Закон кирхгофа для электрической: Законы Кирхгофа • Джеймс Трефил, энциклопедия «Двести законов мироздания»

Содержание

Законы Кирхгофа • Джеймс Трефил, энциклопедия «Двести законов мироздания»

Карьера Густава Кирхгофа во многом типична для немецкого физика XIX столетия. Германия позже своих западных соседей подошла к индустриальной революции и потому сильнее нуждалась в передовых технологиях, которые способствовали бы ускоренному развитию промышленности. В результате ученые, прежде всего естественники, ценились в Германии очень высоко. В год окончания университета Кирхгоф женился на дочери профессора, «соблюдя, тем самым, — как пишет один из его биографов, — два обязательных условия успешной академической карьеры». Но еще до этого, в возрасте двадцати одного года, он сформулировал основные законы для расчета токов и напряжений в электрических цепях, которые теперь носят его имя.

Середина XIX века как раз стала временем активных исследований свойств электрических цепей, и результаты этих исследований быстро находили практические применения. Базовые правила расчета простых цепей, такие как закон Ома, были уже достаточно хорошо проработаны.

Проблема состояла в том, что из проводов и различных элементов электрических цепей технически уже можно было изготовлять весьма сложные и разветвленные сети — но никто не знал, как смоделировать их математически, чтобы рассчитать их свойства. Кирхгофу удалось сформулировать правила, позволяющие достаточно просто анализировать самые сложные цепи, и законы Кирхгофа до сих пор остаются важным рабочим инструментом специалистов в области электронной инженерии и электротехники.

Оба закона Кирхгофа формулируются достаточно просто и имеют понятную физическую интерпретацию. Первый закон гласит, что если рассмотреть любой узел цепи (то есть точку разветвления, где сходятся три или более проводов), то сумма поступающих в цепь электрических токов будет равна сумме исходящих, что, вообще говоря, является следствием закона сохранения электрического заряда. Например, если вы имеете Т-образный узел электрической цепи и по двум проводам к нему поступают электрические токи, то по третьему проводу ток потечет в направлении от этого узла, и равен он будет сумме двух поступающих токов.

Физический смысл этого закона прост: если бы он не выполнялся, в узле непрерывно накапливался бы электрический заряд, а этого никогда не происходит.

Второй закон не менее прост. Если мы имеем сложную, разветвленную цепь, ее можно мысленно разбить на ряд простых замкнутых контуров. Ток в цепи может различным образом распределяться по этим контурам, и сложнее всего определить, по какому именно маршруту потекут токи в сложной цепи. В каждом из контуров электроны могут либо приобретать дополнительную энергию (например, от батареи), либо терять ее (например, на сопротивлении или ином элементе). Второй закон Кирхгофа гласит, что чистое приращение энергии электронов в любом замкнутом контуре цепи равно нулю. Этот закон также имеет простую физическую интерпретацию. Если бы это было не так, всякий раз, проходя через замкнутый контур, электроны приобретали или теряли бы энергию, и ток бы непрерывно возрастал или убывал. В первом случае можно было бы получить вечный двигатель, а это запрещено первым началом термодинамики; во втором — любые токи в электрических цепях неизбежно затухали бы, а этого мы не наблюдаем.

Самое распространенное применение законов Кирхгофа мы наблюдаем в так называемых последовательных и параллельных цепях. В последовательной цепи (яркий пример такой цепи — елочная гирлянда, состоящая из последовательно соединенных между собой лампочек) электроны от источника питания по серии проводов последовательно проходят через все лампочки, и на сопротивлении каждой из них напряжение падает согласно закону Ома.

В параллельной цепи провода, напротив, соединены таким образом, что на каждый элемент цепи подается равное напряжение от источника питания, а это означает, что в каждом элементе цепи сила тока своя, в зависимости от его сопротивления. Примером параллельной цепи является соединение ламп «лесенкой»: напряжение подается на шины, а лампы смонтированы на поперечинах. Токи, проходящие через каждый узел такой цепи, определяются по первому закону Кирхгофа.

Первый и второй законы Кирхгофа

В сложных электрических цепях, то есть где имеется несколько разнообразных ответвлений и несколько источников ЭДС имеет место и сложное распределение токов.

Однако при известных величинах всех ЭДС и сопротивлений резистивных элементов в цепи мы можем вычистить значения этих токов и их направление в любом контуре цепи с помощью первого и второго закона Кирхгофа. Суть законов Кирхгофа я довольно кратко изложил в своем учебнике по электронике, на страницах сайта http://www.sxemotehnika.ru.

 

Пример сложной электрической цепи вы можете посмотреть на рисунке 1.

Рисунок 1. Сложная электрическая цепь.

Иногда законы Кирхгофа называют правилами Кирхгофа, особенно в старой литературе.

Итак, для начала напомню все-таки суть первого и второго закона Кирхгофа, а далее рассмотрим примеры расчета токов, напряжений в электрических цепях, с практическими примерами и ответами на вопросы, которые задавались мне в комментариях на сайте.

Первый закон Кирхгофа

Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.

Поясню первый закон Кирхгофа на примере рисунка 2.

Рисунок 2. Узел электрической цепи.

Здесь ток I1

— ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:

I1 = I2 + I3  (1)

Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I3 в левую часть выражения (1), тем самым получим:

I1 — I2 — I3 = 0   (2)

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении

(2)).

Можно посмотреть отдельный видеоурок по первому закону Кирхофа в разделе ВИДЕОУРОКИ.

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:

1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).

2. Произвольно выбираем направление токов через элементы цепи.

3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:

— ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».

— напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».

Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.

Рисунок 3. Электрическая цепь, для пояснения второго закона Кирхгофа.

E1— Е2 = -UR1 — UR2 или E1 = Е2 — UR1 — UR2   (3)

Предлагаю посмотреть отдельный видеоурок по второму закону Кирхогфа (теория).

Расчеты электрических цепей с помощью законов Кирхгофа.

Теперь давайте рассмотрим вариант сложной цепи, и я вам расскажу, как на практике применять законы Кирхгофа.

Итак, на рисунке 4 имеется сложная цепь с двумя источниками ЭДС величиной E1=12 в и E2=5 в , с внутренним сопротивлением источников r1=r2=0,1 Ом, работающих на общую нагрузку R = 2 Ома. Как же будут распределены токи в этой цепи, и какие они имеют значения, нам предстоит выяснить.

Рисунок 4. Пример расчета сложной электрической цепи.

Теперь согласно первому закону Кирхгофа для узла А составляем такое выражение:

I = I1 + I2,

так как I1 и I2 втекают в узел А, а ток I вытекает из него.

Используя второй закон Кирхгофа, запишем еще два выражения для внешнего контура и внутреннего левого контура, выбрав направление обхода по часовой стрелке.

Для внешнего контура:

E1-E2 = Ur1 – Ur2 или E1-E2 = I1*r1 – I2*r2

Для внутреннего левого контура:

E1 = Ur1 + UR или E1 = I1*r1 + I*R

Итак, у нас получилась система их трех уравнений с тремя неизвестными:

I = I1 + I2;

E1-E2 = I1*r1 – I2*r2;

E1 = I1*r1 + I*R.

Теперь подставим в эту систему известные нам величины напряжений и сопротивлений:

I = I1 + I2;

7 = 0,1I1 – 0,1I2;

12 = 0,1I1 +2I.

Далее из первого и второго уравнения выразим ток I2

I2=I — I1;

I2 = I1 – 70;

12 = 0,1I1 + 2I.

Следующим шагом приравняем первое и второе уравнение и получим систему из двух уравнений:

I — I1= I1 – 70;

12 = 0,1I1 + 2I.

Выражаем из первого уравнения значение I

I = 2I1– 70;

И подставляем его значение во второе уравнение

12 = 0,1I1 + 2(2I1 – 70).

Решаем полученное уравнение

12 = 0,1I1 + 4I1 – 140.

12 + 140= 4,1I1

I1=152/4,1

I1=37,073 (А)

Теперь в выражение I = 2I1– 70 подставим значение

I1=37,073 (А) и получим:

I = 2*37,073 – 70 = 4,146 А

Ну, а согласно первому закона Кирхгофа ток I2=I — I1

I2=4,146 — 37,073 = -32,927

Знак «минус» для тока I2 означает, то что мы не правильно выбрали направление тока, то есть в нашем случае ток I2 вытекает из узла А.

Теперь полученные данные можно проверить на практике или смоделировать данную схему например в программе Multisim.

Скриншот моделирования схемы для проверки законов Кирхгофа вы можете посмотреть на рисунке 5.

 Рисунок 5. Сравнение результатов расчета и моделирования работы цепи.

Для закрепления результатата предлагаю посмотреть подготовленное мной видео:

Закон кирхгофа для электрической цепи для чайников

По каждому проводнику, составляющему электрическую цепь, течет ток. В точке, где проводники сходятся, называемой узлом, справедливо правило: ток суммарный, подтекающий к нему, равняется сумме, оттекающих.

Законы кирхгофа

Другими словами – сколько зарядов подтечет к этой точке за единицу времени, столько же оттечет. Если принять, что приходящий будет «+», а оттекающий – «-», то суммарная его величина будет нулевой.

Это и есть Первый закон кирхгофа для электрической цепи. Смысл его в том состоит, что заряд не накапливается.

Закон Второй, применим к цепи электрической разветвленной.

Эти универсальные законы Кирхгофа применяют очень широко, поскольку позволяют решить множество задач. Большим их достоинство считают простую и понятную всем формулировку, несложные вычисления.

История

Пополнил ряды немецких ученых Кирхгоф в девятнадцатом столетии, когда в стране, находившаяся на пороге революции индустриальной, требовались новейших технологии. Ученые занимались поиском решений, которые могли бы ускорить развитие промышленности.

Активно занимались исследованиями в области электричества, поскольку понимали, что в будущем оно будет широко использоваться. Проблема состояла на тот момент не в том, как составлять электрические цепи из возможных элементов, а в проведении математических вычислений. Тут и появились законы, сформулированные физиком. Они очень помогли.

Алгебраическая сумма приходящих к узлам токов и исходящих из него равна нулю. Эта одновременно вытекает из другого закона — постоянства энергии.

К узлу подходят 2 провода, а отходит один. Значение тока, текущего от узла, такое же, как сумма его, протекающего по двум остальным проводникам, т.е. идущим к нему. Правило Кирхгофа объясняет, что, при ином раскладе, накапливался бы заряд, но такого не бывает. Все знают, что всякую сложную цепь легко разделить на отдельные участки.

Но, при этом непросто определить путь, по которому он проходит. Тем более, что на различных участках сопротивления не одинаковы, поэтому и распределение энергии не будет равномерным.

В соответствие со Вторым правилом Кирхгофа, энергия электронов на каждом из замкнутых участков электрической цепи равняется нулю – нулю равняется всегда в таком контуре суммарное значение напряжений. Если бы нарушилось данное правило, энергия электронов при прохождении определенных участков, уменьшалась бы или увеличивалась. Но, этого не наблюдается.

Применение

Таким образом, благодаря этим двум, выдвинутым Кирхгофом утверждениям, установлено зависимость токов от напряжений в разветвленных участках.

Формула Первого закона такова:

Для схемы, приведенной ниже, справедливо:


I1 — I2 + I3 — I4 + I5 = 0

Плюсовые — это токи, идущие к точке, а те, что выходят из нее «-».

Записывается это так:

  • k — количество ЭДС источников;
  • m – ветви замкнутого контура;
  • Ii,Ri – их сопротивление i-й и ток.

В данной схеме: Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4.

  • ЭДС принимается «+» при совпадении ее направления с выбранным направлением обхода.
  • При совпадении направления тока и обхода на резисторе, с плюсом будет также напряжение.

Расчет цепи

Способ заключается в умении составления систем уравнений, а также решении их, для нахождения токов в каждой ветви (b), а уже, зная их, умении нахождения величины напряжений.

Проще говоря, количество ветвей совпадать должно с неизвестными величинами в системе. Вначале записывают их, исходя из первого правила: число их идентично с количеством узлов.

Но, независимыми будут (y – 1) выражений. Обеспечивается это выбором, а происходит он так, чтобы разнились они (последующий со смежными) минимум одной ветвью.

Далее, составляются уравнения с использованием второго закона: b — (y — 1) = b — y +1.

Независимым считают контур, содержащий одну (или больше) ветвь, которая в другие не входит.

В качестве примера можно рассмотреть такую схему:

Сдержит она:

узлов – 4;

ветвей –6.

По Первому закону записывают три выражения, т.е. y — 1 = 4 – 1=3.

И столько же на основании Второго, поскольку b — y + 1 = 6 — 4 + 1 = 3.

В ветвях выбирают плюсовое направление и путь обхода (у нас — по стрелке часовой).

Получается:

Осталось относительно токов решить получившуюся систему, понимая, что, когда в процессе решения он получается отрицательным, это свидетельствует о том, что направлен он будет в противоположную сторону.

Правило Кирхгофа применительно к синусоидальным токам

Правила для синусоидального, такие же, как для тока постоянного. Правда, учитываются величины напряжений с комплексными токами.

Первое звучит: «в электрической цепи нулю равна сумма алгебраическая комплексных токов в узле».

Второе правило выглядит так: «алгебраическая сумма ЭДС комплексных в контуре замкнутом равняется сумме алгебраической значений комплексных напряжений, имеющихся на пассивных составляющих данного контура.

Видео: Законы Кирхгофа

§ 10. Законы Кирхгофа | Электротехника

Закон Ома устанавливает зависимость между силой тока, напряжением и сопротивлением для простейшей электрической цепи, представляющей собой один замкнутый контур. В практике встречаются более сложные (разветвленные) электрические цепи, в которых имеются несколько замкнутых контуров и несколько узлов, к которым сходятся токи, проходящие по отдельным ветвям. Значе­ния токов и напряжений для таких цепей можно находить при помощи законов Кирхгофа.

Первый закон Кирхгофа устанавливает зависимость между то­ками для узлов электрической цепи, к которым подходит несколько ветвей. Согласно этому закону алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю:

?I = 0 (16)

При этом токи, направленные к узлу, берут с одним знаком (например, положительным), а токи, направленные от узла,— с противоположным знаком (отрицательным). Например, для узла А (рис. 23, а)

I1 + I2 + I3 – I4 – I5 = 0 (17)

Преобразуя это уравнение, получим, что сумма токов, направленных к узлу электрической цепи, равна сумме токов, направленных от этого узла:

I1 + I2 + I3 = I4 + I5 (17′)

В данном случае имеет место полная аналогия с распределением потоков воды в соединенных друг с другом трубопроводах (рис. 23, б).
Второй закон Кирхгофа устанавливает зависимость между э. д. с. и напряжением в замкнутой электрической цепи. Согласно этому закону во всяком замкнутом контуре алгебраическая сумма э. д. с. равна алгебраической сумме падений напряжения на сопротивлениях, входящих в этот контур:

?E = ?IR (18)

При составлении формул, характеризующих второй закон Кирхгофа, значения э. д. с. E и падений напряжений IR считают положительными, если направления э. д. с. и токов на соответствующих участках контура совпадают с произвольно выбранным направлением обхода контура. Если же направления э. д. с. и токов на соответствующих участках контура противоположны выбранному направлению обхода, то такие э. д. с. и падения напряжения считают отрицательными.
Рассмотрим в качестве примера электрическую цепь, в которой имеются два источника с электродвижущими силами E1 и E2

(рис. 24, а), внутренними сопротивлениями Ro1, Ro2 и два приемника с сопротивлениями R1 и R2. Применяя второй закон Кирхгофа для «этой цепи и выбирая направление ее обхода по часовой стрелке,
получим:

E1 – E2 = IR01 + IR02 + IR1 + IR

При этом э. д. с. E1 и ток I совпадают с выбранным направлением обхода контура и считаются положительными, а э. д. с. Е2, противоположная этому направлению, считается отрицательной.
Если в электрической цепи э. д. с. источников электрической энергии при обходе соответствующего контура направлены навстречу друг другу (см. рис. 24, а), то такое включение называют встречным. В этом случае на основании второго закона Кирхгофа ток I = (E1-E2)/(R1+R2+R01+R02).
Встречное направление э. д. с. имеет место, например, на э. п. с.при включении электродвигателей постоянного тока (их можно
рассматривать как некоторые источники э. д. с.) в две параллельные группы, а также при параллельном включении аккумуляторов в батарее
Если же э. д. с. источников электрической энергии имеют по контуру одинаковое направление (рис. 24, б), то такое включение называют согласным и ток I = (E1-E2)/(R1+R2+R01+R02). В неко-

Рис 24. Схемы электрических цепей с несколькими источниками и приемниками электрической энергии: а и б — неразветвленных; в — разветвленной

торых случаях такое включение недопустимо, так как ток в цепи резко возрастает.
Если в электрической цепи имеются ответвления (рис. 24, в), то по отдельным ее участкам проходят различные токи I1 и I2. Согласно второму закону Кирхгофа E1-E2=I1R01+I1R1-I2R2-I2R02-I2R3+I1R4
При составлении этого уравнения э. д. с. Е1 и ток I1 считаются положительными, так как совпадают с принятым направлением обхода контура, э. д. с. Е2 и ток I2 — отрицательными.

Законы Кирхгофа

Законы Кирхгофа – правила, которые показывают, как соотносятся токи и напряжения в электрических цепях. Эти правила были сформулированы Густавом Кирхгофом в 1845 году. В литературе часто называют законами Кирхгофа, но это не верно, так как они не являются законами природы, а были выведены из третьего уравнения Максвелла при неизменном магнитном поле. Но все же, первое более привычное для них название, поэтому и мы будет их называть, как это принято в литературе – законы Кирхгофа.

Первый закон Кирхгофа – сумма токов сходящихся в узле равна нулю.  

Давайте разбираться. Узел это точка, соединяющая ветви. Ветвью называется участок цепи между узлами. На рисунке видно, что ток i входит в узел, а из узла выходят токи i1 и i2. Составляем выражение по первому закона Кирхгофа, учитывая, что токи, входящие в узел имеют знак плюс, а токи, исходящие из узла имеют знак минус i-i1-i2=0. Ток i как бы растекается на два тока поменьше и равен сумме токов i1 и i2 i=i1+i2. Но если бы, например, ток i2 входил в узел, тогда бы ток I определялся как i=i1-i2. Важно учитывать знаки при составлении уравнения.

Первый закон Кирхгофа это следствие закона сохранения электричества: заряд, приходящий к узлу за некоторый промежуток времени, равен заряду, уходящему за этот же интервал времени от узла, т.е. электрический заряд в узле не накапливается и не исчезает.

Второй закон Кирхгофа – алгебраическая сумма ЭДС, действующая в замкнутом контуре, равна алгебраической сумме падений напряжения в этом контуре.  

 Напряжение выражено как произведение тока на сопротивление (по закону Ома). 

 

В этом законе тоже существуют свои правила по применению. Для начала нужно задать стрелкой направление обхода контура. Затем просуммировать ЭДС и напряжения соответственно, беря со знаком плюс, если величина совпадает с направлением обхода и минус, если не совпадает. Составим уравнение по второму закону Кирхгофа, для нашей схемы. Смотрим на нашу стрелку, E2 и Е3 совпадают с ней по направлению, значит знак плюс, а Е1 направлено в противоположную сторону, значит знак минус. Теперь смотрим на напряжения, ток I1 совпадает по направлению со стрелкой, а токи I2 и I3 направлены противоположно. Следовательно:

              -E1+E2+E3=I1R1-I2R2-I3R3

На основании законов Кирхгофа составлены методы анализа цепей переменного синусоидального тока. Метод контурных токов – метод основанный на применении второго закона Кирхгофа и метод узловых потенциалов основанный на применении первого закона Кирхгофа.

Читайте также — Примеры решения задач на законы Кирхгофа

  • Просмотров: 22162
  • Первый и второй законы Кирхгофа

    Автор Alexey На чтение 4 мин. Просмотров 927 Опубликовано Обновлено

    Немецкий ученый Густав Кирхгоф – один из величайших физиков всех времен, написавший целую кучу работ по электричеству.

    Эти работы получили признание среди передовых ученых девятнадцатого века и стали основой для работ множества других ученых, а также дальнейшего развития науки и техники. Он был человеком который посвятил всю свою жизнь науке и несомненно сделал наш мир чуточку лучше.

    В теории, законы Ома устанавливают взаимосвязь между силой, напряжением и сопротивлению тока для простых замкнутых одноконтурных цепей.

    Но на практике чаще всего используются гораздо более сложные, разветвленные цепи, в систему которых может входить несколько контуров и узлов, в которые сходятся проходящие по другим ответвлениям электротоки и их невозможно описать по стандартным правилам для расчета комбинаций параллельных и последовательных цепей. Правило Кирхгофа делает возможным определение силы и напряжения тока в таких цепях.

    Общие понятия и описание первого закона Кирхгофа

    Первый закон Кирхгофа показывает связь токов и узлов электрической цепи. Формула связи очень проста. Это правило гласит, что сумма токов всех ветвей, которые сходятся в один узел электроцепи, равняется нулю (речь идёт об алгебраических значениях).

    При этом накопление электрических зарядов в одной точке замкнутой электроцепи невозможно.
    При суммировании токов принято брать положительный знак, если электроток идёт по направлению к узлу, и отрицательный знак, если ток идёт в противоположную от узла сторону. Для описания понятной аналогии для этого случая, уместны сравнения с течениями воды в соединенных между собой трубопроводах.

    Пример вышеописанной формулы первого закона:

    Общие понятия и описание второго закона Кирхгофа

    Второй закон Кирхгофа описывает алгебраическую зависимость между электродинамической силой и напряжением в замкнутой электроцепи. В любом замкнутом контуре сумма электродинамической силы равна сумме падания напряжения на сопротивлениях, относящихся к данному контуру.

    Для написания формул, определяющих второй закон Кирхгофа, берут положительное значение электродинамической силы и падение напряжений, если направление на относящихся к ним отрезках контура совпадает с произвольным направлением обхода контура. А если же направление электродинамической силы и токов противоположны выбранному направлению, то эти электродинамические силы и падение напряжений берут отрицательными:

    Алгоритм определения знака величины электродинамической силы и падения напряжений:

    1. Выбираем направление обхода контурных цепей. Тут возможны несколько вариантов: либо по часовой стрелке, либо против часовой стрелки.
    2. Произвольным образом выбираем направление движения токов протекающих через элементы контурных цепей.
    3. И наконец, расставляем знаки для электродинамической силы и падения напряжений (не забывая о совпадении или несовпадении направления электродинамической силы с направлением движения обхода контура)

    Пример вышеописанной формулы второго закона :

    Области применения

    Закономерности Кирхгофа применяются на практике для сложных контурных цепей, для выяснения распределений и значений токов в этих электроцепях.

    С помощью уравнений, положенных в основу этих закономерностей моделируется система контурных напряжений и токов, после решения которой можно сказать какое направление электротока необходимо выбрать. Первое и Второе правило Кирхгофа получили огромное применение при построении параллельных и последовательных контурных цепей.

    При последовательном строении электроцепи (в качестве примера отлично подойдёт новогодняя ёлочная гирлянда) сопротивление на каждом последующем элементе падает согласно закону Ома.

    При параллельном строении напряжение равно подаётся на все элементы электроцепи, и для определения значений токов в любом месте электроцепи используется второй закон Кирхгофа. Также часто эти правила сочетаются с другими приёмами, такими как принцип суперпозиции и метод эквивалентного электрогенератора и составления потенциальной диаграммы.

    Интересные факты:

    • Существует множество заблуждений о третьем, четвертом и т.д. правилах Кирхгофа. Густав Кирхгофф был всесторонне развитым человеком, который изучал множество наук;
    • Он сделал несколько открытий в области теоретической механики для абсолютно упругих тел, в области химии, физики, термодинамике. Именно к этим открытиям относятся эти законы, а с электродинамикой и контурными электрическими цепями не имеют ничего общего;
    • В его честь назван один из кратеров на Луне;
    • Еще один величайший изобретатель Джеймс Максвелл основывал свои идеи именно на этих двух главных закономерностях электродинамики.

    Законы Кирхгофа для электрической цепи

    Правильнее было бы говорить правила Кирхгофа для расчетов сложных электрических цепей постоянного тока. Электрическая цепь на практике может состоять из нескольких резисторов и источников тока. Такие цепи называют разветвленными. Уравнения позволяющие провести расчеты, например, сил токов, текущих в сопротивлениях, в любых сетях можно составить, воспользовавшись законом Ома и законом сохранения заряда. Правила Кирхгофа являются следствиями вышеназванных законов и принципиально нового ни чего не привносят, однако, с их помощью можно упростить процедуру написания необходимых уравнений. Существует два правила Кирхгофа для электрических цепей постоянного тока. Одно правило называют правилом узлов, так как оно связывает в одно уравнение токи, сходящиеся в узле. Второе правило касается замкнутых контуров, которые можно выделить в сложной цепи.

    Первый закон (правило) Кирхгофа

    В электрической цепи в одной точке могут сходиться более двух проводников с токами, тогда такую точку цепи называют узлом (разветвлением). Учитывая, что сила тока алгебраическая величина для любого узла:

       

    где N – число токов, которые сходятся в узле. Выражение (1) называют первым правилом Кирхгофа (правило узлов): сумма токов, текущих через сопротивления в цепи постоянного тока, с учетом их знака, сходящихся в узле, равна нулю.

    Знак у тока (плюс или минус) выбирают произвольно, но при этом следует считать, что все входящие в узел токи имеют одинаковые знаки, а все исходящие из узла токи имеют противоположные входящим, знаки. Допустим, все входящие токи мы примем за положительные, тогда все исходящие их этого узла токи будут отрицательными.

    Первое правило Кирхгофа дает возможность составить независимое уравнение, если в цепи k узлов.

    Первое правило Кирхгофа является следствием закона сохранения заряда.

    Второй закон (правило) Кирхгофа

    Во втором правиле Кирхгофа рассматриваются замкнутые контуры, поэтому оно носит название правила контуров: Суммы произведений алгебраических величин сил тока на внешние и внутренние сопротивления всех участков замкнутого контура равны алгебраической сумме величин сторонних электродвижущих сил (ЭДС) (), которые входят в рассматриваемый контур. В математическом виде второй закон Кирхгофа записывают как:

       

    Величины называют падениями напряжения. До применения второго закона Кирхгофа выбирают положительное направление обхода контура. Это направление берется произвольно, либо по часовой стрелке, либо против нее. Если направление обхода совпадает с направлением течения тока в рассматриваемом элементе контура, то падение напряжения в формулу второго правила для данного контура входит со знаком плюс. ЭДС считают положительной, если при движении по контуру (в избранном направлении) первым встречается отрицательный полюс источника. Более правильно было бы сказать, что ЭДС считают положительной, если работа сторонних сил по перемещению единичного положительного заряда на рассматриваемом участке цепи в заданном направлении обхода контура является положительной величиной.

    Второе правило Кирхгофа является следствием закона Ома.

    Примеры решения задач

    Основы законов Кирхгофа для инженеров-электриков

    Введение

    Законы Кирхгофа — это основные аналитические инструменты, используемые для получения решений для токов и напряжений в электрической цепи. Цепи могут быть от системы постоянного или переменного тока. На следующей схеме изображена простая резистивная сеть.

    Рисунок: Простая резистивная сеть

    Законы Кирхгофа для анализа цепей рассматриваются в нашем обзорном курсе экзамена FE «Электротехника».Закон Кирхгофа (KCL) и Закон напряжения Кирхгофа (KVL) важны как для постоянного, так и для переменного тока, и их важно понимать для экзамена FE.

    Части электрической цепи

    Узел: Узел в электрической цепи — это точка, в которой соединены два или более компонентов. Эта точка обычно отмечается темным кружком или точкой при отображении на диаграммах. Схема на схеме выше включает узлы, обозначенные буквами «b» и «g».”Точка или узел в цепи определяет определенный уровень напряжения по отношению к контрольной точке или узлу.

    Ветвь: Ветвь — это путь перехода между любыми двумя узлами в цепи, имеющими электрические элементы. На приведенной выше диаграмме показано, что схема имеет семь ветвей, четыре из которых являются резистивными ветвями (a-c, a-b, b-c и b-g), а остальные три ветви содержат источники напряжения и тока (a-b, a-g и c-g).

    Петля: Петля — это любой замкнутый путь в электрической цепи.Петля в цепи состоит из ветвей, которые имеют начальную и конечную точки для отслеживания пути электричества. На приведенной выше диаграмме петли / замкнутые пути включают a-b-g-a и a-c-b-a. Кроме того, можно отметить, что внешние закрытые пути — это a-c-g-a и a-b-c-g-a.

    Сетка: Сетка — это специальный цикл, в котором нет других циклов. Приведенная выше диаграмма показывает, что три петли (a-b-g-a, b-c-g-b и a-c-b-a) также считаются сетками, в то время как петли a-c-g-a и a-b-c-g-a не считаются сетками.

    Текущий закон Кирхгофа:

    KCL утверждает, что в любом узле цепи алгебраическая сумма токов, входящих и выходящих из узла в любой момент времени, должна быть равна нулю. Токи, входящие и выходящие из узла, должны иметь противоположные алгебраические знаки, чтобы гарантировать, что результат равен нулю. Пример: На следующем рисунке I1 — I2 + I3 — I4 + I5 — I6 = 0.

    Рисунок: Закон Кирхгофа


    Закон напряжения Кирхгофа

    KVL утверждает, что в замкнутой цепи сумма всех напряжений источника должна быть равна сумме всех падений напряжения.Падение напряжения происходит, когда ток течет от клеммы с более высоким потенциалом к ​​клемме с более низким потенциалом. Повышение напряжения происходит, когда ток течет от клеммы с более низким потенциалом к ​​клемме с более высоким потенциалом или положительной клемме источника напряжения.

    Закон Кирхгофа по напряжению из рисунка: по часовой стрелке, начиная с источника напряжения: V1 — IR1 — IR2- V2 — IR3 — IR4 + V3 — IR5 — V4 = 0, V1 — V2 + V3 — V4 = IR1 + IR2 + IR3 + IR4 + IR5

    Рисунок: Закон Кирхгофа о напряжении


    Инженеры, готовящиеся к экзамену по основам инженерной электротехники и компьютера, должны изучить законы Кирхгофа перед экзаменом, чтобы уметь оценивать токи и напряжения в электрической цепи.

    электричество | Определение, факты и типы

    Электростатика — это изучение электромагнитных явлений, которые происходят при отсутствии движущихся зарядов, то есть после установления статического равновесия. Заряды быстро достигают положения равновесия, потому что электрическая сила чрезвычайно велика. Математические методы электростатики позволяют рассчитывать распределения электрического поля и электрического потенциала по известной конфигурации зарядов, проводников и изоляторов.И наоборот, имея набор проводников с известными потенциалами, можно рассчитать электрические поля в областях между проводниками и определить распределение заряда на поверхности проводников. Электрическую энергию набора зарядов в состоянии покоя можно рассматривать с точки зрения работы, необходимой для сборки зарядов; в качестве альтернативы, можно также считать, что энергия находится в электрическом поле, создаваемом этой сборкой зарядов. Наконец, энергия может храниться в конденсаторе; энергия, необходимая для зарядки такого устройства, хранится в нем как электростатическая энергия электрического поля.

    Изучите, что происходит с электронами двух нейтральных объектов, тренных друг о друга в сухой среде.

    Объяснение статического электричества и его проявлений в повседневной жизни.

    Encyclopædia Britannica, Inc. Посмотреть все видео к этой статье

    Статическое электричество — это знакомое электрическое явление, при котором заряженные частицы передаются от одного тела к другому. Например, если два предмета трутся друг о друга, особенно если они являются изоляторами, а окружающий воздух сухой, предметы приобретают одинаковые и противоположные заряды, и между ними возникает сила притяжения.Объект, теряющий электроны, становится заряженным положительно, а другой — отрицательно. Сила — это просто притяжение между зарядами противоположного знака. Свойства этой силы описаны выше; они включены в математическое соотношение, известное как закон Кулона. Электрическая сила, действующая на заряд Q 1 в этих условиях из-за заряда Q 2 на расстоянии r , определяется законом Кулона,

    Жирным шрифтом в уравнении обозначается вектор характер силы, а единичный вектор — это вектор, размер которого равен единице, и который указывает от заряда Q 2 к заряду Q 1 . Константа пропорциональности k равна 10 −7 c 2 , где c — скорость света в вакууме; k имеет числовое значение 8,99 × 10 9 ньютонов на квадратный метр на квадратный кулон (Нм 2 / C 2 ). На рисунке 1 показано усилие на Q 1 из-за Q 2 . Числовой пример поможет проиллюстрировать эту силу. Оба Q 1 и Q 2 выбраны произвольно в качестве положительных зарядов, каждый с величиной 10 −6 кулонов.Заряд Q 1 расположен в координатах x , y , z со значениями 0,03, 0, 0 соответственно, а Q 2 имеет координаты 0, 0,04, 0. Все координаты даны в метрах. Таким образом, расстояние между Q 1 и Q 2 составляет 0,05 метра.

    Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

    Величина силы F на заряде Q 1 , рассчитанная по уравнению (1), равна 3.6 ньютонов; его направление показано на рисунке 1. Сила, действующая на Q 2 из-за Q 1 , составляет — F , что также имеет величину 3,6 ньютона; его направление, однако, противоположно направлению F . Сила F может быть выражена через ее компоненты по осям x и y , поскольку вектор силы лежит в плоскости x y . Это делается с помощью элементарной тригонометрии из геометрии рисунка 1, а результаты показаны на рисунке 2.Таким образом, в ньютонах. Закон Кулона математически описывает свойства электрической силы между зарядами в состоянии покоя. Если заряды имеют противоположные знаки, сила будет притягивающей; притяжение было бы указано в уравнении (1) отрицательным коэффициентом единичного вектора r̂. Таким образом, электрическая сила на Q 1 будет иметь направление, противоположное единичному вектору , и будет указывать от Q 1 к Q 2 .В декартовых координатах это привело бы к изменению знаков компонентов силы x и y в уравнении (2).

    компоненты кулоновской силы

    Рисунок 2: Компоненты x и y силы F на рисунке 4 (см. Текст).

    Предоставлено Департаментом физики и астрономии Университета штата Мичиган

    Как можно понять эту электрическую силу, действующую на Q 1 ? По сути, сила возникает из-за наличия электрического поля в позиции Q 1 .Поле создается вторым зарядом Q 2 и имеет величину, пропорциональную размеру Q 2 . При взаимодействии с этим полем первый заряд на некотором расстоянии либо притягивается, либо отталкивается от второго заряда, в зависимости от знака первого заряда.

    Законы Кирхгофа для тока и напряжения

    В 1845 году немецкий физик Густав Кирхгоф впервые описал два закона, которые стали центральными в электротехнике.Текущий закон Кирхгофа, также известный как закон соединения Кирхгофа и первый закон Кирхгофа, определяют способ распределения электрического тока, когда он проходит через соединение — точку, где встречаются три или более проводника. Другими словами, законы Кирхгофа гласят, что сумма всех токов, покидающих узел в электрической сети, всегда равна нулю.

    Эти законы чрезвычайно полезны в реальной жизни, поскольку они описывают соотношение значений токов, протекающих через точку соединения, и напряжений в контуре электрической цепи.Они описывают, как электрический ток течет во всех миллиардах электроприборов и устройств, а также во всех домах и на предприятиях, которые постоянно используются на Земле.

    Законы Кирхгофа: основы

    В частности, в законах говорится:

    Алгебраическая сумма тока в любом соединении равна нулю.

    Поскольку ток — это поток электронов через проводник, он не может накапливаться на стыке, а это означает, что ток сохраняется: то, что входит, должно выходить.Представьте себе хорошо известный пример соединения: распределительную коробку. Эти ящики устанавливаются в большинстве домов. Это коробки, в которых проложена проводка, по которой должно протекать все электричество в доме.

    При выполнении расчетов ток, текущий в переход и выходящий из него, обычно имеет противоположные знаки. Вы также можете сформулировать Текущий закон Кирхгофа следующим образом:

    Сумма тока в соединении равна сумме тока вне соединения.

    Вы можете более конкретно разбить два закона.

    Действующий закон Кирхгофа

    На картинке показано место соединения четырех проводов (проводов). В стык текут токи v 2 и v 3 , а из него вытекают токи v 1 и v 4 . В этом примере правило соединения Кирхгофа дает следующее уравнение:

    v 2 + v 3 = v 1 + v 4

    Закон Кирхгофа о напряжении

    Закон Кирхгофа о напряжении описывает распределение электрического напряжения в петле или замкнутом проводящем пути электрической цепи.Закон Кирхгофа о напряжении гласит, что:

    Алгебраическая сумма разностей напряжений (потенциалов) в любом контуре должна равняться нулю.

    Различия в напряжении включают в себя те, которые связаны с электромагнитными полями (ЭМП) и резистивными элементами, такими как резисторы, источники питания (например, батареи) или устройства — лампы, телевизоры и блендеры, подключенные к цепи. Представьте себе, что напряжение растет и падает по мере того, как вы двигаетесь по любой из отдельных петель в цепи.

    Закон Кирхгофа о напряжении возникает потому, что электростатическое поле в электрической цепи является консервативным силовым полем. Напряжение представляет собой электрическую энергию в системе, поэтому рассматривайте его как особый случай сохранения энергии. Когда вы идете по циклу, когда вы прибываете в начальную точку, имеет тот же потенциал, что и в начале, поэтому любые увеличения и уменьшения по циклу должны отменяться, чтобы общее изменение было нулевым. В противном случае потенциал в начальной / конечной точке имел бы два разных значения.

    Положительные и отрицательные знаки в законе напряжения Кирхгофа

    Использование правила напряжения требует некоторых условных обозначений, которые не обязательно столь же ясны, как в правиле тока. Выберите направление (по или против часовой стрелки), в котором будет проходить петля. При переходе от положительного к отрицательному (+ к -) в ЭДС (источнике питания) напряжение падает, поэтому значение становится отрицательным. При переходе от отрицательного к положительному (- к +) напряжение возрастает, поэтому значение будет положительным.

    Помните, что, путешествуя по цепи для применения закона Кирхгофа, убедитесь, что вы всегда движетесь в одном и том же направлении (по часовой стрелке или против часовой стрелки), чтобы определить, представляет ли данный элемент увеличение или уменьшение напряжения. Если вы начнете прыгать, двигаться в разных направлениях, ваше уравнение будет неверным.

    При переходе через резистор изменение напряжения определяется по формуле:

    I * R

    где I — значение тока, а R — сопротивление резистора. Пересечение в том же направлении, что и ток, означает, что напряжение падает, поэтому его значение отрицательное. При пересечении резистора в направлении, противоположном току, значение напряжения положительное, поэтому оно увеличивается.

    Применение закона Кирхгофа о напряжении

    Самые основные применения законов Кирхгофа относятся к электрическим цепям. Вы, возможно, помните из физики средней школы, что электричество в цепи должно течь в одном непрерывном направлении. Если, например, вы щелкнете выключателем света, вы нарушите цепь и, следовательно, выключите свет. Как только вы снова щелкнете выключателем, вы снова включите цепь, и снова загорится свет.

    Или подумайте о том, как повесить огни на свой дом или рождественскую елку. Если перегорает только одна лампочка, гаснет вся цепочка огней. Это потому, что электричеству, остановленному разбитым светом, некуда деться. Это то же самое, что выключить свет и разорвать цепь. Другой аспект этого в отношении законов Кирхгофа состоит в том, что сумма всего электричества, входящего и вытекающего из соединения, должна быть равна нулю. Электричество, поступающее в соединение (и протекающее по цепи), должно равняться нулю, потому что электричество, которое входит в него, также должно выходить.

    Итак, в следующий раз, когда вы будете работать над своей распределительной коробкой или наблюдать за тем, как это делает электрик, натягивая электрические праздничные огни, или включаете или выключаете телевизор или компьютер, помните, что Кирхгоф сначала описал, как все это работает, тем самым открывая эпоху электричество.

    Законы Кирхгофа для инженеров-электриков — начинающих

    Напряжения и токи в электрических цепях

    Два чрезвычайно важных принципа в электрических цепях были систематизированы Густавом Робертом Кирхгофом в 1847 году, известные как Законы Кирхгофа . Два его закона относятся к напряжениям и токам в электрических цепях соответственно.

    Законы Кирхгофа для инженеров-электриков — начинающих (фото предоставлено Джесси Мейсон через Youtube)

    Закон о напряжении Кирхгофа

    Закон о напряжении Кирхгофа гласит, что алгебраическая сумма всех напряжений в замкнутом контуре равна нулю. Другой способ сформулировать этот закон — сказать, что для каждого повышения потенциала должно быть одинаковое падение, если мы начинаем с любой точки цепи и возвращаемся по петле к той же начальной точке.


    Подъем на гору

    Аналогия для визуализации закона напряжения Кирхгофа — восхождение на гору.

    Предположим, мы начинаем у подножия горы и поднимаемся на высоту 5000 футов , чтобы разбить лагерь для ночлега. На следующий день мы вышли из лагеря и поднялись еще на 3500 футов .

    Решив, что мы поднялись достаточно высоко для двух дней, мы снова разбили лагерь и остаемся на ночь. На следующий день мы спускаемся вниз 6200 футов к третьему месту и разбиваем лагерь.На четвертый день мы возвращаемся к нашей первоначальной отправной точке у подножия горы.

    Мы можем резюмировать наше походное приключение как серию взлетов и падений следующим образом:

    По аналогии с восхождением на гору
    День Путь Прибавка / потеря высоты
    День 1 от A до B +5000 футов
    День 2 От B до C +3500 футов
    День 3 От C до D -6200 футов
    День 4 D до A -2300 футов
    ВСЕГО // ABCDA 0 футов

    Конечно, никто не скажет своим друзьям, что они провели четыре дня в походах на общую высоту 0 футов, поэтому люди обычно говорят о наивысшей достигнутой точке: в данном случае 8500 футов.Однако, если мы отслеживаем каждый день прирост или убыток в алгебраических терминах (сохраняя математический знак, положительный или отрицательный), мы видим, что конечная сумма равна нулю (и действительно всегда должна быть равна нулю), если мы заканчиваем в нашей начальной точке.

    Если мы рассмотрим этот сценарий с точки зрения потенциальной энергии , когда мы поднимаем постоянную массу от точки к точке, мы можем заключить, что мы выполняли работу с этой массой (т. Е. Вкладывали в нее энергию, поднимая ее выше) на дни 1 и 2 , но позволяя массе работать на нас (т.е. высвобождая энергию путем ее понижения) на дней 3 и 4 . После четырехдневного похода чистая потенциальная энергия, переданная массе, равна нулю, потому что она оказывается на той же высоте, на которой началась.

    Давайте применим этот принцип к реальной схеме, где полный ток и все падения напряжения уже были рассчитаны для нас:

    Стрелка показывает ток в направлении условного обозначения потока

    Если мы проследим путь ABCDEA, мы увидим, что алгебраическая сумма напряжений в этом контуре равна нулю :

    Путь Усиление / потеря напряжения
    A to B-4 вольт
    B to C-6 вольт
    C по D +5 В
    D по E -2 В
    E по A +7 В
    ABCDEA 0 В

    We может даже проследить путь, который не следует за проводниками схемы или не включает все компоненты, такие как EDCBE, и мы увидим, что алгебраическая сумма всех напряжений по-прежнему равна нулю :

    Путь Усиление / потеря напряжения
    A to B +2 вольт
    B to C-5 вольт
    C to D +6 вольт
    D to E -2 вольта
    E to A-3 вольта
    ABCDEA 0 вольт

    Закон Кирхгофа о напряжении часто является сложной темой. для студентов , именно потому, что напряжение само по себе является трудным для понимания понятием.

    Помните, что нет такого понятия, как напряжение в одной точке; скорее, напряжение существует только как дифференциальная величина. Чтобы разумно говорить о напряжении, мы должны иметь в виду либо потерю, либо усиление потенциала между двумя точками.

    Наша аналогия с высотой на горе особенно уместна. Мы не можем разумно говорить о какой-то точке горы как о имеющей определенную высоту, если мы не принимаем точку отсчета для измерения. Если мы говорим, что вершина горы имеет высоту 9200 футов, , мы обычно имеем в виду 9200 футов выше уровня моря , при этом уровень моря является нашей общей точкой отсчета.Однако наше туристическое приключение, в котором мы поднялись на 8500 футов за два дня, не означало, что мы поднялись на абсолютную высоту 8500 футов над уровнем моря. Поскольку я никогда не указывал высоту на уровне моря у подножия горы, невозможно рассчитать нашу абсолютную высоту в конце дня 2.

    Из приведенных данных вы можете сказать только то, что мы поднялись на 8500 футов над горой. базу, где бы она ни находилась, относительно уровня моря.

    То же самое и с электрическим напряжением: большинство цепей имеют точку, помеченную как заземление, где отсчитываются все остальные напряжения.

    В цепях с питанием от постоянного тока эта точка заземления часто является отрицательным полюсом источника постоянного тока. По сути, напряжение — это величина, относительная между двумя точками: мера того, насколько потенциал увеличился или уменьшился при переходе от одной точки к другой.

    Вернуться к законам ↑


    Действующий закон Кирхгофа

    Действующий закон Кирхгофа — гораздо более легкая концепция. Этот закон гласит, что алгебраическая сумма всех токов в точке соединения (называемой узлом) равна нулю.Другой способ сформулировать этот закон — сказать, что каждый электрон, входящий в узел, должен куда-то выйти.

    Аналогия для визуализации закона тока Кирхгофа: вода течет в тройник и выходит из него :

    Визуализация закона тока Кирхгофа — течь вода

    Пока в этой системе трубопроводов нет утечек, каждая капля воды, попадающая в тройник должен уравновешиваться каплей, выходящей из тройника. Постоянное несоответствие между расходами означало бы нарушение Закона сохранения массы .

    Давайте применим этот принцип к реальной схеме, где все токи были рассчитаны для нас:

    Стрелка показывает ток в направлении обычного обозначения потока

    В узлах , где только два провода соединяются (например, точки A, B и C), величина тока, входящего в узел, в точности равна величине выходящего тока (4 мА, в каждом случае). В узлах, где три провода соединяются с (например, точки D и E), мы видим один большой ток и два меньших тока (один ток 4 мА по сравнению с двумя токами 2 мА) с такими направлениями, что сумма двух меньших токов образуют большее течение.

    Точно так же, как баланс расхода воды в «тройник» трубопровода и из него является следствием Закона сохранения массы, баланс электрических токов, протекающих и выходящих из соединения цепи , является следствием Закон сохранения заряда, еще один фундаментальный закон сохранения в физике.

    Вернуться к законам ↑


    Последовательные и параллельные резисторы | Правила Кирхгофа

    Вернуться к законам ↑

    Ссылка // Уроки промышленного приборостроения — Тони Р.Kuphaldt

    Правила Кирхгофа | Безграничная физика

    Введение и значение

    Законы цепи Кирхгофа — это два уравнения, которые касаются сохранения энергии и заряда в контексте электрических цепей.

    Цели обучения

    Опишите взаимосвязь между законами цепи Кирхгофа и энергией и зарядом в электрических цепях.

    Основные выводы

    Ключевые моменты
    • Кирхгоф использовал работу Георга Ома в качестве основы для создания закона Кирхгофа (KCL) и закона напряжения Кирхгофа (KVL) в 1845 году.Их можно вывести из уравнений Максвелла, появившихся 16-17 лет спустя.
    • Невозможно проанализировать некоторые схемы с обратной связью путем упрощения в виде суммы и / или ряда компонентов. В этих случаях можно использовать законы Кирхгофа.
    • Законы Кирхгофа — это частные случаи сохранения энергии и заряда.
    Ключевые термины
    • резистор : электрический компонент, который передает ток прямо пропорциональный напряжению на нем.
    • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея.Она измеряется в вольтах (не в ньютонах, Н; ЭДС — это не сила).
    • конденсатор : Электронный компонент, состоящий из двух проводящих пластин, разделенных пустым пространством (иногда вместо этого между пластинами помещается диэлектрический материал) и способный хранить определенное количество заряда.

    Введение в законы Кирхгофа

    Законы цепи Кирхгофа — это два уравнения, впервые опубликованные Густавом Кирхгофом в 1845 году. По сути, они касаются сохранения энергии и заряда в контексте электрических цепей.

    Хотя законы Кирхгофа можно вывести из уравнений Джеймса Клерка Максвелла, Максвелл не публиковал свою систему дифференциальных уравнений (которые составляют основу классической электродинамики, оптики и электрических цепей) до 1861 и 1862 годов. Кирхгоф, скорее, использовал Георга. Работа Ома как основа для закона Кирхгофа (KCL) и закона напряжения Кирхгофа (KVL) .

    Законы Кирхгофа чрезвычайно важны для анализа замкнутых цепей.Рассмотрим, например, схему, показанную на рисунке ниже, состоящую из пяти резисторов, соединенных последовательно и параллельно. Упрощение этой схемы до комбинации последовательного и параллельного включения невозможно. Однако, используя правила Кирхгофа, можно проанализировать схему, чтобы определить параметры этой схемы, используя значения резисторов (R 1 , R 2 , R 3 , r 1 и r 2 ) . Также важно в этом примере то, что значения E 1 и E 2 представляют источники напряжения (например.г., батарейки).

    Замкнутая цепь : Чтобы определить все переменные (т. Е. Падение тока и напряжения на различных резисторах) в этой цепи, необходимо применить правила Кирхгофа.

    В заключение, законы Кирхгофа зависят от определенных условий. Закон напряжения является упрощением закона индукции Фарадея и основан на предположении, что в замкнутом контуре нет нет флуктуирующего магнитного поля . Таким образом, хотя этот закон может быть применен к схемам, содержащим резисторы и конденсаторы (а также другие элементы схемы), он может использоваться только как приближение к поведению схемы при изменении тока и, следовательно, магнитного поля.

    Правило перекрестка

    Правило соединений Кирхгофа гласит, что в любом соединении цепи сумма токов, протекающих в это соединение и выходящих из него, равна.

    Цели обучения

    Сформулируйте правило пересечения Кирхгофа и опишите его ограничения

    Основные выводы

    Ключевые моменты
    • Правило соединения Кирхгофа — это применение принципа сохранения электрического заряда: ток — это поток заряда за время, и если ток постоянный, то, что течет в точку в цепи, должно быть равно тому, что вытекает из нее.{\ text {n}} \ text {I} _ \ text {k} = 0 [/ latex], где I k — ток k, а n — общее количество проводов, входящих и выходящих из соединения. с учетом.
    • Закон перехода Кирхгофа ограничен в его применимости в регионах, в которых плотность заряда может быть непостоянной. Поскольку заряд сохраняется, это возможно только при наличии потока заряда через границу области. Этот поток был бы текущим, что нарушало бы закон.
    Ключевые термины
    • электрический заряд : квантовое число, определяющее электромагнитные взаимодействия некоторых субатомных частиц; По соглашению, электрон имеет электрический заряд -1, а протон +1, а кварки имеют дробный заряд.
    • ток : временная скорость протекания электрического заряда.

    Правило соединения Кирхгофа, также известное как текущий закон Кирхгофа (KCL), первый закон Кирхгофа, правило точки Кирхгофа и узловое правило Кирхгофа, является применением принципа сохранения электрического заряда.

    Правило соединений Кирхгофа гласит, что в любом соединении (узле) в электрической цепи сумма токов, протекающих в этом соединении, равна сумме токов, вытекающих из этого соединения.Другими словами, при условии, что ток будет положительным или отрицательным в зависимости от того, течет ли он к стыку или от него, алгебраическая сумма токов в сети проводников, встречающихся в одной точке, равна нулю. Визуальное представление можно увидеть на.

    Закон соединений Кирхгофа : Закон соединений Кирхгофа, проиллюстрированный как токи, текущие в соединение и выходящие из него.

    Теория правил Кирхгофа и петель : Мы оправдываем правила Кирхгофа, исходя из сохранения энергии.{\ text {n}} \ text {I} _ \ text {k} = 0 [/ latex]

    , где n — общее количество ветвей, по которым ток идет к узлу или от него.

    Этот закон основан на сохранении заряда (измеряется в кулонах), который является произведением силы тока (в амперах) и времени (в секундах).

    Ограничение

    Применимость закона Кирхгофа ограничена. Это справедливо для всех случаев, когда полный электрический заряд (Q) постоянен в рассматриваемой области. На практике это всегда так, если закон применяется к определенной точке.Однако в определенной области плотность заряда может быть непостоянной. Поскольку заряд сохраняется, это возможно только при наличии потока заряда через границу области. Этот поток был бы током, что нарушало бы закон Кирхгофа.

    Правило петли

    Правило петли Кирхгофа гласит, что сумма значений ЭДС в любом замкнутом контуре равна сумме падений потенциала в этом контуре.

    Цели обучения

    Сформулируйте правило петли Кирхгофа, учитывая его допущения.

    Основные выводы

    Ключевые моменты
    • Правило петли Кирхгофа — это правило, относящееся к схемам, основанное на принципе сохранения энергии.\ text {n} \ text {V} _ \ text {k} = 0 [/ latex].
    • Правило петли Кирхгофа является упрощением закона индукции Фарадея и выполняется при предположении, что нет флуктуирующего магнитного поля, связывающего замкнутый контур.
    Ключевые термины
    • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
    • Резистор
    • : электрический компонент, который передает ток прямо пропорционально напряжению на нем.

    Правило петли Кирхгофа (также известное как закон напряжения Кирхгофа (KVL), правило сетки Кирхгофа, второй закон Кирхгофа, или второе правило Кирхгофа ) — это правило, относящееся к схемам, и основано на принципе сохранения энергия.

    Сохранение энергии — принцип, согласно которому энергия не создается и не разрушается — широко используется во многих исследованиях в области физики, включая электрические схемы. Применительно к схемотехнике подразумевается, что направленная сумма разностей электрических потенциалов (напряжений) вокруг любой замкнутой сети равна нулю.Другими словами, сумма значений электродвижущей силы (ЭДС) в любом замкнутом контуре равна сумме падений потенциала в этом контуре (которые могут исходить от резисторов).

    Другое эквивалентное утверждение состоит в том, что алгебраическая сумма произведений сопротивлений проводников (и токов в них) в замкнутом контуре равна общей электродвижущей силе, доступной в этом контуре. Математически правило петли Кирхгофа можно представить как сумму напряжений в цепи, которая приравнивается к нулю:

    Теория правил Кирхгофа и петель : Мы оправдываем правила Кирхгофа, исходя из сохранения энергии.\ text {n} \ text {V} _ \ text {k} = 0 [/ latex].

    Здесь V k — напряжение на элементе k, а n — общее количество элементов в замкнутой цепи. Иллюстрация такой схемы показана на. В этом примере сумма v 1 , v 2 , v 3 и v 4 (и v 5 , если он включен), нуль.

    Правило петли Кирхгофа : Правило петли Кирхгофа гласит, что сумма всех напряжений вокруг петли равна нулю: v1 + v2 + v3 — v4 = 0.

    Учитывая, что напряжение является мерой энергии на единицу заряда, правило петли Кирхгофа основано на законе сохранения энергии, который гласит: общая энергия, полученная на единицу заряда, должна равняться количеству энергии, потерянной на единицу заряда .

    Пример

    иллюстрирует изменения потенциала в простой петле последовательной цепи. Второе правило Кирхгофа требует, чтобы ЭДС-Ir-IR 1 -IR 2 = 0. В перестановке это ЭДС = Ir + IR 1 + IR 2 , что означает, что ЭДС равна сумме падений IR (напряжения) в контуре.ЭДС подает 18 В, которое уменьшается до нуля из-за сопротивлений, с 1 В на внутреннем сопротивлении и 12 В и 5 В на двух сопротивлениях нагрузки, всего 18 В.

    Правило цикла : пример второго правила Кирхгофа, согласно которому сумма изменений потенциала вокруг замкнутого контура должна быть равна нулю. (a) В этой стандартной схеме простой последовательной цепи ЭДС подает 18 В, которое снижается до нуля из-за сопротивлений, с 1 В на внутреннем сопротивлении и 12 В и 5 В на двух сопротивлениях нагрузки для всего 18 В.(b) Этот вид в перспективе представляет потенциал как нечто вроде американских горок, где потенциал повышается за счет ЭДС и понижается за счет сопротивлений. (Обратите внимание, что сценарий E означает ЭДС.)

    Ограничение

    Правило петли Кирхгофа является упрощением закона индукции Фарадея и выполняется при предположении, что нет флуктуирующего магнитного поля, связывающего замкнутый контур. В присутствии переменного магнитного поля могут индуцироваться электрические поля и возникать ЭДС, и в этом случае правило петли Кирхгофа нарушается.

    Приложения

    Правила Кирхгофа можно использовать для анализа любой схемы и модифицировать для схем с ЭДС, резисторами, конденсаторами и т. Д.

    Цели обучения

    Опишите условия, при которых полезно применять правила Кирхгофа.

    Основные выводы

    Ключевые моменты
    • Правила Кирхгофа могут применяться к любой цепи, независимо от ее состава и структуры.
    • Поскольку часто легко комбинировать элементы параллельно и последовательно, не всегда удобно применять правила Кирхгофа.
    • Для определения тока в цепи можно применить правила петли и соединения. Как только все токи связаны правилом соединения, можно использовать правило петли для получения нескольких уравнений, которые будут использоваться в качестве системы для нахождения каждого значения тока в терминах других токов. Их можно решить как систему.
    Ключевые термины
    • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.

    Обзор

    Правила

    Кирхгофа можно использовать для анализа любой схемы, изменяя их для схем с электродвижущими силами, резисторами, конденсаторами и т. Д. Однако с практической точки зрения правила полезны только для характеристики тех цепей, которые нельзя упростить, комбинируя элементы последовательно и параллельно.

    Последовательные и параллельные комбинации, как правило, намного проще выполнить, чем применение любого из правил Кирхгофа, но правила Кирхгофа применимы более широко и должны использоваться для решения проблем, связанных со сложными схемами, которые нельзя упростить, комбинируя элементы схемы последовательно или параллельно.

    Пример правил Кирхгофа

    показывает очень сложную схему, но правила Кирхгофа петли и соединения могут быть применены. Чтобы решить схему для токов I 1 , I 2 и I 3 , необходимы оба правила.

    Правила Кирхгофа: пример задачи : На этом изображении показана очень сложная схема, которую можно сократить и решить с помощью правил Кирхгофа.

    Применяя правило Кирхгофа в точке a, находим:

    [латекс] \ text {I} _1 = \ text {I} _2 + \ text {I} _3 [/ latex]

    , потому что I 1 течет в точку a, а I 2 и I3 вытекает.То же самое можно найти в точке e. Теперь мы должны решить это уравнение для каждой из трех неизвестных переменных, что потребует трех разных уравнений.

    Рассматривая цикл abcdea, мы можем использовать правило цикла Кирхгофа:

    [латекс] — \ text {I} _2 \ text {R} _2 + \ mathrm {\ text {emf}} _ 1- \ text {I} _2 \ text {r} _1- \ text {I} _1 \ text { R} _1 = — \ text {I} _2 (\ text {R} _2) + \ text {r} _1) + \ mathrm {\ text {emf}} _ 1- \ text {I} _1 \ text {R} _1 = 0 [/ латекс]

    Подставляя значения сопротивления и ЭДС из рисунка на диаграмме и отменяя единицу измерения ампер, получаем:

    [латекс] -3 \ text {I} _2 + 18-6 \ text {I} _1 = 0 [/ латекс]

    Это вторая часть системы трех уравнений, которую мы можем использовать, чтобы найти все три текущих значения.Последнюю можно найти, применив правило цикла к циклу aefgha, которое дает:

    [латекс] \ text {I} _1 \ text {R} _1 + \ text {I} _3 \ text {R} _3 + \ text {I} _3 \ text {r} _2- \ mathrm {\ text {emf}} _2 = \ text {I} _1 \ text {R} _1 + \ text {I} _3 (\ text {R} _3 + \ text {r} _2) — \ mathrm {\ text {emf}} _ 2 = 0 [/ латекс ]

    Используя замену и упрощение, это становится:

    [латекс] 6 \ text {I} _1 + 2 \ text {I} _3-45 = 0 [/ латекс]

    В этом случае знаки поменялись местами по сравнению с другим циклом, потому что элементы перемещаются в противоположном направлении.

    Теперь у нас есть три уравнения, которые можно использовать в системе. Второй будет использоваться для определения I 2 и может быть изменен на:

    [латекс] \ text {I} _2 = 6-2 \ text {I} _1 [/ латекс]

    Третье уравнение может использоваться для определения I 3 и может быть преобразовано в:

    [латекс] \ text {I} _3 = 22,5-3 \ text {I} _1 [/ латекс]

    Подставляя новые определения I 2 и I 3 (которые являются общими терминами I 1 ) в первое уравнение (I 1 = I 2 + I 3 ), получаем:

    [латекс] \ text {I} _1 = (6-2 \ text {I} _1) + (22.5-3 \ text {I} _1) = 28,5-5 \ text {I} _1 [/ latex]

    Упрощая, получаем, что I 1 = 4,75 A. Подставляя это значение в два других уравнения, мы находим, что I 2 = -3,50 A и I 3 = 8,25 A.

    Напряжение и ток в цепях

    Законы Кирхгофа: напряжение и ток в цепях
    • Содержание>
    • Законы Кирхгофа: напряжение и ток в цепях

    Темы и файлы

    E&M Тема

    Capstone File

    Перечень оборудования

    Введение

    Цель этого упражнения — изучить два закона Кирхгофа для электрических цепей.Используйте датчик напряжения, датчик тока и программное обеспечение Capstone для измерения напряжения на и тока от до частей сложной цепи.

    Фон

    Закон Ома описывает взаимосвязь между током, напряжением и сопротивлением в простых цепях. Многие схемы более сложные и не могут быть решены с помощью закона Ома. Эти схемы имеют множество источников питания и ответвлений, что делает использование закона Ома непрактичным или невозможным.В 1857 году немецкий физик Густав Кирхгоф разработал методы решения сложных схем. Кирхгоф сделал два вывода, известных сегодня как законы Кирхгофа. Два закона Кирхгофа описывают уникальное соотношение между током, напряжением и сопротивлением в сложных электрических цепях.
    • Закон Кирхгофа по току: Ток, поступающий в любую точку соединения в цепи, равен току, выходящему из этого соединения. Другими словами: независимо от того, сколько путей в одну точку и из нее, весь ток, выходящий из этой точки, должен равняться току, приходящему в эту точку.Этот закон иногда называют правилом перехода .
    • Закон Кирхгофа о напряжении: Алгебраическая сумма напряжений вокруг любого замкнутого контура равна нулю. Другими словами: падение напряжения в любом замкнутом контуре должно равняться приложенному напряжению. Этот закон иногда называют правилом петли .
    Законы Кирхгофа могут быть связаны с сохранением энергии и заряда, если мы рассмотрим схему с одной нагрузкой и источником.Поскольку нагрузка потребляет всю мощность, поступающую от источника, энергия и заряд сохраняются. Поскольку напряжение и ток могут быть связаны с энергией и зарядом, тогда законы Кирхгофа повторяют законы, управляющие сохранением энергии и заряда.

    5.10: Закон Кирхгофа о напряжении для электростатики — интегральная форма

    1. Последнее обновление
    2. Сохранить как PDF
    1. Авторы и авторство

    Как описано в Разделе 5.{{\ bf r} _2} {\ bf E} \ cdot d {\ bf l} \]

    , где путь интеграции может быть любым путем, который начинается и заканчивается в указанных точках. Подумайте, что произойдет, если выбранный путь через пространство начинается и заканчивается в той же точке ; то есть \ ({\ bf r} _2 = {\ bf r} _1 \). В этом случае путь интеграции — замкнутый цикл. Поскольку \ (V_ {21} \) зависит только от положений начальной и конечной точек и поскольку потенциальная энергия в этих точках одинакова, мы заключаем:

    \ [\ в коробке {\ oint {{\ bf E} \ cdot d {\ bf l}} = 0} \ label {m0062_eKVLES} \]

    Этот принцип известен как Закон Кирхгофа для электростатики .

    Закон Кирхгофа о напряжении для электростатики (уравнение \ ref {m0062_eKVLES}) гласит, что интеграл электрического поля по замкнутому контуру равен нулю.

    Стоит отметить, что этот закон является обобщением принципа, о котором читатель, вероятно, уже знает. В теории электрических цепей сумма напряжений в любом замкнутом контуре в цепи равна нулю. Это также известно как закон напряжения Кирхгофа, потому что это точно такой же принцип. Чтобы получить уравнение \ ref {m0062_eKVLES} для электрической цепи, просто разделите замкнутый путь на ветви, каждая из которых представляет один компонент.Тогда интеграл от \ ({\ bf E} \) по каждой ветви — это напряжение ветви; то есть единицы В / м, умноженные на единицы m, дают единицы V. Тогда сумма этих напряжений ветви по любому замкнутому контуру равна нулю, как диктуется уравнением \ ref {m0062_eKVLES}.

    Наконец, имейте в виду, что уравнение \ ref {m0062_eKVLES} относится только к электростатике. В электростатике предполагается, что электрическое поле не зависит от магнитного поля. Это верно, если магнитное поле либо равно нулю, либо не меняется во времени.Если магнитное поле изменяется во времени, то уравнение \ ref {m0062_eKVLES} необходимо изменить, чтобы учесть влияние магнитного поля, которое должно сделать размер правой стороны потенциально отличным от нуля. Обобщенная версия этого выражения, которая правильно учитывает этот эффект, известна как уравнение Максвелла-Фарадея (раздел 8.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *