Ветряная электростанция своими руками: Ветряная электростанция своими руками: особенности устройства

Содержание

Ветряная электростанция своими руками: особенности устройства

Делаем ветроэлектростанцию своими руками у себя в частном доме. Ознакомимся с уже существующими промышленными аналогами на рынке и с работами народных умельцев.

Человечество на протяжении всего своего развития не перестает искать дешевые возобновляемые источники энергии, которые могли бы решить многие проблемы энергообеспечения. Одним из таких источников является энергия ветра, для преобразования которой в электрическую энергию, разработаны ветровые энергетические установки (ВЭУ), или, как их чаще называют, ветряные электростанции.

Любому человеку, особенно имеющему частный или загородный дом, хотелось бы иметь свой ветрогенератор, обеспечивающий жилье недорогой электрической энергией. Препятствием этому служит высокая стоимость промышленных образцов ВЭУ и, соответственно, слишком большой срок окупаемости для отдельно взятого владельца жилья, делающий его приобретение невыгодным. Одним из выходов может служить изготовление ветряной электростанции своими руками, позволяющее не только снизить общие затраты на ее приобретение, но и распределить эти затраты на некоторый срок, так как работа осуществляется в течение довольно длительного времени.

Для того чтобы сделать ветряную электростанцию, необходимо определить, позволяют ли погодные условия использовать ветровую энергию в качестве постоянного источника энергии. Ведь, если ветер для вашей местности редкость, вряд ли стоит начинать строительство самодельной ветряной электростанции. Если же с ветром все обстоит благополучно, желательно узнать общие климатические характеристики и, в частности, скорость ветра, с распределением ее по времени. Знание скорости ветра позволит правильно выбрать и сделать своими руками конструкцию ветряной электростанции.

к содержанию ↑

Виды

Ветроэлектростанция своими руками классифицируется по расположению оси вращения и бывают:

  • с горизонтальным расположением;
  • с вертикальным расположением.

Установки с горизонтальным расположением оси называются установками пропеллерного типа и имеют самое широкое распространение в связи с высоким коэффициентом полезного действия. Недостатком этих установок является их более сложная конструкция, затрудняющая самодельные варианты изготовления, необходимость применения механизма следования направлению ветра и большая зависимость работы от скорости ветра — как правило, при малых скоростях эти установки не работают.

Более просты, неприхотливы и мало зависимы от скорости и направления ветра установки с вертикальным расположением рабочего вала — ортогональные с ротором Дарье и карусельные с ротором Савониуса. Недостатком их является весьма малый КПД, составляющий порядка 15%.

Недостатком обеих типов самодельной ветряной электростанции является низкое качество вырабатываемой электроэнергии, требующее дорогостоящих вариантов компенсации этого качества — стабилизирующих устройств, аккумуляторов, электрических преобразователей. В чистом виде электроэнергия пригодна только для использования в активной бытовой нагрузке — лампах накаливания и простых нагревательных устройствах. Для питания бытовой техники электроэнергия такого качества не пригодна.

к содержанию ↑

Конструктивные элементы

Конструктивно, независимо от расположения оси, самодельная полноценная ветряная электростанция должна состоять из следующих элементов:

  • ветряной двигатель;
  • устройство для ориентирования ветряного двигателя по направлению ветра;
  • редуктор или мультипликатор для передачи вращения от ветряного двигателя к генератору;
  • генератор постоянного тока;
  • зарядное устройство;
  • аккумуляторная батарея для накопления электроэнергии;
  • инвертор для преобразования постоянного тока в переменный.
к содержанию ↑

Особенности выбора источника тока

Одним из сложных элементов ветряной электростанции является генератор. Наиболее подходящим для изготовления своими руками является электродвигатель постоянного тока с рабочим напряжением 60-100 вольт. Этот вариант не требует переделки и способен работать с аппаратурой для зарядки автомобильной батареи.

Применение автомобильного источника напряжения затруднено тем, что его номинальная частота вращения составляет порядка 1800-2500 об/мин, а такую частоту вращения при прямом соединении не сможет обеспечить ни одна конструкция ветряного двигателя. В этом случае в составе установки необходимо предусмотреть редуктор или мультипликатор подходящей конструкции для увеличения частоты вращения в необходимых размерах. Скорее всего, этот параметр придется подбирать экспериментальным путем.

Возможным вариантом может стать реконструированный асинхронный двигатель с использованием неодимовых магнитов, но этот способ требует сложных расчетов и токарных работ, что зачастую не приемлет самодельная работа. Имеется вариант с межфазным подключением к обмоткам электродвигателя конденсаторов, емкость которых рассчитывается в зависимости от его мощности.

к содержанию ↑

Изготовление

Учитывая то, что эффективность электростанции с горизонтальной осью имеет лучшие показатели эффективности, а бесперебойность подачи электроэнергии предполагается обеспечивать с помощью накопления энергии в аккумуляторной батарее, предпочтительнее для изготовления своими руками является именно такой вид ВЭУ, который мы и рассмотрим в рамках данной статьи.

Для того что бы сделать такую электростанцию своими руками понадобится следующий инструмент:

  • сварочный аппарат электродуговой сварки;
  • набор гаечных ключей;
  • набор сверл по металлу;
  • электродрель;
  • ножовка по металлу или УШМ с отрезным диском;
  • болты диаметром 6 мм с гайками для крепления лопастей к шкиву и алюминиевого листа к квадратной трубе.

Для изготовления ветряной электростанции своими руками потребуются следующие материалы:

  • пластиковая труба 150 мм длиной 600 мм;
  • лист алюминия размером 300х300 мм и толщиной 2,0 — 2,5 мм;
  • металлическая квадратная труба 80х40 мм и длиной 1,0 м;
  • труба диаметром 25 мм и длиной 300 мм;
  • труба диаметром 32 мм и длиной 4000-6000 мм;
  • медный провод длиной, достаточной для соединения электродвигателя, находящегося на мачте длиной 6 м, и нагрузки, которую будет питать этот источник тока;
  • электродвигатель постоянного тока 500 об/мин;
  • шкив для двигателя диаметром 120-150 мм;
  • аккумуляторная батарея 12 вольт;
  • автомобильное зарядное реле аккумулятора;
  • инвертор 12/220 вольт.

Процесс изготовления своими руками производится в следующем порядке:

  • Пластиковая труба 150х600 мм, для изготовления лопастей пропеллера, разрезается вдоль на четыре части и каждая часть по диагонали разрезается так, что бы одна сторона осталась прежней ширины, а вторая получилась размером 20-25 мм. В качестве лопастей будут использоваться три части трубы;
  • Полученные лопасти крепятся к шкиву с шагом 1200 с помощью болтов 6 мм подходящей длины, и шкив крепится на валу электродвигателя;
  • К более широкой стороне квадратной трубы на расстоянии 1/3 от края перпендикулярно приваривается труба диаметром 25 мм;
  • На короткое плечо квадратной трубы крепится электродвигатель, а на длинное устанавливается алюминиевый лист, служащий для поворота всей конструкции по направлению ветра по типу флюгера;
  • Полученная конструкция вставляется трубой 25 мм в один конец трубы 32 мм. Это сочленение будет служить поворотным механизмом ветряной электростанции для следования ее по направлению ветра;
  • К электродвигателю подключается кабель, труба диаметром 32 мм устанавливается в качестве мачты и прочно закрепляется в грунте и с помощью растяжек;
  • Электрическая часть ВЭУ собирается в отдельном блоке таким образом, что бы энергия от генератора через реле зарядки подключалось к аккумуляторной батарее, а от батареи через инвертор запитывались необходимые потребители. Составные части электрооборудования можно сделать самостоятельно или приобрести.

Далее, в процессе работы установки, возможно, придется сделать другими размеры и конфигурацию лопастей, передаточное отношение между ветряным двигателем и генератором — каждый ветрогенератор, изготовленный своими руками, индивидуален в силу использования различных компонентов и условий ветрообразования.

Первоначально ветряную электростанцию рекомендуют изготавливать небольшой мощности, на которой можно отработать полученную информацию не вкладывая большое количество средств.




Оцените статью:

Загрузка…

Поделитесь с друзьями:

Ветряная электростанция своими руками » Самоделки Своими Руками – Сделай Сам (чертежи, руководства)

Полезные приспособления /19-апр,2011,11;13 / 98923
Дачные участки, как правило, выдавались не в самых лучших местах. И садоводы вместе с освоением целины мучились от отсутствия воды, дорог, света. А что, если хотя бы одну проблему — электрическую — попытаться решить самостоятельно, соорудив на участке ветряк?

Сам я пенсионер, мне 73 года, раньше работал в колхозе инженером. Сейчас, благодаря занятиям на даче, чувствую себя здоровее и в ближайшее время болеть не намерен.

Так как заставить ветер вырабатывать электроэнергию?
Мой ветряк не нужно поднимать на мачту, он может работать даже на земле. Вместо лопастей предлагаю полые цилиндры типа ведра, разрезанного пополам.

Эти цилиндры можно сделать из фанеры, листовой стали, дюраля, только стараться, чтобы ротор был легким. В качестве генератора можно использовать электродвигатель постоянного тока на 12 Вт, IS А, 1500 об/мин., или генератор от автомобиля. Мощность большинства таких генераторов около 500 Вт. Например, Г-250 от «Волги» или «Москвича» обеспечивает выходную мощность в 12 Вт при частоте вращения 2100 об/мин., ток 28 А.

Предлагаю электрическую схему ветряка для генератора от автомобиля ВАЗ, элементы которого сейчас легко и не слишком накладно приобрести.На автомобилях ВАЗ применяется двухступенчатый электромагнитный регулятор напряжения РР-380, который обеспечивает поддержание постоянного напряжения генератора. Реле РС-702 контрольной лампы сигнализирует о прекращении заряда батареи.

При нагрузке 12 Вт и силе тока до 12 А можно подключить приборы, рассчитанные на напряжение в 12 Вт, или преобразователь 12/220 Вт (переменный ток).
Если кого-то заинтересует этот материал подробнее, т.е. размеры, преобразователь с 12 Вт постоянного в 220 Вт переменного тока и т.д., Я отвечу.

П. М. Ядловский
г. Чортков, Тернопольская обл.


Чертежи и схемы электростанции


Как сделать ветрогенератор своими руками для частного дома? | Альтернатива24

Ветрогенератор своими руками

В сфере альтернативной энергетики особое место занимает тема изготовления ветрогенератора для дома своими руками. Этому есть несколько причин. Во-первых, самодельный ветряк обходится заметно дешевле, чем солнечная электростанция такой же мощности. Во-вторых, в отличие от солнечной, энергия ветра может работать на вас и ночью, и в пасмурную погоду, и в снегопад. В-третьих, для установки ветряка не нужно много места.

Возможно ли сделать ветряк своими руками?

На этот вопрос получить наглядный ответ очень просто. Достаточно всего нескольких минут времени, чтобы своими глазами увидеть в Сети сотни, или даже тысячи, вполне работоспособных ветрогенераторов, сконструированных умельцами буквально из подручных материалов. Большинство из них успешно преобразовывают энергию ветра в электрическую, которая используется для самых разных бытовых нужд.

Эффективность, мощность, надежность и сложность реализованных конструкций – это уже другой вопрос. Далеко не все изготовленные своими руками ветрогенераторы вырабатывают достаточно электричества, чтобы покрыть все бытовые нужды. Некоторые из них слишком маломощные. Другие – не очень надежные. Попадаются и слишком мудреные, которые своими руками с наскоку сможет сделать далеко не каждый.

Сделать самому или купить?

В качестве альтернативы, дабы не делать ветрогенератор для частного дома своими руками, его можно купить в готовом к эксплуатации виде. Однако здесь есть одно препятствие, которое многих и останавливает на пути к получению «бесплатной» энергии. Это, конечно же, цена готовых предложений.

Так, в среднем, добротного качества ветрогенератор с потенциальной мощностью около 500 Вт стоит порядка 1000 долларов. И в комплекте будет только ветряк с флюгером и генератором на борту. Остальные же компоненты полноценной электростанции (полный перечень описан ниже), функционирующей за счет энергии ветра, производитель за такие деньги вам не продаст.

Если изготовить домашний ветрогенератор своими руками, то обойдется он не на порядок, а в разы дешевле. Да, он будет не такой красивый, как заводской. Да, возможно, не удастся достичь такого же КПД. Но главной цели – преобразование энергии ветра в электроэнергию для бытовых нужд – достичь с его помощью можно легко.

Более того, самодельный ветрогенератор имеет в разы больше шансов сполна окупиться уже в ближайшее время эксплуатации. Тогда как покупной заводской вариант, как правило, быстрее изнашивается, чем успевает вернуть в кошелек потраченные доллары за счет «халявного» электричества.

Устройство простейшей домашней ветряной электростанции

Перед тем, как сделать ветрогенератор своими руками, следует понимать, что для полноценного использования энергии ветра в своих целях одного этого устройства недостаточно. Ключевой в данном вопросе является проблема, связанная с непостоянством и нестабильностью ветра. Сейчас он дует, что называется, со всей силы, через час – притих, еще позже – установился абсолютный штиль. По этой причине генератор будет вырабатывать, соответственно, чрезмерно высокое напряжение, потом заниженное, а при затишье – вообще ничего генерировать не будет.

А теперь представьте, как будет работать, например, телевизор, если его напрямую подключить к такому ветряку. Он либо сгорит от перенапряжения, либо не будет работать из-за его недостатка. Именно поэтому, для работы полноценной ветряной электростанции, пусть даже и в упрощенных домашних условиях, понадобятся четыре базовых компонента:

1. Ветряк – состоит из лопастей, флюгера и генератора, вырабатывает электроэнергию с постоянно меняющимися параметрами.

2. Аккумулятор – нужен для накопления выработанного электричества, когда ветряк генерирует его в избытке, и для питания потребителей.

3. Контроллер – «выравнивает» поступающее с ветряка напряжение, управляет процессами заряда и разряда АКБ.

4. Инвертор – преобразует 12 вольт аккумулятора в необходимые для бытовых приборов 220 вольт.

В таком исполнении система будет работать по следующему принципу. Когда есть ветер, ветряк преобразует его энергию в электрическую, она стабилизируется контроллером и накапливается в АКБ. Когда включаются потребители (освещение, телевизор, холодильник) аккумулятор отдает накопленную энергию, которая за счет инвертора приобретает нужные параметры, и поступает на их питание.

В некоторых системах последний компонент не используется. Без инвертора вполне реально обойтись, если подключать к аккумулятору 12-вольтовые приборы. Сегодня есть практически все бытовые приборы – от освещения до холодильников – работающие от 12 вольт.

Конфигурация ветряка

Хотя бы вкратце стоит затронуть тему конфигурации самодельного ветряка. Здесь есть два основных конкурента:

1. Горизонтальный ветряк.

2. Вертикальный ветряк.

Горизонтальный ветряк – состоит из расположенной горизонтально оси, на которой устанавливаются лопасти, генератор и флюгер. Такая конфигурация имеет ряд преимуществ. Особенно это касается эффективности и мощности. По этим параметрам горизонтальный ветряк значительно превосходит вертикальные.

Вертикальный ветряк – состоит из вертикальной оси, на которой смонтирована турбина и генератор. По сравнению с классикой вертикальный ветрогенератор своими руками изготовить на порядок проще. Во-первых, ему не нужен флюгер, так как турбина будет вращаться независимо от направления ветра. Во-вторых, не нужен токосъемник, поскольку генератор всегда находится в одном и том же положении. Лопастные же ветряки постоянно вращаются вокруг своей оси из-за переменчивого направления ветра, что делает невозможным передачу выработанной электроэнергии через обычные провода.

Виды генераторов

Генератор – это основной узел любого ветряка. Он, собственно, и преобразует энергию ветра в электрическую. Видов этого устройства бывает несколько. Рассмотрим только основные различия и особенности.

В первую очередь, генераторы могут выдавать постоянный ток, и переменный. Постоянный ток выгоден тем, что его не надо выпрямлять перед подачей на аккумулятор. Переменный же ток придется не только стабилизировать, но и преобразовывать в постоянный. Какой вариант лучше выбрать? Очень просто. Генераторы постоянного тока упрощают использование выработанного электричества, а модели переменного тока – на порядок эффективнее.

Далее генераторы различаются по выдаваемому напряжению. От этого параметра зависит конфигурация оборудования, которое будет стабилизировать подаваемое на АКБ напряжение.

Следующий важный параметр – мощность. Чем мощнее генератор, тем больше потребителей он сможет обеспечить энергией. Одновременно с мощностью генератора увеличиваются размеры ветряка, в частности, его лопастей.

Какие нужны комплектующие?

Для изготовления простейшего ветрогенератора своими руками в домашних условиях достаточно будет следующих комплектующих:

1. Канализационная труба диаметром 150-200 мм для изготовления лопастей.

2. Генератор – проще всего взять готовый автомобильный с регулятором-выпрямителем и реле, что позволит напрямую заряжать с его помощью обычный 12-вольтовый аккумулятор (или несколько сразу, соединенных параллельно).

3. Токосъемник – можно купить готовый или изготовить самостоятельно.

4. Флюгер – нужен для ориентации лопастей по ветру.

5. Мачта – используется для подъема ветряка на необходимую высоту.

6. Основание – к нему крепится мачта.

Рассмотрим основные этапы сборки ветрогенератора своими руками из перечисленных комплектующих.

Сборка

Самостоятельную сборку лучше всего начинать с расчетов. Здесь проще всего отталкиваться от имеющегося генератора, точнее, от его мощности. В зависимости от этого высчитываются размеры лопастей. Все эти расчеты несложно провести в специальных программах, либо определить требуемые размеры по таблицам.

Лопасти

Простейшие лопасти для самодельного ветряка можно изготовить из канализационной трубы диаметром 150-200 мм. Рекомендуется для этих целей приобретать трубу оранжевого цвета. Такие изделия изготовлены из более прочного пластика, нежели бытовые серые.

Для домашнего ветрогенератора достаточно будет всего три лопасти. Как правило, все они изготавливаются из одной вышеописанной трубы. Для этого труба разрезается вдоль на три равных сегмента. После этого каждой заготовке по шаблону придается форма лопасти. На этом этапе важно зашлифовать (лучше – скруглить) все кромки лопастей, что положительно скажется на аэродинамических характеристиках, а также на прочности узла.

Готовые лопасти крепятся на ступице. Простейший ее вариант можно изготовить из куска фанеры толщиной около 10 мм. На такой ступице все лопасти следует закрепить при помощи болтов. Чтобы соединения не раскрутились от вибраций, используются специальные шайбы-гроверы.

Флюгер

Основная роль флюгера заключается в ориентации лопастей в зависимости от направления ветра. Одновременно эта часть ветряка является несущей. Помимо направляющей пластины на флюгере крепится генератор и лопастной узел.

Для изготовления флюгера маломощного ветрогенератора можно использовать древесину. Для больших ветряков лучше применить алюминиевые трубки, уголки или профили. Они прочнее и легче древесины. Вполне подойдет и стальной прокат.

На флюгере также крепится токосъемный механизм, через который независимо от вращения ветряка вокруг своей оси будет передаваться выработанная генератором электроэнергия.

Основание и мачта

Мачта служит для установки ветряка на необходимой высоте. Как правило, для бытовых нужд вполне достаточно поднять ветрогенератор на высоту около 5 метров. Для изготовления мачты понадобится прочная стальная труба диаметром, как минимум 40 мм. При высоте больше 5 метров следует также позаботиться о дополнительном креплении мачты. Как правило, для этого используются либо растяжки, либо точки крепления к фронтону постройки.

Основание служит для установки мачты с ветряком. Может быть стационарным и шарнирным. Последний вариант выгоден тем, что позволяет в любой момент без особых усилий «уложить» ветряк на землю. Такая возможность особенно пригождается в период бури, либо во время сервисного обслуживания и ремонта ветряка.

Этапы установки ветрогенератора

Монтаж ветрогенератора своими руками, как правило, выполняется в следующей последовательности:

1. Определите наилучшее месторасположение для ветрогенератора.

2. Закрепите на флюгере генератор и токосъемник.

3. Установите и закрепите на оси генератора лопастной узел.

4. Закрепите ветряк на мачте.

5. Подсоедините кабель к токосъемнику и закрепите его на мачте.

6. Установите мачту на основании.

7. Закрепите ветрогенератор при помощи растяжек или дополнительных точек опоры.

После установки ветрогенератора можно приступать к его подключению к системе, устройство которой описано выше.

Советы и рекомендации

При изготовлении и установке ветрогенератора своими руками рекомендуется учесть следующие моменты:

· Не устанавливайте ветряк в оврагах и впадинах.

· Генератор и токосъемный узел обязательно защитите от попадания влаги.

· Не используйте ветрогенератор во время штормовой погоды.

· Для временной остановки ветряка можно использовать шарнирное основание, механизм автоматического складывания флюгера, либо же блокировку генератора нагрузкой (последнее используется в заводских изделиях).

· Не подключайте самодельный ветрогенератор к потребителям напрямую.

· Регулярно проводите технический осмотр механической и электрической частей ветрогенератора.

· Если ветряк устанавливается возле постройки, то его следует поднять на высоту не менее трех метров от вершины крыши.

· Не рекомендуется жестко крепить ветрогенератор к конструкциям жилого дома, так как шум и вибрация может создавать определенный дискомфорт.

· По возможности используйте для накопления сгенерированной ветряком электроэнергии больше аккумуляторов.

· По максимуму используйте накопленную энергию без преобразований, чтобы уменьшить потери на инверторе.

Как видно из вышеописанного, простейший ветряк для дома своими руками изготовить не так уж и сложно. Однако даже маломощная ветряная электростанция позволит заметно уменьшить счета за электроэнергию, либо выйти из ситуации, когда участок вообще нет возможности запитать от общей сети.

Источник: https://eco-energetics.com/vetroenergetica/


Полезные видео

Ветрогенераторы для частного дома своими руками

Воздушные массы обладают неисчерпаемыми запасами энергии, которую человечество использовало еще в давние времена. В основном сила ветра обеспечивала движение судов под парусами и работу ветряных мельниц. После изобретения паровых двигателей данный вид энергии потерял свою актуальность. Лишь в современных условиях ветровая энергия вновь стала востребованной в качестве движущей силы, прикладываемой к электрическим генераторам. Иногда бывает просто невозможно подключиться к линии электропередачи. В таких ситуациях хозяева конструируют и изготавливают ветрогенератор для частного дома своими руками из подручных материалов.

Теория идеального ветряка

Данная теория разрабатывалась в разное время учеными и специалистами в области механики. Впервые она была разработана В.П. Ветчинкиным в 1914 году, а в качестве основы использовалась теория идеального гребного винта. В этих исследованиях был впервые выведен коэффициент использования ветряной энергии идеальным ветряком.

Работы в этой области были продолжены Н.Е. Жуковским, который вывел максимальное значение данного коэффициента, равное 0,593. В более поздних работах другого профессора – Сабинина Г.Х. уточненное значение коэффициента составило 0,687.

В соответствии с разработанными теориями, идеальное ветряное колесо должно обладать следующими параметрами:

  • Ось вращения колеса должна быть параллельна со скоростью ветрового потока.
  • Количество лопастей бесконечно большое, с очень малой шириной.
  • Нулевое значение профильного сопротивления крыльев при наличии постоянной циркуляции вдоль лопастей.
  • Вся сметаемая поверхность ветряка обладает постоянной потерянной скоростью воздушного потока на колесе.
  • Стремление угловой скорости к бесконечности.

Выбор ветроустановки

Выбирая модель ветрогенератор для частного дома следует учитывать необходимую мощность, обеспечивающую работу приборов и оборудования с учетом графика и периодичности включения. Она определяется путем ежемесячного учета потребляемой электроэнергии. Дополнительно значение мощности может определяться в соответствии с техническими характеристиками потребителей.

Следует учитывать и тот фактор, что питание всех электроприборов осуществляется не напрямую от ветрогенератора, а от инвертора и комплекта аккумуляторных батарей. Таким образом, генератор мощностью в 1 кВт способен обеспечить нормальное функционирование аккумуляторов, питающих четырехкиловаттный инвертор. В результате, бытовые приборы с аналогичной мощностью обеспечиваются электроэнергией в полном объеме. Большое значение имеет правильный выбор батарей. Особое внимание следует обратить на такие параметры, как емкость и ток зарядки.

При выборе конструкции ветряного двигателя учитываются следующие факторы:

  • Направление вращения ветряного колеса – вертикальное или горизонтальное.
  • Форма лопаток для вентилятора может быть в виде паруса, с прямой или криволинейной поверхностью. В некоторых случаях используются комбинированные варианты.
  • Материал для лопаток и технология их изготовления.
  • Размещение вентиляторных лопастей с различным наклоном, относительно потока проходящего воздуха.
  • Количество лопастей, включенных в вентилятор.
  • Необходимая мощность, передаваемая от ветряного двигателя к генератору.

Кроме того, необходимо учесть среднегодовую скорость ветра для конкретной местности, уточненную в метеослужбе. Уточнять направление ветра не требуется, поскольку современные конструкции ветрогенераторов самостоятельно поворачиваются в другую сторону.

Для большинства местностей Российской Федерации наиболее оптимальным вариантом будет горизонтальная ориентация оси вращения, поверхность лопаток криволинейная вогнутая, которую воздушный поток обтекает под острым углом. На величину мощности, забираемой от ветра, влияет площадь лопасти. Для обычного дома вполне достаточно площади 1,25 м2.

Число оборотов ветряка зависит от количества лопастей. Быстрее всего вращаются ветрогенераторы с одной лопастью. В таких конструкциях для уравновешивания используется противовес. Следует учитывать и тот факт, что при низкой скорости ветра, ниже 3 м/с, ветряные установки становятся неспособными забирать энергию. Для того чтобы агрегат воспринимал слабый ветер, площадь его лопастей должна быть увеличена как минимум до 2 м2.

Расчет ветрогенератора

Для того чтобы правильно рассчитать номинальную мощность ветряного генератора, необходимо соблюдать определенные правила.

Перед выбором ветрогенератора необходимо определить скорость и направление ветра, наиболее характерные в месте предполагаемого монтажа. Следует помнить, что вращение лопастей начинается при минимальной скорости ветра 2 м/с. Максимального КПД удается достичь, когда этот показатель достигает значения от 9 до 12 м/с. То есть, для того чтобы обеспечить электричеством небольшой загородный дом, потребуется генератор с минимальной мощностью 1 кВт/ч и ветер со скоростью не менее 8 м/с.

Скорость ветра и диаметр винта оказывают непосредственное влияние на мощность, вырабатываемую ветряной электроустановкой. Точно рассчитать эксплуатационные характеристики той или иной модели возможно с помощью следующих формул:

  1. Расчеты в соответствии с площадью вращения выполняются следующим образом: P = 0,6 х S х V3, где S – площадь, перпендикулярная направлению ветра (м2), V – скорость ветра (м/с), Р – мощность генераторной установки (кВт).
  2. Для расчетов электроустановки по диаметру винта применяется формула: Р = D2 х V3/7000, в которой D является диаметром винта (м), V – скорость ветра (м/с), Р – мощность генератора (кВт).
  3. При более сложных вычислениях учитывается плотность воздушного потока. Для этих целей существует формула: P = ξ х π х R2 х 0,5 х V3 х ρ х ηред х ηген, где ξ является коэффициентом использования ветровой энергии (безмерная величина), π = 3,14, R – радиус ротора (м), V – скорость воздушного потока (м/с), ρ – плотность воздуха (кг/м3), ηред – КПД редуктора (%), ηген – КПД генератора (%).

Таким образом, электроэнергия, производимая ветрогенератором, возрастает количественно в кубическом соотношении с повышающейся скоростью ветрового потока. Например, при повышении скорости ветра в 2 раза, выработка ротором кинетической энергии возрастет в 8 раз.

При выборе места установки ветрогенератора необходимо отдавать предпочтение участкам без больших построек и высоких деревьев, которые создают преграду для ветра. Минимальное расстояние от жилых домов составляет от 25 до 30 метров, в противном случае шум во время работы будет создавать неудобства и дискомфорт. Ротор ветряка должен быть расположен на высоте, превышающей ближайшие постройки не менее чем на 3-5 м.

Если подключение загородного дома к общей сети не планируется, в этом случае можно воспользоваться вариантами комбинированных систем. Работа ветряной установки будет значительно эффективнее при использовании ее совместно с дизель-генератором или солнечной батареей.

Как сделать ветрогенератор своими руками

Независимо от типа и конструкции ветрогенератора, каждое устройство в качестве основы, оборудуется похожими элементами. Во всех моделях имеются генераторы, лопасти из различных материалов, подъемники, обеспечивающие нужный уровень установки, а также дополнительные аккумуляторы и система электронного управления. Наиболее простыми для изготовления считаются агрегаты роторного типа либо аксиальные конструкции с использованием магнитов.

Вариант 1. Роторная конструкция ветрогенератора.

В конструкции роторного ветряного генератора используется две, четыре или более лопастей. Подобные ветрогенераторы не в состоянии полностью обеспечить электроэнергией большие загородные дома. Они используются преимущественно в качестве вспомогательного источника электричества.

В зависимости от расчетной мощности ветряка, подбираются необходимые материалы и комплектующие:

  • Генератор с автомобиля на 12 вольт и автомобильный аккумулятор.
  • Регулятор напряжения, преобразующий переменный ток с 12 до 220 вольт.
  • Емкость с большими размерами. Лучше всего подойдет алюминиевое ведро или кастрюля из нержавеющей стали.
  • В качестве зарядного устройства можно воспользоваться реле, снятым с автомобиля.
  • Потребуется выключатель на 12 В, лампа заряда с контроллером, болты с гайками и шайбами, а также металлические хомуты с прорезиненными прокладками.
  • Трехжильный кабель с минимальным сечением 2,5 мм2 и обычный вольтметр, снятый с любого измерительного устройства.

В первую очередь выполняется подготовка ротора из имеющейся металлической емкости – кастрюли или ведра. Она размечается на четыре равные части, на концах линий проделываются отверстия, чтобы облегчить разделение на составные части. Затем емкость разрезается ножницами по металлу или болгаркой. Из получившихся заготовок вырезаются лопасти ротора. Все замеры должны тщательно проверяться на соответствие размерам, в противном случае конструкция будет работать неправильно.

Далее определяется сторона вращения шкива генератора. Как правило, он вращается по часовой стрелке, но лучше это проверить. После этого роторная часть соединяется с генератором. Во избежание дисбаланса в движении ротора, отверстия для креплений в обеих конструкциях должны располагаться симметрично.

Чтобы увеличить скорость вращения края лопастей следует немного выгнуть. С возрастанием угла изгиба, потоки воздуха будут более эффективно восприниматься роторной установкой. В качестве лопастей используются не только элементы разрезанной емкости, но и отдельные детали, соединяемые с металлической заготовкой, имеющей форму окружности.

После крепления емкости к генератору, всю полученную конструкцию нужно целиком установить на мачте с помощью металлических хомутов. Затем монтируется проводка и собирается замкнутая электрическая цепь. Каждый контакт должен включаться в собственный разъем. После подключения проводка крепится к мачте проволокой.

По окончании сборки осуществляется подключение инвертора, аккумулятора и нагрузки. Аккумулятор подключается кабелем с сечением 3 мм2, для всех остальных подключений вполне достаточно сечения 2 мм2. После этого ветрогенератор можно эксплуатировать.

Вариант 2. Аксиальная конструкция ветрогенератора с применением магнитов.

Аксиальные ветряки для дома представляют собой конструкцию, одним из основных элементов которой являются неодимовые магниты. По своим эксплуатационным качествам они значительно опережают обычные роторные агрегаты.

Ротор является основным элементом всей конструкции ветрогенератора. Для его изготовления лучше всего подойдет ступица автомобильного колеса в комплекте с тормозными дисками. Деталь, находившуюся в эксплуатации, следует подготовить – очистить от грязи и ржавчины, смазать подшипники.

Далее необходимо правильно распределить и закрепить магниты. Всего их понадобится 20 штук, размером 25 х 8 мм. Магнитное поле в них расположено по длине. Четные магниты будут полюсами, они располагаются по всей плоскости диска, с чередованием через один. Затем определяются плюсы и минусы. Один магнит поочередно касается других магнитов на диске. Если они притягиваются, значит полюс положительный.

При увеличенном количестве полюсов, необходимо соблюдать определенные правила. В однофазных генераторах число полюсов совпадает с количеством магнитов. В трехфазных генераторах соблюдается пропорция 4/3 между магнитами и полюсами, а также соотношение 2/3 между полюсами и катушками. Установка магнитов выполняется перпендикулярно окружности диска. Для их равномерного распределения используется бумажный шаблон. Вначале магниты закрепляются сильным клеем, а потом окончательно фиксируются эпоксидной смолой.

Если сравнивать однофазные и трехфазные генераторы, то эксплуатационные качества первых будут несколько хуже по сравнению со вторыми. Это связано с высокими амплитудными колебаниями в сети из-за нестабильной отдачи тока. Поэтому в однофазных устройствах возникает вибрация. В трехфазных конструкциях этот недостаток компенсируется нагрузками тока из одной фазы в другую. За счет этого в сети всегда обеспечивается постоянное значение мощности. Из-за вибрации срок эксплуатации однофазных систем значительно ниже, чем у трехфазных. Кроме того, у трехфазных моделей во время работы отсутствует шум.

Высота мачты составляет примерно 6-12 м. Она устанавливается в центр опалубки и заливается бетоном. Затем на мачту устанавливается готовая конструкция, на которую крепится винт. Крепление самой мачты осуществляется с помощью тросов.

Лопасти для ветрогенератора

Эффективность работы ветровых электроустановок во многом зависит от конструкции лопастей. Прежде всего, это их количество и размеры, а также материал, из которого будут изготовлены лопасти для ветрогенератора.

Факторы, влияющие на конструкцию лопастей:

  • Даже самый слабый ветер сможет привести в движение длинные лопасти. Однако слишком большая длина может привести к замедлению скорости вращения ветряного колеса.
  • Увеличение общего количества лопастей делает ветряное колесо более чутким. То есть, чем больше лопастей, тем лучше запускается вращение. Однако мощность и скорость будут снижаться, что делает подобное устройство непригодным для выработки электроэнергии.
  • Диаметр и скорость вращения ветряного колеса оказывает влияние на уровень шума, создаваемого устройством.

Количество лопастей должно сочетаться с местом установки всей конструкции. В наиболее оптимальных условиях правильно подобранные лопасти способны обеспечить максимальную отдачу ветрогенератора.

Рекомендации по ветрогенераторам

Существуют общие рекомендации, позволяющие максимально эффективно использовать ветрогенераторы.

Прежде всего, нужно заранее определить необходимую мощность и функциональность устройства. Чтобы правильно изготовить ветрогенератор, нужно изучить возможные конструкции, а также климатические условия, в которых он будут эксплуатироваться.

Кроме общей мощности рекомендуется определить значение выходной мощности, известной еще как пиковая нагрузка. Она представляет собой общее количество приборов и оборудования, которые будут включаться одновременно с работой ветрогенератора. При необходимости увеличить этот показатель, рекомендуется использовать сразу несколько инверторов.

Ветряной генератор своими руками 24в – 2500ватт

виды, применение, и описание как сделать ветряк своими руками (105 фото + видео)

Ветровая электростанция позволяет обеспечить дом электроэнергией практически на постоянной основе. Это предоставляет возможность обеспечить практически полную автономность и сэкономить на электроэнергии.

Краткое содержимое статьи:

Особенности ветровых электростанций

Устройство ветряных электростанций предполагает использование нескольких ветрогенераторов, объединенных в общую сеть. Это один из лучших источников альтернативной энергии. Такие системы отличаются невысоким КПД (порядка 30%), однако тем не менее, их достаточно для большинства бытовых потребностей.

Ветряки устанавливаются на большой высоте, чтобы обеспечить эффективный поток воздуха. Если вокруг находится много высоких зданий и деревьев, это отрицательно повлияет на эффективность.

Ветровые электростанции не должны устанавливаться вблизи жилых домов. В противном случае это создаст постоянный дискомфорт из-за шума. Их оптимально монтировать в пустынной местности, где не плотная застройка и нет лесов.

Виды ветряных электростанций

Ветряные электростанции для дома делятся на несколько видов. Наиболее распространенными являются модели, оснащенные горизонтальной осью вращения ротора. Это обеспечивает достаточный КПД и предотвращает возникновение ураганов. Такие ветряки, к тому же, отличаются доступность стоимостью.

Существуют модели, в которых роторная ось расположена вертикально. Их преимущество заключается в возможности работы даже при незначительном ветре любого направления. Они просты в установке, не сильно шумят.

Но, эффективность их несколько ниже из-за необходимости монтажа на незначительной высоте. Хотя именно ветряки с вертикальной осью лучше всего использовать в бытовых целях.

Также установки разнятся конструкцией ветряного колеса. Существуют модели пропеллерного типа, в которых лопасти установлены под прямым углом к валу.

Другой вариант – карусельные ветряки, предполагающие вертикальное расположение вала.

Наиболее распространенными являются пропеллерные модели за счет повышенной эффективности. На фото ветряных электростанций можно наглядно ознакомиться с различными моделями, особенностями и способами их установки.

Важные нюансы

Устанавливая ветряную электростанцию мощностью до 10 кВт, следует учитывать переменчивость ветра, сезонные особенности и местоположение.

Нужно измерить скорость ветра на разных высотах, определить оптимальное расположение. В идеале нужно проводить анализ на протяжении целого года, чтобы видеть полную картину.

Стоит воспользоваться метеорологическими сервисами, предоставляющими данные о ветрах в разных регионах.

Для расположения установки нужно достаточно свободного пространства. С повышением мощности растут и требования к свободной площади.

Подключение ветровой электростанции

Установка ветряной электростанции должна производиться на открытой местности, где свободно проходит ветер. После монтажа самой системы, следует произвести правильное подключение. Оно может быть сетевым или не сетевым.

Не сетевая методика предоставляет возможность полной или частичной эксплуатации автономной электроэнергии. При этом на объекте не нужна централизованная электросеть.

К ветряку подключается контроллер, от которого идут переключатели, далее накопительные аккумуляторы, и последним звеном являются непосредственно электроприборы.

Сетевая схема подключения востребована, если вырабатывается высокая мощность, или приборы потребляют мало электроэнергии.

В данном случае система подключается к централизованной электросети. При избытке выработки электричества появляется возможность его продажи согласно «зеленому тарифу».

В данном случае схема будет такой: после ветряка подключается контроллер, затем накопительные аккумуляторы, после которых предохранители с переключателями, затем инверторный прибор, автоматический ввод резерва, далее прибор учета, после которого электрическая сеть и уже непосредственно электроприборы.

Обслуживание

Ветровую электростанцию нужно регулярно обслуживать:

  • каждый месяц проверять прочность крепежей и соединений;
  • отслеживать состояние проводов;
  • подтягивать мачтовые тросы;
  • опускать оборудование на землю при штормовом предупреждении;
  • следить за состоянием аккумуляторов, производить их своевременное обслуживание и замену.

Расчет мощности

Мощность ветряных электростанций сильно отличается в зависимости от модели. На показатель также влияет местоположение. Поэтому предварительно нужно рассчитать необходимую мощность, чтобы подобрать оптимальную модель.

Сначала следует определить общее энергопотребление в среднем за месяц (учитывая все использующиеся электрические приборы и их мощностные показатели).

Для дома обычно достаточно ветровой электростанции мощностью 2-10 кВт. Рассчитывая мощность также следует учесть такие факторы:

  • размеры лопастей;
  • скорость ветра;
  • потери (нужно брать во внимание коэффициент применения ветровой энергии, равный 0,6, мощность пропеллера 40-50%, потери на генерирующем узле около 20% и на проводах порядка 20%).

Есть простая формула расчета мощности:

P=0,6 х π х R2 х V3, где:

  • P – мощность;
  • R – радиус ветряка;
  • V – среднегодовая скорость ветра.

К примеру, радиус составляет 3 м, а скорость ветра 6 м/с. Следовательно, имеем 0,6 х 3,14 х 9 х 216 = 3662,5. Соответственно мощность электростанции составляет 3,6 кВт.

Если этого достаточно для ваших потребностей, можно устанавливать такую станцию. В противном случае следует выбрать более мощный вариант.

Фото ветровых электростанций для дома

Вам понравилась статья? Поделитесь 😉  

Ветряк своими руками: о реальностях самостоятельного изготовления

Оглавление:
Ветряк своими руками: составные части и принцип изготовления
Ветряки для дома своими руками: устройство системы

По большому счету, самостоятельно изготовить ветряную электростанцию не так уж и сложно – по крайней мере, намного легче, чем соорудить гидроэлектростанцию. Система эта не сложная, и самая ее проблематичная часть – это сам генератор. Если найдете его, то все остальное, как говорится, пустяки. Сразу хочу отметить тот факт, что обойдется такая установка не дешево, и срок ее окупаемости довольно большой. Она выгодна только в том случае, когда поблизости вообще отсутствуют другие источники электроэнергии. Либо когда добытое электричество будет продаваться. Да, такое возможно тоже, но речь не об этом – в данной статье мы поговорим о том, как сделать ветряк своими руками. Вместе с сайтом stroisovety.org мы разберемся с его устройством, технологией изготовления и сборкой системы независимого энергоснабжения.

Как сделать ветряк своими руками фото

Ветряк своими руками: основные части и принцип изготовления

Как и говорилось выше, ветряной электрогенератор имеет довольно простую конструкцию, и решить вопрос, как сделать ветряк своими руками, не очень сложно. Если разбираться в его конструкции, то условно этот агрегат можно разделить на четыре основных узла.

  1. Генератор. Это сердце данной установки – именно оно ответственно за выработку электрической энергии. Как правило, в ветряных установках используются генераторы, способные вырабатывать либо 12, либо 24 вольта – сами понимаете, что таким током современную бытовую технику не порадуешь. Именно по этой причине ветряк является всего лишь частью независимой электростанции – о том, как поднять вырабатываемое им напряжение до привычного для наших электроприборов 220 вольт, мы поговорим отдельно. Делать генератор своими руками очень сложно – во всех отношениях его лучше приобрести в готовом виде. Сейчас это не проблема – с одинаковым успехом можно купить как специальный генератор, предназначенный для ветряных установок, так и найти ему альтернативу (например, автомобильный генератор). Проблема последнего заключается в малой мощности – больше чем на сто ватт рассчитывать здесь не приходится. В отличие от него, специальные генераторы могут вырабатывать более 500Вт энергии – а это означает возможность использовать добытую энергию, так сказать, напрямую, без ее аккумулирования в емкостях.

    Ветряк своими руками фото

  2. Лопасти. По большому счету, эту часть ветряка также можно приобрести, что будет лучше всего – дело в том, что именно от них зависит эффективность работы самого генератора. Правильно изготовленные лопасти способны вращать его даже при слабом ветре. Лопасти могут быть двух типов – вертикальные и горизонтальные. В зависимости от этого, и ветряки классифицируются на два типа – вертикальный ветрогенератор своими руками сделать несколько сложнее, но зато он считается более эффективным, а главное, компактным. Он не занимает большого количества места, и его достаточно просто смонтировать даже на крыше дома – именно такой генератор является оптимальным решением для дома, расположенного в густонаселенных городах. Лопасти для него изготовить очень сложно – их лучше купить. Связано это с балансировкой, от которой во многом зависит эффективность работы ветряка.
  3. Мачта. По сути, она нужно исключительно для горизонтального ветрогенератора, хотя и вертикальные также могут устанавливаться на нее. Если в первых установках она является неотъемлемой частью конструкции, то во втором необходимость в ее наличии появляется только при наземной установке. Этот элемент ветряка можно сделать и самостоятельно – по сути, это труба, установленная вертикально и оборудованная специальным креплением для генератора.

    Ветрогенераторы для дома своими руками фото

И четвертый элемент, который, по сути, является частью мачты, это подвижная платформа с флюгером – она отвечает за движение лопастей за ветром, который довольно часто меняет свое направление. Платформа является связующим звеном между генератором и мачтой и монтируется она на подвижном соединении, легкий ход которого обеспечивает подшипник. Сделать такое устройство своими руками также не сложно.

Получается так, что о полном изготовлении эффективной ветроэлектростанции не может быть и речи. В принципе, сделать ее можно, но эффективность работы такой установки остается под большим вопросом – в качестве эксперимента она подойдет, но вот для полноценного электроснабжения, увы, нет. Большую часть ветряка придется приобретать по частям, которые потом собирать в единое изделие. В общем, вопрос, как сделать ветрогенератор своими руками, решается только так – мало того, дополнительно придется решить вопрос передачи электроэнергии через подвижную платформу, что не так уж и просто. Опять же, в этом отношении намного привлекательнее выглядят ветрогенераторы с вертикальной осью вращения – здесь эта проблема снимается автоматически, что в значительной мере упрощает решение вопроса изготовления ветряка своими руками.

Ветряки для дома своими руками: устройство системы

Теперь, когда мы разобрались с устройством и возможностью решения вопроса изготовления ветрогенератора для дома своими руками, самое время рассмотреть и общий принцип построения независимой системы электроснабжения. Как вы понимаете, собрать генератор – это только полдела. Сама система потребует от вас дополнительных затрат на оборудование, изготовить которое самостоятельно практически невозможно, если не сказать, что совсем невозможно. В целом, если говорить об устройстве ветряной электростанции для дома, то ее можно разделить также на четыре части.

  1. Ветрогенератор, о котором мы уже говорили. Добавить здесь можно только то, что вырабатываемая им энергия напрямую не используется – все электричество собирается в аккумуляторы, откуда и идет дальнейший его разбор.

    Ветряки для дома своими руками фото

  2. Аккумуляторы. Именно они, наравне с мощность самого генератора, обеспечивают ваш дом необходимым количеством энергии – здесь важна их емкость, способность вмещать тот или иной объем электричества. Обычным автомобильным аккумулятором здесь не обойтись – речь идет о десятке аккумуляторов емкостью от 100 до 150А/часов. Их количество рассчитывается исходя из мощности ветряка, используемого в доме электрооборудования интенсивности его работы. В таких системах применяются, как правило, гелиевые аккумуляторы, которые лучше всех приспособлены к частым циклам зарядки и разрядки.
  3. Контроллер зарядки аккумуляторных батарей – это небольшое устройство, которое является связующим звеном между ветряком и батареями. Оно контролирует цикл зарядки последних и не дает им, так сказать, перезаряжаться.
  4. Есть еще один небольшой элемент, связывающий генератор и батареи – это так называемый диод Шоттки, в задачи которого входит не выпускать электричество назад в генератор во время его бездействия – в противном случае без этого диода ваш генератор может превратиться в электромотор, который очень быстро съест весь накопленный в аккумуляторах запас энергии.
  5. И самая главная часть, отвечающая за повышение напряжения до отметки в 220 вольт, это инвертор. Преобразователь, который повышает напряжение – они бывают разные, и далеко не все подходят для использования в независимых электростанциях. Здесь нужен инвертор с чистой синусоидой на выходе – модифицированная синусоида плохо сказывается на работе большинства современных электрических потребителей. Мало того, огромное значение имеет и мощность подобных устройств – она тоже рассчитывается исходя из суммарной мощности одновременно работающих потребителей. После генератора это самая дорогостоящая часть системы ветряной энергетической установки.

    Ветрогенераторы с вертикальной осью вращения своими руками фото

Кроме всего прочего, не стоит сбрасывать со счетов и провода, используемые в подобных системах – если после инвертора можно применять любые, то вот до него нужны специальные, изготовленные с учетом минимальных потерь при транспортировке электрического тока малого напряжения.

По большому счету, система не сложная, и имея в наличии все необходимые элементы, собрать ветряную электростанцию не так уж и сложно – важнее всего правильно рассчитать ее с учетом всех, даже, казалось бы, незначительных факторов. Особое внимание здесь нужно уделить количеству ветряных дней в году – может случиться так, что в тихих и спокойных регионах ветряк может оказаться практически бесполезным. Именно по этой причине системы независимого электроснабжения делают комбинированным способом, который предусматривает использование не только ветрогенератора, но и солнечных панелей. Они как бы дополняют друг друга, обеспечивая постоянную добычу электроэнергии из неиссякаемых природных ресурсов.

Мы описали, как можно сделать ветряк своими руками. В заключение остается добавить не так уж и много – в частности, рассказать о тонкостях изготовления лопастей. Вернее не о тонкостях, а о трудностях – обосновать утверждение того, что их лучше не изготавливать своими руками, а приобретать в готовом виде или заказывать их изготовление на заводе. Дело в том, что есть такие понятия, как смещение оси и балансировка – первое вызывает биение, а второе неравномерное вращение. И то и другое приводит к замедлению вращения генератора, что само по себе сказывается на эффективности работы установки в целом. Проще говоря, вместо положенных 500Вт вы будете получать 250Вт энергии в час – вместо 18В тока – 14вольт, что, опять таки, скажется на темпах зарядки аккумуляторов.

Автор статьи Александр Куликов

Ветряная электростанция своими руками — Студопедия

ЭНЕРГИЯ ВЕТРА СВОИМИ РУКАМИ.

Ветряная электростанция своими руками

«Пробовали вы запрячь ветер, чтобы заставить его работать на себя! Ведь энергия ветра — одна из самых дешевых и легкодоступных! Я не предлагаю строить ветряные мельницы, как это делали в старину, или сложный современный ветродвигатель. А вот построить ветроустановку для выработки электроэнергии, пусть небольшую, маломощную, думаю, сможет каждая семья, живущая в сельской местности, каждая школа.

Энергии, выработанной ветроустановкой, хватит, чтобы включить насос для поливки огорода или сада, чтобы осветить дом или класс. И если хотя бы в каждом пятом доме будет работать своя бесплатная мини — ветроэлектростанция, представляете, сколько сэкономленных киловатт-часов лягут в «энергетическую копилку» нашей страны!»

Вместе с папой Сережа собирается этим летом построить около дома такую ветроэлектростанцию. В письме он прислал эскизы своей будущей установки. Мы показали их инженеру Вячеславу Николаевичу Шумееву, он внимательно изучил эскизы, доработал и теперь предлагает их на суд читателей.


Сережа Курнев использовал известную еще в давние времена схему ветроустановки с самовращающимся барабаном.

Устройство представляет собой две половинки полого цилиндра, которые после его разрезки раздвигались в стороны от общей оси (см. рис. 1А). Образовавшееся тело обладало ярко выраженной аэродинамической несимметричностью. Набегающий поперек его оси поток воздуха как бы соскальзывал с выпуклой стороны одного полуцилиндра. Зато другой, обращенный к ветру своеобразным карманом, оказывал значительное сопротивление. Барабан поворачивался, полуцилиндры менялись местами всё быстрее и быстрее, и вертушка таким образом быстро раскручивалась.

Вот этот принцип, возможно и не зная о нем, и взял за основу своей будущей ветроэлектростанции Сережа Курнев.

Подобная схема выгодно отличается от ветроустановки с пропеллерной вертушкой. Во-первых, она не требует при изготовлении большой точности и дает широкий выбор применяемых материалов. Во-вторых, она компактна.

Судите сами. Мощность генератора, приводимого в действие барабаном диаметром всего около метра, будет такой же, как при использовании трехлопастного пропеллера диаметром 2,5 м! И если пропеллерную вертушку нужно устанавливать на высокой штанге или на крыше дома (этого требует техника безопасности), то вертушку-барабан можно ставить прямо на земле, под навесом. Есть у барабана и еще ряд достоинств: большой крутящий момент при малых оборотах (значит, можно обойтись либо совсем без редуктора, либо использовать простейший одноступенчатый), отсутствие щеточного токосьемного механизма.


Сережа предлагает двухлопастный барабан, мы же советуем увеличить количество лопастей до четырех (рис. 1Б). Тяговые характеристики такой установки значительно улучшатся.

Итак, начнем с изготовления барабана (рис. 2). Лопасти можно сделать из фанеры, кровельного железа, дюралюминиевого листа или листового пластика подходящих размеров. В любом варианте старайтесь избегать излишне толстых заготовок — ротор должен быть легким. Это уменьшит трение в подшипниках, а значит, барабан будет легче раскручиваться ветром.

На рисунке 3:
1 — резистор;
2 — обмотка статора генератора;
3 — ротор генератора;
4 — регулятор напряжения;
5 — реле обратного тока;
6 — амперметр;
7 — аккумулятор;
8 — предохранитель;
9 — выключатель.

Если вы воспользуетесь кровельным железом, вертикальные края лопастей усильте, подложив под отбортовку металлический пруток диаметром 5-6 мм. Если вы решили сделать детали вертушки из фанеры (ее толщина должна быть 5-6 мм), не забудьте пропитать заготовки горячей олифой. Щеки барабана можно изготовить из древесины, пластмассы или легкого металла. Собирая барабан, не забудьте промазать места стыков густой масляной краской.

Крестовины, соединяющие отдельные лопасти в ротор, лучше сварить или склепать из стальных полос сечением 5×60 мм. Можно использовать и древесину: толщина заготовки не менее 25 мм, ширина — 80 мм.

Ось для вертушки проще всего сделать из двухметрового отрезка стальной трубы с внешним диаметром около 30 мм. Перед тем как подбирать заготовку для оси, найдите два шарикоподшипника, желательно новые. Согласовав размеры трубы и подшипников, вы избавите себя от лишней работы по подгонке трубы к внутренним обоймам подшипников. Стальные крестовины ротора привариваются к оси, деревянные крепятся эпоксидным клеем и стальными штифтами диаметром 5- 6 мм, проходящими одновременно через каждую крестовину и трубу. Лопасти смонтируйте на болтах М12. Внимательно проверьте расстояния от лопастей до оси: они должны быть одинаковыми — 140-150 мм. Собрав барабан, снова покройте стыки деталей густой масляной краской.


Главный элемент установки готов, остаётся изготовить станину, сварив или склепав ее из металлического уголка (годится и деревянный вариант). На готовую станину установите шарикоподшипники. Проследите, чтобы не было перекоса, иначе ротор не сможет легко вращаться. Все детали установки дважды покройте масляной краской, на нижнем конце оси закрепите набор шкивов различного диаметра. Перекинутый через шкив вертушки ремень соедините с генератором электрического тока, например автомобильным. Построенный образец ветросиловой установки при скорости ветра 9-10 м/с сможет обеспечить мощность, передаваемую на генератор, равную 800 Вт.

Ну а если стоит безветренная погода или ветер слишком слаб, чтобы девать необходимую электроэнергию? Перебоев в выработке электричества не будет, если воспользоваться накопителем энергии — аккумулятором. Ветер есть — пускайте электричество напрямую к потребителю, ветра нет — включайте заряженные от ветроустановки аккумуляторы. На рисунке 3 мы показали схематическое устройство электрической цепи такой ветроустановки.

Если ветряк будет использоваться для поливки огорода или сада, его нужно смонтировать прямо над источником воды.

А теперь задание. Подумайте, ребята, как приспособить ветроустановку, о которой мы рассказали, для геологов, альпинистов, передвижных ремонтных и строительных бригад, для пастухов на далеких пастбищах.

ЮТ 1983 №5, В. ШУМЕЕВ, инженер, Рисунки А. МАТРОСОВА

=================

Ветродвигатель для ветряка

предлагаемая конструкция позволяет увеличить ветроэффективность ветродвигателя почти в 3,2 раза в сравнении с классической и довести ее до величины 0,65-0,75.


Новые возможности использования ветроэнергетики

использование нового способа управления работой ветроэнергетической установки и ее конструкция позволят повысить КПД турбинного колеса за счет более полной отдачи потоками воздуха своей энергии, увеличить площади захвата фронта воздушных потоков от 2 до 10 раз, уменьшить размеры турбинного колеса и увеличить частоту его вращения, уменьшить динамическую нагруженность конструкции в результате снижения массы и габаритов вращающихся частей в несколько раз, уменьшить капитальные затраты на производство и установку энергосиловых агрегатов в промышленности и частном секторе.

16. Статья: «Ветроэлектростанция-малютка», в формате DJVU, 137 Кб, скачать;

17. Статья: «Ветер… отапливает дом», в формате DJVU, 272 Кб, скачать;

18. Статья: «Бесконечный водоподъемник» в формате DJVU, 1,78 Мб, скачать;

19. Статья: «Ветровая «ромашка» (водокачка), в формате PDF, 1,87 Мб, скачать;

20. Статья: «Поливает ветер» (водокачка), в формате PDF, 1,6 Мб, скачать;

21. Статья: «Парусный… ветряк», в формате DJVU, 206 Кб, скачать;

22. Статья: «Электростанция едет с вами», в формате DJVU, 148 Кб, скачать;

23. Статья: «За помощью к ветру», в формате DJVU, 111 Кб, скачать;

24. Статья: «Электрический ветряк», в формате DJVU, 68,7 Кб, скачать;

25. Статья: «Пусть работает ветер», в формате DJVU, 181 Кб, скачать;

26. Статья: «Электростанция в рюкзаке», в формате DJVU, 100 Кб, скачать;

27. Статьи: «Ветряк — автомат» и «Ротор закрутится быстрее», в формате DJVU, 173 Кб, скачать;

28. Статьи: «Всякий ли ветер… ветер?» и «Светлячок» (ветрогенератор), в формате DJVU, 446 Кб, скачать;

29. Статья: «Ветер — помощник», в формате DJVU, 133 Кб, скачать;

30. Статья: «Электростанция в рюкзаке», в формате DJVU, 82 Кб, скачать;

31. Статья: «Лишь бы ветер дул», в формате Word, 94,5 Кб, скачать;

32. Статья: «Ветряной двигатель для обогрева теплиц и жилья», в формате DJVU, 105 Кб, скачать;

33. Статья: «Ветроэлектростанция», в формате Word, 167 Кб, скачать;

34. Статья: «Ветряная электростанция на базе асинхронного электродвигателя», в формате PDF, 146 Кб, скачать;

35. Статья: «Ветроэнергетические установки», в формате PDF, 743 Кб, скачать;

36. Статья: «Домашняя ветроэнергетика: уроки зимы», в формате PDF, 142 Кб, скачать;

37. Статья: «Ветродвигатель ВИМ Д-1,2», в формате DJVU, 331 Кб, скачать.

БЫСТРЫЕ КОММЕНТАРИИ (4)

ВИДЕО ПО ТЕМЕ. :  

От редакции Здравомыслия :  

Мини-гидроэлектростанция

Ни для кого не секрет,что углеводороды и их производные как источник энергии в ближайшем будущем исчерпают себя. Это связано,в первую очередь, с истощением запасов нефти по всему миру,а во-вторых — негативными экологическими последствиями их применения. Все возрастающие потребности в энергии заставляют человечество искать альтернативные источники,создавать автономные энергоустановки. Это и гидроэлектростанции,и ветряки,солнечные батареи,биогазовые установки. Их конструкции постоянно совершенствуются с целью повышения их КПД,который,к сожалению,и без того очень мал.

Наиболее универсальным источником энергии является вода и ветер. Это и натолкнуло одного из «кулибиных» наших дней использовать воду как источник энергии для районов,удаленных от централизованных пунктов энергоснабжения.И идея-то — проста,а поэтому и гениальна.Не надо строить огромные станции,поворачивать русла рек, тратить огромные средства. Для осуществления ее нужно всего лишь наличие реки и приложить руки.

В основе идеи лежит общеизвестный принцип — преобразование энергии движения водных масс в электрическую,путем соединения нескольких приводов.Вариантов конструкции может быть великое множество.В данном примере рассмотрим один из наиболее оптимальных вариантов.


По обоим берегам реки ставятся небольшие опоры О1 и О2,на которых на валах крепятся шестерни. Так же на валу одной (двух) шестерней крепится еще одна для передачи вращательного движения через клиноременную передачу на магнето.Между шестернями натягивается гибкая цепь,на которую под углом 45 градусов к потоку ставятся лопатки При движении воды происходит перемещении лопаток перпендикулярно потоку,что вызывает вращательное движение шестеренок и вала магнето,которое собственно и вырабатывает электричество. Кроме того,при использовании подобной конструкции обнаружился весьма хороший,но не объяснимый пока эффект:скорость потока воды за лопатками увеличивается. Таким образом,поставив подобные установки по течению воды каскадом (одна за другой), произойдет последовательное увеличение скорости потока воды и увеличение количества вырабатываемой энергии.

Кроме того,несколько измененный вариант конструкции может быть применен в зимнее время,когда верхний слой реки покрыт льдом.

Автор:Карнышов Д.В.

От редакции Здравомыслия :  

Походная ветряная электростанция

Карманный фонарик стал предметом снаряжения каждого туриста. Да вот беда — энергию батареек приходится экономить. Но ведь можно взять с собой электростанцию. Весит она столько же сколько батарейка на 4, 5 вольт, да и места в рюкзаке займет не на много больше. Электрогенератор нашей электростанции — практически любой микроэлектродвигатель постоянного тока с возбуждением от постоянных магнитов, а источник энергии — ветер. Принцип ее действия показан на рис. 1. генератор тока с пропеллером укреплен на шесте. От генератора идут провода к лампочке. Пропеллер автоматически следит за ветром с помощью флюгера. Задача в том, как сделать электростанцию максимально простой и легкой. Нужно так же чтобы она легко разбиралась на части, а основные узлы можно было бы отремонтировать или сделать заново из подручных средств прямо в походе. Начнем с генератора. Самая миниатюрная электростанция получится если использовать микроэлектродвигатель типа КМ У111-а-38, которые выпускаются в Германии. А если есть ПД-3 то электростанция получится наиболее мощной. Размеры основных двигателей вы можете видеть на рис. 2. для вращения генератора нужен пропеллер, который можно легко снимать с вала генератора или со складывающимися лопастями. снимающийся пропеллер изображен на рис. 3. Он изготавливается из белой жести.


В центре впаивается бобышка. В ней сверлится отверстие и нарезается резьба под винт. Угол наклона лопастей около 30 0. Число лопастей от 8 до 12. наиболее простая конструкция со складными лопастями показана на рис. 4. Лопасти изготовлены из пружинной проволоки марки ОВС диаметром 1-1,5 мм и обернуты фольгой. Заостренные концы проволоки воткнуты в заранее проделанные отверстия в пробке. Угол наклона лопастей так же 30 0. Если вы забудете лопасти дома не отчаивайтесь — вы их легко можете выстругать из подходящего куска дерева (рис. 4а). Ветер как правило капризен и часто меняет направление, поэтому нужно изготовить флюгер. Его конструкции изображены на рис. 1 и 5. В дощечке длиной 200-300 мм сделайте паз по размерам электродвигателя. Двигатель крепится в нем проволокой. Как можно ближе к двигателю просверлите отверстие. Здесь будет установлен флюгер на шесте. К нему прикрепите хвост — носовой платок или длинную ленту. Электростанция готова. Пользоваться лампочкой можно на 1,5 в. Она будет гореть достаточно ярко даже при слабом ветре.

Журнал «Юный техник»

Домашний DIY ветрогенератор комплект ураган вектор 2,0 ветряная турбина 1000 ватт 110 вольт

Описание продукта

Ветряная турбина Hurricane Vector ™

Включает:

  • Белая молния ветрогенератор 110В
  • Stealth Storm Комплект лопастей 40 дюймов для ветряных турбин (5 лопастей)
  • Ступица и носовой обтекатель
  • Корпус ветряка Vector 2.0 с хвостовым оперением
  • Крепеж для крепления генератора и хвостового оперения к кузову
  • Хомут стопорный
  • Подшипник рыскания
  • Контактное кольцо 6-ти проводное

Приветствую вас, Тони из ветряной электростанции «Ураган».Позвольте мне начать с того, что мы много поработали над созданием нашей новой ветряной турбины. Мы гордимся его достижениями и надеемся на множество счастливых клиентов.


Почему мы должны покупать у Hurricane?


Ответ прост.

Перед тем, как купить ветряную турбину со скидкой, которая многообещает и минимальна по сути, ознакомьтесь с фактами.


Большая часть данных и диаграмм, которые вы просматриваете по многим продуктам на e-bay и других торговых точках, являются сфабрикованными.Как отраслевой инсайдер, я знаю, что это на самом деле
Почему я должен покупать ветряную турбину, которая стоит вдвое дешевле? Ответ прост: мощность 1000 ватт, которую мы разместили на ветровой турбине Vector от Hurricane Wind Power, основана на стандарте НАЦИОНАЛЬНОЙ ИССЛЕДОВАТЕЛЬСКОЙ ЭНЕРГЕТИЧЕСКОЙ ЛАБОРАТОРИИ — 24,6 миль в час или 11 метров в секунду скорости ветра.


Эта турбина и генератор состоят из генератора и лопастей, соответствующих стандарту CE, были протестированы в аэродинамической трубе и одобрены сторонними инженерами.


В конечном итоге вы получаете то, за что платите. Эта турбина обладает многими характеристиками и производительностью, которая превосходит, а во многих случаях удваивает и втрое больше, чем у конкурентов, которые оценивают турбины для выработки 2 кВт и более!


В конце концов, если вы посмотрите на диаметр лопастей, ветряная турбина может производить только ту мощность, которая доступна ветру при заданной скорости ветра.

Математически это можно выразить формулой:

Теоретически доступная мощность ветра может быть выражена как

.

P = 1/2 ρ A v 3 (1)

где

P = мощность (Вт)

ρ = плотность воздуха (кг / м 3 )

A = площадь ветра, проходящего перпендикулярно ветру (м 2 )

v = скорость ветра (м / с)

Если диаметр лопасти не соответствует диаметру, достаточному для выработки мощности при заданной скорости ветра, то вы можете быть уверены, что реклама ложная.


Hurricane Vector имеет 5 40-дюймовых лопастей с эффективной воздушной пленкой большего диаметра и большей рабочей площади, производящей крутящий момент и электричество, чем турбины наших конкурентов того же класса

  • Тяжелая стальная рама с порошковым покрытием с высоким содержанием цинка для превосходной защиты от коррозии и долгой красоты.
  • Проверенная технология генератора белой молнии урагана
  • Лезвие большего диаметра
  • Векторный дизайн хвоста для стабильного отслеживания ветра
  • Удлиненный корпус для лучшего отслеживания ветра

Ветряные турбины своими руками и как они работают

Ранее на этой неделе TED-Ed опубликовал новый урок под названием «Как работают ветряные турбины?» В видео рассказывается, как турбины используют энергию ветра для выработки электроэнергии.Базовая математика конструкции ветряной турбины также объясняется зрителям видео. В целом, это хороший урок, но не самый подробный. Если вы хотите, чтобы учащиеся узнали больше о том, как работают ветряные турбины, подумайте о том, чтобы они построили свои собственные небольшие ветряные турбины.

Веб-сайт Microsoft Hacking STEM предлагает подробное руководство по проекту для создания моделей ветряных мельниц и ветряных турбин. Студенты будут не только строить ветряные мельницы, они также будут собирать данные, генерируемые их ветряными мельницами. Данные собираются в реальном времени с помощью Arduino и надстройки Data Streamer для Excel.Затем студенты анализируют данные, чтобы оценить эффективность своих ветряных мельниц и ветряных турбин.

Действия Microsoft по взлому ветряных мельниц STEM — это здорово, если у вас есть время и ресурсы, необходимые для этого. Если вы этого не сделаете и хотите менее подробный проект ветряной мельницы, взгляните на Instructables. Там вы найдете десятки проектов ветряных мельниц и ветряных турбин, начиная от относительно простых творений из картона и заканчивая полноценными турбинами, способными приводить в действие приборы.

Наконец, если вы не видели видео TED, в котором Уильям Камквамба делится своей историей строительства ветряной мельницы, вам нужно его посмотреть.Это основа книги «Мальчик, который обуздал ветер».

Этот пост изначально был опубликован на FreeTech5Teachers.com. Если вы видите его где-то еще, значит, он был использован без разрешения. Сайты, которые регулярно крадут мою (Ричарда Бирна) работу, включают CloudComputin, TodayHeadline и 711Web. Снимок, сделанный Ричардом Бирном во время поездки между Амарилло и Абилин, штат Техас, в июне 2016 года.

A Праймер для малых ветряных турбин

Ветер был важным источником энергии в США.С. долгое время. Механическая ветряная мельница была одним из двух «высокотехнологичных» изобретений (другим была колючая проволока) конца 1800-х годов, которые позволили нам освоить большую часть нашей западной границы. С 1860-х годов в США было установлено более 8 миллионов механических ветряных мельниц, и некоторые из них эксплуатируются более ста лет. Еще в 1920-х и 1930-х годах, до того, как REA начало субсидировать сельские электрические кооперативы и линии электропередач, фермерские семьи на Среднем Западе использовали ветряные генераторы для питания фонарей, радиоприемников и кухонных приборов.Скромная ветроэнергетика, созданная к 1930-м годам, была буквально вытеснена из бизнеса политикой правительства, благоприятствовавшей строительству инженерных коммуникаций и электростанций, работающих на ископаемом топливе.

В конце 1970-х — начале 1980-х годов большой интерес снова был сосредоточен на энергии ветра как возможном решении энергетического кризиса. По мере того как домовладельцы и фермеры обращались к различным альтернативам возобновляемой энергии для производства электроэнергии, небольшие ветряные турбины стали наиболее рентабельной технологией, способной снизить их счета за коммунальные услуги.Налоговые льготы и благоприятные федеральные правила (PURPA) позволили установить более 4500 небольших ветряных систем мощностью 1-25 кВт в индивидуальных домах в период с 1976 по 1985 год. Еще 1000 систем были установлены в различных удаленных приложениях за тот же период. Небольшие ветряные турбины были установлены во всех пятидесяти штатах. Однако ни одна из малых компаний по производству ветряных турбин не принадлежала крупным компаниям, приверженным долгосрочному развитию рынка, поэтому, когда в конце 1985 года истекли федеральные налоговые льготы, а цены на нефть упали до 10 долларов за баррель два месяца спустя, большая часть малых ветряных электростанций турбинная промышленность снова исчезла.Компании, которые пережили эту «корректировку рынка» и сегодня производят небольшие ветряные турбины, — это те, чьи машины были самыми надежными и чья репутация была самой лучшей.

Стоимость малых ветряных турбин

Небольшие ветряные турбины могут быть привлекательной альтернативой или дополнением к фотоэлектрической энергии. В отличие от фотоэлектрических систем, стоимость ватт которых остается практически неизменной независимо от размера массива, ветровые турбины становятся дешевле с увеличением размера системы.

Например, при мощности 50 Вт небольшая ветряная турбина будет стоить около 8 долларов.00 / ватт по сравнению с примерно 6,00 долларов / ватт для фотоэлектрического модуля. Вот почему, при прочих равных, фотоэлектрические системы дешевле для очень малых нагрузок. Однако по мере увеличения размера системы это «практическое правило» меняется на противоположное. При мощности 300 Вт затраты на ветряные турбины снижаются до 2,50 долларов США за ватт (1,50 доллара США за ватт в случае Southwest Windpower Air 403), в то время как затраты на фотоэлектрические установки все еще остаются на уровне 6 долларов США за ватт. Для ветряной системы мощностью 1500 ватт стоимость снижается до 2 долларов за ватт, а при мощности 10 000 ватт стоимость ветрогенератора (без учета электроники) снижается до 1 доллара.50 / ватт.

Стоимость регуляторов и регуляторов практически одинакова для фотоэлектрических и ветровых электростанций. Несколько удивительно, но стоимость башен для ветряных турбин примерно такая же, как и стоимость эквивалентных фотоэлектрических стоек и трекеров. Стоимость проводки для фотоэлектрических систем обычно выше из-за большого количества подключений.

Для домовладельцев, подключенных к коммунальной сети, небольшие ветряные турбины обычно являются лучшим «следующим шагом» после того, как были сделаны все меры по сохранению и повышению эффективности.Типичный дом потребляет от 800 до 2000 кВтч электроэнергии в месяц, а ветряная турбина или фотоэлектрическая система мощностью 4-10 кВт примерно соответствуют этому спросу. При таком размере небольшие ветряные турбины могут быть намного дешевле.

Надежность малых ветряных турбин

В прошлом надежность была «ахиллесовой пятой» малых ветряных турбин. Небольшие турбины, спроектированные в конце 1970-х годов, имели заслуженную репутацию не очень надежных. Однако сегодняшние продукты технически усовершенствованы по сравнению с более ранними устройствами, и они значительно более надежны.Теперь доступны небольшие турбины, которые могут работать 5 лет и более, даже в суровых условиях, без необходимости обслуживания или проверок, и доступны 5-летние гарантии. По надежности и стоимости эксплуатации эти агрегаты не уступают фотоэлектрическим системам.

Наличие энергии ветра

Энергия ветра — это форма солнечной энергии, получаемая в результате неравномерного нагрева поверхности Земли. Лучше всего использовать ветровые ресурсы вдоль берегов, на холмах и в северных штатах, но полезные ветровые ресурсы можно найти в большинстве районов.Как источник энергии энергия ветра менее предсказуема, чем солнечная энергия, но она также обычно доступна в течение большего количества часов в течение дня. На ветровые ресурсы влияет местность и другие факторы, которые делают их более специфичными для местности, чем солнечная энергия. Например, в холмистой местности у вас и вашего соседа, вероятно, будет один и тот же солнечный ресурс. Но у вас может быть гораздо лучший ветровой ресурс, чем у вашего соседа, потому что ваша собственность находится на вершине холма или лучше подвержена влиянию преобладающего направления ветра.И наоборот, если ваша собственность находится в овраге или на подветренной стороне холма, ваш ветровой ресурс может быть значительно ниже. В этом отношении к ветровой энергии следует относиться более внимательно, чем к солнечной энергии.

Энергия ветра подчиняется сезонным моделям, которые обеспечивают лучшую производительность в зимние месяцы и самые низкие — в летние. Это полная противоположность солнечной энергии. По этой причине ветряные и солнечные системы хорошо работают вместе в гибридных системах. Эти гибридные системы обеспечивают более стабильную круглогодичную производительность, чем системы, работающие только от ветра или только от солнечных батарей.Один из наиболее активных сегментов рынка для производителей малых ветряных турбин — это владельцы фотоэлектрических систем, которые расширяют свои системы за счет энергии ветра.

Механика малых ветряных турбин

Большинство ветряных турбин представляют собой системы винтового типа с горизонтальной осью. Системы с вертикальной осью, такие как взбивание яиц типа Дарье и системы типа Савониуса с S-ротором, оказались более дорогими. Горизонтальная ветряная турбина состоит из ротора, генератора, основной рамы и, как правило, хвостовой части.Ротор улавливает кинетическую энергию ветра и преобразует ее во вращательное движение для привода генератора. Ротор обычно состоит из двух или трех лопастей. Трехлопастный ротор может быть немного более эффективным и работать более плавно, чем двухлопастный ротор, но он также стоит дороже. Лезвия обычно изготавливаются либо из дерева, либо из стекловолокна, потому что эти материалы обладают необходимым сочетанием прочности и гибкости (и они не мешают телевизионным сигналам!).

Генератор обычно специально разработан для ветряной турбины.Генераторы с постоянными магнитами популярны, потому что они устраняют необходимость в обмотках возбуждения. Низкоскоростной генератор с прямым приводом — важная особенность, поскольку системы, в которых используются коробки передач или ремни, обычно не были надежными. Основная рама является структурной основой ветряной турбины и включает в себя «контактные кольца», которые соединяют вращающуюся (когда она указывает на изменение направления ветра) ветряную турбину и фиксированную проводку башни. Хвостовая часть выравнивает ротор против ветра и может быть частью защиты от превышения скорости.

Ветряная турбина — продукт, который обманчиво сложно разработать, и многие из первых агрегатов были не очень надежны. Фотоэлектрический модуль по своей сути надежен, потому что у него нет движущихся частей, и, как правило, один фотоэлектрический модуль столь же надежен, как и следующий. С другой стороны, ветряная турбина должна иметь движущиеся части, а надежность конкретной машины определяется уровнем навыков, использованных при ее проектировании и проектировании. Другими словами, от одного бренда к другому могут быть большие различия в надежности, прочности и продолжительности жизни.Этот урок, кажется, часто ускользает от дилеров и клиентов, которые привыкли работать с солнечными модулями.

Малые башни ветряных турбин

Для эффективной работы ветряная турбина должна иметь прямой выстрел по ветру. Турбулентность, которая снижает производительность и «работает» на турбину сильнее, чем гладкий воздух, она максимальна у земли и уменьшается с высотой. Кроме того, скорость ветра увеличивается с высотой над землей. Как правило, вы должны устанавливать ветряную турбину на вышке так, чтобы она находилась на высоте не менее 30 футов над любыми препятствиями в пределах 300 футов.Меньшие турбины обычно устанавливаются на более короткие башни, чем большие турбины. Турбину мощностью 250 Вт часто устанавливают, например, на башне высотой 30–50 футов, тогда как турбине мощностью 10 кВт обычно требуется башня высотой 80–120 футов. Мы не рекомендуем устанавливать ветряные турбины в небольших зданиях, в которых живут люди, из-за присущих им проблем, связанных с турбулентностью, шумом и вибрацией.

Самым дешевым типом мачты является мачта с решетчатыми оттяжками, которая обычно используется для антенн любительской радиосвязи. Меньшие башни с оттяжками иногда строятся из трубчатых секций или труб.Самонесущие башни решетчатой ​​или трубчатой ​​конструкции занимают меньше места и более привлекательны, но они также более дороги. Телефонные столбы можно использовать для небольших ветряных турбин. Башни, особенно башни с оттяжками, могут быть шарнирно закреплены на основании и соответствующим образом оборудованы, чтобы их можно было наклонять вверх или вниз с помощью лебедки или транспортного средства. Это позволяет выполнять все работы на уровне земли. Некоторые башни и турбины могут быть легко установлены покупателем, тогда как другие лучше оставить обученным специалистам.Доступны устройства защиты от падения, состоящие из троса с фиксирующейся направляющей, которые настоятельно рекомендуются для любой вышки, на которую предстоит подняться. Следует избегать использования алюминиевых башен, поскольку они склонны к образованию трещин. Башни обычно предлагаются производителями ветряных турбин, и покупка их у них — лучший способ обеспечить надлежащую совместимость.

Оборудование удаленных систем

Оборудование балансировки систем, используемое с небольшой ветряной турбиной в удаленном приложении, по существу такое же, как и в фотоэлектрической системе.Большинство ветряных турбин, предназначенных для зарядки аккумуляторов, оснащены регулятором для предотвращения перезарядки. Регулятор специально разработан для работы с этой конкретной турбиной. Фотоэлектрические регуляторы обычно не подходят для использования с небольшой ветряной турбиной, потому что они не предназначены для обработки колебаний напряжения и тока, характерных для турбин. Выход регулятора обычно подключается к центру источника постоянного тока, который также служит точкой подключения для других источников постоянного тока, нагрузок и батарей.В гибридной системе фотоэлектрическая и ветровая системы подключаются к центру источника постоянного тока через отдельные регуляторы, но никаких специальных средств управления обычно не требуется. Для небольших ветряных турбин общее практическое правило состоит в том, что емкость аккумуляторной батареи должна как минимум в шесть раз превышать максимальный ток зарядки возобновляемых источников энергии, включая любые фотоэлектрические элементы. Ветряная промышленность имеет хороший опыт использования батарейных блоков меньшего размера, чем те, которые обычно рекомендуются для фотоэлектрических систем.

Быть собственной коммунальной компанией

Федеральные правила PURPA, принятые в 1978 году, позволяют вам подключить подходящий генератор, работающий на возобновляемых источниках энергии, к вашему дому или бизнесу, чтобы снизить потребление электроэнергии, поставляемой коммунальными предприятиями.Этот же закон требует, чтобы коммунальные предприятия покупали любую избыточную выработку электроэнергии по цене (предотвращенной стоимости), как правило, ниже розничной стоимости электроэнергии. Примерно в полдюжине штатов с «опциями выставления счетов за чистую энергию» небольшим системам разрешено запускать счетчик в обратном порядке, поэтому они получают полную розничную ставку за избыточное производство. Из-за высоких накладных расходов коммунальных предприятий на ведение нескольких специальных счетов клиентов, обрабатываемых вручную, выставление счетов за чистую энергию фактически обходится им дешевле. В этих системах не используются батареи.Выход ветряной турбины делается совместимым с сетью электроснабжения с использованием либо инвертора с коммутацией линии, либо индукционного генератора. Затем выход подключается к панели домашнего автоматического выключателя на специальном автоматическом выключателе, как и в большом приборе. Когда ветряная турбина не работает или не вырабатывает столько электроэнергии, сколько нужно дому, дополнительная необходимая электроэнергия поставляется коммунальным предприятием. Точно так же, если турбина вырабатывает больше энергии, чем нужно дому, избыток мгновенно «продается» коммунальному предприятию.Фактически, коммунальное предприятие действует как очень большой аккумуляторный блок, и оно «видит» ветряную турбину как отрицательную нагрузку. После более чем 200 миллионов часов совместной работы мы теперь знаем, что небольшие ветряные турбины, подключенные к электросети, безопасны, не создают помех ни коммунальному, ни клиентскому оборудованию и не нуждаются в каком-либо специальном защитном оборудовании для успешной работы.

Сотни домовладельцев по всей стране, которые установили ветряные турбины мощностью 4-12 кВт во время налоговых льгот в начале 1980-х годов, теперь имеют все оплаченные расходы и ежемесячные счета за электроэнергию в размере 8-30 долларов США, в то время как их соседи имеют счета в диапазоне от 100-200 долларов в месяц.Проблема, конечно, в том, что этих налоговых льгот давно нет, и без них большинство домовладельцев сочтут стоимость подходящего ветряного генератора непомерно высокой. Например, установка турбины мощностью 10 кВт (наиболее распространенный размер для домов) обычно стоит 28–35 000 долларов. Для тех, кто платит 12 центов за киловатт-час или более за электроэнергию в районе со средней скоростью ветра 10 миль в час или более (класс 2 DOE) и площадью акра или более (большие турбины), ветряная установка в жилых помещениях. турбина конечно стоит задуматься.Срок окупаемости обычно составляет 8–16 лет, а некоторые ветряные турбины рассчитаны на срок службы 30 и более лет.

Характеристики малой ветряной турбины

Номинальная мощность ветряной турбины не является хорошей основой для сравнения одного изделия с другим. Это потому, что производители могут выбирать скорость ветра, при которой они оценивают свои турбины. Если номинальные скорости ветра не совпадают, сравнение двух продуктов может ввести в заблуждение. К счастью, Американская ассоциация ветроэнергетики приняла стандартный метод оценки эффективности производства энергии.Производители, которые следуют стандарту AWEA, предоставят информацию о годовой выработке энергии (AEO) при различных среднегодовых скоростях ветра. Эти цифры AEO похожи на расчетный расход бензина EPA для вашего автомобиля, они позволяют вам объективно сравнивать продукты, но они не говорят вам, какова будет ваша реальная производительность («ваши показатели могут отличаться»).

Карты ветровых ресурсов США были составлены Министерством энергетики. Эти карты показывают ресурсы по «классам мощности», что означает, что средняя скорость ветра, вероятно, будет в пределах определенного диапазона.Чем выше класс мощности, тем лучше ресурс. Мы говорим, вероятно, из-за эффектов ландшафта, упомянутых ранее. На открытой местности карты DOE неплохи, но в холмистой или гористой местности их нужно использовать с большой осторожностью. Ресурс ветра определен для стандартной высоты датчика ветра 33 фута (10 м), поэтому вы должны скорректировать среднюю скорость ветра для высот ветряных мачт выше этой высоты, прежде чем использовать информацию AEO, предоставленную производителем. Рабочие характеристики ветряных турбин также обычно ухудшаются из-за высоты, как и у самолета, и из-за турбулентности.Производители ветряных турбин обычно могут предоставить компьютерные прогнозы производительности своих турбин практически на любом участке.

Как правило, энергию ветра следует учитывать, если ваша средняя скорость ветра превышает 8 миль в час (большинство, но не все, Класс 1 и все другие классы) для удаленного приложения и 10 миль в час (Класс 2 или выше) для служебное приложение. Если вы живете в не слишком холмистой местности, то карту ветровых ресурсов Министерства энергетики можно использовать для достаточно точного расчета ожидаемой производительности ветряной турбины на вашем участке.В сложной местности необходимо сделать оценку обнаженности участка, чтобы скорректировать среднюю скорость ветра, используемую для этого расчета. В большинстве случаев нет необходимости контролировать скорость ветра с помощью записывающего анемометра перед установкой небольшой ветряной турбины. Но в некоторых ситуациях стоит потратить 300-1000 долларов и подождать год, чтобы провести ветровую съемку. Разобраться в этих вопросах могут производители и продавцы оборудования.

Книги по энергии ветра

Безусловно, лучшим источником общей информации о технологии и применении малых ветряных турбин является книга, написанная в 1993 году Полом Гипом.Г-н Гипе имеет более чем 15-летний опыт работы с небольшими ветровыми системами и является всемирно известным автором и лектором по этой теме. Эта книга Wind Power for Home & Business в мягком переплете и объемом чуть более 400 страниц. Книгу Гайпа легко читать, в ней много примеров, иллюстраций и много здравого смысла. Мы очень рекомендуем это.

Ветряная турбина своими руками | Возобновляемые источники энергии

Введение

Одним из наиболее эффективных способов получения энергии являются ветровые турбины.Они используют силу ветра для вращения двигателя, вырабатывающего электричество. Поскольку мир сталкивается с серьезным экологическим кризисом, такое изобретение сегодня более необходимо, чем когда-либо прежде.

Тем не менее, вы не можете просто установить ветряк перед своим домом. Вам нужно будет учесть много вещей, главная из которых — расходы. Но мы придумали отличный способ помочь вам сохранить окружающую среду и ваши деньги одновременно! В этой статье мы расскажем вам, как вы можете построить свою ветряную турбину своими руками и использовать ее в повседневной жизни.

Что такое ветряная турбина?

Ветряная турбина — это устройство, которое улавливает энергию ветра и преобразует ее в электрическую.

Широкий спектр крошечных и больших ветряных турбин работает для чего угодно, от зарядки небольших устройств до питания всего дома. Ветряные турбины также служат электростанциями для лодок и светофоров.

Это революционная замена для энергоемких источников питания. Ветер, являющийся возобновляемым источником энергии, никогда не будет использоваться слишком много.Таким образом, это очень устойчивая идея. Сегодня эти ветряные турбины заменяют обычные источники электроэнергии для экономии ископаемого топлива.

Как работает ветряная турбина?


Энергия ветра — это форма солнечной энергии, которая образуется либо из-за того, что солнце неравномерно нагревает атмосферу, из-за неровностей поверхности Земли, либо из-за вращения Земли.

Ветряная турбина использует силы аэродинамики через лопасти, которые работают как лопасти винта вертолета.Этот процесс превращает энергию ветра в электрическую.

С одной стороны, давление воздуха уменьшается, когда через него дует ветер. Затем ротор передает энергию генератору либо напрямую, либо через ряд шестерен, если он включает в себя редуктор. Затем шестерня ускоряет вращение лопастей и позволяет генератору меньшего размера производить энергию. Благодаря этому процессу аэродинамическая сила, передаваемая генератору, производит электричество.

Преимущества

Основным преимуществом ветряных турбин является их устойчивость.Однако это инновационное устройство — это не только это. Вот несколько преимуществ ветряных турбин.

Низкая стоимость

Энергия ветра стоит не так дорого, как обычная электроэнергия. Это возобновляемый источник энергии, который всегда будет доступен где угодно. Энергия, которую мы используем сегодня, невозобновляемая и поэтому ограничена. Из-за этого потребление обходится вам дороже. Однако использование неограниченного источника энергии сделает его дешевым и доступным.

Устойчивое развитие

Ветряная турбина использует только ветер в качестве источника энергии.Никаких других природных ресурсов он не использует. Следовательно, он очень экологичен, безопасен и остается устойчивым.

Clean

Ветряная турбина — это чистый источник энергии. Он обеспечивает вас нетронутым, чистым электричеством, которое может работать с максимальной эффективностью. Они также не издают много шума, что тоже очень удобно.

Энергоемкие области

Ветряк своими руками — мощный и портативный источник энергии.Вы можете взять его с собой, чтобы увидеть, какие части вашего дома потребляют больше электроэнергии, и соответственно сэкономить электроэнергию.

Используемые компоненты

На видео выше показано руководство по созданию ветряной турбины с вертикальной осью. Вот список вещей, которые вам понадобятся для сборки ветряной турбины:

  • Инструменты
  • Корпус
  • Лопасти
  • Двигатель
  • Центральная ступица
  • Хвост
  • Башня
  • Диод и батареи
  • Что процессы влекут за собой

Создание ветряного генератора для дома

Сбор инструментов

Соберите все инструменты, необходимые для сборки ветряной турбины.Для этого обратитесь к списку выше. Необходимы инструменты для зачистки проводов и паяльники. Кроме того, собирайте материалы, которые можно перерабатывать, например 2-литровые пластиковые бутылки из-под газировки и их крышки. Собрать легкие и тонкие полоски металла эпоксидной смолой и клеем.

Убедитесь, что у вас есть традиционные инструменты, такие как пила, гаечные ключи и электродрель. Было бы полезно, если бы у вас было все вокруг для удобства. Кроме того, прежде чем приступить к строительству ветряной турбины, составьте план конструкции из бетона.

Зона водосбора

Зона водосбора — это часть, которая собирает ветер.Для изготовления этой детали вам понадобятся верхние части пластиковых бутылок. Отпилив их с горлышка бутылок с газировкой, используйте эпоксидную смолу, чтобы соединить крышки бутылок вместе. Затем исправляйте их, пока не создадите четыре соединительных компонента.

Вентилятор

Чтобы сделать эту деталь, вырежьте как минимум фут длиной и дюйм шириной «x». Затем снова используйте эпоксидную смолу, чтобы прикрепить «веер» к муфтам. Дайте эпоксидной смоле застыть.

Соединение уловителя и вентилятора

Прикрутите крышки бутылок, которые вы ранее отпилили, к муфтам.Это не сложная задача, если у ваших куплетов правильный дизайн.

Генератор

Генератор — это то место, где вы используете диоды, батареи и двигатель. Закрепите генератор и вентилятор вместе, используя эпоксидную смолу. Все оставшиеся края зафиксируйте клеем.

Стенд

Эта деталь основана на типе двигателя, который вы использовали для своего генератора. Тем не менее, вы можете сделать подставку для ветряной турбины с помощью небольшого прямоугольного куска дерева.

Завершение

После сборки стойки убедитесь, что генератор и вентилятор аккуратно прикреплены к стойке. Держите устройство устойчиво. Он должен выдерживать даже сильный ветер. Вы можете использовать механизмы взвешивания, чтобы генератор работал быстро.

Заключение

Теперь у вас есть собственная ветряная турбина. Вам не нужно было тратить целые состояния на его покупку или установку. За очень меньшие деньги вы можете построить себе электростанцию, которая поможет вам сэкономить деньги даже в будущем.Начните строить его прямо сейчас, чтобы начать экономить как деньги, так и невозобновляемые источники энергии.

Учебное пособие по ветряной турбине — OpenSourceLowTech.org

Обновлено 24 сен ’18 г.
Разработано: Дэниел Коннелл
Учебное пособие на английском языке Текст: Дэниел Коннелл
Учебное пособие Анимация: Дэниел Коннелл

Содержание этого руководства:
Описание
Инструменты
Материалы
Ресурсы
Пошаговые инструкции
Конфигурации и приложения

Описание:

Это ветряная турбина с вертикальной осью, которая использует энергию ветра для управления такими вещами, как генератор / генератор переменного тока для производства электроэнергии или воздушные и водяные насосы для охлаждения, орошения и т. Д.
В турбине используется конструкция Lenz2 «подъем + сопротивление» с механической эффективностью 35-40%. Он сделан почти полностью из подручных материалов и должен стоить около 15-30 долларов за шестилопастную версию, которую без особых усилий могут изготовить два человека за четыре часа.
Трехлопастная версия успешно прошла испытания на устойчивость при скорости ветра 80 км / ч, а шестилопастная версия — до 105 км. Оба сделают больше, но сколько именно, еще не установлено. Текущая самая долгоживущая версия работает с начала 2014 года, несмотря на умеренные штормы, без заметного износа на данный момент.

Кривые полной мощности для этой конкретной сборки еще не рассчитаны, но, согласно расчетам Эда Ленца, шестилопастный двигатель диаметром 0,91 метра и высотой 1,1 метра с генератором переменного тока с КПД 90% должен производить не менее 130 Вт электроэнергии на расстоянии 30 км. / ч ветер, и 1 киловатт при 60 км / ч.

Материалы, перечисленные в этом руководстве, предназначены для изготовления трехлопастной версии. Удвойте все, кроме велосипедного колеса, на шесть лопастей.

Инструменты:

Материалы:

11 Алюминиевые формы для офсетной литографической печати
Это чистые алюминиевые листы, используемые в печатном процессе, довольно часто используемом для газет и упаковки.Типография среднего размера может перерабатывать сотни пластин каждую неделю, поэтому, как правило, их легко забрать дешево. Обзвоните все местные компании, предлагающие офсетную печать.
Подойдет любой размер, толщина или тип, если они больше 67 см по длинной оси. Они, вероятно, будут довольно чернильными, когда вы их достанете, они легко смываются с рук с мылом и не должны быть токсичными.

150 4 мм D Диаметр P op R ivets
Длина около 6-8 мм.

1 8 M4 B olts / Крепежные винты
Длина примерно 12-20 мм, лучше всего подходят шестигранные головки.

1 8 M4 N yl ocs / Стопорные гайки
Это гайки с нейлоновым кольцом, чтобы они не дребезжали.Если вы не можете найти их, обычная гайка M4 с пружинной шайбой сделает то же самое.

24 Маленькие шайбы
Внутренний диаметр 4 мм для заклепок и болтов, внешний диаметр около 10 мм.

27 Large / Penny / Repair W ashers
Внутренний диаметр 4 мм для заклепок и болтов, внешний диаметр около 20 мм.

26 дюймов B ike W каблук
Точно то, как измеряются колеса велосипеда, немного сложно, в основном вам нужно колесо с общим внешним диаметром обода около 58 см, плюс-минус.
Колесо должно:
~ Не быть быстросъемным
~ Иметь нормальную толстую ось (около 10 мм в диаметре)
~ Иметь 36 спиц
~ Работать достаточно плавно
~ Ось должна быть достаточно видимой, чтобы прикрепить ее к стойке, по крайней мере, 3- 4см.
~ Шестерни нужны только в том случае, если вы собираетесь использовать их в цепочке, чего, вероятно, нет.

Может оказаться полезным разобрать ступицу колеса с помощью гаечных ключей и гаечного ключа для велосипедных конусов, немного смазать подшипники и снова смазать их, а также максимально удлинить ось с одной стороны для установки. Если вы не сделали этого раньше, возьмите его с собой в местный пункт обслуживания велосипедов, и они будут рады показать вам, как это сделать. В этом нет необходимости, если колесо движется достаточно хорошо и имеет достаточную ось.

12 спиц велосипедных колес

Подходит любая длина, тип или состояние.

2 S поездок S teel
Примерно 20 см x 3 см x 3 мм.

Запасной B ike Колесная ось и три гайки для установки
Все, что угодно, только с той же резьбой, что и ось на вашем колесе.

3 болта и гайки M6 x примерно 60 мм
Они вам понадобятся с небольшими шестигранными головками.

Ресурсы:

Пошаговая инструкция по сборке:

Это относится к анимации слева.

Шаг 1:
Загрузите и распечатайте два файла шаблона по ссылкам выше. Убедитесь, что они напечатаны с разрешением 100% (200 точек на дюйм).При печати измерьте расстояние между размерными стрелками, оно должно составлять 10 см на обеих страницах. Если это на пару миллиметров, это, наверное, нормально.

Склейте страницы вместе так, чтобы метки размером 10 см перекрывали как можно более плотное перекрытие. Лучше всего сделать это на оконном стекле в течение дня, чтобы вы могли видеть обе страницы.
С помощью ножа и углового алюминиевого уголка в качестве прямой вырежьте внешнюю границу шаблона.
Каждый раз, когда вы режете, всегда следите за тем, чтобы другая рука никогда не находилась перед ножом, чтобы не поскользнуться, если вы поскользнетесь.Уголок из алюминия для этого хорош, так как вертикальная насадка эффективно защищает руку, держащую ее.

2 :
Возьмите алюминиевый лист и измерьте коробку 42 см x 48 см. Нарисуйте линию на середине длины 48 см, чтобы получить две коробки размером 42 см x 24 см. Сделайте надрезание внешних линий ножом Стэнли и линейкой. Вы не пытаетесь прорезать металл, просто создайте линию, которую потом можно будет выскочить. Хороший метод — один раз забить слегка, а второй раз чуть глубже.
Не делайте отметок на средней линии длиной 24 см.

Согните металл так, чтобы он загнулся по линии надреза, затем отогните в другую сторону. Сделайте это пару раз, и он должен разделиться. Сделайте то же самое с другой надрезкой и удалите внешний металл. Оставьте это на потом.

3 :
Приклейте шаблон скотчем к металлическому прямоугольнику (с этого момента он будет называться «прежним») так, чтобы длинный край бумаги находился на средней линии и правых краях обеих линий. вверх.Не волнуйтесь, если другие края не совпадают идеально.

С помощью лезвия и линейки нанесите надрез по кривой шаблона, включая треугольники на каждом конце. Не обязательно, чтобы он был на 100% идеальным, но постарайтесь сделать первый достаточно приятным, так как затем вы можете использовать его в качестве шаблона для остальных.

Сделайте надрез, согните и удалите два металлических треугольника за пределами шаблона.

4 :
Отметьте центры маленьких кружков на бумажном шаблоне маркером, чтобы они были видны с другой стороны, и переверните бумагу так, чтобы сторона с печатью находилась на другой половине листа. первое, удерживая длинный край на средней линии.Перемотайте пленку, чтобы она не сдвигалась.
Согните изогнутую насечку и оторвите ее. Удалите два маленьких треугольника. Будьте осторожны, чтобы не согнуть металл без царапин слишком сильно, так как это может ослабить его.

Теперь у вас есть первый бывший. Повторите шаги 2–3, чтобы у вас получилось 6 формирователей. Вы можете использовать первый шаблон как шаблон для вырезания, а не бумагу. На трех формирователях линия длиной 24 см проведена спереди, а на трех других — сзади.

5 :
Возьмите все шесть форм и соедините их вместе так, чтобы они были как можно точнее выровнены.
Используйте скотч, чтобы прикрепить их, если у вас нет прищепок.

Просверлите каждое из 16 отверстий во всех шести формирователях с помощью 4-миллиметрового сверла. Сначала просверлите центральное отверстие, так как это единственное отверстие, которое должно быть достаточно точным. Это может помочь вставить болт в это первое отверстие, чтобы форма не сдвигалась во время бурения.

Если отверстия в вашем шаблоне расположены немного иначе, чем в анимации, это будет потому, что шаблон более актуален.

Удалите шаблон и отсоедините формирователи.
Поместите шаблон так, чтобы линия длиной 24 см слегка выступала за край стола. Расположите линейку на средней линии и согните под углом 90 градусов. Повторите то же самое со всеми шестью, три формера согнуты блестящей стороной вверх и три согнуты блестящей стороной вниз.
Отложите формирователи в сторону.

6 :
Возьмите алюминиевый лист и разгладьте все изгибы металла. Обрежьте длинный край до 67 см.

Проведите линию в 2 см от одного из краев 67 см, переверните лист и проведите еще одну линию в 2 см от противоположного края на другой стороне металла.

повторите с еще двумя листами и соедините все 3 вместе так, чтобы каждая нарисованная линия была выровнена с краем листа над ней.

Отметьте край на расстоянии 4 см, 6, 8, 10, 18, 26, 34, а затем через каждые 2 см до 64 см включительно.
Имейте в виду, что на одной стороне есть отметка на расстоянии 4 см от края, а на другой — 3 см.

Переверните листы, чтобы убедиться, что они не теряют выравнивание. Отметьте и забейте так же, как и на первом ребре. Убедитесь, что на обоих краях имеется зазор 4 см.

7 :
Постучите по листам на столе, чтобы они выровнялись друг над другом.
От конца 4 см проведите вертикальную линию на расстоянии 19 см от края и одну — на расстоянии 33 см от края.
Отметьте каждую линию на расстоянии 3 см и 20 см с обоих концов.

Просверлите все 3 листа отверстиями 4 мм на всех 8 отметках. Если вы делаете шестилопастную турбину, а не три, вы можете просверлить сразу все шесть листов.
Отключите листы.

8:
Поместите лист так, чтобы второй край в 3 см выступал за стол. Поместите линейку на вторую отметку и сделайте триангуляцию края, как показано на анимации.

Треангулируйте край 4 см таким же образом.

Предварительно согните лист, чтобы его было легче разместить в формирователях. Не сгибайте его так сильно, чтобы металл не помялся.

9 :
Переверните лист в вертикальное положение и вставьте в изгиб, вырезанный в верхнем шаблоне (неразрезанная половина шаблона должна быть направлена ​​вверх).
Лучший способ сделать это — сначала вставить краевой треугольник 4 см в его прорезь, затем край 3 см, протолкнуть внутренний клапан, а затем пропустить оставшуюся часть листа через разрез.

Сложите выступы так, чтобы первые три на каждом конце сложились, а затем чередуйте их. Вероятно, вам нужно будет слегка согнуть отметки перед тем, как оторвать их, или использовать плоскогубцы, если они особенно упрямы. Если вы обнаружите, что согнули язычок не в том направлении, оставьте его как есть, сгибание в другую сторону ослабит металл. Убедитесь, что три длинных выступа чередуются друг с другом.

Поднимите шаблон вверх, чтобы он был на уровне изогнутых створок.

Поместите 2 велосипедные спицы в сгиб каркаса и согните его.Если сдавить край металла вокруг спицы плоскогубцами или другим подобным предметом, он не будет выпадать.

Переверните лопатку, поместите другую рамку и загните язычки таким же образом.

10 :
Разрежьте и удалите два внешних угла формы. Вырежьте меньший треугольник на одном уровне с краем другой бывшей половины, но сделайте больший треугольник смещением на 2 см, чтобы он перекрывался.
Повторите для второго первого.

11 :
Возьмите один из обрезков, оставшихся после обрезки шаблона.Вырежьте полоску шириной 7 см, а затем отрежьте 4 см от длинной длины.

Сделайте триангуляцию полосы, как показано.

Отметьте грубую середину каждого конца лица шириной 3 см линией длиной пару сантиметров.

12 :
Поместите триангулированную стойку внутри лопатки так, чтобы поверхность 3 см находилась на ряду просверленных отверстий ближе к заднему краю. Просмотрите нарисованные линии через верхнее просверленное отверстие, чтобы убедиться, что оно отцентрировано.

Просверлите стойку через отверстие в лопатке и прикрепите заклепкой.Повторите то же самое с нижним отверстием, затем с двумя в середине.

13 :
Возьмите свежий лист, разгладьте изгибы и обрежьте его до 67 см, затем разрежьте пополам, чтобы получить два куска шириной 33,5 см.

Отрежьте 4 см от одного из коротких краев обеих частей.

Повторите это действие, чтобы у вас было четыре листа шириной 33,5 см (хотя вам понадобятся только три из них). Выровняйте и скрепите все три вместе.

От одного из длинных краев проведите три вертикальные линии на расстоянии 1 см, 9 см и 19 см.
Отметьте эти линии с обоих концов на 1 см и 20 см.

Просверлите отверстие диаметром 4 мм на каждой из двенадцати отметок.

14 :
Отметьте лист на расстоянии 5 см от противоположного края.
Выполните триангуляцию края, как показано.

15 :
Поместите половину листа внутрь лопатки так, чтобы ее нетриангулированный край был выровнен с задним краем лопатки. Допускается наличие небольшого зазора или чаши на обоих концах, если они не подходят идеально для лопасти.

Просверлите и заклепайте ряд отверстий в половине листа, ближайшем к заднему краю.

16 :
Поставьте лопатку вертикально. Сдвиньте треугольный край половинки листа внутрь и вперед, чтобы он прилегал к другому листу и немного плотно прилегал к стойке.
Просверлите ряд отверстий, на которых сидит треугольный край половинки листа, и заклепайте на место.

17 :
Просверлите одно из средних отверстий в крайнем заднем ряду половинки листа, следя за тем, чтобы сверло оставалось достаточно прямым, и закрепите его заклепкой и шайбой так, чтобы шайба находилась внутри флюгер.С этой битой намного проще работать со второй парой рук. Старайтесь держать шайбу ровно на металле.
Повторите то же самое для остальных трех отверстий.

Просверлите, заклепайте и шайбу оставшийся ряд. Половина листа должна плотно прилегать к стойке. Вы должны заметить, что лопатка стала намного прочнее и жестче.

Отогните нахлест на обоих формирователях до 90 градусов.

18 :
Просверлите все отверстия на каркасе, который будет прикреплен к колесу велосипеда.Если вы делаете трехлопастную версию, это будет нижняя версия. Если вы делаете шесть лопастей, то три из них будут прикреплены к колесу снизу, а три сверху. В остальном лопатки идентичны.

Просверлите небольшой деревянный брусок или свернутую трубку из обрезков алюминия, чтобы металл не проталкивался внутрь и вы не рискуете просверлить руку.

Заклепайте каждое отверстие, кроме отмеченных:

, так как они будут прикреплены к ободу колеса болтами.

В некоторых отверстиях очень легко оттолкнуть внутренний слой металла с помощью сверла и заклепки, поэтому убедитесь, что каждое отверстие правильно просверлено и прикреплено. Если нет, возможно, потребуется просверлить и заменить заклепку.

Просверлите отверстия в противоположном каркасе, в том, который не крепится к колесу, и заклепайте все, кроме центрального.

19 :
Возьмите велосипедное колесо. Просверлите три отверстия диаметром 4 мм, равномерно расположенных по ободу.У вашего колеса должно быть 36 спиц, поэтому просверливайте отверстие через каждые 12 спиц. Отверстие должно располагаться довольно близко к краю обода.

Проденьте болт M4 через одно из отверстий в колесе и через самое незакрепленное заднее отверстие в нижнем каркасе лопатки.
Установите на болт большую шайбу и найлок. Убедитесь, что болт прилегает к спице велосипеда, которую вы вставляете внутрь загнутого края конуса, а шайба находится над ним. Это так, что болт, и поэтому вся лопасть не может оторваться от колеса ни в сторону, ни вверх.
Пока не затягивайте найлок полностью.

Выровняйте лопатку так, чтобы другое невыдвижное отверстие находилось рядом с краем обода колеса, и отметьте ручкой через отверстие, а также невыдвижное отверстие в середине первого.

Поверните лопатку, чтобы можно было просверлить две отметки.

Переместите лопатку назад и зафиксируйте ее двумя болтами, большими шайбами ​​и найлоками. Полностью затяните все три. Здесь пригодится 7-миллиметровый торцевой ключ / гаечный ключ, поскольку затягивать их вручную — это небольшая работа.Вы также захотите использовать болты с шестигранной головкой, так как они, надеюсь, зафиксируются на ободе колеса и не поворачиваются, когда вы их затягиваете. В противном случае просто возьмите головку плоскогубцами или гаечным ключом на 7 мм. Попытка достать для них отвертку, если вы используете болты с крестообразной головкой или что-то подобное, в лучшем случае — это кошмар, а если вы делаете шестилопастную турбину, то это практически невозможно.

20 :
Повторите два раза, начиная с шага 8, чтобы собрать еще две лопатки из оставшихся формирователей и листов и прикрепить их к колесу.

21 :
Возьмите еще один обрезанный лист и отрежьте полоску шириной 9,5 см и длиной 62 см.
** В анимации указано, что эта длина 67 см, но ее необходимо обновить, 62 см — правильный размер **

Проведите длинные линии на расстоянии 3,5 см от одного длинного края и на расстоянии 1 см от другого длинного края с другой стороны металла.
Согните 1 см шириной до 45 градусов. Переверните назад и проведите триангуляцию, как показано.

Просверлите отверстие диаметром 4 мм на расстоянии 1 см от каждого конца стойки в середине плоского участка диаметром 1 см.Просверлите и заклепайте отверстие посередине.
Повторите еще два раза, чтобы получить три стойки.

22 :
Вставьте болт M4 с большой шайбой через непривинчивое центральное отверстие в верхней части одной из лопаток и через торцевые отверстия в двух стойках. Добавьте большую шайбу и найлок.
Повторите то же самое с двумя другими лопатками и последней стойкой. Пока не затягивайте полностью.

Верхнюю часть лопаток нельзя перекручивать относительно их основания. Поместите турбину на землю так, чтобы вы могли смотреть на нее, встаньте над одной из лопастей, чтобы вы могли видеть длинный край обоих формирователей.Скрутите верхний формирователь так, чтобы он совпадал с нижним.
Просверлите отверстие в одной из распорок и в бывшей стойке на расстоянии 1-2 см от края. Добавьте болт с большой шайбой, большую шайбу и найлок. Еще раз проверьте центровку, просверлите вторую стойку и болт из нейлока и т. Д. Затяните все три.
Повторите то же самое для двух других лопаток.

По желанию вы можете добавить три дополнительных лопатки к нижней части колеса. Это даст вам вдвое больше мощности, а также сделает турбину более устойчивой, поскольку она эффективно перемещает точку контакта к центру турбины, а не к ее дну.

23:
Чтобы сделать скобу для крепления турбины к месту, где она движется, возьмите два куска стали длиной более или менее 18 см и 20 см, шириной около 3 см и толщиной около 3 мм. Эти числа не являются жизненно важными, если они примерно такого размера и металл достаточно прочный.

Отметьте каждую деталь на расстоянии 3 см от одного конца и в тисках или аналогичных согните металл под прямым углом. Убедитесь, что все углы довольно близки к 90 градусам, иначе турбина не будет прямой.

Сложите две детали так, чтобы длина 18 см находилась внутри 20 см. Просверлите 10-миллиметровое отверстие (которое должно быть диаметром оси велосипедного колеса на вашей турбине) через оба 3-сантиметровых выступа в металле. Убедитесь, что детали не соскальзывают друг с другом во время сверления.

Возьмите запасную ось велосипеда с такой же резьбой, как на вашем колесе, и накрутите гайку. Вставьте его в стальную деталь толщиной 20 см, добавьте и затяните еще одну гайку, добавьте кусок 18 см, затем еще одну гайку.

Просверлите отверстие диаметром 6 мм в зазоре между двумя деталями, как показано, а затем еще одно отверстие примерно на 1 см вниз и третье отверстие рядом с другим концом.

Разобрать все на части.

24:
По длине оси на нижней стороне турбинного колеса сначала поместите 20-сантиметровую стальную деталь с болтом M6 через ее верхнее отверстие (если гайка, которую вы используете, не очень толстая, вам может потребоваться подпилить вниз головку болта, чтобы она вошла между двумя стальными частями), затем гайку и затяните, затем кусок 18 см, затем последнюю гайку и затяните, и, наконец, два болта через оставшиеся отверстия.

Поздравляю, вы сделали ветряк!

Конфигурации:

Это несколько потенциальных способов прикрепить приложения к вашей турбине, чтобы она могла выполнять полезную работу. На самом деле не существует единого ответа на вопрос, что и как вам следует делать, так как это будет сильно зависеть от вашей конкретной ситуации, и эти возможные решения предназначены только в качестве руководства. Если и когда вы дойдете до этой части процесса, напишите нам напрямую или посетите группу в Facebook, где сообщество может помочь вам создать то, что вам нужно, и вы сможете следить за тем, что уже сделали другие.Большинство сборок довольно просты, и все это было сделано раньше.

A: Генератор постоянного тока.

Эту турбину можно подключить и использовать для питания различных приложений, например, для механического присоединения насоса для перемещения воды и сжатия воздуха, но вы, вероятно, собираетесь использовать ее для выработки электроэнергии для зарядки аккумуляторов.
Одно из самых простых решений для этого — использовать постоянный магнит (например, здесь используются настоящие магниты, а не электромагниты) двигатель постоянного тока в обратном направлении в качестве генератора.Какой тип двигателя вы в конечном итоге будете использовать, будет зависеть от того, сколько у вас ветра, сколько мощности вам нужно, и от вашего бюджета, но их установка — это в основном один и тот же процесс. Хорошие варианты включают двигатели от дворников лобового стекла автомобилей, мотороллеров, электрических мотоциклов и беговых дорожек в более или менее таком порядке увеличения выходной мощности. Их можно собрать из предметов, которые выбрасывают, или купить в Интернете.

Присоединение — это в основном просто снятие всего с двигателя, прикрепление шкива к валу, протягивание зубчатого ремня ГРМ вокруг обода колеса (со слоем нейлоновой ленты, прикрепленной болтами к колесу, чтобы защитить ремень и дать ему что-то возьмитесь за) и прикрепите двигатель к стойке, как показано, длинными болтами, чтобы вы могли легко регулировать натяжение ремня.

B: Полюс.

Есть разные вещи, к которым вы можете прикрепить турбины, включая крышу вашего дома, лодку, фургон или радиомачту, но самый стандартный вариант, особенно если вы находитесь в сельской местности, — это металлический столб с направляющей. веревки.
Это в значительной степени просто вопрос соединения различных компонентов вместе, как показано на видео, и обеспечения того, чтобы все было надежно и надежно. Вам понадобятся отверстия для деревянных анкеров глубиной от полуметра до метра или прикрепить их к любым другим прочным фиксированным точкам, которые у вас могут быть.

Единственный недостаток этой конфигурации заключается в том, что она закреплена на шарнирах у земли, так что всю опору и турбину можно уронить для обслуживания или в случае урагана. Это просто вопрос снятия D-скобы с узла точки крепления, к которой прикреплен горизонтальный рычаг стрелы, и осторожного опускания всей сборки на землю с помощью стрелы. Возможно, вам захочется установить какую-нибудь подставку, чтобы удерживать турбину. Повторное поднятие — это как раз обратный этому процессу, после чего убедитесь, что все кабели правильно натянуты, а штанга находится в вертикальном положении.

Вы захотите использовать четыре кабеля, а не три, так как это сделает все устройство более устойчивым и безопасным при подъеме и опускании.

C: Велосипедная цепь и генератор (и) постоянного тока


Эта конфигурация будет обновлена ​​в новом руководстве, поскольку в ней нет смысла.

D: Колесо электрического велосипеда.

Идеальным решением для выработки электроэнергии от турбины является использование ступицы велосипедного колеса с электродвигателем.Если найдешь. В конструкции в любом случае используется колесо, и почти все аспекты входной, выходной мощности, оборотов и т. Д. Довольно хорошо вписываются в колесо eBike с прямым приводом мощностью ~ 300 Вт. Все, что вам нужно сделать, это построить на нем турбину и подключить провода к вашей электрической системе. К сожалению, за пределами нескольких стран их получение может быть трудным и дорогостоящим.

E: Самодельный генератор.

Эта опция даст вам наибольший контроль над производством электроэнергии с точки зрения напряжения, об / мин и общей мощности.Это также, наверное, самый трудоемкий и наукоемкий. По сути, это просто круг магнитов, проходящий по кругу катушек из медной проволоки, но какая именно их конфигурация будет зависеть от различных факторов. Однако это проблема, которую раньше решали тысячу раз, и в Интернете есть масса полезной информации обо всем этом. Группа Facebook — хорошее место, чтобы задать вопросы и найти ресурсы по этому поводу.

F: «Хардкор».

Эта конфигурация также будет обновлена ​​в следующей версии руководства.

G: Шлейфовое соединение.

Около половины общей стоимости стандартной установки турбины приходится на опору и ее различные фитинги. Но нет причин, по которым у вас может быть только одна турбина на полюс. Нижние будут получать меньше ветра и, следовательно, вырабатывать меньше энергии, чем верхние, но все же стоит сделать, чтобы покрыть в основном всю длину шеста. И вы можете производить электричество, качать воду, что хотите.

Если у вас есть какие-либо вопросы, напишите мне по адресу [email protected], или присоединяйтесь к группе разработчиков ветряных турбин на Facebook за 30 долларов.

Backyard Wind Power — Марка:

Фотографировал Ульрих Шмерольд. Перевод Niq Oltman с немецкого

Эта статья из Make Vol. 73! Подпишитесь сейчас, чтобы не пропустить ни одну из наших замечательных сборок.

Для маломощных применений вокруг вашего дома и двора профессиональные ветряные установки слишком дороги.Если все, что вам нужно, это немного сока для светодиодного освещения или проекта Raspberry Pi Zero, платить тысячи за небольшую ветроэнергетическую систему будет непропорционально. И для экспериментов в школе затраты и время также должны быть минимальными — школы часто испытывают нехватку денег. В этой статье мы покажем вам, как построить небольшую ветроэнергетическую установку из старых деталей велосипеда и прочего из хозяйственного магазина. С легкостью он может обеспечить около 1 ватта мощности. Этого достаточно, чтобы зарядить небольшую батарею, так что у вас будет заряд даже в спокойную погоду.

Эта небольшая ветряная турбина — скорее эксперимент, чтобы научить вас основам; он не обеспечит вам 100-процентную надежную подачу электроэнергии. Никаких чудес здесь нет! Также остерегайтесь сильных ветров и штормов: эта машина не предназначена для работы в таких погодных условиях и, скорее всего, развалится. Вы должны защитить его от таких возможных повреждений, поскольку летящие обломки могут стать причиной травм.

В отличие от типичных трехлопастных коммерческих ветряных турбин, мы используем вертикальный вал ротора. Это устраняет необходимость в отслеживании направления ветра и оставляет нам очень простую конструкцию.По сути, это просто вертикально установленное велосипедное колесо с динамо-втулкой. В качестве лопастей ротора мы используем восемь «полутруб», вырезанных из дешевой дренажной трубы из пластика (ПВХ), вертикально прикрепленных к ободу.

Наша турбина начнет вращаться, как только скорость ветра достигнет 2 баллов по шкале Бофорта, или 5 миль в час. При скорости ветра 20 миль в час или 5 баллов по шкале Бофорта (см. Таблицу преобразования ниже) он обеспечивает выходную мощность около 1 Вт (мы измерили 147 мА при 6,7 В).

Шкала скорости ветра, которую мы используем сегодня, восходит к 18 веку.Первоначально это было сделано для описания воздействия на лопасти ветряной мельницы. Британский мореплаватель сэр Фрэнсис Бофорт (1774–1857) отнюдь не был первым, кто опубликовал такую ​​шкалу; его работа произошла от работ инженера-строителя Джона Смитона (1759 г.) и географа / гидрографа Александра Далримпла (1790 г.). Еще более ранние весы были созданы астрономом Тихо Браге (1582 г.), ученым-эрудитом Робертом Гуком (1663 г.) и торговцем, мятежником, шпионом и писателем Робинзона Крузо Даниэлем Дефо (1704 г.). Но с 1829 года Бофорт, который теперь был назначен гидрографом Британского Адмиралтейства, поделился своей шкалой со всеми заинтересованными сторонами.Шкала Бофорта с тех пор стала стандартом. (Источник: Википедия, en.wikipedia.org/wiki/Beaufort_scale)

Начнем с сборки роторно-генераторной установки. Вы будете использовать мачту, сделанную из стальной водопроводной трубы, которая, вероятно, будет закреплена в земле с помощью заливного бетона. Ознакомьтесь с местными требованиями к фундаменту и высоте мачты и отрегулируйте их соответствующим образом. В зависимости от местных условий вам также может потребоваться закрепить мачту с помощью тросов.

1. Обрезать лопатки турбины

Для изготовления лопаток турбины мы использовали тонкостенную дренажную трубу из ПВХ ( Рисунок A ).В Германии, где мы живем, это апельсин; в Северной Америке обычно белый.

Рисунок B

Используя лобзик, вы можете вырезать 4 лезвия из трубы длиной 6 или 2 м ( Рисунок B ). Всего нам понадобится 8 лезвий. Обрезайте трубу точно по центру — в идеале все лезвия должны быть одинакового веса.

2. Присоедините лопасти к генератору

Рисунок C

В качестве генератора мы используем велосипедное колесо (обод), оснащенное динамо-втулкой ( Рисунок C ). Лучше всего подходят алюминиевые диски, так как их легко просверлить.Если вы снимаете детали с бывшего в употреблении велосипеда, обязательно снимите шину, камеру и все тормозные диски.

Рисунок D

Присоедините 8 лопаток турбины, как показано, используя по 2 винта, гайки и большие шайбы каждая, равномерно (попробуйте сосчитать спицы) и отцентрируйте на ободе ( Рисунок D ).

3. Сделайте мачту

Рисунок E

Сделайте мачту из оцинкованной стальной водопроводной трубы с резьбой на обоих концах ( Рисунок E ). Просверлите отверстие диаметром 9 мм в торцевой крышке и затяните гайку ступицы на оси велосипедного колеса, чтобы прикрепить колесо к крышке ( Рисунок F ниже).После того, как мачта будет надежно закреплена в земле (!), Вы можете навинтить колпачок на мачту.

Рисунок F

Для установки мачты может пригодиться резьба на другом конце. Вы можете нарезать на него подходящий тройник и заключить тройник в бетонный блок, который вы будете заливать в землю. Бетон должен быть достаточно тяжелым, чтобы поддерживать и закреплять турбину, и должен быть прочно закреплен в земле. Затем, когда начинается шторм, вы можете просто отвинтить мачту от бетонного блока и унести турбину в безопасное место.

Не делайте ошибки, недооценивая силы, создаваемые ветрами. Они растут пропорционально кубу (третьей степени) скорости ветра! При необходимости закрепите мачту тросами.

4. Соберите электронику

Рисунок G

Наше устройство настроено для зарядки свинцово-кислотной батареи с использованием тока, генерируемого динамо-машиной ( Рисунок G ). Динамо-втулка вырабатывает переменный ток, который мы преобразуем в пульсирующий постоянный ток с помощью мостового выпрямителя.Чтобы его сгладить, пульсирующий постоянный ток подается на два электролитических конденсатора емкостью 2200 мкФ (микрофарад).

Сглаженный постоянный ток затем передается на повышающий преобразователь (около 10 долларов на eBay), который мы будем использовать в качестве регулятора заряда. Это преобразует любое входное напряжение от 1,25 В до 30 В в регулируемое постоянное выходное напряжение. Мы установим выход преобразователя на 0,7 В выше конечного напряжения зарядки нашей батареи (компенсируя прямое напряжение диода). Диод 1N4007 необходим для предотвращения обратного тока тока от батареи к преобразователю.

Например, свинцово-кислотный аккумулятор на 6 В имеет зарядное напряжение 7,2 В. Добавив прямое напряжение диода 0,7 В, преобразователь должен быть установлен на выходное напряжение 7,9 В.

Ваша электрическая нагрузка (что бы ни потребляло энергию, например, светодиодная лампа) будет подключена к выходу батареи. Имейте в виду, что нагрузка должна выдерживать установленное для преобразователя выходное напряжение. Хотя сам генератор может обеспечивать лишь небольшой ток, батарея может выдавать несколько ампер.В случае короткого замыкания последствия могут быть тяжелыми (опасность пожара). Чтобы предотвратить несчастные случаи, вам необходимо соответствующим образом защитить цепь, которую вы подключаете к батарее.

После того, как электроника собрана, вы готовы приводить в движение свою установку! Наслаждайтесь своим новым потенциалом в качестве владельца ветряной турбины.

Эта ветряная турбина задумана как эксперимент, недорогая практическая демонстрация принципа работы ветряных турбин, например, в школе. Он не предназначен для выдерживания сильных ветров или сильных штормов.Когда он не используется или если скорость ветра превышает 6 баллов по шкале Бофорта, его следует разобрать.

Велосипедное колесо и крепления для лопастей ротора не предназначены для длительной эксплуатации, особенно при сильном ветре. Мы рекомендуем вам предпринять собственные шаги по укреплению этой конструкции, если вы хотите сделать ее постоянной. (Тем не менее, конструкция оказалась более устойчивой, чем ожидалось. Я оставил ее в саду все время, в любую погоду. Только когда кабельная стяжка разорвалась, мачта упала, и лезвие было разрушено.)

Вы работаете с ветряной турбиной? Мы будем рады получить известие от вас по адресу [email protected] (пришлите нам фотографии и спецификации, пожалуйста). Мы включим ваш вклад в будущий отчет.

В 2006 году поселенцы из Нью-Мексико Эйб и Джози Конналли написали в книге Make: Volume 05 отличное руководство по созданию ветрогенератора Chispito из трубы ПВХ и старого двигателя беговой дорожки для упражнений. Три года спустя Джон Эдгар Парк реализовал проект на национальном телевидении для PBS ’ Make: TV.

Chispito по-прежнему популярен сегодня — Эйб и Джози позже разместили проект на Instructables, где он собрал сотни комментариев, а также на своем собственном сайте velacreations.com, где они документируют всевозможные замечательные автономные проекты DIY. Их солнечная сушилка для пищевых продуктов, улей с верхней решеткой и земляные полы также были представлены в модели Make: .

Поднятый на мачте высотой 10–30 футов, Chispito будет генерировать 84 Вт мощности при скорости ветра 30 миль в час; Обязательно следуйте обновленным инструкциям по формированию лопаток на велюре.com / chispito.

Иллюстрация Тима Лиллиса

Другие проекты по ветроэнергетике

Это крошечное устройство может собирать энергию ветра из бриза, который вы даете, когда вы идете — ScienceDaily

Большая часть ветра на суше слишком слабая, чтобы толкать лопасти коммерческих ветряных турбин, но теперь исследователи в Китае разработали своего рода «крошечные» ветряная турбина », которая может поглощать энергию ветра от бриза так же мало, как от ветров, созданных при быстрой прогулке. Метод, представленный 23 сентября в журнале Cell Reports Physical Science , представляет собой недорогой и эффективный способ сбора легких ветров в качестве источника микроэнергии.

Новое устройство технически не является турбиной. Это наногенератор, состоящий из двух пластиковых полос в трубке, которые трепещут или хлопают вместе, когда есть воздушный поток. Подобно трению воздушного шара о волосы, два пластика становятся электрически заряженными после отделения от контакта, это явление называется трибоэлектрическим эффектом. Но вместо того, чтобы заставить ваши волосы встать дыбом, как у Эйнштейна, электричество, вырабатываемое двумя пластиковыми полосками, улавливается и сохраняется.

«Вы можете собрать все легкие в своей повседневной жизни», — говорит старший автор Янг Ян из Пекинского института наноэнергетики и наносистем Китайской академии наук.«Однажды мы поместили наш наногенератор на руку человека, и потока воздуха от качающейся руки было достаточно для выработки энергии».

Слабого ветра 1,6 м / с (3,6 миль в час) было достаточно для питания трибоэлектрического наногенератора, разработанного Яном и его коллегами. Наногенератор работает наилучшим образом при скорости ветра от 4 до 8 м / с (от 8,9 до 17,9 миль в час), скорости, которая позволяет двум пластиковым полоскам колебаться синхронно. Устройство также имеет высокий КПД преобразования энергии ветра в энергию, равный 3,23%, что превышает ранее заявленные характеристики по поглощению энергии ветра.В настоящее время устройство исследовательской группы может питать 100 светодиодных ламп и датчиков температуры.

«Мы не намерены заменять существующую технологию производства ветровой энергии. Наша цель — решить проблемы, которые традиционные ветряные турбины не могут решить», — говорит Ян. «В отличие от ветряных турбин, в которых используются катушки и магниты, где стоимость фиксирована, мы можем выбирать недорогие материалы для нашего устройства. Наше устройство также можно безопасно применять в заповедниках или городах, поскольку оно не имеет вращающихся конструкций. .«

Ян говорит, что у него есть два видения следующих шагов проекта: одно маленькое и одно большое. В прошлом Ян и его коллеги разработали наногенератор размером с монету, но он хочет сделать его еще мельче, компактнее и эффективнее. В будущем Ян и его коллеги хотели бы объединить устройство с небольшими электронными устройствами, такими как телефоны, чтобы обеспечить устойчивую электроэнергию.

Но Ян также хочет сделать устройство больше и мощнее. «Я надеюсь увеличить мощность устройства до 1000 Вт, чтобы оно могло конкурировать с традиционными ветряными турбинами», — говорит он.«Мы можем разместить эти устройства в местах, недоступных для традиционных ветряных турбин. Мы можем разместить их в горах или на крышах зданий для обеспечения устойчивой энергетики».

История Источник:

Материалы предоставлены Cell Press . Примечание. Содержимое можно редактировать по стилю и длине.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *