Ремонт драйверов светодиодных светильников: LED Ремонт драйвера светодиодного светильника

Содержание

Алгоритм поиска неисправности в драйвере LED лампы или Эркюль Пуаро отдыхает / Хабр

Недавно один знакомый попросил меня помочь с проблемой. Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности.


LED лампа выглядит вот так:


Рис 1. Внешний вид разобранной LED лампы

Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 50 градусов Цельсия.

Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности.
Минус таких ламп, как ни странно, прямо вытекает из ее плюсов – долговечная лампа не нужна производителям :). Историю о сговоре производителей ламп накаливания о максимальном сроке службы в 1000 часов все помнят?

Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.

Вернемся к проблемам драйвера.

Вот так выглядит плата драйвера:


Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа

И с обратной стороны:


Рис 3. Внешний вид платы LED драйвера со стороны силовых деталей

Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7930. Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками.

В МТ7930 встроены защиты:

• от превышения тока ключевого элемента
• понижения напряжения питания
• повышения напряжения питания
• короткого замыкания в нагрузке и обрыва нагрузки.
• от превышения температуры кристалла

Декларирование защиты от короткого замыкания в нагрузке для источника тока носит скорее маркетинговый характер 🙂

Принципиальной схемы на именно такой драйвер добыть не удалось, однако поиск в сети дал несколько очень похожих схем. Наиболее близкая приведена на рисунке:

Рис 4. LED Driver MT7930. Схема электрическая принципиальная

Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. Т.е. процедура начального запуска проходит (вспыхивание лампы – это оно и есть), но далее преобразователь выключается по какой-то из защит, конденсаторы питания разряжаются и цикл начинается заново.

Внимание! В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!

Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН36 еще советского производства, датированные 1975 годом. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 220 – 24 – 24 -220. Т.е. сначала понизил напряжение до 24 вольт (4 вторичных обмотки по 6.3 вольта), а потом повысил. Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 110 вольт до 238 вольт. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений.


Рис 5. Фото разделительного трансформатора

Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 600 ком. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения.

Итак, конденсатор по питанию медленно заряжается (это время порядка 300-400 мс) и когда напряжение на нем достигает уровня 18,5 вольт – запускается процедура старта преобразователя. Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы.

Почему же срабатывает защита и по какому именно параметру?

Первое предположение

Срабатывание защиты по превышению выходного напряжения?

Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 10 ком и R6 39 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой-то момент схема заработала!

Я проверил осциллографом формы и напряжения сигналов во всех точках преобразователя и с удивлением убедился, что все они – полностью паспортные. Никаких отклонений от нормы…

Дал схеме поработать часок – все ОК.

А если дать ей остыть? После 20 минут в выключенном состоянии не работает.

Очень хорошо, видимо дело в нагреве какого-то элемента?

Но какого? И какие же параметры элемента могут уплывать?

В этой точке я сделал вывод, что на плате преобразователя имеется какой-то элемент, чувствительный к температуре. Нагрев этого элемента полностью нормализует работу схемы.
Что же это за элемент?

Второе предположение

Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из-за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из-за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа. Это резистор R4 R8 R19 в цепи стока, сигнал с которого подается на вывод 8 (CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2.4 вольта отключает генерацию для защиты полевого транзистора и трансформатора от повреждений. На исследуемой плате стоит параллельно два резистора R15 R16 с эквивалентным сопротивлением 2,3 ома.

Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т.е. поведение системы должно быть другим – включение, работа минут 5-10 и выключение. Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут.
Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве?

Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется :). Плюс интуитивное ощущение – не оно. Я доверяю своей инженерной интуиции.

К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы.

Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию.

К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло.

Третье предположение

Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа.

По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 15 погреть – и все нормально заводится.

Прогрев микросхемы паяльником ничего не давал.

И очень смущало малое время нагрева… что там может за 15 секунд измениться?

В какой-то момент сел и методично, логически отсек все гарантированно работающее. Раз лампа загорается — значит цепи запуска исправны.
Раз нагревом платы удается запустить систему и она часами работает — значит и силовые системы исправны.
Остывает и перестает работать — что-то зависит от температуры…
Трещина на плате в цепи обратной связи? Остывает и сжимается, контакт нарушается, нагревается, расширяется и контакт восстанавливается?
Пролазил тестером холодную плату — нет обрывов.

Что же еще может мешать переходу от режима запуска в рабочий режим?!!!

От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 10 мкф на 35 вольт по питанию микросхемы такой же.

И тут наступило счастье. Заработало!

Замена конденсатора 10 мкф на 22 мкф полностью решило проблему.

Вот он, виновник проблемы:


Рис 6. Конденсатор с неправильной емкостью

Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 220 вольт через резистор в 600 ком. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока.

Пока система не вышла в рабочий режим — микросхема питается запасенной энергией в конденсаторе. И ее не хватало чуть-чуть — буквально пары-тройки процентов.
Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново.

Отловить эту просадку напряжения питания осциллографом не получалось — слишком грубая оценка. Мне казалось, что все нормально.

Прогрев же платы увеличивал емкость конденсатора на недостающие проценты — и энергии уже хватало на нормальный запуск.

Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов:

• Малая емкость конденсатора по питанию. Положительную роль сыграл допуск на емкость электролитических конденсаторов (-20% +80%), т.е. емкости номиналом 10 мкф в 80% случаев имеют реальную емкость около 18 мкф. Со временем емкость уменьшается из-за высыхания электролита.
• Положительная температурная зависимость емкости электролитических конденсаторов от температуры. Повышенная температура на месте выходного контроля — достаточно буквально пары-тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 20 градусов, а 25-27, то этого оказалось достаточно для практически 100% прохождения выходного контроля.

Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 22 мкф) но свежие емкости при повышенной температуре и с учетом разброса +80% позволили партию драйверов сдать заказчику. Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?

Ремонт светодиодного драйвера своими руками

Самое подробное описание: ремонт светодиодного драйвера своими руками от профессионального мастера для своих читателей с фотографиями и видео из всех уголков сети на одном ресурсе.

Светодиодный драйвер по сути обычный блок питания рассчитанный на определённую нагрузку, в данном случае это от 8 до 12 одноваттных светодиода, и в идеале поддерживающий определённый ток через нагрузку. Принесли в ремонт такой драйвер с маркировкой на крышке Led Driver QH(8-12)x1W

Драйвер не включался. Оборван электролитический конденсатор 47 микрофарад на 50 вольт. Подобный дефект чаще встречается у долго поработавших блоков, но принимая во внимание копеечную стоимость подобной электроники, и аналогично плохое качество, сейчас такие дефекты не редкость. Стоит этот конденсатор по питанию ШИМ контроллера AM-22A китайского производства. Аналогов не нашел, но судя по распиновке, можно с небольшой доработкой заменять на более распространенные контроллеры.

Входная часть блока питания типовая, очень похожа на схему

зарядных устройств мобильных телефонов. Диод, конденсатор 6.8 мкф х 400 вольт, стабилитрон, Транзистор 13001 который в случае неисправности легко меняется на любой другой из этой серии с большей мощностью 13003 — 13007. После перепада напряжения выходит из строя транзистор и низкоомный резистор выполняющий роль предохранителя. Реже сетевой конденсатор.

Нет видео.

Видео (кликните для воспроизведения).

По выходу часто высыхает конденсатор 100 мкф х 63 вольта. Выражается подобный дефект как кратковременная вспышка светодиодов, либо полное невключение блока.
Точно так же проявляется дефект, когда высыхает сетевой конденсатор 6.8 мкф х 400 вольт. У этих как правило вздувается крышка от перегрева. Вообще температурные условия подобных устройств мягко говоря сложные. Плотно закрытый корпус, без вентиляционных отверстий, не добавляет жизни устройству. Поэтому, если хотите чтобы драйвер работал долго, меняйте все три электролитических конденсатора ( 47 мкф х 25 вольт в том числе) и сделайте хотя бы несколько отверстий в корпусе.

Напряжение на выходе рабочего блока без нагрузки порядка 40-45 вольт.

Встречалась плата подобного драйвера собранная по простейшей схеме, наподобие этой:

Разница в основном в выходном напряжении и некоторых номиналах.

Более подробно ремонт подобных устройств расписан в статье — «Зарядное Устройство мобильного телефона Nokia AC-3E — ремонт своими руками
http://www.vseprosto.net/2014/11/zaryadnoe-ustrojstvo-mobilnogo-telefona-nokia-ac-3e-remont-svoimi-rukami/

Аналог ШИМ контроллера AM22A — DK112 — DK106 Несмотря на схожесть схемы, VIPer22 не является аналогом AM22A.

С появлением светодиодных технологий системы освещения вышли на совершенно новый уровень. Экономичные, экологически и электрически безопасные приборы сегодня эксплуатируются везде – они пришли на смену стандартным «лампам Ильича» и набравшим популярность «экономкам». Первые давно устарели с моральной точки зрения, вторые крайне опасны для здоровья из-за содержащихся внутри паров ртути.

Несмотря на продолжительный срок эксплуатации, даже такие устройства со временем выходят из строя. Дорогостоящий ремонт светодиодных светильников в некоторых ситуациях можно выполнить самостоятельно, в домашних условиях, что мы и рассмотрим далее.

Прежде чем разбирать на составные части вышедшую из строя светодиодную лампу, обязательно изучите ее устройство и принцип работы. Стандартное оборудование данного типа имеет в составе электронную плату питания, световой фильтр и корпус с цоколем. Более дешевые модели вместо ограничителей тока и напряжения используют обычные конденсаторы.

Одна лампа может насчитывать несколько десятков светодиодов, которые соединяются последовательно или параллельно. Во втором случае конструкция получается дорогостоящей (к каждому led-диоду или группе подключается отдельный резистор), поэтому позволить себе ее могут далеко не все.

Принцип действия светодиода практически идентичен полупроводниковому элементу. Ток между анодом и катодом перемещается по прямой линии, что приводит к образованию свечения. Каждый светодиод по отдельности характеризуется минимальной мощностью, из-за чего используется сразу несколько штук. Для создания нужного светового потока применяют люминофорное покрытие, трансформирующее свет в видимый для человеческого глаза спектр.

Качественные модели содержат высокотехнологичный драйвер, выполняющий функцию преобразователя наряду с диодной группой. Первичное напряжение идет на трансформатор, уменьшающий характеристики тока. На выходе элемента получаем постоянный ток, необходимый для питания led-диодов. С целью уменьшения пульсации в цепи используется вспомогательный конденсатор.

Несмотря на многочисленные разновидности, отличия устройств, количество используемых светодиодов, все осветительные приборы данного типа характеризуются одной конструкцией, что упрощает их техническое обслуживание.

Существует несколько возможных неисправностей светодиодных приборов, что связано с их хоть и схожей, но достаточно сложной конструкцией. Самые распространенные поломки среди остальных сопровождаются следующими моментами:

  • полное отсутствие свечения;
  • периодическое отсутствие освещения;
  • кратковременное мерцание;
  • отключение света в произвольные моменты;
  • повреждение лампочки или светодиода.

Причин появления поломок еще больше. Чаще всего из них встречаются следующие:

  1. Нарушение правил и рекомендаций эксплуатации светодиодных устройств. Покупая новый светильник, обязательно изучите условия его работы, прописанные в технической методичке. При игнорировании любого правила вероятность поломок возрастает в несколько раз.
  2. Перегрев оборудования. Сами по себе светодиоды в работе практически не нагреваются, но если температура превышает заявленные 50–60 градусов, то может произойти разрыв нити, держателя или отслоение контактов на электронной плате. Перегрев иногда происходит из-за того, что не предназначенный для этих целей светильник устанавливается внутрь натяжного потолка. Это препятствует его естественному охлаждению.
  3. Выгорание led-диода – полное или частичное. Привести к этому могут высокие скачки напряжения сети или перегорание конденсатора.

Важно! Последняя поломка актуальна для дешевых приборов, в которых применяют некачественные платы.

Если сильнее углубиться, то можно выявить несколько других, более редких, но не менее интересных причин, из-за которых может не работать светодиодный светильник:

  • технические нарушения при подключении к сети питания;
  • короткое замыкание;
  • неверная установка оборудования;
  • ошибки при построении элементов в схеме подключения;
  • изделие низкого качества – при попытке сэкономить не забывайте о том, что покупаете «кота в мешке».
Нет видео.
Видео (кликните для воспроизведения).

В таких устройствах могут быть изначально плохо припаяны контакты либо вместо драйвера используется дешевый конденсатор. Речь идет о так называемом заводском дефекте.

Светодиодные потолочные светильники с пультом дистанционного управления часто выходят из строя как раз из-за заводского брака. Таким образом, для выполнения ремонта важно правильно установить не только поломку, но и причину ее возникновения.

Для выполнения качественного ремонта, гарантирующего исправность изделия и его продолжительную эксплуатацию в дальнейшем, необходима кропотливая подготовка. Для начала выполните демонтаж люстры, настенного светильника. В случае с настольными лампами просто отключите их от сети питания. В дальнейшем пригодятся некоторые инструменты и материалы, в том числе отвертка, плоскогубцы, изолента, нож. Клещи или пассатижи пригодятся в том случае, если корпус устройства соединен с помощью специальных скруток. Для проверки контактов воспользуйтесь мультиметром.

Поскольку светодиоды характеризуются небольшими габаритами, то для манипуляций с ними пригодится пинцет. Впоследствии при обнаружении разрыва цепи или необходимости замены какого-либо элемента может потребоваться паяльник. С целью замены led-диодов применяйте дрель с разнообразными сверлами.

Не забывайте о том, что каждый инструмент должен иметь электроизоляцию – запрещено выполнять работы пассатижами или клещами с голыми металлическими рукоятками.

Светодиодные подвесные светильники, работающие от пульта дистанционного управления, появились сравнительно недавно. Их устройство знакомо далеко не всем, поэтому вкратце рассмотрим конструкцию приборов.

В самой простой комплектации люстра на светодиодах состоит из корпуса (металлического, пластикового, стеклянного), блока с регулятором (драйвера). Последний элемент используется как выпрямитель напряжения, на нем размещают клеммы и зажимы, к которым подводится питание от промышленной сети. Проводами блок питания соединен с лампами.

В сложных люстрах применяют антенну, блок управления, регулятор (несколько блоков), необходимый для автоматической настройки. Растровые осветительные приборы содержат несколько драйверов и светодиодные лампы различных видов. Последовательность ремонта напрямую зависит от конкретного типа светильника.

Изучите конструкцию устройства, используя приложенную к нему инструкцию, чтобы разобраться, где находятся блоки управления. Они могут устанавливаться как внутри, так и снаружи изделия.

Ремонт люстры без пульта ДУ намного проще. В таком приборе установлен диод или диодный мост с электролитами и резисторами. Также есть катушка с обмоткой для уменьшения пульсации.

Чтобы правильно отремонтировать уличный или внутренний светильник, соблюдайте пошаговую инструкцию:

  1. Снимите прибор с потолка или стены и удалите крышку корпуса.
  2. Изучите электронную схему, чтобы разглядеть видимые дефекты (либо подтвердить их отсутствие). К таковым относятся обрывы проводки.
  3. Удалите плафон и другие декоративные украшения оборудования, выкрутите светодиодные лампочки, если они используются.
  4. Изучите цоколь на предмет наличия прогоревших мест. Для зачистки можете использовать обычный нож.
  5. Заново выполните скрутки, подтяните все винты на крепящихся к плате элементах. При отсутствии видимых дефектов изучите непосредственно лампу.

Рассмотрим самый легкий метод проверки цепи светодиодов. Для начала зафиксируйте лампу, используя обрезанную пластиковую бутылку с меньшим диаметром. В нее и вставляется лампа. Для подачи питания воспользуйтесь вспомогательным блоком питания (в том случае, если речь идет об устройстве на 12 или 24 В).

Вместо того чтобы прозванивать каждый led-диод в цепи, можно прибегнуть к более простому методу. По очереди устанавливайте перемычку между контактами каждого диода, используя пинцет. Если нет перемычки, то возьмите любой провод, предварительно зачистив оба конца и выполнив лужение контактов.

Важно, чтобы лампа в этот момент была подключена к сети. Как только вы замкнете контакты на сгоревшем светодиоде, прибор загорится. Если этого не произойдет, то, возможно, перегорело более одного диода.

Продолжите визуальный осмотр схемы и ищите места прогаров, вздутые конденсаторы, изучите каждую дорожку на плате. При обнаружении оборванных контактов выполните пайку. Если цепь состоит из 10 и менее элементов, то ни в коем случае не заменяйте сгоревший светодиод проводом или перемычкой. Это может привести к перегрузке катушек и сгоранию диодов.

Чаще всего причина поломки люстры с пультом ДУ заключается в перегреве матрицы. В такой ситуации ремонт выполняется следующим образом:

  1. Снимите и разберите люстру.
  2. Выясните причину поломки – отыщите перегоревшие элементы.
  3. Если потребуется замена компонентов и выполнение пайки, то обязательно изучите схему устройства, приложенную к гарантийному талону.

Перегореть может контроллер, антенна или блок управления. В данном случае требуется банальная замена вышедшего из строя изделия.

Большинство светодиодных осветительных приборов выпускается с радиаторами охлаждения. Наличие этого элемента – признак высокого качества устройства. В данных изделиях отводится специальное посадочное место, а радиатор используется для отвода тепла. Периодически нужно проводить замену термопасты. Если этого не делать, то со временем радиатор потеряет свою эффективность и плата или блок перегорит. Разберите устройство и убедитесь в том, что термопаста нанесена на обе плоскости посадочного места.

При необходимости самостоятельно тонким слоем нанесите специальную смазку на всю поверхность посадочного места. Чересчур большое количество термопасты сказывается на теплоотдаче так же негативно, как и ее отсутствие. Для увеличения тепловой отдачи можно прикрутить к радиатору дополнительную алюминиевую пластинку, при этом убедитесь, что она не перекрывает основной воздушный поток.

Качественный ремонт светодиодных источников света своими руками возможен при условии соблюдения правил безопасности и наличии конструктивной схемы электроприбора. В статье были подробно описаны основные причины и типы неисправностей, даны рекомендации по их поиску и устранению.

Светодиодный прожектор. Теория и практика ремонта своими руками.

Светодиодные прожектора сегодня – весьма популярная вещь. Но, как и любая электроника, прожектора сравнительно часто ломаются.

Ремонту светодиодных прожекторов своими руками и будет посвящена сегодняшняя статья.

Вся теория по устройству светодиодных прожекторов и терминология изложена в предыдущей статье, а здесь – практика для домашних умельцев.

Первым делом, надо убедиться, что питание 220 В на драйвер подается. Это Азы. Далее остается решить, что неисправно – LED драйвер или LED матрица.

Напоминаю, что слово “драйвер” – это маркетинговый ход для обозначения источника тока, предназначенного под конкретную матрицу с определенным током и мощностью.

Для того, чтобы проверить драйвер без светодиода (вхолостую, без нагрузки), достаточно просто подать на его вход 220В. На выходе должно появиться постоянное напряжение, по значению чуть большее, чем верхний предел, указанный на блоке.

Например, если на блоке драйвера указан диапазон 28-38 В, то при включении его вхолостую напряжение на выходе будет примерно 40В. Это объясняется принципом работы схемы – для поддержания тока в заданном диапазоне ±5% при увеличении сопротивления нагрузки (вхолостую = бесконечность) напряжение тоже должно увеличиваться. Естественно, не до бесконечности, а до некоторого верхнего предела.

Однако, этот способ проверки не позволяет судить об исправности светодиодного драйвера на 100%.

Дело в том, что встречаются исправные блоки, которые при включении вхолостую, без нагрузки, или вообще не запустятся, или будут выдавать непонятно что.

Предлагаю подключить к выходу светодиодного драйвера нагрузочный резистор, чтобы обеспечить ему нужный режим работы. Как подобрать резистор – по закону дядюшки Ома, глядя на то, что написано на драйвере.

LED – драйвер 20 Вт. Стабильный выходной ток 600 мА, напряжение 23-35 В.

Например, если написано Output 23-35 VDC 600 mA, то сопротивление резистора будет от 23/0,6=38 Ом до 35/0,6=58 Ом. Выбираем из ряда сопротивлений: 39, 43, 47, 51, 56 Ом. Мощность должна быть соответственная. Но если взять 5 Вт, то на несколько секунд для проверки его хватит.

Внимание! Выход драйвера, как правило, гальванически развязан от сети 220В. Однако, следует быть осторожным – в дешевых схемах трансформатора может не быть!

Если при подключении нужного резистора напряжение на выходе – в указанных пределах, делаем вывод, что светодиодный драйвер исправен.

Для проверки можно использовать лабораторный блок питания, примерно такой. Подаем напряжение заведомо меньшее, чем номинал. Контролируем ток. Светодиодная матрица должна загореться.

Контролируем ток дальше и аккуратно повышаем напряжение так, чтобы ток достиг номинала. Матрица будет гореть полной яркостью. Подтверждаем, что она на 100% исправна.

Бывают ситуации, когда имеется светодиодный чип, но его мощность, ток и напряжение неизвестны. Соответственно, его затруднительно купить, а если он исправен, то непонятно, как подобрать адаптер.

Для меня это было большой проблемой, пока я не разобрался. Делюсь с вами, как по внешнему виды светодиодной сборки определить, на какое она напряжение, мощность и ток.

К примеру, имеем прожектор с такой светодиодной сборкой:

9 диодов. 10 Вт, 300 мА. На самом деле – 9 Вт, но это в пределах погрешности.

Дало в том, что в светодиодных матрицах прожекторов используются диоды мощностью 1 Вт. Ток таких диодов равен 300…330 мА. Естественно, всё это примерно, в пределах погрешности, но на практике работает точно.

В данной матрице 9 диодов включены последовательно, ток у них один (300 мА), а напряжение 3 Вольта. В итоге, общее напряжение 3х9=27 Вольт. Для таких матриц нужен драйвер с током 300 мА, напряжением примерно 27В (обычно от 20 до 36В). Мощность одного такого диода, как я говорил, около 9 Вт, но в маркетинговых целях этот прожектор будет на мощность 10 Вт.

Пример 10 Вт – немного нетипичный, из-за особенного расположения светодиодов.

Другой пример, более типичный:

Светодиодная сборка для прожектора 20 Вт

Вы уже догадались, что два горизонтальных ряда точек по 10 шт – это светодиоды. Одна полоска – это навскидку 30 Вольт, ток 300 мА. Две полоски, соединенные параллельно – напряжение 30 В, ток в два раза больше, 600 мА.

5 рядов (зиг-заг) по 10 светодиодов.

Итого – 50 Вт, ток 300х5=1500 мА.

Матрица 7 рядов по 10 светодиодов

Итого – 70 Вт, 300х7=2100 мА.

Думаю, продолжать не смысла, уже всё понятно.

Немного другое дело с светодиодными модулями на основе дискретных диодов. По моим подсчетам, там один диод, как правило, имеет мощность 0,5 Вт. Вот пример матрицы GT50390, установленной в прожекторе 50 Вт:

Светодиодный прожектор Navigator, 50 вт. Светодиодный модуль GT50390 – 90 дискретных диодов

Если, по моим предположениям, мощность таких диодов – 0,5 Вт, то мощность всего модуля должна быть 45 Вт. Схема его будет такой же, 9 линеек по 10 диодов с общим напряжением около 30 В. Рабочий ток одного диода – 150…170 мА, общий ток модуля – 1350…1500.

У кого другие соображения на этот счет – милости прошу в комментарии!

Ремонт лучше начать с поиска электрической схемы Led драйвера.

Как правило, драйвера светодиодных прожекторов строятся на специализированной микросхеме MT7930. В статье про Устройство прожекторов я давал фото платы (невлагозащищенной) на основе этой микросхемы, ещё раз:

Светодиодный прожектор Navigator, 50 вт. Драйвер. Плата GT503F

Светодиодный прожектор Navigator, 50 вт. Драйвер. Вид со стороны пайки

Внимание! Информация по схемам драйверов и ещё немного по ремонту вынесена в отдельную статью!

При замене светодиодной матрицы хитростей особых нет, но нужно обратить внимание на следующие вещи.

  • старую теплопроводную пасту тщательно удалить,
  • нанести теплопроводящую пасту на новый светодиод. Лучше всего это делать пластиковой карточкой,
  • закрепить диод ровно, без перекосов,
  • удалить лишнюю пасту,
  • не перепутать полярность,
  • при пайке не перегревать.

Обратная сторона светодиодной матрицы, на которую наносится теплопроводная паста при монтаже

При ремонте светодиодного модуля, состоящего из дискретных диодов, прежде всего нужно обратить внимание на целостность пайки. А потом уже проверять каждый диод подачей на него напряжения 2,3 – 2,8 В.

Если нужен оперативный ремонт, то лучше всего, конечно, сбегать в магазин через дорогу.

Но если вы занимаетесь ремонтом на постоянной основе, то лучше поискать там, где дешевле. Рекомендую это делать на известном сайте АлиЭкспресс.

На этом заканчиваю. Призываю соратников делиться опытом и задавать вопросы!

Здравствуйте. Спасибо за схему, давно искал но было всё не то.Сколько ставил матрицы с алиэкспресс, все сгорели примерно через месяц. Причина тому -плохое качество самим матриц.Например матрица на 50 ватт, ток потребления 1.3 ампер, напряжение 37- 38 вольт, получил около 50 ватт.Но температура на матрице, установлено в прожектор достигает 93 градуса, что критично.Результат плачевный уже через месяц. Для лечения убавляю ток до 0.9-1 ампер, температура падает до 70 градусов, это уже нормально.

Да, надо внимательно читать отзывы перед покупкой. И не гнаться за дешевыми ценами.

Алексей, каким способом убавляешь ток? В драйвере, либо последовательно резистор?

Последовательно резистор, это 50-ти ватный что-ли?

А мы купили недавно прожектор, всё зашито в одном чипе, нет отдельного драйвера. Брал только потому, что не хотелось лишних проблем с поломками драйвера. Прожекторы гланзен кажется,но точно не помню.

То есть, монолит с диодом подключается в 220, и всё?

Похоже так, есть же RGB светодиоды со встроенным чипом, который плавно переключает три цвета. На вид и по размерам обычный двух выводной белый светодиод.
Вот можно посмотреть http://www.ledenter.ru/price_255.html
Так-же есть и со встроенным ШИМ
/mk90.ru/store/ru/svetodiody/456-led-rgb-smd-5050-ws2811.html

Да есть светодиодные матрицы

220в.
Вот к примеру ledpremium.ru/catalog/5_30_vt_svetodiodnaya_matritsa/svetodiodnaya_matritsa_cob_20w_cw_220v_1800lm_pf_90_cri_80_6000k/?r1=yandext&r2=

Вот еще,
Светодиодная техника развивается динамично. Так, например, недавно две корейских компании — LEDStudio и POWERLIGHTEC — выпустили новые светодиоды со встроенным драйвером стабилизации тока и стабилитроном.
Такое решение позволяет отказаться от стабилизации входного тока питания. Светодиод сам выполняет эту операцию. Входное напряжение данного светодиода 11-18V, что позволяет использовать к их к примеру в автомобильных фарах.

Почему бы и нет.
Стабилитрон должен быть мощным, и включаться последовательно со светодиодной матрицей.

Драйвера еще не приходилось ремонтировать, поэтому хотел узнать, горит-ли что-либо в схеме драйвера при сгорании предохранителя? По работе приходится часто сталкивать с сгоревшими электронными балластами. В них как правило горят транзисторы и их обвязка, хотя и в обвязке стоят резисторы-предохранители для защиты транзисторов. Кажется что предохранитель сгорает (не всегда!)после сгорания транзисторов, по логике должно быть наоборот.

Как правило, транзисторы, и диодные мосты.
Ещё, при скачках напряжения, может сгореть микросхема.

Понятно. В общем такие устройства как на первой схеме нужно самому дорабатывать, ставить варисторы (как на второй схеме) или супрессоры и …обязательно предохранитель, а то было на работе, нашел пару приборов (терморегулятор и реле времени) с выгоревшими варисторами и ИБП, т.е. защита стояла, а предохранителей внутри нету. Видимо производителями рассчитано на внешний предохранитель или автомат (чтобы внутрь не лазили!), ну а кто ставил эти приборы, не знал.

Регулирую ток удалением резистора в обвязке микросхемы, обычно ограничиваюсь одним, мощность падает с 50 до 30 ватт, у каждой матрицы по разному падает ток потребления.

Это резисторы Rs которые с истоке транзистора?

При многообразии осветительных приборов на прилавках страны, светодиоды остаются вне конкуренции по причине экономичности и долговечности. Однако не всегда приобретается качественное изделие, ведь в магазине товар не разберешь для осмотра. Да и в этом случае не факт, что каждый определит, из каких деталей она собрана. Лампы перегорают, а покупать новые становится накладно. Выходом становится ремонт светодиодных ламп своими руками. Работа эта под силу даже начинающему домашнему мастеру, а детали недороги. Сегодня разберемся, как проверить осветительный прибор, в каких случаях изделие ремонтируется и как это сделать.

Светодиодные осветительные приборы прочно вошли в нашу жизнь

Известно, что светодиоды не могут работать напрямую от сети 220 В. Для этого им нужно дополнительное оборудование, которое, чаще всего, и выходит из строя. О нем сегодня и поговорим. Рассмотрим схему светодиодного драйвера, без которого невозможна работа осветительного прибора. Попутно и проведем ликбез для тех, кто ничего не понимает в радиоэлектронике.

Схема драйвера светодиодной лампы 220 В состоит из:

  • диодного моста;
  • сопротивлений;
  • резисторов.

Диодный мост служит для выпрямления тока (превращает его из переменного в постоянный). На графике это выглядит как отсекание полуволны синусоиды. Сопротивления ограничивают ток, а конденсаторы накапливают энергию, увеличивая частоту. Рассмотрим принцип действия на схеме светодиодной лампы на 220 В.

Поняв принцип работы и схему драйвера, решение как починить светодиодную лампу на 220V уже не будет казаться сложным. Если говорить о качественных световых приборах, то неприятностей от них ждать не стоит. Они работают весь положенный срок и не тускнеют, хотя есть «болезни», которым подвержены и они. Как с ними справиться сейчас поговорим.

Чтобы проще было разобраться с причинами, обобщим все данные в одной общей таблице.

Полезно знать! Ремонт светодиодных светильников невозможно выполнять до бесконечности. Намного проще исключит негативные факторы, влияющие на долговечность и не приобретать дешевые изделия. Экономия сегодня обернется затратами завтра. Как говорил экономист Адам Смит: «Я не настолько богат, чтобы покупать дешевые вещи».

Перед тем, как отремонтировать светодиодную лампу своими руками, обратите внимание на некоторые детали, требующие меньшего количество трудозатрат. Проверка патрона и напряжения в нем – первое, что стоит сделать.

Важно! Ремонт ЛЕД-ламп требует наличия мультиметра – без него не получится прозвонить элементы драйвера. Так же потребуется паяльная станция.

Паяльная станция необходима для ремонта светодиодных люстр и светильников. Ведь перегрев их элементов приводит к выходу из строя. Температура нагрева при пайке должна быть не выше 2600, в то время как паяльник разогревается сильнее. Но выход есть. Используем кусок медной жилы, сечением 4 мм, который наматывается на жало паяльника плотной спиралью. Чем сильнее удлинить жало, тем ниже его температура. Удобно, если на мультиметре присутствует функция термометра. В этом случае ее можно отрегулировать точнее.

Но перед тем, как выполнить ремонт светодиодных прожекторов, люстр или ламп нужно определить причину выхода из строя.

Одна из проблем, с которой сталкивается начинающий домашний мастер – как разобрать светодиодную лампочку. Для этого понадобится шило, растворитель и шприц с иглой. Рассеиватель LED-лампы приклеен к корпусу герметиком, который нужно удалить. Проводя аккуратно вдоль кромки рассеивателя шилом, шприцем вводим растворитель. Через 2÷3 минуты, легко покручивая, рассеиватель снимается.

Проверка светодиодной лампочки в разобранном состоянии. Не стоит так делать – это опасно

Некоторые световые приборы изготовлены без проклейки герметиком. В этом случае достаточно провернуть рассеиватель и снять его с корпуса.

Разобрав осветительный прибор, обратите внимание на LED-элементы. Часто сгоревший определяется визуально: на нем имеются подпалины или черные точки. Тогда меняем неисправную деталь и проверяем работоспособность. Подробно о замене мы расскажем в пошаговой инструкции.

Если LED-элементы в порядке, переходим к драйверу. Для проверки работоспособности его деталей нужно их выпаять из печатной платы. Номинал резисторов (сопротивлений) указывается на плате, а параметры конденсатора – на корпусе. При прозвонке мультиметром в соответствующих режимах отклонений быть не должно. Однако часто конденсаторы, вышедшие из строя, определяются визуально – они вздуваются либо лопаются. Решение – замена подходящим по техническим параметрам.

Светодиод можно прозвонить мультиметром не выпаивая из печатной платы

Замену конденсаторов и сопротивлений, в отличие от светодиодов, часто выполняют обычным паяльником. При этом следует соблюдать осторожность, не перегревать ближайшие контакты и элементы.

При наличии паяльной станции или фена работа эта проста. Паяльником работать сложнее, но тоже возможно.

Полезно знать! Если под рукой нет рабочих LED-элементов можно установить перемычку вместо сгоревшего. Долго такая лампа не проработает, но некоторое время выиграть удастся. Однако такой ремонт производится только если количество элементов более шести. В противном случае день – это максимум работы ремонтного изделия.

Современные лампы работают на SMD LED-элементах, которые можно выпаять из светодиодной ленты. Но стоит подбирать подходящие по техническим характеристикам. Если таковых нет, лучше поменять все.

Китайский драйвер – эти ребята любят минимализм

Статья по теме:

Для правильного выбора LED-приборов надо знать не только общие характеристики светодиодов. Пригодятся сведения о современных моделях, электрических схемах рабочих устройств. В этой статье вы найдете ответы на эти и другие практические вопросы.

Если драйвер состоит из SMD-компонентов, которые имеют меньший размер, воспользуемся паяльником с медной проволокой на жале. При визуальном осмотре выявлен сгоревший элемент – выпаиваем и подбираем подходящий по маркировке. Нет видимых повреждений – это сложнее. Придется выпаивать все детали и прозванивать по отдельности. Найдя сгоревший, меняем на работоспособный и монтируем элементы на места. Удобно использовать для этого пинцет.

Полезный совет! Не стоит удалять с печатной платы все элементы одновременно. Они похожи по внешнему виду, можно перепутать впоследствии местоположение. Лучше выпаивать элементы по одному и, проверив, монтировать на место.

Ремонт светодиодной трубки в форме люминесцентной лампы ничем не отличается от работы с простой

При монтаже освещения в помещениях с повышенной влажностью (ванная комната или кухня) используются стабилизирующие блоки питания, которые понижают напряжение до безопасного (12 или 24 вольта). Стабилизатор может выйти из строя по нескольким причинам. Основные из них – это избыточная нагрузка (потребляемая мощность светильников) или неправильный выбор степени защиты блока. Ремонтируются такие устройства в специализированных сервисах. В домашних условиях это нереально без наличия оборудования и знаний в области радиоэлектроники. В этом случае БП придется заменить.

Блок питания для светодиодов выглядит так

Очень важно! Все работы по замене стабилизирующего блока питания светодиодов производятся при снятом напряжении. Не стоит надеяться на выключатель – он может быть неправильно скоммутирован. Напряжение отключается в распределительном щитке квартиры. Помните, что прикосновение рукой к токоведущим частям опасно для жизни.

Нужно обратить внимание на технические характеристики устройства – мощность должна превышать параметры ламп, которые от него запитаны. Отключив вышедший из строя блок, подключаем новый согласно схеме. Она находится в технической документации прибора. Сложностей это не представляет – все провода имеют цветовую маркировку, а контакты – буквенное обозначение.

Расшифровка степеней защиты IP для электроприборов

Играет роль и степень защиты устройства (IP). Для ванной комнаты прибор должен иметь маркировку не ниже IP45.

Статья по теме:

Чтобы освещение было стабильным, а установленные изделия прослужили как можно дольше, следует правильно подобрать блок питания 12 В для светодиодной ленты. В данной публикации мы рассмотрим виды устройств, как правильно их рассчитать, как сделать своими руками, как подключить, популярные модели.

Если причиной мерцания светодиодной лампы является выход из строя конденсатора (его нужно заменить), то периодическое моргание при выключенном свете решается проще. Причина такому «поведению» светильника – подсветка-индикатор на клавише выключателя.

Находящийся в схеме драйвера конденсатор накапливает напряжение, а при достижении предела выдает разряд. Подсветка клавиши пропускает малое количество электричества, которое никак не сказывается на лампочках накаливания или «галогенках», однако этого напряжения хватает, чтобы конденсатор начал его накапливать. В определенный момент он выдает разряд на светодиоды, после чего снова переходит к накоплению. Решить эту проблему можно двумя способами:

  1. Вытаскиваем клавишу из выключателя и отключаем подсветку. Метод прост, но индикация, увеличивающая стоимость выключателя теперь бесполезна.
  2. Разбираем люстру и на каждом патроне меняем фазный провод с нулевым местами. Способ сложнее, но он сохраняет функционал выключателя. В темноте его видно хорошо, и это плюс.

Такой выключатель может стать причиной мигания световых диодов в приборе

Миганию подвержены не только светодиодные лампы, но и КЛЛ. Устройство их ПРУ (пуско-регулирующего устройства) работает по похожему принципу, что позволяет конденсатору накапливать энергию.

Рассмотрим на примере простой ремонт светодиодной лампы:

Светодиодные прожекторы – один из самых покупаемых источников света. Не смотря на то, что основой являются светодиоды, приборы могут выходить из строя в самый не подходящий момент.В этой статье я рассмотрю наиболее распространенные неисправности прожекторов и как от них можно избавиться

После того, как Ваш купленный LED прожектор верой и правдой отслужил не один год, рано или поздно наступит момент, когда он сломается. Можно, конечно пойти в мастерскую, где все починят. Но стоит ли тратить деньги, если можно все сделать самостоятельно. Особенно, в случае, когда поломка “пустяковая”. Чтобы определить, можно ли самостоятельно отремонтировать прожектор, необходимо провести диагностику. На основании которой и можно сделать вывод о возможном самостоятельном “препарировании”.

Одна из моих статей была посвящена устройству светодиодных прожекторов. В двух словах они состоят из:

– светодиод
– драйвер
– корпус
– рассеиватель
– линза

Самыми распространенными поломками можно считать – сгорание светодиодов или драйвера. LEDs перегорают или теряют свою яркость от излишнего тепла, которое плохо от них отводится, в силу “жадности” производителя на радиаторах. Проблемы с драйвером – бич китайских прожекторов. Со своей стороны скажу, что предпочитаю все-таки именно китайских производителей. Особенно за маленькую цену. Их можно с легкостью “привести” в порядок и не тратить деньги за брэнд. Их китайских недоделок получаются вполне сносные экземпляры ( после доработки ), которые служат верой и правдой уже не один год.

Рассмотрим некоторые моменты ремонта прожекторов. Попытаемся отбраковывать светодиоды и выявить неисправности.

Характерная неисправность – мигание ( мерцание ) прожектора. Если Вы заметили, что Ваш будущий пациент с завидным постоянством стал “моргать”, то тут две проблемы – или выход из строя светодиодов, либо неисправности с электронными компонентами.

Ремонт прожектора с этой неисправностью я покажу на примере 10 Вт устройства. Где-то я уже упоминал, что 10 Вт прожекторы наиболее популярны. Светодиод – матрица, в корпусе которой интегрированы 9 одноваттных кристаллов, залитых люминофором. Кристаллы в матрице соединяются последовательно. В 10 Вт диоде имеются три линейки по три кристалла. Линейки в свою очередь соединяются параллельно и подключаются к драйверу.

Расположение кристаллов в матрице

При перегорании матрицы ( одного из диодов ) будет происходить характерное мигание. Моргание может быть хаотичным , через определенные промежутки времени. Может переставать гореть полностью вся матрица или некоторые линейки. Окунемся в устройство диода и посмотрим, почему та это происходит.

Устройство всех матриц идентично и состоит чип из алюминиевой подложки, диэлектрического слоя, кристаллов, залитых люминофором.

На картинке мы видим, что кристаллы соединяются подводами ( хорошие из золота, плохие из меди ) при интенсивном нагреве происходит отслоение нитей от диодов и матрица начинает отключаться на некоторое время. После того, как металл остынет, снова появляется контакт, пока не достигнет критического нагрева и снова происходит отключение всей или части матрицы. Это может продолжаться бесконечно долго. До тех пор, пока одна из нитей окончательно не отвалится от кристалла.

Сподручными средствами пробуем идентифицировать поломку матрицы – взять не острый предмет и в местах, где кристалл соединяется нитями не сильно надавить. Прожектор при этом должен быть включенным. Как только проблемный диод найдется, матрица начнет загораться.

Идентификация проблемной матрицы

Если определим, что неисправна матрица, то в этом случае ремонт заключается в замене чипа. Как это сделать – читайте ниже, на примере 12 В 10 Вт прожектора.

Сразу предупрежу. Если в Вашей матрице перестала гореть хотя бы одна линейка кристаллов, то такой чип надо поменять как можно быстрее. Иначе в самое ближайшее время Вы останетесь без источника света. Посмотрим, почему так происходит.

Причина увеличения тока на матрице

Соединение кристаллов в чипе – параллельно-последовательное. Для примера опять же возьму 10 Вт светодиод. Пусть он питается драйвером с постоянным током 300 мА. Т.о. на каждую работающую линейку приходится по 100 мА. При перегорании одного из кристаллов в линейке – она перестает работать. Две другие ПОКА будут гореть, но не долго. Драйвер – существо железное и не понимает, что одна из линеек “поломалася”))) и продолжает выдавать 300 мА. Но в этом случае заявленный ток распространяется только на две работающие линейки. Это не много ни мало 150 мА. Такой ток дает возможность сильнее нагреваться диодам. Нарушаются условия технической эксплуатации, что приводит к быстрой “кончине” светодиода.

Ранее я упоминал, что очень люблю китайские поделки в виде прожекторов. По большей части потому, что мне их приносят пачками. Кто-то хочет отремонтировать, но узнав, во сколько обойдется ремонт – оставляют их мне. Другие просто дарят. А мне только это и нужно)))

Вернее нужны только корпуса, которые после некоторых доделок-переделок, превращаются в качественные прожектора.

Не все китайские прожектора плохие. Есть много производителей, которые выпускают очень достойную продукцию. Причем по цене и качеству на много дешевле и лучше многих именитых брэндов. Много интересного материала попадается на Ali. Но там нужно хорошо разбираться, чтобы приобрести не откровенный хлам, а нужный экземпляр.

На примере таковых и разберу возможность ремонта прожекторов на светодиодах. Для начала обязательно нужно разобраться, на какое напряжение рассчитан Ваш светильник. Не редки случаи, когда китайцы сами толком не представляют, что отправляют. И в Ваших руках может оказаться 12 В 10 Вт прожектор, вместо 220 В. Не поленитесь и разберите светильник. Если уж лень, то хотя бы посмотрите на питающий кабель. Если он двух жильный, то этот прожектор рассчитан на постоянное напряжение, если 3-х жильный то переменное. 12 В имеют окраску проводов черную и красную. При переменном напряжении окраска может быть любой.

Автор статьи: Антон Кислицын

Я Антон, имею большой стаж домашнего мастера и фрезеровщика. По специальности электрик. Являюсь профессионалом с многолетним стажем в области ремонта. Немного увлекаюсь сваркой. Данный блог был создан с целью структурирования информации по различным вопросам возникающим в процессе ремонта. Перед применением описанного, обязательно проконсультируйтесь с мастером. Сайт не несет ответственности за прямой или косвенный ущерб.

✔ Обо мне ✉ Обратная связь Оцените статью: Оценка 3.5 проголосовавших: 13

Ремонт светодиодных светильников и прожекторов

Светодиодная продукция относятся к категории не только самых экономичных, но и самых надежных осветительных приборов. Конструктивно она состоит из металлического корпуса, фиксирующей скобы и драйвера, обеспечивающего подачу питания к светодиодной матрице. Сама же матрица выполнена в виде монолитной сборки, образованной несколькими LED-кристаллами и покрытой слоем прозрачного защитного полимера. Простота конструкции минимизирует возможность поломок, тем более что принцип действия светодиодного освещения исключает возможность отказов вследствие скачков питающего сетевого напряжения.

Виды работ по ремонту светильников и прожекторов

  • ремонт и замена матриц;
  • ремонт и замена блоков питания;
  • профилактическая замена термопроводящей пасты.

Качественный ремонт прожектора — залог его продолжительной работы

Тем не менее, ремонт светодиодных светильников и прожекторов — это достаточно востребованная услуга, если речь идет о низкокачественной LED-продукции недобросовестных мелких производителей.

Основные причины поломок

LED-матрицы содержат разное количество излучающих кристаллов. И если перегорают 2-3 кристалла из нескольких десятков, прибор продолжает светить. Если же матрица сгорает полностью, ремонт светодиодных светильников и прожекторов производят специалисты, обладающие соответствующей квалификацией. Это связано с тем, что замена матрицы является технологически непростой процедурой, требующей определенной подготовки и опыта.

Но в огромном большинстве случаев полный отказ LED-светильников и прожекторов вызывается выходом из строя драйвера, а точнее, схемы питания кристаллов. И если поломка произошла уже после гарантийного срока, драйвер, как любая стандартная электротехническая продукция, подлежит обычному ремонту или замене.

В каталоге компании ReLED представлен достаточный ассортимент типовых светодиодных матриц и драйверов общепринятого стандарта, которые без проблем могут заменить отказавшие элементы светодиодной продукции других производителей.          

Мы уделяем много внимания качеству исполнения производимых нами блоков питания – причем, не только для обеспечения высокой надежности светильников. От технических характеристик драйвера зависят еще и важнейшие параметры светодиодной продукции: уровень пульсаций, границы рабочих температур и независимость от скачков сетевого напряжения.

 

Стоимость каждой услуги по ремонту индивидуальна в зависимости от сложности, просим уточнять по телефону: +7 (999) 561 57-50

Как отремонтировать светодиодный светильник своими руками

С появлением светодиодных технологий системы освещения вышли на совершенно новый уровень. Экономичные, экологически и электрически безопасные приборы сегодня эксплуатируются везде – они пришли на смену стандартным «лампам Ильича» и набравшим популярность «экономкам». Первые давно устарели с моральной точки зрения, вторые крайне опасны для здоровья из-за содержащихся внутри паров ртути.

Несмотря на продолжительный срок эксплуатации, даже такие устройства со временем выходят из строя. Дорогостоящий ремонт светодиодных светильников в некоторых ситуациях можно выполнить самостоятельно, в домашних условиях, что мы и рассмотрим далее.

Элементы светодиодных источников света

Прежде чем разбирать на составные части вышедшую из строя светодиодную лампу, обязательно изучите ее устройство и принцип работы. Стандартное оборудование данного типа имеет в составе электронную плату питания, световой фильтр и корпус с цоколем. Более дешевые модели вместо ограничителей тока и напряжения используют обычные конденсаторы.

Одна лампа может насчитывать несколько десятков светодиодов, которые соединяются последовательно или параллельно. Во втором случае конструкция получается дорогостоящей (к каждому led-диоду или группе подключается отдельный резистор), поэтому позволить себе ее могут далеко не все.

Принцип действия светодиода практически идентичен полупроводниковому элементу. Ток между анодом и катодом перемещается по прямой линии, что приводит к образованию свечения. Каждый светодиод по отдельности характеризуется минимальной мощностью, из-за чего используется сразу несколько штук. Для создания нужного светового потока применяют люминофорное покрытие, трансформирующее свет в видимый для человеческого глаза спектр.

Качественные модели содержат высокотехнологичный драйвер, выполняющий функцию преобразователя наряду с диодной группой. Первичное напряжение идет на трансформатор, уменьшающий характеристики тока. На выходе элемента получаем постоянный ток, необходимый для питания led-диодов. С целью уменьшения пульсации в цепи используется вспомогательный конденсатор.

Несмотря на многочисленные разновидности, отличия устройств, количество используемых светодиодов, все осветительные приборы данного типа характеризуются одной конструкцией, что упрощает их техническое обслуживание.

Виды поломок и их причины

Существует несколько возможных неисправностей светодиодных приборов, что связано с их хоть и схожей, но достаточно сложной конструкцией. Самые распространенные поломки среди остальных сопровождаются следующими моментами:

  • полное отсутствие свечения;
  • периодическое отсутствие освещения;
  • кратковременное мерцание;
  • отключение света в произвольные моменты;
  • повреждение лампочки или светодиода.

Причин появления поломок еще больше. Чаще всего из них встречаются следующие:

  1. Нарушение правил и рекомендаций эксплуатации светодиодных устройств. Покупая новый светильник, обязательно изучите условия его работы, прописанные в технической методичке. При игнорировании любого правила вероятность поломок возрастает в несколько раз.
  2. Перегрев оборудования. Сами по себе светодиоды в работе практически не нагреваются, но если температура превышает заявленные 50–60 градусов, то может произойти разрыв нити, держателя или отслоение контактов на электронной плате. Перегрев иногда происходит из-за того, что не предназначенный для этих целей светильник устанавливается внутрь натяжного потолка. Это препятствует его естественному охлаждению.
  3. Выгорание led-диода – полное или частичное. Привести к этому могут высокие скачки напряжения сети или перегорание конденсатора.

Важно! Последняя поломка актуальна для дешевых приборов, в которых применяют некачественные платы.

Если сильнее углубиться, то можно выявить несколько других, более редких, но не менее интересных причин, из-за которых может не работать светодиодный светильник:

  • технические нарушения при подключении к сети питания;
  • короткое замыкание;
  • неверная установка оборудования;
  • ошибки при построении элементов в схеме подключения;
  • изделие низкого качества – при попытке сэкономить не забывайте о том, что покупаете «кота в мешке».

В таких устройствах могут быть изначально плохо припаяны контакты либо вместо драйвера используется дешевый конденсатор. Речь идет о так называемом заводском дефекте.

Светодиодные потолочные светильники с пультом дистанционного управления часто выходят из строя как раз из-за заводского брака. Таким образом, для выполнения ремонта важно правильно установить не только поломку, но и причину ее возникновения.

Подготовка к ремонту светодиодных приборов

Для выполнения качественного ремонта, гарантирующего исправность изделия и его продолжительную эксплуатацию в дальнейшем, необходима кропотливая подготовка. Для начала выполните демонтаж люстры, настенного светильника. В случае с настольными лампами просто отключите их от сети питания. В дальнейшем пригодятся некоторые инструменты и материалы, в том числе отвертка, плоскогубцы, изолента, нож. Клещи или пассатижи пригодятся в том случае, если корпус устройства соединен с помощью специальных скруток. Для проверки контактов воспользуйтесь мультиметром.

Поскольку светодиоды характеризуются небольшими габаритами, то для манипуляций с ними пригодится пинцет. Впоследствии при обнаружении разрыва цепи или необходимости замены какого-либо элемента может потребоваться паяльник. С целью замены led-диодов применяйте дрель с разнообразными сверлами.

Не забывайте о том, что каждый инструмент должен иметь электроизоляцию – запрещено выполнять работы пассатижами или клещами с голыми металлическими рукоятками.

Конструкция светодиодных люстр и визуальный осмотр

Светодиодные подвесные светильники, работающие от пульта дистанционного управления, появились сравнительно недавно. Их устройство знакомо далеко не всем, поэтому вкратце рассмотрим конструкцию приборов.

В самой простой комплектации люстра на светодиодах состоит из корпуса (металлического, пластикового, стеклянного), блока с регулятором (драйвера). Последний элемент используется как выпрямитель напряжения, на нем размещают клеммы и зажимы, к которым подводится питание от промышленной сети. Проводами блок питания соединен с лампами.

В сложных люстрах применяют антенну, блок управления, регулятор (несколько блоков), необходимый для автоматической настройки. Растровые осветительные приборы содержат несколько драйверов и светодиодные лампы различных видов. Последовательность ремонта напрямую зависит от конкретного типа светильника.

Изучите конструкцию устройства, используя приложенную к нему инструкцию, чтобы разобраться, где находятся блоки управления. Они могут устанавливаться как внутри, так и снаружи изделия.

Ремонт люстры без пульта ДУ намного проще. В таком приборе установлен диод или диодный мост с электролитами и резисторами. Также есть катушка с обмоткой для уменьшения пульсации.

Чтобы правильно отремонтировать уличный или внутренний светильник, соблюдайте пошаговую инструкцию:

  1. Снимите прибор с потолка или стены и удалите крышку корпуса.
  2. Изучите электронную схему, чтобы разглядеть видимые дефекты (либо подтвердить их отсутствие). К таковым относятся обрывы проводки.
  3. Удалите плафон и другие декоративные украшения оборудования, выкрутите светодиодные лампочки, если они используются.
  4. Изучите цоколь на предмет наличия прогоревших мест. Для зачистки можете использовать обычный нож.
  5. Заново выполните скрутки, подтяните все винты на крепящихся к плате элементах. При отсутствии видимых дефектов изучите непосредственно лампу.

Простейший способ проверить цепь светодиодов лампы

Рассмотрим самый легкий метод проверки цепи светодиодов. Для начала зафиксируйте лампу, используя обрезанную пластиковую бутылку с меньшим диаметром. В нее и вставляется лампа. Для подачи питания воспользуйтесь вспомогательным блоком питания (в том случае, если речь идет об устройстве на 12 или 24 В).

Вместо того чтобы прозванивать каждый led-диод в цепи, можно прибегнуть к более простому методу. По очереди устанавливайте перемычку между контактами каждого диода, используя пинцет. Если нет перемычки, то возьмите любой провод, предварительно зачистив оба конца и выполнив лужение контактов.

Важно, чтобы лампа в этот момент была подключена к сети. Как только вы замкнете контакты на сгоревшем светодиоде, прибор загорится. Если этого не произойдет, то, возможно, перегорело более одного диода.

Продолжите визуальный осмотр схемы и ищите места прогаров, вздутые конденсаторы, изучите каждую дорожку на плате. При обнаружении оборванных контактов выполните пайку. Если цепь состоит из 10 и менее элементов, то ни в коем случае не заменяйте сгоревший светодиод проводом или перемычкой. Это может привести к перегрузке катушек и сгоранию диодов.

Устранение поломки люстры с дистанционным управлением

Чаще всего причина поломки люстры с пультом ДУ заключается в перегреве матрицы. В такой ситуации ремонт выполняется следующим образом:

  1. Снимите и разберите люстру.
  2. Выясните причину поломки – отыщите перегоревшие элементы.
  3. Если потребуется замена компонентов и выполнение пайки, то обязательно изучите схему устройства, приложенную к гарантийному талону.

Перегореть может контроллер, антенна или блок управления. В данном случае требуется банальная замена вышедшего из строя изделия.

Радиаторы охлаждения

Большинство светодиодных осветительных приборов выпускается с радиаторами охлаждения. Наличие этого элемента – признак высокого качества устройства. В данных изделиях отводится специальное посадочное место, а радиатор используется для отвода тепла. Периодически нужно проводить замену термопасты. Если этого не делать, то со временем радиатор потеряет свою эффективность и плата или блок перегорит. Разберите устройство и убедитесь в том, что термопаста нанесена на обе плоскости посадочного места.

При необходимости самостоятельно тонким слоем нанесите специальную смазку на всю поверхность посадочного места. Чересчур большое количество термопасты сказывается на теплоотдаче так же негативно, как и ее отсутствие. Для увеличения тепловой отдачи можно прикрутить к радиатору дополнительную алюминиевую пластинку, при этом убедитесь, что она не перекрывает основной воздушный поток.

Качественный ремонт светодиодных источников света своими руками возможен при условии соблюдения правил безопасности и наличии конструктивной схемы электроприбора. В статье были подробно описаны основные причины и типы неисправностей, даны рекомендации по их поиску и устранению.

Ремонт светодиодных ламп своими руками

Содержание
  1. Что такое светодиодная лампа?
  2. Как работает светодиод?
  3. Основные составляющие части LED-лампы
  4. Работа лампы и поиск неисправности
  5. Замена светодиода
  6. Другие неисправности

Что такое светодиодная лампа?

Светодиодная лампа – современный и практичный источник освещения. Светодиодные лампы безопасны, не содержат ртуть и другие токсичные вещества, не представляют опасности при выходе из строя или разбитии. Но первое, что побуждает к покупке и установке такой лампы, это возможность экономить средства благодаря малому использованию электроэнергии. Светодиодные (или LED) приборы являются достаточно надежными и обычно полностью вырабатывают свой ресурс. Преимущества такого освещения очевидны: оно дает яркий свет и служит долго.

Если обычные лампы накаливания не подлежат ремонту, то в светодиодной можно отремонтировать практически все. Остается найти неисправность, произвести несложный ремонт и тем самым продлить срок эксплуатации лампы. Необходимые инструменты найдутся у каждого домашнего мастера, остается только найти время на ремонтные работы.

Работа светодиодной лампы построена на свойствах некоторых материалов излучать свет при определенных условиях. Рабочий элемент лампы, светодиод – это полупроводниковое устройство, которое излучает некогерентный свет при пропускании через него электрического тока. Светодиоды светятся только при условии прохождения постоянного тока.

Как работает светодиод?

Рассмотрим его работу на примере широко распространенного SMD-светодиода в корпусе 5730.

Его характеристики представлены в таблице:

Пиковый прямой ток (IFPM) 260 мА
Прямой ток (IFM) 180 мА
Обратное напряжение (VR) 5 В
Рассеиваемая мощность (PD) 0,63 Вт
Угол рассеивания света 120°
Тип линзы светодиода Прозрачный
Рабочая температура (TOPR) -40°С – +85°С
Температура хранения (TSTG) -40°С – +100°С
Температура пайки (TSOL) 260°С

Если в двух словах описать его работу, можно сказать так: светодиод преобразует электрический ток в световое излучение. Светодиод состоит из полупроводникового кристалла на токонепроводящей основе, корпуса с контактными выводами и оптической системы. Для повышения устойчивости светодиода, пространство между кристаллом и пластиковой линзой заполнено прозрачным силиконом. Алюминиевая основа предназначена для отвода избыточного тепла. Собственно, при нормальных условиях выделяется совсем небольшое количество тепла.

Чем больший ток проходит через светодиод, тем ярче он светит. Однако, из-за внутреннего сопротивления полупроводника и p-n-перехода, диод нагревается и при большом токе может сгореть – расплавятся соединительные проводники или будет прожжен сам полупроводник. Следовательно, для обеспечения требуемого значения тока, в лампе должен быть блок питания – драйвер, а также система отвода избыточного тепла – радиатор. Рассмотрим устройство LED-лампы подробнее.

Основные составляющие части LED-лампы

  1. Рассеиватель. Рассеиватель устраняет неравномерности светового потока и слишком высокую яркость отдельных излучающих элементов. Он обеспечивает освещение под определенным углом (для бытовых ламп — угол рассеивания должен быть как можно больше).
  2. Плата со светодиодами. Плата на алюминиевой основе, на которой размещены светодиоды. При этом, количество светодиодов очень важно для теплообмена, следовательно, должно соответствовать конструкции лампы. Между платой и радиатором находится термопаста, которая способствует передаче тепла.
  3. Радиатор. Качественный радиатор предназначен для того, чтобы эффективно отводить тепло от компонентов лампы и не давать светодиодам возможности перегреваться. Конструкция радиатора с ребрами позволяет эффективнее отводить и рассеивать избыток тепла.
  4. Цоколь. Вкручивается в патрон светильника и обеспечивает с ним надежный контакт. Изготовлен, как правило, из латуни с никелевым покрытием. Для защиты от пробивания электрическим током цоколь большинства LED-ламп имеет полимерную основу.
  5. Драйвер. Это электронная схема, которая предназначена для преобразования переменного тока электросети в постоянный ток такого номинала, который необходим для работы светодиодов. Слишком большой ток приводит к деградации светодиодов, которые в итоге перегорают. Качественный драйвер обеспечивает стабильную работу лампы при прыжках сетевого напряжения, обеспечивает работу светодиодов без пульсаций. Схем драйверов LED-ламп довольно много. Ниже приведены лишь некоторые из них: Драйверы бывают как простые, где фактически напряжение ограничивается за счет резистора или конденсатора, так и более совершенные с использованием микросхем. Такой драйвер не только ограничивает напряжение, но и обеспечивает оптимальное энергопотребление, а также различные функции ограничения и защиты. Конечно, драйверы на микросхемах более современные и прогрессивные, но при этом более сложные в изготовлении, а это напрямую влияет на стоимость лампы.

Работа лампы и поиск неисправности

Принцип работы светодиодной лампы достаточно прост: от электросети через контакты на драйвер подается переменный ток, там он выпрямляется и направляется на светодиоды, которые «превращают» его в свет. Избыток тепла отводится с помощью платы, на которой размещены светодиоды и радиатор.

Хотя на первый взгляд LED-лампы разные, они имеют одинаковую конструкцию и сделаны по одним принципам схемотехники. Поэтому, если разобраться в их работе и отремонтировать одну лампу, каждый последующий ремонт будет легче.

В большинстве современных ламп — источником света являются SMD-светодиоды, которые соединены последовательно. Схема соединения показана на рисунке.

Поэтому, выход из строя одного из них приводит к тому, что и другие тоже работать не будут. Наиболее распространенная неисправность ламп — именно перегорание светодиодов. Чаще всего — одного из них. Крайне редко случаются ситуации, когда из строя выходят сразу несколько светодиодов.

Перегореть светодиоды могут по разным причинам. Это может быть использование компонентов низкого качества, отсутствие стабилизации по току, перегрева светодиодов, скачки напряжения в электросети. При этом некоторые производители сразу перегружают светодиоды, чтобы заинтересовать покупателя высокой яркостью лампы небольшого размера.

Но какой бы ни была причина поломки, в большинстве случаев восстановить работу светодиодной лампы возможно. Более того, такой ремонт под силу выполнить даже начинающим радиолюбителям. А расходы будут значительно меньше, чем стоимость новой лампы.

Для выяснения причины необходимо разобрать лампу – снять рассеиватель и добраться середины лампы. Рассеиватель может быть приклеен к корпусу, поэтому нужно аккуратно (например, тонкой отверткой) отсоединить его от корпуса. Исключением являются лампы со стеклянным рассеивателем. Такие лампы зачастую не подлежат ремонту.

В рассеивателе размещена плата со светодиодами. В качественных лампах на ней установлены только светодиоды. Плата, на которой размещены еще и другие компоненты, будет быстрее перегреваться, а компоненты будут выходить из строя.

Следующий шаг – это визуальный осмотр платы. Определить светодиод, который перегорел, в большинстве случаев можно визуально – на нем четко видно черную точку, или следы от выгорания.

Но в некоторых случаях светодиод может выглядеть неповрежденным. Провести проверку и выявить неисправность светодиода можно с помощью мультиметра. Большинство современных мультиметров имеют функцию тестирования диодов. Порядок проверки следующий: замыкаем красный щуп на анод светодиода, а черный на катод. Хороший светодиод загорается. При изменении полярности щупов — на дисплее мультиметра будет только цифра «1», диод светиться не будет. Нерабочий светодиод при проверке также не светится.

Замена светодиода

Теперь, когда определён неисправный светодиод, нужно его заменить. Светодиод припаян к плате. В то же время, перегревание является критическим в его работе. В технической спецификации светодиодов указаны рекомендации по пайке. Например, для SMD-светодиода 5730, который широко используется благодаря хорошему соотношению размеров, мощности и светового потока — температура пайки 260°С (в течение не более двух секунд).

Если конструкция лампы позволяет, плату надо снять с радиатора, отпаять контакты драйвера, и уже после этого приступать к замене светодиода. Плату удобно закрепить на держателе (так мы освобождаем обе руки) и, опять же, если конструкция лампы позволяет, прогреть термофеном снизу. Температуру при этом задать не очень высокую, в пределах 100 ÷ 150°С, чтобы не повредить «живые» светодиоды.

Снимать с платы старый светодиод удобнее термопинцетом, который одновременно прогревает оба вывода. Или можно делать это изготовленным собственноручно его упрощённым аналогом – скрученным медным проводником, который разогревается от жала паяльника.

На место неисправного нужно установить новый светодиод такого же типа. Маркировка светодиодов, как правило, обозначена на плате лампы. При установке нужно соблюдать полярность.

Существует и другой, на первый взгляд более простой способ ремонта – на место неисправного светодиода запаять перемычку, то есть, замкнуть контактные площадки, к которым был подсоединён старый светодиод. Выглядеть это будет так:

Если на плате много светодиодов и все они включены последовательно, отсутствие одного не будет существенно влиять на работу других. Однако напряжение на рабочих диодах увеличится и вероятность того, что они будут выходить из строя, достаточно высока. Это не касается качественных ламп, драйвер которых задает необходимый ток и будет уменьшать напряжение до уровня, безопасного для работы светодиодов.

Другие неисправности

Если же при проверке все светодиоды оказались рабочими, надо проверить драйвер лампы и поискать другие «незначительные» поломки, внимательно осмотреть и проверить всю конструкцию лампы, особенно, соединительные проводники и контакты на предмет обрыва или «холодной» пайки.

Драйвер в хороших лампах выполнен в виде отдельной платы и находится в цокольной части. Поскольку каждый производитель имеет свою схему драйвера, не существует четкой и стандартной рекомендации по его ремонту. Здесь надо применять индивидуальный подход.

Следует мультиметром проверить основные детали, а именно, проверить на короткое замыкание выводы диодов и транзисторов, сравнить номиналы резисторов, заменить конденсаторы, которые имеют неудовлетворительное состояние или емкость которых не соответствует номиналу. Если в схеме драйвера присутствует интегральная микросхема, надо проверить напряжение на ее выводах согласно технической спецификации и сделать выводы относительно ее работоспособности. Заменить неисправные компоненты.

Остается проверить работу разобранной лампы и собрать ее. При необходимости, нанести термопасту, закрутить шурупы, зафиксировать рассеиватель.

Тенденция «модульного» ремонта не обошла и область светодиодных устройств. В интернет-магазине инструментов «Masteram» вы можете приобрести как комплекты для самостоятельной сборки LED-ламп, так и отдельные составляющие: драйверы, платы с установленными светодиодами, радиаторы ламп и т.д. Достаточно разобрать лампу, отпаять «старую» отработанную деталь, а на ее место установить новую. Замена производится в считанные минуты.

Конечно, здесь мы рассмотрели лишь самые простые варианты возобновления работы светодиодной лампы, без углубления в схемные и конструкционные решения. Но очевидно, что дело это перспективное. Стоимость замены светодиода или драйвера лампы будет значительно ниже, чем приобретение новой лампы. Из общих рекомендаций можно только добавить, что при замене следует использовать качественные компоненты с хорошими техническими характеристиками. Это будет залогом длительной безотказной работы светодиодной лампы.

Команда Masteram

Копирование материалов с сайта masteram.com.ua разрешается только при условии указания авторства и размещения обратной текстовой ссылки на каждый скопированный контент.

Ремонт светодиодных светильников и причины поломки.

Причины выхода из строя светильника.

Причины поломки светильника

Естественно выход из строя электрооборудования может быть разнообразен, но наши специалисты выделяют три основные и наиболее часто встречающиеся в практике причины.

  1. Драйвер

Драйвер — источник питания светодиодного светильника. Именно не качественные и «китайские» драйвера зачастую выходят из строя, создавая головную боль заказчику (хоть и экономят бюджет). В таких драйверах так же отсутствует гальваническая развязка, которая защищает светильник от перепадов напряжения, а так же не даёт перейти напряжению на корпус изделия. А это может повлечь за собой поражение человека электрическим током. Качественные драйвера имеют защиту до 380В. 

  • На нашем производстве мы используем только сертифицированные драйвера, как при сборке нового продукта, так и при ремонте.
  • Мы используем драйвера с гальванической развязкой.
  • Защита на наших драйверах 380В

 

2. Светодиоды

Самое плохое для светодиода — это перегрев. Перегрев происходит, когда на светодиоды направляется большая мощность, чем они способны выдержать. А если простым языком, то на 1вт светодиод направляя 2вт  — велика вероятность его «затухания». Светодиод является по идее «вечным» источником света и должен прослужить до 50000 часов. Так же стоит избегать дешёвых светодиодов с высокой либо низкой цветовой температурой — оптимально — 5000К.

  • Не допускайте перегрев светодиодов
  • Старайтесь подбирать светильники с цветовой температурой кратной 5000К

 

3. Корпус светильника и его герметичность.

Если вы используете светильник в условиях повышенной влажности и запылённости, то вам понадобится надёжная защита «внутренностей» светильника. Если производитель не учёл этого, то в скором времени светильник просто выйдет из строя.

Теперь зная основные причины вы имеете представление и понимание, что может случиться с вашими светильниками, А если уже случилось, то мы предоставляем услуги по ремонту и модернизации Ваших светильников. Даже если гарантия давно закончилась и Вы приобретали светильники в другом магазине.

Написать Написать

 

назначение, принцип работы, схема и ремонт

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки.

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:

Пример.Импульсная стабилизация (упрощенно)

При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет.  При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это — принцип ШИМ — широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.  

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.

Не стоит пытаться выжать из источника тока максимум. Это приводит к работе на предельных режимах, соответственно возникает повышенный нагрев. Превышение может вывести стабилизатор из строя.

Виды драйверов.

По типу их можно подразделить на:

Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.

Внутреннее устройство драйвера

Внешний вид и схема драйвера LED 1338G7.

Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.

ШИМ-драйвер Recom.

Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.

Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.

Драйвер с диммером.

LED драйвер на 220 В.

Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:

  • блок питания (БП),
  • источник тока,
  • адаптер питания,
  • источник питания.

Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.

Рекомендуемые производители светодиодных драйверов.

Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.

Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.

Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.

Led-драйвер Helvar.

Led-драйвер Mean Well.

Led-драйвер DEUS.

Led-драйвер «Ирбис».

Led-драйвер MOSO.

Из китайских можно доверять MOSO. Возможно появление новых брендов, которые производят конкурентоспособные устройства.

Хорошие рекомендации имеют Texas Instruments (США) и Rubicon (Япония, не путать с «Рубикон» Россия. Это разные марки). Но пока они дороги. 

Схема подключения драйвера к светодиодам.

Перед подключением светодиодов к драйверу необходимо уметь определять его полярность, иными словами, распознавать, где анод (+), где катод (-). Без этого света не будет.

Индикаторные диоды, а также некоторые маломощные осветительные, имеют два вывода.

Выводы светодиода.

Светодиоды в исполнении SMD (поверхностный монтаж) имеют либо 2, либо 4 вывода. В любом случае это анод и катод.

Выводы светодиодов в SMD-исполнении.

В первом случае выводы 3 и 4 могут быть не задействованы. Во втором случае косой срез расположен ближе к катоду. Обратите внимание, единого стандарта нет и возможны различия в полярности.

Поэтому можно либо обратиться к datasheet, либо использовать низковольтный источник постоянного тока и резистор ограничитель. В случае неправильной полярности светодиод не может загореться.

При использовании источника тока схема драйвера для светодиодов будет следующая:

Схема подключения светодиода.

Если у нас источник напряжения, то подключение осуществляется через ограничивающий резистор.

Схема подключения светодиода к источнику
напряжения через ограничитель.

Классическая светодиодная лента построена по такой схеме:

Схема светодиодной линейки.

В этом случае расчет производится по формулам:

Формула связи тока, напряжения, сопротивления.

При подключении важно учитывать:

  • При малой силе тока, мы теряем в яркости, при большой в сроке службы.
  • Напряжение из datasheet указывает падение напряжения при прохождении номинального тока. Этот параметром не основной.
  • Мощным светодиодам требуется и качественное питание, и хорошее охлаждение.

Схемы (микросхемы) светодиодных драйверов.

Как правило драйвера светодиодов строятся на интегральных стабилизаторах (КРЕНхх, либо импортные аналоги) или ШИМ. Схемы достаточно просты.

Использовании микросхем для стабилизации.

Принципиальные схемы светодиодных драйверов.

Существует схема самодельного источника тока на советской микросхеме К142ЕН12А.  Резистор R2 позволяет менять яркость свечения.

Принципиальная схема на отечественных компонентах.

Линейный светодиодный драйвер своими руками.

Эта часть статьи посвящена радиолюбителям.

Оригинальный линейный источник тока на компараторе.

Это весьма интересная схема. В качестве ключевого элемента выступает униполярный (полевой) транзистор. Степенью его открытия управляет микросхема – квадрантный компаратор напряжения. Возможно, эта схема покажется сложной, но тем не менее ее можно смело отнести к линейным источникам тока, так как управление током осуществляется через соединение «исток-сток». Степень открытия зависит от приложенного к затвору напряжения. Регулировка достигается за счет связи одного из входов компаратора и напряжения со стока. VD1 выполняет функцию защиты.

Срок службы светодиодных драйверов.

Как такового определенного срока службы нет, но многие производители готовы дать гарантию сроком в пять лет на свою продукцию. Естественно, при согласовании мощностей. Для того, чтобы источник питания прослужил дольше не следует давать нагрузку, при которой он будет отдавать предельные токи. Если он собран из качественных комплектующих, то он будет стабильно работать достаточно долгое время. Но рабочие температуры могут быть близки к критическим (зависит от схемотехнических решений). Оптимально, если мощность потребителей будет меньше на 20-30 процентов.

Если говорим о самодельном изготовлении, то многое зависит от качества сборки, качества радиодеталей. Интегральные стабилизаторы желательно закреплять на радиатор для обеспечения теплового режима, не следует забывать о про теплопроводящую пасту между корпусом стабилизатора и теплоотводом.


 

Светодиодный драйвер Легко заменить

LED Driver Замена — сложный процесс. Когда светодиодный светильник выходит из строя, вам необходимо либо приобрести новый светильник, либо заменить драйвер. В большинстве случаев замену требует драйвер светодиода (компоненты светодиодов имеют более длительный срок хранения).

Признаки необходимости замены драйвера светодиода

Будьте осторожны с перегрузкой, состоянием, которое возникает, когда водитель передает слишком много энергии на светодиоды.Вы можете легко заметить блок, который испытывает перегруз, он будет намного ярче, чем остальные светильники. Недостаточная езда — это еще одно состояние, при котором водитель не передает достаточно энергии на светодиоды. Более того, легко обнаружить агрегат, испытывающий недостаточную тягу. Он будет казаться более тусклым, чем остальные устройства.

Что нужно знать при замене драйвера

Итак, вы решили заменить драйвер, и что теперь? Прежде чем начать звонить, уделите несколько минут, чтобы получить всю нужную информацию.При поиске замены вам необходимо знать следующее:

  • Для какого типа светильника нужен драйвер? Вы работаете с внутренним / наружным оборудованием? Это знаковое освещение? Вы работаете со специальным освещением в больницах или на спортивных аренах?
  • Какова мощность прибора, с которым вы работаете? Запишите выходное напряжение или рабочий диапазон напряжения драйвера светодиода.
  • Можно ли регулировать яркость от 0 до 10 В? Не все, но большое количество драйверов в этой области имеют регулировку яркости от 0 до 10 В.Знать это очень важно.
  • С каким типом драйвера вы работаете? Постоянный ток или постоянное напряжение? Проверьте характеристики драйвера для диапазона напряжения (например, 12 В, 24 В или 14-30 В). Это необходимо знать вашему местному представителю электроснабжения, чтобы подобрать вам такую ​​же точную замену. Также обратите внимание на текущий рейтинг в амперах. Большинство устройств находятся в диапазоне 350 или 700 мА.
  • EMI — это драйвер класса B (жилой) или класса A (нежилой).

Сфотографируйте этикетку с драйвером, а также светодиодный модуль, с которым вы работаете. В общем, заказ замены со всей необходимой информацией значительно упростит задачу.

СДЕЛАЙТЕ ЭТО ПРОСТО, используя программируемый универсальный драйвер

Технически заказать оригинальный OEM-драйвер для замены должно быть легко. Вы звоните своему местному поставщику электроэнергии, и представитель на другой стороне телефона говорит вам, что он есть на складе.К сожалению, это не норма. Чаще всего поставщики не предоставляют в наличии именно тот драйвер, который вам нужен. В качестве альтернативы, даже если они могут заказать его, может потребоваться много времени на доставку, прежде чем вы сможете его получить.

Похоже на кошмар? Кроме того, подумайте о расстроенных покупателях и бесконечных поездках в магазин. Это определенно может хоть как-то повлиять на повседневную работу вашей компании.

Напротив, есть альтернатива. Фактически, это называется универсальный светодиодный драйвер Everline!

В отличие от других светодиодных драйверов, которые совместимы только с небольшим количеством приборов, соответствующих спецификациям.Универсальный светодиодный драйвер EVERLINE можно запрограммировать в соответствии со спецификациями вашего OEM-драйвера. Их технология «Touch to Tune» позволяет пользователю запрограммировать его драйвер, чтобы он работал так же, как оригинальное устройство. Во-вторых, есть обширный список OEM-производителей на выбор. В-третьих, вам не нужно беспокоиться о поиске исходного драйвера или о времени ожидания. Просто посетите Willow Electrical Supply или любой другой авторизованный универсальный авторизованный тюнер для водителей в этом районе. Учитывая эти моменты, мы поможем вам войти и выйти за считанные минуты.Еще лучше, вы можете разместить заказ по телефону, и мы доставим его к вам на место работы. Будьте уверены, универсальный светодиодный драйвер Everline будет работать точно так же, как и OEM-блок. В заключение скажу, что с сервисом Willow Electrical и драйвером Everline Touch to Tune в вашей сумке для инструментов никакая работа не станет слишком сложной.

Out With Old: Замена светодиодных драйверов

В большинстве светодиодных осветительных приборов используется электронный драйвер, который работает аналогично люминесцентному балласту.Драйвер преобразует поступающий переменный ток (AC) в постоянный (DC) и направляет этот ток на светодиоды.

Если драйвер светодиода выходит из строя преждевременно, возможно, его необходимо заменить в полевых условиях. Драйвер обычно устанавливается в светильник, хотя в некоторых случаях он может быть установлен удаленно по эстетическим или механическим причинам. Многие коммерческие светильники допускают замену полевого драйвера; некоторые из них оснащены быстроразъемными соединениями для облегчения обслуживания.

В отличие от люминесцентных балластов, драйверы светодиодов не стандартизированы, поэтому они не являются взаимозаменяемыми.Они могут различаться по выходным характеристикам, уровню электробезопасности, входному напряжению, программируемости, температурному режиму, электромагнитным помехам (EMI), интерфейсу затемнения и форм-фактору.

Выходные характеристики: Драйверы могут регулировать выход для обеспечения постоянного напряжения или тока для светодиодов, помечая их как драйверы постоянного напряжения или постоянного тока. Драйверы постоянного напряжения предназначены для работы светодиодных модулей, требующих фиксированного напряжения, обычно 12 В (В) или 24 В постоянного тока.Как правило, они ограничиваются приложениями, в которых нагрузка на светодиоды неизвестна, например, для освещения знаков и дорожек.

Драйверы постоянного тока (например, 350 миллиампер, 700 миллиампер, 1 ампер) предназначены для работы светодиодных модулей, требующих постоянного тока. Эти драйверы используются в большинстве светодиодных продуктов, производимых для коммерческого общего освещения. Согласуйте выходной ток и напряжение с нагрузкой для хорошей производительности.

Входные характеристики: Большинство драйверов универсальны на 120–277 В, 50–60 Гц, хотя некоторые из них имеют фиксированное или одинарное напряжение.Сменный драйвер должен правильно работать от напряжения питания.

Класс электробезопасности: Драйвер может быть класса 1 или класса 2.

Возможность программирования: Чтобы удовлетворить потребности конкретного приложения, драйверы могут быть запрограммированы («настроены») на установку максимального выхода (обычно тока) для данной светодиодной нагрузки. Это обеспечивает точное сопряжение между драйвером и светодиодным модулем (конструкция которого может быть разной) и в результате получить световой поток и мощность. Производитель может выполнить программирование на заводе, или установщик может сделать это в полевых условиях, используя специальные инструменты, если это позволяет продукт.

Интерфейс регулировки яркости: Многие драйверы позволяют регулировать яркость подключенных светодиодов и принимать управляющий сигнал через интерфейс. Обычно это интерфейс 0–10 В постоянного тока, низковольтный, адресно-цифровой интерфейс освещения (DALI) или фазовый контроль. Драйверы DALI и 0–10 В постоянного тока оснащены набором низковольтных управляющих проводов, аналогичных люминесцентному балласту. Драйверы фазового контроля этого не делают; они принимают управляющий сигнал от настенной коробки сетевого напряжения или другого диммера через силовую проводку.

EMI: Драйверы могут относиться к классу A, предназначенному для нежилого применения, или классу B, предназначенному для использования в жилых помещениях.

Замена драйвера

При замене драйвера в светильнике новый драйвер должен работать так же, как оригинал. Чтобы гарантировать это, новый драйвер должен соответствовать тем же характеристикам, а также иметь форм-фактор, позволяющий ему поместиться в том же пространстве в светильнике.

Несоответствие может привести к проблемам с производительностью и безопасностью или к отказу в работе. В некоторых случаях проблема может быть не сразу очевидна. Например, установка драйвера класса A в жилом помещении может вызвать помехи на телевидении или радио.

В документе NEMA LSD 74 2016 Национальной ассоциации производителей электрооборудования «Соображения по поводу замены полевого светодиодного драйвера» обсуждаются проблемы и предлагаются рекомендации по замене драйверов.

Сначала сделайте снимок этикетки драйвера и управляемого светодиодного модуля. Вся информация на этикетке водителя должна быть четкой. Информацию о замене системы и драйверов см. На этикетке светильника и в инструкциях по установке.

Относительно просто использовать драйвер того же производителя в качестве замены.Отправьте номер модели и уровень настройки (запрограммированный ток) производителю светильника или драйвера. Большинство производителей указывают запрограммированный текущий уровень на этикетке или второй этикетке.

При использовании другого производителя NEMA рекомендует проконсультироваться с производителем светильника или светодиодного модуля для определения номинального тока светодиодного модуля. Производитель может предоставить список подходящих драйверов на замену вместе с их характеристиками. Если тип светодиода неизвестен, может быть полезно сфотографировать светодиодный модуль, так как разные формы (например.g., круглый или квадратный) могут иметь разные токи возбуждения.

Обратите внимание, что запрограммированные значения настройки обычно не передаются от одного производителя к другому. Трудно воспроизвести настройку. Если сила тока слишком велика или низкая, светильник может казаться слишком ярким или тусклым по сравнению с другими светильниками, расположенными в том же помещении. Слишком высокий ток также может сократить срок службы источника, аннулировать первоначальную конфигурацию, одобренную агентством по безопасности, и свести на нет экономию энергии, на которой основывались скидки коммунальных предприятий.Для настройки на месте требуются инструменты и процессы, которые могут быть уникальными для производителя драйвера; не рекомендуется предоставлять эти инструменты конечным пользователям.

NEMA LSD 74 2016 можно бесплатно загрузить с сайта www.nema.org.

Как отремонтировать светодиодную панель? Светодиодная панель и неисправности драйверов

Чтобы устранить и устранить неисправности светодиодной панели, сначала необходимо определить причину неисправности. Для этого определения последовательность процесса сначала проверяется драйвером светодиода, а затем печатной платой, на которой расположены светодиоды SMD и светодиоды.

В нашей статье вы можете изучить , как отремонтировать светодиодную панель , как устранить неисправности и отремонтировать светодиодную панель.

ПРИЧИНЫ НЕИСПРАВНОСТИ СВЕТОДИОДНОЙ ПАНЕЛИ

Неисправности светодиодных панелей обычно вызваны недостаточной мощностью драйверов.

1- Ошибка драйвера и причины (сбой драйвера светодиода)

Недостаточная мощность драйверов со временем приводит к перегреву, а затем к отказу водителя от выполнения своих обязанностей. В светодиодных панелях большой емкости, особенно в импортных продуктах, используются полностью ориентированные на цену драйверы, даже если их недостаточно, как мощность

.

В целом можно перечислить причины следующим образом;

  • Недостаточная вместимость
  • Используемые компоненты низкого качества
  • Высокая температура окружающей среды
  • Высокое напряжение

2- неисправности светодиода и причины

Светодиоды

SMD, используемые в светодиодных панелях, выходят из строя из-за высокого тока.Таким же образом, уменьшая количество светодиодов в ориентированных на цену продуктах, большой ток, проходящий через светодиоды, заставляет светодиоды со временем деформироваться. На самом деле, светодиоды нелегко сломать при правильном использовании.

В целом можно перечислить причины следующим образом;

  • Сильный ток через светодиоды
  • Недостаточное охлаждение

3- Механические неисправности и причины

Механические поломки возникают из-за ударов и ударов по светодиодной панели.Сильный удар по светодиодной панели во время транспортировки и установки может привести к растрескиванию припоя на панели. Или винт, брошенный неосознанно внутрь панели во время сборки, может повредить печатную плату внутри.

ОБНАРУЖЕНИЕ НЕИСПРАВНОСТЕЙ

Прежде всего, он обеспечивает большое удобство обнаружения неисправностей на глаз.

Если светодиодная панель вообще не горит, скорее всего, неисправен драйвер.

Если светодиодная панель мигает, неисправность по-прежнему вызвана драйвером.

Если горят только некоторые светодиоды на панели светодиодов, возможно, неисправность связана с светодиодом.

Мы уже указывали, что неисправности обычно вызываются драйверами, но могут быть вызваны и другими причинами. Кратко опишем, как мы можем обнаруживать неисправности.

Проверить с другим водителем

Хотя возможность найти резервный драйвер не очень близка, если у вас более одной светодиодной панели, большинство из них, вероятно, относятся к одной и той же серии.Отключите драйвер одной из других рабочих панелей и попробуйте неработающую панель с этим драйвером. (убедитесь, что значения емкости драйверов и выходного мА совпадают)

Если светодиодная панель работает, очевидно, что неисправность вызвана драйвером. Если панель по-прежнему не работает, скорее всего, неисправность связана с соединительными кабелями между драйвером и светодиодами. В этом случае необходимо проверить припайку концов кабеля между директором и светодиодом.

КАК ОТРЕМОНТИРОВАТЬ?

Устранение неисправности может оказаться не так просто, как могло бы быть.Поэтому разумно заменить неисправный драйвер на новый в случае неисправности.

Если светодиоды неисправны, светодиоды, которые, вероятно, управляются большим током, погасли за короткое время, и в этом случае лучше всего заменить панель на новую.

Конечно, можно устранить мелкие неисправности в соединительных кабелях. В случае обнаружения таких неисправностей ваша панель может снова стать работоспособной после прекращения контакта.

Светодиодный фонарь Altair Lighting: замена драйвера светодиода

Были ли у вас проблемы со светодиодным фонарем Altair Lighting от Costco? Многие владельцы домов покупали этот уличный светодиодный настенный светильник только из-за проблем, иногда через несколько месяцев после покупки! Это может расстраивать, поскольку это не так просто, как просто заменить лампочку, на самом деле проблема даже не в лампочке.

Когда индикатор начинает мигать или медленно мигать, это обычно указывает на проблему с подачей питания. В этом конкретном свете вышел из строя драйвер светодиода постоянного тока. Многие владельцы фонарей вынуждены были возиться, пытаясь решить проблему, так как запасных частей Altair Lighting нет. К счастью, у нас есть отличная замена светодиодного драйвера и быстрое решение, позволяющее мгновенно снова включить ваш уличный светодиодный фонарь!

Разбираем светодиодный светильник

Следуйте этому видео на YouTube, чтобы отключить лампу и найти неисправный драйвер светодиода:

Как только вы откроете фонарь, вы обнаружите внутреннюю схему, которая в основном включает неисправный драйвер светодиода и фотоэлемент.Фотоэлемент позволяет свету включаться только ночью, экономя энергию днем, когда она не нужна. Мы видим, что рассматриваемая деталь представляет собой драйвер постоянного тока для светодиодов Espen Technology, номер модели VEL12035120H-3.

** Обратите внимание: эта замена предназначена для указанного выше драйвера. У Альтаира и Эспена много похожих моделей, которые выглядят одинаково, но немного отличаются. Убедитесь, что ваша схема подключения такая же, как на видео и фотографиях.

Чтобы найти драйвер на замену, нам нужно обратить внимание на его спецификации.Большинство из них указано прямо на этикетке, но, выполнив быстрый поиск по номеру детали, вы можете найти спецификации в Интернете. Чтобы найти драйвер, который будет работать, мы должны найти в нашем инвентаре драйвер светодиода, который точно соответствует следующему:

  • Входное напряжение: 120 В переменного тока
  • Диапазон выходного напряжения: 18-33 В постоянного тока
  • Выходной ток: 350 мА
  • IP20 Номинальный
  • Минимальная температура запуска: -30 ° C

Три верхних спецификации являются наиболее важными, поскольку они относятся к мощности, и если они не складываются, свет не будет работать вообще.Последние два относятся к физическим характеристикам и типу среды, в которой может находиться драйвер. Рейтинг IP20 означает, что он не очень хорошо защищен от пыли или воды, но это должно быть нормально, поскольку он надежно закреплен внутри самой лампы . Минимальная температура запуска важна, поскольку этот прибор во многих случаях будет находиться на открытом воздухе и в холодной среде. Этот драйвер имеет температуру не менее -30 ° C (-22 ° F), что должно быть нормально.

Замена драйвера светодиода

Мы сделали всю работу за вас и нашли отличную замену этому популярному светильнику.Лучшая замена, которую мы предлагаем, — это APC-16-350 . Взгляните на спецификации, чтобы увидеть, как они совпадают.

  • Входное напряжение: 90-264 В переменного тока
  • Диапазон выходного напряжения: 12-48 В постоянного тока
  • Выходной ток: 350 мА
  • IP42 Номинальный
  • Рабочая температура: -30 — 70 ° C

Из спецификаций видно, что входное напряжение выровняется, поскольку замена может выдерживать 90-264 В переменного тока, а в настоящее время у нас 120 В переменного тока. Диапазон выходного напряжения этого нового драйвера намного больше, чем у старого драйвера.Некоторых это может сбить с толку, но это идеальный вариант, поскольку означает, что этот драйвер работает так же, как и другие, но при необходимости может обрабатывать больше. Это могло бы сработать лучше, поскольку, возможно, причина отказа заключалась в том, что драйвер светодиода не совпадал с самими светодиодами. При большем диапазоне выходных напряжений этот драйвер лучше оригинала.

Рейтинг IP является улучшением, поскольку он имеет рейтинг IP42 по сравнению с IP20. Это все еще не показатель водонепроницаемости, но он лучше и более изолирован, чем драйвер Espen.Наконец, проверив диапазон рабочих температур, мы можем подтвердить, что он имеет такую ​​же минимальную температуру -30 ° C, поэтому здесь не должно быть никаких проблем.

Мы оставили лучшее напоследок, самое приятное то, что вы можете купить этот драйвер всего за $ 9,99 (бесплатная доставка). Посмотрите, как это делается ниже!

Замена драйвера в светодиодном фонаре Altair Lighting

  1. Перед тем, как начать, мы должны убедиться, что у нас есть нужные детали. Приобретите APC-16-350 здесь, , выбрав модель 16 Вт, ток 350 мА.
  2. Следуйте приведенному выше видео, чтобы разобрать фонарь.
  3. Отсоедините быстроразъемный соединитель от светодиодов и отрежьте соединитель (с дополнительным проводом) от драйвера ESPEN. Таким образом, мы также можем использовать быстрый разъем на новом драйвере.
  4. Отсоедините все провода от ESPEN и выньте его.
  5. Чтобы подключить APC-16-350, найдите белый и черный провода, идущие из дома. Возьмите белый провод от дома вместе с белым проводом от фотоэлемента и соедините их оба с синим проводом от APC-16-350.Черный провод от дома должен идти прямо в фотоэлемент. Итак, теперь возьмите красный провод от фотоэлемента и подключите его к коричневому проводу, идущему от APC. Для этого можно использовать проволочные гайки.
  6. Теперь подключите выход APC к быстрому соединению, которое вы сняли с ESPEN. Подключите гайку черный к желтому и красный к красному.
  7. Установите драйвер с помощью стяжки Mounting Zip.
  8. После этого проводка должна быть полностью настроена, подключите быстроразъемные соединения. Собери лампу и испытай этого ребенка.

Ваш свет должен быть включен и готов к работе. Если у вас возникнут какие-либо проблемы с этим, я сначала дважды проверим ваши соединения, а затем, не стесняйтесь обращаться к нам, и мы поможем устранить проблему для вас.

Как водитель может так плохо себя вести?

Одним из главных достоинств светодиодных ламп является то, что они служат «вечно» и не нуждаются в замене. Когда происходит что-то подобное, пользователи склонны обвинять светодиоды, называя их мошенничеством, которое работает не так, как задумано.Что ж, проблема не в светодиодной технологии, а в дизайне и деталях, выбранных для создания продуктов.

У этого фонаря вышли из строя не светодиоды, а источник питания. Теперь это может быть одно из двух. Во-первых, драйвер указан с неверными спецификациями, и драйвер работает не так, как указано. Другой вариант — разработчик этого светильника случайно выбрал драйвер, который не подходил для используемых светодиодов.

Это одна из причин, по которой я сказал, что хорошо, что APC-16-350 может работать с большим диапазоном.Это дает некоторую возможность для ошибки, при которой этот драйвер может работать лучше для светодиодов, потому что в исходной конструкции был выбран драйвер слишком маленького размера.

Другая потенциальная проблема возникла у меня после того, как я поговорил со многими клиентами, которые пытались устранить эту неисправность. Многие упоминали, что фары начали загорать, когда стало холодно, что наводит меня на мысль, что водитель недостаточно защищен от холода. Мы не знаем, из-за того, что рейтинг IP20 ниже, чем должен быть для уличной лампы, или из-за того, что минимальная температура не совсем точна.Все, что мы можем сказать, это не винить светодиоды, когда случаются подобные вещи, обычно это внутренняя часть, которая вышла из строя.

Как и все остальное, качество готового продукта зависит от того, из каких частей он состоит. К счастью, у нас есть отличные замены, поэтому не стесняйтесь обращаться к нам, чтобы мы помогли вам снова запустить ваш свет!

Распространенные проблемы со светодиодными панелями и способы их устранения

Многие из проблем, которые влияют на работу светодиодных панелей, являются универсальными для всех светодиодов, например, мерцание, свечение, выгорание и жужжание.Для получения подробной информации о том, как бороться с этими типичными проблемами со светодиодами, ознакомьтесь с нашей статьей Как сделать так, чтобы светодиоды не мерцали, не жужжали, не светились и не перегорали.

Есть некоторые проблемы, которые особенно характерны для светодиодных панелей. На этой странице более подробно рассматриваются:

Быстрое обнаружение проблем со светодиодной панелью

Если ваша светодиодная панель выходит из строя, и вы не уверены в неисправности, вы можете сделать быструю диагностику. Попробуйте включить светодиодную панель и проверьте таблицу ниже.

Распространенные проблемы со светодиодами и их вероятные причины

Проблема

Вероятная причина

Светодиодная панель вообще не светится

Ошибка драйвера

Светодиодная панель мигает

Ошибка драйвера

Если горят только некоторые светодиоды на панели

Неисправность светодиода

Выявление проблемы и вероятной причины — это только половина дела.В разделах ниже вы сможете найти решения этих проблем.

Проблемы с драйверами и преобразованием напряжения

Обзор

Драйвер светодиода регулирует количество энергии, протекающей через систему освещения. Драйверы преобразуют мощность переменного тока из сети в мощность постоянного тока, необходимую для работы светодиодных панелей, и, таким образом, предотвращают скачки напряжения. Драйверы светодиодов — это небольшие блоки, которые подключаются к светодиодной панели. Они играют ту же роль, что и балласты в люминесцентных лампах.

Драйверы уязвимы к перегреву. Даже правильно работающие драйверы со временем будут подвергаться воздействию тепла. Однако использование дешевых, низкокачественных драйверов или неправильного драйвера приведет к большему риску перегрева раньше.

Это связано с тем, что ток, протекающий через систему, не поддерживается на постоянном уровне, поэтому выделяемое избыточное тепло влияет на производительность драйвера.

Проблемы

  • Напряжение от источника питания составляет (240 В), драйвер преобразует его в 12 В или 24 В для правильной работы панели.Если драйвер работает неправильно, он не преобразует этот ток и поддерживает постоянное напряжение. Это означает, что лампочка будет мигать, и система не будет реагировать на перегрузки, что означает повышенный риск возгорания панелей.
  • Если ваша светодиодная панель вообще не работает, наиболее вероятная причина — неисправная внутренняя проводка, из-за которой проводка неправильно подключена к драйверу.
  • Хотя технически это не является неисправностью проводки, установка светодиодных панелей с регулируемой яркостью и несовместимым переключателем яркости вызовет мерцание.

Решения

  • Убедитесь, что ваши светодиодные панели совместимы с цепями, источником питания и выключателями света, от которых они работают.
  • Инвестируйте в панели с задней или центральной подсветкой (где светодиодные чипы устанавливаются на панели, а не на краю панели), поскольку эти панели имеют встроенные драйверы, которые могут помочь уменьшить проблемы с драйверами, описанными выше .
  • Попросите электрика проверить правильность подключения проводки в системе освещения.

Проблемы с плохой изоляцией, вентиляцией и перегревом

Обзор

Светодиодные панели

должны быть должным образом изолированы, чтобы выделяемое ими тепло рассеивалось и не перегревалось. Качественные светодиодные панели оснащены радиатором из проводящего металла (обычно алюминия), который отводит избыточное тепло от панели. Если этот радиатор низкого качества, плохо установлен или вообще не установлен, то избыточное тепло может вызвать выгорание светодиодных чипов в панели.

Не все светодиоды подходят для установки в закрытые светильники. Установка неподходящего светодиода в закрытый фитинг может привести к его перегреву, поскольку у лампы нет подходящего радиатора. Это не такая большая проблема для светодиодных панелей, поскольку они обычно предназначены для установки в закрытые светильники, однако всегда стоит проверять, подходят ли панели для установки в утопленную арматуру.

Проблемы

Решение

  • Покупайте светодиодные панели только с правильно подогнанным алюминиевым радиатором.Убедитесь, что панель предназначена для установки в утопленный фитинг.

Проблемы с некачественными светодиодами

Обзор

Светодиодные панели

дороже традиционных люминесцентных ламп, и по этой причине потребители могут выбирать дешевые светодиоды низкого качества и ожидать от них тех же характеристик, что и у ведущих брендов. Низкокачественные светодиодные панели часто содержат некачественные компоненты, которые не прошли надлежащую проверку.

Светодиодные панели

состоят из нескольких компонентов; низкое качество или неисправность любого из этих компонентов может повлиять на общую производительность светодиодных панелей.

Проблемы

  • Рама — обычно из алюминия, рама содержит свет внутри панели.
    • Если рама слишком легкая или сделана из другого материала, кроме алюминия (дешевые светодиодные панели часто имеют пластиковую раму), это может привести к избыточному нагреву и увеличению риска возгорания от перегрева.
  • Светодиодные микросхемы
  • — эти микросхемы устанавливаются на печатную плату и являются источником света. В зависимости от типа панели они крепятся к задней или боковой стороне панели.
    • Микросхемы низкого качества могут вызвать ряд проблем, включая потускнение панели или ухудшение качества цвета.
    • Если в панели используются светодиодные чипы низкого качества, это может привести к появлению «синего» оттенка, из-за которого комната будет выглядеть холодной.
  • Световодная пластина — направляет свет, исходящий от светодиодов, на рассеиватель.
    • Если он установлен неправильно, это может повлиять на количество света и угол падения света на рассеиватель.
  • Рассеиватель — обеспечивает равномерное распределение света от светодиодов и помогает уменьшить блики.
    • Рассеиватель низкого качества, сделанный из акрила или ПММА, а не из поликарбоната, не будет равномерно распределять свет.
    • Пластиковые диффузоры со временем могут обесцветиться по краям и пожелтеть, что снизит качество света, производимого светодиодной панелью.
  • Отражающая пластина — отражает свет обратно в световодную пластину.
    • Проблемы с отражающей пластиной могут вызвать ослепление.
  • Радиатор — это помогает предотвратить перегрев светодиодных панелей, так как проводящий металлический радиатор отводит избыточное тепло для охлаждения панели.
    • Плохой радиатор означает, что от светодиодных чипов отводится недостаточное количество тепла, что может привести к их выгоранию.
    • Дешевые пластиковые радиаторы не работают так же эффективно, как металлические радиаторы, и могут сократить срок службы светодиодов в панели.
  • Задняя крышка — алюминиевая пластина, защищающая компоненты.
    • Чем лучше задняя крышка подходит к раме, тем лучше отвод тепла, а это означает, что панель, вероятно, прослужит дольше.

Очень сложно определить, высокого или низкого качества светодиодная панель, пока она не установлена. Вы не обязательно узнаете, что у вас некачественный светодиод, например, до тех пор, пока он быстро не перегорит или не будет давать некачественный свет.

Решение: Как выбрать качественную светодиодную панель

  • Выберите панель стоимостью не менее 15–30 фунтов стерлингов или 30–50 фунтов стерлингов для более высокого уровня. Когда речь идет о светодиодных панелях, цена означает качество. Панели стоимостью менее 12 фунтов стерлингов станут желтыми, покоробятся или деформируются намного быстрее.
  • Избегайте панелей, на которые распространяется только двухлетняя гарантия. Гарантия на них составляет всего два года, потому что они не рассчитаны на длительный срок службы! Панели хорошего качества прослужат дольше.
  • Выберите панель со световодной пластиной из акрила (PMMA) или метилстирола (MS).
  • Выберите панель с порошковой окраской, а не краской.
  • Ищите хорошо сконструированный каркас.
  • Выберите проверенный бренд. Их много, вот лишь некоторые из наших любимых:
    • Britesource
    • Philips
    • Osram
    • Toshiba
  • Поговорите с компанией, продающей светодиоды, и спросите их о качестве светодиодных панелей, которые они продают.Проверенная компания сможет дать совет. Если с компанией, у которой вы собираетесь совершить покупку, сложно связаться, пересмотрите вариант покупки у нее.
  • Посмотрите отзывы
  • Заменить панели низкого качества на панели более высокого качества. Если вы будете использовать существующие панели низкого качества, существующие проблемы не исчезнут. Высококачественные светодиодные панели, в которых драйверы, оптика и светодиоды работают на оптимальном уровне, могут снизить эксплуатационные расходы на 25% по сравнению с более дешевыми панелями.

Метилстирол — лучший материал для световодной пластины (LGP)

Есть несколько незначительных признаков качества, таких как панель, которая покрыта порошковым покрытием, а не краской, и хорошо сконструированная рама, однако реальный маркер качества сводится к материалу, из которого изготовлена ​​световодная пластина.

Для изготовления LGP обычно используются три материала:

Мы рекомендуем выбирать LGP из MS.

PMMA обладает лучшим светопропусканием и долговечностью, но при этом является самым дорогим — это качественный продукт, но не самый доступный.

PS обладает хорошей трансмиссией, но со временем имеет тенденцию желтеть из-за износа и воздействия тепла. Это хорошо известная проблема в отрасли, и часто именно поэтому на эти панели предоставляется гарантия всего 2 года. Со временем они также могут покоробиться или деформироваться, потому что они недостаточно прочные, чтобы выдерживать нормальное тепловое воздействие. Это самый дешевый вариант из трех, но мы считаем его некачественным.

MS представляет собой комбинацию PMMA и PS.Он обеспечивает очень хорошее светопропускание, а также долговечен, но по более низкой цене является наиболее экономичным решением.

Проблемы с ранним выходом из строя светодиодных панелей

Обзор

Светодиоды

невероятно популярны, потому что, как известно, они служат намного дольше, чем стандартные галогенные или люминесцентные лампы. Некоторые светодиоды могут прослужить более 15000 часов, а это означает, что они должны прослужить невероятно долго. Такая долговечность делает светодиоды рентабельными и экологически безопасными.

Если ваша светодиодная панель выходит из строя раньше, это означает, что возникла проблема.

Проблема

  • Светодиодная панель не прослужит ожидаемое количество времени

Решение: исправить высокие температуры

  • Светодиоды работают при гораздо более низкой температуре, чем галогенные лампы
  • Светодиоды
  • плохо переносят высокие температуры
  • Убедитесь, что ваши светодиоды имеют достаточно места для вентиляции (совет см. Выше)
  • Убедитесь, что ваши панели не находятся рядом с источниками сильного тепла
  • Старайтесь избегать использования комбинации люминесцентных и светодиодных панелей в одной комнате

Связанное содержимое

Вы можете узнать больше о том, что такое светодиодные панели и как они работают, в нашем Руководстве по светодиодным панелям.

Для получения дополнительной информации о светодиодах с регулируемой яркостью прочтите наше руководство здесь.

Чтобы узнать больше о проблемах со светодиодами в целом, прочтите наше руководство по предотвращению мерцания, жужжания, свечения и перегорания светодиодов.

причин выхода из строя светодиодных фонарей для высоких пролетов

К нам часто обращаются электрики, которые пытаются отремонтировать вышедшие из строя светодиодные фонари для высоких пролетов.

Обычно речь идет о высоком световом светильнике, который был импортирован и был дешевым для покупки.

Первое предположение, которое обычно делается, это отказ драйвера светодиода. ADM рекомендует протестировать выходной сигнал драйвера светодиода, прежде чем идти дальше, поскольку мы уже сталкивались с несколькими случаями, когда выходили из строя сами светодиоды.

Отказ светодиода


Светодиоды обычно выходят из строя, потому что они были подключены к постоянному приводу светодиодов параллельно.

Если вы хотите узнать, почему это приводит к преждевременному отказу светодиодов, вы можете прочитать нашу статью:

ИЗБЕГАЙТЕ ПОДКЛЮЧЕНИЯ НЕСКОЛЬКИХ СВЕТОДИОДОВ К ПОСТОЯННОМУ ТОКУ СВЕТОДИОДНОГО ДРАЙВЕРА ПАРАЛЛЕЛЬНО

Если светодиоды вышли из строя, вы можете также заменить Драйвер светодиода.Обычно мы рекомендуем использовать модель с регулируемым выходом и немного уменьшить выходное напряжение, чтобы избежать перегрузки светодиодов.

Это не надежное решение, но оно должно помочь продлить срок службы новых светодиодов.

Отказ драйвера светодиода

Если сам драйвер светодиода вышел из строя, это обычно происходит по одной из двух причин:

  • Перегрев
  • Перегрузка

Перегрев

Перегрев может произойти, если драйвер светодиода установлен внутри осветительной арматуры, а производитель не позаботился о том, чтобы драйвер светодиода оставался холодным.

Обычно для драйвера светодиода указан диапазон рабочих температур, указанный в технических характеристиках.

Изготовителю осветительной арматуры необходимо обеспечить, чтобы тепло могло отводиться или отводиться от драйвера светодиода, чтобы оно не превышало заявленный максимальный диапазон рабочих температур.

Перегрузка

Если светодиод произведен известным производителем, таким как MEAN WELL, в технических характеристиках также будет указана кривая снижения номинальных характеристик.

Как и все электронные устройства, драйверы светодиодов теряют эффективность по мере их нагрева.Это означает, что при более высоких температурах вам может потребоваться снизить нагрузку на драйвер светодиода.

Если снижение характеристик драйвера светодиода не было учтено, он будет перегружен, даже если фактическая нагрузка может быть меньше максимальной номинальной, указанной в паспорте драйвера светодиода.

Возможно, вам потребуется заменить драйвер светодиода на более мощный, чем у исходного драйвера.

Используйте светодиодные фонари высшего качества с высоким отсеком

Если вы работаете над проектом, который требует установки светодиодных светильников для высоких пролетов, мы настоятельно рекомендуем платить немного больше за продукт высшего качества.

Есть несколько австралийских производителей, которые предлагают высоконадежные модели и экспортируют их по всему миру. Мы предлагаем вам использовать их, а не дешевую импортную модель.

Если заплатить немного больше вперед, можно сэкономить много головной боли и расходов в будущем.

Пожалуйста, свяжитесь с ADM, если у вас есть какие-либо вопросы относительно светодиодных драйверов для верхних фонарей. Член нашей команды экспертов с радостью ответит на любые ваши вопросы.

ПОЛЕЗНАЯ ИНФОРМАЦИЯ?

Если да, то почему бы не поделиться им со своими коллегами и коллегами.Просто нажмите на синий значок «Поделиться» в LinkedIn ниже.

Драйверы светодиодов

: какие они и какие мне нужны?

Переход на светодиодное освещение имеет огромные тенденции в коммерческой отрасли. Благодаря длительному сроку службы и энергоэффективности многие подрядчики начинают понимать преимущества этого светодиода. Узнайте больше о светодиодах с помощью Единственного руководства по светодиодам, которое вам когда-либо понадобится

… Итак, как запитать светодиоды?

Поскольку светодиоды работают с низким напряжением, для их питания требуется специальное оборудование.Для светодиодных светильников требуется специальное устройство, называемое светодиодным драйвером. Эти драйверы обеспечивают питание светодиодных лампочек для правильного функционирования; аналогично тому, как балласт питает люминесцентную лампу или трансформатор питает низковольтную лампу накаливания.

Как работают светодиодные драйверы? Драйверы светодиодов

в основном поддерживают электрический ток, протекающий через цепь светодиодов, на номинальном уровне мощности. Светодиоды рассчитаны на низкое напряжение (12-24 вольт), но в большинстве коммерческих помещений подача питания намного выше (120-277 вольт).

Драйверы светодиодов

используются для направления нужного количества электричества на лампочку. В случае изменения напряжения (мощности) драйвер светодиода защитит светодиодную лампу от любых колебаний электрического тока. Эти колебания могут привести к изменению светоотдачи (яркости) лампочки или вызвать перегрев светодиодной лампы. Светодиодный драйвер жизненно важен для безопасности лампы.

Внутренние и внешние драйверы

Для питания каждого светодиодного светильника требуется драйвер.Есть два разных типа устройств: внутренние драйверы и внешние драйверы.

Внутренние драйверы

Внутренние драйверы обычно используются в бытовых лампочках. Это стандартные сменные лампы накаливания и КЛЛ с возможностью ввинчивания или вставки.

Внешние драйверы

Внешние драйверы обычно используются для коммерческого освещения. Это где угодно, от освещения площадей до освещения складских помещений и уличного освещения.В большинстве случаев заменить внешний драйвер намного дешевле, чем полностью заменить светодиодный светильник. Для установки освещения ознакомьтесь с нашим Руководством по модернизации

.

Когда мне следует заменить внешний драйвер?

Неудивительно, что внешние драйверы выйдут из строя, но перед заменой всего светодиодного светильника вам следует подумать о преимуществах простой замены внешнего драйвера. Часто водители терпят неудачу из-за воздействия высоких температур.

Эти высокие внутренние температуры могут сократить срок службы драйвера и привести к прекращению работы светодиодной лампы. Просто заменив старый драйвер на новый, вы сэкономите время и деньги!

Как возникают эти высокие температуры?

Температура внутри драйвера светодиода напрямую коррелирует с внешней температурой драйвера. Высокие температуры возникают, когда электролитические конденсаторы внутри драйвера начинают перегреваться.

Внутри этих конденсаторов находится гель, который со временем постепенно испаряется.При воздействии более высоких температур гель испаряется быстрее, из-за чего водитель неожиданно прекращает работу. Драйвер светодиода укажет на этикетке свою самую горячую точку, известную как точка TC.

Эта точка используется для обозначения максимальной рабочей температуры водителя. Вот почему драйверы светодиодов с высокими значениями термостойкости могут выдерживать более высокие температуры и, следовательно, имеют более длительный срок службы. Если ваша светодиодная лампа неожиданно перестала работать, это, вероятно, означает, что пришло время заменить внешний драйвер.

Какой внешний светодиодный драйвер мне нужен?

Существует три типа внешних драйверов: драйверы постоянного тока, постоянного напряжения и переменного тока. При замене старого драйвера вы должны убедиться, что требования к входу / выходу идеально соответствуют вашей светодиодной лампе. Светодиоды не могут работать с обычными трансформаторами, такими как низковольтные галогенные лампы или лампы накаливания. Поскольку они работают с низким напряжением, им требуется специальное устройство, которое может обнаруживать низкие напряжения.

Драйверы постоянного тока

Внешние драйверы постоянного тока обеспечивают питание светодиодов с фиксированным выходным током и набором переменных выходных напряжений. Определенная светодиодная лампа будет показывать один определенный ток, обозначенный в амперах, и будет иметь множество напряжений, которые будут варьироваться в зависимости от мощности лампы. Эти характеристики можно найти в техническом описании внешнего драйвера.

Драйверы постоянного напряжения

Внешние драйверы постоянного напряжения обеспечивают питание светодиодов с фиксированным выходным напряжением и максимальным выходным током.В этой конкретной светодиодной лампе максимальный ток уже регулируется внутри лампы, а напряжение будет фиксированным на уровне 12 В постоянного или 240 В постоянного тока. Эти характеристики можно найти в техническом описании внешнего драйвера.

Драйверы светодиодов для кондиционеров

Драйверы светодиодов

A / C используются с лампами, которые уже содержат внутренний драйвер. Внутренний драйвер преобразует электрический ток из переменного тока в постоянный.

Драйвер светодиодов кондиционера просто определяет напряжение светодиодной лампы и преобразует электрический ток в соответствии с требованиями к мощности для этого конкретного осветительного устройства.Эти драйверы светодиодов обычно используются в светодиодных лампах MR16, но их можно использовать с любой светодиодной лампой переменного тока 12-24 В.

Другие моменты, которые следует учитывать при покупке внешнего драйвера светодиода

Максимальная мощность

Драйверы светодиодов

всегда следует использовать в паре со светодиодными лампами, которые используют 80% своей максимальной номинальной мощности. Например, если ваш внешний драйвер может работать с максимальной мощностью 120 Вт, он должен работать только с светодиодными лампами, потребляющими 96 Вт.

120 Вт x 0.80 = 96 Вт

* Примечание * НИКОГДА НЕ ПЕРЕГРУЖАЙТЕ CIRUCIT

Регулировка яркости

Все три типа внешних драйверов обеспечивают возможность регулирования яркости. Убедитесь, что и светодиодная лампочка, и драйвер указывают на то, что у них есть функции регулировки яркости, в паспорте продукта. Для большинства внешних драйверов с регулируемой яркостью потребуется внешняя система управления освещением. Эти устройства укажут, какой внешний диммер необходим для управления определенными светодиодными лампами. Узнайте, как установить диммеры и датчики, из нашего Руководства по управлению освещением .

Класс I по сравнению с классом II

Драйверы UL класса II соответствуют стандарту UL1310. Это означает, что выходная мощность безопасна для контакта, и никаких серьезных защитных мер при обращении не требуется. (Существует НЕТ риска возгорания или поражения электрическим током)

Эти драйверы могут работать с:

  • Менее 60 В в сухой среде
  • 30 вольт во влажной среде
  • Менее 5 ампер
  • Менее 100 Вт

Обратите внимание * Существует ограничение на количество лампочек, которое может работать с одним драйвером класса II *

Драйверы UL класса I имеют выходную мощность, выходящую за рамки драйверов класса I.Из-за высокого выходного напряжения драйверы класса I требуют защиты при обращении с ними. В отличие от своих аналогов драйверы класса I намного более эффективны, поскольку в них можно установить больше светодиодных ламп.

Мы стремимся предоставлять качественную продукцию по конкурентоспособным ценам. Если вы хотите заменить или модернизировать систему освещения, мы можем помочь вам в этом. HomElectrical предлагает широкий выбор светодиодных драйверов и светодиодного освещения для вашего удобства.

Магазин светодиодного освещения

Оставайтесь на связи

Нравится этот блог? Мы хотим знать, о каких блогах вы хотите читать.

Поделитесь некоторыми темами блога, которые вас интересуют, в разделе комментариев ниже или отправьте нам сообщение на Facebook!

Не забудьте поделиться с друзьями на Facebook и подписаться на нас в Twitter!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *