Ремонт компьютерного блока питания своими руками: Пошаговый ремонт компьютерного блока питания своими руками

Содержание

Ремонт блока питания компьютера своими руками

Современные конструкции компьютеров позволяют быстро решать вопрос о том, как отремонтировать блок питания своими руками. Несмотря на модель устройства: компьютерная игровая или более простая для офиса – алгоритм и принцип работы неизменный. Быстро устранить проблемы, которые возникли с блоком питания (далее БП) поможет информация в данной статье.

Как найти блок питания

БП представляет собой независимое импульсное устройство, которое питает материнскую плату, видеокарту и другие неотъемлемых частей компьютера.

Перед непосредственным ремонтом, убедитесь в неисправности БП. Так вы сэкономите время на разборке целостного устройства. Часто встречаются другие причины, по которым компьютер отказывается работать, несвязанные с БП.

 

На фото представлен классический вид БП АТХ

 

Снятие крышки

Прежде всего необходимо получить физический доступ к БП, достав его из системного блока.

Обратите внимание на возможность снять боковую крышку у компьютера. Открутите два винта, которые расположены на боковых краях возле разъемов.

Откручивание БП

БП плотно присоединен к системному блоку. Для его извлечения открутите четыре крепежных винта. Чтобы провести визуальный осмотр блока, не обязательно отсоединять все провода – достаточно убрать только те, которые мешают полноценной диагностике устройства.

Достав блок – изучим «начинку». Для этого следует открутить еще четыре винта, которые чаще всего спрятаны под наклейками. Убрать бумажный крепеж можно полностью или проколов нужное отверстие отверткой.

Очистка пыли

После «вскрытия» БП, проводят отчистку от скапливаемой пыли. Если долго не проводить диагностику – встречаются целые комки пыли. Чтобы быстро справиться с поставленной задачей использую пылесос. Мусор в БП является частой причиной его нарушений и сбоев. Так устройство быстрее перегревается и ломается.

Устройство блока питания

БП – это сложная электронная система. Чтобы вплотную заняться решением поломок необходимо владеть рядом технических знаний. Несмотря на это, восемьдесят процентов нарушений легко устранить самому, следуя пошаговой инструкции ремонта блока питания компьютера.

Структурная схема БП АТХ

Чтобы подробнее изучить структурную схему БП АТХ – просмотрите картинку ниже. Здесь изображены те части блока, которые чаще всего ломаются. Такие части можно заменить самостоятельно, не будучи компьютерным профессионалом.

 

 

На изображении отмечены следующие параметры:

  • А – фильтр для сети;
  • В – выпрямитель на низких частотах;
  • С – каскад со вспомогательным преобразователем;
  • D – выпрямитель;
  • E – управленский блок;
  • F – контролер;
  • G – каскад со основным преобразованием;
  • H – выпрямитель с фильтром сглаживания;
  • J — вентилятор для охлаждения системы;
  • L – контроллер за выходным напряжением;
  • K – защитная система от перегрузки;
  • +5_SB – дополнительное питание;
  • P.G. – сигнал, который нужен для работы материнской платы;
  • PS_On – сигнал, который проводит управление над работой и запуском БП.

Как проверить работоспособность блока питания

Проверка рабочих способностей БП осуществляется двумя методами. Первый, который чаще всего используют, включает использование мультиметра. Необходимо придерживаться следующего алгоритма:

  • Достаньте «начинку» персонального компьютера.
  • Поочередно отключайте разъемы каждого устройства. Не забудьте, как вы разбирали, чтоб потом вернуть все в первоначальное положение.
  • Видите самый большой разъем? Чаще всего он подключен к материнской плате – берем его.
  • Необходимо сделать перемычку, применяя проволоку: между 14-15 и 16-17 контактами на двадцатом и двадцать четвертом коннекторе соответственно.
  • В конце – подключите компьютер к электроэнергии.

Есть два исхода событий. Если устройство включается, то можно смело переходить к измерению напряжения на отдельных контактах. При отсутствии реакции на проделанную работу – БП вышел из строя и требует дальнейшего осмотра и ремонта.

Второй метод назвали «скрепки». Этот алгоритм проверки более простой и требует следующих действий:

  • Выключите питание компьютера.
  • Откройте корпус устройства и отсоедините разъемы от материнской платы.
  • С использованием обычной скрепки, сделайте форму буквы «U». Она понадобиться для работы с зеленым проводом и ближним проводом черного цвета. Заворачиваем эти провода.
  • Подключите БП и сам компьютер к сети.

При рабочем вентиляторе – БП без поломок и явных повреждений. Если же вентилятор не работает – следует ремонтировать блок.

Как найти неисправность блока питания АТХ

Определить неисправность БП достаточно просто. Чаще всего показатель один – просто нерабочее состояние системы блока. Если обнаружились сбои материнской платы или оперативной памяти, то скорее всего проблема черпается с БП. К основным проблемам, которые свидетельствуют о неисправности системы, относится следующий список:

  • частые зависания во время работы или подключения;
  • незапланированные и резкие перезагрузки системы;
  • постоянные всплывания ошибок памяти;
  • остановка работы HDD;
  • неисправность вентилятора.

Внешний осмотр

Ремонт блока питания компьютера своими руками часто предусматривает внешний просмотр устройства. Чаще типичной неисправностью БП считается отсутствие света в индикаторе питания и вращения лопастей вентилятора. Возможной причиной является перегорание предохранителя. Устранить ее можно исключительно заменой этой детали.

Проверка предохранителя

Основная проблема предохранителя – сгорание. Если вы обнаружили подобную проблему, то не спешите менять запчасть и отключать БП о сети. 90% проблем с предохранителем – это последствие неисправности. Для этого стоит исследовать высоковольтную часть блока: транзисторы и диодные мосты.

Проверка электролитических конденсаторов

Выпуклые крышки и вытекший электролит – признак неисправности системы конденсаторов. Их можно заменить на модели с большой емкостью или напряжением. БП с таким конденсатором самостоятельно включается и выключается. Встречают поломки без внешних повреждений, но с существенными проблемами внутри системы.

Проверка других элементов БП АТХ

Осмотрите резисторы, которые различают по цвету. Такие детали меняют только на аналогичные экземпляры, чтобы БП работал полноценно. Уделите внимание диодам и стабилизаторам. Их проверяют методом прозвона в обе стороны. Сгоревшие части меняются на аналогичные или схожие по основным характеристикам.

Ремонт блока питания АТХ

Ремонт БП АТХ начинается со снятия крышки системного блока. Следующий этап – очистка пыли внутри системы с помощью обычного пылесоса. Необходимо тщательно осмотреть каждую деталь БП. Уделите внимание конденсаторам. Если необходимо, главная задача – замена сломанных частей на их оригинальные копии. В случае неизвестных поломок, заниматься самостоятельной починкой нельзя. Так можно ухудшить ситуацию, лучше обратиться к специалистам.

Как заменить предохранитель в блоке питания ПК

Замена предохранителя требует наличие отвертки, канифоля, припоя, паяльника и наждачной бумаги. Алгоритм починки выглядит следующим образом:

  1. Отключаем БП от сети и снимаем боковую крышку.
  2. Вытаскивай БП и приступаем к поиску предохранителя. Если деталь сгорела, то она будет черной.
  3. Применяя паяльник необходимо выпаять сгоревшие элементы.
  4. Спаиваем новые детали с необходимыми параметрами на нужное место.

Замена неисправных элементов

Для замены любых неисправных частей БП стоит должное внимание уделить их характеристикам. Если какой-то параметр не будет подходить – это произведет не только к нерабочему устройству, но и к полному сгоранию системы. В БП под каждой деталью расписаны параметры и точные названии модели запчасти. Именно такую модель необходимо приобрести на рынке, чтобы смонтировать для полноценной работы компьютера.

Ремонт блока питания компьютера видео

Просмотр видеороликов – это лучший способ точно изучить каждый этап алгоритма починки БП. Обратите внимание на работу с маленькими деталями устройства. Перед выбором видео убедитесь, что вы смотрите необходимый материал. В противном случае испортите свое устройство. Зрительное восприятие намного лучше, чем разборка напечатанной информации.

фото и видео инструкция по проведению работ, как проверить транзистор и конденсатор пк мультиметром, в чем суть переделки компьютерного блока

Автор Aluarius На чтение 8 мин. Просмотров 645 Опубликовано

Проблемы нестабильного напряжения в сетях переменного тока – бич отечественных электросетей, который приводит к выходу из строя многих бытовых приборов. К примеру, стационарный компьютер. И в процессе работы, и в состоянии отключения этот аппарат подвергается негативному воздействию скачков напряжения. Все дело в том, что в основном негативное воздействия направлено на блок питания, который даже при выключенном компьютере все равно работает. А, значит, это самое уязвимое место. Поэтому он чаще всего и выходит из строя. И тут у многих обывателей возникает вопрос, что делать: покупать новый или провести ремонт блока питания компьютера своими руками?

Блок питания для компьютера

Вопрос на самом деле поставлен очень правильно. Все будет зависеть от того, какова сборка компьютера. Если блок питания собран из безыменных деталей (их обычно специалисты называют нонеймовские), то это дешевый вариант, который ремонтировать нет смысла. Легче и дешевле будет выбрать и приобрести новый. Хотя попробовать сделать ремонт компьютерного блока питания можно именно на нем. Даже если у вас ничего не получится, это будет неплохой опыт. Так что стоит повозиться с ним на досуге.

А вот если в вашем компьютере установлен брендовый блок питания, то его замена на новый обойдется в копеечку, поэтому есть смысл разобраться в его комплектации и схеме и провести ремонт самостоятельно.

Кстати, есть простой способ проверить работоспособность блока питания. Для этого его необходимо отключить от материнской платы. Просто отсоединяются разъемы проводов, ведущих от блока к плато. Разъемы могут быть 20 или 24 контактные (4 или 6). Чтобы проверить, работает ли блок, необходимо закоротить 14 или 15 контакты между собой (если разъемник двадцатиконтактный) или 16 и 17 (если двадцатичетырех контактный). То есть, соединяются между собой провода зеленого (иногда он серый) цвета и черного. Затем сам блок подключается в сеть через розетку. Если вентилятор куллера заработал, то все в порядке, причина не в нем. Надо искать другие поломки.

Компьютерный блок питания в системном блоке

Ремонтный процесс

Итак, начнем с оговорки, которая определит первопричину вопроса, как отремонтировать блок питания компьютера? Запомните, что сам блок питания в отличие от компьютера работает под напряжением 220 вольт. Поэтому в его схеме установлены конденсаторы большой емкости. Именно они аккумулируют в себе напряжение, которое может долго храниться.

Ремонт своими руками любого электронного аппарата основан на работе с паяльником. И если у вас практики большой нет, то стоит отказаться от этой затеи. Все-таки компьютерный блок сетевого питания – аппарат ответственный, от которого зависит – будет работать компьютер или нет.

Плюс ко всему придется разбираться со схемой по ходу событий, потому что точной схемы вы вряд ли найдете, даже в Интернете. Принципиальные схемы есть, но это не говорит о том, что в вашем блоке питания она будет точно такой же. Поэтому все придется делать по ходу ремонта.

Внутреннее устройство блока питания

С чего начать

В первую очередь необходимо снять крышку и прочистить все внутренности от пыли. Толстый слой пыли становится барьером, который препятствует отводу температуры от работающих деталей. Так что это тоже причина отказа работы блока.

Теперь обратите внимание на предохранитель. Обычно здесь установлена деталь на 5 А. Это стеклянная колба, внутри которой проходит тонкая металлическая нить. Если нити нет, то предохранитель сгорел, его надо заменить. Но иногда вроде бы нить присутствует, поэтому стоит предохранитель проверить. Как?

  • Надо будет припаять по концам детали медную проволочку диаметром 0,18 мм.
  • После чего включить блок в розетку.
  • Если вентилятор куллера заработал, то неисправность – предохранитель.
  • Выпаивайте его из схемы и устанавливайте новый.
Первым делом нужно очистить внутренности компьютера от пыли

Конденсаторы

Обычно в блоках питания установлены конденсаторы с большой емкостью. Именно в них и аккумулируется напряжение. Поэтому это детали, которые чаще всего выходят из строя (в 80% случаях).

Первое, что должно броситься в глаза, это вздутие и подтеки электролита. Если это все есть в наличии, то это стопроцентно, что конденсатор не работает.

Внимание! Плохая работа вентилятора становится причиной вздутия конденсаторов. Все дело в том, что вентилятор должен охлаждать конденсаторы, которые подвергаются нагреву за счет аккумулирования напряжения в них. Поэтому специалисты рекомендуют периодически проводить смаку подшипников вентилятора и чистку всего куллера.

Но иногда видимых дефектов у конденсаторов не наблюдается, поэтому стоит проверить их мультиметром на предмет проверки сопротивления. Если сопротивление большое (по сравнению с номиналом), то это говорит о том, что произошел разрыв между внутренней обкладкой и выводом. Специалисты называют эту ситуацию – конденсатор в обрыве.

Вздутые конденсаторы

Есть в схеме блока питания и электролитические конденсаторы. Они также могут вспухнуть, но менять их на новые нет смысла, потому что необходимо сначала найти причину их вздутия, а затем проводить замену. Обычно причина – это выход из строя схемы стабилизации напряжения. Так что пока не разберетесь с ней, менять электролитические конденсаторы нет смысла. Не поможет, все равно вздуются. Но ремонт компьютерных блоков питания этого типа провести может только специалист, своими руками его не осилить. Плюс ко всему потребуются профессиональные измерительные приборы. Так что оптимальный вариант – отнести блок питания в мастерскую. В данном случае выбирать не приходится.

Транзисторы

Это еще одна деталь, которая может стать причиной неработоспособности блока питания для ПК. Обратите внимание на конструктивную особенность транзистора. У него три ноги:

  1. База.
  2. Коллектор.
  3. Эмиттер.

Так вот, чтобы определить – работает ли деталь или нет – необходимо прозвонить ее мультиметром. И вот тут необходимо знать, как прозванивать. Прозвон может быть осуществлен только в двух направлениях:

  • База – коллектор.
  • База – эмиттер.
Транзисторы в блоке питания

Если поменять полярность прозвонки, то ничего у вас не получится. Тот же самое касается и направления между коллектором и эмиттером. Чтобы правильно провести прозвон, необходимо щуп с красным проводом подсоединить к базе транзистора, а черный провод к коллектору или эмиттеру. Если на дисплее высветился показатель в пределах 650-800 мВ, то все нормально, транзистор целый.

Для проверки можно прозвонить коллектор-эмиттер. Здесь сопротивление должно быть бесконечным, дисплей покажет единицу. Если этот переход пробит, то мультиметр издаст характерный сигнал. Но учтите, это необязательно, что другие переходы также не работают.

Что касается диодов, то эти маленькие приборы практически тоже самое, что и транзисторы. То есть, транзистор – это два диода, соединенных последовательно, но катодами в одной точке. Поэтому их прозвон – это практически проверка перехода база-коллектор или база-эмиттер. Показатели сопротивления точно такие же.

Конструкция транзистора

Переделка

В чем заключается переделка компьютерного блока питания? То есть, можно ли заменить некоторые его детали, чтобы улучшить работу прибора? Некоторые мастера стараются внести какие-то изменения, и этим сама добиваются лучших результатов. Не будем вдаваться в подробности всех видоизменений, потому что разговор идет о самостоятельном ремонте. А некоторые из них провести своими руками не получится.

Самая простая переделка – это переустановка конденсаторов, которые вмонтированы в шину питания. Они рассчитаны на напряжение 5 В. Так вот, чем больше напряжения выдерживают эти приборы, тем лучше. Хорошо бы на их место установить конденсаторы, рассчитанные на 10 В, но у них большие размеры, так что на плато могут и не поместиться. Поэтому стоит подобрать все-таки конденсатор с большим напряжением, который бы поместился на плато, к примеру, на 6,5 В.

Внимание! Замена конденсатора связана с правильной его установкой на плато. Поэтому обратите внимание на полосу отрицательного вывода. Она широкая вертикальная и светлая. Так вот новый прибор необходимо установить точно в таком же положении, чтобы полоса попала на старое место установки.

Основное требование при ремонте блока питания своими руками – умение работать с паяльником

Заключение по теме

Итак, если все вышедшие из строя детали вами заменены, то блок питания должен заработать. Самый простой вариант это проверить – включить его в розетку. Должен закрутиться вентилятор куллера. Есть и другой более надежный вариант – проверить мультиметром основные разъемы на наличие напряжения. Их величина должна быть 12 и 5 вольт.

Как видите, ремонт блока питания – процесс на самом деле непростой. Хотя если в нем разобраться и несколько раз пройтись по схеме, меняя то один, то другой приборчик, то можно себя уже считать домашним мастером. Но самое главное, как показывает практика, это умение работать с паяльником.

Блок питания для компьютера своими руками. Ремонт компьютерного блока питания. Окончание

Мы рассмотрели, какие действия нужно предпринять, если у нас предохранитель блока питания ATX в коротком замыкании. Это означает, что проблема где-то в высоковольтной части, и нам нужно прозванивать диодный мост, выходные транзисторы, силовой транзистор или мосфет, в зависимости от модели блока питания. Если же предохранитель цел, мы можем попробовать подсоединить шнур питания к блоку питания, и включить его выключателем питания, расположенным на задней стенке блока питания.

И вот здесь нас может поджидать сюрприз, сразу как только мы щелкнули выключателем, мы можем услышать высокочастотный свист, иногда громкий, иногда тихий. Так вот, если вы услышали этот свист, даже не пытайтесь подключать блок питания для тестов к материнской плате, сборке, или устанавливать такой блок питания в системный блок!


Дело в том, что в цепях дежурного напряжения (дежурки) стоят все те же знакомые нам по прошлой статье электролитические конденсаторы, которые теряют емкость, при нагреве, и от старости, у них увеличивается ESR, (по-русски сокращенно ЭПС) эквивалентное последовательное сопротивление. При этом визуально, эти конденсаторы могут ничем не отличаться от рабочих, особенно это касается небольших номиналов.


Дело в том, что на маленьких номиналах, производители очень редко устраивают насечки в верхней части электролитического конденсатора, и они не вздуваются и не вскрываются. Такой конденсатор не измерив специальным прибором, невозможно определить на пригодность работы в схеме. Хотя иногда, после выпаивания, мы видим, что серая полоса на конденсаторе, которой маркируется минус на корпусе конденсатора, становится темной, почти черной от нагрева. Как показывает статистика ремонтов, рядом с таким конденсатором обязательно стоит силовой полупроводник, или выходной транзистор, или диод дежурки, или мосфет. Все эти детали при работе выделяют тепло, которое пагубно сказывается на сроке работы электролитических конденсаторов. Дальнейшее объяснять про работоспособность такого потемневшего конденсатора, думаю будет лишним.

Если у блока питания остановился кулер, из-за засыхания смазки и забивания пылью, такой блок питания скорее всего потребует замены практически ВСЕХ электролитических конденсаторов на новые, из-за повышенной температуры внутри блока питания. Ремонт будет довольно муторным, и не всегда целесообразным. Ниже приведена одна из распространенных схем, на которой основаны блоки питания Powerman 300-350 ватт, она кликабельна:

Схема БП АТХ Powerman

Давайте разберем, какие конденсаторы нужно менять, в этой схеме, в случае проблем с дежуркой:


Итак, почему же нам нельзя подключать блок питания со свистом к сборке для тестов? Дело в том, что в цепях дежурки стоит один электролитический конденсатор, (выделено синим) при увеличении ESR которого, у нас возрастает дежурное напряжение, выдаваемое блоком питания на материнскую плату, еще до того, как мы нажмем кнопку включения системного блока. Иными словами, как только мы щелкнули клавишным выключателем на задней стенке блока питания, это напряжение, которое должно быть равно +5 вольт, поступает у нас на разъем блока питания, фиолетовый провод разъема 20 Pin, а оттуда на материнскую плату компьютера.


В моей практике были случаи, когда дежурное напряжение было равно (после удаления защитного стабилитрона, который был в КЗ) +8 вольт, и при этом ШИМ контроллер был жив. К счастью блок питания был качественный, марки Powerman, и там стоял на линии +5VSB, (так обозначается на схемах выход дежурки) защитный стабилитрон на 6.2 вольта.


Почему стабилитрон защитный, как он работает в нашем случае? Когда напряжение у нас меньше, чем 6.2 вольта, стабилитрон не влияет на работу схемы, если же напряжение становится выше, чем 6.2 вольта, наш стабилитрон при этом уходит в КЗ (короткое замыкание), и соединяет цепь дежурки с землей. Что нам это дает? Дело в том, что замкнув дежурку с землей, мы сохраняем тем самым нашу материнскую платы от подачи на нее тех самых 8 вольт, или другого номинала повышенного напряжения, по линии дежурки на материнку, и защищаем материнскую плату от выгорания.


Но это не является 100% вероятностью, что у нас в случае проблем с конденсаторами сгорит стабилитрон, есть вероятность, хотя и не очень высокая, что он уйдет в обрыв, и не защитит тем самым нашу материнскую плату. В дешевых блоках питания, этот стабилитрон обычно просто не ставят. Кстати, если вы видите на плате следы подгоревшего текстолита, знайте, скорее всего там какой-то полупроводник ушел в короткое замыкание, и через него шел очень большой ток, такая деталь очень часто и является причиной, (правда иногда бывает, что и следствием) поломки.


После того, как напряжение на дежурке придет в норму, обязательно поменяйте оба конденсатора на выходе дежурки. Они могут придти в негодность из-за подачи на них завышенного напряжения, превышающего их номинальное. Обычно там стоят конденсаторы номинала 470-1000 мкф. Если же после замены конденсаторов, у нас на фиолетовом проводе, относительно земли появилось напряжение +5 вольт, можно замкнуть зеленый провод с черным, PS-ON и GND, запустив блок питания, без материнской платы.


Если при этом начнет вращаться кулер, это значит с большой долей вероятности, что все напряжения в пределах нормы, потому что блок питания у нас стартанул. Следующим шагом, нужно убедиться в этом, померяв напряжение на сером проводе, Power Good (PG), относительно земли. Если там присутствует +5 вольт, вам повезло, и остается лишь замерить мультиметром напряжения, на разъеме блока питания 20 Pin, чтобы убедиться, что ни одно из них не просажено сильно.


Как видно из таблицы, допуск для +3.3, +5, +12 вольт — 5%, для -5, -12 вольт — 10%. Если же дежурка в норме, но блок питания не стартует, Power Good (PG) +5 вольт у нас нет, и на сером проводе относительно земли ноль вольт, значит проблема была глубже, чем только с дежуркой. Различные варианты поломок и диагностики в таких случаях, мы рассмотрим в следующих статьях. Всем удачных ремонтов! С вами был AKV.

Сегодня в повседневной жизни мы часто используем электроприборы, подключаемые к сети питания через специальные устройства – блоки питания. С помощью этого приспособления техника с малым напряжением может работать от стандартной сети в 220 вольт. По этой причине именно блоки питания чаще всего выходят из строя, делая невозможным дальнейшую эксплуатацию аппаратуры.

Блок питания

При желании такое устройство можно отремонтировать своими руками. Данная статья расскажет вам, что нужно делать, чтобы ремонт блока питания, проведенный самостоятельно, дал желаемый результат.

Что нужно знать о блоках питания

Наиболее часто блоки питания используются для подключения телевизоров, а также компьютеров (ноутбуков, нетбуков и т.д.) и планшетов. От этого устройства напрямую зависит работоспособность техники. Поэтому важно знать, что частой причиной поломки блока питания является покупка некачественного преобразователя.

Обратите внимание! Некачественные радиоэлементы дешевых блоков питания часто являются причиной поломки этого устройства. Причем самым слабым местом дешевых моделей является система защиты.


Разнообразие блоков питания

Поэтому, если вы хотите, чтобы домашняя техника работала как можно дольше, к ней необходимо подбирать качественный блок питания. Он должен быть изготовлен известным производителем и продаваться в специализированном магазине. При этом продавец должен иметь сертификат качества на свою продукцию. Конечно, такие модели будут стоить дороже своих рыночных аналогов, зато они прослужат не 6 месяцев, а 5-6 лет! Но если вы приобрели преобразователь с рук на рынке, будь те готовы к тому, что в ближайшем будущем придется взять в руки паяльник и приступить к ремонту.

Безопасность в ремонте – превыше всего

Собираясь своими руками заняться ремонтом любого блока питания необходимо помнить о собственной безопасности. Особенно это касается импульсных преобразователей. Немного проще дела обстоят в ситуации, когда поломки не затронули горячую часть неработающего устройства.
Дело в том, что силовые конденсаторы преобразователя способны сохранять заряд в течение длительного периода времени.


Силовой конденсатор

Поэтому занимаясь самостоятельным ремонтом данной аппаратуры, нужно делать все аккуратно и неукоснительно соблюдая правил техники безопасности.
После отключения от сети блока к его конденсаторам не рекомендуется прикасаться в течение 15 минут. Также не нужно трогать системную плату и радиодетали БП, который подключен к сети.

Обратите внимание! Когда ремонт сгоревшего блока питания своими руками завершен, его работоспособность необходимо проверять вдали от горючих и легко воспламеняющихся материалов.

Эти знания помогут вам избежать ненужных травм и ударов токов при самостоятельном ремонте изделия.

С помощью чего делается ремонт

Залогом успешного ремонта любого блока питания является наличие необходимого в работе набора инструментов. Чтобы отремонтировать блок питания своими руками вам понадобятся следующие инструменты и материалы:

  • пара паяльников, которые имею различную мощность. С помощью мощного паяльника следует выпаивать транзисторы и диоды, а также трансформаторы. А прибор с меньшей мощностью пригодится для припаивания прочей мелочевки. Также к ним потребуется припой и флюс;


Паяльник с канифолью и припоем

  • набор отверток;
  • отсос для припоя. С его помощью можно удалить с платы лишний припой;
  • резак. С его помощью можно удалить пластиковые хомуты, скрепляющие между собой провода;
  • маленький пинцет;
  • мультиметр;
  • бензин для очистки платы от остаточных следов пайки;
  • лампочка на 100 Вт.

Когда все материалы и инструменты найдены, можно приступать к поиску проблемы и ее устранению.

Начало любого ремонта – визуальный осмотр

Чтобы понять, что не так с блоком питания и почему он не работает, нужно провести визуальный осмотр устройства. Бывают ситуации, когда БП просто запылился и для решения проблемы достаточно его почистить.
В визуальном осмотре прибора нужно проверить следующие моменты:

  • работу системы охлаждения. Вентилятор должен быть очищен от пыли и хорошо крутиться. Если он не крутится, то причина поломки кроется в нем;
  • электросхему на предмет наличия в ней сгоревших элементов. Некоторые детали при сгорании чернеют. Поэтому их можно определить визуально. Для некоторых элементов придется применять мультиметр. Также нужно проверить дорожки и провода на предмет обрывов.

Обратите внимание! При перегреве текстолиты чернеют, а неисправные конденсаторы выглядят опухшими.

Наиболее часто причинами поломки преобразователя являются:

  • устройство не включается. У него отсутствует напряжения дежурного питания;
  • преобразователь не включается при имеющемся дежурном напряжение. При этом у него отсутствует сигнал PG;
  • у БП включается защита;
  • устройство работает, но от него исходит неприятный запах;
  • диагностируется слишком высокие или низкие выходные напряжения.

Привести к поломке блока питания могут самые разнообразные ситуации. Причем БП может, как сразу перестать работать, так и продолжать функционировать, но с периодическими сбоями.
После выявления причины неполадки, можно приступать к ремонту блока питания своими руками. При этом нужно помнить, что несмотря на схожий принцип работы преобразователи имеют разнообразные схемы.


Вариант схемы блока питания

Обычно схемы различаются как по видам БП, так и по его предназначению (для компьютера, телевизора, планшета, мобильного телефона и т.д.). Поэтому, чтобы ремонт блока питания, проведённый своими руками, удался, первым делом необходимо раздобыть его схему. Не лишним будет сервисное руководства от конкретной аппаратуры.

Ремонт импульсных блоков питания

Из всех возможных видов БП наиболее ненадежными считаются импульсные модели. Это связано с тем, что через него проходит все мощность, которую потребляет электросхема прибора.


Импульсный блок питания

Они часто используются для питания современных бытовых приборов и устройств.

Обратите внимание! Большинство импульсных блоков питания создаются на простых схемах. Это не только дешевле, но и упрощает самостоятельный ремонт данного устройства в домашних условиях.

Ремонт в данном случае предполагает следующий алгоритм действий:

  • поиск причины поломки;
  • ее устранение путем замены, например, сгоревшей детали на новую. Помните, что нужно одновременно менять все вышедшие из строя детали. В противном случае включение в сеть БП с неисправным элементом приведет к повреждению уже заменённых элементов;
  • проверка устройства на работоспособность.

Ремонт таких приборов не представляет собой ничего сложного.

Неисправность компьютерных блоков питания

Одними из наиболее сложных в плане ремонта являются компьютерные блоки питания. При этом их ремонт является наиболее актуальным, поскольку компьютеры сегодня имеются во всех домах и квартирах.


Компьютерный блок питания

Прежде, чем приступать к ремонту данного устройства, необходимо проверить напряжение дежурного питания (обычно провод фиолетового цвета). Если оно в норме, тогда следующим нужно проверить сигнал POWER GOOD (обычно провод серого цвета). Этот сигнал должен появиться только после включения устройства в сеть. Для запуска БП необходимо замкнуть черный и зеленый провод. Их можно замкнуть с помощью скрепки.

Обратите внимание! Выходное напряжение при проверке может отличаться, так как его значение зависит от нагрузки.

Если и здесь все нормально, тогда необходимо поверить другие напряжения. Измерение напряжение в горячей части, то все измерения следует проводить только от общей земли.
Перед началом ремонта БП нужно убедиться в том, что все радиоэлементы и контакты между ними в порядке, а силовые шнуры не повреждены. Также для ремонта вам понадобится схема устройства.

Обратите внимание! Схемы с типовыми повреждениями блоков питания можно найти в сервисном руководстве конкретной аппаратуры. Они позволят в разы упростить ремонт устройства.

Для того чтобы провести ремонт компьютерного блока питания своими руками, необходимо уметь пользоваться мультиметром. Не лишним будет умение работать с осциллографом. Кроме этого нужен опыт работы с пальниками и канифолью.

Ремонт компьютерных блоков питания

Устранение неполадок в компьютерном блоке питания выглядит следующим образом:

  • сначала необходимо снять с устройства корпус;
  • далее следует тщательный визуальный осмотр всех составных частей электросхемы прибора. Первое, что бросается в глаза – почерневшие и вздутые детали, а также оборванные провода и контакты;
  • если явно испорченных деталей не удалось обнаружить, тогда проверяем работоспособность всех элементов схемы с помощью мультиметра;


Мультиметр

  • некоторые проблемы, например нестабильная работа питающего напряжения или его пульсация, можно определить только с помощью осциллографа. Тут обращать внимание нужно только на большие пульсации, а маленькие можно не брать в расчет;

Обратите внимание! Вопрос о пульсациях наиболее остро стоит для БП, которые используются для подключения компьютеров, мониторов и телевизоров. Для небольших и простых устройств он не актуален.

  • обязательно тестирующей аппаратурой (мультиметром и осциллографом) нужно прозвонить предохранители, шнур питания, транзисторы, выпрямительный мост и дроссели, а также стабилитроны;


Прозвон компонентов электросхемы

  • вначале проверка осуществляется без выпаивания компонентом электросхемы. Как только была обнаружена неисправная деталь, ее сразу же необходимо выпаять. Также замене подлежат любые подозрительные детали, которые при проверке ведут себя нехарактерным образом. Их работа может быть нарушена лишь частично, но в будущем они могут послужить причиной неисправности БП;
  • при обнаружении сгоревшей детали нужно более внимательно проверить подключенные к ней компоненты схемы. Очень часто выгорание одной детали ведет к порче радом расположенных элементов;
  • обязательно нужно прозвонить выводы конденсатора фильтра для сетевого питания на предмет наличия короткого замыкания.

Очень часто удается обнаружить сгоревший предохранитель (в 80% случаях). Но это скорее следствие, чем причина поломки.
После того, как были обнаружены все поломки, ремонт выглядит так:

  • выпаивание из электросхемы всех отбракованных элементов;
  • установка на их место новых и работоспособных деталей;
  • припаивание;


Припаивание деталей

  • очистка мест пайки от остатков припоя и флюса;
  • возвращение на место корпуса.

После этого необходимо проверить результат своей работы. Нужно вместо сетевого предохранителя установить лампочку на 150-200 Ватт или последовательно соединить между собой менее мощные лампочки. Такая защита сможет защитить БП от сгорания в ситуации, когда проблема его неисправности была устранена не полностью.

Проблемы нестабильного напряжения в сетях переменного тока – бич отечественных электросетей, который приводит к выходу из строя многих бытовых приборов. К примеру, стационарный компьютер. И в процессе работы, и в состоянии отключения этот аппарат подвергается негативному воздействию скачков напряжения. Все дело в том, что в основном негативное воздействия направлено на блок питания, который даже при выключенном компьютере все равно работает. А, значит, это самое уязвимое место. Поэтому он чаще всего и выходит из строя. И тут у многих обывателей возникает вопрос, что делать: покупать новый или провести ремонт блока питания компьютера своими руками?

Вопрос на самом деле поставлен очень правильно. Все будет зависеть от того, какова сборка компьютера. Если блок питания собран из безыменных деталей (их обычно специалисты называют нонеймовские), то это дешевый вариант, который ремонтировать нет смысла. Легче и дешевле будет выбрать и приобрести новый. Хотя попробовать сделать ремонт компьютерного блока питания можно именно на нем. Даже если у вас ничего не получится, это будет неплохой опыт. Так что стоит повозиться с ним на досуге.

А вот если в вашем компьютере установлен брендовый блок питания, то его замена на новый обойдется в копеечку, поэтому есть смысл разобраться в его комплектации и схеме и провести ремонт самостоятельно.

Кстати, есть простой способ проверить работоспособность блока питания. Для этого его необходимо отключить от материнской платы. Просто отсоединяются разъемы проводов, ведущих от блока к плато. Разъемы могут быть 20 или 24 контактные (4 или 6). Чтобы проверить, работает ли блок, необходимо закоротить 14 или 15 контакты между собой (если разъемник двадцатиконтактный) или 16 и 17 (если двадцатичетырех контактный). То есть, соединяются между собой провода зеленого (иногда он серый) цвета и черного. Затем сам блок подключается в сеть через розетку. Если вентилятор куллера заработал, то все в порядке, причина не в нем. Надо искать другие поломки.

Ремонтный процесс

Итак, начнем с оговорки, которая определит первопричину вопроса, как отремонтировать блок питания компьютера? Запомните, что сам блок питания в отличие от компьютера работает под напряжением 220 вольт. Поэтому в его схеме установлены конденсаторы большой емкости. Именно они аккумулируют в себе напряжение, которое может долго храниться.

Ремонт своими руками любого электронного аппарата основан на работе с паяльником. И если у вас практики большой нет, то стоит отказаться от этой затеи. Все-таки компьютерный блок сетевого питания – аппарат ответственный, от которого зависит – будет работать компьютер или нет.

Плюс ко всему придется разбираться со схемой по ходу событий, потому что точной схемы вы вряд ли найдете, даже в Интернете. Принципиальные схемы есть, но это не говорит о том, что в вашем блоке питания она будет точно такой же. Поэтому все придется делать по ходу ремонта.

С чего начать

В первую очередь необходимо снять крышку и прочистить все внутренности от пыли. Толстый слой пыли становится барьером, который препятствует отводу температуры от работающих деталей. Так что это тоже причина отказа работы блока.

Теперь обратите внимание на предохранитель. Обычно здесь установлена деталь на 5 А. Это стеклянная колба, внутри которой проходит тонкая металлическая нить. Если нити нет, то предохранитель сгорел, его надо заменить. Но иногда вроде бы нить присутствует, поэтому стоит предохранитель проверить. Как?

  • Надо будет припаять по концам детали медную проволочку диаметром 0,18 мм.
  • После чего включить блок в розетку.
  • Если вентилятор куллера заработал, то неисправность – предохранитель.
  • Выпаивайте его из схемы и устанавливайте новый.

Конденсаторы

Обычно в блоках питания установлены конденсаторы с большой емкостью. Именно в них и аккумулируется напряжение. Поэтому это детали, которые чаще всего выходят из строя (в 80% случаях).

Первое, что должно броситься в глаза, это вздутие и подтеки электролита. Если это все есть в наличии, то это стопроцентно, что конденсатор не работает.

Внимание! Плохая работа вентилятора становится причиной вздутия конденсаторов. Все дело в том, что вентилятор должен охлаждать конденсаторы, которые подвергаются нагреву за счет аккумулирования напряжения в них. Поэтому специалисты рекомендуют периодически проводить смаку подшипников вентилятора и чистку всего куллера.

Но иногда видимых дефектов у конденсаторов не наблюдается, поэтому стоит проверить их мультиметром на предмет проверки сопротивления. Если сопротивление большое (по сравнению с номиналом), то это говорит о том, что произошел разрыв между внутренней обкладкой и выводом. Специалисты называют эту ситуацию – конденсатор в обрыве.

Есть в схеме блока питания и электролитические конденсаторы. Они также могут вспухнуть, но менять их на новые нет смысла, потому что необходимо сначала найти причину их вздутия, а затем проводить замену. Обычно причина – это выход из строя схемы стабилизации напряжения. Так что пока не разберетесь с ней, менять электролитические конденсаторы нет смысла. Не поможет, все равно вздуются. Но ремонт компьютерных блоков питания этого типа провести может только специалист, своими руками его не осилить. Плюс ко всему потребуются профессиональные измерительные приборы. Так что оптимальный вариант – отнести блок питания в мастерскую. В данном случае выбирать не приходится.

Транзисторы

Это еще одна деталь, которая может стать причиной неработоспособности блока питания для ПК. Обратите внимание на конструктивную особенность транзистора. У него три ноги:

  1. База.
  2. Коллектор.
  3. Эмиттер.

Так вот, чтобы определить – работает ли деталь или нет – необходимо прозвонить ее мультиметром. И вот тут необходимо знать, как прозванивать. Прозвон может быть осуществлен только в двух направлениях:

  • База – коллектор.
  • База – эмиттер.

Если поменять полярность прозвонки, то ничего у вас не получится. Тот же самое касается и направления между коллектором и эмиттером. Чтобы правильно провести прозвон, необходимо щуп с красным проводом подсоединить к базе транзистора, а черный провод к коллектору или эмиттеру. Если на дисплее высветился показатель в пределах 650-800 мВ, то все нормально, транзистор целый.

Для проверки можно прозвонить коллектор-эмиттер. Здесь сопротивление должно быть бесконечным, дисплей покажет единицу. Если этот переход пробит, то мультиметр издаст характерный сигнал. Но учтите, это необязательно, что другие переходы также не работают.

Что касается диодов, то эти маленькие приборы практически тоже самое, что и транзисторы. То есть, транзистор – это два диода, соединенных последовательно, но катодами в одной точке. Поэтому их прозвон – это практически проверка перехода база-коллектор или база-эмиттер. Показатели сопротивления точно такие же.

Переделка

В чем заключается переделка компьютерного блока питания? То есть, можно ли заменить некоторые его детали, чтобы улучшить работу прибора? Некоторые мастера стараются внести какие-то изменения, и этим сама добиваются лучших результатов. Не будем вдаваться в подробности всех видоизменений, потому что разговор идет о самостоятельном ремонте. А некоторые из них провести своими руками не получится.

Самая простая переделка – это переустановка конденсаторов, которые вмонтированы в шину питания. Они рассчитаны на напряжение 5 В. Так вот, чем больше напряжения выдерживают эти приборы, тем лучше. Хорошо бы на их место установить конденсаторы, рассчитанные на 10 В, но у них большие размеры, так что на плато могут и не поместиться. Поэтому стоит подобрать все-таки конденсатор с большим напряжением, который бы поместился на плато, к примеру, на 6,5 В.

Внимание! Замена конденсатора связана с правильной его установкой на плато. Поэтому обратите внимание на полосу отрицательного вывода. Она широкая вертикальная и светлая. Так вот новый прибор необходимо установить точно в таком же положении, чтобы полоса попала на старое место установки.

Основное требование при ремонте блока питания своими руками — умение работать с паяльником

Заключение по теме

Итак, если все вышедшие из строя детали вами заменены, то блок питания должен заработать. Самый простой вариант это проверить – включить его в розетку. Должен закрутиться вентилятор куллера. Есть и другой более надежный вариант – проверить мультиметром основные разъемы на наличие напряжения. Их величина должна быть 12 и 5 вольт.

Как видите, ремонт блока питания – процесс на самом деле непростой. Хотя если в нем разобраться и несколько раз пройтись по схеме, меняя то один, то другой приборчик, то можно себя уже считать домашним мастером. Но самое главное, как показывает практика, это умение работать с паяльником.

Похожие записи:

Меры предосторожности.

Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Инструментарий.

  1. Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
  2. Отсос для припоя и (или) оплетка. Служат для удаления припоя.
  3. Отвертка
  4. Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
  5. Мультиметр
  6. Пинцет
  7. Лампочка на 100Вт
  8. Очищенный бензин или спирт. Используется для очистки платы от следов пайки.

Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.


Визуальный осмотр.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.
Первичная диагностика.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Неисправности:

  1. БП не запускается, отсутствует напряжение дежурного питания
  2. БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
  3. БП уходит в защиту,
  4. БП работает, но воняет.
  5. Завышены или занижены выходные напряжения

Предохранитель.


Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Варистор


Задачей варистора является защита блока питания от импульсных помех. При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Варистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же варисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя варистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с варистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены варистора и проверки остальных элементов первичной цепи.

Диодный мост
Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение тока должно быть около 500мА, а в обратном звониться как разрыв.


Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.


Конденсаторы
Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.




Резисторы


Номинал резистора определятся по цветовой маркировке. Резисторы следует менять только на аналогичные, т.к. небольшое отличие в номиналах сопротивления может привести к тому, что резистор будет перегреваться. А если это подтягивающий резистор, то напряжение в цепи может выйти за пределы логического входа, и ШИМ не будет генерировать сигнал Power Good. Если резистор сгорел в уголь, и у вас нет второго такого же БП, чтобы посмотреть его номинал, то считайте, что вам не повезло. Особенно, это касается дешевых БП, на которые, практически не возможно достать принципиальных схем.


Диоды и стабилитроны


Проверяются прозвонкой в обе стороны. Если звонятся в обе стороны как К.З. или разрыв, то не исправны. Сгоревшие диоды следует менять на аналогичные или сходные по характеристикам, внимание обращаем на напряжение, силу тока и частоту работы.

Транзисторы, диодные сборки .


Транзисторы и диодный сборки, которые установлены на радиатор, удобнее всего выпаивать вместе с радиатором. В «первичке» находятся силовые транзисторы, один отвечает за дежурное напряжение, а другие формируют рабочие напряжения 12в и 3,3в. Во вторичке на радиаторе находятся выпрямительные диоды выходных напряжений (диоды Шоттки).

Проверка транзисторов заключается в “позвонке” р-п-переходов, также следует проверить сопротивление между корпусом и радиатором. Транзисторы не должны замыкать на радиатор. Для проверки диодов ставим минусовой щуп мультиметра на центральную ногу, а плюсовым щупом тыкаем в боковые. Падение тока должно быть около 500мА, а в обратном направление должен быть разрыв.


Если все транзисторы и диодные сборки оказались исправные, то не спешите запаивать радиаторы обратно, т.к. они затрудняют доступ к другим элементам.


Если ШИМ визуально не поврежден и не греется, то без осциллографа его проверить довольно сложно.

Простым способом проверки ШИМ, является проверка контрольных контактов и контактов питания на пробой.

Для этого нам понадобиться мультиметр и дата шит на микросхему ШИМ. Диагностику ШИМ следует проводить, предварительно выпаяв её. Проверка производится прозвоном следующих контактов относительно земли (GND): V3.3, V5, V12, VCC, OPP. Если между одним из этих контактов и землей сопротивление крайне мало, до десятков Ом, то ШИМ под замену.

Дроссель групповой стабилизации (ДГС).

Выходит из строя из-за перегрева (при остановке вентилятора) или из-за просчетов в конструкции самого БП (пример Microlab 420W). Сгоревший ДГС легко определить по потемневшему, шелушащемуся, обугленному изоляционному лаку. Сгоревший ДГС можно заменить на аналогичный или смотать новый. Если вы решите смотать новый ДГС, то следует использовать новое ферритовое кольцо, т.к. из за перегрева старое кольцо могло уйти по параметрам.


Трансформаторы.

Для проверки трансформаторов их следует предварительно выпаять. Их проверяют на короткозамкнутые витки, обрыв обмоток, потерю или изменение магнитных свойств сердечника.

Чтобы проверить трансформатор на предмет обрыва обмоток достаточно простого мультиметра, остальные неисправности трансформаторов определить гораздо сложнее и рассматривать их мы не будем. Иногда пробитый трансформатор можно определить визуально.


Опыт показывает, что трансформаторы выходят из строя крайне редко, поэтому их нужно проверять в последнюю очередь.

Профилактика вентилятора.


После удачного ремонта следует произвести профилактику вентилятора. Для этого вентилятор надо снять, разобрать, почистить и смазать.

Отремонтированный блок питания следует длительное время проверить под нагрузкой.
Прочитав эту статью, вы самостоятельно сможете произвести легкий ремонт блока питания, тем самым сэкономив пару монет и избавить себя от похода в или магазин.

Что желательно иметь для проверки БП.
а. — любой тестер (мультиметр ).
б. — лампочки: 220 вольт 60 — 100 ватт и 6.3 вольта 0.3 ампера.
в. — паяльник, осциллограф, отсос для припоя.
г. — увеличительное стекло, зубочистки, ватные палочки, технический спирт.

Наиболее безопасно и удобно включать ремонтируемый блок в сеть через разделительный трансформатор 220v — 220v.
Такой трансформатор просто изготовить из 2-х ТАН55 или ТС-180 (от ламповых ч/б телевизоров). Просто соответствующим образом соединяются анодные вторичные обмотки, не надо ничего перематывать. Оставшиеся накальные обмотки можно использовать для построения регулируемого БП.
Мощность такого источника вполне достаточна для отладки и первоначального тестирования и дает массу удобств:
— электробезопасность
— возможность соединять земли горячей и холодной части блока единым проводом, что удобно для снятия осциллограмм.
— ставим галетный переключатель — получаем возможность ступенчатого изменения напряжения.

Также для удобства можно зашунтировать цепи +310В резистором 75K-100K мощностью 2 — 4Вт — при выключении быстрее разряжаются входные конденсаторы.

Если плата вынута из блока, проверьте, нет ли под ней металлических предметов любого рода. Ни в коем случае НЕ ЛЕЗЬТЕ РУКАМИ в плату и НЕ ДОТРАГИВАЙТЕСЬ до радиаторов во время работы блока, а после выключения подождите около минуты, пока конденсаторы разрядятся. На радиаторе силовых транзисторов может быть 300 и более вольт, он не всегда изолирован от схемы блока!

Принципы измерения напряжений внутри блока.
Обратите внимание, что на корпус БП земля с платы подаётся через проводники около отверстий для крепежных винтов.
Для измерения напряжений в высоковольтной ( «горячей ») части блока (на силовых транзисторах, в дежурке) требуется общий провод — это минус диодного моста и входных конденсаторов. Относительно этого провода всё и измеряется только в горячей части, где максимальное напряжение — 300 вольт. Измерения желательно проводить одной рукой.
В низковольтной ( «холодной ») части БП всё проще, максимальное напряжение не превышает 25 вольт. В контрольные точки для удобства можно впаять провода, особенно удобно припаять провод на землю.

Проверка резисторов.
Если номинал (цветные полоски) еще читается — заменяем на новые с отклонением не хуже оригинала (для большинства — 5%, для низкоомных в цепях датчика тока может быть и 0.25%). Если же покрытие с маркировкой потемнело или осыпалось от перегрева — измеряем сопротивление мультиметром. Если сопротивление равно нулю или бесконечности — вероятнее всего резистор неисправен и для определения его номинала потребуется принципиальная схема блока питания либо изучение типовых схем включения.

Проверка диодов.
Если мультиметр имеет режим измерения падения напряжения на диоде — можно проверять, не выпаивая. Падение должно быть от 0,02 до 0,7 В. Если падение — ноль или около того (до 0,005) — выпаиваем сборку и проверяем. Если те же показания — диод пробит. Если же прибор не имеет такой функции, установите прибор на измерение сопротивления (обычно предел в 20кОм). Тогда в прямом направлении исправный диод Шотки будет иметь сопротивление порядка одного — двух килоом, а обычный кремниевый — порядка трех — шести. В обратном направлении сопротивление равно бесконечности.

Проверка полевого транзистора

Для проверки БП можно и нужно собрать нагрузку.
Пример удачного исполнения смотреть здесь.
Берём выпаянный из ненужной платы ATX разъём и припаиваем к нему провода сечением не менее 18 AWG, стараясь задействовать все контакты по линиям +5 вольт, +12 и +3.3 вольта.
Нагрузку надо рассчитывать ватт на 100 по всем каналам (можно с возможностью увеличения для проверок более мощных блоков). Для этого берём мощные резисторы или нихром. Также с осторожностью можно использовать мощные лампы (например , галогенные на 12В), при этом следует учесть, что сопротивление нити накаливания в холодном состоянии сильно меньше, чем в нагретом. Поэтому при запуске с вроде бы нормальной нагрузкой из ламп блок может уходит в защиту.
Параллельно нагрузкам можно подключить лампочки или светодиоды, чтобы видеть наличие напряжения на выходах. Между выводом PS_ON и GND подключаем тумблер для включения блока. Для удобства при эксплуатации можно всю конструкцию разместить в корпусе от БП с вентилятором для охлаждения.

Проверка блока:

Можно предварительно включить БП в сеть, чтобы определиться с диагнозом: нет дежурки (проблема с дежуркой, либо КЗ в силовой части), есть дежурка, но нет запуска (проблема с раскачкой или ШИМ), БП уходит в защиту (чаще всего — проблема в выходных цепях либо конденсаторах), завышенное напряжение дежурки (90 % — вспухшие конденсаторы, и часто как результат — умерший ШИМ).

Начальная проверка блока
Снимаем крышку и начинаем проверку, особое внимание обращая на поврежденные, изменившие цвет, потемневшие или сгоревшие детали.
Предохранитель. Как правило, перегорание хорошо заметно визуально, но иногда он обтянут термоусадочным кембриком — тогда проверяем сопротивление омметром. Перегорание предохранителя может свидетельствовать, например, о неисправности диодов входного выпрямителя, ключевых транзисторов или схемы дежурного режима.
Дисковый термистор. Выходит из строя крайне редко. Проверяем сопротивление — должно быть не более 10 Ом. В случае неисправности заменять его перемычкой нежелательно — при включении блока резко возрастет импульсный ток заряда входных конденсаторов, что может привести к пробою диодов входного выпрямителя.
Диоды или диодная сборка входного выпрямителя. Проверяем мультиметром (в режиме измерения падения напряжения) на обрыв и короткое замыкание каждый диод, можно не выпаивать их из платы. При обнаружении замыкания хотя бы у одного диода рекомендуется также проверить входные электролитические конденсаторы, на которые подавалось переменное напряжение, а также силовые транзисторы, т.к. очень велика вероятность их пробоя. В зависимости от мощности БП диоды должны быть рассчитаны на ток не менее 4…8 ампер. Двухамперные диоды, часто встречающиеся в дешевых блоках, сразу меняем на более мощные.
Входные электролитические конденсаторы. Проверяем внешним осмотром на вздутие (заметное изменение верхней плоскости конденсатора от ровной поверхности к выпуклой), также проверяем емкость — она не должна быть ниже обозначенной на маркировке и отличаться у двух конденсаторов более чем на 5%. Также проверяем варисторы, стоящие параллельно конденсаторам, (обычно явно сгорают «в уголь») и выравнивающие резисторы (сопротивление одного не должно отличаться от сопротивления другого более чем на 5%).
Ключевые (они же — силовые) транзисторы. Для биполярных — проверяем мультиметром падение напряжения на переходах «база -коллектор» и «база -эмиттер» в обоих направлениях. В исправном биполярном транзисторе переходы должны вести себя как диоды. При обнаружении неисправности транзистора также необходимо проверить всю его «обвязку »: диоды, низкоомные резисторы и электролитические конденсаторы в цепи базы (конденсаторы лучше сразу заменить на новые большей емкости, например, вместо 2.2мкФ * 50В ставим 10.0мкФ * 50В). Также желательно зашунтировать эти конденсаторы керамическими емкостью 1.0…2.2 мкФ.
Выходные диодные сборки. Проверяем их мультиметром, наиболее частая неисправность — короткое замыкание. Замену лучше ставить в корпусе ТО-247. В ТО-220 чаще помирают… Обычно для 300-350 Вт блоков диодных сборок типа MBR3045 или аналогичных на 30А — с головой.
Выходные электролитические конденсаторы. Неисправность проявляется в виде вздутия, следов коричневого пуха или потеков на плате (при выделении электролита). Меняем на конденсаторы нормальной емкости, от 1500 мкФ до 2200…3300 мкФ, рабочая температура — 105° С. Желательно использовать серии LowESR.
Также измеряем выходное сопротивление между общим проводом и выходами блока. По +5В и +12В вольтам — обычно в районе 100-250 ом (то же для -5В и -12В), +3.3В — около 5…15 Ом.

Потемнение или выгорание печатной платы под резисторами и диодами свидетельствует о том, что компоненты схемы работали в нештатном режиме и требуется анализ схемы для выяснения причины. Обнаружение такого места возле ШИМа означает, что греется резистор питания ШИМ 22 Ома от превышения дежурного напряжения и, как правило, первым сгорает именно он. Зачастую ШИМ в этом случае тоже мертв, так что проверяем микросхему (см . ниже). Такая неисправность — следствие работы «дежурки » в нештатном режиме, обязательно следует проверить схему дежурного режима.

Проверка высоковольтной части блока на короткое замыкание.

Берём лампочку от 40 до 100 Ватт и впаиваем вместо предохранителя или в разрыв сетевого провода.
Если при включении блока в сеть лампа вспыхивает и гаснет — все в порядке, короткого замыкания в «горячей » части нет — лампу убираем и работаем дальше без нее (ставим на место предохранитель или сращиваем сетевой провод).
Если при включении блока в сеть лампа зажигается и не гаснет — в блоке короткое замыкание в «горячей » части. Для его обнаружения и устранения делаем следующее:
Выпаиваем радиатор с силовыми транзисторами и включаем БП через лампу без замыкания PS-ON.
Если короткое (лампа горит, а не загорелась и погасла) — ищем причину в диодном мосте, варисторах, конденсаторах, переключателе 110/220V (если есть, его вообще лучше выпаять).
Если короткого нет — запаиваем транзистор дежурки и повторяем процедуру включения.
Если короткое есть — ищем неисправность в дежурке.
Внимание! Возможно включение блока (через PS_ON) с небольшой нагрузкой при не отключенной лампочке, но во-первых, при этом не исключена нестабильная работа БП, во-вторых, лампа будет светиться при включении БП со схемой APFC.

Проверка схемы дежурного режима (дежурки ).

Краткое руководство: проверяем ключевой транзистор и всю его обвязку (резисторы , стабилитроны, диоды вокруг). Проверяем стабилитрон, стоящий в базовой цепи (цепи затвора) транзистора (в схемах на биполярных транзисторах номинал от 6В до 6.8В, на полевых, как правило, 18В). Если всё в норме, обращаем внимание на низкоомный резистор (порядка 4,7 Ом) — питание обмотки трансформатора дежурного режима от +310В (используется как предохранитель, но бывает и трансформатор дежурки сгорает) и 150k~450k (оттуда же в базу ключевого транзистора дежурного режима) — смещение на запуск. Высокоомные часто уходят в обрыв, низкоомные — так же «успешно » сгорают от токовой перегрузки. Меряем сопротивление первичной обмотки дежурного транса — должно быть порядка 3 или 7 Ом. Если обмотка трансформатора в обрыве (бесконечность ) — меняем или перематываем транс. Бывают случаи, когда при нормальном сопротивлении первичной обмотки трансформатор оказывается нерабочим (имеются короткозамкнутые витки). Такой вывод можно сделать, если вы уверены в исправности всех остальных элементов дежурки.
Проверяем выходные диоды и конденсаторы. При наличии обязательно меняем электролит в горячей части дежурки на новый, припаиваем параллельно нему керамический или пленочный конденсатор 0.15…1.0 мкФ (важная доработка для предотвращения его «высыхания »). Отпаиваем резистор, ведущий на питание ШИМ. Далее на выход +5VSB (фиолетовый ) вешаем нагрузку в виде лампочки 0.3Ах6.3 вольта, включаем блок в сеть и проверяем выходные напряжения дежурки. На одном из выходов должно быть +12…30 вольт, на втором — +5 вольт. Если все в порядке — запаиваем резистор на место.

Проверка микросхемы ШИМ TL494 и аналогичных (КА7500 ).
Про остальные ШИМ будет написано дополнительно.
Включаем блок в сеть. На 12 ноге должно быть порядка 12-30V.
Если нет — проверяйте дежурку. Если есть — проверяем напряжение на 14 ноге — должно быть +5В (±5%).
Если нет — меняем микросхему. Если есть — проверяем поведение 4 ноги при замыкании PS-ON на землю. До замыкания должно быть порядка 3…5В, после — около 0.
Устанавливаем перемычку с 16 ноги (токовая защита) на землю (если не используется — уже сидит на земле). Таким образом временно отключаем защиту МС по току.
Замыкаем PS-ON на землю и наблюдаем импульсы на 8 и 11 ногах ШИМ и далее на базах ключевых транзисторов.
Если нет импульсов на 8 или 11 ногах или ШИМ греется — меняем микросхему. Желательно использовать микросхемы от известных производителей (Texas Instruments, Fairchild Semiconductor и т.д.).
Если картинка красивая — ШИМ и каскад раскачки можно считать живым.
Если нет импульсов на ключевых транзисторах — проверяем промежуточный каскад (раскачку ) — обычно 2 штуки C945 с коллекторами на трансе раскачки, два 1N4148 и емкости 1…10мкф на 50В, диоды в их обвязке, сами ключевые транзисторы, пайку ног силового трансформатора и разделительного конденсатора.

Проверка БП под нагрузкой:

Измеряем напряжение дежурного источника, нагруженного вначале на лампочку, а потом — током до двух ампер. Если напряжение дежурки не просаживается — включаем БП, замыкая PS-ON (зеленый ) на землю, измеряем напряжения на всех выходах БП и на силовых конденсаторах при 30-50% нагрузке кратковременно. Если все напряжения в допуске, собираем блок в корпус и проверяем БП при полной нагрузке. Смотрим пульсации. На выходе PG (серый ) при нормальной работе блока должно быть от +3,5 до +5В.

После ремонта, особенно при жалобах на нестабильную работу, минут 10-15 измеряем напряжения на входных электролитических конденсаторах (лучше с 40%-ой нагрузкой блока) — часто один «высыхает » или «уплывают » сопротивления выравнивающих резисторов (стоят параллельно конденсаторам) — вот и глючим… Разброс в сопротивлении выравнивающих резисторов должен быть не более 5%. Емкость конденсаторов должна составлять минимум 90% от номинала. Так же желательно проверить выходные емкости по каналам +3.3В, +5В, +12В на предмет «высыхания » (см . выше), а при возможности и желании усовершенствовать блок питания, заменяйте их на 2200мкф или лучше на 3300мкф и проверенных производителей. Силовые транзисторы, «склонные » к самоуничтожению (типа D209) меняем на MJE13009 или другие нормальные, см. тему Мощные транзисторы, применяемые в БП. Подбор и замена.. Выходные диодные сборки по каналам +3.3В, +5В смело меняйте на более мощные (типа STPS4045) с не меньшим допустимым напряжением. Если в канале +12В вы заметили вместо диодной сборки два спаянных диода — необходимо поменять их на диодную сборку типа MBR20100 (20А 100В). Если не найдете на сто вольт — не страшно, но ставить необходимо минимум на 80В (MBR2080 ). Заменить электролиты 1.0 мкфх50В в цепях базы мощных транзисторов на 4.7-10.0 мкфх50В. Можете отрегулировать выходные напряжения на нагрузке. При отсутствии подстроечного резистора — резисторными делителями, которые установлены от 1й ноги ШИМа к выходам +5В и +12В (после замены трансформатора или диодных сборок ОБЯЗАТЕЛЬНО проверить и выставить выходные напряжения).

Рецепты ремонта от ezhik97:

Опишу полную процедуру, как я ремонтирую и проверяю блоки.
Собственно ремонт блока — замена всего что погорело и что выявилось обычной прозвонкой
Модифицируем дежурку для работы от низкого напряжения. Занимает 2-5 минут.
Подпаиваем на вход переменку 30В от разделительного трансформатора. Это дает нам такие плюсы, как: исключается вероятность что-нибудь спалить дорогое из деталей, и можно безбоязненно тыкать осциллографом в первичке.
Включаем систему и проверяем соответствие напряжение дежурки и отсутствие пульсаций. Зачем проверять отсутствие пульсаций? Чтобы удостоверится, что блок будет работать в компе и не будет «глюков ». Занимает 1-2 минуты. Сразу же ОБЯЗАТЕЛЬНО проверяем равенство напряжений на сетевых фильтрующих конденсаторах. Тоже момент, не все знают. Разница должны быть небольшая. Скажем, процентов до 5 примерно.
Если больше — есть очень большая вероятность что блок под нагрузкой не запустится, либо будет выключаться во время работы, либо стартовать с десятого раза и т.п.. Обычно разница или маленькая, или очень большая. Займет 10 секунд.
Замыкаем PS_ON на землю (GND ).
Смотрим осциллографом импульсы на вторичке силового транса. Они должны быть нормальные. Как они должны выглядеть? Это надо видеть, потому как без нагрузки они не прямоугольные. Здесь сразу же будет видно, если что-то не так. Если импульсы не нормальные — есть неисправность во вторичных цепях или в первичных. Если импульсы хорошие — проверяем (для проформы) импульсы на выходах диодных сборок. Все это занимает 1-2 минуты.
Все! Блок 99% запустится и будет отлично работать!
Если в пункте 5 импульсов нет, возникает необходимость поиска неисправности. Но где она? Начинаем «сверху »
Все выключаем. Отсосом отпаиваем три ноги переходного транса с холодной стороны. Далее пальцем берем транс и просто перекашиваем его, подняв холодную сторону над платой, т.е. вытянув ноги из платы. Горячуюю сторону вообще не трогаем! ВСЕ! 2-3 минуты.
Все включаем. Берем проводок. Соединяем накоротко площадку, где была средняя точка холодной обмотки разделительного транса с одним из крайних выводов этой самой обмотки и на этом же проводе смотрим импульсы, как я писал выше. И на втором плече так же. 1 минута
По результатам делаем вывод, где неисправность. Часто бывает что картинка идеальная, но амплитуда вольт 5-6 всего (должно быть под 15-20). Тогда уже либо транзистор в этом плече дохлый, либо диод с его коллектора на эммитер. Когда удостоверишься, что импульсы в таком режиме красивые, ровные, и с большой амплитудой, запаивай переходной транс обратно и посмотри осцилом на крайние ноги еще раз. Сигналы будут уже не квадратными, но они должны быть идентичными. Если они не идентичны, а слегка отличаются — это косяк 100%.

Может оно и будет работать, только вот надежности это не добавит, а уж про всякие непонятные глюки, могущие вылезти, я промолчу.
Я все время добиваюсь идентичности импульсов. И никакого разброса параметров там ни в чем быть не может (там же одинаковые плечи раскачки), кроме как в полудохлых C945 или их защитных диодах. Вот сейчас делал блок — всю первичку восстановил, а вот импульсы на эквиваленте переходного трансформатора слегка отличались амплитудой. На одном плече 10,5В, на другом 9В. Блок работал. После замены С945 в плече с амплитудой 9В все стало нормально — оба плеча 10,5В. И такое часто бывает, в основном после пробоя силовых ключей с КЗ на базу.
Похоже утечка сильная К-Э у 945 в связи с частичным пробоем (или что там у них получается) кристалла. Что в совокупности с резистором, включенным последовательно с трансом раскачки, и приводит к снижению амплитуды импульсов.
Если импульсы правильные — ищем косяк с горячей стороны инвертора. Если нет — с холодной, в цепях раскачки. Если импульсов вообще нет — копаем ШИМ.
Вот и все. По моей практике это самый быстрый из надежных способов проверки.
Некоторые после ремонта сразу подают 220В. Я отказался от такого мазохизма. Хорошо если просто не заработает, а может ведь и бомбануть, попутно вынеся все что ты перепаять успел.

Ремонт компьютерного блока питания своими руками: другие виды

 

Сегодня в повседневной жизни мы часто используем электроприборы, подключаемые к сети питания через специальные устройства – блоки питания. С помощью этого приспособления техника с малым напряжением может работать от стандартной сети в 220 вольт. По этой причине именно блоки питания чаще всего выходят из строя, делая невозможным дальнейшую эксплуатацию аппаратуры.

Блок питания

При желании такое устройство можно отремонтировать своими руками. Данная статья расскажет вам, что нужно делать, чтобы ремонт блока питания, проведенный самостоятельно, дал желаемый результат.

Что нужно знать о блоках питания

Наиболее часто блоки питания используются для подключения телевизоров, а также компьютеров (ноутбуков, нетбуков и т.д.) и планшетов. От этого устройства напрямую зависит работоспособность техники. Поэтому важно знать, что частой причиной поломки блока питания является покупка некачественного преобразователя.

Обратите внимание! Некачественные радиоэлементы дешевых блоков питания часто являются причиной поломки этого устройства. Причем самым слабым местом дешевых моделей является система защиты.

Разнообразие блоков питания

Поэтому, если вы хотите, чтобы домашняя техника работала как можно дольше, к ней необходимо подбирать качественный блок питания. Он должен быть изготовлен известным производителем и продаваться в специализированном магазине. При этом продавец должен иметь сертификат качества на свою продукцию. Конечно, такие модели будут стоить дороже своих рыночных аналогов, зато они прослужат не 6 месяцев, а 5-6 лет! Но если вы приобрели преобразователь с рук на рынке, будь те готовы к тому, что в ближайшем будущем придется взять в руки паяльник и приступить к ремонту.

Безопасность в ремонте – превыше всего

Собираясь своими руками заняться ремонтом любого блока питания необходимо помнить о собственной безопасности. Особенно это касается импульсных преобразователей. Немного проще дела обстоят в ситуации, когда поломки не затронули горячую часть неработающего устройства.
Дело в том, что силовые конденсаторы преобразователя способны сохранять заряд в течение длительного периода времени.

Силовой конденсатор

Поэтому занимаясь самостоятельным ремонтом данной аппаратуры, нужно делать все аккуратно и неукоснительно соблюдая правил техники безопасности.
После отключения от сети блока к его конденсаторам не рекомендуется прикасаться в течение 15 минут. Также не нужно трогать системную плату и радиодетали БП, который подключен к сети.

Обратите внимание! Когда ремонт сгоревшего блока питания своими руками завершен, его работоспособность необходимо проверять вдали от горючих и легко воспламеняющихся материалов.

Эти знания помогут вам избежать ненужных травм и ударов токов при самостоятельном ремонте изделия.

С помощью чего делается ремонт

Залогом успешного ремонта любого блока питания является наличие необходимого в работе набора инструментов. Чтобы отремонтировать блок питания своими руками вам понадобятся следующие инструменты и материалы:

  • пара паяльников, которые имею различную мощность. С помощью мощного паяльника следует выпаивать транзисторы и диоды, а также трансформаторы. А прибор с меньшей мощностью пригодится для припаивания прочей мелочевки. Также к ним потребуется припой и флюс;

Паяльник с канифолью и припоем

  • набор отверток;
  • отсос для припоя. С его помощью можно удалить с платы лишний припой;
  • резак. С его помощью можно удалить пластиковые хомуты, скрепляющие между собой провода;
  • маленький пинцет;
  • мультиметр;
  • бензин для очистки платы от остаточных следов пайки;
  • лампочка на 100 Вт.

Когда все материалы и инструменты найдены, можно приступать к поиску проблемы и ее устранению.

Начало любого ремонта – визуальный осмотр

Чтобы понять, что не так с блоком питания и почему он не работает, нужно провести визуальный осмотр устройства. Бывают ситуации, когда БП просто запылился и для решения проблемы достаточно его почистить.
В визуальном осмотре прибора нужно проверить следующие моменты:

  • работу системы охлаждения. Вентилятор должен быть очищен от пыли и хорошо крутиться. Если он не крутится, то причина поломки кроется в нем;
  • электросхему на предмет наличия в ней сгоревших элементов. Некоторые детали при сгорании чернеют. Поэтому их можно определить визуально. Для некоторых элементов придется применять мультиметр. Также нужно проверить дорожки и провода на предмет обрывов.

Обратите внимание! При перегреве текстолиты чернеют, а неисправные конденсаторы выглядят опухшими.

Наиболее часто причинами поломки преобразователя являются:

  • устройство не включается. У него отсутствует напряжения дежурного питания;
  • преобразователь не включается при имеющемся дежурном напряжение. При этом у него отсутствует сигнал PG;
  • у БП включается защита;
  • устройство работает, но от него исходит неприятный запах;
  • диагностируется слишком высокие или низкие выходные напряжения.

Привести к поломке блока питания могут самые разнообразные ситуации. Причем БП может, как сразу перестать работать, так и продолжать функционировать, но с периодическими сбоями.
После выявления причины неполадки, можно приступать к ремонту блока питания своими руками. При этом нужно помнить, что несмотря на схожий принцип работы преобразователи имеют разнообразные схемы.

Вариант схемы блока питания

Обычно схемы различаются как по видам БП, так и по его предназначению (для компьютера, телевизора, планшета, мобильного телефона и т.д.). Поэтому, чтобы ремонт блока питания, проведённый своими руками, удался, первым делом необходимо раздобыть его схему. Не лишним будет сервисное руководства от конкретной аппаратуры.

Ремонт импульсных блоков питания

Из всех возможных видов БП наиболее ненадежными считаются импульсные модели. Это связано с тем, что через него проходит все мощность, которую потребляет электросхема прибора.

 

Импульсный блок питания

Они часто используются для питания современных бытовых приборов и устройств.

Обратите внимание! Большинство импульсных блоков питания создаются на простых схемах. Это не только дешевле, но и упрощает самостоятельный ремонт данного устройства в домашних условиях.

Ремонт в данном случае предполагает следующий алгоритм действий:

  • поиск причины поломки;
  • ее устранение путем замены, например, сгоревшей детали на новую. Помните, что нужно одновременно менять все вышедшие из строя детали. В противном случае включение в сеть БП с неисправным элементом приведет к повреждению уже заменённых элементов;
  • проверка устройства на работоспособность.

Ремонт таких приборов не представляет собой ничего сложного.

Неисправность компьютерных блоков питания

Одними из наиболее сложных в плане ремонта являются компьютерные блоки питания. При этом их ремонт является наиболее актуальным, поскольку компьютеры сегодня имеются во всех домах и квартирах.

Компьютерный блок питания

Прежде, чем приступать к ремонту данного устройства, необходимо проверить напряжение дежурного питания (обычно провод фиолетового цвета). Если оно в норме, тогда следующим нужно проверить сигнал POWER GOOD (обычно провод серого цвета). Этот сигнал должен появиться только после включения устройства в сеть. Для запуска БП необходимо замкнуть черный и зеленый провод. Их можно замкнуть с помощью скрепки.

Обратите внимание! Выходное напряжение при проверке может отличаться, так как его значение зависит от нагрузки.

Если и здесь все нормально, тогда необходимо поверить другие напряжения. Измерение напряжение в горячей части, то все измерения следует проводить только от общей земли.
Перед началом ремонта БП нужно убедиться в том, что все радиоэлементы и контакты между ними в порядке, а силовые шнуры не повреждены. Также для ремонта вам понадобится схема устройства.

Обратите внимание! Схемы с типовыми повреждениями блоков питания можно найти в сервисном руководстве конкретной аппаратуры. Они позволят в разы упростить ремонт устройства.

Для того чтобы провести ремонт компьютерного блока питания своими руками, необходимо уметь пользоваться мультиметром. Не лишним будет умение работать с осциллографом. Кроме этого нужен опыт работы с пальниками и канифолью.

Ремонт компьютерных блоков питания

Устранение неполадок в компьютерном блоке питания выглядит следующим образом:

  • сначала необходимо снять с устройства корпус;
  • далее следует тщательный визуальный осмотр всех составных частей электросхемы прибора. Первое, что бросается в глаза – почерневшие и вздутые детали, а также оборванные провода и контакты;
  • если явно испорченных деталей не удалось обнаружить, тогда проверяем работоспособность всех элементов схемы с помощью мультиметра;

Мультиметр

  • некоторые проблемы, например нестабильная работа питающего напряжения или его пульсация, можно определить только с помощью осциллографа. Тут обращать внимание нужно только на большие пульсации, а маленькие можно не брать в расчет;

Обратите внимание! Вопрос о пульсациях наиболее остро стоит для БП, которые используются для подключения компьютеров, мониторов и телевизоров. Для небольших и простых устройств он не актуален.

  • обязательно тестирующей аппаратурой (мультиметром и осциллографом) нужно прозвонить предохранители, шнур питания, транзисторы, выпрямительный мост и дроссели, а также стабилитроны;

Прозвон компонентов электросхемы

  • вначале проверка осуществляется без выпаивания компонентом электросхемы. Как только была обнаружена неисправная деталь, ее сразу же необходимо выпаять. Также замене подлежат любые подозрительные детали, которые при проверке ведут себя нехарактерным образом. Их работа может быть нарушена лишь частично, но в будущем они могут послужить причиной неисправности БП;
  • при обнаружении сгоревшей детали нужно более внимательно проверить подключенные к ней компоненты схемы. Очень часто выгорание одной детали ведет к порче радом расположенных элементов;
  • обязательно нужно прозвонить выводы конденсатора фильтра для сетевого питания на предмет наличия короткого замыкания.

Очень часто удается обнаружить сгоревший предохранитель (в 80% случаях). Но это скорее следствие, чем причина поломки.
После того, как были обнаружены все поломки, ремонт выглядит так:

  • выпаивание из электросхемы всех отбракованных элементов;
  • установка на их место новых и работоспособных деталей;
  • припаивание;

Припаивание деталей

  • очистка мест пайки от остатков припоя и флюса;
  • возвращение на место корпуса.

После этого необходимо проверить результат своей работы. Нужно вместо сетевого предохранителя установить лампочку на 150-200 Ватт или последовательно соединить между собой менее мощные лампочки. Такая защита сможет защитить БП от сгорания в ситуации, когда проблема его неисправности была устранена не полностью.

Обратите внимание! После ремонта БП необходимо протестировать в течение длительного периода времени под обычной нагрузкой. Так вы точно убедитесь в том, что он работает как надо.

Заключение

Заниматься самостоятельным ремонтом различных блоков питания можно при наличии должной подготовки. Ремонтируя своими руками БП, нужно всегда помнить о правилах работы с электроприборами.

 

Ремонт блока питания пк для начинающих

Ремонт блока питания компьютера своими руками пошагово

Ремонт блока питания компьютера своими руками пошагово — во многом проблемы компьютерному блоку питания доставляют наши электросети. Не секрет, что стабильность переменного напряжения в сети оставляет желать лучшего, вот такая ситуация чаще всего приводит к негативным последствиям с бытовой техникой. Скачки сетевого напряжения пагубно влияют и на блок питания ПК, даже если он находится в режиме ожидания.

Данная публикация посвящена радиолюбителям, которые имеют навыки в ремонте электроники, и даются советы как сделать ремонт блока питания компьютера своими руками пошагово. Существует доступный метод проверки на исправность источника напряжения. Прежде, чем приступать к поиску неисправности его следует отсоединить от системной платы, естественно при обесточенном компьютере. Элементарно разъединяются коннекторы с проводами идущие с блока питания на материнку. У разных моделей БП АТХ основные соединительные разъемы бывают как 20-ти пиновые так и 24 pin, плюс вспомогательные провода питания 4-х или 6-ти pin. Эти добавочные провода предназначены для обеспечения напряжением +12v процессора и видеокарты. После того как все компоненты будут отсоединены от блока, начинается сам процесс проверки устройства.

Для этого нужно взять самый большой жгут проводов и на его разъеме найти два контакта обозначенные номерами 15 и 16 с зеленым и черным проводом. На разных соединителях нумерация может отличаться, но основной ориентир, это зеленый и любой черный провод. Затем тестовую модель включить в сеть 220v, и небольшим отрезком провода замкнуть два этих контакта. В следствии этого замыкания подается сигнал на материнскую плату и БП стартует. Здесь этот кусочек замыкающего провода просто играет роль обыкновенного выключателя. В случае после замыкания вентилятор начал работать, то с большей вероятностью можно определить, что блок питания находится в рабочем состоянии. Поэтому проблему необходимо искать в другом месте.

Последовательность ремонта

Следовательно, начиная пошагово ремонт блока питания компьютера своими руками нудно понимать, что установленные с силовых цепях конденсаторы имеют большую емкость. Именно они накапливают огромный запас энергии для последующей его передачи в нагрузку. Поэтому нужно всегда быть осторожным при работе с силовой частью, так что прежде чем начинать проверку прибора обязательно следует разрядить емкости. Иначе можно получить такой разряд, что мало не покажется, к тому же накопленная энергия в конденсаторах сохраняется долгое время.

У меня был случай, когда я вспомнил о валявшемся пол года в сарае конденсаторе на 10000uf 400v. А когда я хотел почистить его от пыли, то получил такой разряд, что в глазах потемнело и кожа на пальцах лопнула от ожога. Так что будьте всегда предельно внимательны во время работы с приборами, где установлены конденсаторы с большой емкостью. Разрядить кондер очень просто, берете (в зависимости от емкости) резистор 1 кОм мощностью 10 Вт, или обыкновенную электрическую лампочку и происходит мягкий разряд.


Разборка устройства

Первым делом естественно снимается крышка корпуса и в обязательном порядке приводится в надлежащий вид все внутреннее пространство, то есть удаляется вся накопившаяся там пыль. Образовавшийся там наслоение от пыли играет свою негативную роль в плане отвода тепла исходящего от силовых элементов. Поэтому излишнее загрязнение компьютерного блока питания также может быть одним из факторов выхода его из строя. Потом уже по сути начинается ремонт блока питания компьютера своими руками пошагово.

Одной из причин отказа в работе прибора может быть банальное перегорание предохранителя 5А. Так что он проверяется на обрыв мультиметром в первую очередь и если показывает обрыв, то заменить на новый или сделать «жучок» из сгоревшего. Для этого поверх стеклянного цилиндра предохранителя припаять медную жилу Ø 0,16мм, затем подать сетевое напряжение на блок — если вентилятор работает, значит все нормально. Теперь этот «жучок» нужно убрать, а вместо его поставить новый, заводского изготовления.

Поиск неисправных конденсаторов

Как правило компьютерные блоки питания смонтированы с использованием электролитических конденсаторов со значительной емкостью. Но вместе с тем есть не добросовестные производители БП, которые в целях экономии устанавливает кондеры с пониженным значением допустимого напряжения. Такие устройства в большинстве случаев относятся к категории дешевых изделий и выходят из строя чаще других. Именно такие электролиты, которые изготовлены без запаса по напряжению становятся главной проблемой в источниках питания.

При малейшем скачке напруги в сети, емкость не выдерживает этого всплеска энергии. При этом происходит либо разрыв оболочки, в следствии сильного нагрева электролита, либо радио-компонент раздувается и их него вытекает электролит. Естественно такие элементы уже не пригодны к дальнейшему использованию и их нужно менять.

Внимание! Плохая работа вентилятора становится причиной вздутия конденсаторов. Все дело в том, что вентилятор должен охлаждать конденсаторы, которые подвергаются нагреву за счет аккумулирования напряжения в них. Поэтому специалисты рекомендуют периодически проводить смазку подшипников вентилятора и чистку всего куллера.

В некоторых случаях визуальных дефектов конденсатора не обнаружено, однако лучше всего перестраховаться и протестировать их омметром с целью выявления внутреннего сопротивления. Если сопротивление велико относительно номинального, то скорее всего нет контакта между обкладкой накопителя электрической энергии и выводом, то-есть — обрыв.

Продолжая тему электролитических накопителей энергии, стоит пояснить такой момент. Замена таких «надутых» компонентов на новые будет преждевременной, если предварительно не локализовать проблему приведшую к их вздутию. В противном случае, ну замените вы их на новые, а они через некоторое время опять станут «беременными» )), и все сначала. Как показывает практика, причина такой неисправности кроется в не корректной стабилизации питающего напряжения либо его отсутствие вообще. Посему, пока не обнаружите отчего это происходит, делать замену вздутых на новые не нужно.

Еще раз хочу предостеречь всех, у кого нет определенного опыта в ремонте таких аппаратов — не беритесь делать ремонт блока питания компьютера своими руками пошагово. Это может вам обойтись намного дороже, чем отдать блок питания в ремонт специалистам. Помимо всего прочего, для ремонта такой техники необходимо профессиональное оборудование.

Управляющие транзисторы и мощные ключи

Любой установленный в схеме транзистор является полупроводниковым прибором, который также подвержен экстремальным процессам происходящих в нем. Поэтому, ремонт блока питания компьютера своими руками пошагово и последовательно. После конденсаторов подлежат проверке и эти полупроводники. Чтобы определить состояние транзистора, необходимо проверить мультиметром переходы база-коллектор и база эмиттер в обеих направлениях. Делается это с целью выявления обрыва или короткого замыкания на этих переходах.

Тоже самое следует проделать на переходах коллектор-эмиттер, при этом желательно отпаять один конец резистора установленного в цепи эмиттера. После этого уже делается заключение о пригодности этого элемента. Затем переходим к проверке выпрямительных диодов, проверяем их таким же методом как и транзисторы — диод в одну сторону показывает высокое сопротивление, а в другую сторону ничего не показывает, то-есть переход закрыт.

Модернизация блока питания

Что может дать усовершенствование компьютерного источника питания? Под модернизацией подразумевается некоторая переделка устройства, в частности замена определенных электронных компонентов на более качественные для повышения надежности схемы. В понятие небольшой переделки входит именно замена установленных в силовом тракте конденсаторов на фирменные емкости с большим значением номинального напряжения. Почему именно фирменные? Потому, что среди импортных можно подобрать размеры соответствующие месту монтажа на плате, к том уже с большим напряжением, чем у оригинала.

Внимание! Замена конденсатора связана с правильной его установкой на плато. Поэтому обратите внимание на полосу отрицательного вывода. Она широкая вертикальная и светлая. Так вот новый прибор необходимо установить точно в таком же положении, чтобы полоса попала на старое место установки.

Подводим итоги:

Теперь когда все подозрительные и явно вышедшие из строя элементы вы поменяли на исправные, то БП без проблем должен включится. Один из основных показателей работоспособности аппарата — это старт и стабильная работа вентилятора, отсутствие явного перегрева деталей на холостом ходу. Существует другой метод проверки готовности блока к работе, более профессиональный. Этот метод заключается в тестировании всех электрических параметров установленных в схеме радио-элементов. На контактах в соединительных разъемах величина напряжений должна соответствовать 12v и 5v.

Из выше изложенного следует: ремонт компьютерного блока питания не такой уж и простой как может показаться изначально. Однако, как говорилось выше, если имеются хотя бы начальные знания в радиоэлектронике, то можно взяться и за самостоятельный ремонт. При этом желательно иметь под рукой принципиальную схему прибора и хорошенько ее изучить.

Для более доступного объяснения данного материала настоятельно рекомендую прочесть статью по основам ремонта компьютерных блоков питания.

Проверяем входное сопротивление

Итак, дали в ремонт блок питания Power Man на 350 Ватт

Что делаем первым делом? Внешний и внутренний осмотр. Смотрим на “потроха”. Если ли какие сгоревшие радиоэлементы? Может где-то обуглена плата или взорвался конденсатор, либо пахнет горелым кремнием? Все это учитываем при осмотре. Обязательно смотрим на предохранитель. Если он сгорел, то ставим вместо него временную перемычку примерно на столько же Ампер, а потом замеряем входное сопротивление через два сетевых провода. Это можно сделать на вилке блока питания при включенной кнопке “ВКЛ”. Оно НЕ должно быть слишком маленькое, иначе при включении блока питания еще раз произойдет короткое замыкание.

Замеряем напряжения

Если все ОК, включаем наш блок питания в сеть с помощью сетевого кабеля, который идет вместе с блоком питания, и не забываем про кнопочку включения, если она у вас была в выключенном состоянии.

Далее меряем напряжение на фиолетовом проводе

Мой пациент на фиолетовом проводе показал 0 Вольт. Беру мультиметр и прозваниваю фиолетовый провод на землю. Земля – это провода черного цвета с надписью СОМ. COM – сокращенно от “common”, что значит “общий”. Есть также некоторые виды “земель”:

Как только я коснулся земли и фиолетового провода, мой мультиметр издал дотошный сигнал “ппииииииииииип” и показал нули на дисплее. Короткое замыкание, однозначно.

Ну что же, будем искать схему на этот блок питания. Погуглив по просторам интернета, я нашел схему. Но нашел только на Power Man 300 Ватт. Они все равно будут похожи. Отличия в схеме были лишь в порядковых номерах радиодеталей на плате. Если уметь анализировать печатную плату на соответствие схемы, то это не будет большой проблемой.

А вот и схемка на Power Man 300W. Щелкните по ней для увеличения в натуральный размер.

Ищем виновника

Как мы видим в схеме, дежурное питание, далее по тексту – дежурка, обозначается как +5VSB:

Прямо от нее идет стабилитрон номиналом в 6,3 Вольта на землю. А как вы помните, стабилитрон – это тот же самый диод, но подключается в схемах наоборот. У стабилитрона используется обратная ветвь ВАХ. Если бы стабилитрон был живой, то у нас провод +5VSB не коротил бы на массу. Скорее всего стабилитрон сгорел и PN переход разрушен.

Что происходит при сгорании разных радиодеталей с физической точки зрения? Во-первых, изменяется их сопротивление. У резисторов оно становится бесконечным, или иначе говоря, уходит в обрыв. У конденсаторов оно иногда становится очень маленьким, или иначе говоря, уходит в короткое замыкание. С полупроводниками возможны оба этих варианта, как короткое замыкание, так и обрыв.

В нашем случае мы можем проверить это только одним способом, выпаяв одну или сразу обе ножки стабилитрона, как наиболее вероятного виновника короткого замыкания. Далее будем проверять пропало ли короткое замыкание между дежуркой и массой или нет. Почему так происходит?

Вспоминаем простые подсказки:

1)При последовательном соединении работает правило больше большего, иначе говоря, общее сопротивление цепи больше, чем сопротивление большего из резисторов.

2)При параллельном же соединении работает обратное правило, меньше меньшего, иначе говоря итоговое сопротивление будет меньше чем сопротивление резистора меньшего из номиналов.

Можете взять произвольные значения сопротивлений резисторов, самостоятельно посчитать и убедиться в этом. Попробуем логически поразмыслить, если у нас одно из сопротивлений параллельно подключенных радиодеталей будет равно нулю, какие показания мы увидим на экране мультиметра ? Правильно, тоже равное нулю…

И до тех пор пока мы не устраним это короткое замыкание путем выпаивания одной из ножек детали, которую мы считаем проблемной, мы не сможем определить, в какой детали у нас короткое замыкание. Дело все в том, что при звуковой прозвонке, ВСЕ детали параллельно соединенные с деталью находящейся в коротком замыкании, будут у нас звониться накоротко с общим проводом!

Пробуем выпаять стабилитрон. Как только я к нему прикоснулся, он развалился надвое. Без комментариев…

Дело не в стабилитроне

Проверяем, устранилось ли у нас короткое замыкание по цепям дежурки и массы, либо нет. Действительно, короткое замыкание пропало. Я сходил в радиомагазин за новым стабилитроном и запаял его. Включаю блок питания, и… вижу как мой новый, только что купленный стабилитрон испускает волшебный дым)…

И тут я сразу вспомнил одно из главных правил ремонтника:

Если что-то сгорело, найди сначала причину этого, а только затем меняй деталь на новую или рискуешь получить еще одну сгоревшую деталь.

Ругаясь про себя матом, перекусываю сгоревший стабилитрон бокорезами и снова включаю блок питания.

Так и есть, дежурка завышена: 8,5 Вольт. В голове крутится главный вопрос: “Жив ли еще ШИМ контроллер, или я его уже благополучно спалил?”. Скачиваю даташит на микросхему и вижу предельное напряжение питания для ШИМ контроллера, равное 16 Вольтам. Уфф, вроде должно пронести…

Проверяем конденсаторы

Начинаю гуглить по моей проблеме на спец сайтах, посвященных ремонту БП ATX. И конечно же, проблема завышенного напряжения дежурки оказывается в банальном увеличении ESR электролитических конденсаторов в цепях дежурки. Ищем эти конденсаторы на схеме и проверяем их.

Вспоминаю о своем собранном приборе ESR метре

Самое время проверить, на что он способен.

Проверяю первый конденсатор в цепи дежурки.

ESR в пределах нормы.

Находим виновника проблемы

Жду, когда на экране мультиметра появится какое-либо значение, но ничего не поменялось.

Понимаю, что виновник, или по крайней мере один из виновников проблемы найден. Перепаиваю конденсатор на точно такой же, по номиналу и рабочему напряжению, взятый с донорской платы блока питания. Здесь хочу остановиться подробнее:

Если вы решили поставить в блок питания ATX электролитический конденсатор не с донора, а новый, из магазина, обязательно покупайте LOW ESR конденсаторы, а не обычные. Обычные конденсаторы плохо работают в высокочастотных цепях, а в блоке питания, как раз именно такие цепи.

Итак, я включаю блок питания и снова замеряю напряжение на дежурке. Наученный горьким опытом уже не тороплюсь ставить новый защитный стабилитрон и замеряю напряжение на дежурке, относительно земли. Напряжение 12 вольт и раздается высокочастотный свист.

Снова сажусь гуглить по проблеме завышенного напряжения на дежурке, и на сайте rom.by, посвященном как ремонту БП ATX и материнских плат так и вообще всего компьютерного железа. Нахожу свою неисправность поиском в типичных неисправностях данного блока питания. Рекомендуют заменить конденсатор емкостью 10 мкФ.

Замеряю ESR на конденсаторе…. Жопа.

Результат, как и в первом случае: прибор зашкаливает. Некоторые говорят, мол зачем собирать какие-то приборы, типа вздувшиеся нерабочие конденсаторы итак видно – они припухшие, или вскрывшиеся розочкой

Да, я согласен с этим. Но это касается только конденсаторов большого номинала. Конденсаторы относительно небольших номиналов не вздуваются. В их верхней части нет насечек по которым они могли бы раскрыться. Поэтому их просто невозможно определить на работоспособность визуально. Остается только менять их на заведомо рабочие.

Итак, перебрав свои платы был найден и второй нужный мне конденсатор на одной из плат доноров. На всякий случай было измерено его ESR. Оно оказалось в норме. После впаивания второго конденсатора в плату, включаю блок питания клавишным выключателем и измеряю дежурное напряжение. То, что и требовалось, 5,02 вольта… Ура!

Измеряю все остальные напряжения на разъеме блока питания. Все соответствуют норме. Отклонения рабочих напряжений менее 5%. Осталось впаять стабилитрон на 6,3 Вольта. Долго думал, почему стабилитрон именно на 6,3 Вольта, когда напряжение дежурки равно +5 Вольт? Логичнее было бы поставить на 5,5 вольт или аналогичный, если бы он стоял для стабилизации напряжения на дежурке. Скорее всего, этот стабилитрон стоит здесь как защитный, для того, чтобы в случае повышения напряжения на дежурке, выше 6,3 Вольт, он сгорел и замкнул накоротко цепь дежурки, отключив тем самым блок питания и сохранив нашу материнскую плату от сгорания при поступлении на нее завышенного напряжения через дежурку.

Вторая функция этого стабилитрона, видать, защита ШИМ контроллера от поступления на него завышенного напряжения. Так как дежурка соединена с питанием микросхемы через достаточно низкоомный резистор, поэтому на 20 ножку питания микросхемы ШИМ поступает почти то же самое напряжение, что и присутствует у нас на дежурке.

Заключение

Итак, какие можно сделать выводы из этого ремонта:

1)Все параллельно подключенные детали при измерении влияют друг на друга. Их значения активных сопротивлений считаются по правилу параллельного соединения резисторов. В случае короткого замыкания на одной из параллельно подключенных радиодеталей, такое же короткое замыкание будет на всех остальных деталях, которые подключены параллельно этой.

2)Для выявления неисправных конденсаторов одного визуального осмотра мало и необходимо либо менять все неисправные электролитические конденсаторы в цепях проблемного узла устройства на заведомо рабочие, либо отбраковывать путем измерения прибором ESR-метром.

3)Найдя какую либо сгоревшую деталь, не торопимся менять её на новую, а ищем причину которая привела к её сгоранию, иначе мы рискуем получить еще одну сгоревшую деталь.

Работоспособность персонального компьютера (ПК) не в последнюю очередь зависит от качества работы блока питания (БП). В случае его выхода из строя устройство не сможет включиться, а значит, придётся провести замену или ремонт блока питания компьютера. Будь то современный игровой или слабый офисный компьютер, работают все БП по сходному принципу, и методика поиска неисправностей для них одинакова.

Принцип работы и основные узлы

Перед тем как взяться за ремонт БП, необходимо понимать, каким образом он работает, знать его основные узлы. Ремонт блоков питания следует осуществлять предельно осторожно и помнить про электробезопасность во время работы. К основным узлам БП относят:

  • входной (сетевой) фильтр;
  • дополнительный формирователь стабилизированного сигнала 5 вольт;
  • главный формирователь +3,3 В, +5 В, +12 В, а также -5 В и -12В;
  • стабилизатор напряжения линии +3,3 вольта;
  • выпрямитель высокочастотный;
  • фильтры линий формирования напряжений;
  • узел контроля и защиты;
  • блок наличия сигнала PS_ON от компьютера;
  • формирователь напряжения PW_OK.

Фильтр, стоящий на входе, используется для подавления помех, генерирующихся БП в электрическую цепь. Одновременно с этим он выполняет защитную функцию при нештатных режимах работы БП: защита от превышения значения тока, защита от всплесков напряжения.

При включении БП в сеть на 220 вольт на материнскую плату через дополнительный формирователь поступает стабилизированный сигнал с величиной равной 5 вольт. Работа основного формирователя в этот момент блокируется сигналом PS_ON, сформированным материнской платой и равным 3 вольта.

После нажатия кнопки включения на ПК, значение PS_ON становится равным нулю и происходит запуск основного преобразователя. Источник питания начинает вырабатывать основные сигналы, поступающие на компьютерную плату и схемы защиты. В случае значительного превышения уровня напряжения схема защиты прерывает работу основного формирователя.

Для запуска материнской платы на неё одновременно, с прибора питания, подаётся напряжение +3,3 вольта и +5 вольт для формирования уровня PW_OK, что обозначает питание в норме. Каждый цвет провода в устройстве питания соответствует своему уровню напряжения:

  • чёрный, общий провод;
  • белый, -5 вольт;
  • синий, -12 вольт;
  • жёлтый, +12 вольт;
  • красный, +5 вольт;
  • оранжевый, +3,3 вольта;
  • зелёный, сигнал PS_ON;
  • серый, сигнал PW_OK;
  • фиолетовый, дежурное питание.

Устройство питания в основе своей работы использует принцип широтно-импульсной модуляции (ШИМ). Сетевое напряжение, преобразованное диодным мостом, поступает на силовой блок. Его величина составляет 300 вольт. Работой транзисторов в силовом блоке управляет специализированная микросхема ШИМ контроллер. При поступлении сигнала на транзистор происходит его открывание, и на первичной обмотке импульсного трансформатора возникает ток. В результате электромагнитной индукции проявляется напряжение и на вторичной обмотке. Изменяя длительность импульса, регулируется время открытия ключевого транзистора, а значит и величина сигнала.

Контроллер, входящий в состав основного преобразователя, запускается от разрешающего сигнала материнской платы. Напряжение попадает на силовой трансформатор, а с его вторичных обмоток поступает на остальные узлы источника питания, формирующих ряд необходимых напряжений.

ШИМ контроллер обеспечивает стабилизацию выходного напряжения путём использования в схеме обратной связи. При увеличении уровня сигнала на вторичной обмотке, схема обратной связи уменьшает величину напряжения на управляющем выводе микросхемы. При этом микросхемой увеличивает длительность сигнала, посылаемого на транзисторный ключ.

В конце каждой линии БП ставится фильтр. Его назначение убирать паразитные пульсации, образованные переходными процессами транзисторов. Состоит он, как и любой сетевой фильтр, из электролитического конденсатора и индуктивности.

Диагностика устройства питания

Перед тем, как перейти непосредственно к диагностике компьютерного прибора питания, нужно убедиться, что неполадка именно в нём. Проще всего, это сделать, подключив заведомо исправный блок к системному блоку. Поиск неисправностей в блоке питания компьютера можно осуществлять по следующей методике:

  1. В случае повреждения БП необходимо попытаться найти пособие по его ремонту, принципиальную электрическую схему, данные о типичных неисправностях.
  2. Проанализировать условия, при каких условиях работал источник питания, исправна ли электрическая сеть.
  3. Используя свои органы чувств определить есть ли запах горевших деталей и элементов, не было ли искрения или вспышки, прислушаться слышны ли посторонние звуки.
  4. Предположить одну неисправность, выделить неисправный элемент. Обычно это самый трудоёмкий и кропотливый процесс. Этот процесс ещё более трудоёмкий, если отсутствует электрическая схема, которая просто необходима при поиске «плавающих» неисправностей. Используя измерительные приборы проследить путь прохождение сигнала неисправности до того элемента, на котором имеется рабочий сигнал. В результате сделать вывод, что сигнал пропадает на предыдущем элементе, который и является нерабочим и требует замены.
  5. После ремонта необходимо протестировать источник питания с максимально возможной его нагрузкой.

Практические рекомендации по ремонту

Если принято решение самостоятельно починить источник питания, в первую очередь он извлекается из корпуса системного блока. После выкручиваются крепёжные винты и снимается защитный кожух. Продув и почистив от пыли, приступают к его изучению. Практический ремонт блока питания компьютера своими руками пошагово можно представить следующим образом:

  1. Внешний осмотр. При нём особое внимание уделяется почерневшим местам на плате и элементах, внешнему виду конденсаторов. Верхушка конденсаторов должна быть плоской, выпуклость говорит о его негодности, внизу у основания не должно быть подтёков. Если имеется кнопка включения, не лишним будет провести её проверку.
  2. Если осмотр не вызвал подозрений, то следующим шагом будет прозвонка входных и выходных цепей на присутствие короткого замыкания (КЗ). При присутствии короткого замыкания выявляется пробитый полупроводниковый элемент, стоящий в цепи с КЗ.
  3. Измеряется сетевое напряжение на конденсаторе выпрямительного блока и проверяется предохранитель. В случае наличия напряжения 300 B переходим к следующему этапу.
  4. Если напряжение отсутствует, при этом сгорает предохранитель, проверяется диодный мост, ключевые транзисторы на короткое замыкание. Резисторы и защитный терморезистор на обрыв.
  5. Проверяется присутствие дежурного напряжения, стабилизированных пяти вольт. Статистика свидетельствует, что когда устройство питания не включается, одна из наиболее распространённых причин, это неисправность схемы дежурного питания, при работоспособных силовых элементах.
  6. Если стабилизированные пять вольт присутствуют, проверяется наличие PS_ON. Когда значение менее четырёх вольт, ищется причина занижения уровня сигнала. Обычно PS_ON формируется от дежурного напряжения через подтягивающий резистор номиналом 1 кОм. Проверяется цепь супервизора, прежде всего на соответствие в цепи значений ёмкости конденсаторов и номиналы резисторов.

В случае, если причина не найдена, проверяется ШИМ контроллер. Для этого понадобится стабилизированный прибор питания на 12 вольт. На плате отключается нога микросхемы, отвечающая за задержку (DTC), а питание источника подаётся на ногу VCC. Осциллографом смотрится наличие генерации сигнала на выводах, подключённых к коллекторам транзисторов, и присутствие опорного напряжения. Если импульсы отсутствуют проверяется промежуточный каскад, собранный чаще всего на маломощных биполярных транзисторах.

Типовые неисправности и проверка элементов

При восстановлении блока питания ПК понадобится использовать различного рода приборы в первую очередь, это мультиметр и желательно осциллограф. С помощью тестера возможно провести измерения на короткое замыкание или обрыв как пассивных, так и активных радиоэлементов. Работоспособность микросхемы, если отсутствуют визуальные признаки выхода её из строя, проверяется с использованием осциллографа. Кроме, измерительной техники для ремонта блока питания ПК, потребуется: паяльник, отсос для припоя, промывочный спирт, вата, олово и канифоль.

Если не запускается блок питания компьютера, возможные неисправности можно представить в виде типичных случаев:

  1. Перегорает предохранитель в первичной цепи. Пробиты диоды в выпрямительном мосту. Звонятся на короткое замыкание элементы разделительного фильтра: B1-B4, C1, C2, R1, R2. Обрыв варисторов и терморезистора TR1, звонятся накоротко переходы силовых транзисторов и вспомогательных Q1-Q4.
  2. Постоянное напряжение пять вольт или три вольта занижены или завышены. Нарушения в работе стабилизирующей цепи, проверяются микросхемы U1, U2. Если проверить ШИМ контроллер не удаётся, то проводится замена микросхемы на идентичную или аналог.
  3. Уровень сигнала на выходе отличается от рабочего. Неисправность в цепи обратной связи. Виновата микросхема ШИМ и радиоэлементы в её обвязке, особое внимание уделяется конденсаторам C и маломощным резисторам R.
  4. Нет сигнала PW_OK. Проверяется присутствие напряжений основных напряжений и сигнала PS_ON. Проводится замена супервизора, отвечающего за контроль выходного сигнала.
  5. Отсутствует сигнал PS_ON. Сгорела микросхема супервизора, элементы обвязки её цепи. Проверить путём замены микросхемы.
  6. Не крутит вентилятор. Замерить напряжение, поступающее на него, оно составляет 12 вольт. Прозвонить терморезистор THR2. Замерить сопротивление выводов вентилятора на отсутствие короткого замыкания. Провести механическую чистку и смазать посадочное место под лопасти вентилятора.

Принципы измерения радиоэлементов

Корпус БП соединён с общим проводом печатной платы. Измерение силовой части источника питания проводится относительно общего провода. Предел на мультиметре выставляется более 300 вольт. Во вторичной части присутствует только постоянное напряжение, не превышающее 25 вольт.

Проверка резисторов осуществляется путём сравнений показаний тестера и маркировки, нанесённой на корпус сопротивления или указанной на схеме. Проверка диодов проводится тестером, если он показывает нулевое сопротивление в оба направления, то делается вывод о его неисправности. Если существует возможность в приборе проверить падение напряжения на диоде, то можно его не выпаивать, величина составляет 0,5−0,7 вольта.

Проверка конденсаторов происходит путём измерения их ёмкости и внутреннего сопротивления, для чего необходим специализированный прибор ESR-метр. При замене следует учитывать, что используются конденсаторы с низким внутренним сопротивлением (ESR). Транзисторы прозванивают на работоспособность p-n переходов или в случае полевых на способность открываться и закрываться.

Проверка отремонтированного источника питания

После того, как АТХ блок отремонтирован, важно правильно провести его первое включение. При этом, если были устранены не все неполадки, возможен выход из строя отремонтированных и новых узлов прибора.

Запуск устройства питания можно осуществить автономно, без использования компьютерного блока. Для этого перемыкается контакт PS_ON с общим проводом. Перед включением на место предохранителя впаивается лампочка 60 Вт, а предохранитель удаляется. Если при включении лампочка начинает ярко светить, то в блоке присутствует короткое замыкание. В случае когда лампа вспыхнет и погаснет, лампу можно выпаивать и устанавливать предохранитель.

Следующий этап проверки БП происходит под нагрузкой. Сначала проверяется наличие дежурного напряжения для этого выход нагружается нагрузкой порядка двух ампер. Если дежурка в порядке, блок питания включается замыканием PS_ON, после чего делаются замеры уровней выходных сигналов. Если есть осциллограф — смотрится пульсация.

Switch power supply блок питания. Поговорим про ремонт блока питания компьютера своими руками. Устройство источника питания, понижающего преобразователя сетевого напряжения

— Справочник в формате.chm. Автор данного файла — Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru — краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратура, игровые приставки и др. техника.

Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).

База данных по транзисторам в формате Access.

Блоки питания.

Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:

Таблица контактов 24-контактного разъема блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов

Схема блока питания ATX-300P4-PFC (ATX-310T 2.03).

Схема блока питания ATX-P6.

Схема блока питания API4PC01-000 400w производства Acbel Politech Ink.

Схема блока питания Alim ATX 250Watt SMEV J.M. 2002.

Типовая схема блока питания на 300W с пометками о функциональном назначении отдельных частей схемы.

Типовая схема блока питания на 450W с реализацией active power factor correction (PFC) современных компьютеров.

Схема блока питания API3PCD2-Y01 450w производства ACBEL ELECTRONIC (DONGGUAN) CO. LTD.

Схемы блоков питания ATX 250 SG6105, IW-P300A2, и 2 схемы неизвестного происхождения.

Схема БП NUITEK (COLORS iT) 330U (sg6105).

Схема БП NUITEK (COLORS iT) 330U на микросхеме SG6105 .

Схема БП NUITEK (COLORS iT) 350U SCH .

Схема БП NUITEK (COLORS iT) 350T .

Схема БП NUITEK (COLORS iT) 400U .

Схема БП NUITEK (COLORS iT) 500T .

Схема БП NUITEK (COLORS iT) ATX12V-13 600T (COLORS-IT — 600T — PSU, 720W, SILENT, ATX)

Схема БП CHIEFTEC TECHNOLOGY GPA500S 500W Model GPAxY-ZZ SERIES.

Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.

Схема БП Codegen 300w mod. 300X.

Схема БП CWT Model PUh500W .

Схема БП Delta Electronics Inc. модель DPS-200-59 H REV:00.

Схема БП Delta Electronics Inc. модель DPS-260-2A.

Схема БП DTK Computer модель PTP-2007 (она же – MACRON Power Co. модель ATX 9912)

Схема БП DTK PTP-2038 200W.

Схема БП EC model 200X.

Схема БП FSP Group Inc. модель FSP145-60SP.

Схема источника дежурного питания БП FSP Group Inc. модель ATX-300GTF.

Схема источника дежурного питания БП FSP Group Inc. модель FSP Epsilon FX 600 GLN.

Схема БП Green Tech. модель MAV-300W-P4.

Схемы блока питания HIPER HPU-4K580 . В архиве — файл в формате SPL (для программы sPlan) и 3 файла в формате GIF — упрощенные принципиальные схемы: Power Factor Corrector, ШИМ и силовой цепи, автогенератора. Если у вас нечем просматривать файлы.spl , используйте схемы в виде рисунков в формате.gif — они одинаковые.

Схемы блока питания INWIN IW-P300A2-0 R1.2.

Схемы блока питания INWIN IW-P300A3-1 Powerman.
Наиболее распространенная неисправность блоков питания Inwin, схемы которых приведены выше — выход из строя схемы формирования дежурного напряжения +5VSB (дежурки). Как правило, требуется замена электролитического конденсатора C34 10мкФ x 50В и защитного стабилитрона D14 (6-6.3 V). В худшем случае, к неисправным элементам добавляются R54, R9, R37, микросхема U3 (SG6105 или IW1688 (полный аналог SG6105)) Для эксперимента, пробовал ставить C34 емкостью 22-47 мкФ — возможно, это повысит надежность работы дежурки.

Схема блока питания Powerman IP-P550DJ2-0 (плата IP-DJ Rev:1.51). Имеющаяся в документе схема формирования дежурного напряжения используется во многих других моделях блоков питания Power Man (для многих блоков питания мощностью 350W и 550W отличия только в номиналах элементов).

JNC Computer Co. LTD LC-B250ATX

JNC Computer Co. LTD. Схема блока питания SY-300ATX

Предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.

Схемы блока питания Key Mouse Electroniks Co Ltd модель PM-230W

Схемы блока питания L & C Technology Co. модель LC-A250ATX

Схемы блока питания LWT2005 на микросхеме KA7500B и LM339N

Схема БП M-tech KOB AP4450XA.

Схема БП MACRON Power Co. модель ATX 9912 (она же – DTK Computer модель PTP-2007)

Схемы блока питания PowerLink модель LP-J2-18 300W.

Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).

Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.

В современном мире развитие и устаревание комплектующих персональных компьютеров происходит очень быстро. Вместе с тем один из основных компонентов ПК – форм-фактора ATX – практически не изменял свою конструкцию последние 15 лет .

Следовательно, блок питания и суперсовременного игрового компьютера, и старого офисного ПК работают по одному и тому же принципу, имеют общие методики диагностики неисправностей.

Материал, изложенный в этой статье, может применяться к любому блоку питания персональных компьютеров с минимумом нюансов.

Типовая схема блока питания ATX приведена на рисунке. Конструктивно он представляет собой классический импульсный блок на ШИМ-контроллере TL494, запускающемся по сигналу PS-ON (Power Switch On) с материнской платы. Все остальное время, пока вывод PS-ON не подтянут к массе, активен только источник дежурного питания (Standby Supply) с напряжением +5 В на выходе.

Рассмотрим структуру блока питания ATX подробнее. Первым ее элементом является
:

Его задача – это преобразование переменного тока из электросети в постоянный для питания ШИМ-контроллера и дежурного источника питания. Структурно он состоит из следующих элементов:

  • Предохранитель F1 защищает проводку и сам блок питания от перегрузки при отказе БП, приводящем к резкому увеличению потребляемого тока и как следствие – к критическому возрастанию температуры, способному привести к пожару.
  • В цепи «нейтрали» установлен защитный терморезистор, уменьшающий скачок тока при включении БП в сеть.
  • Далее установлен фильтр помех, состоящий из нескольких дросселей (L1, L2 ), конденсаторов (С1, С2, С3, С4 ) и дросселя со встречной намоткой Tr1 . Необходимость в наличии такого фильтра обусловлена значительным уровнем помех, которые передает в сеть питания импульсный блок – эти помехи не только улавливаются теле- и радиоприемниками, но и в ряде случаев способны приводить к неправильной работе чувствительной аппаратуры.
  • За фильтром установлен диодный мост, осуществляющий преобразование переменного тока в пульсирующий постоянный. Пульсации сглаживаются емкостно-индуктивным фильтром.

Источник дежурного питания – это маломощный самостоятельный импульсный преобразователь на основе транзистора T11, который генерирует импульсы, через разделительный трансформатор и однополупериодный выпрямитель на диоде D24 запитывающие маломощный интегральный стабилизатор напряжения на микросхеме 7805. Эта схема хотя и является, что называется, проверенной временем, но ее существенным недостатком является высокое падение напряжения на стабилизаторе 7805, при большой нагрузке приводящее к ее перегреву. По этой причине повреждение в цепях, запитанных от дежурного источника, способно привести к выходу его из строя и последующей невозможности включения компьютера.

Основой импульсного преобразователя является ШИМ-контроллер . Эта аббревиатура уже несколько раз упоминалась, но не расшифровывалась. ШИМ – это широтно-импульсная модуляция, то есть изменение длительности импульсов напряжения при их постоянной амплитуде и частоте. Задача блока ШИМ, основанного на специализированной микросхеме TL494 или ее функциональных аналогах – преобразование постоянного напряжения в импульсы соответствующей частоты, которые после разделительного трансформатора сглаживаются выходными фильтрами. Стабилизация напряжений на выходе импульсного преобразователя осуществляется подстройкой длительности импульсов, генерируемых ШИМ-контроллером.

Проблема выбора корпуса, комплектуемого современным качественным блоком питания, который, в свою очередь, имеет достойные электрические и эргономические параметры, достаточно актуальна. Зачастую корпуса комплектуются блоками питания исходя из принципа минимальной достаточности — «работает и хорошо». Однако, учитывая тот факт, что комплектация корпуса блоком питания для покупателя и пользователя совсем не бесплатна, и требования к тестированию таких БП должны быть соответственными.

Тестирование корпусов будет состоять из двух частей: тестирование непосредственно корпуса и тестирование комплектного блока питания, причем последний тестироваться будет по стандартной методике, такой же, как и блоки питания, продающиеся отдельно. Данное решение связано еще и с тем, что зачастую БП, которым комплектуется какой-либо корпус, можно увидеть в продаже отдельно под собственным наименованием.

Сегодня мы рассмотрим блок питания ISO-450PP, входящий в комплект поставки корпуса . Данный БП произведен компанией ISO Electronics (Mingbo) Co. LTD, входящей в CWT Group, штаб-квартира которой находится на Тайване, а два завода, производящие источники и преобразователи питания, — в Китае.

Перейдем непосредственно к внешнему осмотру.

Общее описание блока питания

Блок питания выполнен в корпусе из стали толщиной примерно 0,6 мм, края обработаны достаточно хорошо, но не идеально. Есть несколько довольно острых граней, о которые можно оцарапаться или порезаться. Заусенцы, сколы краев и прочие недопустимые дефекты отсутствуют. Корпус БП имеет стандартный серый цвет, видимых дефектов поверхности, также, не обнаружено.

На внешней панели БП расположены:

  • выключатель сетевого питания
  • стандартный разъем для подключения сетевого шнура
  • маркировка допустимого напряжения питающей сети (AC 230V)
  • штампованное вентиляционное отверстие размером 75 на 75мм.

Хотелось бы дополнительно отметить известный недостаток штампованных решеток отверстий по сравнению с вентиляционными отверстиями, закрытыми сеткой или проволокой — это более высокий уровень шума, возникающий при прохождении воздуха через них, а также, зачастую, и сокращение полезной площади самого вентиляционного отверстия.

На задней панели расположены:

  • отверстие для вывода проводов питания с пластиковой прокладкой, предохраняющей провода от истирания о корпус БП
  • 23 вентиляционных отверстия 28 на 3 мм.

Дополнительные вентиляционные отверстия, предназначенные для охлаждения модуля пассивного PFC, расположены на верхней, относительно основной печатной платы, и одной из боковых стенок корпуса БП.

  • 24 пиновый ATX разъем — монолитный. Длина проводов до разъема составляет 33 см, через 24 см от корпуса на них установлена пластиковая стяжка.
  • 4 пиновый разъем ATX12V, длина проводов до разъема — 35 см, пластиковая стяжка установлена на расстоянии 24 см от корпуса БП
  • 1 SATA разъем питания, длина проводов до разъема — 34 см, стяжка установлена на расстоянии 24 см от корпуса БП.
  • 2 разъема типа Molex — длина проводов до 1-го разъема 34 см, до 2-го — 14 см, стяжка установлена на расстоянии 24см от корпуса блока
  • 2 разъема типа Molex плюс разъем питания для FDD — длина проводов до 1-го разъема 34 см, до 2-го — 14 см плюс еще 14см до разъема FDD, стяжка установлена на расстоянии 24см от корпуса БП
    Итого, для питания устройств внутри системного блока предусмотрены:
  • 4 разъема Molex
  • 1 разъема питания для SATA устройств
  • 1 разъема питания FDD

На всех проводах непосредственно около корпуса БП установлена общая пластиковая стяжка.

Провода для подключения внешних устройств и разъемов АТХ используются сечением 18 AWG, что вполне достаточно для данной мощности.

В данной модели блока питания используется вентилятор на основе подшипника скольжения производства Xinruilian модели с максимальным током потребления 0,11А и номинальной скоростью вращения 2500 об/мин.

Провод от вентилятора подключен посредством двухпинового разъема к основной печатной плате. Какие-либо схемы, управляющие скоростью вращения вентилятора, замечены не были.

Одна из частей сетевого фильтра распаяна на дополнительной плате, установленной на радиаторе ключевых транзисторов элементами вниз и закрепленной двумя саморезами, вторая часть — на основной печатной плате.

В высоковольтной части БП используются два конденсатора емкостью 680мкФ производства Teapo, рассчитанных на максимальную температуру 85 градусов

Радиаторы ключевых транзисторов и диодных сборок одинаковы, их основание имеет толщину 2мм, длина радиаторов 7 см, высота — 5 см, размер в поперечном сечении 1 см. В общем, своими габаритами они не потрясают, дай бог, чтобы их было достаточно для нормального охлаждения элементов БП в процессе работы. Направление ребер совпадает с осью вращения вентилятора, что должно положительно сказаться на теплоотводе. Радиаторы использованы стандартные F-образные с двухсторонним оребрением. В блоке предусмотрена установка модуля пассивного PFC, он расположен на верхней крышке. В качестве основного контроллера использована микросхема типа .

В выходных цепях установлены конденсаторы производства Teapo, рассчитанные на максимальную температуру 85 градусов емкостью 2200мкФ и 1000мкФ.

Мест под не распаянные элементы на плате не обнаружено.

Монтаж достаточно аккуратен, правда, провода, соединяющие некоторые элементы БП, создают неопрятный вид, несмотря, на использование нейлоновых стяжек.

Тестирование блока питания

Итак, переходим к тестированию.

Проверка пульсаций проводилась на 75% от заявленной максимальной выходной мощности в соответствии с распределением токов нагрузки, рекомендованным производителем. Также были измерены пульсации при максимальной нагрузке на канал 12В.

3,3 В 5 В 12 В Мощность
12 А 20 А 10 А 260 Вт
6 А 6 А 16 А 244 Вт

В целом значения пульсаций являются низкими и находятся в допустимых пределах. Так, максимальное значение пульсаций для канала 5В составило 9мВ в первом случае и 4мВ — во втором (допустимый предел 50мВ), а для канала 12В — 6мВ в первом случае и 8мВ — во втором (допустимый предел 120мВ).

Проверка стабильности напряжений проводилась на ряде выходных токов нагрузки, рассчитанном по принципу их комбинирования в пределах параметров, заявленных производителем, но в оригинальных пропорциях, составляющих 33, 66 и 100% по каждому каналу от вычисленного предельного значения, с учетом максимального энергопотребления по линии 12В. Также дополнительно были проведены измерения в двух произвольных комбинациях нагрузки. Как обычно, напряжения измерялись мультиметрами класса True RMS.

Претензий нет только к каналу 5В, отклонения напряжений в большинстве случаев находятся в пределах трех процентов. Отклонения напряжения по каналу 12В можно признать, в целом, удовлетворительными, хотя пару раз они и превысили допустимый пятипроцентный порог. Значение напряжения 3,3В, как правило, покидало зону допустимых значений при нагрузке данной линии свыше 6А. В общем, блок питания можно признать пригодным к эксплуатации в системах с небольшим энергопотреблением.

По окончанию данного этапа тестирования температуры радиаторов находились в районе 50 градусов, а температура корпуса питания составляла 32 градуса.

Для оценки температурного режима блока питания были проведены дополнительные измерения с фиксацией температур его конструктивных элементов. Тестирование проводилось с закрытой верхней крышкой корпуса БП.


Обращает на себя внимание высокая температура радиаторов силовых элементов при нагрузке весьма далекой от максимальной для данного блока, причем 80мм вентилятор все время вращался со скоростью 2500 оборотов в минуту и обеспечивал весьма мощный воздушный поток и, к сожалению, не менее ощутимый шум. По результатам теста можно сделать вывод о недостаточно продуманной конструкции радиаторов, проще говоря, данные радиаторы не подходят для таких режимов работы.

Для следующего этапа тестирования был использован компьютер следующей конфигурации:

  • Процессор AMD Athlon 64 3000+
  • Кулер
  • Матплата
  • Оперативная память Patriot LL 512 Мб
  • Видеокарта Gigabyte GV-N66256DP
  • Жесткие диски: 2 HDD Samsung SP 0812C в RAID 0, HDD WD 1600JD
  • Корпус

При установке в корпус каких-либо проблем не возникло.

Для тестирования использовались: утилита в режиме Demo mode (90 минут) и игра FarCry (60 минут). В ходе тестирования отсутствовали зависания, перезагрузки, ошибки, одним словом, система работала стабильно. Температура БП находилась в районе 40 градусов. В целом блок питания проработал два дня без особых нареканий. Единственное замечание касается повышенного уровня шума, обусловленного тем, что вентилятор все время вращается на максимальных оборотах.

Отклонения напряжений от номинала в пределах нормы.

Выводы

Данный блок питания не стоит использовать с системами, потребляющими в пике более 250Вт. Недостатками конструкции можно признать маленькие радиаторы, а также отсутствие схем управления вентилятором, вследствие чего наблюдается высокий уровень шума.

Ремонт импульсного источника питания. Отремонтировать блок питания или преобразователь напряжения самостоятельно может любой человек, владеющий базовыми радиоэлектронными навыками. Действуйте, выявите неисправность и устраните ее. (10+)

Ремонтируем импульсный источник питания сами, своими руками. Неисправности

Внимание! Некоторые элементы источника питания во время работы находятся под сетевым напряжением. Убедитесь, что Вы обладаете необходимой квалификацией для безопасного выполнения ремонта импульсного источника питания.

Диагностика и ремонт импульсного источника питания в большинстве случаев могут быть выполнены при наличии базовых навыков в радиоэлектронике.

Устройство источника питания, понижающего преобразователя сетевого напряжения

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…

Питание светодиода. Драйвер. Светодиодный фонарь, фонарик. Своими рука…
Включение светодиодов в светодиодном фонаре….

Инвертор, преобразователь, чистая синусоида, синус…
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за…

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить…
Приемы намотки импульсного дросселя / трансформатора….


Расчет онлайн гасящего конденсатора бестрансформаторного источника питания…

Инвертирующий импульсный преобразователь напряжения. Силовой ключ — би…
Как сконструировать инвертирующий импульсный источник питания. Как выбрать мощны…

&nbsp &nbsp На этой страничке размещено несколько десятков электрических принципиальных схем, и полезные ссылки на ресурсы, связанные с темой ремонта оборудования. В основном, компьютерного. Помня о том, сколько сил и времени иногда приходилось затрачивать на поиск нужной информации, справочника или схемки, я собрал здесь почти все, чем пользовался при ремонте и что имелось в электронном виде. Надеюсь, кому-нибудь, что-нибудь пригодится.

Утилиты и справочники.

cables.zip — Разводка кабелей — Справочник в формате.chm. Автор данного файла — Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru — краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратуа, игровые приставки, интерфейсы автомобилей.

Конденсатор 1.0 — Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).

startcopy.ru — по моему мнению, это один из лучших сайтов рунета, посвященный ремонту принтеров, копировальной техники, многофункциональных устройств. Можно найти методики и рекомендации по устранению практически любой проблемы с любым принтером.

Блоки питания.

Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:

ATXPower.rar — Схемы блоков питания ATX 250 SG6105, IW-P300A2, и 2 схемы неизвестного происхождения.

colors_it_330u_sg6105.gif — Схема БП NUITEK (COLORS iT) 330U.

codegen_250.djvu — Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.

codegen_300x.gif — Схема БП Codegen 300w mod. 300X.

deltadps200.gif — Схема БП Delta Electronics Inc. модель DPS-200-59 H REV:00.

deltadps260.ARJ — Схема БП Delta Electronics Inc. модель DPS-260-2A.

DTK_PTP_2038.gif — Схема БП DTK PTP-2038 200W.

FSP145-60SP.GIF — Схема БП FSP Group Inc. модель FSP145-60SP.

green_tech_300.gif — Схема БП Green Tech. модель MAV-300W-P4.

HIPER_HPU-4K580.rar — Схемы блока питания HIPER HPU-4K580

hpc-360-302.pdf — Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-360-302 DF REV:C0

hpc-420-302.pdf — Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-420-302 DF REV:C0

iwp300a2.gif — Схемы блока питания INWIN IW-P300A2-0 R1.2.

IW-ISP300AX.gif — Схемы блока питания INWIN IW-P300A3-1 Powerman.

JNC_LC-B250ATX.gif — JNC Computer Co. LTD LC-B250ATX

JNC_SY-300ATX.pdf — JNC Computer Co. LTD. Схема блока питания SY-300ATX

JNC_SY-300ATX.rar — предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.

KME_pm-230.GIF — Схемы блока питания Key Mouse Electronics Co Ltd модель PM-230W

Power_Master_LP-8_AP5E.gif — Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).

Power_Master_FA_5_2_v3-2.gif — Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.

MaxpowerPX-300W.GIF — Схема БП Maxpower PX-300W

microlab350w.pdf — Схема БП Microlab 350W

Диагностика, ремонт и доработка компьютерного блока питания АТХ — Starus Recovery

В этой статье мы рассмотрим устройство простого блока питания АТХ для ПК. Расскажем какие компоненты обычно отсутствуют в дешевом китайском блоке, на которых сэкономил производитель. Рассмотрим вопрос надежности и частую причину повреждения таких блоков питания. А также расскажем как правильно диагностировать неисправность, замерять напряжение под нагрузкой и без.


Содержание статьи:


 

Для примера возьмем блок питания Oktet модель ATX-400W
  • Мощность — 400 Вт
  • Форм-фактор — ATX
  • КПД — 70%
  • Охлаждение — кулер 80 мм
  • PFC модуль — активный
  • Стабилизация напряжения — нет
  • Защита от перегрузки — нет
  • Защита от короткого замыкания — есть

Основная причина повреждения и правильный расчет мощности БП АТХ

Наш блок питания из за неправильного расчета мощности пережил короткое замыкание в нагрузке. Изоляция проводов для подключения внешней нагрузки сильно оплавилась, некоторые провода сгорели полностью.

А почему это случилось?
Причина следующая: заявленная мощность блока 400вт, но это не совсем так — это общая мощность, а на самом деле, в таком дешевом Блоке питания, в лучшем случае будет ватт 250.

Основная потребляемая мощность в современной сборке приходится на линию 12в. От этой линии в компьютере питается практически все! И если рассмотреть линию 12в/15А данного блока и пересчитать ее в ваты то получаем честные 180 вт (12в*15А = 180 ватт)

Вывод:
Надо внимательно изучать информационную наклейку на БП и понимать какую мощность отдает устройство именно по линии 12в.

Ниже пример правильного блока питания на 400вт с правильным указанием мощности. Здесь сразу понятно какую реальную мощность вы можете получить по линии 12 вольт — это честные 275 ватт.

Наш БП все же выдает все напряжения (12, 5, 3.3 вольта) и можно уверенно сказать, что такие блоки довольно живучие, но далеко не надежные! Поскольку такое устройство не имеет Стабилизации напряжения и Защиты от перегрузки. А так же зачастую в таких блоках присутствуют не все компоненты на платах. И такое устройство может легко уничтожить вашу материнскую плату или процессор.

Как проверить выдаваемые блоком напряжения

Чтобы проверить выдаваемые блоком напряжения можно воспользоваться готовыми изделиями с китай-рынка — например цифровым тестером для блоков питания АТХ.

Также снять показания можно обычным вольтметром. Но сначала вам потребуется запустить блок, а для этого необходимо найти контакт дежурного напряжения — так называемый Standby контакт. Находится он на главном разъеме для подключения материнской платы, цвет подводящего провода зеленый.

Чтобы запустить — нужно замкнуть этот контакт с черным проводом (массой). Сделать это можно обычной скрепкой или пинцетом. Напряжения на разъемах для питания внешних устройств появятся только после запуска блока, об этом вы поймете по вращению кулера охлаждения.

После запуска, снимаем показания напряжения по всем линиям питания. Если все напряжения соответствуют, можно подключить эквивалент нагрузки. В роли нагрузки можно использовать лампу 12в мощностью приблизительно 100 вт.

Но правильнее будет сначала разобрать блок питания и визуально оценить состояние компонентов, а потом подключить эквивалент нагрузки. Надо убедиться что на плате нет подгоревших дросселей, а высоковольтные конденсаторы не по вздувались.

Откручиваем 4 винтика, снимаем верхнюю крышку, аккуратно извлекаем плату и осматриваем. В нашем блоке визуально поврежденных компонентов не видно, конденсаторы целые, плата чистая.

Устройство простых блоков питания АТХ

Данный Блок питания выполнен по стандартной схемотехнике для блоков ATX. Входное напряжение 220в поступает через сетевой разъем на плату, на которой отсутствует сетевой фильтр входного напряжения. Но место под распайку имеется — скорее всего это результат экономии наших китайских друзей.

Далее напряжение поступает на выпрямительный мост, рядом два накопительных конденсатора емкостью по 470 микрофарад — это минимальная емкость для данной мощности.

На первом радиаторе установлены два силовых ключа и транзистор мульти генератора дежурного напряжения. За ним развязывающий трансформатор и трансформатор дежурного напряжения.

На следующем радиаторе — это уже низковольтная часть БП, стоят диоды шотки, следом расположены дроссель групповой стабилизации +5 +12в и дроссель канала 3,3 вольта. На выходе жгуты линий напряжений для подключения внешних устройств и линия питания кулера.

Устранение неисправностей и доработка блока питания

Проверяем диоды выпрямительного моста на пробой — в нашем случае диоды оказались рабочими. Теперь надо заменить перегоревшие провода для питания внешних устройств. Жгут линий питания материнской платы не поврежден.

И так, мы заменили провода и немного доработали наш БП.
На выходе установили дополнительно конденсаторы по 1500 мкф 3шт, так как штатные по 1000мкф — маловато для этой мощности. А так же добавили дроссель и фильтрующие конденсаторы для входного напряжения сети 220в. Емкости высоковольтной части также пришлось заменить правильными по 560 мкф, поскольку измерение впаяных на плате — показало емкость всего 2 по 250 китайских мкф, вместо положенных 2 по 470 настоящих 🙂

Контрольное включение устройства после выполненных работ

Подаем входное напряжение 220в, проверяем наличие дежурного напряжения на разъеме под материнку, замыкаем этот контакт на массу и запускаем блок. Блок питания стартует, кулер вращается.

Проверяем напряжения по каждой линии питания 5/12/3,3 вольта

  • линия +5в — 5в ровно
  • линия +12в — 11,97
  • линия 3,3в -3,38в

Как правильно подключить лампу накаливания для тестирования под нагрузкой

Хотим обратить ваше внимание на некоторый нюанс подключения мощной лампы накаливания в качестве нагрузки.

Лампа накаливания нелинейный элемент, сопротивление ее меняется по мере разогрева нити накала. В холодном состоянии сопротивление очень низкое — 0,3 ом к примеру. Поэтому при подключении к цепи 12в в качестве нагрузки срабатывает защита по превышению тока.

А вот если предварительно разогреть нить накала пониженным напряжением, к примеру возьмем 5в, а после подключить на линию 12в — блок питания не уйдет в защиту. Потому что спираль уже нагрелась и сопротивление ее изменилось — увеличилось.

Давайте попробуем измерить сопротивление нити накала сразу после отключения — как видите — четыре с лишним ома! И далее при остывании лампы сопротивление опять снижается и при комнатной температуре оно опять будет порядка 0,2 ома.

При сопротивлении 0,2 Ома холодной лампы, импульс тока будет порядка 60А (закон Ома — I=V/Om), что превышает допустимый ток нагрузки для цепи 12в импульсного блока питания ATX. С разогретой лампой ток в цепи 12в будет всего порядка 2-5А.

И так пробуем подключить дополнительную нагрузку в виде лампы, БП не должен уходить в защиту. Сначала подключаем лампу на линию 5в — лампа должна загореться не очень ярко. Далее переключаем на 12в — свечение лампы становится более яркое.

Теперь надо снять показания напряжений на линиях в нагрузке.

  • линия 12в -просело до 11,72
  • линия 5в -4,98
  • линия 3в -3,31

Все показания в пределах допустимого.

Если устройство работает стабильно, можно собирать.
На жгут проводов не забываем одеть защитную клипсу, дабы избежать пробоя на корпус, в следствии повреждения изоляции проводов.

После блок питания надо окончательно протестировать, погоняв его некоторое время под нагрузкой по линии 12в. И теперь его можно использовать в какой нибудь нетребовательной сборке ПК!

 

На этом все, удачных ремонтов вам, живучей и надежной техники.

 


Похожие статьи про восстановление данных:


Дата:

Теги: Как исправить, Компьютер, Поврежденный, Ремонт

Преобразование блока питания ATX в настольный блок питания в цепи питания

Стандартный компьютерный блок питания (PSU) преобразует входящие 110 В или 220 В переменного тока (переменного тока) в различные выходные напряжения постоянного (постоянного тока), подходящие для питания внутренних компонентов компьютера, и с небольшим воображением можно преобразовать блок питания ATX к стендовому источнику питания.

Диапазон мощности большинства компьютерных блоков питания составляет от 150 до 500 Вт, так что мощности достаточно. Оригинальный стандартный разъем ATX, используемый для питания материнской платы, представлял собой один 20-контактный разъем Molex, который имеет все необходимые напряжения +12 В постоянного тока и +5 В постоянного тока с огромными выходными токами и защитой от короткого замыкания, а также провод включения питания, позволяющий программному обеспечению ПК подключаться к сети. выключите блок питания при выключении.

Прежде чем приступить к преобразованию блока питания ATX, убедитесь, что блок питания отключен от сети и разряжен, оставив его отключенным в течение нескольких минут перед запуском . Это важно! поскольку это может привести к потенциально опасной или даже смертельной ситуации из-за высокого напряжения внутри блока питания, если вы решите его разобрать. Также убедитесь, что металлический корпус блока питания правильно заземлен. Вы несете ответственность за свою безопасность !.

Мы не можем просто подключить блок питания к сети и рассчитывать на получение требуемого выходного напряжения 5 или 12 вольт. Стандартный блок питания ПК имеет два предохранительных механизма, которые предотвращают его включение без присоединенной материнской платы.

  • Номер 1, для запуска блока питания требуется сигнал нулевого напряжения «Power-ON», аналогичный переключателю «ON-OFF» на передней панели ПК.
  • Номер 2, чтобы блок питания мог правильно регулировать выходное напряжение +5 В, к нему должна быть подключена какая-то нагрузка, по крайней мере, 5 Вт, чтобы заставить блок питания думать, что он подключен к материнской плате

К сожалению, нельзя просто оставить провода открытыми, к счастью, обе эти проблемы легко решаются.

К 20-контактному разъему ATX подключено несколько проводов разного цвета, обеспечивающих несколько выходов с разным напряжением, например + 3,3 В, + 5 В, + 12 В, -12 В, -5 В, а также несколько черных проводов заземления и сигнал пары. провода, как показано на следующем изображении вместе с их цветовым кодом и описанием.

20-контактный разъем Molex ATX

Выводы 20-контактного разъема с цветами проводов, используемых в стандартном разъеме блока питания ATX.

Штифт Имя Цвет Описание
1 3,3 В Оранжевый +3,3 В постоянного тока
2 3,3 В Оранжевый +3,3 В постоянного тока
3 ОБЩИЙ Черный Земля
4 5 В Красный +5 В постоянного тока
5 ОБЩИЙ Черный Земля
6 5 В Красный +5 В постоянного тока
7 ОБЩИЙ Черный Земля
8 Pwr_Ok Серый Power Ok (+5 В постоянного тока при нормальном питании)
9 + 5ВСБ фиолетовый +5 В постоянного тока в режиме ожидания
10 12 В Желтый +12 В постоянного тока
11 3.3В Оранжевый +3,3 В постоянного тока
12 -12В Синий -12 В постоянного тока
13 ОБЩИЙ Черный Земля
14 Pwr_ON Зеленый Источник питания включен (активный низкий уровень)
15 ОБЩИЙ Черный Земля
16 ОБЩИЙ Черный Земля
17 ОБЩИЙ Черный Земля
18 -5В Белый -5 В постоянного тока
19 5 В Красный +5 В постоянного тока
20 5 В Красный +5 В постоянного тока

Существует несколько способов превратить стандартный компьютерный блок питания ATX в пригодный для использования в настольных ПК.Вы можете оставить 20-контактный разъем Molex прикрепленным и подключаться непосредственно к нему или полностью отрезать его и сгруппировать вместе отдельные провода, сохраняя вместе одинаковые цвета, от красного к красному, от черного к черному и т. Д.

Я отрезал разъем, чтобы получить доступ к отдельным проводам, и соединил их в ленту с винтовыми разъемами, чтобы получить более высокую выходную силу тока для источников питания + 5 В и + 12 В. Вы можете соединить провода одного цвета вместе с помощью обжимных соединителей или штырей, это то же самое.Некоторые из других отдельных цветных проводов нам нужно отделить, как описано ниже.

Чтобы запустить автономный блок питания для целей тестирования или в качестве стендового источника питания, нам нужно замкнуть вместе контакт 14 — зеленый (Power-ON) на один из общих черных проводов (заземление), как на материнской плате. сообщает источнику питания, чтобы он включился. К счастью, контакт 15 — черный находится рядом с ним, поэтому я подключил переключатель между сигналом Pwr_On (контакт 14) и землей (контакт 15). Когда контакт 14 на мгновение или постоянно соединяется с землей через переключатель, питание включается.

Затем нам нужно обеспечить небольшую нагрузку на выход + 5V (красные провода), чтобы заставить блок питания думать, что он подключен к материнской плате, и держать блок питания в режиме «ON». Для этого мы должны подключить большой резистор 10 Ом или меньше со стандартной номинальной мощностью от 5 Вт до 10 Вт через выход + 5 В, используя только один набор красного и черного проводов, контакты 3 и 4 подойдут.

Помня о Законе Ома, что мощность (P), развиваемая в резисторе, определяется уравнением: P = I 2 × R или P = V 2 / R, где: P = мощность, развиваемая в резисторе в ваттах (Вт), I = ток через резистор в амперах (A), R = сопротивление резистора в омах (Ом) и V = напряжение на резисторе в вольтах (В).Напряжение будет + 5В, а требуемая мощность — 5Вт или выше. Тогда подойдет любой стандартный силовой резистор ниже 5 Ом. Однако помните, что этот резистор станет ГОРЯЧИМ! так что убедитесь, что это не мешает.

Еще один вариант, который у нас есть, — использовать контакт 8 — серый (Pwr_Ok) в качестве визуальной индикации того, что блок питания запущен правильно и готов к работе. Сигнал Pwr_Ok становится высоким (+5 В), когда источник питания стабилизируется после его первоначального запуска, и все напряжения находятся в пределах своих допустимых диапазонов.Я использовал красный светодиод последовательно с токоограничивающим резистором 220 Ом, подключенным между контактами 8 и 7 (земля) для этого индикатора готовности к питанию, но все подобное подойдет, это единственный индикатор.

Проверка источника питания

После сборки у вас должно получиться что-то вроде этого.

Когда вы подключаете блок питания к розетке и включаете переключатель на задней панели блока питания (если он есть), на разъеме должно быть только два напряжения.Один из них — pin 14 зеленый провод Pwr_ON, на котором будет + 5V. Второй — это контакт 9 , фиолетовый провод + 5V Standby (+ 5VSB), на котором также должно быть + 5V.

Это резервное напряжение используется для кнопок управления питанием материнской платы, функции Wake on LAN и т. Д. И обычно обеспечивает ток около 500 мА, даже когда основные выходы постоянного тока выключены, поэтому его можно использовать в качестве постоянного источника питания +5 В. для использования с малым энергопотреблением без необходимости полностью включать блок питания.

Некоторые новые блоки питания ATX12V могут иметь провода «измерения напряжения», которые необходимо подключить к проводу фактического напряжения для правильной работы.В основных кабелях питания у вас должно быть три красных провода (+ 5 В), все соединенные вместе, и три черных провода (0 В), соединенные вместе, поскольку остальные использовались для переключателя и светодиода. Также соедините вместе три оранжевых провода, чтобы получить выход + 3,3 В, если он требуется для питания небольших устройств или плат микроконтроллеров.

Если у вас только два оранжевых провода, вместо него может быть коричневый провод, который необходимо соединить с оранжевым, + 3,3 В, чтобы устройство могло включиться.Если у вас всего три красных провода, к ним необходимо подключить еще один провод (иногда розовый). Но сначала проверьте это.

Если все в порядке, то все в порядке, и блок питания должен переключиться в положение «ON», что даст вам очень дешевый настольный блок питания. Вы можете проверить выходное напряжение с помощью мультиметра или подключить лампочку 12 В к разным розеткам, чтобы проверить, работает ли блок питания. Блоки питания могут выдавать следующие комбинации напряжений: 24 В (+12, -12), 17 В (+5, -12), 12 В (+12, 0), 10 В (+5, -5), 7 В (+12 , +5), 5В (+5, 0), которого должно хватить для большинства электронных схем.

Вы также можете подключить регулируемый регулятор напряжения LM317, регулируемый потенциометр 5 кОм, резистор 240 Ом для смещения и пару сглаживающих конденсаторов к источнику питания +12 В, чтобы получить отдельное регулируемое выходное напряжение от примерно 2,0 до 12 вольт, но это дополнительная функция.

24-контактный разъем Molex ATX

В более новых настольных ПК используются блоки питания ATX версии 2, называемые ATX12V. Старый 20-контактный разъем был заменен на более крупный 24-контактный разъем Molex или даже 20 + 4-контактный разъем.Четыре дополнительных контакта: два дополнительных контакта с номерами 11 и 12 — + 12 В (желтый) и + 3,3 В (оранжевый), а два дополнительных контакта с номерами 23 и 24 — + 5 В (красный) и заземление (черный) соответственно. В следующей таблице для справки приведены выводы и цвета новых выводов ATX12V.

24-контактный разъем Molex ATX

Выводы 24-контактного разъема с соответствующими цветами проводов в кабелях блока питания.

Штифт Имя Цвет Описание
1 3.3В Оранжевый +3,3 В постоянного тока
2 3,3 В Оранжевый +3,3 В постоянного тока
3 COM Черный Земля
4 5 В Красный +5 В постоянного тока
5 COM Черный Земля
6 5 В Красный +5 В постоянного тока
7 COM Черный Земля
8 Pwr_Ok Серый Power Ok (+5 В постоянного тока при нормальном питании)
9 + 5ВСБ фиолетовый +5 В постоянного тока в режиме ожидания
10 12 В Желтый +12 В постоянного тока
11 12 В Желтый +12 В постоянного тока
12 3.3В Оранжевый +3,3 В постоянного тока
13 3,3 В Оранжевый +3,3 В постоянного тока
14 -12В Синий -12 В постоянного тока
15 COM Черный Земля
16 Pwr_ON Зеленый Источник питания включен (активный низкий уровень)
17 COM Черный Земля
18 COM Черный Земля
19 COM Черный Земля
20 -5В Белый -5 В постоянного тока
21 + 5В Красный +5 В постоянного тока
22 + 5В Красный +5 В постоянного тока
23 + 5В Красный +5 В постоянного тока
24 COM Черный Земля

Блоки питания ATX12V нового типа немного сложнее преобразовать, поскольку они используют функцию «мягкого» переключения питания и требуют гораздо большего сопротивления внешней нагрузки.Чтобы заставить их запустить или включить, источник питания должен быть нагружен не менее чем на 20 Вт или 10% от номинальной мощности для более крупных блоков питания мощностью 600 Вт +. Все, что ниже этого значения, источник питания может работать, но регулировка будет очень плохой — менее 50%.

Также для некоторых новых и более мощных блоков питания требуется контакт 14 — зеленый (Power-ON), который должен быть постоянно подключен к земле с помощью переключателя SPST. Очевидно, что каждый тип блока питания отличается от разных производителей, поэтому вам нужно найти то, что вам подходит.

Напряжение, которое может выдавать этот блок, такое же, как и раньше: 24 В (+12, -12), 17 В (+5, -12), 12 В (+12, 0), 10 В (+5, -5). , 7м (+12, +5), 5м (+5, 0). Обратите внимание, что некоторые блоки питания ATX12V с 24-контактным разъемом материнской платы могут не иметь белого вывода -5 В (контакт 20). В этом случае используйте старые блоки питания ATX с 20-контактным разъемом, указанным выше, если вам нужен дополнительный источник питания -5 В.

Из старого блока питания ПК можно сделать отличный и дешевый настольный блок питания для конструкторов электроники.В блоке питания используются импульсные регуляторы для поддержания постоянного питания с хорошим регулированием, а защита от короткого замыкания приводит к отключению блока и немедленному повторному включению питания, если что-то пойдет не так.

Единственным недостатком использования блока питания ATX в качестве настольного блока питания является то, что частота вращения охлаждающего вентилятора зависит от величины тока, потребляемого блоком питания, поэтому может быть немного шумно. Кроме того, блок питания ATX требует определенного количества свежего воздуха для охлаждения внутри, что может оказаться невозможным при установке на скамейку.

В общем, преобразование блока питания ATX в настольный блок питания — простой проект, имеющий множество применений. Неплохо для того, что в противном случае было бы выброшено, но помните, что сначала отключите от сети, прежде чем начинать какие-либо модификации, поскольку вы единственный человек, ответственный за свою безопасность !.

Советы по ремонту и обновлению компьютера своими руками для начинающих

Когда компьютер начинает давать сбои, многие люди прибегают к вызову специалиста по ремонту.Хотя проконсультироваться со специалистом не всегда является плохой идеей, есть некоторые ремонтные работы и обновления, которые достаточно легко выполнить самостоятельно. Имея несколько советов и немного знаний, вы можете сэкономить деньги и узнать, как исправить распространенные проблемы. Прежде чем вы решите открыть компьютер или стереть данные с жесткого диска, вам нужно задать себе важный вопрос.

Лучше отремонтировать или заменить?

Принимая решение о ремонте компьютера или его замене, учитывайте возраст устройства.Если устройству более трех лет, запасные части могут стоить дороже, и их будет труднее найти. Решение о ремонте также можно определить по стоимости замененной детали. Допустим, вы определили, что компьютеру нужна новая материнская плата, но ее стоимость намного превышает 500 долларов. Если вы можете приобрести новую систему по более низкой цене, имеет смысл отказаться от ремонта. Предполагая, что компьютеру требуется только замена общей, второстепенной детали, обычно лучше отремонтировать устройство. Общие части включают память (RAM), жесткие диски, охлаждающие вентиляторы, клавиатуры и блоки питания.Хотя заменить жесткий диск сложнее, многие из этих деталей можно снять и переустановить за считанные минуты. Если вы все же решите продолжить ремонт, вам следует принять определенные меры предосторожности.

Меры предосторожности

Если у вас нет базового набора инструментов или наборов инструментов для ремонта компьютеров, вы можете приобрести их или собрать самостоятельно. Перед тем, как начать процесс ремонта, убедитесь, что компьютер отключен от источника питания. Лучше всего полностью отсоединить все шнуры питания и вынуть батареи из ноутбуков.После того, как вы отключили или отключили источник питания, дайте компьютеру постоять пять минут, чтобы он мог остыть. Если вы носите украшения или часы, сначала снимите их. Вы также должны убедиться, что вы заземлены, прежде чем прикасаться к каким-либо внутренним компонентам компьютера. Многие из этих компонентов чувствительны к статическому электричеству, и прикосновение к ним без заземления может привести к необратимому повреждению. В предварительно собранные комплекты компьютерных инструментов могут входить заземляющие браслеты и ремешки для обуви, которые вы можете носить. Также можно приобрести маты для заземления.Имейте в виду, что детали, которые нельзя разбирать, например ЭЛТ-мониторы и блоки питания, будут иметь предупреждающие надписи. Не игнорируйте эти ярлыки, так как это может привести к серьезным травмам или даже смерти от поражения электрическим током. Старайтесь не прикасаться к конденсаторам на материнской плате компьютера, так как эти части могут сохранять электрический заряд. Перед повторным подключением источника питания компьютера дважды проверьте, что все кабели подключены, а карты памяти правильно вставлены в разъемы на материнской плате.

Простой ремонт

Теперь, когда вы знаете о мерах предосторожности, которые следует предпринять, вам может быть интересно, как определить, какой ремонт вы можете выполнить самостоятельно. Вот список обычных простых ремонтов, для которых не всегда требуется помощь специалиста:
  1. Удаление вредоносных программ и вирусов
  2. Переустановка операционной системы, например Windows
  3. Обновление памяти и жесткого диска компьютера
  4. Удаление ненужного ПО
  5. Восстановление файлов
Удаление вредоносных программ и вирусов обычно включает установку программы удаления вредоносных программ или вредоносных программ.Вы можете запустить функцию полного сканирования из этих программ, чтобы найти, поместить в карантин и удалить подозрительные программы или исполняемые файлы. Вы можете бесплатно найти программы для удаления вредоносных программ в Интернете, но для некоторых из них требуется подписка или плата за покупку. Некоторые поставщики интернет-услуг (ISP) могут предоставлять доступ к программе защиты от вредоносных программ в рамках вашей абонентской платы. Переустановка операционной системы компьютера немного сложнее, так как сначала вам нужно сделать резервную копию важных файлов. Вы можете создать резервную копию файлов на USB-накопителе или воспользоваться облачным хранилищем.При переустановке операционной системы вы можете использовать компакт-диск или встроенный раздел восстановления заводских настроек на жестком диске. Прежде чем продолжить, проверьте руководство по эксплуатации и программные ключи своего компьютера. Перед обновлением памяти компьютера вам нужно проверить, какой тип оперативной памяти совместим с вашим компьютером. Обратитесь к руководству по эксплуатации вашего компьютера, чтобы узнать размер, скорость и тип. Ваш компьютер может поддерживать до 16 гигабайт оперативной памяти, но может быть только два слота, которые могут принять 8-гигабайтные флешки.Замена жесткого диска включает в себя резервное копирование необходимых файлов и их перенос на новый диск после установки операционной системы. Однако вам также необходимо проверить размер и совместимость вашего компьютера в руководстве по эксплуатации. Подумайте, можете ли вы установить твердотельный накопитель (SSD) или жесткий диск (HDD). Твердотельный накопитель может повысить производительность и имеет более низкую среднюю частоту отказов, чем жесткий диск. Удаление ненужного программного обеспечения и восстановление удаленных файлов часто можно выполнить с помощью программного обеспечения для ремонта компьютеров.Ненужное программное обеспечение — это приложения, которые вам не нужны или которые могут быть предустановлены в вашей системе. Вы также можете удалить ненужное программное обеспечение с помощью встроенных инструментов некоторых операционных систем. Дополнительные ресурсы по ремонту компьютеров своими руками можно найти в статьях о том, как отремонтировать компьютер, базовых руководствах по ремонту ПК, ремонте компьютеров, руководствах по работе с компьютерами и основных методах устранения неполадок. Руководство по ремонту блоков питания

atx

Нет питания в блоках питания ATX на 350 Вт Решенный

Жалоба этого блока питания ATX заключалась в отсутствии питания.Как обычно необходимо удалить 4 винта, чтобы снять верхний кожух. Первым делом я посмотрел на схему. плату на наличие каких-либо признаков отказа компонентов. Все крышки фильтров на первичной и вторичной стороне выглядели хорошо, кроме главный предохранитель. На стеклянном предохранителе было небольшое перегоревшее пятно. Всякий раз, когда главный предохранитель неисправен, для проверки полупроводников, таких как мостовые выпрямители, силовые полевые транзисторы, первичная обмотка трансформатора и и т.п.

Как и ожидалось, закорочены два диода моста. Моя следующая проверка была на силовом полевом транзисторе. Силовой полевой транзистор тоже был закорочен. Поскольку силовой полевой транзистор уже закорочен, всегда нужно проверять все компоненты на первичной стороне.

Совет: Если силовой полевой транзистор хороший, то вы можете просто замените диоды выпрямительного моста и главный предохранитель и включите его, чтобы проверить питание поставка.

После подтверждения того, что силовой полевой транзистор закорочен, я следующим шагом стал проверьте первичную обмотку главного трансформатора. Он был хорошо протестирован и показал 8 светодиодов на моем тестере Blue Ring.

Примечание: Нет смысла устранять неисправность блока питания ATX, если вы обнаружили, что первичная обмотка главный трансформатор закорочен.Причина в том, что такой детали нет в продаже. Если вы не проверяли сначала первичная обмотка, а вы сконцентрируетесь на проверке других компонентов, время будет потрачено зря, если в конце При поиске и устранении неисправностей вы обнаружили, что трансформатор действительно закорочен. Если вы проверите первичную обмотку сначала и подтвердив, что первичная обмотка закорочена, вы можете просто упаковать блок питания и продолжить делать другие ремонтные работы. В ремонте электроники очень важно время.

Поскольку главный трансформатор оказался исправным, следующим шагом было проверьте все компоненты на первичной стороне.

Я обнаружил, что резистор измерения тока неисправен, и значение увеличился с 0,18 Ом до 0,24 Ом при тестировании с помощью измерителя Blue ESR. Пожалуйста, смотрите фото ниже.

Это увеличение может повлиять на общее выходное напряжение источника питания. поставка. Если увеличение слишком велико, это может привести к выходу напряжения, чтобы упасть на несколько вольт по сравнению с исходным значением.

По опыту, при коротком замыкании силового полевого транзистора IC обычно тоже капут. Я проверил резисторы, конденсаторы, транзисторы и даже 3 микросхемы оптоизоляторов, и все они были протестированы хорошо.Я также проверил вторичные двойные диоды Шоттки, и оба были протестированы.

Примечание: Вы должны хорошо разбираться в тестировании электронных компонентов, чтобы выполнять задачу проверки электронных компоненты.

Потратив некоторое время на этот блок питания, я пришел к выводу, что только предохранитель (2 ампер), 2 диода (2A05), силовой полевой транзистор (7N70P), силовая микросхема (TL3845p) и датчик тока резистор (0.18 Ом) проблема.

К вашему сведению, я не включал питание напрямую. после замены комплектующих на новые. Я использовал 100-ваттную лампочку последовательно с линией предохранителей (предохранитель удален) и обнаружил, что лампочка вообще не светилась при подаче питания переменного тока. Это больше не доказано закороченные компоненты в блоке питания, и я могу вернуть главный предохранитель и включить блок питания «На».В тот момент, когда я подключил питание переменного тока, я проверил на 5 вольт контакт ожидания ( контакт 9 ).

Допускается 4,98 В

На нем должно быть около 5 вольт, иначе блок питания все равно будет проблема. Теперь я закоротил зеленый ( контакт 14 ) и заземляющий провод, чтобы включить источник питания. Как и ожидалось, я увидел, что вентилятор работает, и замерил все выходные напряжения в пределах диапазона i.е. 12 вольт, 5 вольт, 3,3 вольт и т. Д.

Особое примечание: Не все блоки питания ATX могут работать без нагрузки. Некоторые отключаются через несколько секунд (вентилятор поверните на некоторое время и остановитесь) Вы можете использовать фиктивные нагрузки, такие как использованная материнская плата, жесткий диск и даже ATX тестер блоков питания для проверки блока питания. Самый лучший все еще использует оригинальную плату для тестирования.Для вашей информации я получу последнюю версию ATX Тестер блоков питания скоро. Как только я его получу, я напишу еще одну статью о том, как использовать этот тестер на питании ATX. запасы.

Заключение — Я знал, что многие из нас уже не дешево ремонтируют и выкидывают прочь электронное оборудование. Мы вроде как запрограммированы ремонтировать только технику, которая может принести только большие деньги. Но видеть мертвое оборудование, которое можно вернуть к жизни, — это радость и одна из все цели быть электронным ремонтником.» Время от времени мы должны просто убрать знак денег $$$ из нашего разума, чтобы мы могли вернуться к основам ремонта электроники, что доставляет удовольствие, удовлетворяет и приносит удовлетворение ».

Рекомендуемые электронные книги

Моя последняя электронная книга по истории случаев ЖК-монитора. 2

Нажмите здесь, чтобы узнать, как Вы можете стать профессионалом в области импульсного источника питания Ремонт

Нажмите здесь, чтобы узнать о ЖК-телевизоре Ремонт ИИП Damon

Нажмите здесь, чтобы узнать секреты ремонта ЖК-телевизоров Автор Дэймон

Щелкните здесь, чтобы прочитать обзор советов по ремонту ЖК-телевизоров Том 2 Кент Лью

Нажмите здесь, чтобы узнать о ремонте DVD-плеера Автор: Хамфри, ,

.

Нажмите здесь, чтобы узнать, как отремонтировать ЖК-мониторы с помощью Помощь по 10 историям истинного ремонта

Нажмите здесь, чтобы узнать советы по ремонту ЖК-телевизоров, том 1, автор: Kent Лев

Нажмите здесь, чтобы узнать о ремонте материнской платы ноутбука

Нажмите здесь, чтобы узнать, как вы можете стать профессионалом в области электронного тестирования Компоненты

Нажмите здесь, чтобы узнать, как можно найти номинал сгоревшего резистора

Нажмите здесь, чтобы получить 24 лучших варианта ремонта электроники Статьи

Нажмите здесь, чтобы узнать, как стать профессионалом в ЖК монитор Ремонт

Нажмите здесь, чтобы узнать, как отремонтировать плазменный телевизор. Дэймон

Рекомендуемая базовая электроника электронная книга Грега С. Плотник

Рекомендуемый г-н Стив Видео по ремонту ноутбуков Cherubino Новичкам!

Рекомендуемый членство в программе ремонта ЖК-телевизоров Mr Kent — Посетите Теперь!

Рекомендуемый г-н Кент Сайт членства в ремонте плазменных телевизоров — Посетите сейчас!

Рекомендуемое руководство по ремонту печатающих головок Автор: William Хор

Рекомендуемое членство в программе ремонта проекционных телевизоров Mr Kent. Посетите веб-сайт Теперь!

Рекомендуемая электронная книга по ремонту ЭЛТ-телевизоров от Хамфри Кимати

Рекомендуемый ремонт компьютера Курс

Автомобильная электроника Ремонт

Базовый принтер LaserJet Ремонт

Мобильный телефон Ремонт

Нажмите здесь, чтобы узнать ЖК-телевизор Ремонт

Нажмите здесь, чтобы узнать о ЖК-телевизоре Ремонтный чехол Истории

Нажмите здесь, чтобы изучить PS3 ремонт



Склад компьютеров — Ремонт компьютеров — Ремонт компьютеров своими руками

Большинство из нас оставляют наши компьютеры включенными почти все время.Если не будет серьезных обновлений или если вы не собираетесь отсутствовать на несколько дней, нет особых причин отключать их. Тем не менее, когда вы садитесь за свой компьютер и обнаруживаете, что он * выключен *, обычно первым инстинктом является нажатие кнопки питания и надежда на лучшее.

Что делать, если он не включается снова?

Предупреждение

Как всегда, предостережение. То, что я собираюсь сказать, может не совпадать с гарантией производителя, и для этого потребуются инструменты.Если вам неудобно открывать настольный компьютер, обратитесь к проверенному специалисту. Обнаружение наклейки «гарантия аннулируется при удалении» означает, что вы должны полностью убедиться, что система больше не покрывается гарантией, прежде чем удалять ее. Если для вас это все было бла-бла-бла, читайте дальше.

Выключатель питания

Нет питания? Что ж, давайте сначала удостоверимся, что он * получает * мощность. Осмотрите заднюю часть машины, найдите шнур питания. Убедитесь, что он надежно вставлен с обоих концов и (при условии, что вы подключены к удлинителю, удлинителю или какому-либо резервному аккумулятору / ИБП), что источник питания получает питание.Если все это подтвердится, посмотрите на сам блок питания. Проверьте переключатель, убедитесь, что он находится в положении ON. Сторона с линией должна быть внизу, кружок — вверх. Переверните его в правильное положение и нажмите кнопку питания. Если он загорается, вам все в порядке (базовая диагностика является хорошим продолжением, на случай, если случайное отключение повлияет на что-то)

Как получить доступ к источнику питания и проверить его

Если шнуры и переключатель подключены и настроены правильно, но вы все еще не получаете питание, пора проверить, не вышел ли из строя блок питания.Для этого вам понадобится отвертка, чтобы снять боковую панель. Есть несколько способов проверить блок питания. Вы можете выполнить базовую проверку с помощью мультиметра на непрерывность или настройку сопротивления, более точную проверку с помощью тестера источника питания или, если у вас есть доступ к запасным частям, вы можете подключить совместимый источник питания и посмотреть, решит ли это проблему.

Метод проверки мультиметра

Для мультиметра щупы входят в зеленый и любой черный провод. Это базовая проверка, но она не проверяет все шины напряжения или способность выдерживать нагрузку. Отключите все соединения от блока питания к материнской плате (обычно 2 штекера) и приводам. Используя главный разъем питания (20 или 24 контакта) от источника питания, вставьте датчики, подключите шнур питания и нажмите переключатель. Если ничего не получается, значит, у вас плохой блок питания.

Тестер блока питания метод

Результаты тестирования блока питания зависят от модели.Мы рекомендуем использовать тот, у которого есть много функций, насколько это возможно для более точного чтения. В нашем ремонтном стенде используется прибор Thermaltake Dr. Power II, который отлично справляется с проверкой правильного и стабильного напряжения на всех типах соединений от источника питания. Он разработан для быстрой проверки и не должен оставаться подключенным в течение длительного времени.

Метод замены источника питания

ЕСЛИ вы хотите заменить источник питания и проверить это, убедитесь, что вы подключаете только то, что необходимо для того, чтобы система сначала показывала отображение.Если у вас больше проблем и вы все подключаете, вы просто теряете время. Обратите внимание, что это наиболее эффективный способ диагностики неисправного источника питания, поскольку ни один из предыдущих методов не применяет полную нагрузку к источнику питания.

Тестирование материнской платы

Так что, если блок питания в порядке — или вы заменили его, а он по-прежнему не включается? Тогда проблема скорее всего в материнской плате. Есть еще один малоизвестный трюк для проверки этого. Снова подключите хорошее питание к материнской плате и убедитесь, что у вас есть динамик на материнской плате, или подключите его в соответствии с руководством.Теперь извлеките все карты памяти и включите систему. Если система издает несколько звуковых сигналов с жалобами на отсутствие памяти, скорее всего, материнская плата исправна.

Заканчиваются варианты

Так что, если и блок питания, и материнская плата прошли испытания, но проблема осталась? Поменяйте местами блок питания, чтобы он мог выдерживать нагрузку системы. Если он по-прежнему не включается, вы, надеюсь, получите несколько звуковых кодов, которые при исследовании могут указать на сбой. Если нет, то пора обратиться за помощью.

  • Твитнуть

Пять распространенных проблем с ПК и способы их устранения

Так же, как машина или дом, компьютеры требуют небольшого ухода, чтобы они продолжали работать без сбоев и не ломались в неудобное время. Однако независимо от того, насколько усердно вы выполняете указанное обслуживание, всегда существует вероятность того, что на вашем компьютере возникнут серьезные проблемы с аппаратным или программным обеспечением.

Никогда не бывает весело иметь дело с ПК, который не работает должным образом, особенно если вы плохо говорите на ПК. К счастью, многие проблемы, с которыми вы можете столкнуться при использовании ПК, довольно легко исправить или, по крайней мере, диагностировать. Ниже приведены пять распространенных ошибок ПК, с которыми вы можете столкнуться, а также инструкции, как их исправить самостоятельно. Большая часть информации, представленной в этой статье, применима только к настольным ПК, но некоторые конкретные советы и решения можно применить и к ноутбукам.

Приступим!

Компьютер не включается

Эта конкретная ошибка относится к ПК, который не получает питание. Большинство людей склонны говорить «он не включается», когда компьютер действительно включается, он просто ничего не показывает на мониторе (мы рассмотрим эту ошибку позже в этой статье). Если вы нажимаете кнопку питания на компьютере, и буквально ничего не происходит, читайте дальше.

Если ваш компьютер не получает питания, скорее всего, проблема связана с блоком питания вашего компьютера (также известным как блок питания).Сначала убедитесь, что шнур питания правильно подключен как к розетке, так и к компьютеру. Некоторые шнуры питания блока питания могут быть немного привередливыми при подключении к соответствующей розетке блока питания. Это может показаться очевидным, но вы удивитесь, сколько проблем с ПК можно решить, просто дважды проверив кабельные соединения.

Другие базовые проверки, которые необходимо выполнить, включают в себя проверку того, что розетка, к которой вы подключаетесь, обеспечивает питание, что переключатель питания на блоке питания (если он есть) установлен в положение «Вкл.», А сам шнур питания не исправен. не поврежден никаким образом.Если вы делаете все это, а ваш компьютер по-прежнему не включается, причиной может быть сам блок питания.

Замена блока питания

Замена неисправного блока питания — это то, что вы можете сделать сами, и на самом деле это довольно дешево, поскольку есть несколько надежных блоков питания, которые можно купить всего за 50-60 долларов. Просто убедитесь, что вы сделали свою домашнюю работу и купите блок питания, получивший положительные отзывы покупателей и обеспечивающий достаточную мощность для ваших нужд. Стандартный блок питания мощностью 500 Вт от уважаемой компании подойдет в большинстве ситуаций, но есть и варианты с более высокой мощностью, если вы так склонны.

Что касается самого процесса замены, самая сложная часть — просто вспомнить, какие шнуры блока питания и где подключаются. Для базового ПК среднего уровня необходимо отслеживать всего около 3-4 соединений. Есть большой 24-контактный разъем, который соединяет блок питания с материнской платой вашего ПК, меньший 8-контактный разъем для питания процессора (он входит в слот «CPU Power» на материнской плате) и разъемы SATA, которые подключаются к периферийным устройствам, таким как жесткий диск. привод и оптический привод (разъемы SATA имеют длинную узкую L-образную форму).

В зависимости от того, какой тип видеокарты вы используете, также может быть 6-контактный разъем PCI-E, соединяющий вашу видеокарту с блоком питания. Блок питания, вероятно, имеет и другие типы шнуров и разъемов, но мощность материнской платы, мощность процессора, SATA и (если вашей видеокарте он нужен) разъемы PCI-E — это большие, о которых вам нужно беспокоиться.

Просто посмотрите на концы кабелей от вашего блока питания и сопоставьте их с компонентами, которые их используют, и у вас не должно возникнуть проблем с установкой нового блока питания.

Компьютер включается, но не загружается

Так что, если ваш компьютер включается, но на мониторе ничего не отображается? Это также может быть вызвано неисправным блоком питания, но есть и другие потенциальные причины, поэтому пока не спешите покупать новый блок питания.

Когда компьютер включается, но на мониторе ничего не отображается, это означает, что либо монитор неисправен, либо компьютер не может запустить самотестирование при включении (или POST) из-за внутренней аппаратной ошибки.Очевидный первый шаг — убедиться, что монитор работает. Это можно сделать, подключив монитор к другому компьютеру (или к чему-либо, что выводит видеосигнал) и посмотреть, отображает ли он что-нибудь. При тестировании убедитесь, что ваш монитор настроен на правильный вход (например, HDMI или DisplayPort).

Если вы знаете, что монитор работает правильно, вам нужно выяснить, что заставляет ваш компьютер не работать с начальным протоколом POST. Наличие запасного компьютера, который вы можете использовать для тестирования и / или замены определенных аппаратных компонентов, — это здорово, но даже без запасного компьютера вы все равно можете выполнить некоторые тесты.Например, сбой POST может быть из-за неисправного модуля RAM.

Замена RAM

Все настольные ПК имеют отдельные модули ОЗУ (также называемые картами ОЗУ), подключенные к материнской плате, обычно два или четыре. Если на вашем компьютере более одного модуля RAM, удалите их все, а затем снова подключите один модуль и посмотрите, будет ли компьютер выполнять POST. Добавляйте их один за другим, пока компьютер не перестанет включаться, и тогда у вас будет виноват. Если какой-то модуль не загружается, это значит, что модуль оперативной памяти неисправен и его следует заменить.

Наличие отдельного ПК для тестирования компонентов помогает здесь, потому что может быть трудно определить, вызван ли сбой POST неисправным блоком питания или неисправным модулем ОЗУ, если у вас есть только одна машина для работы. Если вас не слишком заботит высокопроизводительная производительность и вам просто нужны новые модули оперативной памяти для обеспечения точного тестирования, есть несколько достойных вариантов в диапазоне от 30 до 40 долларов. Просто убедитесь, что приобретаемая вами оперативная память совместима с вашей материнской платой.

Компьютер неожиданно перезагружается или выключается

Если ваш компьютер внезапно перезагружается без каких-либо действий с вашей стороны, есть вероятность, что что-то внутри компьютера перегревается.Большинство современных компьютеров автоматически перезагружаются или выключаются при обнаружении аномально высоких температур, чтобы не повредить какой-либо компонент, который перегревается. Предполагая, что вы обычный пользователь, который не разбирался со скоростью вентилятора или разгоном, следующий шаг — определить, какой компонент перегревается.

Первое, что вам нужно сделать, это открыть компьютер так, чтобы вы могли четко видеть все вентиляторы, включая вентилятор радиатора на вашем процессоре и вентиляторы на вашей видеокарте. Включите компьютер и убедитесь, что все вентиляторы вращаются.Если вы заметили большое скопление пыли в вентиляторах, вы можете удалить их с помощью баллона со сжатым воздухом. Также убедитесь, что нет большого количества кабелей или других препятствий, которые могут блокировать поток воздуха от вентиляторов. Если вентилятор не вращается или поврежден иным образом, вам придется заменить его или компонент, к которому он прикреплен.

Работа с термопастой

Если все вентиляторы работают, но ваш компьютер продолжает неожиданно перезагружаться / выключаться, вам может потребоваться повторно нанести термопасту на ваш процессор.Опять же, это звучит намного сложнее и страшнее, чем на самом деле. Трубки с термопастой довольно дешевы, и вам даже не понадобится столько пасты для фактического процесса нанесения.

Накопив термопасту, снимите вентилятор радиатора с процессора. При необходимости сотрите остатки пасты мягкой тканью и небольшим количеством медицинского спирта. Затем нанесите свежую пасту прямо на верхнюю часть микросхемы ЦП. Идеальное количество — размером с горошину.YouTube будет здесь очень полезен для визуальной ссылки.

С нанесенной пастой переустановите вентилятор радиатора на верхнюю часть ЦП, переустановите все, что вам нужно было разобрать, и посмотрите, решит ли это проблему.

Последняя потенциальная причина неожиданного сброса — неисправный переключатель сброса. Эта проблема возникает относительно редко, но время от времени может возникать. Если вы откроете корпус ПК, то заметите, что какие-то шнуры соединяют кнопки передней панели (питание и сброс) с определенными слотами на материнской плате.Отсоедините шнур кнопки сброса от материнской платы и посмотрите, сохраняется ли проблема неожиданного сброса. Если проблема действительно связана с неисправным переключателем сброса, вы можете связаться с производителем корпуса для бесплатной замены передней панели.

Монитор внезапно выключается, но компьютер остается включенным

Эта проблема не так распространена, как другие в этом списке, но все же может быть проблемой, когда она возникает. Подобно тому, как ваш компьютер не загружается, выяснение того, почему монитор внезапно выключается, но сам компьютер остается включенным, требует небольшого количества проб и ошибок.

Три наиболее вероятных виновника в этом случае — неплотный или плохой кабель, блок питания или видеокарта (также называемая графическим процессором или графическим процессором). Первое, что вам нужно сделать, это проверить все ваши кабели. Посмотрите, работают ли они с другими устройствами, а если нет, замените их.

Если это не решит проблему, извлеките видеокарту и посмотрите, повторяется ли ошибка. Большинство материнских плат имеют встроенный чип обработки графики, поэтому вы все равно должны получать изображение на мониторе даже без видеокарты (просто убедитесь, что вы подключаете монитор в нужное место).

Если ошибка повторяется даже без подключенной видеокарты, проблема может заключаться в вашем блоке питания. Возможно, блок питания неисправен или пытается подать питание на слишком много различных периферийных устройств. Попробуйте отсоединить шнуры питания SATA (жесткий диск, оптический привод и т. Д.) Перед включением компьютера. Оставьте компьютер включенным и посмотрите, не повторится ли ошибка. Если ошибка продолжает возникать даже при подключенных только основных компонентах питания и удаленной видеокарте, возможно, вам придется заменить блок питания, как мы обсуждали выше.

Плохая работа и отчетливый щелчок

Одним из основных факторов правильного обслуживания ПК является то, что любой щелчок, как правило, — это плохо. В девяти случаях из десяти щелчки происходят с жесткого диска вашего компьютера (также известного как жесткий диск или HDD). Стандартные жесткие диски удобны для хранения всех ваших игр и файлов, но поскольку в них используются движущиеся части, они также подвержены поломкам.

Самый явный признак неисправности жесткого диска — это когда ваш компьютер начинает медленно работать.Если ваша операционная система установлена ​​на жестком диске, и вы заметили, что даже основные функции загружаются бесконечно, возможно, пришло время заменить жесткий диск. Если вы открываете компьютер и слышите отчетливый щелкающий звук, исходящий от жесткого диска, определенно пора его заменить.

Пришло время обновить SSD?

Вместо того, чтобы заменять старый жесткий диск новым, вы можете подумать об использовании твердотельного накопителя (или SSD) для замены. Твердотельные накопители обычно дороже жестких дисков, но они оправдывают добавленную стоимость.Как следует из названия, твердотельные накопители имеют прочную конструкцию, в которой нет движущихся частей. Это означает, что они служат дольше и намного более устойчивы к ударам, чем жесткие диски, не говоря уже о том, что они значительно быстрее.

Если ваш жесткий диск не сломан полностью, вы можете использовать как новый твердотельный, так и старый жесткий диск, чтобы получить лучшее из обоих миров.

Жесткий диск не всегда является источником щелчков, поэтому важно проявить должную осмотрительность, чтобы быть уверенным. Если какой-то компонент слышно щелкает, лучше всего его заменить.К счастью, помимо жесткого диска, наиболее вероятным источником щелчка является вентилятор, который можно легко (и недорого) заменить.

Хотя компьютеры — сложные машины, их ремонт и обслуживание не так страшны, как люди часто думают. Часто это очень простое решение или, в худшем случае, отдельный компонент, предназначенный для замены.

Просто отследите источник проблемы с помощью тестирования, и вы сразу же вернетесь к работе.

PC ATX PSU Quick Repair

В этом документе я покажу вам статью о ремонте источников высокого напряжения.Если вы не знакомы с высоким напряжением или у вас нет подходящих инструментов, не ремонтируйте этот тип устройств. Высокое напряжение может нанести вред вашему здоровью, даже закончиться смертью.

Сегодня на мою телефонную линию поступает звонок из бухгалтерского агентства с серьезной проблемой на их сервере, где хранятся базы данных клиентов. ПК не мог запуститься, а другие клиентские компьютеры не могли работать в офисе из-за отсутствия проблем с сервером. Я немедленно переехал в агентство, чтобы посмотреть, в чем проблема и что делать.

Сервер представляет собой ПК P4 с XP и установленным сервером MS SQL. Ничего страшного, но работает. Через несколько секунд я разобрался с проблемой блока питания, разобрался, действительно ли блок питания плохой. У агентства нет другого блока питания для такой ситуации, поэтому я должен его заказать. Однако до его прибытия потребуется день или около того. Решаю отремонтировать БП.

Сначала я проверил номер версии БП. Это БП версии 2.3, как вы можете видеть на фотографии справа в таблице МАКСИМАЛЬНОГО ВЫХОДА ПОСТОЯННОГО ТОКА.Эти номера версий описывают типичную конструкцию блока питания, которая является международным стандартом и должна соответствовать механическим и электрическим стандартам.

Вот история изменений версий БП:

Версия Дата выпуска Примечания

1.0 декабрь 1997 г. Публичный выпуск

1.1 апр, 1998

  • Обновлены все механические контуры, чтобы очистить размеры монтажных отверстий.
  • Добавлены вырезы в шасси для всех механических контуров, чтобы прояснить закрытые зоны.
  • Добавлено Приложение C. 2.0 Май 2001 г.
  • Добавлено описание SFX12V
  • Добавлены дополнительные номинальные мощности
  • Обновленные отраслевые стандарты
  • Повышенный ток в режиме ожидания

2,1 августа 2001

  • Раздел 4.4 Обновлен Рисунок 4 Разъемы SFX / SFX12V
  • В разделе 5.8 удалено название поставщика 2.2 Декабрь 2001 г.
  • Раздел 3.23 Типовое распределение электроэнергии. Измените минимальную нагрузку на шину 5 В на 0,3 А
  • Раздел 3.3.2 PS_ON #. Добавить текст «Блок питания не должен отключаться.

состояние, когда PS_ON # активируется импульсами от 10 мс до 100 мс во время спада шин питания ».

2.3 Апрель 2003 г.

  • Переформатировать и обновить таблицу версий
  • Обновить отказ от ответственности
  • Удалить направляющие для SFX без разъема 12 В
  • Обновленное руководство по мощности и току
  • Добавлены целевые показатели эффективности для легких и обычных нагрузок
  • Минимальный КПД при полной нагрузке повышен с 68% до 70%
  • Обновленное руководство по эффективности режима ожидания
  • Добавлен разъем Serial ATA
  • Обновлены графики перекрестного регулирования

Это вер.2.3 БП, нет большой разницы в том, что означает электроника.

Мой второй и очень минималистичный тест заключался в том, чтобы отключить блок питания от материнской платы и всех других устройств, закоротив провод ЗЕЛЕНЫЙ и ЧЕРНЫЙ на провод. Блок питания запустился сразу.

Я немного удивился! Я ожидал, что БП не включится, но…

После этого теста я подключил свой тестер блока питания Xilence к устройству и посмотрел, что происходит:

В реальном мире этот тип тестирования — не что иное, как проверка напряжений и времени PG.Тестеры этого типа не работают во многих ситуациях и не обнаруживают неисправный блок питания даже при добавлении нагрузки на блок питания или без него. Другими словами, это просто мультиметр, который может одновременно отображать все напряжения и время PG на одном экране. Не ждите от этого инструмента слишком многого.

Вы можете распознать проблему? Да? хорошо нет? нет проблем. Посмотрите увеличенное изображение моего тестера. Вы можете увидеть четыре различных напряжения и одно так называемое PG в мс.

Напряжение 1: + 3,3 В

Напряжение 2: + 5В

Напряжение 3: + 12В

Напряжение 4: -12 В

PG — это сигнал Power Good , который измеряется в миллисекундах или мс . Каждый блок питания имеет регулировку напряжения постоянного тока, которая должна оставаться в пределах диапазона регулирования. С нагрузкой на выходные разъемы или без нее.

Это допуск постоянного выходного напряжения.

Здесь я сделал для вас таблицу допусков на выходе постоянного тока, которую вы можете использовать почти для каждого блока питания ATX для ПК. В большинстве случаев я использую справочное руководство от Intel.

Я получил измерение на моем тестере блока питания на 5VSB между 3.9в — 4,5в. Это выходит за пределы таблицы допусков и является ошибкой. +5 VSB — это выход резервного источника питания, который активен при наличии переменного тока.

Этот выход обеспечивает источник питания для цепей, которые должны оставаться в рабочем состоянии, когда пять основных выходных шин постоянного тока находятся в отключенном состоянии. Примеры использования включают мягкое управление питанием, пробуждение по локальной сети, пробуждение по модему, обнаружение вторжений или действия в приостановленном состоянии.

Современные материнские платы имеют так называемую схему включения питания с логическим управлением.Таким образом, кнопка питания подключается к материнской плате, а не к блоку питания, как это было на старых ПК. Из-за этой логической схемы управления компьютер не может включиться, но без mobo блок питания включился, когда я закоротил зеленый и черный провода на разъеме блока питания, который идет к материнской плате. Следующим очень важным элементом для поиска неисправностей является параметр PG.

Power Good или Intel PWR_OK — это сигнал, используемый источником питания системы, чтобы указать, что + 5VDC, +3.Выходы 3 В постоянного тока и +12 В постоянного тока находятся в пределах пороговых значений регулирования источника питания. Если синхронизация сигнала PG составляет от 100 мс до 500 мс, с блоком питания все должно быть в порядке, в противном случае с блоком питания возникнут проблемы. Как я понял, 5VBS находятся в плохом диапазоне, сигнал PG находится в диапазоне с другими напряжениями, я был уверен, нет ли большой проблемы. Посмотрим, в чем проблема:

Внутри БП. Немного грязно, но ничего необычного или? Я узнал слегка вздутый конденсатор. Я взял свой старый добрый измеритель СОЭ, самодельный, и проверил все крышки, и этот тоже.После проверки крышек, только одна крышка вышла за пределы допустимого диапазона. Этот выпуклый.

Вот значение: LOŠ означает ПЛОХО.

После этого я проверил, нет ли укороченных компонентов или неисправных, но больше ничего не нашел. Была еще одна небольшая проблема. Из блока охлаждающего вентилятора блока питания доносится скрежет. После того, как я разобрал вентилятор и добавил немного графитовой смазки, скрежет исчез. См. Картинки ниже.

Очистил весь блок сжатым воздухом и собрал его вместе.Вот результат:

После того, как я поставил блок питания обратно на сервер, он включился и работал нормально.

Вы можете найти отличное руководство по ремонту блоков питания ATX от г-на Джестина Йонга на этом веб-сайте: http://www.powersupplyrepairguide.com , если вам интересно узнать, как отремонтировать такое оборудование.

Вывод:

Я использую эту технику, чтобы быстро определить место или путь возникновения проблем в таких подразделениях.

— закоротить зеленый и черный провода на разъеме при отключении блока питания от ПК

— если БП запускается то проблем нет

— если у вас есть тестер БП что-то вроде моего, используйте их для измерения напряжений и PG, если

не используйте обычно мультиметр

— проверьте результаты по справочной таблице выходных напряжений из этой статьи

— определить неисправное напряжение и начать проверку деталей в этой области

Эта статья предназначена для квалифицированных специалистов по ремонту и новичков в мире ремонта БП.

Для дальнейшего изучения техники ремонта оборудования PSU, пожалуйста, обратитесь к книгам г-на Джестина Йонга, который сделал хорошо объясненные руководства по ремонту с прекрасными изображениями и пояснениями.

Надеюсь, вам понравится эта статья.

Эту статью для вас подготовил Кристиан Роберт Аджич из Нови Кнежевац, Сербия.

Пожалуйста, поддержите, нажав на кнопки социальных сетей ниже. Ваш отзыв о посте приветствуется.Пожалуйста, оставьте это в комментариях.

P.S- Если вам понравилось это читать, нажмите здесь , чтобы подписаться на мой блог (бесплатная подписка). Так вы никогда не пропустите сообщение . Вы также можете переслать ссылку на этот сайт своим друзьям и коллегам — спасибо!

Примечание: вы можете проверить его предыдущий пост по ссылке ниже:

https://www.jestineyong.com/laptop-keyboard-teardown/

Нравится (179) Не нравится (2)

Причины возникновения и способы устранения

Сначала может быть немного неприятно услышать щелчки блока питания, потому что вы даже не знаете, что это за щелчки.Однако, если вы слышите, как щелкает ваш компьютер, , вероятно, будет первым местом, которое вам следует проверить. Не ожидается, что блок питания будет издавать шум, но блок питания, издающий щелкающий звук, — это то, что необходимо исследовать как можно скорее.

Чтобы лучше понять, почему ваш блок питания издает шум, продолжайте читать эту статью.

Почему щелкает ваш блок питания?

Чаще всего ваш блок питания начинает издавать странный шум , когда вы его впервые включаете, а не просто шумит при использовании компьютера.Есть несколько разных причин, по которым ваш блок питания может щелкнуть, поскольку есть различные элементы вашего блока питания, которые необходимо исследовать, включая его вентилятор.

Первое, что вы должны знать, это то, что большинство блоков питания издают тикающий шум при первом включении и выключении , а обычно только один или два раза. Если щелчки продолжаются, значит, у вас более серьезная проблема.

Однако, если вы продолжаете слышать щелчки от источника питания, вам необходимо выяснить это.Это нельзя игнорировать.

Тикающий шум блока питания: как это исправить

Если блок питания издает тикающий шум, есть несколько способов исправить это. Обязательно ознакомьтесь с каждым параметром перед тем, как вносить какие-либо изменения, так как они требуют некоторых исправлений вручную. В общем, чем реже вы будете обращаться с блоком питания, тем лучше.

Проверьте соединения

Если вы услышали громкий щелчок, а затем компьютер выключился, возможно, ваш блок питания вышел из строя.Хотя вы можете подумать, что это , потому что он взорвал или просто умер случайно, это, вероятно, не так. Вместо этого, возможно, произошло короткое замыкание из-за ослабленного провода.

Не выключите компьютер и отсоедините шнур питания. Затем убедитесь, что каждый компонент имеет безопасное соединение.

Сюда входят:

● Основная шина на материнской плате
● Вторичная шина, идущая к ЦП
● Кабели SATA
● 4-контактные кабели Molex
● Кабели для дисковода
● Подключение любых видеокарт

Вы хотите убедиться, что все подключено как к источнику питания, так и к любому компоненту, к которому он подключен.Иногда это может быть материнская плата , которая вышла из строя вместо блока питания, поскольку это дает некоторое питание материнской плате.

Убедитесь, что ваш блок питания установлен правильно

Если вы сами собрали свой компьютер, и ваш блок питания щелкает без питания, возможно, вы установили его неправильно . В нем есть все необходимое для работы, но вот блок питания боком или задом. Все платы имеют определенную ориентацию для установки источника питания, и вам нужно убедиться, что это правильное направление.

Это так важно, потому что для правильной работы блока питания должен быть оптимальный поток воздуха на впуске и выпуске. Если это не так, то теперь источник питания может работать, он может издавать щелчки или даже загореться.

Проверьте крепежные винты

Независимо от того, собирали ли вы компьютер или кто-то другой, нередко винты блока питания откручиваются или не затягиваются достаточно для начала. Вы можете довольно легко затянуть эти винты самостоятельно, просто найдя источник питания и слегка повернув его.Вы должны увидеть, какие винты ослаблены, и просто затянуть их.

Иногда внутри компьютера пропадают винты. В этом случае попробуйте найти недостающие винты e в корпусе. Однако вам не следует использовать эти винты снова, потому что они могут покоробиться. Установите новые винты и убедитесь, что они затянуты.

Проверить провода

Возможно, не случайно, что вы слышите щелчки от источника питания лишь изредка.Если вы собрали свой собственный компьютер, вероятно, что провода отсоединятся, и упадет внутрь корпуса. Затем их обдувает либо вентилятор, либо, в крайних случаях, внешний ветер или движение, и они ударяются о другие движущиеся части. Это может создать постоянный, но не частый щелкающий звук.

Чтобы решить эту проблему, просто откройте корпус, найдите свисающий провод или кусок и закрепите его на месте.

Проверьте, связано ли это с разгоном

Многие люди сначала замечают, что их блок питания издает щелчки или скрип, когда они подавляют свой компьютер или разгоняют его.Если вы делаете слишком много одновременно, например, пытаетесь стримить, работать в PhotoShop и одновременно слушать музыку, ваш компьютер перегревается и нагревается. Когда жарко, вентилятор начинает работать сверхурочно. Блок питания изо всех сил пытается справиться, и все может начать щелкать или скрипеть.

Еще одним распространенным явлением является то, что при разгоне блок питания выдвигается слишком далеко и начинает щелкать. Если вы разгоняетесь и слышите щелчок, вам нужно медленно, но верно выключать питание.Не просто отключайте все, а попробуйте вернуть компьютер в нормальное состояние, чтобы увидеть, прекратились ли щелчки. Если этого не произошло, возможно, вы нанесли непоправимый урон источнику питания.

Если он перестанет щелкать, не следует снова доводить его до этого экстремального уровня. Если вы это сделаете, вы рискуете полностью вывести из строя свою систему. Если вы хотите разогнаться, попробуйте добавить дополнительную систему охлаждения, но это на ваш страх и риск.

Сбой источника питания

В самых крайних случаях щелчок, исходящий от блока питания, является признаком того, что он скоро умрет. Некоторые производители компьютеров называют это «похоронным звоном» компьютера, и от него невозможно отказаться. Если ваш блок питания издает тикающий шум и других причин нет, возможно, пришло время поискать новый блок питания.

В редких случаях вы можете изменить курс и вернуть источник питания, но это сложно сделать и не всегда удается. Если у вас более старый блок питания, возможно, лучше просто купить новый.

Писк вентилятора блока питания

Другой вариант, который следует учитывать, — пищит и тикает не блок питания, а вентилятор.Вентилятор блока питания поскрипывает, когда он отсоединяется или когда он настолько завален пылью и мусором, что больше не может двигаться.

Проверьте порты ввода и вывода

Другая проблема заключается в том, что компоненты входа и выхода, которые контролируют пыль, со временем забиваются. Если у вас старый компьютер, эти фильтры могут накапливать пыль и засоряться, заставляя вентилятор блока питания работать сильнее и щелкать. Если вы поставите компьютер на пол или твердый стол, скорее всего, это является причиной шума.

Регулярно очищайте вентилятор блока питания и впускной фильтр, чтобы избежать этой проблемы. Для этого можно использовать сжатый воздух. В будущем держите чемодан подальше от стен и сайдинга стола, чтобы избежать скопления.

Проверить, нет ли у других виновных в щелчках на компьютере

Если вы выполнили описанные выше проверки и по-прежнему слышите щелчки блока питания, возможно, щелчки исходит вовсе не от блока питания, а от чего-то рядом с блоком питания.

Другие общие компоненты вашего компьютера, которые издают щелкающие звуки , включают дисковод, динамики, жесткий диск, материнскую плату, системы охлаждения, DVD-привод, CD-привод и даже катушки.

Заключение: исключите щелчки от источника питания компьютера

Слышать щелчки блока питания может немного неприятно, особенно если он неожиданный и вы никогда не слышали этого раньше. Однако это довольно распространенная проблема , которую можно решить, выполнив несколько простых шагов.Постарайтесь изолировать звук и посмотреть, действительно ли он исходит от самого блока питания, что менее вероятно, или от вентилятора блока питания.

Обязательно держите компьютер в чистоте и дайте ему достаточно места для передышки.

Добавить комментарий

Ваш адрес email не будет опубликован.