Ремонт балласта люминесцентной лампы: Ремонт электронного балласта для люминесцентных ламп — советы электрика

Содержание

Ремонт люминесцентной лампы своими руками.

Ремонтируем люминесцентную лампу

Несколько лет пользуюсь светильником с трубчатой 18-ти ваттной люминесцентной лампой.Особых нареканий он ( светильник) не вызывл… Кроме  замены  сгоревших люминесцентных ламп, никаких отказов в работе не было. Но,  как говорится, ничто не вечно…

Некоторое время назад при попытке включить светильник  внутри него раздался хлопок, сопровождавшийся вспышкой. Светильник был немедленно обесточен, снят и задвинут на дальнюю полку в кладовой.  Учитывая его солидный возраст первым решением было выбросить светильник на свалку.  Позже все-таки было решено попытаться отремонтировать его.

Приступаем к ремонту.

Разбираем светильник и извлекаем люминесцентную лампу. Первым дело проверяем омметром нити накала лампы на предмет обрыва. Нити накала оказались целыми, соответственно и лампа оказалась исправной и пригодной к дальнейшей эксплуатации.

После вскрытия светильника сразу бросилось в глаза ужасное состояние заводского сетевого шнура, который находился внутри корпуса светильника.  Изоляция шнура потрескалась во многих местах, утратила эластичность и крошилась прямо под пальцами.

Вот такой вид имеет сетевой шнур после десяти лет эксплуатации

Такое состояние провода таит в себе следующие опасности:

-возможность поражения электрическим током;

-возможность возникновения замыкания и, как следствие, возгорания;

Поэтому этот шнур меняем в первую очередь!

Продолжаем работу…  Хлопок внутри светильника явно указывал на отказ электронного балласта.

Извлекаем электронный балласт

Визуальный осмотр не выявил сгоревших резисторов. Сетевой предохранитель также был исправен. Сетевой предохранитель –это крайняя левая деталь на платке балласта и обозначена как F1.

А вот электролитический конденсатор номиналом  4,7мкФ х 400V оказался вздутым

Чтобы проводить дальнейший ремонт не вслепую, пришлось поискать в сети схемы электронных балластов.

  Их есть великое множество, и они очень похожи друг на друга. Различие состоит только в номиналах некоторых деталей, наличии/отсутствии дополнительных защитных элементов и типе транзисторов.

Попытка сверить схему балласта из моей лампы с схемами из сети показала что, в нашем случае в схему балласта включены дополнительные элементы. Поэтому чтобы не ломать голову пришлось  составить схему по печатной плате.

Первым делом в таких случаях проверяем транзисторы. Оба транзистора оказались негодными с пробитыми переходами Б-К. В данном  балласте применены транзисторы типа ЕВ13003, которые являются аналогами транзистора MJE13003, но имеют отличную от оригинала цоколевку. Это нужно учитывать при замене вышедших из строя  транзисторов.

Дальнейшая проверка  выявила пришедшие в негодность резисторы R2,R3,R4,R5,R6,R7. Характер неисправности у всех резисторов аналогичен-увеличение сопротивления до 1МОм и больше.

Вышедшие из строя элементы помечены красными кружками на принципиальной схеме

Все конденсаторы ( кроме вышеуказанного электролита С2) оказались исправными.

Вместо негодных впаиваем резисторы типа МЛТ-0,125  необходимых номиналов.

Вместо транзисторов ЕВ13003 запаиваем какие-то китайские типа S13003.

Собираем светильник в обратном порядке.

Пробное включение…. Все заработало!!! ))

Всегда интересен вопрос выяснения причины выхода из строя радиодеталей. Применительно к этому светильнику, а точнее, к его электронному балласту, мои соображения следующие… Уже после ремонта обратил внимание на то, что корпус светильника в зоне установки электронного балласта ощутимо нагревается. Раньше на это как-то внимания не обращал. Нагрев указывает на то, что радиоэлементы работают в тяжелых температурных условиях. На мой взгляд-это одна из главных причин отказа радиоэлементов. Первым от перегрева видимо вышел из строя электролитический конденсатор 4,7мкФ х 400В, который является фильтром после диодного мостика. Ухудшение подавления пульсаций выпрямленного напряжения увеличило уровень напряжений, приложенных к переходам транзисторов.

Следующим вылетел один из транзисторов, а дальше по принципу домино-вылетел и другой, попутно сгорели резисторы в базовых и эмиттерных цепях.. И все..Дальше был ремонт.

Ремонт электронных балластов люминесцентных ламп


В данной статье я расскажу распространенные поломки современных «балластов» люминесцентных ламп, способы их ремонта, приведу аналоги радиодеталей, которые можно использовать для ремонта. Т.к. данные лампы еще довольно распространены в быту (например, у меня ежедневно используется 5 таких ламп), думаю, тема более чем актуальна.


Если у Вас перестала светить люминесцентная лампа, первым делом необходимо заменить саму люминесцентную «колбу». В ней может быть две неисправности: выход из строя одного из каналов (обрыв спирали накала) или банальный эффект «старения».


Если в темноте на включенной лампе наблюдается еле заметное свечение нитей накала, то, вероятней всего, поломка электронного «балласта» заключается в пробое конденсатора, соединяющего нити накаливания (см.

рис. п.2). Его емкость 4,7n, рабочее напряжение 1,2kV. Лучше заменить на такой же, только с рабочим напряжением – 2kV. В дешевых балластах встречаются конденсаторы на 400 или даже 250V. Они и выходят первые из строя.


Когда действия из предыдущего абзаца не помогли, нужно начинать проверку радиодеталей с предохранителя на схеме. Он часто есть в наличии, но у меня на плате он отсутствует (см. рис. п.1).


Следующее на что следует обратить внимание – транзисторы (см. рис. п.1). Они могут выйти из строя из-за скачков напряжения, например, если дома стоит релейный стабилизатор напряжения, или часто Вами или соседями используется сварка. Данные транзисторы для замены можно найти в блоках питания энергосберегающих ламп. Т.к. такие лампы часто выходят из строя из-за поломок колбы, то схема и, соответственно, транзисторы, остаются рабочими.



Если таких лам нет, то можно заменить транзисторы аналогами. Аналоги транзисторов 13001, 13003, 13005, 13007, 13009 приведены в таблице ниже. Самими популярными заменами являются такие аналоги как КТ8164А и КТ872А.



Иногда нужно прозвонить остальные радиодетали и заменить их, в случае, если найдены поврежденные. После каждого этапа ремонта балласта люминесцентных ламп, первое их включение рекомендуется производить через последовательно включенную лампочку накаливания в 40 Ватт. По ее свечению можно будет увидеть наличие короткого замыкания.


Важно помнить, что современные электронные балласты – это импульсные устройства, которые включать без нагрузки (в нашем случае — люминесцентной лампы) строго запрещается, т.к. это приведет к выходу их из строя.



В случае если Вы все перепробовали, но ничего не помогло, или возиться с балластом нет желания, то можно использовать импульсный блок питания от энергосберегающей лампы. Его размеры настолько малы, что легко помещаются в некоторых корпусах для люминесцентных ламп. В таком случае нити накала люминесцентной лампы подключаются к контактам на плате, куда подключались контакты колбы энергосберегающей лампы.

Мощность блока питания должна приблизительно соответствовать мощность лампы. Лично у меня 36W люминесцентную лампу питает блок питания от лампы 32W.

схема, как подключить, ремонт, принцип работы, электронный и индуктивный

Несмотря на бурное развитие полупроводниковых технологий, люминесцентные лампы продолжают широко использоваться. В этой статье мы выясним, что такое балласт для ламп. Узнаем, почему это обязательная деталь любого люминесцентного светильника. В дополнение разберемся в несложном ремонте этого пускорегулирующего узла.

Что такое балласт и для чего он нужен

Чтобы разобраться, для чего нужен балласт, необходимо понимать принцип работы люминесцентной лампы (ЛЛ). Рассмотрим ее устройство. Конструктивно любая люминесцентная лампа – стеклянная колба в виде трубки, в концы которой запаяны тугоплавкие спирали накаливания, являющиеся электродами. Колба заполнена инертным газом с небольшим добавлением металлической ртути. Изнутри она покрыта люминофором – веществом, способном излучать видимый свет при облучении его ультрафиолетом.

Конструкция и принцип работы ЛЛ

При подаче напряжения на электроды в колбе возникает тлеющий разряд. Поток электронов активирует атомы ртути, и те начинают излучать в ультрафиолетовом диапазоне. Ультрафиолет воздействует на люминофор, заставляя его ярко светиться в видимом спектре.

Сам ультрафиолет поглощается люминофором и стеклом колбы. Он не покидает пределов лампы. Это исключает вредное воздействие ультрафиолетового излучения на человека.

Теоретически все просто. На самом деле в холодной выключенной лампе при подаче рабочего напряжения на электроды разряда не произойдет, поскольку ртуть находится в конденсированном состоянии, а сопротивление инертного газа между электродами слишком велико. При запуске ртуть начинает испаряться, сопротивление газового промежутка между электродами резко падает, и тлеющий разряд в колбе переходит в неуправляемый дуговой. Для нормальной работы лампы необходимо выполнение двух условий:

  1. Запуск.
  2. Поддержание рабочего тока через колбу.

Этим и занимаются балласты, или пускорегулирующие аппараты (ПРА). Без них ни одна люминесцентная лампа работать не может.

к содержанию ↑

Разновидности

Первоначально в качестве ПРА для люминесцентной лампы использовались электромагнитные дроссели (балласты) со стартерами. Этот комплект назывался электромагнитным пускорегулирующим аппаратом – ЭмПРА. Позже появились электронные аналоги ЭмПРА на транзисторах и микросхемах, выполняющие ту же функцию. Они получили название ЭПРА (электронный пускорегулирующий аппарат), или просто «электронный балласт». Рассмотрим конструкцию и принцип работы этих пускорегулирующих устройств.

Нередко под ЭмПРА подразумевают только электромагнитный дроссель, что не совсем верно. ЭмПРА – это дроссель и стартер – два отдельных узла.

Электромагнитный

ЭмПРА это обычный дроссель – катушка, намотанная на магнитопроводе, и газоразрядная малогабаритная лампочка со встроенными биметаллическими контактами (рабочими электродами).

Дроссель + стартер = ЭмПРА

Рассмотрим процессы, происходящие в светильнике с ЭмПРА. При включении в колбе стартера зажигается разряд, который нагревает электроды из биметалла. В результате электроды замыкаются и подключают к питающей сети через дроссель спирали электродов ЛЛ. При этом тлеющий разряд в колбе лампочки-стартера гаснет.

Спирали люминесцентной лампы разогреваются, их способность испускать электроны многократно увеличивается. После остывания контактов стартера они размыкаются. В результате на электродах ЛЛ появляется импульс высокого (до 1 кВ) напряжения, создаваемого самоиндукцией дросселя.

Типовая схема люминесцентного светильника с ЭмПРА

На схеме буквами обозначены:

  • А – люминесцентная лампа.
  • В – сеть переменного тока.
  • С – стартер.
  • D – биметаллические электроды.
  • Е – искрогасящий конденсатор.
  • F – нити накала катодов.
  • G – электромагнитный дроссель (балласт).

Высокое напряжение пробивает газовый промежуток. В колбе ЛЛ начинается разряд. При этом ртуть переходит в парообразное состояние, сопротивление газового промежутка резко падает. Чтобы разряд не перешел в неуправляемый дуговой, ток через лампу ограничивается дросселем с большим индуктивным сопротивлением. Поэтому его называют балластом.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Поскольку рабочее напряжение на электродах работающей лампы ниже напряжения зажигания стартера, в последующем функционировании светильника он не участвует.

Электронный

Внешне электронный балласт для люминесцентных ламп похож на электромагнитный. У него серьезные конструктивные отличия и другой принцип работы.

ЭПРА в сборе (вверху) и его «начинка»

Как видно на фото, в электронном балласте много радиоэлементов. Рассмотрим типовую структурную схему ЭПРА и узнаем, как он работает.

Типовая структурная схема ЭПРА

Переменное сетевое напряжение проходит через фильтр электромагнитных помех, выпрямляется, сглаживается и подается на инвертор. Задача инвертора – обеспечить напряжение для работы ЛЛ. Сформированное инвертором напряжение через схему ограничения тока (балласт) подается на лампу. Схема запуска служит только для пуска ЛЛ. После выполнения своей функции в дальнейшей работе она не участвует.

Узлы инвертора, балласта и пуска на структурной схеме разделены условно. Часто функции балласта выполняет инвертор, дополнительно являющийся стабилизатором тока. В некоторых схемах он играет роль стартера, самостоятельно принимая решение о подогреве спиралей лампы и о подаче на них запускающего высоковольтного импульса.

Более простые схемы запуска представляют собой обычный конденсатор, образующий со спиралями и выходными дросселями колебательный контур. Последний настроен на частоту работы инвертора. Возникающий при погашенной лампе резонанс повышает напряжение на электродах лампы до единиц и даже десятков киловольт и зажигает разряд в колбе без предварительного подогрева спиралей (холодный пуск).

В этой схеме пуск лампы производится на холодных спиралях конденсатором, образующим резонансный контур

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Холодный пуск сокращает срок службы ЛЛ, поскольку в таком режиме при образовании разряда из холодных катодов вырываются куски активной массы, разрушая покрытие, обеспечивающее стабильный разряд. В результате увеличивается рабочее напряжение ЛЛ и напряжение запуска. Они не в состоянии обеспечить ЭПРА.

Что даёт такая схема? Прежде всего, мерцание. Обычный электромагнитный дроссель питает лампу переменным током частотой 50 Гц. Люминофор имеет малую инерционность и в промежутках между полуволнами заметно теряет яркость свечения. В результате люминесцентная лампа заметно мерцает. Это плохо для зрения.

Особенно заметно мерцание на изношенных лампах, люминофор которых теряет свойства инерционности.

Инвертор, питающий ЛЛ, работает на частотах десятка и даже сотни кГц. При этом инерционности люминофора достаточно, чтобы «переждать» паузы между питающими импульсами без заметной потери яркости. То есть благодаря ЭПРА у люминесцентной лампы малый коэффициент пульсаций.

Далее электронная схема обеспечивает стабильным питанием лампу, даже если сетевое напряжение отличается от номинального. К примеру, ЭПРА POSVET (фото см. выше) позволяет работать ЛЛ при напряжении в сети от 195 до 242 В. У лампы, подключённой через ЭмПРА, при таких напряжениях либо сократится срок эксплуатации, либо она не запустится.

к содержанию ↑

Варианты схем подключения

Схему подключения люминесцентной лампы через электромагнитное пускорегулирующее устройство мы рассмотрели. Она стандартная и без вариаций. Обычно дополняется конденсатором, подключаемым параллельно светильнику. Он служит для снижения реактивной мощности, которую потребляет любая реактивная нагрузка, в том числе дроссель.

Схема люминесцентного светильника с ЭмПРА и компенсационным конденсатором

К одному дросселю можно подключить две люминесцентные лампы. При этом необходимо выполнить следующие условия:

  1. ЛЛ имеют одинаковую мощность.
  2. Мощность балласта равна сумме мощностей ЛЛ.
  3. ЛЛ рассчитаны на рабочее напряжение 110 В (при питании от сети 220 В).
  4. Стартеры рассчитаны на рабочее напряжение 110 В.

Схема подключения двух ламп к одному дросселю выглядит так (мощности дросселя 36 W  и ламп 2х18 W условные):

Схема светильника с двумя люминесцентными лампами на одном ЭмПРА

Важно! Для эффективной компенсации реактивной мощности необходимо подобрать конденсатор соответствующей емкости. Она зависит от мощности светильника. К примеру, для лампы 18 Вт необходим конденсатор емкостью 4.5 мкФ. В светильник с лампой 60 Вт устанавливается емкость 7 мкФ. Конденсаторы должны быть неполярными и рассчитаны на рабочее напряжение не ниже 400 В. Обычно используют бумажные конденсаторы МБГО и МГП.

Поскольку электронный балласт, как правило, имеет в составе пусковое устройство, подключить к нему ЛЛ проще. Для сборки светильника понадобятся лишь провода. Самый простой пример – одна лампа, один ЭПРА.

Стандартная схема подключения ЛЛ через электронный балласт

Существуют балласты, работающие с несколькими лампами. Для примера ниже приведены схемы подключения ЭПРА на 2 ЛЛ.

Варианты подключения ЭПРА для двух ламп

Схема подключения балласта, рассчитанного на работу с четырьмя ЛЛ, выглядит так:

Схема подключения балласта на 4 люминесцентные лампочки

Универсальные приборы в зависимости от схемы включения могут работать с произвольным количеством ЛЛ разной мощности.

Универсальный балласт и схемы его включения

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Все приведенные схемы являются общими. Каждый ЭПРА может включаться особым образом. Поэтому прежде чем взяться за монтаж, необходимо выяснить схему включения. Она есть в сопроводительной документации и, как правило, наносится на корпус прибора. Там же указана мощность ламп и диапазон питающих напряжений.

Схема подключения ЭПРА находится на его корпусек содержанию ↑

Ремонт электронного балласта для люминесцентных ламп

Прежде чем ремонтировать балласт, убедитесь, что проблема не в самой лампе. Проверить исправность ЛЛ несложно. Для этого вынимаем ее из светильника и прозваниваем спирали катодов любым тестером в режиме измерения малых сопротивлений. Если у нас в руках так называемая КЛЛ, то для прозвонки спиралей ее придется разобрать. При проверке обеих спиралей прибор должен показать сопротивление от нескольких единиц до нескольких десятков Ом (зависит от мощности лампы).

Проверка целостности спиралей катодов ЛЛ мультиметром

Если хотя бы одна из спиралей не «звонится», лампа неисправна. На фото выше слева спираль исправна, справа – в обрыве. ЛЛ не работает и отремонтировать её невозможно.

Неисправность ЛЛ может заключаться в осыпании активного слоя, нанесенного на спирали, хотя они и будут звониться. При этом резко повышается напряжение пуска лампы и рабочее. Их ЭПРА обеспечить не может. Но такая неисправность не появляется мгновенно. Светильник начинает тяжело включаться, самопроизвольно перезапускаться и в результате тухнет вовсе.

Распространённые принципиальные схемы

Прежде чем перейти к ремонту, рассмотрим несколько распространённых схем электронных балластов для люминесцентных ламп. Начнём с самой простой. Она используется в светильниках небольшой мощности, включая компактные люминесцентные лампы (КЛЛ).

Схема простого балласта люминесцентной лампы

Сетевое напряжение выпрямляется диодным мостом D3-D6 и сглаживается высоковольтным конденсатором С4. Пройдя через фильтр L2, С7, питает блокинг-генератор, собранный на транзисторах Q1, Q2 и трансформаторе Т1. Рабочая частота генератора обычно составляет 10-20 кГц. Импульсное напряжение, снятое с обмотки Т1, через дроссель L1 поступает на выводы катодов люминесцентной трубки LMP1. Вторые выводы катодов соединены через конденсатор С5.

После подачи на схему питания генератор запускается. Напряжение с частотой преобразования подается на катоды лампы. Пока разряда в колбе нет, напряжение проходит через спирали и С5. Емкость С5 подобрана такой, что она вместе со спиралями LMP1, дросселем L1 и обмоткой Т1 образует колебательный контур, настроенный на частоту работы генератора. В результате резонанса напряжение на катодах возрастает до 1 кВ. Происходит пробой газового промежутка в колбе – лампа запускается.

За счёт низкого сопротивления разряда в колбе конденсатор C5 шунтируется, резонанс срывается, и на электроды поступает рабочее напряжение, необходимое для ЛЛ. Ток через колбу LMP1 ограничивается дросселем L1.

Поскольку рабочая частота дросселя высока, он имеет скромные размеры по сравнению с электромагнитным балластом, функционирующим на частоте 50 Гц.

Эта схема обеспечивает холодный пуск лампы. То есть она зажигается без предварительного подогрева катодов и практически мгновенно. Это не оптимальный режим, поскольку резко сокращает срок службы ЛЛ. А теперь посмотрим на следующую схему.

Схема простого балласта с подогревом спиралей

В целом схема та же с аналогичным принципом работы. Сетевое напряжение выпрямляется, сглаживается и питает генератор, питающий, в свою очередь, ЛЛ. Но обратите внимание на терморезистор, подключённый параллельно пусковому конденсатору С3. Терморезистор имеет положительный ТКС (такой прибор еще называют позистором). Пока холодный, он обладает низким сопротивлением. При подаче питания на светильник позистор шунтирует С3 и резонанса не происходит – нити накала подогреваются рабочим напряжением, недостаточным для образования разряда в колбе LMP1.

Через некоторое время позистор разогревается протекающим через него током. Его сопротивление возрастает. Конденсатор С3 перестает шунтироваться, возникает резонанс. Напряжение на электродах увеличивается до 1 кВ. Происходит пробой газового промежутка в колбе – лампа запускается.

В дальнейшем при работе лампы часть тока протекает и через позистор, поддерживая его в разогретом состоянии, чтобы он не мешал работе ЛЛ. Это снижает КПД конструкции (на разогрев позистора тратится энергия), но расходы эти незначительны – сопротивление нагретого терморезистора велико, а ток через него мал. Кроме того, они оправданы многократно увеличенным сроком службы люминесцентной лампы за счёт ее «правильного» запуска.

В завершение рассмотрим более сложную и «умную» схему ЭПРА, собранную на специализированной микросхеме. Примерно о таком балласте шла речь в разделе «Варианты схем подключения». Там он позиционировался как универсальный и мог работать с произвольным количеством ЛЛ разной мощности (от 1 до 4).

Схема универсального ЭПРА

Для понимания принципа его работы нам понадобятся схемы вариантов подключения ламп к этому балласту.

Варианты схем подключения универсального ЭПРА

Работа такого балласта с ЛЛ делится на три этапа:

  1. Предварительный разогрев катодов.
  2. Пуск.
  3. Рабочий режим.

После включения питания генератор, собранный на микросхеме D1, запускается на частоте около 65 кГц. Сигнал генератора через силовой ключ, собранный по полумостовой схеме на транзисторах VT2, VT3, подаётся на трансформатор Т2 и далее на спирали катодов ЛЛ, предварительно их разогревая.

Через опредёленное время (регулируется резистором R13) частота генератора начинает понижаться. Как только она снизится до резонансной частоты, на которую настроен контур L2С16, напряжение на катодах лампы возрастёт до 800 В. В колбе произойдёт разряд  ЛЛ запустилась. При этом на выводе 13 D1 появится напряжение, запускающее третий этап – рабочий.

Если напряжение на выводе 13 микросхемы не появилось, а на выводе 1 упало ниже 0.8 В, процесс розжига повторяется. При нескольких неудачных попытках розжига ЭПРА прекращает свою работу и отключает неисправную лампу. То же самое произойдёт при попытке запустить ЭПРА без лампы.

При удачном пуске частота генератора понижается до рабочей (устанавливается резистором R12). Ток через лампу стабилизируется и поддерживается на заданном уровне даже при значительных колебаниях величины питающего напряжения (для этой схемы – от 110 до 250 В). На элементах T1 и VT1 собран корректор активной мощности, снижающий реактивную составляющую.

Типовые неисправности и их устранение

Теперь проведём ремонт балласта люминесцентной лампы своими руками. Сложную неисправность мы не устраним – для этого потребуются определённые знания и приборы, но с проблемами попроще справимся. Посмотрим, что чаще всего ломается из того, что мы можем найти и исправить:

  • некачественный монтаж;
  • предохранитель;
  • высоковольтный конденсатор;
  • выпрямительный мост;
  • силовой транзистор;
  • дроссель/трансформатор.

Итак, разбираем пускорегулирующее устройство и делаем визуальный осмотр. Все элементы, дорожки и пайки должны быть в хорошем состоянии – без следов деформации, потемнения, разрушения и обугливания. На фото ниже отлично видны (слева направо и сверху вниз):

Неисправности балласта, определяющиеся визуальным осмотром
  • некачественная пайка;
  • вздутие сглаживающего конденсатора;
  • сгоревший дроссель;
  • пробитый транзистор (часть корпуса вырвана).

Если находим такие элементы, меняем их. Обнаруживаем непропай – лудим и пропаиваем.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

После замены не включаем балласт, а проверяем остальные элементы по методике, описанной ниже, поскольку выход из строя одного элемента может быть как причиной, так и следствием неисправности других. К примеру, вздутие конденсатора вызывается пробоем выпрямительного диода. Предохранитель может сгореть из-за вышедшего из строя силового транзистора или конденсатора.

Теперь посмотрим, как выглядят вышеперечисленные элементы на плате драйвера. В зависимости от модели прибора они могут располагаться в другом месте, но различия обычно незначительны. Найти нужный элемент нетрудно.

Примерное расположение основных элементов на плате ЭПРА

На фото цифрами обозначены:

  • 1 – предохранитель;
  • 2 – диодный мост;
  • 3 – сглаживающий конденсатор;
  • 4 – силовые транзисторы;
  • 5 – импульсный трансформатор;
  • 6 – дроссель.

Теперь берем в руки тестер и проверяем предохранитель (если он есть), не выпаивая его из схемы. Прибор в режиме измерения низкого сопротивления или проверки диодов должен показать ноль. В противном случае предохранитель неисправен.

Выпрямительный мост. Он может быть собран как на отдельных диодах, так и представлять собой сборку из четырех диодов в одном корпусе. На фото ниже такая сборка отмечена стрелкой.

В этот ЭПРА установлена выпрямительная диодная сборка

В любом случае прозваниваем каждый диод в обоих направлениях тестером, включённым в режим проверки полупроводников. В одном направлении прибор должен показать падение напряжения порядка нескольких сот милливольт, в другом – бесконечность. Диоды перед проверкой выпаивать не нужно.

Конденсатор. Этот элемент выглядит как небольшой бочонок рядом с выпрямительным мостом. Даже если с виду он исправен (не вздулся и не взорвался), стоит его проверить. Для этого выпаиваем конденсатор из схемы и прозваниваем в режиме проверки диодов, предварительно кратковременно замкнув его выводы, чтобы разрядить.

В первый момент прибор покажет малые значения падения напряжения. По мере зарядки конденсатора они будут увеличиваться. Если показания прибора низкие и не изменяются, конденсатор пробит. Если мультиметр показывает бесконечность, то конденсатор в обрыве. В обоих случаях элемент меняем.

Транзисторы. Их для проверки тоже придется выпаять. Переводим мультиметр в режим проверки диодов и прозванивам транзистор между выводами база-коллектор и база-эмиттер в обоих направлениях. В одну сторону прибор покажет падение напряжения порядка нескольких сотен милливольт, в другую – бесконечность. Выводы коллектор-эмиттер на должны звониться вообще – в обе стороны бесконечность.

Это все, чем мы можем помочь электронному балласту. Для выявления и устранения более сложных неисправностей потребуется помощь специалиста.

Мы выяснили, для чего нужен балласт люминесцентной лампе. Узнали, какими эти балласты бывают, как работают, научились устранять распространенные неисправности этого электронного узла.

Предыдущая

ЛюминесцентныеПравила хранения люминесцентных ламп на предприятиях

Следующая

ЛюминесцентныеДля чего нужен стартер в люминесцентных лампах

Ремонт люминесцентных ламп своими руками

Многие системы освещения уже давно пользуются лампами дневного света. Они отличаются экономичностью, высокими эксплуатационными и техническими характеристиками. В настоящее время появились компактные устройства, где система управления свободно размещается в корпусе. Такие лампы могут использоваться в обычных светильниках с резьбовыми патронами.

В связи с конструктивными особенностями и применением пускорегулирующей аппаратуры, иногда в ходе длительной эксплуатации возникают неисправности, и тогда приходится выполнять ремонт люминесцентных ламп своими руками или вызывать специалистов.

Взаимодействие компонентов лампы дневного света

Для того чтобы лампа дневного света заработала, совсем недостаточно ее простого подключения к электрической сети на 220 вольт, как это делается с обычными лампочками накаливания. Запуск осуществляется при помощи специальных пускорегулирующих устройств, которые могут быть электромагнитными (ЭмПРА) или электронными (ЭПРА). Эту особенность должен знать каждый, кто собрался выполнять ремонт люминесцентной лампы самостоятельно.

Электромагнитные устройства хотя и относятся к устаревшим, до сих пор применяются во многих светильниках. Они отличаются невысокой эффективностью, шумом и мерцанием во время работы из-за низкого коэффициента пульсаций. Использование до настоящего времени объясняется их дешевизной, надежностью и простотой ремонта.

Работа ЭмПРА осуществляется по определенной схеме. Чтобы запустить лампочку, требуется пробить ее внутреннюю газовую среду. С этой целью, с помощью накопителя энергии – дросселя, создается импульс высокого напряжения. Однако данной схемы недостаточно, чтобы лампа заработала и стала гореть. Необходим предварительный разогрев электродов для последующей эмиссии и создание тлеющего разряда.

Решение этой задачи осуществляется с помощью стартера, подключаемого параллельно с лампой. Этот прибор выполнен в виде небольшой стеклянной лампочки, внутри которой расположены контакты в виде биметаллических пластин. При подаче напряжения они находятся в холодном замкнутом состоянии и через них к спиралям начинает поступать ток. В процессе подачи тока биметаллические контакты разогреваются и размыкаются. Энергия, накопленная в дросселе, поддерживает течение тока до момента пробоя газовой среды. После этого люминесцентная лампа начинает самостоятельно гореть без посторонней помощи.

Электромагнитные устройства чаще всего являются причиной неисправностей. Электронная аппаратура обеспечивает более качественную работу и не так часто ломается. Как правило, такой блок выходит из строя целиком и подлежит полной замене. Ремонт электронного балласта люминесцентной лампы осуществляется по собственной схеме, путем последовательного тестирования всех компонентов.

Причины неполадок в люминесцентных лампах

Основные неполадки в работе люминесцентных ламп связаны с состоянием пускорегулирующей аппаратуры, называемой балластом. В электромагнитных устройствах чаще всего выходят из строя стартер и дроссель, а в электронных – перегорают различные полупроводниковые и другие элементы. Эту особенность следует учесть, выполняя ремонт светильников с люминесцентными лампами.

Кроме неполадок в аппаратуре запуска и управления, могут возникнуть неисправности и в самом источнике освещения. Чаще всего это происходит в результате износа, старения или перегорания отдельных деталей и компонентов. Поэтому, зная устройство, можно легко установить причину, почему не запускается и не загорается лампа.

Одним из основных признаков неисправности является мигание прибора во время запуска. Этим они отличаются от обычных лампочек, которые перегорают мгновенно. Процесс моргания указывает на возможные изменения химического состава газовой среды в процессе эксплуатации. В таких случаях снижается содержание ртутных паров из-за их постепенного вырождения. Иногда причиной моргания становятся выгоревшие электроды, на которых уменьшается количество нанесенного активного вещества.

Когда люминесцентные лампы начинают мигать, становится хорошо заметно почернение с торцов стеклянной трубки. Именно появление нагара указывает на выгоревшую спираль и необратимые химические процессы. В таких случаях ремонт уже не проводится, возможно лишь продление срока эксплуатации на короткое время. Для этого используется несложная схема или электронный прибор с функцией холодного пуска, подключаемая к выводам контактов.

В некоторых случаях возможно моргание при включении даже полностью исправного светильника. Это происходит под влиянием неблагоприятных факторов. Например, цепь стартера может разорваться, когда синусоида проходит нулевую отметку, и тогда индукционного импульса оказывается недостаточно, чтобы ионизировать внутреннюю газовую среду. Эта же причина вызывает мигание при запуске из-за низкого сетевого напряжения. В дальнейшем, в процессе работы, при отсутствии скачков напряжения, исправный светильник работает ровно и устойчиво, поскольку пускорегулирующая аппаратура поддерживает определенный уровень тока в газовой смеси.

Неисправен дроссель в ЭмПРА

Многие неисправности люминесцентных ламп связаны с дросселем, содержащимся в схеме ЭмПРА. Внешне это проявляется следующим образом:

  • Светильник не включается совсем.
  • После включения по краям образуется тусклое свечение, но прибор полностью не загорается. Лампа может ярко вспыхнуть и больше не гореть.
  • Становятся хорошо заметны мерцания, а само свечение очень тусклое.
  • Вдоль стеклянной колбы возможно появление светящегося бегающего потока, поверхность засвечена неравномерно и т.д.
  • В то время как лампа светится, становится хорошо заметна чернота по краям трубок.

Проверку следует начинать с наличия сетевого напряжения, которое может полностью отсутствовать, например, из-за обрыва на линии. Затем проводится визуальный осмотр и проверка целостности спиралей. Если они оборваны, лампу необходимо заменить. Далее проверяется состояние контактов в патроне, выясняется исправность стартера. Если все элементы в норме, можно переходить к проверке дросселя.

В первую очередь с помощью мультиметра измеряется его сопротивление. Тестер выставляется в нужный режим и проводятся замеры. Все последующие действия будут зависеть от результатов измерений:

  • На табло мультиметра знак бесконечности – дроссель сгорел, не работает и его нужно менять.
  • Сопротивление менее 40 Ом свидетельствует о межвитковом замыкании. В таких случаях лампа работает лишь короткое время и затем сгорает. То есть, дроссель также подлежит замене.
  • При нулевом сопротивлении в дросселе, как правило, имеет место короткое замыкание. Стартер будет неоднократно пытаться запустить лампу, но она не включится. Дроссель необходимо менять.
  • При отсутствии мультиметра можно выполнить частичную проверку путем прозвонки. Если дроссель в нормальном состоянии, то индикатор будет реагировать – светиться или пищать. Отсутствие какой-либо реакции указывает на неисправность или обрыв индукционного устройства.

Неисправности и ремонт электронного балласта

Существуют разные схемы электронных балластов, но принцип действия каждого из них практически не отличается. Поэтому ремонт люминесцентной лампы производится в определенной последовательности, с некоторыми различиями. В газоразрядных устройствах установлены нити накаливания, обладающие некоторой индуктивностью. Благодаря этому свойству они включаются в схему автоколебательного контура с катушками и конденсаторами. Этот контур находится в обратной связи с инвертором, основой которого служат мощные транзисторные ключи.

Нагревание нитей приводит к увеличению их сопротивления, параметры колебаний подвергаются изменениям. Инвертор реагирует на эти изменения и выдает нужное значение напряжения для запуска лампы. Пройдя сквозь ионизированный газ, ток выполняет шунтирование напряжения на нитях и снижает их накал. Сила тока внутри лампы регулируется за счет обратной связи инвертора и контура автоколебаний.

Питание инвертора осуществляется с помощью диодного выпрямителя, оборудованного фильтрационной системой, выполняющей сглаживание помех. Высокая частота инвертора позволяет полностью исключить моргание и шум во время работы, поэтому ЭПРА пользуются широкой популярностью среди потребителей.

Зная устройство электронного балласта, гораздо проще определиться с тем, как его быстро отремонтировать. Качественная диагностика может быть выполнена только в специализированной мастерской с использованием осциллографа и прочего оборудования. Если же проверка производится самостоятельно, то начинать следует с визуального осмотра неисправной платы. После этого все детали поочередно проверяются измерительными приборами, имеющимися в наличии.

Наиболее частой причиной отказа электронной аппаратуры или ЭПРА для люминесцентных ламп является сгоревший транзистор, который легко определяется в ходе осмотра. При невозможности визуального определения, детали поочередно выпаиваются из платы и прозваниваются мультиметром. В исправном состоянии сопротивление транзисторов будет составлять 400-700 Ом. Если один из транзисторов перегорает, то обычно сгоревшим оказывается и резистор в 30 Ом.

Еще одним слабым местом электронной схемы считается предохранитель с низким сопротивлением от 2 до 5 Ом. Иногда может сгореть один из элементов диодного моста. В таких случаях ремонт ЭПРА заключается в установке вместо неисправных деталей новых элементов, и балласт вновь продолжит свою работу.

Электрическая схема люминесцентного светильника. Подключение и ремонт баластника для люминесцентных ламп

Экономные люминесцентные лампы способны работать только с электронными балластами. Предназначены данные устройства для выпрямления тока. Информации про электронный балласт (схема, ремонт и подключение) имеется очень много. Однако в первую очередь важно изучить устройство прибора.

Модели диодного типа

Модели диодного типа на сегодняшний день считаются бюджетными. В данном случае трансформаторы используются лишь понижающего типа. Некоторые производители транзисторы устанавливают открытого типа. За счет этого процесс понижения частоты в цепи происходит не очень резко. Для стабилизации выходного напряжения применяются два конденсатора. Если рассматривать современные модели балластов, то там имеются динисторы операционного типа. Ранее их заменяли обычными преобразователями.

Двухконтактные модели

Данного типа схема электронного балласта для отличается от прочих моделей тем, что в ней используется регулятор. Таким образом, пользователь способен настраивать параметр выходного напряжения. Трансформаторы используются в устройствах самые различные. Если рассматривать распространенные модели, то там установлены понижающие аналоги. Однако однофазовые конфигурации не уступают им по параметрам.

Всего конденсаторов в цепи у моделей предусмотрено два. Также двухконтактные схемы электронных балластов включают в себя дроссель, который устанавливается за выходными каналами. Транзисторы для моделей подходят лишь емкостные. На рынке они представлены как постоянного, так и переменного типа. Предохранители в устройствах используются редко. Однако если в цепи установлен тиристор для выпрямления тока, то без него не обойтись.


Схема балласта «Эпра» 18 Вт

Данная схема электронного балласта для люминесцентной лампы включает в себя а также две пары конденсаторов. Транзистор для модели предусмотрен лишь один. Отрицательное сопротивление он максимум способен выдерживать на уровне 33 Ом. Для устройств данного типа это считается нормальным. Также схема электронного балласта 18 Вт включает в себя дроссель, который расположен над трансформатором. Динистор для преобразования тока применяется модульного типа. Понижение тактовой частоты происходит при помощи тетрода. Находится данный элемент возле дросселя.

Балласт «Эпра» 2х18 Вт

Указанный электронный балласт 2х18 (схема показана ниже) состоит из выходных триодов, а также понижающего трансформатора. Если говорить про транзистор, то он в данном случае предусмотрен открытого типа. Всего конденсаторов в цепи имеется два. Еще у схемы электронных балластов «Эпра» 18 Вт есть дроссель, который располагается под трансформатором.

Конденсаторы при этом стандартно устанавливаются возле каналов. Процесс преобразования осуществляется через понижение тактовой частоты устройства. Стабильность напряжения в данном случае обеспечивается благодаря качественному динистору. Всего каналов у модели имеется два.


Схема балласта «Эпра» 4х18 Вт

Этот электронный балласт 4х18 (схема показана ниже) включает в себя конденсаторы инвертирующего типа. Емкость их составляет ровно 5 пФ. В данном случае параметр отрицательного сопротивления в электронных балластах доходит до 40 Ом. Также важно упомянуть о том, что дроссель в представленной конфигурации расположен под динистором. Транзистор у этой модели имеется один. Трансформатор для выпрямления тока применяется понижающего типа. Перегрузки он способен от сети выдерживать большие. Однако предохранитель в цепи все-таки установлен.


Балласт Navigator

Электронный балласт Navigator (схема показана ниже) включает в себя однопереходный транзистор. Также отличие этой модели кроется в наличии специального регулятора. С его помощью пользователь сможет настраивать параметр выходного напряжения. Если говорить про трансформатор, то он в цепи предусмотрен понижающего типа. Расположен он возле дросселя и фиксируется на пластине. Резистор для этой модели подобран емкостного типа.

В данном случае конденсаторов имеется два. Первый из них расположен возле трансформатора. Предельная емкость его равняется 5 пФ. Второй конденсатор в цепи располагается под транзистором. Емкость его равняется целых 7 пФ, а отрицательное сопротивление максимум он может выдерживать на уровне 40 Ом. Предохранитель в данных электронных балластах не используется.


Схема электронного балласта на транзисторах EN13003A

Схема электронного балласта для люминесцентной лампы с транзисторами EN13003A является на сегодняшний день довольно сильно распространенной. Выпускаются модели, как правило, без регуляторов и относятся к классу бюджетных приборов. Однако прослужить устройства способны долго, и предохранители у них имеются. Если говорить про трансформаторы, то они подходят только понижающего типа.

Устанавливается транзистор в цепи возле дросселя. Система защиты у таких моделей в основном используется стандартная. Контакты приборов защищены динисторами. Также схема электронного балласта на 13003 включает в себя конденсаторы, которые часто устанавливаются с емкостью около 5 пФ.

Использование понижающих трансформаторов

Схема электронного балласта для люминесцентной лампы с понижающими трансформаторами часто включает в себя регуляторы напряжения. В данном случае транзисторы используются, как правило, открытого типа. Многими специалистами они ценятся за высокую проводимость тока. Однако для нормальной работы устройства очень важен качественный динистор.

Для понижающих трансформаторов часто используют операционные аналоги. В первую очередь они ценятся за свою компактность, а для электронных балластов это является существенным преимуществом. Дополнительно они отличаются пониженной чувствительностью, и небольшие сбои в сети для них нестрашны.

Применение векторных транзисторов

Векторные транзисторы в электронных балластах применяются очень редко. Однако в современных моделях они все-таки встречаются. Если говорить про характеристики компонентов, то важно отметить, что отрицательное сопротивление они способы держать на уровне 40 Ом. Однако с перегрузками они справляются довольно плохо. В данном случае большую роль играет параметр выходного напряжения.

Если говорить про транзисторы, то для указанных трансформаторов они подходят больше ортогонального типа. Стоят они на рынке довольно дорого, однако расход электроэнергии у моделей крайне низок. В данном случае модели с векторными трансформаторами по компактности значительно проигрывают конкурентам с понижающими конфигурациями.


Схема с интегральным котроллером

Электронный балласт для люминесцентных ламп с интегральным контроллером довольно прост. В данном случае трансформаторы применяются понижающего типа. Непосредственно конденсаторов в системе имеется два. Для понижения предельной частоты у модели имеется динистор. Транзистор используется в электронном балласте операционного типа. Отрицательное сопротивление он способен выдерживать не менее 40 Ом. Выходные триоды в моделях данного типа практически никогда не используются. Однако предохранители устанавливаются, и при сбоях в сети они помогают сильно.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.

Занятий, с достаточным световым потоком и в тоже время экономичного, подвигло, можно даже сказать, на некоторые искания и пробу вариантов. Сначала использовал обычную небольшую лампу прищепку, поменял её на маленький настольный люминесцентный светильник, затем был 18 ваттный люминесцентный светильник «потолочно — настенного» варианта китайского производства. Последнее понравилось более всего, но крепление непосредственно самой лампы в арматуре было несколько занижено, буквально на два — три сантиметра, однако «для полного счастья» их и не хватало. Выход нашёл в том, чтобы сделать тоже самое, но по своему. Так как работа имевшегося ЭПРА нареканий не вызывала логично было схему повторить.

Схема принципиальная

Это большая часть данного ЭПРА, дроссель и конденсатор у китайцев сюда не вошли.


Собственно добросовестно срисованная с печатной платы схема. Номинал электронных компонентов, позволяющих это сделать, определялся не только «по внешнему виду», но и при помощи замеров, с предварительным выпаиванием компонентов из платы. На схеме номинал резисторов указан в соответствии с цветовой маркировкой. Только в отношении дросселя позволил себе не разматывать имеющийся для определения количества витков, а замерил сопротивление намотанного провода (1,5 Ом при диаметре 0,4 мм) — сработало.


Первая сборка на монтажной плате. Номиналы компонентов подбирал скрупулёзно, невзирая на габариты и количество, и был вознаграждён — лампочка зажглась с первого раза. Ферритовое кольцо (10 х 6 х 4,5 мм) от энергосберегающей лампочки, его магнитная проницаемость неизвестна, диаметр провода катушек на него намотанных 0,3 мм (без изоляции). Первый пуск в обязательнейшем порядке через лампочку накаливания в 25 Вт. Если она горит а люминесцентная первоначально мигает и тухнет — увеличивайте (постепенно) номинал С4, когда всё заработало и ничего подозрительного обнаружено не было, и убрал лампу накаливания, то уменьшил его номинал до первоначального значения.


В какой-то мере ориентируясь на печатную плату первоисточника, нарисовал печатку под имеющийся подходящий корпус и электронные компоненты.


Протравил платку и собрал схему. Уже предвкушал момент, когда буду доволен собой и рад бытию. Но, схема, собранная на печатной плате отказалась работать. Пришлось вникать и заниматься подбором резисторов и конденсаторов. На момент установки ЭПРА по месту эксплуатации С4 имел ёмкость 3n5, С5 — 7n5, R4 сопротивление 6 Ом, R5 — 8 Ом, R7 — 13 Ом.


Светильник «вписался» не только в дизайн, лампа, поднятая до упора вверх, дала возможность комфортно пользоваться полочкой внутри ниши секретера. Уют в «помещении» наводил Babay.

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.


Люминесцентная лампа, С1 и С2 – конденсаторы


Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.



Ремонт ЭПРА


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.


Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.


Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:


Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:


Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Схема ЭПРА для ЛБ-40

на главную

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

Фото. Внешний вид светильника

Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1).

Рис 1. Электронный ПРА

Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

Рис 2. Принципиальная схема ЭПРА

Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

Работа электронного балласта

Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети ~220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

Детали электронного балласта

Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят:

  1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
  2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
  3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
  4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
  5. Симметричный динистор типа DВ3 (Uзс.max=32 B; Uос=5 В; Uнеотп.и.max=5 B) обеспечивает первоначальный запуск преобразователя.
  6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
  7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
  8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
  9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
  10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
  11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
  12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
  13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.

Ремонт

При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

Трещины в пайке монтажной платы

Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

Повреждение отдельных радиоэлементов

Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.


на главную
.

Схема люминесцентной лампы

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Применение

Электропроводная газовая среда внутри ламп дневного света обладает отрицательным сопротивлением, проявляющимся в том, что с увеличением тока напряжение между электродами снижается.

Схема работы люминесцентной лампы

Поэтому в схему подключается ограничитель тока LL1 – балластник, как видно из рисунка. Устройство также служит для создания кратковременного повышенного напряжения зажигания ламп, которого недостаточно в действующей сети. Еще его называют дросселем.

Пускорегулирующее устройство также содержит небольшую лампу тлеющего разряда E1 – стартер. Внутри нее расположены 2 электрода, один из которых подвижный, он выполнен из биметаллической пластины.

В исходном состоянии электроды разомкнуты. При подаче на схему напряжения сети замыканием контакта SA1 в начальный момент через лампу дневного света ток не проходит, а внутри стартера между электродами образуется тлеющий разряд. От него нагреваются электроды, и биметаллическая пластина изгибается, замыкая контакт внутри стартера. В результате ток через балласт LL1 увеличивается и нагревает электроды люминесцентной лампы.

После замыкания разряд внутри стартера E1 прекращается, и электроды начинают остывать. При этом происходит их размыкание, и в результате самоиндукции дроссель создает значительный импульс напряжения, зажигающий ЛЛ. При этом через нее начинает проходить ток, равный по величине номинальному, который затем уменьшается в 2 раза из-за падения напряжения на дросселе. Этого тока недостаточно, чтобы в стартере появился тлеющий разряд, поэтому его электроды остаются разомкнутыми, пока горит лампа дневного света. Конденсаторы С1 и С2 позволяют уменьшить реактивные нагрузки и увеличить кпд.

Балластники для люминесцентных ламп подключения и принципы работы

Люминесцентная лампа (ЛЛ) – это источник света из стеклянной герметичной колбы, внутри которой создается электрический электродный разряд, протекающий в газовой среде. На ее внутренней поверхности находится фосфорсодержащий слой (люминофор). Внутри лампы находится инертный газ и 1% паров ртути. При действии на них электрического разряда они излучают невидимый визуально ультрафиолетовый свет, который заставляет светиться люминофор.

Балластники для люминесцентных ламп

Если в помещении разобьется даже одна люминесцентная лампа, пары ртути превысят допустимые показатели в 10 раз. Ее вредное влияние сохраняется в течение 1-2 месяцев.

Причины неполадок люминесцентных светильников

Стоит коротко описать взаимодействие компонентов люминесцентного светильника – сама лампа не может работать без пускорегулирующего аппарата (балласта), который бывает электромагнитным (ЭмПРА ) в виде дросселя и стартера, и электронным (ЭПРА ), в котором физические условия запуска и свечения источника света обеспечиваются радиоэлектронными составляющими.

Электронный балласт для люминесцентных светильников Osram

Соответственно, причиной неработающего светильника могут быть неполадки, как в электронной схеме пускорегулирующего аппарата, так и старение, износ и перегорание самой лампы. Правильное определение причин позволит осуществить своими руками ремонт неработающей лампы дневного света.

Мигание лампы как признак неполадок

В отличие от обычных лампочек накаливания, которая перестает работать (перегорает) мгновенно и всегда неожиданно, скорый износ лампы дневного света можно определить по тому, как она моргает (мигает) во время запуска. Данный процесс свидетельствует об изменениях в химическом составе светящегося газа (вырождение паров ртути) а также о выгорании электродов.

Мигает, как правило, лампа дневного света, у которой с торцов наблюдается почернение – данный нагар свидетельствует о выгорании спирали и об необратимых химических процессах, происходящих внутри колбы – ремонту такой источник света не подлежит, но можно продлить срок его службы.

Очень часто люминесцентный светильник моргает из-за неполадок в ЭмПРА или ЭПРА. Замена лампы на новую позволит точно определить причину мигания

Но не стоит выбрасывать старую лампу. Во первых, ее нужно утилизировать, согласно государственным законам, так как внутри колбы имеются вредные пары ртути.

Во вторых, даже если перегорели нити накаливания, можно продлить строк эксплуатации данного источника света, при помощи несложной схемы, которую можно спаять своими руками, или подключив лампу к ЭПРА с холодным запуском, замкнув контактные выводы, как показано на видео:

Иногда даже исправный люминесцентный светильник моргает при запуске из-за череды неблагоприятных стартовых обстоятельств – разрыв цепи стартера происходит в момент прохождения синусоидой нуля, из-за чего индукционный всплеск напряжения оказывается недостаточным для ионизации газа внутри колбы.

По аналогичной причине люминесцентная лампа мигает на старте из-за низкого напряжения сети. Во время работы, если скачки напряжения не превышают допустимых пределов, исправный светильник дневного света мигать не должен – пускорегулирующий аппарат поддерживает ток в газе на одном уровне.

Почернение у торцов лампы свидетельствует о потере эмиссии, что влечет мигание при запуске, нестабильную работу и ослабление свечения

Принцип работы люминесцентной лампы и область ее применения

Рабочая способность лампы дневного освещения заключается в свечении люминофоров, которые реагируют на воздействие ультрафиолетовых лучей. Светоотдача этого прибора в 5 раз превышает свойство у ламп накаливания.

Принцип работы люминесцентной лампы и область ее применения

Срок действия может быть достаточно длительным, но на это влияет ряд важных факторов, таких как, соблюдение электрического балласта, исключения скачков напряжения и коротких замыканий.

Лампа дневного освещения сегодня пользуется большим спросом и применяется в домашних условиях. Этот прибор достаточно экономичен в стоимости и в дальнейшей эксплуатации. Не исключено применение люминесцентных ламп в производстве. В этой отрасли они очень практичны и позволяют хорошо освещать помещение в любое время суток. Немного рассмотрев, как работает люминесцентная лампа, перейдем к вопросу утилизации данного приспособления.

Внимание! Хранение в домашних условиях люминесцентной лампы опасно для вашего здоровья!

Изготовить своими руками

Трубчатые ЛЛ длиной 1200 мм недорого стоят и могут освещать большие площади. Светильник можно изготовить своими руками, например, из 2 ламп по 36 Вт.

  1. Корпус – основание прямоугольной формы из негорючего материала. Можно использовать бывший в употреблении светильник, для которого ремонт уже не требуется.
  2. ЭПРА подбирается под мощность светильников.
  3. На каждую из ламп понадобится по 2 патрона G13, многожильный провод и крепеж.
  4. Патроны для ламп крепятся на корпусе после выбора расстояния между ними.
  5. ЭПРА устанавливается в зоне минимального нагрева от ламп (обычно ближе к центру) и подключается к патронам. Каждый блок выпускается со схемой подключений на корпусе.
  6. Светильник крепится на стене или потолке с подключением к сети питания на 220 В через выключатель.
  7. Для защиты ламп желательно применять прозрачный колпак.

Правила поиска неисправности лампы

Каждое дело по работе с электрическими приборами должно начинаться правилами, поэтому рассмотрим, как следует выявить неисправность люминесцентного прибора, при этом не повредив его оболочку и рабочие детали.

  1. Снимаем рассеиватель света. Для этого аккуратно отгибаем все крепежи. Если корпус прикреплен болтами, значит пользуемся фигурной отверткой.
  2. Снимаем из гнезд саму лампу дневного света, рассматриваем внимательно ее внешний вид. Встречаются случаи, когда на белом фоне видны темные пятна. Они говорят о том, что этот прибор навряд ли уже будет годен к применению.

Внимание! Не выбрасывайте дневную лампу, если на ней по краям есть почернение—проверьте ее дополнительно

  1. Теперь проводим механическую диагностику. Берем мультиметр и проверяем работоспособность нитей накала. Значения прибора, указывающие на сопротивление, подскажут, что нити, еще способны работать. Показания электроники равные единице—это знак неисправности одной из нитей.
  2. В случае, когда проверка показала рабочие результаты, но освещение так и не появилось, прибегают к ремонту электронного балласта. Возможно, из-за окислившихся контактов, лампа не способна пропускать электроды.
  3. Далее очищаются контакты, если есть необходимость. В ситуациях, когда прибор не заработал, он заменяется на новый.

Как проверить люминесцентную лампу

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Ремонт ЭПРА

В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

Инструкция по ремонту

Сейчас мы рассмотрим основные неисправности, которые можно устранить без особых вложений. Начнем с электронного балласта, ведь в его схеме достаточно много элементов, которые могут выйти из строя и к тому же трубчатые люминесцентные лампы с ЭПРА на сегодняшний день встречаются более часто.

Самая распространенная неисправность — это пробой транзисторов. Определить данную поломку можно только, выпаяв из схемы транзисторы и проверив их тестером. В целом транзисторе сопротивление перехода

400-700 Ом. Сгорая, транзистор за собой тянет резистор в цепи базы номиналом 30 Ом.

Также на плате присутствует предохранитель или низкоомный резистор 2-5 Ом, скорее всего его придется заменить, на чем ремонт и закончится. Возможно дополнительно придется поменять диодный мост или его элементы.

Редко встречается пробой пленочных конденсаторов 47n(пол микрофарада) или конденсатора резонанса в цепи накала. Бывали случаи, когда все из выше перечисленного целое и исправно, а светильник не работает, причина кроется в динисторе DB3. Если вы проверили все элементы цепи, то попробуйте заменить динистор.

Возможно решите, что дешевле будет приобрести новый ЭПРА, чем отремонтировать сломанный. Замена пусковой аппаратуры не должна вызывать сложности, ведь схема подключения нанесена на само устройство. При внимательном изучении проста для понимания, L и N это клеммы для подключения к сети 220В.

Также рекомендуем просмотреть видео, на котором наглядно показывается, как самому отремонтировать электронный балласт люминесцентной лампы:

Инструкция по ремонту ЭПРА

Обращаем ваше внимание на то, что по такой технологии можно починить и энергосберегающую лампочку КЛЛ. К примеру, если перегорел один накал, ремонт представляет собой следующий порядок действий:

Стартер + дроссель

Если у вас не зажигается лампа старого образца и вы уверены, что причина кроется именно в ней, первым делом рекомендуем проверить стартер. Проще всего выполнить проверку, имея под рукой рабочий стартер с такими же характеристиками. Однако если для замены нет подходящего устройства, тогда можно осуществить проверку работоспособности, используя лампочку накаливания с патроном. Все достаточно просто — подключаем один провод от патрона напрямую в розетку, а второй через стартер, как показано на фото ниже:

Если лампочка светится не будет, значит причина в нем. Инструкция по замене стартера люминесцентной лампы наглядно предоставлена на видео:

Как заменить стартер?

Дроссель можно проверить мультиметром, прозвонив его обмотку. Если действительно вышел из строя дроссель, то ремонт люминесцентной лампы сводится к тому, что нужно просто поменять дроссель на целый.

Вот перечислены основные неисправности, с которыми лично сталкивались и успешно устраняли. Следуя нашему алгоритму поиск неисправности займет немного времени и вернуть светильник в работу самостоятельно будет пара пустяков. Надеемся, наша инструкция по ремонту люминесцентной лампы своими руками была для вас понятной и полезной! Обязательно просмотрите видео уроки, т.к. в них подробно рассмотрены все этапы, позволяющие починить неработающую лампочку.

Будет интересно прочитать:

Инструкция по ремонту ЭПРА

Возможные неисправности люминесцентных ламп

Люминесцентные лампы относятся к газоразрядным лампам низкого давления. Они могут быть различной формы: прямые трубчатые, фигурные и компактные (КЛЛ). Люминесцентные светильники по конструкции намного сложнее, чем светильники с лампами накаливания. и у них бывает гораздо больше неисправностей. В нижеприведенной таблице приведены типовые неисправности и способы их устранения.

Схема включения люминесцентной лампы.

Трубчатые лампы имеют двухштырьковые типы цоколей, отличающиеся расстоянием между штырьками: G-13 (расстояние — 13 мм) для ламп диаметром 40 мм и 26 мм и G-5 (расстояние — 5 мм) для ламп диаметром 16 мм.

Особенность устройства компактных люминесцентных ламп в том, что трубка делается специальной формы для уменьшения длины лампы. Многие компактные люминесцентные лампы небольшой мощности (до 20 Вт) предназначены для замены ламп накаливания и сконструированы так, что могут ввертываться в резьбовой патрон непосредственно или через адаптер. Компактные люминесцентные лампы могут быть разных форм, могут быть с электронным пускорегулирующим аппаратом (ЭПРА) и разной длины.

Люминесцентные лампы требуют для работы специального устройства — пускорегулирующего аппарата (дросселя). Большинство зарубежных ламп могут работать как с обычными (с дросселем), так и с электронными пускорегулирующими аппаратами (ЭПРА). Но некоторые из них предназначены только для одного вида ПРА.

Таблица 1. Типовые неисправности светильников с люминесцентными лампами.

Светильники с ЭПРА имеют следующие преимущества: лампа не мерцает, лучше зажигается, не шумит (шум от дросселя), легче по весу, экономит электроэнергию (потери мощности в ЭПРА намного ниже, чем в ПРА).

Достоинства: по сравнению с лампами накаливания, они экономичнее и долговечнее, обладают хорошей светопередачей. Срок службы до 10000 часов у импортных ламп и до 5000-8000 часов у отечественных. Удобно использовать там, где свет горит много часов.

Недостатки: при температуре ниже 5 градусов тяжело зажигаются и могут гореть более тускло.

Меняя виды люминофора, можно изменять цветовые характеристики ламп. Буквы, входящие в наименование типов таких ламп, означают: Л — люминесцентная, Б — белой цветности, ТБ — тепло-белая, Д — дневной цветности, Ц — с улучшенной цветопередачей. Цифры 18, 20, 36, 40, 65, 80 обозначают номинальную мощность в ваттах. Например, ЛДЦ-18 — лампа люминесцентная, дневная, с улучшенной цветопередачей, мощностью 18 Вт.

Таблица 2. Типовые неисправности светильников с люминесцентными лампами.

Светильник с люминесцентными лампами работает следующим образом. Трубчатая лампа заполнена аргоном и парами ртути. Стартер необходим для пуска лампы, нужно на короткое время прогреть электроды. Ток, текущий через дроссель и стартер, значительно увеличивается, нагревает биметаллическую пластину стартера. Электроды лампы прогреваются, контакт стартера размыкается, ток в цепи уменьшается, на дросселе образуется кратковременное большое напряжение. Его накопленной энергии хватает на то, чтобы пробить газ в колбе лампы. Далее ток идет через дроссель и лампу, при этом 110 Вольт падает на дросселе, а 110 Вольт на лампе. Пары ртути с помощью люминофора создают свечение, воспринимаемое глазом человека.

Дроссель почти не потребляет энергию. Энергию, которую он берет при намагничивании, он почти полностью возвращает при размагничивании, при этом бесполезно загружаются провода. Чтобы разгрузить сеть, используется конденсатор С. Обмен энергией происходит не между сетью и дросселем, а между дросселем и конденсатором. Наличие конденсатора повышает КПД лампы, без него КПД лампы 50-60%, с конденсатором С — 95%. Конденсатор, который подключен параллельно стартеру, используется для защиты от радиопомех.

Неисправность люминесцентного светильника может заключаться в нарушении электрического контакта в схеме светильника или в выходе из строя одного из элементов светильника. Надежность контактов проверяется визуальным осмотром и проверкой тестером.

Работоспособность лампы или пускорегулирующей аппаратуры проверяется путем последовательной замены всех элементов на заведомо исправные.

Светильник с двумя люминесцентными лампами

Для начала рассмотрим схемы таких светильников с люминесцентными лампами:

Схема рис.1 содержит:

  • две люминесцентные лампы;
  • два стартера;
  • один дроссель;
  • конденсатор.

Люминесцентная лампа имеет две спирали накаливания. Лампы, стартера и дроссель в электрическую цепь включены последовательно. Конденсатор подключен параллельно.

Схема рис.2 содержит:

  • конденсатор;
  • два стартера;
  • две люминесцентных лампы;
  • два дросселя.

Подключение люминесцентных ламп рис.2 ни чем не отличаются от схемы подключения ламп рис.1. Два провода фаза, ноль имеют в этой схеме ответвление.

И наиболее простая схема светильника с одной лампой показана на рис.3, где конденсатор, лампа и стартер в схеме, — подключены параллельно. Дроссель подключен в электрической цепи — последовательно.

Подобные светильники встречаются и с тремя лампами. Сама суть дела не в этом,- не в количестве ламп.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Ремонт электронного балласта Основы поиска и устранения неисправностей

Люминесцентные лампы, среди более экономичных вариантов освещения, иногда требуют ремонта балласта . , когда свет не загорается или начинает мерцать. Устранение неисправностей одного из этих балластов обычно несложно, занимает мало времени и с этим под силу даже наименее опытному домовладельцу. Используйте приведенную ниже информацию для устранения неисправности балласта, который может выйти из строя в одном из ваших люминесцентных ламп.

Отключение питания

Никогда не работайте с электрическим устройством, предварительно не отключив от него питание. Сюда входят светильники. Но отключение питания от балласта требует большего, чем простое нажатие переключателя. Даже когда питание балласта отключается, балласт на мгновение сохраняет некоторую мощность до тех пор, пока вся мощность из электрической цепи не рассеется. Это рассеяние обычно занимает не более 10-15 секунд. Тем не менее, вам нужно будет отключить питание на вашем автоматическом выключателе и проверить светильник с помощью мультиметра, чтобы убедиться, что в балласте нет тока.

Удаление люминесцентных ламп

Флуоресцентные лампы (надгробия) довольно хрупкие, и при обращении с ними важно избегать их поломки. Удаляя их, вы сэкономите время и сэкономите нервы, если разместите их там, где они с меньшей вероятностью сломаются и где их будет легче найти, когда придет время вернуть их в приспособление.

Уплотнение балласта

При снятии покрытия с приспособления можно заметить утечку масла из балласта.Это будет признаком того, что вам нужно будет заменить балласт, потому что тепло привело к разрыву внутреннего уплотнения.

Тестирование на целостность

При тестировании балласта, который перестал работать, вам необходимо проверить его проводку на предмет обрывов или прерываний в проводке. Чтобы выполнить эту проверку, вам нужно кое-что знать о проводке. Обычно к каждому прибору подключаются один или два провода, один (обычно синий или желтый) — это линия питания. Другой провод, обычно белый, нейтральный.Если вы проверите провода на непрерывность между линией питания и нейтральной линией, и если она есть, это покажет вам, что в этой цепи нет разрыва или разрыва.

Проверка на сопротивление

При проверке сопротивления в схеме, когда мультиметр находится в режиме «Ом» и каждый из его щупов касается либо нейтрального (белого) провода, либо провода питания (цветного), проверьте свой измеритель на наличие любые короткие замыкания в этих проводах. Эта проверка должна выполняться на каждой паре проводов.

Проверка трансформатора

Провода трансформатора от силовых линий балласта при касании черных и белых проводов отдельными щупами на вашем счетчике и наблюдении за показаниями счетчика должны сказать вам, исправны ли эти цепи или балласт следует заменить.

Возможное ослабление или отсоединение проводки

Если при выполнении описанных выше проверок вы обнаружите, что все цепи исправны, последняя проверка, которую вам нужно будет сделать, будет касаться надгробий и их проводки.Иногда провода к ним могут ослабнуть и потерять связь. Быстрая проверка этих подключений выявит любые проблемы с этими подключениями.

Ремонт освещения: Как заменить световой балласт

Вы замечали, что один из ваших люминесцентных светильников мигает почти каждый раз при включении? Или вы слышали, как он издает жужжащий звук? Если ваши фонари мерцают и издают раздражающие жужжащие звуки всякий раз, когда они включены, необходимо выполнить ремонт освещения.

Хотя балласты осветительных приборов обычно не подлежат ремонту, когда они выходят из строя, положительным моментом является дешевая стоимость нового заменяющего балласта. Стоимость легких балластов составляет примерно от 20 до 30 долларов, и их можно купить практически в любом магазине по ремонту дома. Реальная стоимость замены светового балласта связана с работой, необходимой для того, чтобы новый балласт начал работать с вашим осветительным прибором.

Шаги по замене светового балласта

Перед тем, как начать, отключите осветительный прибор или отключите автоматический выключатель.Убедитесь, что к световому балласту не поступает электричество, когда вы пытаетесь его установить. После того, как электричество полностью отключено, возьмите новый пускорегулирующий аппарат, отвертку, гаечный ключ, кусачки или приспособления для снятия изоляции и соединители для проводов.

Разберите светильник

Снимите крышку приспособления и открутите лампочку. Будьте осторожны при обращении с люминесцентными лампами, поскольку они содержат некоторое количество ртути, которая может быть вредной для детей и домашних животных. Откройте балластный отсек, чтобы увидеть балласт и внутреннюю проводку.Балластные отсеки могут быть прикреплены зажимами или проволочными гайками, которые вам нужно будет отсоединить.

Обрежьте проводку люминесцентного балласта

При открытом балластном отсеке к балласту подключено от четырех до восьми проводов. Используйте ножницы для проволоки или кусачки для резки всей проводки балласта на расстоянии нескольких дюймов от конца балласта.

Снимите балласт

Выньте неисправный балласт люминесцентного лампы, отвернув вокруг него крепежные гайки. Держите старый балласт рукой, чтобы он не выпал при откручивании гаек.

Заменить балласт

Убедитесь, что ваш новый балласт соответствует старому, и установите новый балласт. Зачистите провода примерно на полдюйма. Для подключения проводов балласта используйте соединители с витой проволокой. Установите на место крышку отсека балласта и соберите светильник.

Проверьте световой балласт, щелкнув выключателем и включив светильник. Если он работает без мерцания или жужжания, все готово! Ваш новый люминесцентный светильник должен прослужить еще десять лет.

Если у вас есть дополнительные вопросы относительно вашего осветительного прибора или самого балласта, не стесняйтесь звонить мистеру Спарки из Bay Area! Наши специалисты могут предоставить вам дальнейшие инструкции или подробности по установке.

Записаться на прием!

Свяжитесь с мистером Спарки сегодня

Иногда электрические проекты лучше доверить профессионалам. Если замена балласта не прошла по плану или вам неудобно выполнять электрические задачи, свяжитесь с мистером Спарки из Bay Area сегодня.Наши лицензированные и обученные электрики имеют многолетний опыт установки и замены пускорегулирующих аппаратов.

Чтобы получить профессиональное электрическое обслуживание от лидера отрасли, на которого вы можете рассчитывать, позвоните мистеру Спарки из района Залива сегодня!

Ремонт люминесцентных ламп | Как отремонтировать электрооборудование

В этом руководстве Fix-It рассказывается, как работает эффективное флуоресцентное освещение, что часто идет не так, как определить проблему с флуоресцентным освещением, а также какие детали и инструменты потребуются для ее устранения.Затем в нем приводятся пошаговые инструкции по замене стартера люминесцентного освещения, замене балласта и замене розетки. Системы люминесцентного освещения просты в эксплуатации, поэтому их легко ремонтировать.

Как работает флуоресцентное освещение?

С люминесцентным освещением обычно легко работать, за исключением небольших устройств, которые могут не допускать доступа к внутренним частям. Если лампочка в порядке, но прибор по-прежнему не работает, проверьте электрический шнур и при необходимости замените блок.

Люминесцентный осветительный прибор преобразует электричество в свет, заставляя светиться газ внутри трубки с люминофорным покрытием. Люминесцентный светильник подключается к электросети дома или подключается к ближайшей розетке. Электрическое напряжение подается на люминесцентную лампу с помощью компонента, называемого балластом. Когда прибор включен, требуется больше электроэнергии, чем при нормальной работе, поэтому стартер сообщает балласту о необходимости повышения напряжения. После запуска стартер выключается, а балласт поддерживает напряжение на более низком рабочем уровне.

Что может пойти не так с люминесцентным освещением?

Источником проблем может быть любой из основных компонентов люминесцентного светильника. Возможно, вам потребуется узнать о замене люминесцентной лампы, замене стартера, замене балласта или замене патрона. Проблемы с системами люминесцентного освещения относительно легко диагностировать и решать.

Осторожно!

Будьте особенно осторожны при обращении с лампами дневного света. Они довольно хрупкие и содержат фосфор и инертные газы.Не роняйте их и не позволяйте им удариться о твердую поверхность!

Как определить проблему с флуоресцентным освещением?

  • Если лампа вообще не горит, убедитесь, что питание включено, затем попробуйте заменить люминесцентную лампу. Вы также можете проверить электрический шнур.
  • Если свет по-прежнему не работает, попробуйте заменить стартер люминесцентного освещения (см. Ниже), затем балласт (см. Ниже).
  • Если лампа тускло светится, причина в неисправной лампе или стартере.
  • Если концы люминесцентной лампы светятся, а середина тусклая или темная, возможно, неисправен стартер или лампа.
  • Если индикатор мигает, возможно, перегорела трубка или неисправен стартер или балласт.
  • Если флуоресцентная лампа постоянно мигает и гаснет, возможно, неисправна лампа или стартер.
  • Если патрубок не удерживает трубку плотно, сначала убедитесь, что штифты прямые. Если контакты не прямые, возможно, потребуется замена гнезда.

Наконечник Fix-It

Поскольку стартер подает высокое напряжение на люминесцентные лампы при запуске, лампы изнашиваются быстрее, если они включаются и выключаются слишком часто.

Что мне нужно для ремонта люминесцентного освещения?

Большинство запасных частей для люминесцентных осветительных приборов можно приобрести в крупных магазинах бытовой техники и осветительных приборов. Инструменты, которые вам понадобятся для ремонта, включают следующие:

  • Отвертки
  • Ключи
  • Мультиметр

Какие шаги для ремонта люминесцентного освещения?

Заменить стартер люминесцентного освещения:

  1. Выключите питание прибора.
  2. Поднимите диффузор приспособления или крышку (если установлена) и трубки, чтобы получить доступ к стартеру, круглому съемному компоненту, прикрепленному рядом с большим балластом.
  3. Выверните старый стартер и замените его другим с таким же номером детали и номинальными характеристиками. Специалист по аппаратному обеспечению может помочь вам выбрать подходящую замену.

Заменить балласт люминесцентного освещения:

  1. Выключите питание прибора.
  2. Снимите диффузор, трубки и крышку.
  3. Обозначьте балласт, большой тяжелый компонент, часто расположенный в центре приспособления. Отсоедините провода от балласта и отсоедините балласт от приспособления. Тестируйте мультиметром.
  4. Замените балласт на балласт того же номинала, что и у старого блока. Установите новый балласт и снова подсоедините провода так же, как они были отсоединены.
  5. Замените крышку, трубки и диффузор.
  6. Подключите или включите цепь, чтобы убедиться, что прибор работает.

Заменить розетку люминесцентного освещения:

  1. Выключите питание прибора.
  2. Снимите диффузор, трубки и крышку.
  3. Отсоединить провода от розетки.
  4. Отсоедините и снимите розетку.
  5. Заменить розетку на дубликат.
  6. Замените крышку, трубки и диффузор.
  7. Подключите свет или включите цепь, чтобы убедиться, что прибор работает.

Наконечник Fix-It

ПРА — самый дорогой компонент люминесцентного светильника.Если требуется замена, узнайте цену нового приспособления; это может быть дешевле. Поскольку балласт представляет собой проволочный трансформатор, вы можете утилизировать его как металл.

Ремонт люминесцентных ламп для магазинов: 9 шагов (с изображениями)

Введение: Ремонт люминесцентных ламп в мастерских

Флуоресцентные лампы из таких мест, как Home Depot, выглядят хорошо и кажутся реальной сделкой, но балласты внутри не служат долго. На фонари распространяется гарантия, но снимать фонарь и возвращать его примерно раз в год не стоит проблем.
У меня в гараже и подвале есть несколько светильников от Home Depot, которые я установил около 3 лет назад. Хотя мне никогда не приходилось заменять в них лампы, но все балласты за это время вышли из строя.
Из этого руководства вы узнаете, как отремонтировать и модернизировать дешевые люминесцентные лампы, чтобы они были лучше новых и прослужили долго.

Добавить TipAsk QuestionDownload

Принадлежности

Добавить TipAsk QuestionDownload

Шаг 1: Необходимые материалы

Вам понадобятся материалы:
Новый балласт.Я выбрал Advance REL -2P32-SC, потому что нашел его дешевым на ebay. Я использую две 32-ваттные лампы T8 на каждое приспособление. Этот конкретный балласт снят с производства, но Advance продает балласты более нового типа, такие как ICN-2P32-N, которые устанавливаются таким же образом.
, главное, на что нужно обращать внимание, — это напряжение (вероятно, 120 вольт, если это у вас дома), количество ламп, которые будет зажигать балласт (возможно, 2), тип ламп, которые вы будете использовать (вероятно, T8. Я предпочитаю использовать T8. потому что они более эффективны, чем T12, и T8 запускаются в холодную погоду) и мощность ламп, которые вы будете использовать (вероятно, 32 Вт).
Маленькие гайки для проволоки.
винт для листового металла с заостренным концом
Отвертка
Отвертка для гаек 1/4 дюйма
Инструмент для зачистки проводов

Добавить TipAsk QuestionDownload

Шаг 2: Это обычная проблема

Эти балласты все время перегорают. Я устал от постоянной замены светильники, поэтому я решил заменить балласты на более качественные. Я заменил этих балластов больше, чем могу вспомнить, но я не заменял ни одну из люминесцентных ламп с тех пор, как перешел на T8.
T8 лампы более эффективны и иметь долгую жизнь.

Добавить TipAsk QuestionDownload

Шаг 3: Разберите осветительный прибор

Прежде всего отключите свет от сети. Затем снимите люминесцентные лампы и плафон, открывающий балласт и провода.

Добавить TipAsk QuestionDownload

Шаг 4: Отрежьте старый балласт

Обрежьте все провода рядом с балластом. Синий диск, который вы видите на этом рисунке, — это MOV, который я установил, чтобы попытаться защитить старый балласт. Не помогло, все равно сдох этот балласт.Я сниму его по мере установки нового балласта

Добавить TipAsk QuestionDownload

Шаг 5: Установите новый балласт

Удалите мертвый балласт и установите новый. Новый балласт не подходил к оригинальному монтажному отверстию, поэтому я использовал винт из листового металла с острым концом. Мне не нужно было сверлить отверстие, я просто сильно надавил, когда повернул винт, и он проработал сам

Добавить TipAsk QuestionDownload

Шаг 6: Подключите провода

На одном конце света может быть провод, соединяющий две розетки вместе.Этот провод обычно желтый. Все провода на этом конце нужно будет соединить вместе. Этому балласту мгновенного запуска не нужно нагревать нити в трубках, поэтому ко всем этим проводам нужно будет подключить только один провод балласта (красный на этом балласте).

Добавить TipAsk QuestionDownload

Шаг 7: Подключите Провода для розеток

На другом конце прибора одна розетка соединена синими проводами, а другая розетка — красными проводами. Оба красных провода гнезда должны быть подключены к одному из синих проводов балласта, а оба синих провода гнезда должны быть подключены к оставшемуся синему проводу балласта

Добавить TipAsk QuestionDownload

Шаг 8: Завершите подключение

Завершите подключение, соединяя черные провода вместе и белые провода вместе.В заменяющем балласте не используется заземляющий провод, но заземляющий провод уже должен быть прикреплен к корпусу прибора на заводе. Подверните все провода так, чтобы они находились внутри корпуса приспособления, чтобы они не защемились при повторной установке шторы.

Добавить СоветЗадать вопросЗагрузить

Шаг 9: Установить штора

Переустановить штору, подключить свет и попробовать вне.
В результате теперь у вас есть очень эффективный светильник, который будет работать в холодную погоду, лампы прослужат долго, а светильник будет надежным.

Добавить Подсказка Задать вопросЗагрузить

Будьте первым, кто поделится

Вы сделали этот проект? Поделитесь с нами!

Я сделал это! Рекомендации

Ремонт балласта или замена балласта на Premium Electric

Если ваш осветительный прибор не работает должным образом, как вы можете определить, нужно ли вам делать ремонт балласта или замену балласта?

Без балластов для осветительных приборов наш мир был бы намного темнее. Балласты используются в уличных фонарях, прожекторах и других внутренних и наружных осветительных приборах для домов и предприятий.

Отремонтировать или заменить? Как лучше?

Во время запуска, например, когда вы включаете люминесцентный свет, балласт подает кратковременное высокое напряжение, чтобы вызвать дугу между электродами лампы. После возникновения дуги балласт немедленно снижает напряжение, чтобы предотвратить повреждение лампы. Если ремонт балласта не завершен должным образом, замененные детали внутри балласта могут создать еще больше проблем. Выбор между ремонтом балласта и заменой балласта действительно будет зависеть от нескольких вещей, в том числе от вашего уровня навыков и ваших знаний в области электрики.Дополнительную информацию см. На странице BC Hydro «Что такого особенного в балластах ».

С заменой балласта вам не придется беспокоиться о подобных проблемах.

Почему замена балласта безопаснее ремонта

Методы, используемые для снижения напряжения внутри балласта, будут зависеть от горящей лампы и компонентов освещения внутри. Различные типы осветительных приборов, которые включают балласты, — это светодиоды, люминесцентные лампы, галогены и HID / металлогалогениды.

В этих источниках освещения используются резисторы, катушки индуктивности и конденсаторы, иногда в комбинации, чтобы обеспечить необходимое напряжение с постоянной скоростью для лампы.

Замена неправильных элементов в неправильном порядке или неправильная проводка нового пускорегулирующего устройства без достаточных электрических знаний может создать крайне опасную среду, в которой лампа будет работать со сбоями. Поэтому, когда дело доходит до ремонта балласта по сравнению с заменой балласта, замена у сертифицированного электрика является более разумной и безопасной альтернативой.При необходимости ваш электрик также может помочь вам с модернизацией освещения .

Как работает балласт для осветительной арматуры

ПРА для осветительной арматуры содержит постоянные резисторы. Постоянные резисторы, часто используемые в маломощных устройствах, таких как неоновые или светодиодные лампы, сдерживают значительную мощность, поскольку она не требуется для зажигания лампы.

В других типах балластов используются саморегулирующиеся резисторы. По мере увеличения сопротивления лампы эти резисторы предотвращают получение лампы слишком большим током.

Если вы выбираете ремонт балласта или замену балласта, при ремонте балласта вы должны быть уверены, что понимаете, какие компоненты балласта необходимо заменить. Если у вас нет электрического обучения, необходимого для замены балластных компонентов, вы можете поставить под угрозу безопасность вашего дома, семьи, имущества и / или вашего бизнеса.

Если вы хотите выполнить электромонтажные работы самостоятельно, вам необходимо знать, как должен быть подключен балласт, особенно когда цветовая кодировка на старом балласте не соответствует новому балласту.Мы рекомендуем вам всегда нанимать квалифицированного электрика для ремонта или замены балласта.

Обратитесь к нашим электрикам, если у вас все еще есть вопросы по поводу Когда производить замену балласта дневного света .

О Premium Electric

Обладая более чем 30-летним опытом, сертифицированные электрики Premium Electric обладают высокой квалификацией при замене балласта в коммерческих и жилых помещениях.Они также проводят электромонтаж в новых домах по всей долине Фрейзер, в том числе в Абботсфорде, Миссии, Чилливаке, Олдергроуве и Сардисе.

Чтобы узнать больше о ремонте балласта и замене балласта, позвоните нашим сертифицированным электрикам по телефону 604-308-6195 или отправьте нам электронное письмо .

Как исправить люминесцентный свет

Внутри люминесцентного светильника электричество подается на балласт, который посылает искру через заполненную парами ртути трубку (или колбу), создавая свет путем активации люминофоров, покрывающих внутреннюю часть трубки. .Если какой-либо из компонентов неисправен, свет не будет работать правильно. Как только вы определите проблему, большинство ее исправлений будет очень просто. Не забудьте сначала выключить питание!

Старая трубка мигает и загорается перед самой смертью; ремонт часто сводится к его замене. Эта проблема также может возникать из-за плохого контакта между штырями на концах трубки и держателями трубки. Если штифты погнуты, воспользуйтесь плоскогубцами, чтобы выпрямить их. Очистите штифты и контакты гнезда мелкой наждачной бумагой.

Хотя серые полосы на концах трубок являются нормальным явлением, черные полосы указывают на то, что трубку необходимо заменить. Если темный только один конец, поверните лампочку встык. Если лампа новая и эти исправления не помогли, возможно, вам придется заменить стартер или балласт. Флуоресцентный свет не работает правильно, когда лампа начинает выходить из строя. Когда свет рядом с этой аптечкой перестал работать, все, что потребовалось, — это заменить лампочку. © Дон Вандерворт, HomeTips

Некоторые светильники (категории «А») тише других, но большинство люминесцентных ламп издают легкий гул.Если звук кажется слишком громким или чувствуется запах электрического горения, выключите питание. Балласт, вероятно, неправильного типа, неправильно установлен или неисправен. Заменить или вызвать электрика.

Новые лампы имеют свойство мерцать, как и холодные лампы. Если старая трубка все еще мигает после того, как она успела прогреться (или после того, как вы прогрели комнату), поверните ее пару раз в держателях для трубок. Попробуйте очистить концевые штифты трубки. Если он по-прежнему не работает, замените его.

Если светятся только концы трубки, неисправен стартер или балласт. Заменить стартер, затем балласт.

Замена люминесцентного балласта

Вы можете заменить балласт или держатель трубки, если вы хорошо знакомы с проводкой.

1 Отключить питание цепи.

2 Снимите трубку и крышку, закрывающую работу.

3 Отсоедините или перережьте провода к держателю трубки или балласту и снимите.

4 Зачистите 1/2 дюйма изоляции с концов проводов.

5 Установите компонент и соедините провода проволочными гайками.

6 Установите на место крышку и трубку.

7 Снова включите цепь.

8 Включите переключатель.

Замена стартера люминесцентной лампы

Хотя новые люминесцентные светильники имеют встроенные стартеры или вообще не имеют стартеров, у большинства старых ламп есть легко заменяемый видимый стартер.Это небольшой серебристый цилиндр, который вставляется в один из держателей для трубок.

1 Выключите выключатель.

2 Снимите трубку.

3 Поверните стартер на четверть оборота по часовой стрелке и вытащите его.

4 Вставьте новый стартер, повернув его на четверть оборота против часовой стрелки.

5 Установите трубку на место.

6 Включите переключатель.

Рекомендуемый ресурс: Получите предварительно протестированную версию Local Electrical Wiring Pro

О Доне Вандерворте

Дон Вандерворт накопил свой опыт более 30 лет, работая редактором по строительству Sunset Books, старшим редактором домашнего журнала, автором более 30 книг по обустройству дома и автор бесчисленных журнальных статей.Он появлялся в течение 3 сезонов на телеканале HGTV «Исправление» и несколько лет был домашним экспертом MSN. Дон основал HomeTips в 1996 году. Узнайте больше о Доне Вандерворте по замене балласта

в Тампе и Санкт-Пете (Флорида) | Ремонт люминесцентных ламп

Если вы владеете или управляете бизнесом, вы знаете, насколько правильное освещение важно для повседневной работы вашей компании. Популярным выбором освещения в коммерческих помещениях Тампы и Санкт-Петербурга является флуоресцентное освещение, которое требует правильной установки балласта для правильной работы и обеспечения эффективного освещения.

Если вы обнаружите, что ваши люминесцентные лампы периодически мигают, позвоните в Hoffman Electrical & A / C по телефону 866-238-3243866-238-3243 сегодня же! Наши лицензированные электрики обладают навыками и подготовкой, чтобы правильно снимать и заменять балласт в ваших люминесцентных лампах.

Признаки необходимости замены балласта

Поскольку люминесцентные лампы не «горят», неисправный балласт часто принимают за перегоревшую лампочку. Если вы заметили какой-либо из следующих признаков, возможно, пришло время позвонить в Hoffman Electrical & A / C для замены балласта:

  • Вы слышите жужжание от люминесцентных ламп
  • Вы замечаете мерцание люминесцентных ламп
  • Вы замечаете, что люминесцентные лампы постоянно тускнеют при включении или выключении
  • Ваши люминесцентные лампы не включаются

Как работают балласты?

Люминесцентные лампы не горят, как традиционные лампы накаливания.Вместо этого люминесцентные лампы имеют форму трубки и испускают газы ртутного газа низкого давления, то есть заполнены светоизлучающими газами. Когда электрический ток проходит через трубку, он возбуждает ртуть, которая затем излучает ультрафиолетовый свет. Это приводит к прилипанию люминофорного покрытия к внутренней части трубки, которое светится и является светом, который вы видите. При включении люминесцентного света балласт используется для регулирования количества электрического тока, протекающего через лампу, точно так же, как резистор.

Балласт позволит надлежащему количеству электричества проходить через лампу при первом включении люминесцентных ламп, а затем быстро уменьшит электрический ток, чтобы обеспечить устойчивый источник света и предотвратить повреждение ламп. Проще говоря, балласт контролирует электричество, чтобы правильно освещать люминесцентные лампы. В среднем вы можете рассчитывать на срок службы вашего балласта от 40 000 до 100 000 часов.

Почему стоит выбрать Hoffman Electrical & A / C для замены балласта?

Hoffman Electrical & A / C — это семейный бизнес, обслуживающий регионы Тампа и Св.Санкт-Петербург, Флорида, области с 1989 года. Наш дружный и знающий коллектив электриков может заменить балласт в вашем люминесцентном освещении, не отвлекая сотрудников вашей компании. Вы можете быть уверены, что ваш балласт будет правильно установлен с первого раза, и ваш балласт будет исправно работать без какого-либо необходимого ремонта.

Позвоните нам сегодня, чтобы запросить обслуживание по телефону 866-238-3243866-238-3243 или , свяжитесь с нами онлайн.

Обслуживание электромонтажников:

Округ Хиллсборо (Флорида) — Аполло-Бич, Блумингдейл, Брэндон, Кэрролвуд, Шеваль, Цитрусовый парк, Клируотер, Ист-Лейк, озеро Магдалина, Лутц, Палм-Ривер, Завод-Сити, Ривервью, Тампа, Таун-энд-Кантри и Вальрико.

Пинеллас Каунти (Флорида) — Клируотер-Бич, Данидин, Ист-Лейк, Ларго, Олдсмар, Палм-Харбор, Пинеллас-Парк, Семинол, Санкт-Петербург, Сент-Пит-Бич и Тарпон-Спрингс.

Округ Сарасота (Флорида) — Энглвуд, Северный порт, Оспри, Сарасота и Венеция.

Округ Ламанти (Флорида) — Брадентон, Брадентон-Бич, Кортес, Эллентон, Лонгбоут-Ки, Мьякка-Сити, Пальметто, Пэрриш и Терра Сея.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *