости гасящего конденсатора, имеющего большие габариты.

Аналогично выполняется питание светодиодной ленты от платы энергосберегающей лампы. Важно, чтобы ток светодиодной ленты соответствовал линейке светодиодов, то есть 20мА.

Используем драйвер энергосберегающей лампы

Более надежна схема, когда используется драйвер из энергосберегающей лампы с минимальными переделками. В качестве примера на рисунке показана переделка энергосберегающей лампы мощностью 20Вт для питания мощного светодиода с током потребления 0.9А.

Переделка светодиодной лампы для питания светодиодов

Переделка электронного балласта для светодиодных ламп в данном примере минимальна. Большая часть элементов в схеме оставлена от драйвера старой лампы. Изменениям подвергся дроссель L3 и добавлен выпрямительный мост. В старой схеме между правым выводом конденсатора С10 и катодом диода D5 была включена люминесцентная лампа.

Теперь конденсатор и диод соединены напрямую, а дроссель используется в качестве трансформатора.

Переделка дросселя заключается в намотке вторичной обмотки, с которой и будет сниматься напряжение для питания светодиода.

Не разбирая дроссель, на него нужно намотать 20 витков эмалированного провода диаметром 0.4мм. При включении напряжение холостого хода вновь выполненной обмотки должно составлять около 9.5–9.7В. После подключения моста и светодиода, амперметр, включенный в разрыв питания LED элемента, должен показывать около 830–850мА. Большее или меньшее значение требует коррекции количества витков трансформатора.

Диоды 1N4007 или аналогичные, можно использовать от другой неисправной лампы. Диоды в экономках используются с большим запасом по току и напряжению, поэтому выходят из строя крайне редко.

Советы и предостережения

Все приведенные схемы светодиодных драйверов из энергосберегающей лампы, хоть и обеспечивают низковольтное питание, имеют гальваническую связь с сетью переменного тока, поэтому при работе по отладке нужно соблюдать меры предосторожности.

Наилучшим и самым безопасным будет использование при работе разделяющего трансформатора с одинаковыми первичной и вторичной обмотками. Имея на выходе те же самые 220В, трансформатор будет обеспечивать надежную гальваническую развязку первичной и вторичной цепей.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Материалы по теме:

Драйверы ламп

ПРИМЕНЕНИЕ СВЕТИЛЬНИКОВ НА ЛЮМИНИСЦЕНТНЫХ ЛАМПАХ

В настоящее время светильники с использованием люминесцентных ламп получают все большее распространение. С уменьшением цены и габаритов, а также улучшением характеристик стало целесообразным использование их для освещения бытовых помещений. Однако, несмотря на большое разнообразие подобной продукции, а также немалое количество информации по этой тематике, подобрать подходящий светильник бывает не так просто. В данной статье описываются некоторые особенности осветительных приборов на основе люминесцентных ламп, о которых почему-то редко где указывается, но которые могут быть полезны при выборе соответствующего светильника. Также приводится схема драйвера для управления лампами суммарной мощностью до 80Вт, и даются некоторые рекомендации по доработке, с целью повышения его надежности.
Известно, что люминесцентные лампы экономичнее и долговечнее ламп накаливания. Однако не все знают, что мощность потребления люминесцентного светильника зависит от схемы запуска и может превышать указанную на лампе более чем в два раза. Так, например, для тридцатишестиватных ламп ЛБ-36, импортной Philips TL-D36W/54 и им аналогичных, потребляемая мощность при запуске от дроссельно-старртерной схемы оказывается около 75Вт, здесь большая часть мощности рассеивается на дросселе. При питании этих же ламп от схемы высокочастотного электронного балласта потребляемая мощность составляет примерно 25Вт, при такой же световой отдаче.

Казалось бы, в настоящее время эта тема уже не актуальна, большинство иностранных производителей комплектуют светильники именно электронными балластами. Однако на деле это по большей части относится к малогабаритным бытовым энергосберегающим лампам малой мощности, с цоколем для вкручивания в патрон. Если же взять плоские светильники, где используются длинные лампы то, часто они комплектуются обычными дроссельно-стартерными схемами. Недостатки подобных схем общеизвестны крайне низкий КПД, мигание в момент запуска, низкочастотное мерцание при работе, утомляющее зрение. Поэтому часто приходится самостоятельно переделывать подобный светильник, устанавливая электронный балласт, взамен существующей схемы.

Так, например V-образная лампа «Delux S-11W», мощностью 11 Вт с отличной световой отдачей и цветопередачей в светильнике «LIVAL» (если верить надписи Финского производства), имеет почему-то дроссельно-стартерную схему запуска. Мерцание с частотой 100Гц, и массивная выносная вилка питания с дросселем в данном осветительном приборе создают весьма некомфортные условия работы. Найти подобный светильник с электронным балластом оказалось непросто. Энергосберегающие же лампы с цоколем, вкручивающимся в патрон, при освещении рабочего места, чаще всего дают значительно худший результат. Поэтому целесообразным, оказалось, установить в вышеуказанный светильник электронный балласт. Внутрь корпуса хорошо помещается драйвер соответствующей мощности от лампы (например, битой) с вкручивающимся цоколем, достаточно места на корпусе и для установки выключателя. Описание подобных схем электронных балластов и самих ламп можно найти в [1]. Мощность, потребляемая лампой Delux S-11W, с электронным балластом составляет 11Вт. Долговечность ее оказалась также высокой, указанная лампа отработала уже несколько лет, при весьма интенсивной эксплуатации. Не наблюдается, и сколь ни будь заметного снижения ее светоотдачи.
На рисунке 1 изображена схема драйвера EL-B 2X36W, предназначенного для управления двумя лампами мощностью по 36 или 40Вт. Нумерация и обозначение элементов соответствуют надписям на плате, ее внешний вид приведен на рисунке 2. На плату часто вместо предохранителя устанавливают токоограничивающий резистор номиналом в десятые доли Ома, мощностью 0,25Вт. Однако он не всегда сгорает при пробое транзисторов, в результате чего возможен чрезмерный нагрев и оправление корпуса прибора. Кроме того, столь малый номинал недостаточно ограничивает токи через диоды VD1-VD4 и конденсатор C2 в момент включения, что может приводить к преждевременному выходу их из строя. Для повышения надежности, в цепь питания схемы рекомендуется установить терморезистор с отрицательным температурным коэффициентом CSK-053 мощностью три ватта, как показано на схеме см. рисунок 1, место под него предусмотрено на плате. Указанный термистор имеет сопротивление в холодном состоянии пять Ом, вместо него можно применить и другой, например, более мощный десятиомный пятиватный – CSK-105. В драйвере используют транзисторы MJE13007 на ток 8А, хотя в принципе могут работать и четырехамперные MJE13005. Лучше конечно не экономить но, в крайнем случае, поставить можно.

В некоторых схемах входной конденсатор C2 применяют на 400V однако, учитывая значительный размах пульсаций, особенно при повышенной мощности ламп, его лучше использовать на 450В. С целью облегчения режима работы этого конденсатора и уменьшения пульсаций напряжения желательно увеличить его емкость до 33Мкф. Указанный драйвер может быть использован и для питания одной лампы мощностью до 40Вт. Для этого следует уменьшить емкость конденсатора C6 до 0,1Мкф, при этом конденсатор C2 достаточно использовать на емкость 15Мкф. Транзисторы в таком варианте подойдут MJE13005, хотя как показала практика, вполне надежно работают и MJE13003, с максимальным током 1,5А. Дроссель L2 и конденсатор С11 при этом, разумеется, можно исключить из схемы. Трансформатор ТР1 намотан на ферритовом кольце 10х5х5мм. Обмотки 1 и 2 содержат по 5 витков монтажного одножильного провода диаметром 0,3-0,4мм в полихлорвинильной изоляции. Обмотка 3 содержит два витка такого же провода. Дроссели L1, L2 намотаны на Ш-образном ферритовом сердечнике 20х20х7мм (иногда используют и меньшего размера) с зазором. Катушки содержат приблизительно 100 витков провода ПЭВ-2 диаметром 0,3мм. В устройстве могут быть использованы конденсаторы С1, С7, С6 импортные металлопленочные или К73-17 на напряжение 100В, С3 – на напряжение 630В. Конденсаторы C9, C11 полипропиленовые на напряжение 1000В. Печатная плата имеет габариты 165х27,5мм ее разводка приведена на рисунке 3. Следует обратить внимание, что часто в продаваемых драйверах собранные платы, а нередко и обмотки дросселей оказываются непропитанными лаком. Если такой факт имеет место, то весьма целесообразно сделать это самостоятельно, например, с помощью кисточки, используя кремнийорганический лак. Благодаря этому может значительно повысится надежность и срок службы устройства, особенно при эксплуатации его в условиях с повышенной влажностью воздуха.

 

Скачать рисунок печатной платы в формате lay

Скачать рисунок печатной платы в формате gif

Литература

1. Владимир Широков. Компактные электронные люминесцентные лампы. – Радиохобби 2001 №3 стр.48-52.

e-mail: [email protected]

На главную страницу

Схема электронный балласт навигатор ncl 4u 55w. Устройство и схема включения люминесцентной лампы

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA . Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1 ) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост , выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1 , дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии:) вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1 , который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш -образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор . На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1 . Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра . Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

    С холодным запуском

    С горячим запуском

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор) . На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Благодаря малому энергопотреблению, теоретической долговечности и снижению цены стремительно вытесняют лампы накаливания и энергосберегающие. Но, несмотря на заявленный ресурс работы до 25 лет, зачастую перегорают, даже не отслужив гарантийный срок.

В отличие от ламп накаливания, 90% перегоревших светодиодных ламп можно успешно отремонтировать своими руками, даже не имея специальной подготовки. Представленные примеры помогут Вам отремонтировать отказавшие светодиодные лампы.

Прежде, чем браться за ремонт светодиодной лампы нужно представлять ее устройство. Вне зависимости от внешнего вида и типа применяемых светодиодов , все светодиодные лампы, в том числе и филаментные лампочки, устроены одинаково. Если удалить стенки корпуса лампы, то внутри можно увидеть драйвер, который представляет собой печатную плату с установленными на ней радиоэлементами.


Любая светодиодная лампа устроена и работает следующим образом. Питающее напряжение с контактов электрического патрона подается на выводы цоколя . К нему припаяны два провода, через которые напряжение подается на вход драйвера. С драйвера питающее напряжение постоянного тока подается на плату, на которой распаяны светодиоды.

Драйвер представляет собой электронный блок – генератор тока, который преобразует напряжение питающей сети в ток, необходимый для свечения светодиодов.

Иногда для рассеивания света или защиты от прикосновения человека к незащищенным проводникам платы со светодиодами ее закрывают рассеивающим защитным стеклом.

О филаментных лампах

По внешнему виду филаментная лампа похожа на лампу накаливания. Устройство филаментных ламп отличается от светодиодных тем, что в качестве излучателей света в них используется не плата со светодиодами, а стеклянная герметичная заполненная газом колба, в которой размещены один или несколько филаментных стержней. Драйвер находится в цоколе.


Филаментный стержень представляет собой стеклянную или сапфировую трубку диаметром около 2 мм и длиной около 30 мм, на которой закреплены и соединены последовательно покрытые люминофором 28 миниатюрных светодиодов. Один филамент потребляет мощность около 1 Вт. Мой опыт эксплуатации показывает, что филаментные лампы гораздо надежнее, чем изготовленные на базе SMD светодиодов. Полагаю, со временем они вытеснят все другие искусственные источники света.

Примеры ремонта светодиодных ламп

Внимание, электрические схемы драйверов светодиодных ламп гальванически связаны с фазой электрической сети и поэтому следует соблюдать предельную осторожность. Прикосновение не защищенным участком тела человека к оголенным участкам схемы подключенной к электрической сети может нанести серьезный урон здоровью, вплоть до остановки сердца.

Ремонт светодиодной лампы


ASD LED-A60, 11 Вт на микросхеме SM2082

В настоящее время появились мощные светодиодные лампочки, драйверы которых собраны на микросхемах типа SM2082. Одна из них проработала менее года и попала мне в ремонт. Лампочка бессистемно гасла и опять зажигалась. При постукивании по ней она отзывалась светом или гашением. Стало очевидно, что неисправность заключается в плохом контакте.


Чтобы добраться к электронной части лампы нужно с помощью ножа подцепить рассеивающее стекло в месте соприкосновения его с корпусом. Иногда отделить стекло трудно, так как при его посадке на фиксирующее кольцо наносят силикон.


После снятия светорассеивающего стекла открылся доступ к светодиодам и микросхеме – генератора тока SM2082. В этой лампе одна часть драйвера была смонтирована на алюминиевой печатной плате светодиодов, а вторая на отдельной.


Внешний осмотр не выявил дефектных паек или обрывов дорожек. Пришлось снимать плату со светодиодами. Для этого сначала был срезан силикон и плата поддета за край лезвием отвертки.

Чтобы добраться до драйвера, расположенного в корпусе лампы пришлось его отпаять, разогрев паяльником одновременно два контакта и сдвинуть вправо.


С одной стороны печатной платы драйвера был установлен только электролитический конденсатор емкостью 6,8 мкФ на напряжение 400 В.

С обратной стороны платы драйвера был установлен диодный мост и два последовательно соединенных резистора номиналом по 510 кОм.


Для того, чтобы разобраться в какой из плат пропадает контакт пришлось их соединить, соблюдая полярность, с помощью двух проводков. После простукивания по платам ручкой отвертки стало очевидным, что неисправность кроется в плате с конденсатором или в контактах проводов, идущих из цоколя светодиодной лампы.

Так как пайки не вызывали подозрений сначала проверил надежность контакта в центральном выводе цоколя. Он легко вынимается, если поддеть его за край лезвием ножа. Но контакт был надежным. На всякий случай залудил провод припоем.

Винтовую часть цоколя снимать сложно, поэтому решил паяльником пропаять пайки подходящих от цоколя проводов. При прикосновении к одной из паек провод оголился. Обнаружилась «холодная» пайка. Так как добраться для зачистки провода возможности небыло, то пришлось смазать его активным флюсом «ФИМ», а затем припаять заново.


После сборки светодиодная лампа стабильно излучала свет, не смотря за удары по ней рукояткой отвертки. Проверка светового потока на пульсации показала, что они значительны с частотой 100 Гц. Такую светодиодную лампу допустимо устанавливать только в светильники для общего освещения.

Электрическая схема драйвера

светодиодной лампы ASD LED-A60 на микросхеме SM2082

Электрическая схема лампы ASD LED-A60, благодаря применению в драйвере для стабилизации тока специализированной микросхемы SM2082 получилась довольно простой.


Схема драйвера работает следующим образом. Питающее напряжение переменного тока через предохранитель F подается на выпрямительный диодный мост, собранный на микросборке MB6S. Электролитический конденсатор С1 сглаживает пульсации, а R1 служит для его разрядки при отключении питания.

С положительного вывода конденсатора питающее напряжение подается непосредственно на последовательно включенные светодиоды. С вывода последнего светодиода напряжение подается на вход (вывод 1) микросхемы SM2082, в микросхеме ток стабилизируется и далее с ее выхода (вывод 2) поступает на отрицательный вывод конденсатора С1.

Резистор R2 задает величину тока, протекающего через светодиоды HL. Величина тока обратно пропорциональна его номиналу. Если номинал резистора уменьшить, то ток увеличится, если номинал увеличить, то ток уменьшится. Микросхема SM2082 допускает регулировать резистором величину тока от 5 до 60 мА.

Ремонт светодиодной лампы


ASD LED-A60, 11 Вт, 220 В, E27

В ремонт попала еще одна светодиодная лампа ASD LED-A60 похожая по внешнему виду и с такими же техническими характеристиками, как и выше отремонтированная.

При включении лампа на мгновенье зажигалась и далее не светила. Такое поведение светодиодных ламп обычно связано с неисправностью драйвера. Поэтому сразу приступил к разборке лампы.

Светорассеивающее стекло снялось с большим трудом, так как по всей линии контакта с корпусом оно было, несмотря на наличие фиксатора, обильно смазано силиконом. Для отделения стекла пришлось по всей линии соприкосновения с корпусом с помощью ножа искать податливое место, но все равно без трещины в корпусе не обошлось.


Для получения доступа к драйверу лампы на следующем шаге предстояло извлечь светодиодную печатную плату, которая была по контуру запрессована в алюминиевую вставку. Несмотря на то, что плата была алюминиевая, и можно было извлекать ее без опасения появления трещин, все попытки не увенчались успехом. Плата держалась намертво.

Извлечь плату вместе с алюминиевой вставкой тоже не получилось, так как она плотно прилегала к корпусу и была посажена внешней поверхностью на силикон.


Решил попробовать вынуть плату драйвера со стороны цоколя. Для этого сначала из цоколя был поддет ножом, и вынут центральный контакт. Для снятия резьбовой части цоколя пришлось немного отогнуть ее верхний буртик, чтобы места кернения вышли из зацепления за основание.

Драйвер стал доступен и свободно выдвигался до определенного положения, но полностью вынуть его не получалось, хотя проводники от светодиодной платы были отпаяны.


В плате со светодиодами в центре было отверстие. Решил попробовать извлечь плату драйвера с помощью ударов по ее торцу через металлический стержень, продетый через это отверстие. Плата продвинулась на несколько сантиметров и в что-то уперлась. После дальнейших ударов треснул по кольцу корпус лампы и плата с основанием цоколя отделились.

Как оказалось, плата имела расширение, которое плечиками уперлось в корпус лампы. Похоже, плате придали такую форму для ограничения перемещения, хотя достаточно было зафиксировать ее каплей силикона. Тогда драйвер извлекался бы с любой из сторон лампы.


Напряжение 220 В с цоколя лампы через резистор — предохранитель FU подается на выпрямительный мост MB6F и после него сглаживается электролитическим конденсатором. Далее напряжение поступает на микросхему SIC9553, стабилизирующую ток. Параллельно включенные резисторы R20 и R80 между выводами 1 и 8 MS задают величину тока питания светодиодов.


На фотографии представлена типовая электрическая принципиальная схема, приведенная производителем микросхемы SIC9553 в китайском даташите.


На этой фотографии представлен внешний вид драйвера светодиодной лампы со стороны установки выводных элементов. Так как позволяло место, для снижения коэффициента пульсаций светового потока конденсатор на выходе драйвера был вместо 4,7 мкФ впаян на 6,8 мкФ.


Если Вам придется извлекать драйвера из корпуса данной модели лампы и не получится извлечь светодиодную плату, то можно с помощью лобзика пропилить корпус лампы по окружности чуть выше винтовой части цоколя.


В конечном итоге все мои усилия по извлечению драйвера оказались полезными только для познания устройства светодиодной лампы. Драйвер оказался исправным.

Вспышка светодиодов в момент включения была вызвана пробоем в кристалле одного из них в результате броска напряжения при запуске драйвера, что и ввело меня в заблуждение. Надо было в первую очередь прозвонить светодиоды.

Попытка проверки светодиодов мультиметром не привела к успеху. Светодиоды не светились. Оказалось, что в одном корпусе установлено два последовательно включенных светоизлучающих кристалла и чтобы светодиод начал протекать ток необходимо подать на него напряжение 8 В.

Мультиметр или тестер, включенный в режим измерения сопротивления, выдает напряжение в пределах 3-4 В. Пришлось проверять светодиоды с помощью блока питания, подавая с него на каждый светодиод напряжение 12 В через токоограничивающий резистор 1 кОм.

В наличии небыло светодиода для замены, поэтому вместо него контактные площадки были замкнуты каплей припоя. Для работы драйвера это безопасно, а мощность светодиодной лампы снизиться всего на 0,7 Вт, что практически незаметно.

После ремонта электрической части светодиодной лампы, треснувший корпус был склеен быстро сохнущим супер клеем «Момент», швы заглажены оплавлением пластмассы паяльником и выровнены наждачной бумагой.

Для интереса выполнил некоторые измерения и расчеты. Ток, протекающий через светодиоды, составил 58 мА, напряжение 8 В. Следовательно мощность, подводимая на один светодиод составляет 0,46 Вт. При 16 светодиодах получается 7,36 Вт, вместо заявленных 11 Вт. Возможно производителем указана общая мощность потребления лампы с учетом потерь в драйвере.

Заявленный производителем срок службы светодиодной лампы ASD LED-A60, 11 Вт, 220 В, E27 у меня вызывает большие сомнения. В малом объеме пластмассового корпуса лампы, с низкой теплопроводностью выделяется значительная мощность — 11 Вт. В результате светодиоды и драйвер работают на предельно допустимой температуре, что приводит к ускоренной деградации их кристаллов и, как следствие, к резкому снижению времени их наработки на отказ.

Ремонт светодиодной лампы


LED smd B35 827 ЭРА, 7 Вт на микросхеме BP2831A

Поделился со мной знакомый, что купил пять лампочек как на фото ниже, и все они через месяц перестали работать. Три из них он успел выбросить, а две, по моей просьбе, принес для ремонта.


Лампочка работала, но вместо яркого света излучала мерцающий слабый свет с частотой несколько раз в секунду. Сразу предположил, что вспучился электролитический конденсатор, обычно если он выходит из строя, то лампа начинает излучать свет, как стробоскоп.

Светорассеивающее стекло снялось легко, приклеено небыло. Оно фиксировалось за счет прорези на его ободке и выступу в корпусе лампы.


Драйвер был закреплен с помощью двух паек к печатной плате со светодиодами, как в оной из выше описанных ламп.

Типовая схема драйвера на микросхеме BP2831A взятая с даташита приведена на фотографии. Плата драйвера была извлечена и проверены все простые радиоэлементы, оказались все исправны. Пришлось заняться проверкой светодиодов.

Светодиоды в лампе были установлены неизвестного типа с двумя кристаллами в корпусе и осмотр дефектов не выявил. Методом последовательного соединения между собой выводов каждого из светодиодов быстро определил неисправный и заменил его каплей припоя, как на фотографии.

Лампочка проработала неделю и опять попала в ремонт. Закоротил следующий светодиод. Через неделю пришлось закоротить очередной светодиод, и после четвертого лампочку выкинул, так как надоело ее ремонтировать.

Причина отказа лампочек подобной конструкции очевидна. Светодиоды перегреваются из-за недостаточной поверхности теплоотвода, и ресурс их снижается до сотен часов.

Почему допустимо замыкать выводы сгоревших светодиодов в LED лампах

Драйвер светодиодных ламп, в отличие от блока питания постоянного напряжения, на выходе выдает стабилизированную величину тока, а не напряжения. Поэтому вне зависимости от сопротивления нагрузки в заданных пределах, ток будет всегда постоянным и, следовательно, падение напряжения на каждом из светодиодов будет оставаться прежним.

Поэтому при уменьшении количества последовательно соединённых светодиодов в цепи будет пропорционально уменьшаться и напряжение на выходе драйвера.

Например, если к драйверу последовательно подключено 50 светодиодов, и на каждом из них падает напряжение величиной 3 В, то напряжение на выходе драйвера составлял 150 В, а если закоротить 5 из них, то напряжение снизится до 135 В, а величина тока не изменится.


Но коэффициент полезного действия (КПД) драйвера, собранного по такой схеме будет низкий и потери мощности, составят более 50%. Например, для LED лампочки MR-16-2835-F27 понадобится резистор номиналом 6,1 кОм мощностью 4 ватта. Получится, что драйвер на резисторе будет потреблять мощность, превышающую мощность потребления светодиодами и его разместить в маленький корпус LED лампы, из-за выделения большего количества тепла, будет недопустимо.

Но если нет другого способа отремонтировать светодиодную лампу и очень надо, то драйвер на резисторе можно разместить в отдельном корпусе, все равно потребляемая мощность такой LED лампочки будет в четыре раза меньше, чем лампы накаливания. При этом надо заметить, что чем больше будет в лампочке последовательно включенных светодиодов, тем выше будет КПД. При 80 последовательно соединенных светодиодов SMD3528 понадобится уже резистор номиналом 800 Ом мощностью всего 0,5 Вт. Емкость конденсатора С1 нужно будет увеличить до 4,7 µF.

Поиск неисправных светодиодов

После снятия защитного стекла появляется возможность проверки светодиодов, без отклеивания печатной платы. В первую очередь проводится внимательный осмотр каждого светодиода. Если обнаружена даже самая маленькая черная точка, не говоря уже о почернении всей поверхности LED, то он точно неисправен.

При осмотре внешнего вида светодиодов, нужно внимательно осмотреть и качество паек их выводов. В одной из ремонтируемых лампочек оказалось плохо припаянных сразу четыре светодиода.

На фотографии лампочка, у которой на четырех LED были очень маленькие черные точки. Я сразу пометил неисправные светодиоды крестами, чтобы их было хорошо видно.

Неисправные светодиоды могут и не иметь изменений внешнего вида. Поэтому необходимо каждый LED проверить мультиметром или стрелочным тестером , включенным в режим измерения сопротивления.

Встречаются светодиодные лампы, в которых установлены по внешнему виду стандартные светодиоды, в корпусе которых смонтировано сразу два последовательно включенных кристалла. Например, лампы серии ASD LED-A60. Для прозвонки таких светодиодов необходимо приложить к его выводам напряжение более 6 В, а любой мультиметр выдает не более 4 В. Поэтому проверку таких светодиодов можно выполнить только подав на них с источника питания напряжение более 6 (рекомендуется 9-12) В через резистор 1 кОм.

Светодиод проверяется, как и обычный диод, в одну сторону сопротивление должно быть равно десяткам мегаом, а если поменять щупы местами (при этом меняется полярность подачи напряжения на светодиод), то небольшим, при этом светодиод может тускло светиться.

При проверке и замене светодиодов лампу необходимо зафиксировать. Для этого можно использовать подходящего размера круглую банку.

Можно проверить исправность LED и без дополнительного источника постоянного тока. Но такой метод проверки возможен, если исправен драйвер лампочки. Для этого необходимо подать на цоколь LED лампочки питающее напряжение и выводы каждого светодиода последовательно закорачивать между собой перемычкой из провода или, например губками металлического пинцета.

Если вдруг все светодиоды, засветятся, значит, закороченный точно неисправен. Этот метод пригоден, если неисправен только один светодиод из всех в цепи. При таком способе проверки нужно учесть, что если драйвер не обеспечивает гальванической развязки с электросетью, как например, на приведенных выше схемах, то прикосновение рукой к пайкам LED небезопасно.

Если один или даже несколько светодиодов оказались неисправны и, заменить их нечем, то можно просто закоротить контактные площадки, к которым были припаяны светодиоды. Лампочка будет работать с таким же успехом, только несколько уменьшится световой поток.

Другие неисправности светодиодных ламп

Если проверка светодиодов показала их исправность, то значит, причина неработоспособности лампочки заключается в драйвере или в местах пайки токоподводящих проводников.

Например, в этой лампочке была обнаружена холодная пайка проводника, подающего питающее напряжение на печатную плату. Выделяемая из-за плохой пайки копоть даже осела на токопроводящие дорожки печатной платы. Копоть легко удалилась протиркой ветошью, смоченной в спирте. Провод был выпаян, зачищен, залужен и вновь запаян в плату. С ремонтом этой лампочки повезло.

Из десяти отказавших лампочек только у одной был неисправен драйвер, развалился диодных мостик. Ремонт драйвера заключался в замене диодного моста четырьмя диодами IN4007, рассчитанными на обратное напряжение 1000 В и ток 1 А.

Пайка SMD светодиодов

Для замены неисправного LED его необходимо выпаять, не повредив печатные проводники. С платы донора тоже нужно выпаять на замену светодиод без повреждений.

Выпаивать SMD светодиоды простым паяльником, не повредив их корпус, практически невозможно. Но если использовать специальное жало для паяльника или на стандартное жало надеть насадку , сделанную из медной проволоки, то задача легко решается.

Светодиод имеют полярность и при замене нужно правильно его установить на печатную плату. Обычно печатные проводники повторяют форму выводов на LED. Поэтому допустить ошибку можно только при невнимательности. Для запайки светодиода достаточно установить его на печатную плату и прогреть паяльником мощностью 10-15 Вт его торцы с контактными площадками.

Если светодиод сгорел на уголь, и печатная плата под ним обуглилась, то прежде чем устанавливать новый светодиод нужно обязательно очистить это место печатной платы от гари, так как она является проводником тока. При очистке можно обнаружить, что контактные площадки для пайки светодиода обгорели или отслоились.

В таком случае светодиод можно установить, припаяв его к соседним светодиодам, если печатные дорожки ведут к ним. Для этого можно взять отрезок тонкого провода, согнуть его вдвое или трое, в зависимости от расстояния между светодиодами, залудить и припаять к ним.

Ремонт светодиодной лампы серии «LL-CORN» (лампа-кукуруза)


E27 4,6 Вт 36x5050SMD

Устройство лампы, которая в народе называется лампа-кукуруза, изображенной на фотографии ниже отличается, от выше описанной лампы, поэтому и технология ремонта другая.


Конструкция ламп на LED SMD подобного типа очень удобна для ремонта, так как есть доступ для прозвонки светодиодов и их замены без разборки корпуса лампы. Правда, я лампочку все равно разобрал для интереса, чтобы изучить ее устройство.

Проверка светодиодов LED лампы-кукурузы не отличается от выше описанной технологии, но надо учесть, что в корпусе светодиода SMD5050 размещено сразу три светодиода, обычно включаемые параллельно (на желтом круге видны три темные точки кристаллов), и при проверке должны светиться все три.


Неисправный светодиод можно заменить новым или закоротить перемычкой. На надежность работы лампы это не повлияет, только незаметно для глаза, уменьшится немного световой поток.

Драйвер этой лампы собран по простейшей схеме, без развязывающего трансформатора, поэтому прикосновение к выводам светодиодов при включенной лампе недопустимо. Лампы такой конструкции недопустимо устанавливать в светильники, к которым могут добраться дети.

Если все светодиоды исправны, значит, неисправен драйвер, и чтобы до него добраться лампу придется разбирать.

Для этого нужно снять ободок со стороны, противоположной цоколю. Маленькой отверткой или лезвием ножа нужно, пробуя по кругу, найти слабое место, где ободок хуже всего приклеен. Если ободок поддался, то работая инструментом, как рычагом, ободок нетрудно отойдет по всему периметру.


Драйвер был собран по электрической схеме, как и у лампы MR-16, только С1 стоял емкостью 1 µF, а С2 — 4,7 µF. Благодаря тому, что провода, идущие от драйвера к цоколю лампы, были длинными, драйвер легко вынулся из корпуса лампы. После изучения его схемы, драйвер был вставлен обратно в корпус, а ободок приклеен на место прозрачным клеем «Момент». Отказавший светодиод заменен исправным.

Ремонт светодиодной лампы «LL-CORN» (лампа-кукуруза)


E27 12 Вт 80x5050SMD

При ремонте более мощной лампы, 12 Вт, такой же конструкции отказавших светодиодов не оказалось и чтобы добраться до драйверов, пришлось вскрывать лампу по выше описанной технологии.

Эта лампа преподнесла мне сюрприз. Провода, идущие от драйвера к цоколю, оказались короткими, и извлечь драйвер из корпуса лампы для ремонта было невозможно. Пришлось снимать цоколь.


Цоколь лампы был сделан из алюминия, закернен по окружности и держался крепко. Пришлось высверливать точки крепления сверлом 1,5 мм. После этого поддетый ножом цоколь легко снялся.

Но можно обойтись и без сверления цоколя, если острием ножа по окружности поддевать и немного отгибать его верхнюю кромку. Предварительно следует нанести метку на цоколе и корпусе, чтобы цоколь было удобно устанавливать на место. Для надежного закрепления цоколя после ремонта лампы, достаточно будет надеть его на корпус лампы таким образом, чтобы накерненные точки на цоколе попали на старые места. Далее продавить эти точки острым предметом.

Два провода были подсоединены к резьбе прижимом, а другие два запрессованные в центральный контакт цоколя. Пришлось эти провода перекусить.


Как и ожидалось, драйверов было два одинаковых, питающих по 43 диода. Они были закрыты термоусаживающейся трубкой и соединены вместе скотчем. Для того, чтобы драйвер можно было опять поместить в трубку, я обычно ее аккуратно разрезаю вдоль печатной платы со стороны установки деталей.


После ремонта драйвер окутывается трубкой, которая фиксируется пластмассовой стяжкой или заматывается несколькими витками нитки.


В электрической схеме драйвера этой лампы уже установлены элементы защиты, С1 для защиты от импульсных выбросав и R2, R3 для защиты от бросков тока. При проверке элементов сразу были обнаружены на обоих драйверах в обрыве резисторы R2. Похоже, что на светодиодную лампу было подано напряжение, превышающее допустимое. После замены резисторов, под рукой на 10 Ом не оказалось, и я установил на 5,1 Ом, лампа заработала.

Ремонт светодиодной лампы серии «LLB» LR-EW5N-5

Внешний вид лампочки этого типа внушает доверие. Алюминиевый корпус, качественное исполнение, красивый дизайн.

Конструкция лампочки такова, что разборка ее без применения значительных физических усилий невозможна. Так как ремонт любой светодиодной лампы начинается с проверки исправности светодиодов, то первое что пришлось сделать, это снять пластмассовое защитное стекло.

Стекло фиксировалось без клея на проточке, сделанной в радиаторе буртиком внутри него. Для снятия стекла нужно концом отвертки, которая пройдет между ребрами радиатора, опереться за торец радиатора и как рычагом поднять стекло вверх.

Проверка светодиодов тестером показала их исправность, следовательно, неисправен драйвер, и надо до него добраться. Плата из алюминия была прикручена четырьмя винтами, которые я открутил.

Но вопреки ожиданиям, за платой оказалась плоскость радиатора, смазанная теплопроводящей пастой. Плату пришлось вернуть на место и продолжить разбирать лампу со стороны цоколя.


В связи с тем, что пластмассовая часть, к которой крепился радиатор, держалась очень крепко, решил пойти проверенным путем, снять цоколь и через открывшееся отверстие извлечь драйвер для ремонта. Высверлил места кернения, но цоколь не снимался. Оказалось, он еще держался на пластмассе за счет резьбового соединения.


Пришлось отделять пластмассовый переходник от радиатора. Держался он, так же как и защитное стекло. Для этого был сделан запил ножовкой по металлу в месте соединения пластмассы с радиатором и с помощью поворота отвертки с широким лезвием, детали были отделены друг от друга.


После отпайки выводов от печатной платы светодиодов драйвер стал доступен для ремонта. Схема драйвера оказалась более сложной, чем у предыдущих лампочек, с разделительным трансформатором и микросхемой. Один из электролитических конденсаторов 400 V 4,7 µF был вздутый. Пришлось его заменить.


Проверка всех полупроводниковых элементов выявила неисправный диод Шоттки D4 (на фото внизу с лева). На плате стоял диод Шоттки SS110, заменил имеющимся аналогом 10 BQ100 (100 V, 1 А). Прямое сопротивление у диодов Шоттки в два раза меньше, чем у обыкновенных диодов. Светодиодная лампочка засветила. Такая же неисправность оказалась и у второй лампочки.

Ремонт светодиодной лампы серии «LLB» LR-EW5N-3

Эта светодиодная лампа по внешнему виду очень похожа на «LLB» LR-EW5N-5, но конструкция ее несколько отличается.

Если внимательно присмотреться, то видно, что на стыке между алюминиевым радиатором и сферическим стеклом, в отличие от LR-EW5N-5, имеется кольцо, в котором и закреплено стекло. Для снятия защитного стекла достаточно небольшой отверткой подцепить его в месте стыка с кольцом.

На алюминиевой печатной плате установлено три девяти кристальных сверх ярких LED. Плата прикручена к радиатору тремя винтами. Проверка светодиодов показала их исправность. Следовательно, нужно ремонтировать драйвер. Имея опыт ремонта похожей светодиодной лампы «LLB» LR-EW5N-5, я не стал откручивать винты, а отпаял токоподводящие провода, идущие от драйвера и продолжил разбирать лампу со стороны цоколя.


Пластмассовое соединительное кольцо цоколя с радиатором снялось с большим трудом. При этом часть его откололась. Как оказалось, оно было прикручено к радиатору тремя саморезами. Драйвер легко извлекся из корпуса лампы.


Саморезы, прикручивающие пластмассовое кольцо цоколя закрывает драйвер, и увидеть их сложно, но они находятся на одной оси с резьбой, к которой прикручена переходная часть радиатора. Поэтому тонкой крестообразной отверткой к ним можно добраться.


Драйвер оказался собран по трансформаторной схеме. Проверка всех элементов, кроме микросхемы, не выявила отказавших. Следовательно, неисправна микросхема, в Интернете даже упоминание о ее типе не нашел. Светодиодную лампочку отремонтировать не удалось, пригодится на запчасти. Зато изучил ее устройство.

Ремонт светодиодной лампы серии «LL» GU10-3W

Разобрать перегоревшую светодиодную лампочку GU10-3W с защитным стеклом оказалось, на первый взгляд, невозможно. Попытка извлечь стекло приводила к его надколу. При приложении больших усилий, стекло трескалось.

Кстати, в маркировке лампы буква G означает, что лампа имеет штыревой цоколь, буква U, что лампа относится к классу энергосберегающих лампочек, а цифра 10 – расстояние между штырями в миллиметрах.

Лампочки LED с цоколем GU10 имеют особые штыри и устанавливаются в патрон с поворотом. Благодаря расширяющимся штырям, LED лампа защемляется в патроне и надежно удерживается даже при тряске.

Для того чтобы разобрать эту LED лампочку пришлось в ее алюминиевом корпусе на уровне поверхности печатной платы сверлить отверстие диаметром 2,5 мм. Место сверления нужно выбрать таким образом, чтобы сверло при выходе не повредило светодиод. Если под рукой нет дрели, то отверстие можно проделать толстым шилом.

Далее в отверстие продевается маленькая отвертка и, действуя, как рычагом приподымается стекло. Снимал стекло у двух лампочек без проблем. Если проверка светодиодов тестером показала их исправность, то далее извлекается печатная плата.


После отделения платы от корпуса лампы, сразу стало очевидно, что как в одной, так и в другой лампе сгорели токоограничивающие резисторы. Калькулятор определил по полосам их номинал, 160 Ом. Так как резисторы сгорели в светодиодных лампочках разных партий, то очевидно, что их мощность, судя по размеру 0,25 Вт, не соответствует выделяемой мощности при работе драйвера при максимальной температуре окружающей среды.


Печатная плата драйвера была добротно залита силиконом, и я не стал ее отсоединять от платы со светодиодами. Обрезал выводы сгоревших резисторов у основания и к ним припаял более мощные резисторы, которые оказались под рукой. В одной лампе впаял резистор 150 Ом мощностью 1 Вт, во второй два параллельно 320 Ом мощностью 0,5 Вт.


Для того чтобы исключить случайное прикосновение вывода резистора, к которому подходит сетевое напряжение с металлическим корпусом лампы, он был заизолирован каплей термоклея. Он водостойкий, отличный изолятор. Его я часто применяю для герметизации, изоляции и закрепления электропроводов и других деталей.

Термоклей выпускается в виде стержней диаметром 7, 12, 15 и 24 мм разных цветов, от прозрачного до черного. Он плавится в зависимости от марки при температуре 80-150°, что позволяет его расплавлять с помощью электрического паяльника. Достаточно отрезать кусок стержня, разместить в нужном месте и нагреть. Термоклей приобретет консистенцию майского меда. После остывания становится опять твердым. При повторном нагреве опять становиться жидким.

После замены резисторов, работоспособность обеих лампочек восстановилась. Осталось только закрепить печатную плату и защитное стекло в корпусе лампы.

При ремонте светодиодных ламп для закрепления печатных плат и пластмассовых деталей я использовал жидкие гвозди «Монтаж» момент. Клей без запаха, хорошо прилипает к поверхностям любых материалов, после засыхания остается пластичным, имеет достаточную термостойкость.

Достаточно взять небольшое количество клея на конец отвертки и нанести на места соприкосновения деталей. Через 15 минут клей уже будет держать.

При приклейке печатной платы, чтобы не ждать, удерживая плату на месте, так как провода выталкивали ее, зафиксировал плату дополнительно в нескольких точках с помощью термоклея.

Светодиодная лампа начала мигать как стробоскоп

Пришлось ремонтировать пару светодиодных ламп с драйверами, собранными на микросхеме, неисправность которых заключалась в мигании света с частотой около одного герца, как в стробоскопе.

Один экземпляр светодиодной лампы начинал мигать сразу после включения в течении первых нескольких секунд и затем лампа начинала светить нормально. Со временем продолжительность мигания лампы после включения стала увеличиваться, и лампа стала мигать беспрерывно. Второй экземпляр светодиодной лампы стал мигать беспрерывно внезапно.


После разборки ламп оказалось, что в драйверах вышли из строя электролитические конденсаторы, установленные сразу после выпрямительных мостов. Определить неисправность было легко, так как корпуса конденсаторов были вздутые. Но даже если по внешнему виду конденсатор выглядит без внешних дефектов, то все равно ремонт светодиодной лампочки со стробоскопическим эффектом нужно начинать с его замены.

После замены электролитических конденсаторов исправными стробоскопический эффект исчез и лампы стали светить нормально.

Онлайн калькуляторы для определения номинала резисторов


по цветовой маркировке

При ремонте светодиодных ламп возникает необходимость в определении номинала резистора . По стандарту маркировка современных резисторов производиться путем нанесения на их корпуса цветных колец. На простые резисторы наносится 4 цветных кольца, а на резисторы повышенной точности – 5.

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.


Люминесцентная лампа, С1 и С2 – конденсаторы

Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.



Ремонт ЭПРА


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.


Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.

Лампы накаливания хотя и стоят дешево, но потребляют много электроэнергии, поэтому многие страны отказываются от их производства (США, страны Западной Европы). Взамен им приходят компактные люминесцентные лампы дневного света (энергосберегающие), их закручивают в те же патроны Е27, что и лампы накаливания. Однако стоят они в 15-30 раз дороже, зато в 6-8 раз дольше служат и в 4 раза меньше потребляют электроэнергии, что и определяет их судьбу. Рынок переполнен разнообразием таких ламп, в основном китайского производства. Одна из таких ламп, фирмы DELUX, показана на фото.

Ее мощность 26 Вт -220 В, а блок питания, называемый еще электронным балластом, расположен на плате размерами 48×48 мм (рис.1 ) и находится в цоколе этой лампы.

Ее радиоэлементы размещены на монтажной плате навесным монтажом, без применения ЧИП-элементов. Принципиальная схема нарисована автором из осмотра монтажной платы и показана на рис.2.

Примечание к схеме: на схеме отсутствует точка, обозначающая соединение динистора, диода D7 и базы транзистора EN13003A

Вначале уместно напомнить принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для зажигания люминесцентной лампы необходимо разогреть ее нити накала и приложить напряжение 500…1000 В, т.е. значительно больше, чем напряжение электросети. Величина напряжения зажигания прямо пропорциональна длине стеклянной колбы люминесцентной лампы. Естественно, для коротких компактных ламп она меньше, а для длинных трубчатых ламп — больше. После зажигания лампа резко уменьшает свое сопротивление, а значит, надо применять ограничитель тока для предотвращения КЗ в цепи. Схема электронного балласта для компактной люминесцентной лампы представляет собой двухтактный полумостовой преобразователь напряжения. Вначале сетевое напряжение с помощью 2-полупериодного моста выпрямляется до постоянного напряжения 300…310 В. Запуск преобразователя обеспечивает симметричный динистор, обозначенный на схеме Z, он открывается, когда, при включении электросети, напряжение в точках его подключения превысит порог срабатывания. При открывании, через динистор проходит импульс на базу нижнего по схеме транзистора, и преобразователь запускается. Далее двухтактный полумостовой преобразователь, активными элементами которого являются два транзистора n-p-n, преобразует постоянное напряжение 300…310 В, в высокочастотное напряжение, что позволяет значительно уменьшить габариты блока питания. Нагрузкой преобразователя и одновременно его управляющим элементом является тороидальный трансформатор (обозначенный в схеме L1) со своими тремя обмотками, из них две управляющие обмотки (каждая по два витка) и одна рабочая (9 витков). Транзисторные ключи открываются противофазно от положительных импульсов с управляющих обмоток. Для этого управляющие обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Отрицательные выбросы напряжения с этих обмоток гасятся диодами D5, D7. Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке. Переменное напряжение с рабочей обмотки подается на люминесцентною лампу через последовательную цепь, состоящую из: L3 — нити накала лампы -С5 (3,3 нФ 1200 В) — нити накала лампы — С7 (47 нФ/400 В). Величины индуктивностей и емкостей этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя. При резонансе напряжений в последовательной цепи, индуктивное и емкостное сопротивления равны, сила тока в цепи максимальна, а напряжение на реактивных элементах L и С может значительно превышать прикладываемое напряжение. Падение напряжения на С5, в этой последовательной резонансной цепи, в 14 раз больше, чем на С7, так как емкость С5 в 14 раз меньше и его емкостное сопротивление в 14 раз больше. Следовательно, перед зажиганием люминесцентной лампы максимальный ток в резонансной цепи разогревает обе нити накала, а большое резонансное напряжение на конденсаторе С5 (3,3 нФ/1200 В), включенного параллельно лампе, зажигает лампу. Обратите внимания на максимально допустимые напряжения на конденсаторах С5=1200 В и С7= 400 В. Такие величины подобраны неслучайно. При резонансе напряжение на С5 достигает около 1 кВ и он должен его выдерживать. Зажженная лампа резко уменьшает свое сопротивление и блокирует (закорачивает) конденсатор С5. С резонансной цепи исключается емкость С5, и резонанс напряжений в цепи прекращается, но уже зажженная лампа продолжает светиться, а дроссель L2 своей индуктивностью ограничивает ток в зажженной лампе. При этом преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь процесс зажигания длится меньше 1 с. Следует отметить, что на люминесцентную лампу все время подается переменное напряжение. Это лучше, чем постоянное, так как обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок ее службы. При питании ламп от постоянного тока срок ее службы уменьшается на 50%, поэтому постоянное напряжения на газоразрядные лампы не подают.

Назначения элементов преобразователя.
Типы радиоэлементов указаны на принципиальной схеме (рис.2).
1. EN13003A- транзисторные ключи (на монтажной схеме производители их почему-то не обозначили). Это биполярные высоковольтные транзисторы средней мощности, n-p-n проводимости, корпус ТО-126, их аналоги MJE13003 или КТ8170А1 (400 В; 1,5 А; в импульсе 3 А), можно и КТ872А (1500 В; 8 А; корпус Т26а), но по габаритам они больше. В любом случае надо правильно определить выходы БКЭ, так как у разных производителей могут быть разные их последовательности, даже у одного и того же аналога.
2. Тороидальный ферритовый трансформатор, обозначенный производителем L1, размеры кольца 11x6x4,5, вероятная магнитная проницаемость 2000, имеет 3 обмотки, две из них по 2 витка и одна 9 витков.
3. Все диоды D1-D7 однотипные 1N4007 (1000 В, 1 А), из них диоды D1-D4 — выпрямительный мост, D5, D7 — гасят отрицательные выбросы управляющего импульса, a D6 — разделяет источники питания.
4. Цепочка R1СЗ обеспечивает задержку пуска преобразователя с целью «мягкого пуска» и не допущения броска пускового тока.
5. Симметричный динистор Z типа DB3 Uзс.max=32 В; Uoc=5 В; Uнеотп.и.max=5 В) обеспечивает первоначальный запуск преобразователя.
6. R3, R4, R5, R6 — ограничительные резисторы.
7. С2, R2 — демпферные элементы, предназначенные для гашения выбросов транзисторного ключа в момент его закрытия.
8. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. Вначале дроссель участвует в резонансе напряжений (совместно с С5 и С7) для зажигания лампы, а после зажигания своей индуктивностью гасит ток в цепи люминесцентной лампы, так как зажженная лампа резко уменьшает свое сопротивление.
9. С5 (3,3 нФ/1200 В), С7 (47 нФ/400 В) — конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания С7 поддерживает свечения.
10. С1 — сглаживающий электролитический конденсатор.
11. Дроссель с ферритовым сердечником L4 и конденсатор С6 составляют заградительный фильтр, не пропускающий импульсные помехи преобразователя в питающую электросеть.
12. F1 — мини-предохранитель в стеклянном корпусе на 1 А, находится вне монтажной платы.

Ремонт.
Перед тем как ремонтировать электронный балласт, необходимо «добраться» до его монтажной платы, для этого достаточно ножом разъединить две составные части цоколя. При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением!

Перегорание (обрыв) накальных спиралей люминесцентной лампы , при этом электронный балласт остается исправным. Это типичная неисправность. Восстановить спираль невозможно, а стеклянные люминесцентные колбы к таким лампам отдельно не продаются. Какой же выход? Или приспособить исправный балласт к 20-ватному светильнику, имеющему прямую стеклянную лампу, вместо его «родного» дросселя (светильник будет работать надежнее и без гула) или использовать элементы платы как запчасти. Отсюда рекомендация: закупайте однотипные компактные люминесцентные лампы — легче будет ремонтировать.

Трещины в пайке монтажной платы. Причина их появления — периодическое нагревание и последующее, после выключения, остывание места пайки. Нагревается место пайки от элементов, которые греются (спирали люминесцентной лампы, транзисторные ключи). Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины.

Повреждение отдельных радиоэлементов. Отдельные радиоэлементы могут повредиться как от трещин в пайке, так и от скачков напряжения в питающей электросети. Хотя в схеме и есть предохранитель, но он не защитит радиоэлементы от скачков напряжений, как это мог бы сделать варистор. Предохранитель сгорит от пробоев радиоэлементов. Безусловно, самым слабым местом из всех радиоэлементов данного устройства являются транзисторы.

Радiоаматор №1, 2009г.

Список радиоэлементов
Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Биполярный транзистор

MJE13003A

2 N13003A, КТ8170А1, КТ872А В блокнот
D1-D7 Выпрямительный диод

1N4007

7 В блокнот
Z Динистор 1 В блокнот
C1 Электролитический конденсатор 100 мкФ 400 В 1 В блокнот
C2, C3 Конденсатор 27 нФ 100 В 2 В блокнот
C5 Конденсатор 3.3 нФ 1200 В 1 В блокнот
C6 Конденсатор 0.1 мкФ 400 В 1 В блокнот
C7 Конденсатор 47 нФ 400 В 1 В блокнот
R1, R2 Резистор

1.0 Ом

2

схема, как подключить, ремонт, принцип работы, электронный и индуктивный

Несмотря на бурное развитие полупроводниковых технологий, люминесцентные лампы продолжают широко использоваться. В этой статье мы выясним, что такое балласт для ламп. Узнаем, почему это обязательная деталь любого люминесцентного светильника. В дополнение разберемся в несложном ремонте этого пускорегулирующего узла.

Что такое балласт и для чего он нужен

Чтобы разобраться, для чего нужен балласт, необходимо понимать принцип работы люминесцентной лампы (ЛЛ). Рассмотрим ее устройство. Конструктивно любая люминесцентная лампа – стеклянная колба в виде трубки, в концы которой запаяны тугоплавкие спирали накаливания, являющиеся электродами. Колба заполнена инертным газом с небольшим добавлением металлической ртути. Изнутри она покрыта люминофором – веществом, способном излучать видимый свет при облучении его ультрафиолетом.

Конструкция и принцип работы ЛЛ

При подаче напряжения на электроды в колбе возникает тлеющий разряд. Поток электронов активирует атомы ртути, и те начинают излучать в ультрафиолетовом диапазоне. Ультрафиолет воздействует на люминофор, заставляя его ярко светиться в видимом спектре.

Сам ультрафиолет поглощается люминофором и стеклом колбы. Он не покидает пределов лампы. Это исключает вредное воздействие ультрафиолетового излучения на человека.

Теоретически все просто. На самом деле в холодной выключенной лампе при подаче рабочего напряжения на электроды разряда не произойдет, поскольку ртуть находится в конденсированном состоянии, а сопротивление инертного газа между электродами слишком велико. При запуске ртуть начинает испаряться, сопротивление газового промежутка между электродами резко падает, и тлеющий разряд в колбе переходит в неуправляемый дуговой. Для нормальной работы лампы необходимо выполнение двух условий:

  1. Запуск.
  2. Поддержание рабочего тока через колбу.

Этим и занимаются балласты, или пускорегулирующие аппараты (ПРА). Без них ни одна люминесцентная лампа работать не может.

к содержанию ↑

Разновидности

Первоначально в качестве ПРА для люминесцентной лампы использовались электромагнитные дроссели (балласты) со стартерами. Этот комплект назывался электромагнитным пускорегулирующим аппаратом – ЭмПРА. Позже появились электронные аналоги ЭмПРА на транзисторах и микросхемах, выполняющие ту же функцию. Они получили название ЭПРА (электронный пускорегулирующий аппарат), или просто «электронный балласт». Рассмотрим конструкцию и принцип работы этих пускорегулирующих устройств.

Нередко под ЭмПРА подразумевают только электромагнитный дроссель, что не совсем верно. ЭмПРА – это дроссель и стартер – два отдельных узла.

Электромагнитный

ЭмПРА это обычный дроссель – катушка, намотанная на магнитопроводе, и газоразрядная малогабаритная лампочка со встроенными биметаллическими контактами (рабочими электродами).

Дроссель + стартер = ЭмПРА

Рассмотрим процессы, происходящие в светильнике с ЭмПРА. При включении в колбе стартера зажигается разряд, который нагревает электроды из биметалла. В результате электроды замыкаются и подключают к питающей сети через дроссель спирали электродов ЛЛ. При этом тлеющий разряд в колбе лампочки-стартера гаснет.

Спирали люминесцентной лампы разогреваются, их способность испускать электроны многократно увеличивается. После остывания контактов стартера они размыкаются. В результате на электродах ЛЛ появляется импульс высокого (до 1 кВ) напряжения, создаваемого самоиндукцией дросселя.

Типовая схема люминесцентного светильника с ЭмПРА

На схеме буквами обозначены:

  • А – люминесцентная лампа.
  • В – сеть переменного тока.
  • С – стартер.
  • D – биметаллические электроды.
  • Е – искрогасящий конденсатор.
  • F – нити накала катодов.
  • G – электромагнитный дроссель (балласт).

Высокое напряжение пробивает газовый промежуток. В колбе ЛЛ начинается разряд. При этом ртуть переходит в парообразное состояние, сопротивление газового промежутка резко падает. Чтобы разряд не перешел в неуправляемый дуговой, ток через лампу ограничивается дросселем с большим индуктивным сопротивлением. Поэтому его называют балластом.

Поскольку рабочее напряжение на электродах работающей лампы ниже напряжения зажигания стартера, в последующем функционировании светильника он не участвует.

Электронный

Внешне электронный балласт для люминесцентных ламп похож на электромагнитный. У него серьезные конструктивные отличия и другой принцип работы.

ЭПРА в сборе (вверху) и его «начинка»

Как видно на фото, в электронном балласте много радиоэлементов. Рассмотрим типовую структурную схему ЭПРА и узнаем, как он работает.

Типовая структурная схема ЭПРА

Переменное сетевое напряжение проходит через фильтр электромагнитных помех, выпрямляется, сглаживается и подается на инвертор. Задача инвертора – обеспечить напряжение для работы ЛЛ. Сформированное инвертором напряжение через схему ограничения тока (балласт) подается на лампу. Схема запуска служит только для пуска ЛЛ. После выполнения своей функции в дальнейшей работе она не участвует.

Узлы инвертора, балласта и пуска на структурной схеме разделены условно. Часто функции балласта выполняет инвертор, дополнительно являющийся стабилизатором тока. В некоторых схемах он играет роль стартера, самостоятельно принимая решение о подогреве спиралей лампы и о подаче на них запускающего высоковольтного импульса.

Более простые схемы запуска представляют собой обычный конденсатор, образующий со спиралями и выходными дросселями колебательный контур. Последний настроен на частоту работы инвертора. Возникающий при погашенной лампе резонанс повышает напряжение на электродах лампы до единиц и даже десятков киловольт и зажигает разряд в колбе без предварительного подогрева спиралей (холодный пуск).

В этой схеме пуск лампы производится на холодных спиралях конденсатором, образующим резонансный контур

Холодный пуск сокращает срок службы ЛЛ, поскольку в таком режиме при образовании разряда из холодных катодов вырываются куски активной массы, разрушая покрытие, обеспечивающее стабильный разряд. В результате увеличивается рабочее напряжение ЛЛ и напряжение запуска. Они не в состоянии обеспечить ЭПРА.

Что даёт такая схема? Прежде всего, мерцание. Обычный электромагнитный дроссель питает лампу переменным током частотой 50 Гц. Люминофор имеет малую инерционность и в промежутках между полуволнами заметно теряет яркость свечения. В результате люминесцентная лампа заметно мерцает. Это плохо для зрения.

Особенно заметно мерцание на изношенных лампах, люминофор которых теряет свойства инерционности.

Инвертор, питающий ЛЛ, работает на частотах десятка и даже сотни кГц. При этом инерционности люминофора достаточно, чтобы «переждать» паузы между питающими импульсами без заметной потери яркости. То есть благодаря ЭПРА у люминесцентной лампы малый коэффициент пульсаций.

Далее электронная схема обеспечивает стабильным питанием лампу, даже если сетевое напряжение отличается от номинального. К примеру, ЭПРА POSVET (фото см. выше) позволяет работать ЛЛ при напряжении в сети от 195 до 242 В. У лампы, подключённой через ЭмПРА, при таких напряжениях либо сократится срок эксплуатации, либо она не запустится.

к содержанию ↑

Варианты схем подключения

Схему подключения люминесцентной лампы через электромагнитное пускорегулирующее устройство мы рассмотрели. Она стандартная и без вариаций. Обычно дополняется конденсатором, подключаемым параллельно светильнику. Он служит для снижения реактивной мощности, которую потребляет любая реактивная нагрузка, в том числе дроссель.

Схема люминесцентного светильника с ЭмПРА и компенсационным конденсатором

К одному дросселю можно подключить две люминесцентные лампы. При этом необходимо выполнить следующие условия:

  1. ЛЛ имеют одинаковую мощность.
  2. Мощность балласта равна сумме мощностей ЛЛ.
  3. ЛЛ рассчитаны на рабочее напряжение 110 В (при питании от сети 220 В).
  4. Стартеры рассчитаны на рабочее напряжение 110 В.

Схема подключения двух ламп к одному дросселю выглядит так (мощности дросселя 36 W  и ламп 2х18 W условные):

Схема светильника с двумя люминесцентными лампами на одном ЭмПРА

Важно! Для эффективной компенсации реактивной мощности необходимо подобрать конденсатор соответствующей емкости. Она зависит от мощности светильника. К примеру, для лампы 18 Вт необходим конденсатор емкостью 4.5 мкФ. В светильник с лампой 60 Вт устанавливается емкость 7 мкФ. Конденсаторы должны быть неполярными и рассчитаны на рабочее напряжение не ниже 400 В. Обычно используют бумажные конденсаторы МБГО и МГП.

Поскольку электронный балласт, как правило, имеет в составе пусковое устройство, подключить к нему ЛЛ проще. Для сборки светильника понадобятся лишь провода. Самый простой пример – одна лампа, один ЭПРА.

Стандартная схема подключения ЛЛ через электронный балласт

Существуют балласты, работающие с несколькими лампами. Для примера ниже приведены схемы подключения ЭПРА на 2 ЛЛ.

Варианты подключения ЭПРА для двух ламп

Схема подключения балласта, рассчитанного на работу с четырьмя ЛЛ, выглядит так:

Схема подключения балласта на 4 люминесцентные лампочки

Универсальные приборы в зависимости от схемы включения могут работать с произвольным количеством ЛЛ разной мощности.

Универсальный балласт и схемы его включения

Все приведенные схемы являются общими. Каждый ЭПРА может включаться особым образом. Поэтому прежде чем взяться за монтаж, необходимо выяснить схему включения. Она есть в сопроводительной документации и, как правило, наносится на корпус прибора. Там же указана мощность ламп и диапазон питающих напряжений.

Схема подключения ЭПРА находится на его корпусек содержанию ↑

Ремонт электронного балласта для люминесцентных ламп

Прежде чем ремонтировать балласт, убедитесь, что проблема не в самой лампе. Проверить исправность ЛЛ несложно. Для этого вынимаем ее из светильника и прозваниваем спирали катодов любым тестером в режиме измерения малых сопротивлений. Если у нас в руках так называемая КЛЛ, то для прозвонки спиралей ее придется разобрать. При проверке обеих спиралей прибор должен показать сопротивление от нескольких единиц до нескольких десятков Ом (зависит от мощности лампы).

Проверка целостности спиралей катодов ЛЛ мультиметром

Если хотя бы одна из спиралей не «звонится», лампа неисправна. На фото выше слева спираль исправна, справа – в обрыве. ЛЛ не работает и отремонтировать её невозможно.

Неисправность ЛЛ может заключаться в осыпании активного слоя, нанесенного на спирали, хотя они и будут звониться. При этом резко повышается напряжение пуска лампы и рабочее. Их ЭПРА обеспечить не может. Но такая неисправность не появляется мгновенно. Светильник начинает тяжело включаться, самопроизвольно перезапускаться и в результате тухнет вовсе.

Распространённые принципиальные схемы

Прежде чем перейти к ремонту, рассмотрим несколько распространённых схем электронных балластов для люминесцентных ламп. Начнём с самой простой. Она используется в светильниках небольшой мощности, включая компактные люминесцентные лампы (КЛЛ).

Схема простого балласта люминесцентной лампы

Сетевое напряжение выпрямляется диодным мостом D3-D6 и сглаживается высоковольтным конденсатором С4. Пройдя через фильтр L2, С7, питает блокинг-генератор, собранный на транзисторах Q1, Q2 и трансформаторе Т1. Рабочая частота генератора обычно составляет 10-20 кГц. Импульсное напряжение, снятое с обмотки Т1, через дроссель L1 поступает на выводы катодов люминесцентной трубки LMP1. Вторые выводы катодов соединены через конденсатор С5.

После подачи на схему питания генератор запускается. Напряжение с частотой преобразования подается на катоды лампы. Пока разряда в колбе нет, напряжение проходит через спирали и С5. Емкость С5 подобрана такой, что она вместе со спиралями LMP1, дросселем L1 и обмоткой Т1 образует колебательный контур, настроенный на частоту работы генератора. В результате резонанса напряжение на катодах возрастает до 1 кВ. Происходит пробой газового промежутка в колбе – лампа запускается.

За счёт низкого сопротивления разряда в колбе конденсатор C5 шунтируется, резонанс срывается, и на электроды поступает рабочее напряжение, необходимое для ЛЛ. Ток через колбу LMP1 ограничивается дросселем L1.

Поскольку рабочая частота дросселя высока, он имеет скромные размеры по сравнению с электромагнитным балластом, функционирующим на частоте 50 Гц.

Эта схема обеспечивает холодный пуск лампы. То есть она зажигается без предварительного подогрева катодов и практически мгновенно. Это не оптимальный режим, поскольку резко сокращает срок службы ЛЛ. А теперь посмотрим на следующую схему.

Схема простого балласта с подогревом спиралей

В целом схема та же с аналогичным принципом работы. Сетевое напряжение выпрямляется, сглаживается и питает генератор, питающий, в свою очередь, ЛЛ. Но обратите внимание на терморезистор, подключённый параллельно пусковому конденсатору С3. Терморезистор имеет положительный ТКС (такой прибор еще называют позистором). Пока холодный, он обладает низким сопротивлением. При подаче питания на светильник позистор шунтирует С3 и резонанса не происходит – нити накала подогреваются рабочим напряжением, недостаточным для образования разряда в колбе LMP1.

Через некоторое время позистор разогревается протекающим через него током. Его сопротивление возрастает. Конденсатор С3 перестает шунтироваться, возникает резонанс. Напряжение на электродах увеличивается до 1 кВ. Происходит пробой газового промежутка в колбе – лампа запускается.

В дальнейшем при работе лампы часть тока протекает и через позистор, поддерживая его в разогретом состоянии, чтобы он не мешал работе ЛЛ. Это снижает КПД конструкции (на разогрев позистора тратится энергия), но расходы эти незначительны – сопротивление нагретого терморезистора велико, а ток через него мал. Кроме того, они оправданы многократно увеличенным сроком службы люминесцентной лампы за счёт ее «правильного» запуска.

В завершение рассмотрим более сложную и «умную» схему ЭПРА, собранную на специализированной микросхеме. Примерно о таком балласте шла речь в разделе «Варианты схем подключения». Там он позиционировался как универсальный и мог работать с произвольным количеством ЛЛ разной мощности (от 1 до 4).

Схема универсального ЭПРА

Для понимания принципа его работы нам понадобятся схемы вариантов подключения ламп к этому балласту.

Варианты схем подключения универсального ЭПРА

Работа такого балласта с ЛЛ делится на три этапа:

  1. Предварительный разогрев катодов.
  2. Пуск.
  3. Рабочий режим.

После включения питания генератор, собранный на микросхеме D1, запускается на частоте около 65 кГц. Сигнал генератора через силовой ключ, собранный по полумостовой схеме на транзисторах VT2, VT3, подаётся на трансформатор Т2 и далее на спирали катодов ЛЛ, предварительно их разогревая.

Через опредёленное время (регулируется резистором R13) частота генератора начинает понижаться. Как только она снизится до резонансной частоты, на которую настроен контур L2С16, напряжение на катодах лампы возрастёт до 800 В. В колбе произойдёт разряд  ЛЛ запустилась. При этом на выводе 13 D1 появится напряжение, запускающее третий этап – рабочий.

Если напряжение на выводе 13 микросхемы не появилось, а на выводе 1 упало ниже 0.8 В, процесс розжига повторяется. При нескольких неудачных попытках розжига ЭПРА прекращает свою работу и отключает неисправную лампу. То же самое произойдёт при попытке запустить ЭПРА без лампы.

При удачном пуске частота генератора понижается до рабочей (устанавливается резистором R12). Ток через лампу стабилизируется и поддерживается на заданном уровне даже при значительных колебаниях величины питающего напряжения (для этой схемы – от 110 до 250 В). На элементах T1 и VT1 собран корректор активной мощности, снижающий реактивную составляющую.

Типовые неисправности и их устранение

Теперь проведём ремонт балласта люминесцентной лампы своими руками. Сложную неисправность мы не устраним – для этого потребуются определённые знания и приборы, но с проблемами попроще справимся. Посмотрим, что чаще всего ломается из того, что мы можем найти и исправить:

  • некачественный монтаж;
  • предохранитель;
  • высоковольтный конденсатор;
  • выпрямительный мост;
  • силовой транзистор;
  • дроссель/трансформатор.

Итак, разбираем пускорегулирующее устройство и делаем визуальный осмотр. Все элементы, дорожки и пайки должны быть в хорошем состоянии – без следов деформации, потемнения, разрушения и обугливания. На фото ниже отлично видны (слева направо и сверху вниз):

Неисправности балласта, определяющиеся визуальным осмотром
  • некачественная пайка;
  • вздутие сглаживающего конденсатора;
  • сгоревший дроссель;
  • пробитый транзистор (часть корпуса вырвана).

Если находим такие элементы, меняем их. Обнаруживаем непропай – лудим и пропаиваем.

После замены не включаем балласт, а проверяем остальные элементы по методике, описанной ниже, поскольку выход из строя одного элемента может быть как причиной, так и следствием неисправности других. К примеру, вздутие конденсатора вызывается пробоем выпрямительного диода. Предохранитель может сгореть из-за вышедшего из строя силового транзистора или конденсатора.

Теперь посмотрим, как выглядят вышеперечисленные элементы на плате драйвера. В зависимости от модели прибора они могут располагаться в другом месте, но различия обычно незначительны. Найти нужный элемент нетрудно.

Примерное расположение основных элементов на плате ЭПРА

На фото цифрами обозначены:

  • 1 – предохранитель;
  • 2 – диодный мост;
  • 3 – сглаживающий конденсатор;
  • 4 – силовые транзисторы;
  • 5 – импульсный трансформатор;
  • 6 – дроссель.

Теперь берем в руки тестер и проверяем предохранитель (если он есть), не выпаивая его из схемы. Прибор в режиме измерения низкого сопротивления или проверки диодов должен показать ноль. В противном случае предохранитель неисправен.

Выпрямительный мост. Он может быть собран как на отдельных диодах, так и представлять собой сборку из четырех диодов в одном корпусе. На фото ниже такая сборка отмечена стрелкой.

В этот ЭПРА установлена выпрямительная диодная сборка

В любом случае прозваниваем каждый диод в обоих направлениях тестером, включённым в режим проверки полупроводников. В одном направлении прибор должен показать падение напряжения порядка нескольких сот милливольт, в другом – бесконечность. Диоды перед проверкой выпаивать не нужно.

Конденсатор. Этот элемент выглядит как небольшой бочонок рядом с выпрямительным мостом. Даже если с виду он исправен (не вздулся и не взорвался), стоит его проверить. Для этого выпаиваем конденсатор из схемы и прозваниваем в режиме проверки диодов, предварительно кратковременно замкнув его выводы, чтобы разрядить.

В первый момент прибор покажет малые значения падения напряжения. По мере зарядки конденсатора они будут увеличиваться. Если показания прибора низкие и не изменяются, конденсатор пробит. Если мультиметр показывает бесконечность, то конденсатор в обрыве. В обоих случаях элемент меняем.

Транзисторы. Их для проверки тоже придется выпаять. Переводим мультиметр в режим проверки диодов и прозванивам транзистор между выводами база-коллектор и база-эмиттер в обоих направлениях. В одну сторону прибор покажет падение напряжения порядка нескольких сотен милливольт, в другую – бесконечность. Выводы коллектор-эмиттер на должны звониться вообще – в обе стороны бесконечность.

Это все, чем мы можем помочь электронному балласту. Для выявления и устранения более сложных неисправностей потребуется помощь специалиста.

Мы выяснили, для чего нужен балласт люминесцентной лампе. Узнали, какими эти балласты бывают, как работают, научились устранять распространенные неисправности этого электронного узла.

Предыдущая

ЛюминесцентныеПравила хранения люминесцентных ламп на предприятиях

Следующая

ЛюминесцентныеДля чего нужен стартер в люминесцентных лампах

Спасибо, помогло!1Не помогло

Как сделать блок питания на 12 В из энергосберегающей лампы

Несмотря на небольшие размеры энергосберегающих ламп, в них много электронных компонентов. По своему устройству это обычная трубчатая люминесцентная лампа с миниатюрной колбой, но только свернутой в спираль или иную пространственную компактную линию. Ее поэтому называют компактной люминесцентной лампой (в сокращении КЛЛ).

И для нее характерны все те же самые проблемы и неисправности, что и для больших трубчатых лампочек. Но электронный балласт лампочки, которая перестала светить, скорее всего, из-за перегоревшей спирали, обычно сохраняет свою работоспособность. Поэтому его можно использовать для каких-либо целей как импульсный блок питания (в сокращении ИБП), но с предварительной доработкой. Об этом и пойдет речь далее. Наши читатели узнают, как сделать блок питания из энергосберегающей лампы.

В чем разница между ИБП и электронным балластом

Сразу предупредим тех, кто ожидает получение мощного источника питания из КЛЛ – большую мощность получить в результате простой переделки балласта нельзя. Дело в том, что в катушках индуктивности, которые содержат сердечники, рабочая зона намагничивания жестко ограничена конструкцией и свойствами намагничивающего напряжения. Поэтому импульсы этого напряжения, создаваемые транзисторами, точно подобраны и определены элементами схемы. Но такой блок питания из ЭПРА вполне достаточен для питания светодиодной ленты. Тем более что импульсный блок питания из энергосберегающей лампы соответствует ее мощности. А она может быть до 100 Вт.

Наиболее распространенная схема балласта КЛЛ построена по схеме полумоста (инвертора). Это автогенератор на основе трансформатора TV. Обмотка TV1-3 намагничивает сердечник и выполняет при этом функцию дросселя для ограничения тока через лампу EL3. Обмотки TV1-1 и TV1-2 обеспечивают положительную обратную связь для появления напряжения, управляющего транзисторами VT1и VT2. На схеме красным цветом показана колба КЛЛ с элементами, которые обеспечивают ее запуск.

Пример распространенной схемы балласта КЛЛ

Все катушки индуктивности и емкости в схеме подобраны так, чтобы получить в лампе точно дозированную мощность. С ее величиной связана работоспособность транзисторов. А поскольку они не имеют радиаторов, не рекомендуется стремиться получать от переделанного балласта значительную мощность. В трансформаторе балласта нет вторичной обмотки, от которой питается нагрузка. В этом главное отличие его от ИБП.

В чем суть реконструкции балласта

Чтобы получить возможность подключения нагрузки к отдельной обмотке, надо либо намотать ее на дросселе L5, либо применить дополнительный трансформатор. Переделка балласта в ИБП предусматривает:

Плата балласта извлечена из лампы

Для дальнейшей переделки электронного балласта в блок питания из энергосберегающей лампы надо принять решение относительно трансформатора:

  • использовать имеющийся дроссель, доработав его;
  • либо применить новый трансформатор.

Трансформатор из дросселя

Далее рассмотрим оба варианта. Для того чтобы воспользоваться дросселем из электронного балласта, его надо выпаять из платы и затем разобрать. Если в нем применен Ш-образный сердечник, он содержит две одинаковые части, которые соединены между собой. В рассматриваемом примере для этой цели применена оранжевая клейкая лента. Она аккуратно удаляется.

Удаление ленты, стягивающей половинки сердечника

Половинки сердечника обычно склеены так, чтобы между ними оставался зазор. Он служит для оптимизации намагничивания сердечника, замедляя этот процесс и ограничивая скорость нарастания тока. Берем наш импульсный паяльник и нагреваем сердечник. Прикладываем его к паяльнику местами соединения половинок.

Рассоединяем склеенные половины сердечника

Разобрав сердечник, получаем доступ к катушке с намотанным проводом. Обмотку, которая уже есть на катушке, отматывать не рекомендуется. От этого изменится режим намагничивания. Если свободное место между сердечником и катушкой позволяет обернуть один слой стеклоткани для улучшения изоляции обмоток друг от друга, надо сделать это. А потом намотать десять витков вторичной обмотки проводом подходящей толщины. Поскольку мощность нашего блока питания будет небольшой, толстый провод не нужен. Главное, чтобы он поместился на катушке, и половинки сердечника наделись на него.

Разобранный дроссель

Намотав вторичную обмотку, собираем сердечник и закрепляем половинки клейкой лентой. Предполагаем, что после тестирования БП станет понятно, какое напряжение создается одним витком. После тестирования разберем трансформатор и добавим необходимое число витков. Обычно переделка имеет целью сделать преобразователь напряжения с выходом 12 В. Это позволяет получить при использовании стабилизации зарядное устройство для аккумулятора. На такое же напряжение можно сделать и драйвер для светодиодов из энергосберегающей лампы, а также зарядить фонарик с питанием от аккумулятора.

Поскольку трансформатор нашего ИБП, скорее всего, придется доматывать, впаивать его в плату не стоит. Лучше припаять проводки, торчащие из платы, и к ним на время тестирования припаять выводы нашего трансформатора. Концы выводов вторичной обмотки надо очистить от изоляции и покрыть припоем. Затем либо на отдельной панельке, либо прямо на выводах намотанной обмотки надо собрать выпрямитель на высокочастотных диодах по схеме моста. Для фильтрации в процессе измерения напряжения достаточно конденсатора 1 мкФ 50 В.

Готовая к тестированию плата с выпрямителемСхема импульсного блока питания

Тестирование ИБП

Но перед присоединением к сети 220 В последовательно с нашим блоком, переделанным своими руками из лампы, обязательно соединяется мощный резистор. Это мера соблюдения безопасности. Если через импульсные транзисторы в блоке питания потечет ток короткого замыкания, резистор его ограничит. Очень удобным резистором в таком случае может стать лампочка накаливания на 220 В. По мощности достаточно применить 40–100-ваттную лампу. При коротком замыкании в нашем устройстве лампочка будет светиться.

Последовательное соединение платы с лампочкой перед подачей напряжения 220 В

Далее присоединяем к выпрямителю щупы мультиметра в режиме измерения постоянного напряжения и подаем напряжение 220 В на электрическую цепь с лампочкой и платой источника питания. Предварительно обязательно изолируются скрутки и открытые токоведущие части. Для подачи напряжения рекомендуется применить проводной выключатель, а лампочку вложить в литровую банку. Иногда они при включении лопаются, а осколки разлетаются по сторонам. Обычно испытания проходят без проблем.

Более мощный ИБП с отдельным трансформатором

Они позволяют определить напряжение и необходимое число витков. Трансформатор дорабатывается, блок снова испытывается, и после этого его можно применить как компактный источник питания, который намного меньше аналога на основе обычного трансформатора 220 В со стальным сердечником.

Чтобы увеличить мощность источника питания, надо применить отдельный трансформатор, сделанный аналогично из дросселя. Его можно извлечь из лампочки большей мощности, сгоревшей полностью вместе с полупроводниковыми изделиями балласта. За основу берется та же схема, которая отличается присоединением дополнительного трансформатора и некоторых других деталей, изображенных красными линиями.

ИБП с дополнительным трансформатором

Выпрямитель, показанный на изображении, содержит меньше диодов по сравнению с выпрямительным мостом. Но для его работы потребуется больше витков вторичной обмотки. Если они не вмещаются в трансформатор, надо применить выпрямительный мост. Более мощный трансформатор делается, например, для галогенок. Кто использовал обычный трансформатор для системы освещения с галогенками, знает, что они питаются достаточно большим по величине током. Поэтому трансформатор получается громоздким.

Если транзисторы разместить на радиаторах, мощность одного блока питания можно заметно увеличить. А по весу и габаритам даже несколько таких ИБП для работы с галогенными светильниками получатся меньше и легче одного трансформатора со стальным сердечником равной им мощности. Другим вариантом использования работоспособных балластов экономок может быть их реконструкция для светодиодной лампы. Переделка энергосберегающей лампы в светодиодную конструкцию очень проста. Лампа отсоединяется, а вместо нее подключается диодный мост.

На выходе моста подключается определенное количество светодиодов. Их можно подключить между собой последовательно. Важно, чтобы ток светодиода равнялся току в КЛЛ. Энергосберегающие лампочки можно назвать ценным полезным ископаемым в эпоху светодиодного освещения. Они могут найти применение даже после завершения своего срока службы. И теперь читатель знает детали этого применения.

Как из компактной люминесцентной лампы сделать светодиодную

Пока учёные укрощают скорость света, я вот решил укротить ненужные люминесцентные лампы, переделывая их в светодиодные. Компактные люминесцентные лампы (КЛЛ) по немного уходят в прошлое, по понятным всем причинам: меньшая эффективность относительно светодиодных, экологическая небезопасность (ртуть), ультрафиолетовое излучение опасное для глаз человека, да и недолговечность.

Как и у многих радиолюбителей, накопилась целая коробка этого «добра». Менее мощные можно использовать как запчасти, ну а те что по мощнее, начиная с 20W можно переделать под светодиодные лампы и источники питания.

Ведь электронный балласт, это дешевый преобразователь напряжения, то есть простой и доступный импульсный блок питания которым можно питать приборы мощностью до 30-40W (зависит от КЛЛ), и даже больше если менять выходной дроссель и транзисторы.

Тем радиолюбителям которые проживают в отдалённых местах, или в определённых ситуациях, эти «энергосберегалки» окажутся полезными. Так что, не спешите их выбрасывать после выхода из строя — а работают они не долго!

В моём случае, примерно год назад (весной 2014г.

), начав экспериментировать с электронным балластом, в поисках корпуса под переделку в светодиодную лампу, возвращаясь вечером домой с работы, меня осенило – увидев на тротуаре банку из под колы.

Ведь алюминиевый корпус из под 0,25L напитка, как раз подходит в качестве радиатора для рассеивания тепла светодиодной ленты. А также, идеально садится под корпус КЛЛ «Vitoone» с цоколем Е27, на 25 W. Да и в эстетике неплох!

Изготовив несколько переделанных LED-ламп, я начал их испытывать в разных условиях эксплуатации. Одна из них работает в подсобном помещении в жаре и морозе (с вентиляционными отверстиями), другая в жилом помещении (без отверстии в пластмассовом цоколе).

Ещё одна подключена к трёхметровой светодиодной ленте. Прошел почти год, и они до сих пор безотказно служат! Ну, и учитывая то, что на тему светодиодов, статьей появляется все больше и больше, пришлось наконец-то написать и о моей испытанной временем идеи.

Схема переделки КЛЛ на LED

Схем переделки КЛЛ существует много. В своём случае рассматривал переделку ламп «Osram», «Vitoone», «Brilux», «Philips». Обобщённая схема переделанного электронного балласта компактной люминесцентной лампы дневного света показана на рисунке. Они мало чем отличаются в зависимости от производителя, но принцип работы этих импульсных преобразователях одинаков. В общем, принцип работы двухтактного преобразователя напряжение состоящего из двух транзисторах n-p-n (VT1, VT2), заключается в преобразовании выпрямленного сетевого напряжения (VD1-VD4), в высокочастотное (около 30kHz). Сетевое напряжение 220V проходит через предохранитель FU1 (или через низкоомный резистор, который играет роль предохранителя), выпрямляется и фильтруется через дроссель L4 и конденсаторы C1, C6. Если вы хотите получить более мощный блок питания, то тогда придется перемотать L4 проводом большего сечения, и заменить диоды моста (или диодную сборку) на больший ток! Обязательно советую менять электролитический конденсатор C1 — вместо 4,7mF или 6,8mF на более ёмкий конденсатор, исходя из расчета выходной мощности: 1mF на 1 W. Оставил на 10mF/400V, ведь надо еще вместится в корпус КЛЛ! Большие конденсаторы на 47…100mF можно найти в старых одноразовых фотоаппаратах «Kodak» или в других ИБП. Увеличение ёмкости конденсатора входного фильтра снизит уровень пульсаций напряжения на выходе ИБП. Также, придётся увеличить мощность резисторов в базовых и эмиттерных цепях VT1, VT2.

Запуск преобразователя происходит за счет симметричного динистора VS1 и элементов D6, R1, C3, при открывании через динистор проходит импульс на базу ключа VT2. После запуска эта часть схемы блокируется диодом D6.

Через каждое открытие транзистора VT2, конденсатор C3 разряжается и не дает повторного открытия динистора. Транзисторы возбуждают тороидальный трансформатор L1, с тремя обмотками в несколько витков: из них две управляющие и одна рабочая.

Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, а также в рабочей обмотке. Переменное напряжение с L1 поступает на L3 и дальше на люминесцентную лампу, которую мы убираем из схемы. Когда лампа зажигается, транзистор VT1 открывается, и насыщается сердечник L1.

Обратная связь на базу приводит к закрытию ключа. Затем открывается VT2, возбуждаемый противоположно подключенной обмоткой L1 и процесс повторяется.

Насчёт транзисторов: можно оставить те что есть (13003 корпус ТО-126, их аналоги: MJE13003 или КТ8170А1), или использовать с запасом мощности. Правильный выбор транзисторов определит надежность генератора.

Таким образом, для энергосберегающих ламп мощностью до 7W рекомендуется использовать транзисторы серии 13001, до10W – 13002, для 15-20W –13003 с корпусом ТО-126, 25-40W – 13005 ТО-220, 40-65W – 13007 ТО-200, 85W – 13009 ТО-220 соответственно (последняя цифра означает рабочий ток транзистора). В моем случае, перегрева транзисторов не происходит и радиатор ставить не пришлось.

Рекомендую в случае нагрева, менять на ступень мощнее и менять и перематывать дроссель L3. При больших нагрузках сердечник этого трансформатора может уйти в насыщение.

Дальше — шунтируем крайние штырьки (их 4) перемычкой, на которые были подключены нити накаливания лампы, и убираем конденсатор C5, он уже не понадобится (смотрим схему и фото).  Основа переделки заключается в добавлении вторичной обмотке на дроссель L3.

Первичная обмотка дросселя L3 содержит примерно 200-400 витков провода диаметром 0,2 мм. Для этого, вынимаем из платы дроссель, и разбираем его методом нагрева. Этого можно добиться при помощи паяльника или промышленного фена. Аккуратно разъединяем ферритовые дольки дросселя (за счет нагрева клеящий материал теряет свои свойства).

Если дольки разобьются, сердечник можно будет соединить скотчем или клеем.

Обратите внимание: дроссель должен быть без зазора! Если он есть, то его можно убрать при помощи напильника или «болгарки» (подобное уже делал, но не переусердствуйте).

Разобрав трансформатор, снимаем вторичную обмотку, и на ее месте наматываем примерно 30-35 витков одножильного провода (ПЭВ), диаметром 0,5-0,8 мм.

Мне удалось разместить в дросселе от «Brilux» — 35 витков провода общим диаметром примерно 0,7 мм, соединив вместе 3х0,23 мм. Также, мотал другой трансформатор эмалированным проводом 0,47 мм, но с меньшей мощностью нагрузки.

Лучше перемотать, и потом уже из собранного трансформатора отматывать до нужного вам напряжения!

Между обмотками добавляем дополнительную изоляцию из трансформаторной бумаги или в моем случае, скотче. Полученный таким образом трансформатор, оставляется с открытой вторичной обмоткой и впаивается обратно на плату КЛЛ.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если нужен блок помощнее, то понадобится другой импульсный трансформатор больших размеров (например от компьютерного блока питания или из других высокочастотных ИБП с ферритом магнитной проницаемостью 2000НМ).

Теперь, остается добавить выпрямитель и нагрузку в виде светодиодной ленты. Выходной выпрямитель можно делать по мостовой схеме или по схеме с нулевой точкой. Но это в том случае, если задействовать более габаритный трансформатор для схемы с нулевой точкой.

В качестве мостового выпрямителя я применил высокочастотные диоды КД213А (с максимальным током до 10А и рабочей частотой до 100kHz), как наиболее дешевые для этой конструкции. Они отлично справляются с частотой и температурой (-60…+125°C).

Хотя, для надежности, в одной из ламп (на 3-х метровой ленте) я добавил в качестве радиатора обычные монеты, прикрепив их к металлической поверхности диодов. На других двух, выпрямительный мост оставил без радиаторов, с небольшим зазором между ними (как это видно на фото).

Также, оранжевая лампа на протяжении почти года работает и без вентиляционных отверстий в пластмассовом корпусе КЛЛ. Но это, для своих опытов. А вам самим решать, что делать – в зависимости какую нагрузку применять к ИБП. Ставить на выходе низкочастотный диодный мост, который используется в обычных сетевых выпрямителях, не удастся.

На высокой частоте он будет сильно греться, вне зависимости от габаритов диодов. Можно обойтись и простым стабилизатором, но я добавил к светильнику разъем с выключателем, для того чтобы в критический момент, иметь под рукой источник питания на 12V/15…30 W. Либо дополнить внешним стабилизатором, либо подключив к нему авто-зарядку для мобильных девайсов –обеспечить себя ИБП которого просто можно найти, посмотрев на потолок!

Ну всё, приступаем к сборке светильника. Берем алюминиевую банку на 0,25L, сгибаем верхнею часть вовнутрь, предварительно разрезав её на четыре половинки (как видно на фотографиях). Сбоку делаем отверстие для провода, и клеим на банку 1м (1…1,5 м) светодиодной ленты, так чтобы между витками оставался просвет, который будет работать в качестве радиатора.

Не советую применять ленту в «силиконе», она имеет низкую теплоотдачу, дороже в цене, и к тому же очень вредна для здоровья человека; при нагреве можно прочувствовать неприятный запах испарений этого пластика!

Используйте LED-ленту с SMD светодиодами на 5мм: 3528/12V/4,8 W/м-60шт/м, 3528/12V/9,6W/м-120шт/м, 5050/12V/12,8W/м-60шт/м, или 5050/12V/14,4W/м-60шт/м, с наибольшим углом рассеивания и наибольшей светоотдачей люмен/метр.

Их можно будет в периоде эксплуатации светильника, очень просто прочистить щеткой и ремонтировать (например – мне пришлось пройти паяльником по одному из сегментов ленты). Далее, в пластиковом корпусе КЛЛ, надо будет проделать небольшие выемки раскаленным паяльником, для того чтобы удерживать корпус банки. Она просто будет садится на клик.

Это даст возможность доступа к начинке светильника, без дополнительных инструментов. Другой конец ленты, склеиваем двухкомпонентным быстросохнущим клеем или скотч-лентой.

Плату крепим к корпусу КЛЛ с помощью термоклея («молекулярный клей») и изолируем накладками из тряпочной изоленты. Нужно уделить особое внимание этому моменту сборки, прикрепляя плату устройства так чтобы оставался зазор между металлическим корпусом банки и платой.

 Ведь аппарат находится под переменным сетевым напряжением, опасным для жизни! Далее, еще раз, тщательно проверяем все элементы нашего девайса. Незабываем изолировать все провода термоусадочным кембриком, во избежание коротких замыканий.

На металлическую поверхность диодов можно залить пару капель клея, для того чтобы исключить контакт с корпусом алюминиевой колбы.

А вот, для того чтобы посмотрев на потолок можно было-бы найти источник питания или в случае отключения электроэнергии, источник света на 12 вольт, надо будет не поленится и добавить к лампе несколько деталей.

Во первых, делаем отверстие в днище банки под гнездо, как это показано на фотографиях. Гнездо и штекер любой, можно и с контактами отключения.

Тут использовал А/V конектор, изо того что если под рукой не окажется штекер, можно было просто закрепить провода на корпус и в центральное отверстие гнезда.

Далее, нужен выключатель (закрепив его дополнительным отверстием сбоку колбы) для того чтобы отключить свет и получить больше мощности для другого устройства которое вы хотите запитать. Например, можно вывести отдельный провод от автомобильной зарядки на 12 вольт и таким образом заряжать мобильный телефон. Также, можно подзарядить аккумулятор шуруповёрта и т.д.

Лампу можно подключить к автомобильному аккумулятору или любому другому с напряжением 9-12V и использовать в качестве автономного источника света. Таким образом, мы имеем универсальный девайс который окажется нелишним в поездках, на работе и дома, а в некоторых обстоятельствах – единственным решением.

Теперь, несколько слов об испытаниях. На светодиодной ленте длиной в 3 м (3528/12V/4,8 W/м-60 шт/м) – потребляемая мощность переделанного ИБП была около 20W.

На светильниках из алюминиевых банок – около 12-13W (11,5V). Без нагрузки показания были при 14,8V — P=2,5-2,9W.

Максимально удалось снять нагрузку с переделанного КЛЛ/25W — примерно 28W, но трансформатор при этом перегревается (+70…75°C).

Температура трансформатора в лампах из под банок, достигала около 60°C, светодиодов = 50…60 °C, диодов моста (КД213А) = 50°C. Пожаробезопасность при таких показаниях, думаю обеспечена.

Вес данного светильника составляет 90 г, второго — 105 грамм. За счёт низкого веса и небольших габаритах, лампа подойдет к большинству люстрам, бра и другим осветительным приборам.

Также, для освещения коридоров и подсобных помещений.

Примерный КПД устройства -77-85%. Расчет исходит из данных работы ИБП без нагрузки (P=2,5-2,9W), и с нагрузкой (13W/12,5V). Потребление тока — около 800 мА.

Соответственно, нельзя сравнить этот девайс с пленарными импульсными преобразователями.

Но это лучше, чем питать LED-светильник от тяжелых трансформаторных преобразователях или от конденсаторных схем, без гальванической развязки с небольшой мощностью.

Если хотите, можете дополнить устройство стабилизатором тока, для того чтобы продлить срок службы светодиодов и использования в качестве питания различных гаджетов. Также, можно дополнить его фильтром питания, в зависимости от конкретного применения.

Видео

Хотя, это простое устройство, на практике оно оказалось очень полезным. Кому интересно смотрите видео и пишите на почту: [email protected] С уважением, Флорин Матиенку (flomaster).

Литература

  • 1. «Источники питания», Е.А. Москатов,2012г.
  • 2. Журнал «Радиоаматор» №1,2009г.

   Форум по LED

   Обсудить статью Лампа светодиодная универсальная

Простой драйвер светодиода от сети 220В

Для питания светодиоду требуется источник постоянного напряжения и устройство стабилизации тока – драйвер. А если требуется (или очень хочется) подключить светодиод к сети 220В? И светодиод, при этом, мощный? Простым резистором и диодом здесь не обойтись. Самый правильный, вернее, единственно правильный способ – использовать специализированный драйвер. Его можно даже самому собрать (читайте в статье «Схема драйвера для светодиодов от сети 220В»).

Впрочем, есть и менее правильные, но, в целом, рабочие варианты. Один из них – собрать стабилизатор тока для светодиода из обычной энергосберегающей лампы.

Прежде чем начнем, помните: все, что вы делаете, вы делаете на свой страх и риск! Мы не даем никакой гарантии, что получившийся прибор заработает у вас правильно. И не несем никакой ответственности за возможный ущерб или повреждения, которые, теоретически, могут случиться, если что-то пойдет не так, как задумано.

Предстоит работать с опасным для жизни напряжением в 220В и, скорее всего, без точной технической документации на конкретную переделываемую лампу. Если вы не знаете правил предосторожностей при работе с высоким напряжением, не сильно уверенно держите в руках паяльник, то лучше откажитесь от этой затеи – в конце концов, готовый драйвер от сети 220В стоит не так уж дорого.

Но, если интересно, то вперед!

Обычная энергосберегайка, она же компактная люминесцентная лампа или КЛЛ, содержит в себе электронное устройство, обеспечивающее поджег и горение газоразрядных ламп. КЛЛ имеют очень приличный срок службы – до 10 000 часов, но с течением времени яркость их свечения снижается, они начинаю сильнее греться, начинают мерцать или вообще перестают светить.

При этом, чаще всего, из строя выходит именно «стеклянная часть» лампы, а ее электроника остается в полном порядке. Поэтому, для экспериментов вполне подойдет старая лампа, которая перестала работать, а вы ее почему-то не выбросили. Если есть выбор, то лучше взять лампу помощнее. У меня для опытов оказался пациент, изображенный на картинке в начале статьи.

Запыленная и пожелтевшая лампа Maxus 26W верой и правдой отслужила несколько лет и была заменена, поскольку светить стала чуть ли не вдвое тусклее, чем нужно.

Аккуратно, по пояску открываем лампу.

Аккуратно открытая энергосберегающая лампа

Видим балласт, от которого два провода уходят к цоколю и четыре к стеклянным колбам. Откусываем их все и извлекаем электронную часть. Только внимательно – один из цокольных проводов к плате может идти через висящий резистор. Он тоже нужен, откусывайте за ним.

Получилась вот такая штучка.

Извлеченный балласт люминесцентной лампы — до переделки

Теперь от разрушения ламп переключимся к изучению их принципиальных схем. Импульсный преобразователь (электронный балласт) компактных люминесцентных ламп может различаться деталями для конкретных ламп, но принципиально его схема выглядит так:

Принципиальная схема балласта компактной люминесцентной лампы

Желтым цветом выделено то, что может значительно отличаться от лампы к лампе в зависимости от производителя и ее мощности. В любом случае, оставляем эту часть безо всяких изменений. То, что отмечено синим, останется бесхозным после удаления ламп (стеклянных колб) и может быть безболезненно удалено с платы, дабы не мешало.

Получится примерно так:

Импульсный преобразователь после удаления «лишних» деталей

После удаления «синей» части схемы, останется два проводника, повисших в воздухе. Их нужно соединить друг с другом – закоротить. Найдем что с чем соединять на конкретной плате.

Обратная сторона платы импульсного преобразователя

Как видно, нужно закоротить выход дросселя (он же вход в колбы) с выходом из колб по кратчайшему пути. Электроника вашей лампы, скорее всего, внешне будет отличаться от того, что вы видите на картинке. Важно понять сам принцип.

Следующий шаг – сделать из дросселя трансформатор, выпрямить получившийся ток и запитать им светодиоды.

Дело в том, что люминесцентные лампы питаются напряжением высокой частоты (до 50КГц). Соответственно, намотав на дроссель вторичную обмотку, можно получить на ней нужное напряжение.

Аккуратно выпаиваем дроссель. Дальше очень творческая задача – его разобрать. Дроссель состоит из катушки с проводом, в которую сверху и снизу вставляются две половинки Е-образного феррита.

Разобрать дроссель – это значит разъединить спаявшиеся за года половинки тонкого и хрупкого феррита (которые еще иногда заливают лаком), снять их и получить свободный доступ к катушке с проводом.

Удалите ленту, которая расположена по периметру феррита, после чего нежно и не прикладывая больших усилий, попробуйте его разъединить. Помогает нагревание – например, аккуратно паяльником по всему периметру феррита. У меня получилось, правда, далеко не сразу.

Побежденный и разобранный дроссель

На открывшуюся катушку поверх наматываем вторичную обмотку. По моим наблюдениям один оборот вторичной обмотки дает в ней около 0.8В напряжения. В моих планах было запитать две линейки одноваттных светодиодов по 10шт. Для этого мне нужно около 30В напряжения. Итоговый ток требуется небольшой – до 200-250мА, поскольку светодиоды ну очень китайские.

В моем случае получилось 40 витков эмальпровода диаметром 0.25мм. Наматывайте аккуратно, поскольку дроссель потом нужно будет собрать обратно, т.е. вернуть ферриты на место. Не забудьте в конце узкой полоской изоленты или скотча скрепить между собой половинки феррита. Впаиваем дроссель обратно. Получится как-то так.

Результат работы — готовый «драйвер» из балласта энергосберегайки

Подключаем входное сетевое напряжение. Взрывов, фейерверков нет? Чудесно! Теперь аккуратно меряем переменное напряжение на выходах вторичной обмотки.

Получилось то, что нужно? Здорово! Если нет, отключаемся от сети и отматываем (чтобы уменьшить) или добавляем (чтобы увеличить) несколько витков в обмотке.

Разбирать дроссель для этого не нужно – просто аккуратно продевайте провод между катушкой и ферритом.

У меня две линейки светодиодов. Подключить их можно двумя способами – параллельно – для этого нужно предварительно выпрямить ток. Или встречно – для этого выпрямлять ток не нужно. На схеме это выглядит так.

Параллельное подключение двух линеек светодиодов

Параллельное подключение. Зеленая область – вторичная обмотка, диодный мост и светодиоды. Синяя линия – перемычка. Диодный мост собирается из быстрых диодов. Я взял 4 диода HER307.

Встречное подключение выглядит так:

Встречное подключение двух линеек светодиодов

Оба варианта имеют право на жизнь, я выбрал параллельное подключение с выпрямлением.

После сбора схемы подключите светодиоды через амперметр. Подключите питание. Если сила тока такая, как необходимо – отлично, если нет, то убирая/добавляя витки вторичной обмотки дросселя уменьшите или увеличьте ток.

Результат работы — светодиоды подключены и ярко светят.

У меня получилось около 200мА на две линейки по 10 светодиодов. Маловато, но для настольного светильника хватит.

Очень непривычно видеть подключение светодиодов напрямую от источника тока. Но здесь стабилизация тока достигается за счет точной стабилизации напряжения. И, в данном случае, если что-то произойдет с одной из параллельных линеек светодиодов, ток в оставшихся линейках не изменится, в отличие от обычного подключения через драйвер.

Правильно собранная схема должна иметь серьезный запас по мощности – у меня рабочая мощность 6 из 26 Вт. Ничего (кроме светодиодов) не должно существенно нагреваться в процессе работы (только проверяйте после отключения от сети).

В итоге получился компактный и практически бесплатный «драйвер», который позволил мне подключить светодиоды к сети 220В. Осталось соорудить корпус и смонтировать настольный светодиодный светильник. Но это уже другая история и о ней читайте в статье «Светодиодный светильник своими руками».

Также, имеются готовые модели драйверов для светодиодов, без которых никак не обойтись, если будет нужно получить мощный и яркий свет.

Как правильно заменить лампы на более энергоэффективные?

  • 18 декабря 2018 г. в 09:25
  • 790

Не секрет, что тарифы на электроэнергию в России имеют тенденцию к росту.

А в ближайшее время, возможно, нас ждет реформа системы оплаты за электричество, когда относительно низкие тарифы будут в пределах социальной нормы энергопотребления, все, что сверх — оплачиваться по более высоким расценкам. Не зря мы до сих пор называем оплату счетов за электроэнергию «платой за свет».

Освещение в структуре потребления электричества занимает одно из первых мест. Поэтому самое время озаботиться заменой ламп в доме на более энергоэффективные. Благо, выбор сейчас огромен.

Но при этом встает задача — как выбрать новую лампу, чтобы она при значительно меньшем энергопотреблении давала столько же или чуть больше света, чем прежняя? При кажущейся простоте решения этой задачи то и дело встречаются ситуации, когда инновационные лампы дают гораздо меньше света, чем ожидалось.

На протяжении многих десятилетий для внутреннего освещения были доступны два основных типа ламп. Первый — лампы накаливания, технология которых была доведена до совершенства, так что световой поток и потребляемая мощность оказались связаны однозначным соотношением.

Поэтому применительно к ним своеобразным «мерилом количества света» стала именно потребляемая мощность. Второй — трубчатые люминесцентные лампы T12 или T10, с которыми было еще проще. Предлагались лампы трех длин трубки: 60; 90 и 120 см с потребляемой мощностью 20; 30 и 40 Вт соответственно.

Выпускались варианты с различными цветовыми температурами, но их светоотдача отличалась ненамного. Исключение составляли разве что лампы с улучшенной цветопередачей, но тогда это было «нишевое» решение для фотографов, учреждений культуры и т.п.

Поэтому электрики применительно к люминесцентным лампам часто оперировали понятием длины лампы, соотнося, сколько света дает та или иная лампа.

Расчет освещения для жилых и офисных помещений с наиболее распространенными высотами потолков в пределах 2,5–3 м сводился к эмпирическим правилам, сколько ламп накаливания определенной мощности или люминесцентных ламп определенной длины требуется, чтобы осветить единицу площади. Такой способ называется «метод удельной мощности».

Для современных ламп накаливания характерно однозначное соотношение между потребляемой мощностью и световым потоком

Ситуация полностью изменилась в 90-е годы XX века. На смену лампам T10 пришли лампы T8, совместимые по цоколю и ПРА, но обладающие большей энергоэффективностью. На рынке появилось огромное разнообразие люминесцентных ламп T8.

Наряду с ними стали производиться и принципиально новые люминесцентные лампы T5. Появились компактные люминесцентные лампы под широко распространенные цоколи E14 и E27. А в 2010-х годах стали широко применяться светодиодные лампы.

Эти изменения потребовали по-новому взглянуть на то, как оценивать параметры ламп разных типов.

Эквивалентная мощность лампы накаливания

Самый распространенный и одновременно наименее точный способ описания компактных люминесцентных (в просторечии именуемых «энергосберегающими») и светодиодных ламп. Этот способ применяется главным образом для ламп с цоколями E14 и E27, так как именно эти цоколи изначально были разработаны для ламп накаливания.

Суть его заключается в том, что в соответствие инновационной лампе ставится лампа накаливания, дающая по тем или иным критериям (далее мы узнаем, что они могут быть самыми разнообразными) столько же света, затем определяется мощность этой лампы накаливания.

Иногда на упаковке светодиодных ламп можно встретить также эквивалентную мощность компактной люминесцентной лампы, определяемую похожим способом.

Вроде, проблема решена — вместо лампы накаливания устанавливаем светодиодную лампу с той же эквивалентной мощностью. Для расчетов в помещении можно применять метод удельной мощности. Но не все так просто.

Самая главная проблема — отсутствие какого-либо стандарта, регламентирующего определение этой самой эквивалентной мощности. Его нет ни на уровне России, ни в глобальном масштабе. Ведущие мировые производители обычно (но не всегда!) указывают мощность лампы накаливания, в точности соответствующей по световому потоку светодиодной лампе.

Световой поток ламп накаливания разной мощности жестко регламентируется международным стандартом МЭК 60064:1993, его полным российским аналогом является ГОСТ Р 52706-2007.

Для сравнения берут только лампы накаливания с биспиральными нитями, так как производство ламп общего назначения с моноспиральными нитями, которые имели относительно низкую светоотдачу, давно прекращен (хотя в стандарте их параметры до сих пор прописаны).

Такая методика более точная, чем иные способы определения эквивалентной мощности, и обеспечивает корректную замену ламп в большинстве типов бытовых и офисных светильников с патронами E14 и E27. Впрочем, здесь есть некоторые исключения, о которых пойдет речь чуть позже.

Замена лампы накаливания на светодиодную согласно указанной эквивалентной мощности может в итоге привести к значительному снижению освещенности рабочих поверхностей

При указанном способе вычисления эквивалентной мощности в общем случае получаются «некруглые» значения, не соответствующие стандартному ряду мощностей для ламп накаливания общего применения. В таких случаях рекомендуется пользоваться простым правилом — компактная люминесцентная или светодиодная лампа заменяет лампу накаливания, мощность которой равна или меньше эквивалентной мощности.

Компании, занимающиеся поставками в Россию ламп малоизвестных китайских производителей под собственными брендами, не всегда так щепетильны в определении эквивалентной мощности лампы на-каливания. Нередко этот параметр завышается, в результате при замене ламп накаливания на светодиодные освещенности ощутимо не хватает.

Один из распространенных способов завышения состоит в следующем. Эквивалентную мощность определяют по той же методике, что и ведущие мировые производители.

Но потом, якобы для облегчения выбора лампы покупателем, указывают ближайшее большее значение мощности из стандартного ряда. Скажем, эквивалентная мощность получилась 50 Вт, а указывают ближайшее стандартное значение 60 Вт.

Потребитель же, заменив лампу накаливания на светодиодную, руководствуясь такими данными, получит на 17% меньшую освещенность.

Другой способ заключается в том, что в соответствие инновационной лампе ставится не реально существующая лампа накаливания, соответствующая ГОСТ Р 52706-2007, а некая «условная» лампа, светоотдача которой составляет 10 лм/Вт вне зависимости от мощности. В реальности же светоотдача ламп накаливания растет с ростом их мощности, то есть зависимость между световым потоком и эквивалентной мощностью является нелинейной.

Таблица. Световой поток реальной и «условной» ламп накаливания в зависимости от потребляемой мощности

Из таблицы видно, что разница в световом потоке для «условной» лампы и лампы накаливания по ГОСТ Р 52706-2007 растет по мере увеличения потребляемой мощности.

Замена 100 Вт лампы накаливания на светодиодную с эквивалентной мощностью, рассчитанной применительно к «условной» лампе, влечет за собой снижение светового потока на 25%.

Практический опыт работы со светодиодными лампами показывает, что методика сравнения с «условной» лампой широко распространена и даже некоторые ведущие производители светотехники не брезгуют ею применительно к бюджетным линейкам светодиодных ламп.

Вот почему проблема снижения освещенности при замене ламп накаливания на светодиодные возникает главным образом для ламп, позиционирующихся как замена 75 Вт и 100 Вт ламп накаливания. Иногда сравнение с «условной» лампой накаливания сочетается с указанием ближайшего большего значения эквивалентной мощности из стандартного ряда, получившийся в итоге показатель вообще не имеет ничего общего с реальностью.

Выпускаемые сейчас светодиодные лампы E27 для общего применения с теплым белым свечением имеют светоотдачу в пределах 70–90 лм/Вт.

Светодиодная лампа, полноценно заменяющая 60 Вт лампу накаливания (самый популярный номинал), должна потреблять 8–10 Вт.

Таким образом, применение светодиодных ламп вместо ламп накаливания в реальности снижает энергопотребление в 6–7,5 раз, а не более чем в 10 раз, как утверждают некоторые производители.

Световой поток

Производители, дорожащие своей репутацией, обязательно указывают на упаковке ламп их световой поток. Сопоставив его значение с данными из таб. 1 для ламп по ГОСТ Р 52706-2007, покупатель в магазине может самостоятельно подобрать светодиодную замену лампе накаливания, не ведясь на маркетинговые уловки.

Сравнение световых потоков позволяет практически безошибочно заменять лампы накаливания на компактные люминесцентные, так как и те, и другие излучают свет во все стороны, охватывая угол близкий к 360 градусам. Но со светодиодными лампами все оказывается сложнее.

Наиболее распространенная конструкция светодиодной лампы — модуль со светодиодами, расположенными в одной плоскости, накрытый куполообразным рассеивателем.

Такая лампа имеет угол распределения света около 180 градусов. С помощью некоторых технических ухищрений этот показатель можно увеличить до 210 градусов.

Но можно считать, что недорогая светодиодная лампа светит преимущественно в одну сторону.

Наиболее распространенная конструкция светодиодной лампы предполагает наличие рассеивателя

В том случае, если светодиодная лампа установлена в даунлайте и ее ось расположена вертикально, такая однонаправленность будет преимуществом: световой поток светильника в итоге возрастет по сравнению с применением аналогичной лампы накаливания.

Но возможен и иной вариант. Светодиодная лампа, светящая на 210 градусов, устанавливается в настенное бра. При этом ось лампы также расположена вертикально. Бра с такой лампой будет освещать только потолок, а в комнате в итоге света будет не хватать.

Для того, чтобы приблизить светодиодную лампу по распределению света к лампе накаливания, были созданы филаментные светодиодные лампы. В них светодиоды сгруппированы в, так называемые, филаменты, имитирующие нити накаливания.

Но, к сожалению, имитировать расположение нити накаливания в современных лампах с помощью филаментов пока не удается. Поэтому расположение филаментов соответствует лампам накаливания полувековой давности.

В результате света по оси лампы излучается заметно меньше, чем в стороны, что критично для торшеров и некоторых других типов светильников.

Филаментные светодиодные лампы имитируют расположение нитей накаливания в лампах полувековой давности

Тем не менее, замена лампы одного типа на лампу другого типа с тем же световым потоком является наиболее универсальным методом, обладающим приемлемой точностью для большинства применений.

Эквивалентный световой поток для определенного типа светильников

Данный метод применяется к лампам, которые обычно используются в определенных типах светильниках. Для светодиодной лампы определяется световой поток лампы того типа, для которого изначально разрабатывался светильник, при котором обеспечивается та же освещенность. Метод отличается высокой точностью, но его применение ограничено.

Например, люминесцентные лампы T8 длиной 60 см и потребляемой мощностью 18 Вт обычно используются в офисных светильниках для потолков типа «армстронг». У такой лампы световой поток достигает Фл = 1350 лм.

Большинство моделей светодиодных ламп T8 излучают свет только одной половиной цилиндра колбы, другая половина занята теплоотводом

Люминесцентная лампа дает свет во все стороны, кроме направлений, расположенных по ее оси. Для того, чтобы получить угол распределения света 90 градусов, оптимальный для офисного светильника, используются отражатели, вносящие потери.

КПД бюджетного офисного светильника для потолков типа «армстронг» при использовании люминесцентных ламп равен Nл = 0,66. В том случае, если мы берем светодиодную лампу T8 с углом распределения света 120 градусов, то она и так направляет свет вниз, отражатель задействуется только частично.

КПД оптической системы светильника возрастает до Nc = 0,84. Значит, световой поток у светодиодной лампы может быть меньше, чем у люминесцентной.

Для полноценной замены люминесцентной лампы нам потребуется светодиодная лампа со световым потоком, равным: Фс = ФлNл/Nc = 0,79Фл = 1067 лм. Потребляемая мощность у такой лампы будет около 10 Вт.

В том случае, если светодиодная лампа имеет угол распределения света, близкий к 360 градусам, то есть такой, как у люминесцентной лампы, отражатель задействуется полностью, поэтому люминесцентную лампу меняют на светодиодную с точно таким же световым потоком.

В реальности замена люминесцентных ламп на светодиодные в офисном светильнике дает снижение потребляемой мощности в 1,5–1,8 раз.

Наиболее правильный способ замены ламп

Специалисты рекомендуют сделать расчет освещения в компьютерных программах Dialux или Dialux Evo и исходя из этого уже определить параметры новых ламп. Программы совершенно легально доступны для бесплатного скачивания.

Если нет возможности освоить одну из этих программ самому, через Интернет можно найти специалиста, который за умеренную плату сделает расчет вашего проекта.

Современный формат компьютерного представления светотехнических данных LDT позволяет посмотреть, как будут меняться параметры освещения при одних и тех же светильниках, но с разными лампами.

Основная проблема заключается в том, что найти LDT-файлы по большинству интерьерных светильников практически невозможно. А уж по недорогим лампам и подавно. LDT или хотя бы IES-файлы доступны для ламп и светильников, применяемых в сложных проектах, где в любом случае применяется компьютерное моделирование.

Выводы

Поскольку единого стандарта, устанавливающего соответствие параметров ламп накаливания, компактных люминесцентных и светодиодных ламп нет, не ориентируйтесь на такой показатель, как эквивалентная мощность лампы накаливания.

Выбирая светодиодную лампу для замены ею лампы накаливания или люминесцентной лампы, обязательно проверьте, есть ли на упаковке данные о световом потоке лампы, выраженные в люменах, и ориентируйтесь только на него.

Если световой поток не указан, то лучше воздержаться от покупки такой лампы — производитель ведет заведомо нечестную игру с потребителями.

В том случае, если конструкция светильника (бра, торшер, некоторые виды дизайнерских люстр) критична к распределению света от лампы, берите светодиодную лампу, световой поток которой больше на 25% светового потока исходной лампы накаливания.

Как показывает практика, обычно такого запаса вполне достаточно для обеспечения той же освещенности, что была при лампах накаливания.

При этом все равно замена лампы даст снижение энергопотребления в несколько раз, но уже без снижения качества освещения.

Источник: Алексей Васильев, журнал «Электротехнический рынок»

Флуоресцентный драйвер с батареей 6 В, 12 В и идеи схемы мигающего света

Флуоресцентные лампы — это разновидность лампочек, которые становятся все более популярными для использования в доме. Но иногда нужно использовать его с батареей на 6В или 12В. Не может загореться.

Вот 3 схемы флуоресцентного драйвера. У вас могут появиться идеи по исправлению ваших проектов или обучения.

Приступим.

Примечание. Я не тестировал эти схемы. Итак, я не могу подтвердить, что это сработало. Пожалуйста, примите решение, прежде чем приступить к его созданию.

Драйвер люминесцентных ламп 4 Вт с использованием 555

Это схема драйвера люминесцентных ламп 4 Вт 12 В. Использование таймера 555 в качестве основных частей. При использовании аккумулятора 12 В имеет ток потребления около 300 мА.

Вы можете использовать его с адаптером переменного тока 12 В или аккумулятором 12 В.

Преимущество этой схемы — большая яркость при меньшем потреблении энергии.

Как это работает

В схеме ниже.


Рисунок 1: Принципиальная схема драйвера люминесцентной лампы 4 Вт

Модель 555 работает в режиме нестабильного мультивибратора.Какой выходной ток будет увеличиваться транзистором Q1.

Затем он будет управлять трансформатором с большим током на коллекторе Q1. Он должен быть установлен с достаточным теплоотводом.

Трансформатор преобразует низкое напряжение переменного тока в высокое для включения люминесцентного света.

Настройка

Прежде всего, подключите источник питания к цепи. Нам нужно настроить ВР1-5К. Используйте мультиметр в диапазоне амперметра. Для измерения тока, протекающего в цепи.

Затем частично отрегулируйте VR1, чтобы получить ток около 300 мА. Которая именно люминесцентная лампа горит по максимуму.

Будьте осторожны
Будьте осторожны с высоким напряжением на трансформаторе. Если вы прикоснетесь к нему, вы можете погибнуть. Итак, он должен быть установлен в герметичном ящике.

Детали, которые вам понадобятся

R1, R2: резисторы 1,5 кОм 0,5 Вт
VR1: потенциометр 5 кОм
C1: 100 нФ (0,1 мкФ) 50 В керамический
IC1: таймер NE555P
Q1: транзистор BD243C
T1: трансформатор 6- 0-6 / 220V
4Вт флуоресцентный 6 дюймов

Рекомендуется: катушка индуктивности DIY из компактного люминесцентного светильника


Рисунок 2 компоновка компонентов на паяемой макетной плате ПК

Читайте также: диммер переменного тока для светодиодов Лампы с использованием IC-555 и TRIAC

Схема драйвера флуоресцентных ламп 6 В

Это небольшая схема, несколько компонентов и свет.Вы можете получить его портативным, чтобы получить люминесцентный свет.

Они используют источник питания только с четырьмя батареями AA 1,5 В (6 В).

Как это работает

См. Схему ниже.

При нажатии на переключатель-S1. Затем конденсатор C1 полностью заряжается через R1 и R2. Пока С1 зарядится полностью. Это заставляет напряжение смещать Q2.

Затем Q2 смещен, и Q1 также работает смещением Q1.

После этого сильный ток от батареи может течь к первичной обмотке (6–0 В) трансформатора T1 через работу Q1.

Пока Q1 работает. Падение напряжения на C2 низкое. Далее Q2 будет остановлен. C2 будет постепенно разряжаться через R1 и R2. Полностью, Q2 снова заработает.

При такой работе напряжение на первичной обмотке Т1 становится переменным. И наведенный ток на вторичную катушку составляет высокое напряжение около 220 В. Это заставляет флуоресцентный свет светиться.

См .: Многие простые схемы питания 6 В

Эквивалентные транзисторы

Я ищу другие транзисторы, которые вы можете получить.
Q1: 2SD234 NPN транзистор 60 В, 3 А, 25 Вт, 3 МГц. Эквиваленты: BD241A, BD535, BD935, 2SC3179.
Q2: 2SA733 PNP-транзистор 60 В, 0,1 А, 0,25 Вт, 180 МГц. Эквиваленты: BC212, BC257, BC307, BC557, BC212L 2N4061 KT3107K
T1: Трансформатор 6 В, 300 мА

12 В Флуоресцентный мигающий свет

Вот мигающий свет для аккумулятора 12 В. Он может питать небольшую люминесцентную лампочку. См. Схему ниже.

Использует реле. Преобразует постоянное напряжение батареи в переменное.Эта форма представляет собой механическую технику без каких-либо полупроводников, транзисторов, IC, диодов.

Реле будет включать и выключать автомобильный аккумулятор 12 В. Каждый раз реле размыкается. Индукция происходит на катушке реле.

Также это индукция от низкого напряжения на первичной обмотке до высокого напряжения на вторичной обмотке трансформатора.

Это высокое напряжение может заставить светиться 24-дюймовую люминесцентную лампу. И он мигает как аварийная ситуация, когда у вашего автомобиля возникла проблема.

Даже схема эта простая и старая. Но иногда может потребоваться его использование.

Вам тоже могут понравиться эти схемы.

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Схема драйвера люминесцентной лампы

и проект

1. Запуск люминесцентной лампы на инверторе

Драйверы на 12 В для люминесцентных ламп сложны из-за компромисса между хорошей эффективностью работы и возможностью запуска лампы.Требования противоречат друг другу. Вот 7 способов запуска:

1.1 Чистый однотранзисторный инвертор с обратным ходом, создает скачки напряжения в киловольтном диапазоне в режиме холостого хода, так что лампа запускается. Недостаток: одна нить накала испаряется и затемняет лампу, делает ее электрически несимметричной и сокращает срок службы. Высокий уровень радиации (EMC).

1.2 Нагрев нитей с помощью подходящих обмоток трансформатора. Проблема в том, что эта мощность нагрева подавляет скачки напряжения.Вы получаете только одно из этих двух стартовых средств. Но дополнительный одиночный большой скачок напряжения (например, сокращение вторичной обмотки вручную всего на несколько миллисекунд с помощью кнопки) запустит лампу.

1.3 Ионизационный провод вдоль лампы. Этот провод действует только там, где есть разность потенциалов, он ионизируется вокруг нити накала противоположного напряжения. Мы можем рассматривать эту меру как дешевую и простую дополнительную уловку, но она не является прорывом, одна не способна запустить.

1.4 Ионизационный провод плюс дополнительная специальная высоковольтная обмотка. Это действительно полноценный стартер. Обмотка может отключаться во время работы или может питаться от отдельного пускового генератора, который отключается как единое целое. Возможно, многообещающе, но необычно.

1,5 Цепь стартера со стороны лампы. Такой описан в книге Нюрманна «Professionelle Schaltungstechnik», выпуск 2, стр. 180. Он использовал довольно экзотический тиристорный тетрод BRY20, чтобы последовательно подключить нити ко всей вторичной обмотке для эффективного предварительного нагрева.Когда лампа загорелась, тетрод выключается. Генератор представляет собой синусоидальный генератор, и напряжение холостого хода достаточно высокое для запуска, но не содержит всплесков. Хорошо известный патрон с тлеющим пуском неприменим для небольших высокочастотных инверторов, он предназначен только для частоты сети и индуктивного балласта.

1.6 Ссылаясь на схему, приведенную здесь, если отключить конденсатор 0,68 мкФ (параллельно первичной обмотке), генератор перейдет не в синусоидальный режим, а в режим обратного хода и вызовет скачки напряжения, которые немедленно начнутся. флуоресцентный.Потребуется либо ручной запуск, например, кнопка с размыкающим контактом (NC), либо внешнее реле, выполняющее то же действие автоматически.

1,7 Вторичная обмотка предназначена для выработки достаточно высокого напряжения, но без скачков напряжения. Конденсатор включен последовательно со вторичной обмоткой. Сначала высокая частота холостого хода и напряжение передаются на лампу напрямую, так как она электрически неактивна. После запуска напряжение падает с нескольких сотен вольт до рабочего напряжения, которое составляет около 70 В для стержня мощностью 8 Вт.Дополнительно могут применяться ионизационные провода. Недостатком является определенная потеря эффективности, поскольку мы (очень упрощенно) сначала генерируем высокое напряжение, а затем используем только его часть. Преимущество заключается в самозапуске без ручных кнопок или внешних специальных пусковых цепей.

2. Схема

Работает в соответствии с методом пуска 1.7, как описано выше.

Транзистор имеет резонансный контур в эмиттерной линии и работает в режиме общего коллектора.Для этого необходимо, чтобы напряжение обратной связи было выше рабочего напряжения, поэтому обмотка обратной связи имеет большее количество витков, чем первичная обмотка.

У меня были транзисторы, которые превосходили все остальные, но это очень экзотические PNP-комплементарные типы еще более экзотического высокочастотного усилителя мощности 2SC1306. Тестировал также BD249C, они работают хорошо. Согласно паспортам, также должен работать 2N 4923.
Ищите транзисторы с быстрым переключением, ток 2А, способные обрабатывать высокие частоты.Размер ТО-220 или больше.

Резистор, состоящий из 2 x 1 кОм, включенных параллельно, раньше был одиночным резистором на 470 Ом, но стал слишком горячим для длительной надежной работы, поэтому я использовал 2 x 1 кОм = 500 Ом только для теплоемкости.

Конденсатор 1uF 50V наверняка может быть танталового типа, а возможно, еще и качественным электролитическим. Его цель — создать делитель напряжения для высокой частоты, но в первый момент запуска (после принятия его заряда) он делает резистор 500 Ом доминирующим для запуска генератора.

Конденсатор 0,68 мкФ 400 В нагружен с частотой от 12 до 30 кГц, и во избежание чрезмерных диэлектрических потерь рекомендуется выбрать высокое номинальное напряжение. Но, наверное, здесь тоже подойдет рейтинг 160В.
Вторичный конденсатор — самая важная часть. В режиме холостого хода он передает на флуоресцентный свет около 700 В (пик / пик), при работе он нагружается более 200 В при 12 кГц. Диэлектрический материал должен быть отличным, иначе нам нужно позаботиться о том, чтобы был большой запас по номинальному напряжению.
Керамика не подходит. Типы FKP и STYROFLEX (полистирол) хороши и могут быть рассчитаны на 400 В переменного тока. Все другие более распространенные типы, такие как MKP или «без названия», должны быть рассчитаны на напряжение более 1000 В.
Я использовал 2 x 5,6 нФ параллельно 1,5 кВ, что дало 11,2 нФ. Это значение не критично, но немного влияет на ток лампы. Хорошим выбором будет 2 последовательных разъема по 22 нФ, 400 В (или 630 В). Если они нагреваются во время работы, они перегружаются.

3. Подготовка лампы

Немного ручной работы мы улучшаем пусковые характеристики.Обычный ионизационный провод выглядит так:

Вы найдете его в переносных лампах 12 В для мастерских или вашего автомобиля. Он действует только там, где есть заметная разность потенциалов, и неактивен вблизи того места, где он подключен. Так работает только на одном конце лампы.

Я использую перекрестную двойную ионизацию. К стеклянному стержню с прозрачным силиконом приклеены две тонкие проволоки диаметром 0,1 мм. Они соединены с алюминиевыми кольцами, которые окружают концы трубки.Алюминиевые кольца создают высокую электрическую прочность на лету по сравнению с расположенными рядом нитями, поскольку они находятся под противоположным потенциалом. Два провода вдоль трубки ионизируют всю трубку. Таким образом, мы воздействуем на всю лампу таким образом. Это очень эффективно и помогает начать работу в соответствии с методом 1.7 без каких-либо дополнительных средств.

Алюминиевые кольца можно припаять к небольшому участку, нанеся толстую каплю бескислотного флюса, соскребая оксидный слой внутри капли с помощью острой отвертки, а затем паяя, используя трение наконечником.Ионизационные провода должны быть около 0,1 мм в диаметре, чтобы не поглощать слишком много света, и вы можете выиграть такие провода, зачистив тонкий гибкий провод.

4. Трансформатор

Трансформатор, изоляция и обмотки

Два параллельных плоских ферритовых стержня длиной 50 мм, сечением каждый 3,5 x 10 мм.
Общее поперечное сечение феррита 70 мм2. Объем 3500мм3
Изоляционный материал — бумага толщиной 0,04мм, сваренная в смеси парафин / стеарин.Его долговременные изоляционные свойства составляют примерно 5 кВ / мм.

  1. Четыре слоя вощеной бумаги = изоляция 0,16 мм вокруг жилы (800 В)
  2. Медный провод диаметром 0,8 мм 24 витка = первичный
  3. Два слоя вощеной бумаги = 0,08 мм (400 В)
  4. Медный провод диаметром 0,4 мм 35 витков = обратная связь
  5. Шесть слоев вощеной бумаги = 0,24 мм (1200 В)
  6. Медная проволока диаметром 0,2мм 130 витков, вторичная. Отводное соединение
  7. Слой изоляции 2 витка бумаги = 0,08 мм (400 В)
  8. Медный провод диаметром 0,2 мм 130 витков, соединение второго отвода
  9. Слой изоляции 2 витка бумаги = 0,08 мм (400 В)
  10. Медная проволока диаметром 0,2 мм 130 витков
  11. Слой изоляции 2 витка бумаги = 0,08 мм (400 В)
  12. Медная проволока диаметром 0,2 мм 130 витков, конец вторичной обмотки, всего 520 витков
  13. Четыре слоя вощеной бумаги = 0,16 мм (800 В против механических креплений)
  14. Переплет швейной ниткой

Все это медленно окунают в почти кипящий воск, температура около 90 ° C.Важно не закреплять что-либо внутри трансформатора обычным клеем. Это может быть разрушено теплом, и обмотки могут сдвинуться или развалиться. Вы можете использовать небольшие капли силикона для ванны, чтобы закрепить обмотки, или связать их хлопковой швейной нитью. Композиция остается в воске до тех пор, пока не перестанут подниматься пузырьки, указывающие на испаряющуюся влажность или воздух. Затем его медленно вытаскивают и оставляют остывать.

На вторичную обмотку теперь доступно 260/390/520 витков.Это позволяет выбрать нужный для лампы. 390 витков работали хорошо, но 520 витков дали немного лучшие пусковые характеристики, поэтому я использовал полную обмотку. Здесь нет отдельных обмоток нагревателя накала, так как здесь используется метод пуска 1.7. Если бы мы использовали метод 1.2, мы бы использовали значительно меньше вторичных витков, но добавили бы две очень хорошо изолированные обмотки нагревателя примерно на 7-10В каждая.

Трансформатор хорошо изолирован, как видно из таблицы выше. Его цель заключалась в том, чтобы защитить его от длительной работы на холостом ходу, например, от неподключенной или неисправной лампы.

5. Расчеты для развлечения

Пиковая индукция ферритового сердечника?
Напряжение на первичной обмотке из 24 витков можно грубо предположить как синусоидальную волну с небольшим пиковым значением 10 В = 7,8 В. эффективное. Рабочая частота составляет около 12 кГц. Это уравнение действительно только для синусоидальной волны, но для всех частот:
U = 4,44 * Bmax * A * f * n
(U = эффективное приложенное напряжение, Bmax = пиковая индукция в железном сердечнике, A = поперечное -сечение утюга, f = частота и n = количество витков).Обернувшись, находим:
Bmax = U / (4,44 * A * f * n)
Bmax = 7,8 / (4,44 * 0,00007 * 12000 * 24) (размеры в В, м2, Гц )
Bmax = 0,09 T
округлено до Bmax = 0,1 T
Это довольно низкое значение для ферритового материала, эти антенные стержни могут быть нагружены примерно 0,2 T, поэтому это консервативное, но приемлемый диапазон. 2 * R = 0,22 Вт
Аналогично находим для первичной обмотки:
Средняя длина одной обмотки = 36,1 мм, общая длина = 867 мм , поперечное сечение = 0,502 мм2, сопротивление = 0,033 Ом, ток на проводе 2,8А, потери на проводке 0,26Вт, потери в среднем 0,074Вт или
Prp = 74 мВт.

Потери напряжения на транзисторе?

Средний ток 0,8А. Транзистор проводит 24 мкс за полный период 83 мкс. Таким образом, в момент проводимости он передает I = 0,8 A * (83/24) = 2,77 A
В это время падение напряжения коллектор-эмиттер составляет в среднем 0,45 В, а потери мощности составляют 1 , 25Вт.
Опять же, при усреднении за все время получается Pce = 0,36 Вт

Коммутационные потери транзистора?

Слишком сложно получить из этих простых измерений.Потребуется анализ включения и выключения, а затем сопоставление мгновенного тока и падения напряжения CE.

Потери тока базы транзистора?

В этой конфигурации они пропускают «полезную» первичную обмотку, поэтому ими можно пренебречь.

Сумма вышеуказанных расчетных / расчетных убытков:

Потери в стали 70 мВт
Потери в меди на первичной стороне 74 мВт
вторичная сторона 220 мВт
Падение напряжения на транзисторе 360 мВт
Транзистор переключающий 360 мВт (только угадано)
Диэлектрические потери конденсатора 500 мВт (оценка основана на повышении температуры)
Потери в базовом резисторе 280 мВт
Сумма 1,86 Вт

Если цепь потребляет 0,8 А при 12 В, входная мощность составляет 9,6 Вт.

Предположим, что инвертор потребляет 1,9 Вт, лампа получает 7,7 Вт, что близко к номинальным 8 Вт.
КПД будет 0,80 или 80%. Это все очень грубо, но я покажу, как подходить.
Двухтактный инвертор с полевыми транзисторами мог бы быть более эффективным, но для запуска лампы потребуется больше деталей и специальный трюк.

Лучший метод измерения эффективности таких устройств — это вычислить общую тепловую инерцию всего устройства и поместить его в пенополистирол.Затем включите его, например, подняв с 20 ° C до 40 ° C, измеряя время. Затем можно рассчитать мощность потерь. На стороне входа постоянного тока его можно точно измерить. На основе обоих значений вы можете рассчитать эффективность.

6. Манхэттенский метод изготовления печатной платы

Это хороший метод, если вы не хотите выполнять весь процесс травления и иметь относительно небольшое количество частей. Вы просто делаете макет, где и какую часть ставить, затем делаете контактные площадки и приклеиваете их на медную сторону новой печатной платы.Преимущества: у вас есть экран заземления по всей площади, и вы можете подключаться к земле с относительно коротким импедансом.

Я не рекомендую грызть, это вызывает трещины и отслоения. Я сделал чистый пропил, снял заусенцы и скос наждачной бумагой и приклеил термостойким клеем (возможно, перестарался).

7. Снимки осциллографа

(нарисовано от руки, старый аналоговый прицел)

Если вы молоды и у вас хороший слух, вы можете услышать частоту 12 кГц, исходящую от трансформатора.В этом случае схему необходимо настроить на частоту более 16 кГц или поместить ее в кожух.

Напряжение база-эмиттер составляет около 1 В, что указывает на то, что транзистор полностью насыщен и действительно находится в режиме переключения.

Выход трансформатора чем-то близок к синусоиде, но конденсатор и лампа образуют своего рода фильтр верхних частот и вызывают довольно странное напряжение лампы.

Присмотревшись, я смог обнаружить колебания 900 кГц, как раз на пределе, который может показать осциллограф.Думаю, это не критично, но если вы используете устройство рядом с радиоприемниками, телевизорами, мобильными телефонами, возможно, лучше поместить устройство в металлический корпус и использовать заземленный отражатель за лампой.

Ток лампы не коррелирует по форме с напряжением лампы. Это нормально, поскольку лампа является сильно нерезистивным элементом и имеет собственное сопротивление.

Транзистор полностью перешел в режим насыщения. Обычно все ожидают падения напряжения 0,7 В, но это значение основано на максимально допустимом токе транзистора.Если вы останетесь ниже и примените точно правильный базовый ток, падение напряжения CE может составить около 0,3 В. Обычно это говорит об использовании транзистора большего размера, чем необходимо по тепловым причинам, и о нагрузке на этот довольно большой транзистор умеренным током.

Простая схема не обеспечивает действительно быстрого переключения. 1usec было бы нормально, здесь вроде около 2.

Напряжение холостого хода составляет 700 В (пиковый), а рабочее напряжение трансформатора составляло около 400 В (пиковый), падение напряжения на трансформаторе составляет около 300 В (пиковый).Но это не «потерянное» напряжение, это просто падение напряжения над индуктивностью этого трансформатора с открытым сердечником. У него высокая индуктивность по потоку рассеяния, напряжение «мягкое». В ненагруженном состоянии частота составляет 31 кГц, а после включения лампы она падает примерно до 12 кГц.

Еще фотографии

8. Литература / ссылки

Конструкция в манхэттенском стиле (клееные колодки на PC-Board)
http://www.aoc.nrao.edu/~pharden/hobby/HG-MANHAT1.pdf

Отличная домашняя страница, содержащая много информации о драйверах люминесцентных ламп.
http: // ludens.cl / Electron / Electron.html

Расчеты аналогичных схем
http://www.smpstech.com/tutorial/t03top.htm
http://schmidt-walter.eit.h-da.de/smps_e/smps_e.html

Транзисторы, подобные этому здесь, будут работать
http://html.alldatasheet.com/html-pdf/102914/ETC/2SC1306/54/1/2SC1306.html

Схема драйвера дневного света

и проект

Драйвер люминесцентного света, мой проект № 10 (о версиях с 1 по 9 будет сообщено, когда у меня будет готовая домашняя страница)

Драйвер люминесцентной лампы 12 В — одна из самых ответственных цепей, которые вы можете сделать.Правильная функция зависит от спецэффектов! Это, например, резонансы из-за емкости обмотки, совпадения настроенного контура с частотой переключения, влияния мощности лампы, потока рассеяния и свойств насыщения ферритового сердечника и т. Д.

Я делал эти схемы в качестве аксессуаров для проектов солнечной энергетики с 1981 года, но большинство из них работали с плохой эффективностью или с проблемами. Теперь, по прошествии 32 лет, я провел некоторые систематические измерения и записал ключевые моменты для устранения проблем.

Стандартная схема, которую вы найдете во многих версиях повсюду, выглядит так:

Эта схема также используется в качестве драйвера лампы для сканеров или некоторых УФ-зажигалок, она очень распространена.

Ключевые точки

1. Синусоидальный генератор, но с чистой коммутацией

На первичной стороне устройства находится синусоидальный генератор с регулируемым насыщением. Для управления транзисторами имеется обмотка обратной связи. Они работают в чистом режиме переключения, просто вкл / выкл.Радиолюбители называют это режимом C (A пропорционально, как аудиоусилитель, B — микшированный, а C — чистое переключение). Чистое включение / выключение приводит к очень небольшим потерям в транзисторах. Транзисторы должны быть быстросменными, высокочастотными или специально предназначенными для работы в режиме переключения. 2N3055 будет развивать большие потери на частоте 40 кГц и не подходит.

2. Функция двух конденсаторов

У нас есть два очень важных конденсатора, конденсатор первичной стороны, образующий резонансный контур с обмоткой трансформатора, и вторичный, делающий ТАКЖЕ резонансный контур, но как последовательно-резонансный контур с лампой внутри.Оба должны быть выбраны для достижения правильной работы.

Сначала выбирается вторичный C. Это подчеркнуто очень высокой частотой, напряжением и крутизной напряжения! Желательно покупать импульсные типы ФКП на 2000В. Они прослужат долго и не нагреются. Также MKP в порядке, если он рассчитан на более 1000 В. Абсолютный предел — рейтинг 400 В. Керамические конденсаторы исключены из-за их больших потерь. Слюда перестаралась, оставьте это миллионерам 🙂 Если вы не можете получить фольгированные С с номиналом более 400 В, вы можете использовать удвоенную емкость и подключить два последовательно.Хороший конденсатор FKP здесь, в Финляндии, стоит от 1 до 3 евро.

Вторичный C в значительной степени определяет частоту колебаний. Его необходимо выбрать, чтобы привести всю схему в правильную частоту, для которой она была разработана. Я рассчитал трансформатор на 40 кГц и плотность потока 0,2 Тл (тесла = Всек / м2). Используя конденсаторы все еще неправильного размера, он работал сначала на 100 кГц, затем на 15, но, наконец, с правильным значением на 37 кГц, что было достаточно близко к моей цели.

Конденсатор керамический взял, так как качественных высоковольтных фольговых С под рукой не было.Позже его заменили (на фото до сих пор керамический) из-за слишком больших потерь, нагрелся.

Теперь, пожалуйста, посмотрите на наброски рук под схемой, сделанной вручную. В середине показано первичное напряжение без первичного конденсатора, измеренное на одном транзисторе. Это прямоугольник с пиком индукции. Это не оптимально, поэтому я добавил первичный конденсатор (все еще слишком маленький), и результат был похож на рисунок справа: есть наложение колебаний первичной и вторичной стороны.
Первичная сторона C должна быть отрегулирована на резонансную частоту, равную резонансной частоте вторичной стороны, которая требует (после некоторых испытаний) 180 нФ. Минимальное номинальное напряжение здесь 100 В, лучше 400 В.
Все значения относятся к моему трансформатору, вам потребуются другие значения, но вы можете использовать те же принципы выбора.

3. Вторичный C нужен в любом случае

Кто-то может спросить, почему на вторичной стороне последовательно с лампой находится буква C. Это связано с тем, что люминесцентная лампа может стать легко асимметричной из-за износа, а затем действует как диод и принимает на себя часть постоянного тока.Это привело бы к асимметрии небольшого ферритового трансформатора; одна сторона двухтактной конструкции намагнитит ее до насыщения больше, чем другая сторона. Это приводит к большим потерям и может привести к остановке всей функции. Эта проблема может возникнуть через определенное время, когда лампа изнашивается. Вторичный C предотвращает это вредное содержание постоянного тока.

4. Нити накаливания

Люминесцентные лампы имеют нити накала, для запуска которых требуется напряжение от 6 до 10 В. Для стабильной работы напряжение может быть уменьшено примерно наполовину или полностью отключено.Нити накала также нагреваются за счет газового разряда, но для инвертора я бы рекомендовал стабильное небольшое напряжение нагрева, так как лампа работает более стабильно и менее склонна к мерцанию. 7 витков нитей были оптимальными для запуска, но слишком много для работы. Поэтому я добавил резисторы, чтобы уменьшить напряжение нагрева нити накала. В следующий раз я, вероятно, использовал бы только 5 витков вместо 7.
Использование очень грубого напряжения, содержащего все время всплески, или использование дополнительного ионизационного провода на лампе делает ненужным нагрев нити накала.Но вы платите за это преимущество более коротким сроком службы лампы или высокочастотными помехами.

5. Сердечник трансформатора

Это ключевой компонент. Вам необходимо согласовать частоту коммутации и данные обмотки с ферритовым материалом. Использование старого обратноходового трансформатора от телевизора или монитора ограничивает вашу частоту примерно до 20 кГц. Они рассчитаны примерно на 16 кГц. Типичные ферритовые сердечники могут работать с частотой 40 кГц при токе от 0,2 до 0,3 Тл, а некоторые — до 100 кГц, но только с 0,1 Тл. Чем выше частота, тем ниже допустимая плотность потока.

Вам необходимо получить информацию от производителя, так как все ферриты похожи друг на друга. В моем случае трансформатор, скорее всего, был от REINHÖFER, продаваемый CONRAD, номер заказа 516678, Material Manifer 196 от TRIDELTA, и после просмотра Интернета я нашел здесь необходимые спецификации:
http://www.tridelta.de /viomatrix/imgs/download/manifer_196.pdf
Глядя на конкретные значения потерь для f = 40 кГц и B = + -0,2 Тл, мы получаем примерно P = 250 мВт / см3 объема ядра.

Объем ядра 3.86 см3 (измеренные размеры). Таким образом, ожидаемые потери в железе составляют примерно 1 Вт. К этим цифрам нельзя относиться очень серьезно. Диаграмма не говорит нам, для прямоугольного или синусоидального напряжения, также нет, если она основана на двухтактном намагничивании (в обоих направлениях) или на простом прямом преобразователе (в одном направлении). Но вы можете видеть, что если бы мы удвоили частоту и вдвое уменьшили плотность потока (та же мощность), у нас было бы меньше потерь в сердечнике (больше в транзисторах!). Красные кривые — для горячего сердечника, а синие — для холодного, на удивление потери меньше при 100 ° C.Но потери в меди увеличиваются с повышением температуры, и особенно изоляционный материал подвергается гораздо большей нагрузке. Для работы трансформатора при температуре ядра 100 ° C потребуется силиконовая / стеклянная изоляция, класс H, в противном случае трансформатор скоро выйдет из строя. Поскольку я предпочитаю «обычный» лак, эпоксидную смолу, бумагу, трансформатор не должен нагреваться, здесь он достигает температуры около 40C при комнатной температуре 20C.

Воздушный зазор выбирается таким образом, чтобы трансформатор был нечувствителен к определенной асимметрии напряжения, а также чтобы разделить первичную и вторичную обмотки магнитным способом.Определенная величина потока рассеяния желательна, потому что в противном случае вторичное напряжение не может подняться до резонансных пиков, оно будет «удерживаться» первичной обмоткой. В качестве начального значения я рекомендую от 0,2 до 0,5% средней длины магнитного пути в виде воздушного зазора. Здесь я использовал лакированную бумагу толщиной 0,04 мм на всех жилах, сделав расстояние 0,08 мм между двумя E-жилами. А поскольку воздушный зазор в 2 раза на одном магнитном пути, он составляет 0,16 мм.

Вы можете спросить, где же напряженность магнитного поля H и почему я нигде не использовал магнитную длину и кривую B / H.Фактически, для нахождения разумного количества поворотов в этом нет необходимости. Вы можете предсказать ток намагничивания или создать более точную имитационную модель маленького трансформатора. Например, чтобы поместить его в P-SPICE. Этого я не делал, студенты-электронщики могут это сделать.

6. Обмотки и количество витков

Мы предполагаем, что у нас есть оба транзистора, проводящие каждую половину периода.
Предполагается, что частота равна f = 40 кГц. Это означает период времени T = 1 / f = 25 мкс.
В половине этого времени (периода проводимости транзистора) мы намагничиваем сердечник от -B до + B, то есть в диапазоне 2 * B. Время t = T / 2 = 12,5 мкс.

Максимальная плотность магнитного потока B = (U * t) / (2 * n * A), где n = количество витков, U = приложенное напряжение и A — поперечное сечение железа. (Упомянутый множитель 2 из 2 * B теперь стоит в знаменателе).

Предполагается, что первичная обмотка для одного направления имеет 7 витков, приложенное напряжение 12 В, а поперечное сечение стали 52.6 мм2. Все единицы должны обрабатываться в стандартных единицах, таких как В, сек, м2 и т. Д.

Результат B = 0,20 Тл, выглядит разумно. Таким образом, первичная обмотка получает 2 х 7 витков. Обратная связь, как правило, должна составлять 40-50% мощности обмотки на уровень 12 В, я использовал 4 витка. Возможно, всего 3 было бы достаточно, но на всякий случай я использовал 4 и приготовился добавить несколько резисторов. Но в них не было необходимости.

Вторичная обмотка, как правило, хороша, если рассчитана примерно на 250 В. Поскольку я ожидал падения напряжения по сравнению с индуктивностью потока рассеяния, я использовал приличные 160 витков.Перекрестная проверка: 160/7 * 12 В = 274 В примерно в порядке.

Нагреватели накаливания должны выдавать от 5 до 10 вольт, использование 7 витков было бы многовато, так как это соответствует 12 В, могло бы быть лучше 5 витков. Но это зависит от подключенной лампы.

Поперечное сечение меди было определено с помощью Excel и определено, какой провод в какое пространство подходит. Доступное пространство необходимо использовать полностью, но обмотку обратной связи можно сделать немного тоньше, поскольку она пропускает меньший ток. Как правило, старайтесь получить равные потери в меди как в первичной, так и во вторичной обмотке, если у вас есть выбор.В случае двухкамерного каркаса заполните его, но оставьте место для изоляции покрытия от сердечника.

7. Изоляция

Первый имел две камеры, поэтому первичная и вторичная обмотки естественно хорошо изолированы.
Обмотка обратной связи имеет почти такой же потенциал, что и первичная обмотка, и тонкий слой лакированной бумаги между ними в порядке.

Но, пожалуйста, внимательно посмотрите на обмотки нагревателя накала. Одна находится на том же потенциале, что и вторичная обмотка, но другая разделена C.Перед запуском может быть резонансное напряжение в несколько сотен вольт. Во время работы полная размах напряжения составляет 200 В. Таким образом, обе обмотки нагревателя накаливания должны быть очень хорошо изолированы как друг от друга, так и от других обмоток.

8. Транзисторы

Лучшими были 2SC1306, редкие высокочастотные силовые транзисторы 1980-х годов.
Я съел все, что у меня было, а потом попытался заказать еще. Это было очень сложно, и, наконец, один из моих друзей нашел французского радиолюбителя, у которого они все еще были в запасе.Но когда я их получил, они были эквивалентными типам PNP! Во всяком случае, идеальное переключение и низкое падение напряжения.

Следующим лучшим был BD249C с резисторами базы, измененными на 2,2 кОм. Это NPN, и полярность должна быть «нормальной».
BD239 работал, но перегрелся, снизив КПД.
BFX34 были неподходящими, слишком медленными, а также слишком термочувствительными.
TIP140, любимый, был слишком медленным, полностью отказал
TIP3055 (2N3055 в другом корпусе) слишком медленным и излишне щедрым по тепловой инерции, что здесь не правильный выбор.Это для более высокого тока на более низких частотах.
Резисторы базового тока необходимо оптимизировать опытным путем. Я обнаружил, что для 2SC требуется 1 кОм, а BD240 лучше всего работает с 2,2 кОм, что зависит от усиления в конкретном рабочем состоянии.

9. Дроссель

Эта индуктивность служит маховиком для тока, когда транзисторы полностью переключают концы первичной обмотки на полное напряжение. Без дросселя напряжение могло бы стать прямоугольным, но оно должно быть синусоидальным.Разница между этими двумя формами определяется как падение напряжения на дросселе. Это дроссель с порошковым сердечником 1,8 мГн, предназначенный для шумоподавляющих фильтров в светорегуляторах.

10. Лампы

Лампа мощностью 8 Вт была немного перегружена этим инвертором. Стержень 20 Вт работал хорошо, но не на исходной яркости. Энергосберегающая лампа 13Вт оказалась идеальной. У меня был один, в котором была неисправна электроника на 230 В.

Он работает от 12 В с током 1,1 А, постепенно увеличивается до 1,3 А, когда лампа нагревается.
Лампу необходимо запустить, сделав очень короткое замыкание лампы таким образом, чтобы нити накаливания получили полное напряжение. Лампа будет испытывать кратковременный сильный нагрев нити накала и индукционный пик напряжения после высвобождения тока короткого замыкания из трансформатора.
Я делаю это вручную, используя отдельную кнопку стартера, но если кому-то понадобится полностью автоматический режим, он может добавить герконовое реле и схему для генерации короткого импульса.

11. КПД

Это можно оценить только на основе тепловыделения компонентов, и я приблизительно предполагаю, что это может быть около 1.От 5 до 2 Вт. Эффективность может составлять около 85%. Поскольку универсальные измерители показывают неправильные результаты с несинусоидальным напряжением более 30 кГц, лучший способ определить эффективность — это поместить инвертор в изолированную коробку на некоторое время, измерить повышение температуры и рассчитать тепловую инерцию всех компонентов из их материалов. . Q = m * cp * dT, где Q = энергия тепла в Джоулях или килоджоулях, cp = коэффициент теплоемкости в килоджоулях / килограммах и Кельвинах. dT = повышение температуры в градусах Цельсия или Кельвина. Тепловая энергия Q, деленная на время, представляет собой мощность потерь.Входная мощность — постоянный ток, и ее можно точно измерить. Тогда КПД равен (входная мощность минус мощность потерь) / (входная мощность).

12. Снимки осциллографа и детализация

Вторичный конденсатор 1,8 нФ керамический был заменен на конденсатор из фольги 1,5 нФ FKP 2000 В, частота немного изменилась до 33,3 кГц. Конденсатор передает напряжение от пика до пика 800 В или примерно 280 В. Хотя керамический конденсатор был рассчитан на 400 В, он не подходил.

Первичная обмотка показывает чисто синусоидальное напряжение 70 В пиковое / пиковое. Это в 1,46 раза больше, чем напряжение прямоугольной формы без резонансных эффектов (2 * 12 В = 24 В в одном направлении, 48 В пик / пик).

Нити накала лучше работают с резисторами от 10 до 18 Ом, иначе они перегреются. От типа лампы зависит, сколько нужно нагревать нити в процессе эксплуатации. Не перегревайте их, потому что эта энергия теряется на освещение. Ток снижается при одинаковой яркости, когда вы сводите ненужный нагрев нити к разумному минимуму.Многие такие небольшие инверторы вообще не имеют нагрева нити накала.

Лампа имеет пиковое / пиковое напряжение 200 В с эффективным напряжением около 60 В. Это больше треугольник, чем синусоида. Причина искажения — нелинейность лампы. Это не резистивная нагрузка, она нелинейна по напряжению и также имеет свои собственные импедансы.

Напряжение на CE транзистора выглядит так. В проводящей фазе напряжение очень близко к нулю, а если присмотреться, то оно около 0.5В. Этого не видно на этой диаграмме. В непроводящей фазе видна половина синусоидального напряжения. Транзисторы не переключаются точно поочередно, но между ними есть промежуток более микросекунды. Это необходимо для предотвращения внутреннего короткого замыкания первичной обмотки.

Дроссель показывает удвоенную частоту переключения, поскольку он поочередно подает ток на оба транзистора. Напряжение выглядит как выпрямленная полная синусоидальная волна.Дроссель пропускает постоянный и переменный ток, поэтому он предварительно намагничен. Если бы он был сделан из ферритового сердечника, он хотел бы иметь большой воздушный зазор. Но это сердечник из порошкового металла, который, естественно, имеет тысячи встроенных воздушных зазоров.

13. Опыт работы на протяжении многих лет

У меня был небольшой драйвер лампы с одним транзистором, подключенный как обратный преобразователь. Он работал отлично, зажигал лампу от пиков напряжения и имел очень высокий КПД. Но через некоторое время лампа с одного конца почернела.Я обнаружил в книге, что напряжение этого преобразователя (с резким пиком для одной полярности и более длительным умеренным напряжением обратной полярности) генерирует кратковременную перегрузку плотности тока одной нити накала (той, которая, оказывается, подключена к импульсной сторона вторичной обмотки). Лампу необходимо время от времени переворачивать и заменять чаще, чем обычно.

Несколько лет назад я сделал инвертор с отдельным генератором, управляющий одним транзистором на частоте 16 кГц, что уже не слышно, кроме как для очень молодых людей.Ферритовый сердечник начал издавать огромный шум на частоте 8 кГц, и каждый второй импульс был меньше / больше, чем другой. В схеме все было полностью симметрично! Я не смог решить проблему и сломал ее. Механический резонанс с магнитострикционными эффектами? Является ли феррит магнитострикционным? Насколько мне известно, только лист с ориентированной зернистостью.

Была обычная люминесцентная лампа с нормальным стартером и дросселем, работающая на 230В 50Гц. Через некоторое время дроссель начал громко гудеть и стал горячим.Я подключил к осциллографу фотодиод и посмотрел на интенсивность света. Каждая вторая полуволна была сильнее предыдущей, поэтому очевидно, что лампа частично действовала как диод и насыщала дроссель в одном направлении.

В Финляндии обычно нет света на чердаке или есть только маленькая лампочка, поэтому вам понадобится фонарик, когда вы будете искать что-то на своем складе. Поэтому я положил туда драйвер люминесцентной лампы и аккумулятор. Летом он работал хорошо, но зимой не зажигал лампу.Пусковые свойства зависят от температуры, и если вы хотите убедиться, что ваша схема работает, проверьте ее зимой.

Фото:

Ссылки:

http://www.joretronik.de/Web_NT_Buch/Vorwort/Vorwort.html, профессионал в области электроники, разместил на своей домашней странице целую книгу по импульсным источникам питания бесплатно. Множество отличных объяснений (на немецком).

http://ludens.cl/Electron/Fluolamp/fluolamp.html Немецкий парень из Чили с отличной домашней страницей на английском языке.

http://www.fingers-welt.de/info.htm «Leuchtstofflampen an 12V» — довольно необычная схема, в которой лампа работает от выпрямителя с удвоением напряжения за обратным преобразователем (немецкий). Я не уверен в этой концепции, но буду исследовать ее.

Балластные весы

— Как работают люминесцентные лампы

В предыдущем разделе мы видели, что газы проводят электричество не так, как твердые тела. Одним из основных различий между твердыми телами и газами является их электрическое сопротивление (сопротивление протекающему электричеству).В твердом металлическом проводнике, таком как провод, сопротивление является постоянным при любой заданной температуре, что зависит от размера проводника и природы материала.

В газовом разряде, таком как люминесцентная лампа, ток вызывает уменьшение сопротивления. Это связано с тем, что по мере прохождения большего количества электронов и ионов через определенную область они сталкиваются с большим количеством атомов, что освобождает электроны, создавая больше заряженных частиц. Таким образом, ток будет расти сам по себе в газовом разряде, пока есть соответствующее напряжение (и бытовой переменный ток имеет большое напряжение).Если ток в люминесцентном свете не контролируется, он может вывести из строя различные электрические компоненты.

Балласт люминесцентной лампы контролирует это. Самый простой тип балласта, обычно называемый магнитным балластом , работает как индуктор. Базовая катушка индуктивности состоит из катушки с проволокой в ​​цепи, которая может быть намотана на кусок металла. Если вы читали, как работают электромагниты, вы знаете, что когда вы пропускаете электрический ток по проводу, он создает магнитное поле.Расположение провода концентрическими петлями усиливает это поле.

Поле такого типа влияет не только на объекты вокруг цикла, но и на сам цикл. Увеличение тока в контуре увеличивает магнитное поле, которое прикладывает напряжение, противоположное течению тока в проводе. Короче говоря, намотанный на катушку провод в цепи (индуктор) препятствует изменению тока, протекающего через него (подробности см. В разделе «Как работают индукторы»). Элементы трансформатора в магнитном балласте используют этот принцип для регулирования тока в люминесцентной лампе.

Балласт может только замедлить изменения тока — он не может их остановить. Но переменный ток, питающий флуоресцентный свет, постоянно реверсирует сам , поэтому пускорегулирующий аппарат должен только блокировать увеличение тока в определенном направлении на короткое время. Посетите этот сайт для получения дополнительной информации об этом процессе.

Магнитные балласты модулируют электрический ток с относительно низкой частотой цикла , что может вызвать заметное мерцание. Магнитные балласты также могут вибрировать с низкой частотой.Это источник слышимого жужжания, которое люди ассоциируют с люминесцентными лампами.

Современные балластные устройства используют передовую электронику для более точного регулирования тока, протекающего через электрическую цепь. Поскольку они используют более высокую частоту цикла, вы обычно не замечаете мерцания или жужжания, исходящего от электронного балласта. Разным лампам требуются специальные балласты, предназначенные для поддержания определенных уровней напряжения и тока, необходимых для различных конструкций ламп.

Люминесцентные лампы бывают всех форм и размеров, но все они работают по одному и тому же основному принципу: электрический ток стимулирует атомы ртути, что заставляет их испускать ультрафиолетовые фотоны.Эти фотоны, в свою очередь, стимулируют люминофор, который излучает фотоны видимого света. На самом базовом уровне это все, что нужно сделать!

Чтобы узнать больше об этой замечательной технологии, включая описания различных конструкций ламп, перейдите по ссылкам ниже.

Связанные статьи HowStuffWorks

Дополнительные ссылки

Принципиальная принципиальная схема драйвера люминесцентной лампы с использованием …

Контекст 1

… резонансный инвертор нагрузки типа LCC с частотным регулированием на рис.1 — это стандартная технология управления люминесцентными газоразрядными лампами [1]. Таким образом, параметром управления является частота переключения, в то время как схема преобразования мощности включает в себя резонансную сеть с постоянной резонансной частотой. Таким образом, приложения с несколькими лампами, такие как подсветка ЖК-телевизоров, требуют нескольких драйверов лампы, если …

Context 2

… для использования в подсветке ЖК-телевизоров. Он может быть разработан для питания как люминесцентных ламп с холодным катодом (CCFL), так и люминесцентных ламп с горячим катодом (HCFL).Изоляцию сети можно снять, добавив трансформатор. В этом случае контур управления лампой полностью находится на вторичной стороне изолирующего трансформатора, проиллюстрированного схемой-прототипом на рис. …

Контекст 3

… испытательная схема на рис. 12 включает в себя трансформатор, который добавляет два конструктивных параметра. Коэффициент обмотки n 2 / n 1 используется для адаптации напряжения питания постоянного тока и напряжения лампы. Взаимная индуктивность трансформатора M спроектирована таким образом, что ток намагничивания уже генерирует индуктивный ток, необходимый для работы полумоста MOSFET с переключением при нулевом напряжении….

Контекст 4

… усилитель. Практически также небольшое переменное напряжение последовательного конденсатора C DC видно на рисунке 9. Используя идеализированную временную функцию напряжения катушки индуктивности и интегральное уравнение катушки индуктивности, было получено уравнение (29) для расчета индуктивности большого сигнала на основе измеренного пикового тока катушки индуктивности. . Полученные значения индуктивности показаны на рис. 10. Требуемые значения индуктивности в таблице III можно отрегулировать с током до 25 мА в обмотке управления.Максимальная индуктивность при токе управления 0 мА больше, чем требуется, например. из-за более тонкого воздушного зазора. Но это не имеет последствий для работы лампы, поскольку лампа выключена с максимальной индуктивностью …

Контекст 5

… для определения правильного сопротивления магнитной петли. Следовательно, результаты следует рассматривать только как приблизительные, хотя эксперименты показали, что эта процедура приводит к хорошим результатам. Эти оценочные потери мощности приводят к коэффициенту усиления 40 для управления работой лампы мощностью 14 Вт с этой конструкцией магнитного усилителя.(Рис.11), fs = 70 кГц, B AC.peak = …

Управление небольшой люминесцентной лампой с постоянным током

Управление небольшой люминесцентной лампой с постоянным током

Я представляю здесь необычную схему для управления небольшой люминесцентной лампой с постоянным током. Его использование очень ограничено и определенно не так хорошо, как традиционный кондиционер. схемы «стартера и балласта», но в дидактических целях я все еще нахожу это интересным альтернативным и необычным способом соединения этих лампы.

Люминесцентные лампы состоят из двух электродов в атмосфере низкого давления. состоит из смеси газов; обычно пары аргона и ртути. Когда трубка выключена, она ведет себя как изолятор, пока напряжение между его электроды поднимаются выше порогового значения, называемого напряжением удара (или пусковое напряжение или ионизирующее напряжение ). Фактическое значение зависит от многих факторов, таких как состав газа, давление газа, материал электрода, температура электрода и т. д.Без предварительного нагрева электродов оно может составлять всего несколько сотен вольт. для небольших трубок и до нескольких десятков киловольт для длинных трубок. Обычно электроды предварительно нагревают, чтобы снизить пусковое напряжение на примерно в десять раз, но здесь это не то, что делается.

При достижении пускового напряжения газ ионизируется, запускается ток. течет и создается свет. Напряжение между электродами падает до низкого значения, где-то между 30 и 100 В, в зависимости от длины трубки и состава газ внутри.Ток должен быть ограничен цепью балласта, чтобы лампа оставалась в рабочем состоянии. номинальная мощность и предотвратить его перегрузку.


Принципиальная схема драйвера лампы.

Люминесцентные лампы почти всегда питаются от переменного тока, но в этой схеме используются ОКРУГ КОЛУМБИЯ. По сути, эта схема представляет собой удвоитель напряжения, состоящий из двух диодов 1N4007. и два высоковольтных электролитических конденсатора по 10 мкФ 350 В.Такие конденсаторы легко утилизировать из компактных люминесцентных ламп.

Когда лампа выключена, диоды выпрямляются и удваивают 230 В AC сеть, вырабатывающая около 650 В DC на электроды лампы. Это напряжение достаточно высокое, чтобы напрямую запустить люминесцентную лампу малой мощности. без предварительного нагрева электродов. Он отлично работает и с лампами на 4 Вт, и со многими лампами на 8 Вт, но с 12 Вт. лампы сложны и не всегда запускаются надежно.Я пытался соединить оба вывода каждого электрода вместе или только по одному на каждый электрод без заметной разницы.

Даже если бы не пробовал, сомневаюсь, что эта схема будет работать с 120 В AC сеть, так как простого удвоителя, вероятно, недостаточно для генерировать высокое напряжение, чтобы ударить по трубке.

Как только лампа загорится и ток начнет течь, два 470 нФ конденсаторы действуют как балласт: они ограничивают ток и понижают напряжение, поэтому что трубка может работать безопасно.Когда он включен, напряжение между электродами трубки 4 Вт составляет около 30 В. Почему два конденсатора по 470 нФ параллельно? Просто потому, что у меня под рукой не было 1 мкФ.

Резистор 1 МОм и два резистора 470 кОм действуют как стравливающие резисторы для разряда конденсаторов при переключении цепи выключенный. Имейте в виду, что энергия, запасенная в этих конденсаторах, может быть смертельный; даже с установленными дренажными отверстиями, будьте предельно осторожны с этим цепь, так как резистор может быть сломан.Поскольку лампа напрямую подключена к электросети, прикасаться к любой части необходимо. избегать, и нужно быть очень осторожным. Как обычно, попробуйте эту схему, только если вы знаете, что делаете, и на ваш на свой страх и риск . Не забудьте прочитать мой отказ от ответственности.

Резистор 82 Ом используется для уменьшения скачка пускового тока при цепь сначала включается, и все конденсаторы все еще разряжены.

Поскольку эта схема не нагревает электроды, запуск трубки может быть трудно, если лампа старая или слишком длинная.Удивительно, но прикосновение к трубке одной рукой может помочь, и я могу начать Трубка 22 Вт, коснувшись стекла одним концом и потянув за руку трубка. Но будьте особенно осторожны и просто дотроньтесь до стеклянной части трубки: все части находятся под высоким напряжением и напрямую подключены к сети: делайте это самостоятельно риск.

Заметив, что прикосновение к трубке рукой помогло начать долгую работу. трубки, я играл с металлической пластиной вдоль трубки, которую я подключил к земле.Это немного помогает (не знаю почему), но чудес не творит.


Фотографии лампы. (нажмите, чтобы увеличить).

Когда лампа горит, можно заметить, что отрицательный электрод (в рисунок слева) темнее положительного: это связано с Темная зона Фарадея , типичная для газовых разрядов низкого давления, то есть Виден только при питании трубки постоянным током.

Как я уже сказал, это красивая, необычная, забавная и опасная трасса. Определенно поучительно, чтобы узнать, как работают люминесцентные лампы, но недостаточно, чтобы замените обычную цепь балласта переменного тока.



Как работают люминесцентные лампы

Как работают люминесцентные лампы
Elliott Sound Products Как работают люминесцентные лампы

© 2007 Род Эллиотт (ESP)


Лампы и энергетический индекс
Основной указатель

Содержание
1 Введение

Статья «Традиционные люминесцентные ламповые лампы и их альтернативы» рассматривает работу люминесцентных ламп в довольно простых терминах, но здесь мы рассмотрим лампы и их балласты (как «традиционные» магнитные, так и электронные) и немного углубимся в их внутреннюю часть. выработки.Используются альтернативные схемы балласта (например, схема «опережение / запаздывание»), и это показано в предыдущей статье. Здесь это не рассматривается, потому что речь идет о том, как они работают, а не о способе подключения фитингов.

Принцип работы люминесцентной лампы сильно отличается от простой лампы накаливания, и современные люминесцентные лампы (особенно компактные люминесцентные лампы или КЛЛ) используют электронные балласты для регулирования напряжения на лампе и тока через нее.При первом запуске необходимо обеспечить значительно более высокое напряжение, чем обычно, чтобы вызвать возникновение внутренней дуги, а после запуска ток должен быть ограничен до безопасного значения для трубки.

В этой статье показаны некоторые способы достижения этих целей, начиная с базового индуктивного балласта, который был основой производства люминесцентных ламп на протяжении многих лет.

Обратите внимание, что показанные здесь формы сигналов представляют собой комбинацию моделирования и реальных измерений.При необходимости смоделированные формы сигналов корректируются для соответствия измеренным. Причина такого подхода проста … симулятор не может представить нагрузку с отрицательным импедансом с соответствующими напряжениями удара и другими характеристиками, которые представляет люминесцентная лампа. Точно так же очень сложно (и потенциально смертельно) пытаться уловить все напряжения и токи, которые существуют в цепях реальных люминесцентных ламп.

Хотя принятый подход действительно вносит некоторые незначительные ошибки в показанные формы сигналов, они относительно незначительны, а конечный результат находится в пределах любого традиционного производственного допуска для балластов, ламп и других компонентов.


2 Индуктивный балласт

Для объяснения индуктивного балласта я использовал старую «компактную» люминесцентную лампу, которая идеально подходит для тестирования. Хотя он по-прежнему работает, светоотдача несколько ниже, чем должна быть, но это лишь немного меняет некоторые измеренные значения. Принципы не меняются.

Сама лампа имеет следующие характеристики …

903 903 Стартер 903
Диаметр трубки 11,3 мм (нестандартный)
Длина 533 мм (21 дюйм)
Сопротивление нити (холодная) 12.8 Ом
Сопротивление нити (горячее) 23 Ом
Балластное сопротивление 105 Ом
Индуктивность балласта Звезда 2,11 H
Starter 2,11 H
1,2 нФ

Диаметр люминесцентных ламп обычно обозначается как T8 (например). Это означает, что диаметр составляет 8 x 1/8 дюйма, что составляет 1 дюйм (25.4 мм). Ранние лампы были T12 (1½ дюйма или 38 мм в диаметре), но они были уменьшены в размерах до T8, когда были представлены (тогда) «новые» высокоэффективные типы. Стандартная 4-футовая трубка (1200 мм) раньше рассчитывалась на 40 Вт, но их замена была 36 Вт, а светоотдача была улучшена. Последнее воплощение — T5 (диаметр 16 мм), в котором используется меньшее расстояние между выводами и другой фитинг надгробной плиты. Они также короче (1163 мм) и не подходят для стандартного светильника. разработан для более ранних ламп.

В случае моего тестового образца диаметр трубки намного меньше обычного, потому что лампа обозначена как компактная, поэтому ее складывают, чтобы уменьшить общую длину.Упоминается сопротивление нити, потому что оно будет упомянуто позже в этой статье. Схема представлена ​​ниже и является стандартной во всех отношениях.


Рисунок 1 — Схема люминесцентной лампы

Катушка индуктивности — это балласт, и на самом деле это гораздо более важный компонент, чем он может показаться. Он не только ограничивает максимальный ток трубки, но и используется для генерации импульсов высокого напряжения, необходимых для запуска плазменной дуги внутри трубки. Сама люминесцентная лампа имеет на каждом конце нагреватель, небольшое количество ртути и инертный газ (обычно аргон).Стенка трубки покрыта люминофором, который излучает видимый свет при возбуждении интенсивным коротковолновым ультрафиолетовым светом, излучаемым ртутным дуговым разрядом. Дополнительный конденсатор (C2) предназначен для коррекции коэффициента мощности — подробнее об этом позже.

Маленькая лампочка — стартер. Биметаллическая полоса запечатана в стеклянную оболочку с (обычно) неоновым газом внутри. При подаче питания напряжения более чем достаточно, чтобы вызвать дугу в неоновом пускателе, но не настолько, чтобы вызвать дугу в самой лампе.Тепло от неоновой дуги заставляет биметаллическую полосу изгибаться, пока она не замыкает контакты. Затем дуга в неоновом стартере гаснет, и сеть подключается через балласт и нити на каждом конце трубки через выключатель стартера.

Когда в пускателе нет дуги (или накала), биметаллическая полоса охлаждается, и примерно через секунду или около того выключатель размыкается. Прерывание тока через катушку индуктивности вызывает возврат напряжения — импульс высокого напряжения, который (будем надеяться) зажжет дугу в трубке.Если дуга не запускается с первого раза, процесс повторяется до тех пор, пока не начнется. Вот почему стандартные люминесцентные лампы при включении несколько раз мигают. Нити — это нагреватели, которые действуют как катоды (эмиттеры электронов) и необходимы для обеспечения достаточного количества тепла для испарения ртути и обеспечения хорошего потока электронов для возбуждения плазмы. Когда лампа работает нормально, потока электронов достаточно для поддержания приемлемой рабочей температуры нити накала. Обе нити действуют как катоды и аноды поочередно, потому что полярность меняется 50 (или 60) раз в секунду.

Плазма имеет интересную характеристику … отрицательное сопротивление! Как только начинается дуга, более высокий рабочий ток вызывает падение сопротивления и меньшее напряжение появляется на трубке. Если бы это продолжалось, трубка очень быстро разрушилась бы. Балласт предотвращает это, потому что он вводит последовательный импеданс для ограничения тока. Сопротивление не сработает, потому что оно слишком расточительно и не обеспечивает накопления энергии для генерации всплеска обратного напряжения, чтобы повторно зажигать дугу при каждом изменении полярности.


Рисунок 2 — Рабочие осциллограммы

На рисунке 2 вы можете видеть, что когда ток трубки (зеленая кривая) максимален, напряжение (красная кривая) на трубке минимально. Эффект можно увидеть сразу после каждого скачка напряжения. По мере увеличения тока напряжение падает (для этой трубки минимум составлял ± 126 В). Пик в точке пересечения нуля формы волны тока генерируется балластом, и именно он повторно зажигает дугу для каждого полупериода подключенной сети.На рисунке 3 показано напряжение на балласте — быстрые переходы соответствуют пикам, приложенным к лампе, и происходят около пика напряжения, где ток прерывается, когда проходит через ноль.


Рисунок 3 — Напряжение и ток в балласте

Форма волны напряжения на балласте по существу представляет собой разницу между приложенным сетевым напряжением и напряжением на лампе. Для работы на 120 В напряжение явно меньше, но лампе все еще нужно где-то между 300-400 В, чтобы зажигать (или повторно зажигать) дугу, поэтому балласт должен иметь возможность компенсировать разницу с помощью обратного импульса на каждом нуле. -пересечение тока.У меня нет люминесцентной лампы на 120 В или пускорегулирующего устройства, поэтому я не могу предоставить полную информацию. То, что люминесцентные лампы вообще работают с напряжением 120 В, несколько примечательно, но легко понять, почему электронные балласты так популярны в США. Многие балласты для стран с напряжением 120 В используют «балласт» автотрансформатора, который увеличивает доступное напряжение и действует как ограничитель тока.


3 Системные потери

В системе несколько потерь, причем балласт является одним из основных факторов.Балласт, использованный в моих тестах, имеет сопротивление постоянному току 105 Ом, поэтому расходуется почти 7 Вт. Потери на самом деле выше, потому что стальные листы очень быстро нагреваются, поэтому «потери в железе» значительны. Это можно уменьшить только за счет использования стали более высокого качества и более тонких листов. Оба значительно увеличат стоимость.

Каждая нить накала имеет горячее сопротивление 23 Ом, и при работающей лампе на каждой нити присутствует напряжение почти 6 В. Помните, что во время работы конец нити накала, идущий к стартеру, отключается (за исключением очень маленькой емкости на стартере).Измеренное напряжение представляет собой градиент, вызванный током плазмы, и каждая нить накала рассеивает около 1,5 Вт (всего 3 Вт). Только в этих компонентах люминесцентная лампа расходует 10 Вт подаваемой мощности в виде тепла (7 Вт для балласта, 3 Вт для нити накала).

Хотя отходы балласта могут быть уменьшены с помощью более качественного блока, потеря накала необходимы для работы лампы. Это относится ко всем люминесцентным лампам, за исключением специализированных типов с холодным катодом, но для них требуется такой же специализированный электронный балласт.CCFL (люминесцентные лампы с холодным катодом) чаще всего встречаются в ЖК-мониторах и телевизорах, но теперь их заменяют светодиоды в новых моделях.

Есть еще одна потеря, которую пользователь не видит и даже не оплачивает. Эти потери являются результатом низкого коэффициента мощности люминесцентных ламп, и это вызвано преимущественно индуктивной нагрузкой. Индуктивная нагрузка вызывает запаздывающий коэффициент мощности, когда максимальный ток возникает после максимального напряжения. Вы также можете рассматривать это как точку, в которой нагрузка (лампа и индуктор) фактически возвращает некоторую мощность источнику питания.Для поставщика электроэнергии это означает, что трансформаторы, кабели и генераторы переменного тока должны выдерживать больший ток, чем должен быть. Это становится очень дорогостоящим, когда очень много нагрузок имеют низкий коэффициент мощности.


Рисунок 4 — Напряжение Vs. Текущие, нескорректированные и исправленные

На Рисунке 4 вы можете видеть, что нескорректированная форма волны тока имеет видимые искажения около точки пересечения нуля. Как вы также можете видеть, среднеквадратичный ток также значительно выше, чем указано в номинальной мощности.Реактивные нагрузки имеют разные значения мощности и ВА, но для резистивной (или нереактивной) нагрузки они одинаковы.

В этом случае ток без C2 составляет 256 мА, а при добавлении C2 он падает до 162 мА. При приложенном напряжении 240 В это означает, что …

Без компенсации Общая мощность = 38 Вт
ВА = 61,4 Коэффициент мощности = 0,62
С компенсацией Общая мощность = 38 Вт
ВА =.9 Коэффициент мощности = 0,97

Коэффициент мощности можно рассчитать, используя фазовую задержку или разделив фактическую мощность на ВА (Вольт * Ампер). Что касается фазового угла, ток отстает от напряжения на 57,4 °, а коэффициент мощности рассчитывается путем взятия косинуса фазового угла — 0,53 в данном случае. Цифры разные, потому что форма волны тока не является чистой синусоидой — она ​​имеет искажения. Добавление конденсатора сдвигает фазу искажения, так что форма сигнала скомпенсированного тока имеет плоскую вершину (что-то вроде ограничения усилителя).Хотя это вносит гармоники в сеть, их влияние далеко не так плохо, как в некомпенсированной цепи, о чем свидетельствует скорректированный коэффициент мощности. Добавление конденсатора правильного номинала в чисто индуктивную цепь (без искажения формы сигнала) даст коэффициент мощности, равный единице — идеальный вариант.

Обратите внимание, что использование косинуса фазового угла (CosΦ) является сокращением, и может использоваться только , когда оба напряжение и ток являются синусоидальными волнами.Он вообще не работает для сильно искаженных сигналов, например, генерируемых электронными нагрузками, и будет давать неверные ответ для индуктивных нагрузок, которые включают искажения (например, люминесцентные лампы). Вы получите , всегда получите правильный ответ, если разделите реальную мощность на ВА.

Также доступны пускорегулирующие аппараты с «быстрым пуском» и пускорегулирующие устройства без стартера. Они выходят за рамки данной статьи, которая предназначена для описания основных принципов, а не для подробного описания всех имеющихся балластов люминесцентного освещения.


4 электронных балласта

Электронные балласты становятся все более распространенными, потому что их можно сделать более эффективными, чем типичный магнитный балласт, и для них требуется гораздо меньше материала. Это делает их дешевле (в изготовлении, но не обязательно для покупки вами), чем люминесцентные лампы с обычным балластом. В частности, теперь во всех компактных люминесцентных лампах (КЛЛ) используется электронный балласт, который обычно поставляется вместе с самой лампой. Хотя это удобно, это ужасная трата ресурсов, потому что все электронные компоненты просто выбрасываются, когда лампа выходит из строя.Лампы T5 в настоящее время становятся стандартом для люминесцентного освещения, и для максимального срока службы электронный балласт является обязательным.

В некоторой степени повышение эффективности по сравнению с магнитным балластом может быть иллюзией — по крайней мере, частично. Поскольку они намного легче, есть реальная и определенная экономия на транспортных расходах, но магнитные балласты могут быть такими же эффективными, как электронная версия, а может быть, даже больше. Как бы то ни было, переход к электронным балластам сейчас не остановить, и по мере того, как цена снизится, их использование будет продолжать расти.У электронных балластов есть и другие преимущества, о которых мы поговорим позже.

Типичная (более или менее) принципиальная схема электронного балласта, используемого в КЛЛ, показана ниже. Те, которые используются для обычных люминесцентных ламп, будут очень похожи, но, как правило, будут использовать обновленные компоненты. В то время как электроника в КЛЛ может прослужить всего 15 000 часов, фиксированный электронный балласт, как ожидается, прослужит около 100 000 часов или более (более 10 лет непрерывной работы).На самом деле электронный балласт должен быть способен прослужить столько же, сколько и его магнитный аналог, поэтому срок службы 40 лет не так глуп, как может показаться.


Рисунок 5 — Схема электронного балласта [2]

Схема на Рисунке 5 представляет собой немного упрощенную версию схемы, показанной в листе данных Infineon. Он полностью скорректирован по коэффициенту мощности и имеет защиту для обнаружения неисправных (или отсутствующих) ламп. Характерным режимом отказа люминесцентных ламп является «выпрямление», когда одна нить накала (катод) становится значительно слабее другой.Если не обнаружено, смещение постоянного тока приведет к отказу коммутирующих устройств, что сделает балласт бесполезным (маловероятно, что кто-то отремонтирует их, когда они выйдут из строя).

Электронный балласт действительно имеет ряд преимуществ перед магнитной версией. Поскольку дуга полностью погаснет примерно через 1 мс, при использовании более высокой частоты, чем сеть 50 или 60 Гц, дуга останется. Его не нужно наносить повторно, а просто меняет направление [1]. Кроме того, светоотдача увеличивается примерно на 10% выше 20 кГц, поэтому улучшается световая отдача.

До тех пор, пока коэффициент мощности всех этих электронных балластов не будет скорректирован, они будут вызывать проблемы с распределением. К сожалению, во многих странах не требуется, чтобы приборы малой мощности (обычно менее 75 Вт) имели коррекцию коэффициента мощности, но, учитывая распространение КЛЛ и электронных балластов в обычных люминесцентных лампах, это придется изменить. Поскольку освещение используется в каждом доме, проблема неисправленного коэффициента мощности выйдет из-под контроля, если что-то не будет сделано.

В отличие от магнитного балласта (индуктора), коэффициент мощности электронного балласта нельзя скорректировать простым добавлением конденсатора. Как видно на диаграмме выше (хотя это может быть не сразу очевидно), на выходе входного мостового выпрямителя имеется очень маленький конденсатор емкостью 220 нФ. Первый полевой МОП-транзистор работает как повышающий преобразователь и переключается на протяжении каждого полупериода. Таким образом, среднеквадратичный ток, потребляемый из сети, поддерживается в фазе с напряжением, а форма волны тока является приблизительно синусоидальной.Это дает очень хороший коэффициент мощности — возможно лучше 0,9. Чтобы предотвратить возвращение импульсов высокоскоростного переключения в сеть, необходима обширная фильтрация, на что указывает фильтр EMI (электромагнитных помех) на входе.

Для компактных люминесцентных ламп (КЛЛ) используется несколько более простая схема, так как схемы предназначены для выбрасывания. Лично я считаю это бессмысленным расточительством и надеюсь, что это не будет продолжаться (или, по крайней мере, будет введена переработка, чтобы восстановить как можно больше).Достаточно типичный инвертор CFL показан ниже …


Рисунок 6 — Типовая схема электронного балласта CFL

Я говорю «достаточно типичный», потому что реальные схемы сильно различаются. Доступны специализированные микросхемы драйверов MOSFET, но большинство дешевых (потребительских) CFL будут использовать вариант вышеупомянутого. Обратите внимание, что резистор 0,47 Ом, показанный на входе, обычно представляет собой плавкий резистор, и он используется в первую очередь в качестве предохранителя. Почему бы не использовать настоящий предохранитель? Резисторы дешевле.Большинство деталей будет выбрано таким образом, чтобы выжить в течение установленного срока службы лампы, поэтому передовые методы проектирования обычно игнорируются, если можно ожидать, что деталь с более низким номиналом (и более дешевая) прослужит около 10 000 часов.

Трансформатор (T1) обеспечивает обратную связь с транзисторами и генерирует базовый ток, необходимый для надежного переключения. Цикл инициируется DIAC — двунаправленным устройством, которое имеет резкий переход из непроводящего состояния в проводящее.Поскольку он имеет характеристики, очень похожие на устройство с отрицательным импедансом, его часто используют в диммерах, люминесцентных балластах и ​​даже в стробоскопах. Для получения дополнительной информации щелкните здесь, чтобы перейти к руководству по DIAC.

Обратите внимание, что схемы, показанные выше, предназначены только для информации и не должны быть построены так, как показано. Для некоторых компонентов требуются очень специфические характеристики, трансформаторы и индукторы имеют решающее значение. В схемах нет ничего неправильного, им просто не хватает всей информации, необходимой для их построения.Речь идет о том, как эти вещи работают, а не о том, как их построить.


5 Коэффициент мощности Коэффициент мощности

не совсем понятен большинству энтузиастов электроники, и это вполне понятно, потому что он мало востребован в общих электронных схемах. Есть аспекты коэффициента мощности, которые даже не понимают многие инженеры, которым следует знать лучше. Когда создаются несинусоидальные формы волны тока, даже многие инженеры делают двойную попытку, потому что они не могут быть использованы для работы с электронными нагрузками.Я рассмотрю здесь оба случая, а также намереваюсь показать методы пассивной и активной коррекции коэффициента мощности. Хотя пассивный PFC (коррекция коэффициента мощности) привлекает своей простотой, на самом деле он оказывается более дорогим из-за необходимости в большой катушке индуктивности. Активный PFC кажется сложным (и это действительно так, если вам нужно его спроектировать), но однажды спроектированный использует относительно дешевые компоненты.

Самый простой случай — индуктивная нагрузка. Это относится ко многим электрическим машинам, включая двигатели, трансформаторы и (конечно) балласты люминесцентного освещения (магнитные типы).Когда двигатель или трансформатор полностью загружены, он проявляет себя как резистивная нагрузка и имеет отличный коэффициент мощности. При малых нагрузках эта же часть оказывается индуктивной, и это приводит к отставанию тока от напряжения. Если нагрузка работает в этом режиме большую часть своего срока службы, необходимо применить поправку, чтобы вернуть PF как можно ближе к единице.

Коэффициент мощности резистивной нагрузки равен , всегда единиц — это идеально. Каждый вольт и каждый ампер используются для выработки тепла.Распространенными примерами являются электрические обогреватели, тостеры, чайники и лампы накаливания. Не все нагрузки резистивные, поэтому давайте рассмотрим типичный пример (но упрощенный для простоты описания и понимания).

Электрическая машина обычно работает с половинной нагрузкой, но может потребоваться полная мощность при запуске или для того, чтобы выдерживать переходные нагрузки. Это может быть двигатель или трансформатор — две из наиболее распространенных используемых электрических машин (люминесцентная лампа с магнитным балластом немного сложнее).В каждом случае индуктивная и резистивная составляющие нагрузки будут равны (для половинной мощности), а формы сигналов напряжения, тока и мощности выглядят следующим образом …


Рисунок 7 — Электрическая машина на половинной мощности

Как и ожидалось, когда резистивная и индуктивная составляющие равны, наблюдается сдвиг фазы на 45 °, при этом ток отстает от напряжения (запаздывающий коэффициент мощности). Приложенное напряжение — 240 В, резистивная часть нагрузки — 120 Ом, индуктивное реактивное сопротивление — также 120 Ом, мощность — 240 Вт.Нам следует, чтобы потреблял 1 А от сети (240 В x 1 А = 240 Вт), но вместо этого потреблял 1,414 А. Дополнительный ток необходимо подавать, но он полностью расходуется впустую. Что ж, это не совсем так — его возвращают в сеть. Однако, если многие нагрузки делают то же самое, то оно просто рассеивается в виде тепла в трансформаторах, линиях электропередачи и генераторах электростанций. Очень мало реальных нагрузок являются емкостными, поэтому в схему добавляется конденсатор.

При сдвиге фаз 45 ° коэффициент мощности равен 0.707, и мы получаем 1,42 А от сети вместо 1 А. Чтобы восстановить ток так, чтобы он был в фазе с напряжением, нам нужно добавить в схему конденсатор. Конденсатор фактически противоположен катушке индуктивности и (сам по себе) будет создавать ведущий коэффициент мощности — ток будет предшествовать напряжению. Добавив в схему конденсатор нужного номинала, коэффициент мощности можно восстановить до единицы, что приведет к значительному снижению тока, потребляемого из сети. Для этого примера 13 мкФ почти идеальны, но даже 10 мкФ уменьшат фазовый сдвиг запаздывания до 14.2 °, и это увеличивает коэффициент мощности до 0,96 — обычно считается максимально близким к идеальному.

Весь процесс несколько нелогичен. То, что нагрузка может потреблять больше тока, чем должно быть, достаточно легко понять, но то, что повторное прохождение большего тока через конденсатор уменьшит сетевой ток, кажется, не имеет никакого смысла. Все дело в относительной фазе двух токов, и это действительно работает. В противном случае наша энергосистема оказалась бы в крайне тяжелом положении.


Рисунок 8 — Люминесцентный свет при нормальной работе

На несколько упрощенной диаграмме выше показаны кривые напряжения и тока люминесцентной лампы. Упрощение состоит в том, что симуляторы не включают в себя нелинейные нагрузки с отрицательным сопротивлением, но на основной принцип (и результирующие формы сигналов) это существенно не влияет. Как видите, форма сигнала тока немного искажена, и это влияет на форму сигнала после применения компенсации. Фактически, гармоники, генерируемые искажением, сдвинуты по фазе, поэтому окончательная форма волны тока выглядит как обрезанная синусоида.Однако после компенсации коэффициент мощности очень хороший, 0,98 — отличный результат.

Без компенсации потребляемый ток составляет 276,5 мА (что дает коэффициент мощности 0,57), а после компенсации он падает до 159,5 мА. Мощность в нагрузке (сама лампа) составляет 29,8 Вт, а резистивный компонент балласта (R1) рассеивает 7,8 Вт — это теряется в виде тепла. Все потраченное впустую тепло снижает общую эффективность, но это неизбежно, поскольку реальные компоненты имеют реальные потери.

Ситуация становится намного хуже, когда используется нелинейная (электронная) нагрузка.На рисунке 9 показаны эквивалентная схема и осциллограммы — ток протекает только на пике приложенного напряжения. Хотя этот ток находится в фазе с напряжением, коэффициент мощности ужасен, потому что форма волны тока не похожа на синусоиду. Резкие пики тока имеют сравнительно высокое среднеквадратичное значение, но мощность, подаваемая и передаваемая в нагрузку, намного меньше.


Рисунок 9 — Осциллограммы мощности электронной нагрузки

Скорректированный ток не показан по той простой причине, что для коррекции формы сигнала необходимы значительные дополнительные компоненты.В отличие от случая, когда ток нагрузки является синусоидальным (или близок к нему), простое добавление конденсатора не принесет ничего полезного. Пики тока таковы, что их можно удалить только с помощью фильтра, предназначенного для пропускания только частоты сети. Как показано, ток составляет 296 мА, но, как видно, пиковое значение составляет почти 2 А. Нагрузка рассеивает 28 Вт, но «полная мощность» (ВА) составляет 71,4 ВА. Это дает коэффициент мощности 0,39 — действительно очень плохо. Если вам интересно, куда пропала разница в 1 Вт между источником и нагрузкой, она теряется в диодах.

Добавив фильтр (пассивный PFC), состоящий из катушки индуктивности и пары конденсаторов, это можно улучшить, но требование относительно большой индуктивности значительно увеличивает вес и стоимость. Один Генри примерно настолько мал, насколько вы можете использовать для определения номинальной мощности нагрузки, и хотя большее значение будет работать лучше, оно также снова будет больше, а также с более высокими потерями. По этим причинам пассивная коррекция коэффициента мощности обычно не используется с импульсными источниками питания.


Рисунок 10 — Пассивная коррекция коэффициента мощности

За счет добавления катушки индуктивности и конденсатора, как показано на рисунке, коэффициент мощности значительно улучшается.Форма волны тока все еще не очень хорошая, но намного лучше, чем схема без коррекции вообще. Среднеквадратичный ток снижен с 296 мА до 136 мА, что дает 32,6 ВА. Мощность нагрузки составляет 29 Вт, поэтому коэффициент мощности теперь составляет 0,88, что намного более достойно. Как показано на рисунке 9, электроника считается практически без потерь. Излишне говорить, что это не так, но речь идет скорее о PFC, чем о потерях в цепи.

Катушка индуктивности (L1) представляет собой относительно большой компонент, и по этой причине он будет сравнительно дорогим.Для снижения стоимости и веса лучше использовать электронную схему коррекции коэффициента мощности, и она также будет более эффективной. Меньшие потери мощности означают меньше потерь тепла и более прохладную электронику.


Рисунок 11 — Схема активной коррекции коэффициента мощности

Схема, показанная здесь, почти идентична схеме на рисунке 5, но упрощена, чтобы ее было легче понять. Входящая сеть проходит через фильтр электромагнитных помех, состоящий из C1 и L1. Затем он переходит в мостовой выпрямитель, но вместо большого электролитического конденсатора нужен конденсатор 220 нФ (C2).Выходной сигнал является пульсирующим постоянным током и изменяется от почти нуля до полного пикового напряжения (340 В для источника питания 240 В RMS). Затем он передается на очень умный повышающий преобразователь режима переключения — L2, Q1 и D5. Это увеличивает любое мгновенное напряжение на его входе до пикового напряжения — в этом случае моделируемый преобразователь стабилизируется на уровне 446 В (несколько выше, чем обычно используется).

Время включения и выключения тщательно контролируется для поддержания тока, который пропорционален форме волны входящего переменного тока, поэтому рабочий цикл (коэффициент включения-выключения) постоянно изменяется для поддержания правильного повышенного напряжения и пропорционального тока.D6 включен для обеспечения быстрой зарядки крышки основного фильтра (C3) от сети, а также обеспечивает подзарядку крышки. Это позволяет упростить схему управления.

Выходное напряжение повышающего преобразователя (обычно) регулируется, но регулирование не обязательно должно быть прекрасным, что опять же в некоторой степени упрощает схему. В схеме, показанной на рисунке 5, вы видите, что катушка индуктивности повышающего преобразователя (1,58 мГн) имеет вторичную обмотку. Это используется, чтобы сообщить IC контроллера, когда был достигнут правильный ток.В упрощенной схеме, показанной на рисунке 11, это не используется — период переключения фиксирован (схема была смоделирована, чтобы я мог получить форму тока, показанную ниже). Хотя эта упрощенная версия не так хороша, как «настоящая», она работает довольно хорошо — по крайней мере, в симуляторе.


Рисунок 12 — Формы сигналов активной коррекции коэффициента мощности

Как видите, форма сигнала тока довольно искажена, но измеренные характеристики симулятора впечатляют, несмотря на его относительную простоту.При 60 Вт в нагрузке (балласт и люминесцентная лампа) фактическая мощность сети составляет 61 Вт (потери в диодах, как и раньше), а при сетевом токе 266 мА он потребляет 64 ВА. Таким образом, коэффициент мощности составляет 0,94 — действительно очень удовлетворительный результат. Это значительно лучше, чем схема пассивной коррекции коэффициента мощности, и этого следовало ожидать. Весь анализ, который я видел, показывает, что активная схема коррекции коэффициента мощности превосходит пассивную схему как с точки зрения общей эффективности, так и коэффициента мощности. Катушки индуктивности имеют небольшие размеры (электрически и физически), а потери будут намного ниже, чем в любой пассивной цепи PFC.

Если вам интересно, мощность лампы в два раза больше, чем в двух предыдущих примерах, из-за того, что повышающий преобразователь имеет более высокое выходное напряжение, чем желаемое. Мне очень не хотелось тратить много времени на попытки подобрать уровни мощности, а моя упрощенная версия не регулируется. Успешно запустить симуляцию импульсного преобразователя было непросто, а симуляция требует много времени из-за высокочастотного переключения.

Сейчас довольно стандартно, что искажение формы волны обозначается как THD (полное гармоническое искажение), которое в случае активной схемы PFC равно 11.7%. Делайте из этого то, что хотите.


6 Температура

Для правильной работы всех ртутных люминесцентных ламп очень важна температура. Есть относительно узкая полоса над и под которой уменьшается дуга, что приводит к более низкому, чем ожидалось, светоотдаче. Когда трубка холодная, в ней остается меньше паров ртути, поэтому дуга не может достичь полной силы, потому что не хватает молекул ртути для поддержания разряда на желаемом уровне.

Когда температура слишком высока, давление пара увеличивается, увеличивая эффективное сопротивление дуги и снова уменьшая ток разряда. Для большинства компактных ламп (а также, вероятно, большинства стандартных люминесцентных ламп) температура трубки должна быть около 40 ° C для максимальной светоотдачи. При 0 ° C светоотдача составляет всего 40% — действительно очень тусклая лампа. Более высокие температуры не столь сильны, но слишком горячая лампа все равно будет сильно разряжена.


Рисунок 13 — Светоотдача в зависимости отТемпература

Когда температура приближается к -38,83 ° C, световой поток полностью прекращается. Это температура, при которой ртуть замерзает, поэтому пары ртути не могут поддерживать дугу и излучать УФ-излучение. Кроме того, при понижении температуры напряжение, необходимое для зажигания дуги, увеличивается, и при 0 ° C лампе для зажигания потребуется примерно на 40% больше напряжения по сравнению с напряжением зажигания при нормальной температуре окружающей среды.

Во многих частях мира 0 ° C (или ниже) — это нормальная температура окружающей среды в течение многих месяцев в году, поэтому лампу будет труднее запустить и она будет иметь низкую мощность, пока лампа не нагреется немного. .В таком климате трубку следует закрывать, чтобы защитить ее от ветра, который может значительно снизить температуру и светоотдачу.

903% 903% Светлый .Температура окружающей среды
* Примечание — закрытый светильник обеспечивает повышение температуры на + 10 ° C по сравнению с окружающей средой.

Как и все материалы по этой теме, существуют различия в способе подачи материала, и разные типы трубок могут существенно отличаться друг от друга. Цифры в основном согласуются с приведенным выше графиком, но небольшое примечание предполагает, что указанные температуры находятся в состоянии теплового равновесия. Для стабилизации может потребоваться некоторое время, поэтому исходная светоотдача при первом включении лампы будет одинаковой для открытых и закрытых светильников.Поскольку объем светильника по отношению к лампе не указан, будут большие отклонения, если размер корпуса больше или меньше (неустановленных) значений, используемых в таблице.


Ссылки
  1. Электронный балласт для люминесцентных ламп, Учебный модуль для студентов — Цзинхай Чжоу, Политехнический институт Вирджинии и Государственный университет
  2. ICB1FL02G Интеллектуальная микросхема управления балластом для балластов люминесцентных ламп, техническое описание, версия 1.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Весь товар подлежит гарантии и сертифицирован!Все права защищены .RU
Относительная светоотдача (RLO) [3]
Окружающая температура Открытое приспособление Закрытое приспособление *
-10 ° C
0 ° C 50% 80%
10 ° C 80% 100%
25 ° C 100% Выход 98%