Выбор теплового реле по мощности двигателя: Выбор теплового реле

Содержание

принцип работы, устройство, как выбрать

Во время эксплуатации энергетического оборудования на него постоянно воздействуют токовые перегрузки, снижающие долговечность. Защитой в таких ситуациях служит тепловое реле для электродвигателя, отключающее электроснабжение при возникновении нестандартных обстоятельств.

Предлагаем разобраться в конструкции, принципе работы, видах и нюансах подключения защитного устройств. Кроме того, мы расскажем, какие параметры и характеристики стоит учитывать пи выборе теплового реле.

Содержание статьи:

Конструктивное исполнение тепловых реле

Тепловые реле всех видов имеют аналогичное устройство. Наиболее важный элемент любого из них — чувствительная биметаллическая пластина.

Значение тока срабатывания находится под влиянием температурных показателей среды, в которой работает реле. Рост температуры уменьшает время срабатывания.

Чтобы это влияние свести к минимуму, разработчики устройств выбирают как можно большую температуру биметалла. С этой же целью некоторые реле снабжают дополнительной компенсационной пластиной.

Состоит прибор из корпуса, нихромового нагревателя, биметаллической пластины, защелки, винта, рычага, подвижного контакта и кнопки возврата (+)

Если в конструкцию реле включены нихромовые нагреватели, подключение их осуществляют по параллельной, последовательной или параллельно-последовательной схеме с пластиной.

Значение тока в биметалле регулируют при помощи шунтов. Все детали вмонтированы в корпус. Биметаллический элемент U-образной формы зафиксирован на оси.

Цилиндрическая пружина упирается в один конец пластины. Другим концом она базируется на уравновешенной изоляционной колодке.Совершает повороты вокруг оси и является опорой для контактного мостика, оснащенного контактами из серебра.

Для координации тока уставки биметаллическая пластина своим левым концом соединена с ее механизмом. Регулировка происходит за счет влияния на первичную деформацию пластины.

Если величина токов перегрузки становится равной или большей чем уставки, изоляционная колодка поворачивается под воздействием пластины. Во время ее опрокидывания происходит отключение размыкающего контакта устройства.

Тепловое реле ТРТ в разрезе. Здесь основными элементами являются: корпус (1), механизм уставки (2), кнопка (3), ось (4), контакты серебряные (5), контактный мостик (6), изоляционная колодка (7), пружина (8), пластина биметаллическая (9), ось (10)

Автоматически реле делает возврат в первоначальное положение. Процесс самовозврата занимает не более 3 минут с момента включения защиты. Возможен и ручной возврат, для этого предусмотрена специальная клавиша Reset.

При ее использовании прибор занимает исходное положение за 1 минуту. Чтобы задействовать кнопку, ее проворачивают против часовой стрелки до момента, когда она поднимется над корпусом. Ток установки обычно указан на щитке.

Принцип работы приспособления

Выполняя защитную функцию,  разъединяет силовые питающие цепи. Тепловое реле отличается от него тем, что при превышении нагрузки просто выдает управляющий сигнал. При такой защите токи небольшой величины коммутируются в одной цепи управления.

В схеме перед термореле находится . Когда цепи размыкаются в аварийном порядке, отпадает надобность в дублировании работы контактора. Следовательно, не расходуется материал для изготовления силовых контактных групп.

Наиболее популярными являются приборы, оснащенные биметаллическими пластинами. Собственно пластина состоит из двух аналогичных элементов.

Один из них обладает значительным температурным коэффициентом, а другой — несколько меньшим. Эти две составляющие плотно прилегают друг к другу.

Так как составные части биметаллической пластины выполнены из пары разнородных металлов, имеющих неодинаковые коэффициенты расширения, нагрев заставляет ее изгибаться и взаимодействовать с контактами

Обеспечивается такое жесткое скрепление путем сваривания или прокаткой в горячем виде. За счет того, что пластина закреплена неподвижно, при нагреве наблюдается ее изгиб в сторону элемента с меньшим температурным коэффициентом. Этот принцип взят за основу при создании .

При их производстве применяют хромоникелевую сталь и немагнитную, обладающие большим значением температурного коэффициента. Как материал с малым значением этого параметра используют инвар — соединение никеля с железом.

По такой схеме функционирует тепловое реле. Незакрепленный конец биметаллической пластины при ее прогибе воздействует на контакты термореле (+)

Пластину из биметалла прогревают токи нагрузки. Протекают они чаще всего по специальному нагревателю. Существует и комбинированный нагрев, при котором, кроме тепла, отдаваемого нагревателем, биметалл прогревает еще и ток, проходящий через него.

Как подключить тепловое реле

Замкнутый контакт (normal connected), при помощи которого производят подключение теплового модуля к магнитному пускателю, обозначают NC или НЗ, что расшифровывается, как нормально замкнутый. Буквенным сочетанием NO обозначают нормально разомкнутый контакт.

В несложной схеме он применяется для подачи сигнала, свидетельствующего о срабатывании защиты двигателя из-за превышения пороговой температуры.

При внедрении в сложные схемы управления он способен формировать в аварийном порядке сигнал выведения из рабочего состояния конвейера.

Тепловое реле размещают за контакторами, но перед электродвигателем. Подсоединение контакта normal connectde к кнопке «Стоп» на пульте управления осуществляют по последовательной схеме (+)

Обозначение клемм контакторов диктует ГОСТ: нормально замкнутый — 95-96, нормально разомкнутый — 97-98. К первой паре подключают пускатель, вторую используют для схем сигнализации. Так как двигатель и тепловое реле нужно защищать от КЗ, цепь должна содержать автомат защиты.

Схема прибора включает кнопки «Тест» и «Стоп» или «Сброс». С помощью первой проверяют работоспособность, а второй — отключают защиту вручную.

При помощи переключателя поворотного взвода после включения защиты вновь запускают электродвигатель. На стеклянную крышку изделия наносят маркировку и пломбируют.

Если исходить из типа подключения, можно выделить две большие группы термореле:

  • первая группа – устройства, монтируемые за магнитным пускателем и те, что подключаются с использованием перемычек;
  • вторая группа – приборы, устанавливаемые на контактор пускателя непосредственно.

В последнем случае при запуске основная нагрузка приходится на контактор. Здесь тепловой модуль оснащен медными контактами, подключенными к входам пускателя непосредственно.

Схема теплового реле. На нее нанесены обозначения управляющих элементов и выводов. У разных моделей эти обозначения могут отличаться (+)

К ТР подключают провода от двигателя. Само реле в такой схеме представляет промежуточный узел, анализирующий ток, протекающий транзитом к двигателю от магнитного пускателя.

Нюансы при установке прибора

На скорость срабатывания теплового модуля могут повлиять не только токовые перегрузки, но и показатели внешней температуры. Защита сработает даже в условиях отсутствия перегрузок.

Бывает и так, что под воздействием принудительной вентиляции двигатель подвержен тепловой перегрузке, но защита не срабатывает.

Чтобы избежать таких явлений, нужно следовать рекомендациям специалистов:

  1. При выборе реле ориентироваться на максимально допустимую температуру срабатывания.
  2. Защиту монтировать в одном помещении с защищаемым объектом.
  3. Для установки выбирать места, где нет источников тепла или вентиляционных устройств.
  4. Нужно настраивать тепловой модуль, ориентируясь на реальную температуру окружения.
  5. Лучший вариант — наличие в конструкции реле встроенной термокомпенсации.

Дополнительной опцией термореле является защита при обрыве фазы или полностью питающей сети. Для трехфазных моторов этот момент особо актуален.

Ток в тепловом реле движется последовательно через его нагревательный модуль и дальше к двигателю . С обмоткой пускателя прибор соединяют дополнительные контакты (+)

При неполадках в одной фазе две остальные принимают на себя ток большей величины. В результате быстро происходит перегрев, а далее — отключение. При неэффективной работе реле может выйти из строя и двигатель, и проводка.

Существующие типы устройств

Класс тепловых реле включает несколько видов: ТРН,РТЛ, ТРП, РТИ, РТТ. Применение каждого обусловлено особенностями конструкции.

Токовое реле двухфазное (ТРН), используют в основном для электрозащиты двигателей асинхронных, имеющих короткозамкнутый ротор. Как правило, они работают от сети с номиналом до 500 В, частотой 50 Гц.

Оснащено реле ручным механизмом управления контактами. Габариты ТРН дают возможность встраивать их в комплектные устройства как закрытого, так и открытого типа станций, координирующих работу приводов. Функцию защиты от КЗ они не выполняют и сами нуждаются в ней.

Реле ТРП имеют механизм, устойчивый к вибрациям, ударопрочный корпус. Разработаны для охраны асинхронных трехфазных двигателей, функционирующих в условиях больших механических нагрузок.

Рассчитаны они на максимальный ток 600 А и напряжение максимум 500 В, а в цепях с постоянным током — 440 В. Автоматика нечувствительна к внешней температуре и срабатывает тогда, когда показатель превышает 200°C.

Устройства РТЛ — трехфазные, кроме защиты двигателя от перегрузок, предохраняют от заклинивания ротор. Они страхуют его от поломок в случае перекоса фаз, при затяжном пуске.

Работают автономно с клеммниками КРЛ и в модификации с магнитным пускателем ПМЛ. Токовый рабочий промежуток — от 0,10 до 86 А.

Контактор в паре с тепловым реле. Когда устройство срабатывает, нормально замкнутый и нормально разомкнутый контакт синхронно меняют свое положение

РТТ – приспособление защищает асинхронные двигатели от токовых бросков, перекоса фаз, заклинивания и других нештатных ситуаций. Используется и как самостоятельный прибор, и в виде встройки в пускатели ПМА, ПМЕ.

Изделие трехфазное РТИ наделено теми же функциями, что и предыдущее, но используется в модификации с пускателями КТМ и КМИ.

Как выбрать тепловое реле

Двигателю необходимо реле для защиты, когда по технологическим причинам существует потенциальная угроза его перегруженности. Второй случай — необходимость ограничения времени запуска в условиях пониженного напряжения.

Эти требования содержатся в соответствующей инструкции. В которой изложено пожелание об оснащении защитного изделия выдержкой по времени. Реализуют все это при помощи тепловых реле.

Базовые характеристики приспособлений

Базовыми данными устройства, защищающего двигатель, являются:

  1. Быстродействие контактов в зависимости от параметров тока — время-токовый показатель.
  2. Рабочий ток, при котором ТП срабатывает.
  3. Предельные токовые регулировки уставки. Во всех приборах, выпускаемых разными производителями, этот параметр отличается незначительно. Превышение номинала на 20% влечет за собой срабатывание прибора минут через 25.
  4. Номинальная величина тока рабочей биметаллической пластины. Имеется в виду значение, при превышении которого реле не отключается немедленно.
  5. Токовый диапазон, в котором срабатывает реле.

Сведения о тепловом реле можно получить, расшифровав его маркировку. Символ, обозначающий тип исполнения, может отличаться.

Контактор в паре с тепловым реле. Когда устройство срабатывает, нормально замкнутый и нормально разомкнутый контакт синхронно меняют свое положение (+)

Места размещения отечественных ТП регламентированы ГОСТом 15150. На их работу оказывают влияние такие моменты, как высота подъема над уровнем моря, вибрация, удары, ускорения.

Все эти нюансы производители отражают в маркировке своих изделий. Некоторые из них дополнительно включают сведения о возможности работы при наличии вредных веществ и взрывоопасных газов.

Выбор устройства по правилам

Требования к термореле изложены в инструкции. Здесь же оговорено, что защита должна обладать выдержкой по времени. Реализуют все запросы при помощи специальных приборов.

Время-токовые характеристики ТР и защищаемого двигателя. При токах КЗ нагревательные элементы реле становятся термически неустойчивыми (+)

Анализируя времятоковые характеристики ТР, нужно принимать во внимание, что срабатывание может происходить из перегретого или холодного состояния.

Безупречная защита предполагает, что кривая, изображающая оптимальную для беспроблемного функционирования оборудования зависимость продолжительности токопрохождения от величины тока для реле и двигателя, разные. Первая должна находиться ниже, чем вторая.

В таблице приведены технические характеристики термореле типа РТЛ. По ней можно подобрать защитное устройство с необходимыми параметрами по мощности двигателя (+)

Правильный подбор защитного изделия осуществляется на основе такого параметра, как рабочий номинальный ток. Его значение связано с номинальным током нагрузки электродвигателя.

Как международными, так и отечественными стандартами предусмотрено, что номинальный ток двигателя аналогичен уставке тока срабатывания термореле.

Это значит, что включение в работу прибора происходит при перегрузке от 20 до 30% или при Iср.х1,2 или 1,3 не позже 20 минут.

Исходя из этого, выбор нужно осуществлять так, чтобы ток несрабатывания ТР превышал номинальный ток прикрываемого объекта в среднем на 12%. Величина In отображена в паспорте прибора и на табличке, закрепленной на корпусе.

Основываясь на ней, подбирают как ТР, так и пускатель, соответствующий ему. Шкала реле калибрована в амперах и, как правило, отвечает значению тока уставки.

В качестве примера можно привести подбор теплового реле для асинхронного двигателя, подключенного к сети 380 В, мощностью 1,5 кВт.

Рабочий номинальный ток для него — 2,8 А, значит, для теплового реле пороговый ток будет равен: 1,2*2,8 = 3,36 А. По таблице выбор нужно остановить на РТЛ-1008, у которого диапазон регулировки находится в пределах от 2,4 до 4 А.

При срабатывании защиты сначала устраняют первопричину остановки, а затем возвращают «теплушку» в исходное состояние при помощи клавиши возврата

Когда паспортные данные двигателя неизвестны, ток определяют путем использования специальных приборов — токоизмерительных клещей или мультиметра с соответствующей опцией. Измерения проводят на каждой из фаз.

Важно при выборе уделить внимание напряжению, указанному на приборе. Если запланировано использовать тандем ТР-пускатель, нужно учесть число контактов.

При включении устройства в трехфазную сеть необходим модуль, имеющий функцию защиты для случаев перегорания проводников или перекоса фаз.

Выводы и полезное видео по теме

Схема эффективной защиты двигателя:

Составные части теплового реле:

Принцип взаимодействия различных приборов в разных вариантах подключения теплового реле одинаков. Для лучшей ориентации в схемах надо уметь “читать” маркировку устройств. В идеале все работы по подключению должен выполнять мастер, имеющий допуск к работе в условиях высокого напряжения.

Есть, что дополнить, или возникли вопросы по выбору и применению теплового реле? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования устройств. Форма для связи находится в нижнем блоке.

Как выбрать тепловое реле по току



Инструкция по выбору теплового реле для защиты электродвигателя

Методика выбора

Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.

Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.

Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.

Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4.9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.

Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.

Что делать, если паспортные данные не известны?

Для этого случая рекомендуем использовать токовые клещи или мультиметр С266, конструкция которого также включает токоизмерительные клещи. С помощью данных приборов нужно определить ток мотора в работе, измерив его на фазах.

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.

Кстати, недавно мы рассмотрели принцип действия и устройство тепловых реле, с чем настоятельно рекомендуем вам ознакомиться!

В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.

Напоследок рекомендуем просмотреть полезное видео по теме:

Надеемся, прочитав нашу статью, вам стало понятно, как выбрать тепловое реле для двигателя по номинальному току, а также мощности самого электродвигателя. Как вы видите, условия выбора аппарата не сложные, т.к. можно без формул и сложных вычислений подобрать подходящий номинал, используя таблицу!

Советуем также прочитать:

Источник

Виды и конструкции тепловых реле, расчет и выбор теплового реле для защиты двигателя

Тепловое реле выполняет функцию защиты от затяжных перегрузок, их работа похожа на работу теплового разъединителя в автоматических выключателей. В зависимости от величины перегрузки (отклонению от номинального режима – I/Iн) оно срабатывает через соответствующий промежуток времени, который можно вычислить по время-токовой характеристике теплового реле. Давайте подробно рассмотрим, что такое тепловое реле и как его правильно выбрать.

Назначение и принцип работы

При перегрузке электродвигателей повышается потребляемый ток, соответственно увеличивается его нагрев. Если двигатель перегревается – нарушается целостность изоляции обмоток, быстрее изнашиваются подшипники, они могут заклинить. При этом тепловой расцепитель автомата может и не защитить оборудование. Для этого нужно тепловое реле.

Перегрузки могут возникать из-за перекоса фаз, затрудненного движения ротора, вследствие как повышенной механической нагрузки, так и проблем с подшипниками, при полном заклинивании вала двигателя и исполнительных механизмах.

Тепловое реле реагирует на возросший ток, и в зависимости от его величины разорвет цепь питания через какое-то время, тем самым сохранив обмотки двигателя целыми. После последующего устранения неисправности, при условии исправности статора, двигатель может продолжить работу.

Если реле сработало по неизвестным причинам, и осмотр показал, что всё в порядке, вы можете вернуть контакты реле в исходное состояние, для этого на нем есть кнопка.

Реле может сработать и в случае затяжного пуска электродвигателя. При этом в обмотках протекают повышенные значения токов. Затяжной пуск – процесс, когда двигатель долго выходит на номинальные обороты. Может произойти из-за перегрузки на валу, либо из-за низкого напряжения в питающей сети.

Время, через которое сработает реле, определяется по время-токовой характеристики конкретного реле, в общем виде она выглядит так:

По вертикальной оси расположено время в секундах, через которое контакты разорвут цепь, а по горизонтальной – во сколько раз фактический ток превышает номинальный. Здесь мы видим, что при номинальном токе реле время работы реле стремится к бесконечности, при перегрузке уже в 1.2 раза оно разомкнется примерно за 5000 секунд, при перегрузке по току в 2 раза – за 500 секунд, при перегрузке в 5-8 раз реле сработает за 10 секунд.

Такая защита исключает постоянные отключения двигателя при кратковременных перегрузках и рывках, но спасают оборудование при длительном выходе за пределы допустимых режимов.

Принцип работы

В реле есть пара биметаллических пластин с разным температурным коэффициентом расширения. Пластины жестко соединены друг с другом, если их нагреть, то конструкция изогнется в сторону участка с меньшим температурным коэффициентом расширения.

Греются пластины за счет протекания тока нагрузки или от нагревателя, через который проходит ток нагрузки, на схеме изображено в виде нескольких витков вокруг биметалла. Протекающий ток нагревает пластину до определенного предела. Чем выше ток, тем быстрее нагрев.

Стоит учитывать, что если реле находится в жарком помещении – нужно выставлять ток срабатывания с большим запасом, ведь происходит дополнительный нагрев от окружающей среды. К тому же, если реле только что сработало – контактам нужно некоторое время, чтобы остыть. Иначе может произойти повторное ложное срабатывание.

Давайте рассмотрим конкретный пример. Выше вы видите устройство реле ТРН. Оно является двухфазным. Состоит из трёх ячеек, в крайних нагревательные элементы, посередине температурный компенсатор, регулятор тока срабатывания, расцепитель, размыкающий контакт, рычаг возврата.

Когда ток протекает через нагревательный элемент (1), его температура растёт, когда ток достигает установленного тока перегрузки биметаллическая пластина(2) деформируется. Толкатель (10) перемещается вправо и толкает пластину температурного компенсатора (3). Когда ток перегрузки достигнут, она выгибается вправо и выводит из зацепления защелку (7). Штанга расцепителя (6) поднимается вверх и контакты (8) размыкаются.

Виды тепловых реле

Тепловые реле могут подключаться на все три фазы или на две из трёх, в зависимости от конструкции. Большинство реле конструктивно разработаны для соответствия определенным магнитным пускателям, это нужно для удобства и аккуратности монтажа. Рассмотрим некоторые из них.

РТЛ – подходит для использования с пускателями типа ПМЛ. С набором клемм КРЛ используется как самостоятельный прибор защиты.

РТТ – подходит для монтажа с пускателями ПМЕ и ПМА. Также может использоваться как самостоятельное, если его смонтировать на специальную панель.

РТИ – тепловые реле для пускателей КМИ и КМТ. На лицевой вы можете видеть пару дополнительных блок-контактов, для реализации схем индикации и прочего.

ТРН – двухфазное тепловое реле. Устанавливается в трёхфазных двигателях, при этом подключается в разрыв двух фаз. Температура окружающей среды не влияет на его работу. На регуляторе тока есть 10 делений 5 на уменьшение, 5 на увеличение, цена одного деления – 5%.

На самом деле тепловых реле существует великое множество, но все они выполняют одну функцию.

Реле очень часто монтируют в специальный железный ящик. На фото пускатель ПМА 4-й величина на 63 Ампера, с трёхфазным тепловым реле.

К современным пускателям тепловое реле подключается так как изображено на фото ниже, получается цельная конструкция.

Красная кнопка «test» нужна для пробного отключения реле, и проверки возможности размыкания контактов.

Такой способ подключения позволяет экономить место на дин рейке.

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем.

Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН.

Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2.

Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт. Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ.

На реле РТИ эти контакты размещены на передней панели:

NO – нормально-открытый – на индикацию;

NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Выбор для конкретного двигателя

Допустим, у нас есть двигатель АИР71В4У2. Его мощность 0.75 кВт. У нас есть трёхфазная сеть с линейным напряжением 380В. Двигатель рассчитан на 220В, если соединить обмотки треугольником и 380В, если звездой. Номинальный ток такого двигателя с обмотками соединенными по схеме звезды 1.94А. Полная информация содержится на его шильдике, который вы видите на фото ниже.

Отсюда следует, что нам нужно подобрать тепловое реле для двигателя с током в 1.94 А. Ток срабатывания теплового реле должен превышать номинальный ток двигателя в 1.2 – 1.3 раза. То есть:

Пусть двигатель работает в составе механизма, в котором допускаются кратковременные, но значительные перегрузки, например для подъёма малых грузов. Тогда ток уставки выбираем в 1.3 раза больше номинального тока асинхронного электродвигателя.

Т.е реле должно сработать при токе 2.5-2.6А. Нам подходят такие реле:

РТЛ-1007, с токовым диапазоном 1.5-2.6 А;

РТЛ-1008, токовый диапазон 2,4-4 А;

РТИ-1307, токовый диапазон 1,6. 2,5 А;

РТИ-1308, токовый диапазон 2,5. 4 А;

ТРН-25 3,2А (с помощью регулятора можно понизить или повысить ток на 25%).

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн — номинальный ток нагрузки электродвигателя, Iнэ — номинальный ток нагревательного элемента теплового реле, с — коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

где Т — температура окружающей среды, °С.

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Проверка

Рассмотрим на примере реле типа ТРН. Чтобы убедиться в исправности реле нужно:

1. Проверить состояние корпуса, нет ли на нем трещин или сколов.

2. Проверить при подключенной нагрузке с номинальным током.

3. Разобрать реле и проверить целостность контактов, остутствие на них нагара,

4. Проверить, не согнуты ли нагреватели.

5. Проверить расстояние между биметаллом и нагревательными элементами. Оно должно быть одинаковым, если нет, то отрегулировать с помощью крепежных винтов.

6. Подать номинальный ток через один из нагревателей, установить уставку в 1.5 раза больше номинального тока. В таком состоянии реле работает 145 с, затем постепенно поворачивают эксентрик регулировки в положение «-5», до срабатывания реле.

7. После активного охлаждения в течение 15 минут проверяют второй нагревательный элемент таким же способом.

Схема проверочного стенда:

Краткое резюме

Тепловые реле – важный элемент в защите электрооборудования. С его помощью вы защитите своё устройство от перегрузок, а его характеристики позволят переносить кратковременные скачки тока без ложных срабатываний, чего не может обеспечить автоматический выключатель.

Реле могут использоваться как вместе с магнитными пускателями соединяясь с его выходными клеммами напрямую, тем самым образуя единую конструкцию, так и в качестве самостоятельных защитных устройств, размещаться в щитке на дин рейке и в электрошкафах.

Источник

Выбор теплового реле для электродвигателя

Тепловое реле РТЛ для электродвигателя

Тепловое реле служит для тепловой защиты электродвигателя. Реле защищает двигатель от перекоса фаз или пропадании фазы, от механической перегрузки и заклинивания ротора.

Тепловое реле двигателя, так же, как и защитный автомат, имеет время-токовую характеристику, которая показывает, что тепловое реле не может сработать при превышении тока уставки мгновенно.

Подробнее про эти характеристики – здесь.

Важно, что спасти от короткого замыкания тепловое реле не может – просто не успеет. Поэтому в цепь питания двигателя всегда перед пускателем ставят автоматический выключатель, предохраняющий от КЗ.

Во всех современных “теплушках” есть одна пара нормально открытых (НО, NO) контактов и одна пара нормально закрытых (НЗ, NC). Обычно схему питания контактора строят так, что при срабатывании теплового реле НЗ контакты разрывают цепь питания катушки контактора, а НО контакты замыкаются и включают цепь индикации аварии.

Тепловая защита электродвигателя заключается в том, что при прохождении через силовые контакты теплового реле тока двигателя нагревается специальная биметаллическая пластина, которая приводит в действие сигнальные контакты. Контакты слаботочные, и включаются в цепь управления пускателем.

При срабатывании реле необходимо устранить причину аварии, затем привести реле в исходное состояние. Для этого на корпусе имеется красная кнопка возврата, на которой напечатана буква R (Reset). В некоторых моделях возврат осуществляется автоматически.

Тепловое реле РТЛ. Контакты для механической и электрической фиксации в пускателе

Как правило, тепловое реле крепится непосредственно на выходные контакты пускателя. И без пускателя не используется. Соответственно, тепловое реле включено с двигателем последовательно.

Для различных вариантов пускателей необходимо передвинуть выводы (контакты) теплового реле для правильной фиксации.

На фото видно (слева), как рекомендовано передвинуть ножки для разных пускателей.

Фиксация также обеспечивается специальным крючочком, который зацепляется за пускатель.

Такие тепловые реле можно применять только для контакторов советских разработок типа ПМЛ, для других производителей тепловые реле РТЛ могут не подойти.

Выбор теплового реле по мощности двигателя

У теплового реле есть один основной параметр, показывающий ток, при котором реле отключит электродвигатель. Ниже приводится таблица по выбору теплового реле для электродвигателей.

Номинальный
ток пускателя, А

Тип реле

Диапазон регулирования максимального тока, А

Мощность
электродвигателя, кВт

Распространенные марки тепловых реле – РТЛ и РТИ, которые по параметрам идентичны, и отличаются в основном креплением и конструкцией.

В интернете гуляет табличка выбора теплового реле двигателя по мощности, где подробно перечислены параметры тепловых реле серии РТЛ. Стоит сказать об ошибке – во второй строке внизу вместо “РТЛ-ЮООМ” следует читать “РТЛ-1000М”. Кто-то распознавал бездумно.

• Выбор теплового реле / Выбор электротеплового реле — таблица параметров, pdf, 34.01 kB, скачан: 6538 раз./

И ещё фото старенькой теплушки, фото новых легко найти в интернете.

Такое тепловое реле ставится на пускатель ПМЕ.

Подробно про схему подключения теплового реле и схему подключения пускателя к трехфазному двигателю рассказано в другой моей статье. Рекомендую.

Книги по электродвигателям

• В.Л.Лихачев. Асинхронные электродвигатели. 2002 г. / Книга представляет собой справочник, в котором подробно описано устройство, принцип работы и характеристики асинхронных электродвигателей. Приводятся справочные данные на двигатели прошлых лет выпуска и современные. Описываются электронные пусковые устройства (инверторы), электроприводы., djvu, 3.73 MB, скачан: 5841 раз./

• Беспалов, Котеленец — Электрические машины / Рассмотрены трансформаторы и электрические машины, используемые в современной технике. Показана их решающая роль в генерации, распределении, преобразовании и утилизации электрической энергии. Даны основы теории, характеристики, режимы работы, примеры конструкций и применения электрических генераторов, трансформаторов и двигателей., pdf, 16.82 MB, скачан: 1704 раз./

• Каталог двигателей Электромаш / Асинхронные электродвигатели с короткозамкнутым ротором — каталог производителя, pdf, 3.13 MB, скачан: 952 раз./

• Каталог двигателей ВЭМЗ / Параметры и каталог двигателей, pdf, 3.53 MB, скачан: 808 раз./

• Дьяков В.И. Типовые расчеты по электрооборудованию / Практические расчеты по электрооборудованию, теоретические сведения, методики расчета, примеры и справочные данные., zip, 1.53 MB, скачан: 1700 раз./

• Карпов Ф.Ф. Как проверить возможность подключения нескольких двигателей к электрической сети / В брошюре приведен расчет электрической сети на колебание напряжения при пуске и самозапуске асинхронных двигателей с короткозамкнутым ротором и синхронных двигателей с асинхронным пуском. Рассмотрены условия, при которых допустим пуск и самозапуск двигателей. Изложение методов расчета иллюстрируется числовыми примерами. Брошюра предназначена для квалифицированных электромонтеров в качестве пособия при выборе типа электродвигателей, присоединяемых к коммунальной или промышленной электросети., zip, 1.9 MB, скачан: 982 раз./

• Руководство по эксплуатации асинхронных двигателей / Настоящее руководство содержит наиболее важные указания по транспортировке, приемке, хранению, монтажу, пусконаладке, эксплуатации, техническому обслуживанию, поиску неисправностей и их устранению для электродвигателей производства «Электромашина». Руководство по эксплуатации предназначено для трехфазных асинхронных электродвигателей низкого и высокого напряжений серий А, АИР, МТН, МТКН, 4МТМ, 4МТКМ, ДА304, А4., pdf, 7.54 MB, скачан: 1950 раз./

• Таблица выбора теплового реле. / Выбор теплового реле., pdf, 34.01 kB, скачан: 3580 раз./

• Иноземцев Е.К. Ремонт асинхронных электродвигателей / Иноземцев Е.К. Ремонт асинхронных электродвигателей электростанций. Рассмотрены конструкция и техническая характеристика асинхронных электродвигателей серий А, АО. А2, А02,4А, АИ, 5А, 6А, А, КА, АДА, ДАН, АН, АД, 2 АС ВО, 4МТН, А2К, А2КП, ДАСК, ВРА, АВР, АВРМ, 2ВРМ, ЗВРМ, ВРПВ, АИУВ, ВРФВ, АВТ. Изложена технология ремонта электродвигателей и их узлов, разборочно-сборочных работ. Приведены приспособления для выполнения работ с учетом передовых методов ремонта и технологий. Рассмотрены вопросы сушки электродвигателей, а также электрических испытаний и измерения обмоток., djvu, 1.84 MB, скачан: 372 раз./

• Торопцев Н. Д. Трехфазный асинхронный двигатель в схеме однофазного включения с конденсатором / Торопцев Н. Д. Трехфазный асинхронный двигатель в схеме однофазного включения с конденсатором. 2000 — 72 с; ил. [Библиотечка электротехника, приложение к журналу «Энергетик», Вып. 7(19)]. Рассмотрены особенности применения трехфазного асинхронного двигателя в качестве конденсаторного, а также различные схемы включения. Даны простые соотношения для определения рабочей емкости конденсатора. Приведены основные технические данные трехфазных асинхронных двигателей серий КА и 4А (сельскохозяйственного назначения), а также конденсаторов различных типов., djvu, 1.84 MB, скачан: 479 раз./

• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 1098 раз./

Источник

Тепловое реле для электродвигателя: принцип работы, устройство, как выбрать

Во время эксплуатации энергетического оборудования на него постоянно воздействуют токовые перегрузки, снижающие долговечность. Защитой в таких ситуациях служит тепловое реле для электродвигателя, отключающее электроснабжение при возникновении нестандартных обстоятельств.

Предлагаем разобраться в конструкции, принципе работы, видах и нюансах подключения защитного устройств. Кроме того, мы расскажем, какие параметры и характеристики стоит учитывать пи выборе теплового реле.

Конструктивное исполнение тепловых реле

Тепловые реле всех видов имеют аналогичное устройство. Наиболее важный элемент любого из них — чувствительная биметаллическая пластина.

Значение тока срабатывания находится под влиянием температурных показателей среды, в которой работает реле. Рост температуры уменьшает время срабатывания.

Чтобы это влияние свести к минимуму, разработчики устройств выбирают как можно большую температуру биметалла. С этой же целью некоторые реле снабжают дополнительной компенсационной пластиной.

Если в конструкцию реле включены нихромовые нагреватели, подключение их осуществляют по параллельной, последовательной или параллельно-последовательной схеме с пластиной.

Значение тока в биметалле регулируют при помощи шунтов. Все детали вмонтированы в корпус. Биметаллический элемент U-образной формы зафиксирован на оси.

Цилиндрическая пружина упирается в один конец пластины. Другим концом она базируется на уравновешенной изоляционной колодке.Совершает повороты вокруг оси и является опорой для контактного мостика, оснащенного контактами из серебра.

Для координации тока уставки биметаллическая пластина своим левым концом соединена с ее механизмом. Регулировка происходит за счет влияния на первичную деформацию пластины.

Если величина токов перегрузки становится равной или большей чем уставки, изоляционная колодка поворачивается под воздействием пластины. Во время ее опрокидывания происходит отключение размыкающего контакта устройства.

Автоматически реле делает возврат в первоначальное положение. Процесс самовозврата занимает не более 3 минут с момента включения защиты. Возможен и ручной возврат, для этого предусмотрена специальная клавиша Reset.

При ее использовании прибор занимает исходное положение за 1 минуту. Чтобы задействовать кнопку, ее проворачивают против часовой стрелки до момента, когда она поднимется над корпусом. Ток установки обычно указан на щитке.

Принцип работы приспособления

Выполняя защитную функцию, автоматический выключатель разъединяет силовые питающие цепи. Тепловое реле отличается от него тем, что при превышении нагрузки просто выдает управляющий сигнал. При такой защите токи небольшой величины коммутируются в одной цепи управления.

В схеме перед термореле находится магнитный пускатель. Когда цепи размыкаются в аварийном порядке, отпадает надобность в дублировании работы контактора. Следовательно, не расходуется материал для изготовления силовых контактных групп.

Наиболее популярными являются приборы, оснащенные биметаллическими пластинами. Собственно пластина состоит из двух аналогичных элементов.

Один из них обладает значительным температурным коэффициентом, а другой — несколько меньшим. Эти две составляющие плотно прилегают друг к другу.

Обеспечивается такое жесткое скрепление путем сваривания или прокаткой в горячем виде. За счет того, что пластина закреплена неподвижно, при нагреве наблюдается ее изгиб в сторону элемента с меньшим температурным коэффициентом. Этот принцип взят за основу при создании тепловых реле.

При их производстве применяют хромоникелевую сталь и немагнитную, обладающие большим значением температурного коэффициента. Как материал с малым значением этого параметра используют инвар — соединение никеля с железом.

Пластину из биметалла прогревают токи нагрузки. Протекают они чаще всего по специальному нагревателю. Существует и комбинированный нагрев, при котором, кроме тепла, отдаваемого нагревателем, биметалл прогревает еще и ток, проходящий через него.

Как подключить тепловое реле

Замкнутый контакт (normal connected), при помощи которого производят подключение теплового модуля к магнитному пускателю, обозначают NC или НЗ, что расшифровывается, как нормально замкнутый. Буквенным сочетанием NO обозначают нормально разомкнутый контакт.

В несложной схеме он применяется для подачи сигнала, свидетельствующего о срабатывании защиты двигателя из-за превышения пороговой температуры.

При внедрении в сложные схемы управления он способен формировать в аварийном порядке сигнал выведения из рабочего состояния конвейера.

Обозначение клемм контакторов диктует ГОСТ: нормально замкнутый — 95-96, нормально разомкнутый — 97-98. К первой паре подключают пускатель, вторую используют для схем сигнализации. Так как двигатель и тепловое реле нужно защищать от КЗ, цепь должна содержать автомат защиты.

Схема прибора включает кнопки «Тест» и «Стоп» или «Сброс». С помощью первой проверяют работоспособность, а второй — отключают защиту вручную.

При помощи переключателя поворотного взвода после включения защиты вновь запускают электродвигатель. На стеклянную крышку изделия наносят маркировку и пломбируют.

Если исходить из типа подключения, можно выделить две большие группы термореле:

  • первая группа – устройства, монтируемые за магнитным пускателем и те, что подключаются с использованием перемычек;
  • вторая группа – приборы, устанавливаемые на контактор пускателя непосредственно.

В последнем случае при запуске основная нагрузка приходится на контактор. Здесь тепловой модуль оснащен медными контактами, подключенными к входам пускателя непосредственно.

К ТР подключают провода от двигателя. Само реле в такой схеме представляет промежуточный узел, анализирующий ток, протекающий транзитом к двигателю от магнитного пускателя.

Нюансы при установке прибора

На скорость срабатывания теплового модуля могут повлиять не только токовые перегрузки, но и показатели внешней температуры. Защита сработает даже в условиях отсутствия перегрузок.

Бывает и так, что под воздействием принудительной вентиляции двигатель подвержен тепловой перегрузке, но защита не срабатывает.

Чтобы избежать таких явлений, нужно следовать рекомендациям специалистов:

  1. При выборе реле ориентироваться на максимально допустимую температуру срабатывания.
  2. Защиту монтировать в одном помещении с защищаемым объектом.
  3. Для установки выбирать места, где нет источников тепла или вентиляционных устройств.
  4. Нужно настраивать тепловой модуль, ориентируясь на реальную температуру окружения.
  5. Лучший вариант — наличие в конструкции реле встроенной термокомпенсации.

Дополнительной опцией термореле является защита при обрыве фазы или полностью питающей сети. Для трехфазных моторов этот момент особо актуален.

При неполадках в одной фазе две остальные принимают на себя ток большей величины. В результате быстро происходит перегрев, а далее — отключение. При неэффективной работе реле может выйти из строя и двигатель, и проводка.

Существующие типы устройств

Класс тепловых реле включает несколько видов: ТРН,РТЛ, ТРП, РТИ, РТТ. Применение каждого обусловлено особенностями конструкции.

Токовое реле двухфазное (ТРН), используют в основном для электрозащиты двигателей асинхронных, имеющих короткозамкнутый ротор. Как правило, они работают от сети с номиналом до 500 В, частотой 50 Гц.

Оснащено реле ручным механизмом управления контактами. Габариты ТРН дают возможность встраивать их в комплектные устройства как закрытого, так и открытого типа станций, координирующих работу приводов. Функцию защиты от КЗ они не выполняют и сами нуждаются в ней.

Реле ТРП имеют механизм, устойчивый к вибрациям, ударопрочный корпус. Разработаны для охраны асинхронных трехфазных двигателей, функционирующих в условиях больших механических нагрузок.

Рассчитаны они на максимальный ток 600 А и напряжение максимум 500 В, а в цепях с постоянным током — 440 В. Автоматика нечувствительна к внешней температуре и срабатывает тогда, когда показатель превышает 200°C.

Устройства РТЛ — трехфазные, кроме защиты двигателя от перегрузок, предохраняют от заклинивания ротор. Они страхуют его от поломок в случае перекоса фаз, при затяжном пуске.

Работают автономно с клеммниками КРЛ и в модификации с магнитным пускателем ПМЛ. Токовый рабочий промежуток — от 0,10 до 86 А.

РТТ – приспособление защищает асинхронные двигатели от токовых бросков, перекоса фаз, заклинивания и других нештатных ситуаций. Используется и как самостоятельный прибор, и в виде встройки в пускатели ПМА, ПМЕ.

Изделие трехфазное РТИ наделено теми же функциями, что и предыдущее, но используется в модификации с пускателями КТМ и КМИ.

Как выбрать тепловое реле

Двигателю необходимо реле для защиты, когда по технологическим причинам существует потенциальная угроза его перегруженности. Второй случай — необходимость ограничения времени запуска в условиях пониженного напряжения.

Эти требования содержатся в соответствующей инструкции. В которой изложено пожелание об оснащении защитного изделия выдержкой по времени. Реализуют все это при помощи тепловых реле.

Базовые характеристики приспособлений

Базовыми данными устройства, защищающего двигатель, являются:

  1. Быстродействие контактов в зависимости от параметров тока — время-токовый показатель.
  2. Рабочий ток, при котором ТП срабатывает.
  3. Предельные токовые регулировки уставки. Во всех приборах, выпускаемых разными производителями, этот параметр отличается незначительно. Превышение номинала на 20% влечет за собой срабатывание прибора минут через 25.
  4. Номинальная величина тока рабочей биметаллической пластины. Имеется в виду значение, при превышении которого реле не отключается немедленно.
  5. Токовый диапазон, в котором срабатывает реле.

Сведения о тепловом реле можно получить, расшифровав его маркировку. Символ, обозначающий тип исполнения, может отличаться.

Места размещения отечественных ТП регламентированы ГОСТом 15150. На их работу оказывают влияние такие моменты, как высота подъема над уровнем моря, вибрация, удары, ускорения.

Все эти нюансы производители отражают в маркировке своих изделий. Некоторые из них дополнительно включают сведения о возможности работы при наличии вредных веществ и взрывоопасных газов.

Выбор устройства по правилам

Требования к термореле изложены в инструкции. Здесь же оговорено, что защита должна обладать выдержкой по времени. Реализуют все запросы при помощи специальных приборов.

Анализируя времятоковые характеристики ТР, нужно принимать во внимание, что срабатывание может происходить из перегретого или холодного состояния.

Безупречная защита предполагает, что кривая, изображающая оптимальную для беспроблемного функционирования оборудования зависимость продолжительности токопрохождения от величины тока для реле и двигателя, разные. Первая должна находиться ниже, чем вторая.

Правильный подбор защитного изделия осуществляется на основе такого параметра, как рабочий номинальный ток. Его значение связано с номинальным током нагрузки электродвигателя.

Как международными, так и отечественными стандартами предусмотрено, что номинальный ток двигателя аналогичен уставке тока срабатывания термореле.

Это значит, что включение в работу прибора происходит при перегрузке от 20 до 30% или при Iср.х1,2 или 1,3 не позже 20 минут.

Исходя из этого, выбор нужно осуществлять так, чтобы ток несрабатывания ТР превышал номинальный ток прикрываемого объекта в среднем на 12%. Величина In отображена в паспорте прибора и на табличке, закрепленной на корпусе.

Основываясь на ней, подбирают как ТР, так и пускатель, соответствующий ему. Шкала реле калибрована в амперах и, как правило, отвечает значению тока уставки.

В качестве примера можно привести подбор теплового реле для асинхронного двигателя, подключенного к сети 380 В, мощностью 1,5 кВт.

Рабочий номинальный ток для него — 2,8 А, значит, для теплового реле пороговый ток будет равен: 1,2*2,8 = 3,36 А. По таблице выбор нужно остановить на РТЛ-1008, у которого диапазон регулировки находится в пределах от 2,4 до 4 А.

Когда паспортные данные двигателя неизвестны, ток определяют путем использования специальных приборов — токоизмерительных клещей или мультиметра с соответствующей опцией. Измерения проводят на каждой из фаз.

Важно при выборе уделить внимание напряжению, указанному на приборе. Если запланировано использовать тандем ТР-пускатель, нужно учесть число контактов.

При включении устройства в трехфазную сеть необходим модуль, имеющий функцию защиты для случаев перегорания проводников или перекоса фаз.

Выводы и полезное видео по теме

Схема эффективной защиты двигателя:

Составные части теплового реле:

Принцип взаимодействия различных приборов в разных вариантах подключения теплового реле одинаков. Для лучшей ориентации в схемах надо уметь “читать” маркировку устройств. В идеале все работы по подключению должен выполнять мастер, имеющий допуск к работе в условиях высокого напряжения.

Есть, что дополнить, или возникли вопросы по выбору и применению теплового реле? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования устройств. Форма для связи находится в нижнем блоке.

Источник

Тепловое реле кнопка м а. Тепловые реле

Правильно подобрать тепловое реле — одно из важнейших условий защиты электродвигателя от перегрузки. Напомню, что «защита электродвигателя от перегрузки должна устанавливаться в тех случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска и для ограничения длительности пуска при пониженном напряжении. Защита должна выполняться с выдержкой времени и может быть осуществлена тепловыми реле.» (из Инструкции по монтажу и пуску электродвигателей)

Чтобы подобрать тепловое реле, сперва определяем номинальный ток двигателя Iн. Этот ток указан на шильдике двигателя (см. фото ниже). В нашем случае это ток Iн = 14 Ампер

Потом исходя из номинального тока двигателя подбираем тепловое реле и соответствующий ему пускатель нужной величины. Реле имеет шкалу, калиброванную в амперах. Обычно шкала соответствует значению тока уставки (тока несрабатывания реле). Срабатывания реле происходит в пределах 5-20% от превышения тока уставки потребляемым током электродвигателя. Т.е., при перегрузке электродвигателя на 5-20% (1,05*Iн — 1,2*Iн), произойдет срабатывание теплового реле в соответствии с его токовременной характеристикой. Поэтому выбираем реле таким образом, чтобы ток несрабатывания теплового реле был на 5-10% выше от номинального тока защищаемого электродвигателя (см. таблицу ниже).

Таблица для подбора тепловых реле

Мощность
электромотора
кВт
Реле РТЛ
(для ПМЛ)
Регулировка
тока
А
Реле РТ
(для ПМК)
Регулировка
тока
А
0,37РТЛ-10050,6…1РТ 13050,6…1
0,55РТЛ-10060,95…1,6РТ 13061…1,6
0,75РТЛ-10071,5…2,6РТ 13071,6…2,5
1,5РТЛ-10082,4…4РТ 13082,5…4
2,2РТЛ-10103,8…6РТ 13104…6
3РТЛ-10125,5…8РТ 13125,5…8
4РТЛ-10147…10РТ 13147…10
5,5РТЛ-10169,5…14РТ 13169…13
7,5РТЛ-102113…19РТ 132112…18
11РТЛ-102218…25РТ 132217…25
15РТЛ-205323…32РТ 235323…32
18,5РТЛ-205530…41РТ 235528…36
22РТЛ-205738…52РТ 335737…50
25РТЛ-205947…64
30РТЛ-206154…74

Тепловое реле – устройство, замыкающее-размыкающее цепь под влиянием сигналов агрегатов, работающих от изменения температуры среды. Нагрев проводников электричеством замечали исследователи, количественное описание дает закон Джоуля-Ленца. Благодаря знанию зависимости, биметаллические конструкции применяют, контролируя ток, температуру.

Тепловое реле

Кратко о тепловых реле

Тепловые реле холодильников совмещают с пускозащитными. Применяются многими двигателями. Отличие защитных в электромагнитной конструкции, где катушка может мгновенно отработать резкое повышение тока. Тепловые работают с интегрированием эффекта некоторым отрезком времени. Медная обмотка иногда перегревается. В мясорубках случается, когда заклинивает вал. Ток повышает лимитирующую величину. Чтобы избежать опасности, изготовитель включает в механическую передачу пластиковые шестерни, ломающиеся, спасающие ситуацию. Конечно, лучше применять тепловые реле.

Принцип действия основан на свойствах биметаллических пластин. Двухслойные материалы, составленные парой металлов с неодинаковым коэффициентом линейного расширения. В результате при изменении температуры биметаллическая пластина гнется. Контакты используются повсеместно, начиная электрическими утюгами, заканчивая чайниками! Измерение тока происходит преимущественно в тепловых реле. В остальных случаях нагрев вызывается изменением температуры прибора: пара, ТЭНа.

В тепловых реле принцип используется, вариантом (см. патент US292586 A), но распространен больше другой – с защитой по току. В последнем случае используется упомянутый закон Джоуля-Ленца. С течением времени тепловой эффект накапливается, при соблюдении условий реле срабатывает. Обрыв цепи блокирует дальнейший рост температуры. Условия срабатывания реле тесно связаны с конструкцией двигателя.

Любому типу компрессора холодильника подобрана пара, работающая безотказно. Не соблюдая целостности тандема компрессор-двигатель, можно вызвать неисправности.

Для трёхфазных цепей используются двух- или трехполюсные тепловые реле. Включаются меж двумя линиями (нейтраль короткозамкнутая), в нормальном режиме ток здесь мал. При большой мощности вместо непосредственного присоединения к цепи используются трансформаторы тока. Эффект получается аналогичный: при обрыве фазы равновесие нарушается, нагрузка теплового реле увеличивается. В результате происходит разогрев биметаллической пластины, цепь обрывается. Двигатель спасается от перегрева, других негативных последствий.

Тепловое реле не защищает против короткого замыкания, само нуждается в охране от подобной ситуации. В противном случае цепь легко сгорает.

История создания тепловых реле

Идея регулировки температуры возникла в XVII веке. Английский изобретатель Корнелиус Дреббель применил в двух изобретениях: печь, инкубатор для цыплят. Конструкции требовали ответственного подхода. Дреббель сумел реализовать концепцию, используя ртуть. Любопытный факт: на момент начала третьего десятилетия термометров, не существовало. Работающих на ртути. Историки склонны изобретение термометра приписывать Корнелиусу Дреббелю. Касательно печей новшество заключалось в следующем:

  • Топка снабжалась воздухом через сопло, снабжаемое регулируемой заслонкой.
  • В зависимости от конструкции сооружение оборудовалось подобием реторты, дно которой размещалось в пепле, либо углях.
  • Изменяющийся уровень ртути позволял осуществлять поддержание температуры на заданном уровне путем регулирования объема подаваемого воздуха.


Аналогичного рода конструкция предложена инженерами компании Вестингауз Электрик в 1917 году (патент US1477455 A). Уровень ртути позволял замкнуть-размокнуть цепь в зависимости от изменяющейся температуры. Еще раньше для контроля параметров среды стали применять свойства биметаллических пластин. Патент Вестингауз Электрик принят только 11 декабря 1923 года, шведско-швейцарская компания ABB занималась выпуском тепловых реле для защиты работающих двигателей с 1920 года. Термостаты для инкубатора, печи под авторства Дреббеля рассмотрены комиссией организованного в 1660 году Королевского общества (Англии). И примерно через 40 лет после создания нашли признание ученого совета.

Свойства биметаллических пластин известны с 1726 года. Точнее говоря, к этой дате приурочено первое их официальное применение. Джон Харрисон, плотник по профессии, кое-что знал о металлах. Нашел оригинальный способ подарить маятниковым часам независимость от температуры. Подвес изготовил из стержней двух разных металлов, что проиллюстрировано на изображении, взятом из издания Общества Ньюкомена (1946 год). По мере изменения температуры длина маятника остается постоянной. Период колебаний поддерживается с высокой точностью.

Джон Харрисон не останавливается на достигнутом, в палубных часах конструкции 1761 года применяет балансную пружину свернутой биметаллической ленты. По замыслу конструктора новшество скомпенсирует капризы климата. Теперь время позволит определить географические координаты вне зависимости от температуры. Идеи Дреббеля и Харрисона использовал в 1792 году Жан Симон Боннемейн, – сегодня называемый отцом централизованного снабжения горячей водой. Применял идеи терморегуляторов для курятников (1777 год). Историки отмечают любопытный факт: несмотря на знаменитость Жан остается личностью загадочной. Доподлинно неизвестен день рождения.


Инкубатор Боннемейна напоминает печь-буржуйку. Снизу цилиндрическая конструкция подогревается открытым пламенем, продукты сгорания обтекают стенки и уходят наружу. Температура контролируется биметаллической пластиной (из железа и латуни), погруженной в воды, заполняющую пространство меж стенок. Неудивительно, что в скором времени инженер придумал первую котельную. Температура пламени регулируется скоростью подачи воздуха в топку, биметаллический стержень управляет заслонкой. Последовали многие другие изобретения аналогичного толка.

В некоторой степени к тепловым реле можно отнести изобретение Джеймса Кьюли (интернет обошел внимание подробности жизни), датированное 1816 годом. В британском патенте №4086 упоминается некий балансный термометр. Весы, вага которых представлена трубкой с двумя утолщениями на концах. Поделена в центре двумя секциям, одна заполнена спиртом, другая – ртутью. При изменении температуры нарушается баланс, поскольку объёмы в утолщениях неравные. И нужно, подстраивая длины плеч винтом, добиться равновесия. Показания считываются с зубчатого лимба, жестко привязанного к трубке. Изобретатель отмечал возможность использования изобретения для контроля микроклимата зданий.

Эра электричества тепловых реле

Долгое время термостаты не находили применения в сфере электричества. Справедливости ради заметим, применялось преимущественно фабриками, цехами, питая двигатели. До появления электрических лампочек накала было далеко. Устройством, давшим зеленый свет применению тепловых реле, историки считают электромагнитный клапан регулирования тока жидкости трубы. Наработка заявлена патентом US355893 A, опубликованным 11 января 1887 года. Документ говорит: термостат (тип не указан) размещен в жилых помещениях, электромагнитный клапан позволит регулировать под его командованием скорость тока горячей воды системы отопления.

Продолжительная работа механизма на максимуме вызывает перегрев обмоток и порчу изоляции, в результате чего происходит межвитковое замыкание, перерастающее в обширное выгорание полюсов двигателя и дорогостоящий ремонт. Чтобы этого не происходило, в цепь питания устанавливается реле, которое называют тепловым или «теплушкой». По цепи питания данный аппарат контролирует величину тока и при длительном отклонении от номинала установки, размыкает контакты, лишая питания цепь управления, размыкая пусковое устройство. В этой статье мы расскажем, как выбрать тепловое реле для двигателя по мощности и току.

Методика выбора

Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.

Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.

Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.

Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4.9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.


Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.

Что делать, если паспортные данные не известны?

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.


Кстати, недавно мы рассмотрели , с чем настоятельно рекомендуем вам ознакомиться!

В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.

Тепловые реле — устройство, принцип действия, технические характеристики

Тепловое реле — электрический аппарат, предназначенный для защиты электродвигателя от токовых перегрузок. Наиболее распространёнными типами тепловых реле являются ТРН, ТРП, РТТ и РТЛ.

Принцип действия теплового реле.

Срок службы электрооборудования в значительной степени напрямую зависит от перегрузок, воздействующих на него при работе оборудования. Для любого оборудования довольно просто найти зависимость времени протекания тока от его величины, при котором достигается длительная и надежная эксплуатация оборудования.

При номинальных токах допустимое время его протекания равно бесконечности. Протекание токов больше номинального приводит к повышению рабочих температур и значительному сокращению срока службы в первую очередь за счет износа изоляции. Вследствие этого, чем больше перегрузки, тем меньше должно быть время их воздействия.

Идеальная защита оборудования — зависимость tср (I) для тепловых реле проходит ниже кривой для защищаемого оборудования.

Наиболее широкое распространение получило тепловое реле с биметаллической пластиной для защиты от перегрузки.

Биметаллическая пластина, используемая в тепловом реле, состоит из пластин имеющих различный температурный коэффициент расширения (одна — больший, другая — меньший). В местах прилегания пластины жестко крепятся друг к другу за счет горячего проката или сварки. При нагревании неподвижной биметаллической пластины происходит изгиб ее в сторону части с меньшим коэффициентом расширения. Именно данное свойство используется при работе теплового реле.

Также широко применяются пластины, состоящие из инвара (меньший коэффициент) и хромоникелевой или немагнитной стали (больший коэффициент).

Нагрев пластины теплового реле происходит за счет выделяемого тепла при протекании тока нагрузки через биметаллическую пластину. Зачастую используется нагревательный элемент, по которому также протекает ток нагрузки. Наилучшие характеристики имеют комбинированные тепловые реле, в которых ток нагрузки протекает и через биметаллическую пластину и через нагревательный элемент.

При нагревании биметаллическая пластина тепловых реле воздействует на контактную систему своей свободной частью.

Времятоковые характеристики тепловых реле

Основной характеристикой для всех тепловых реле является зависимость времени отключения от токов нагрузки (времятоковые характеристики). До начала перегрузки в общем случае через тепловое реле протекает ток Iо, нагревающий биметаллическую пластину до начальной температуры qо.

При проверке характеристик времени срабатывания теплового реле необходимо учитывать из холодного или горячего состояния происходит срабатывание тепловых реле.

Также необходимо помнить что нагревательный элемент теплового реле является термически неустойчивым при протекании токов короткого замыкания.

Выбор теплового реле.

Номинальный ток выбираемого теплового реле выбирается исходя из номинальных нагрузок защищаемого оборудования (электродвигателя). Ток выбираемого теплового реле должен составлять 1,2 — 1,3 от номинального тока электродвигателя (ток нагрузки), то есть тепловое реле срабатывает при 20 — 30 % перегрузке на протяжении 20 минут.

Значение времени нагрева электродвигателя напрямую зависит от длительности перегрузок. В случае кратковременной перегрузки нагреваются лишь обмотки электродвигателя и время нагрева составляет от 5 до 10 минут. При длительных перегрузках в нагреве участвует вся конструкция двигателя, и время составляет от 40 до 60 минут. Поэтому наиболее целесообразным считается применение теплового реле в схемах, где время включения электродвигателя превышает 30 минут.

Влияние внешних температур на работу теплового реле.

Нагрев биметаллической пластины теплового реле зависит как от воздействующих токов, но и от воздействия температуры окружающей среды. В связи с этим при росте температуры окружающей среды уменьшается значение тока срабатывания.

При сильно отличающейся температуре от номинальной, проводится плановая дополнительная регулировка теплового реле, или подбирается нагревательный элемент в котором учитывается температура окружающей среды.

Для уменьшения воздействия температуры окружающей среды на токи срабатывания тепловых реле, необходимо подбирать наиболее близкую температуру срабатывания.

Для обеспечения правильной работы и обеспечения тепловой защиты тепловое реле необходимо размещать в помещении, что и защищаемый механизм (электродвигатель). Нежелательно располагать тепловое реле в непосредственной близости от источников тепла, таких как нагревательные печи, система отопления и т.п. В настоящее время для обеспечения наилучшей защиты используются реле с температурной компенсацией (серия ТРН).

Конструкция теплового реле.

Изгибание биметаллической пластины происходит достаточно медленно. В случае если с пластиной непосредственно будет связан подвижный контакт, то небольшая скорость движения не обеспечивает гашения дуги, которая возникает при размыкании цепи. Поэтому воздействие на контакт осуществляется через устройство ускорения. Наиболее эффективным является так называемый «прыгающий» контакт.

В момент, когда напряжение не подается, пружина создает момент относительно нулевой точки замыкающего контакта. При нагреве биметаллическая пластина изгибается, что ведет к изменению положения пружины. Пружина создает момент, который способен разомкнуть контакт за время, которое обеспечивает надежное гашение дуги. Пускатели и контакторы комплектуются однофазными тепловыми реле типа ТРП или двухфазными ТРН реле.

Реле тепловые ТРП

Токовые однополюсные тепловые реле ТРП с номинальным током теплового элемента от 1 до 600 А используемые для защиты трехфазных асинхронных электродвигателей от тепловых перегрузок, работающих в сети с напряжением 500 В и частоте 50 или 60 Гц. Тепловое реле ТРП с номинальным током до 150 А применяются в сети постоянного тока и напряжением до 440 В.

Реле тепловые РТЛ

Тепловое реле типа РТЛ используется для обеспечения защиты оборудования от длительных токовых перегрузок. Они также используются для защиты от несимметричности токов в фазах а так же выпадения одной фазы. Рабочий диапазоном тока электротеплового реле РТЛ от 0.1 до 86 А.

Реле тепловые РТЛ устанавливаются как на пускатели типа ПМЛ, так и отдельно, в данном случае реле должно снабжается клеммниками КРЛ. Степень защиты реле РТЛ и клеммников КРЛ могут иметь ІР20 а также могут быть устанавленны на стандартную дин-рейку. Номинальный ток контактора 10 А.

Реле тепловое РТТ

Тепловое реле РТТ предназначено для защиты трехфазного асинхронного электродвигателя с короткозамкнутым ротором от кратковременной перегрузки, в том числе при выпадении фазы и не симметрии.

Реле тепловое РТТ предназначено в качестве комплектующего изделия в схеме управления электроприводами и встройки в магнитный пускатель типа ПМА в цепях переменного тока с напряжением 660 В и частотой 50 или 60 Гц, а цепи постоянного тока с напряжением 440 В.


РТЛ 1001-1022 (0,14-21,5А)196,30р.
РТЛ 2053-2061 (28,5-64А)317,00р.
РТT 5-10 1-10 А197,00р.
РТТ-111 0,8-25 А197,00р.
РТТ-141 1-25 А (на заказ)197,00р.
РТТ-211 16-40А327,00р.
РТТ-211 50А, 63А1 031,00р.
РТТ-321(311,221) 63-160А1 369,00р.

Тепловое реле служит для тепловой защиты электродвигателя. Реле защищает двигатель от перекоса фаз или пропадании фазы, от механической перегрузки и заклинивания ротора.

Тепловое реле двигателя, так же, как и защитный автомат, имеет время-токовую характеристику, которая показывает, что тепловое реле не может сработать при превышении тока уставки мгновенно. Подробнее про эти характеристики — .

Важно, что спасти от короткого замыкания тепловое реле не может — просто не успеет. Поэтому в цепь питания двигателя всегда перед пускателем ставят , предохраняющий от КЗ.

Во всех современных «теплушках» есть одна пара нормально открытых (НО, NO) контактов и одна пара нормально закрытых (НЗ, NC). Обычно схему питания контактора строят так, что при срабатывании теплового реле НЗ контакты разрывают цепь питания катушки контактора, а НО контакты замыкаются и включают цепь индикации аварии.

Тепловая защита электродвигателя заключается в том, что при прохождении через силовые контакты теплового реле тока двигателя нагревается специальная биметаллическая пластина, которая приводит в действие сигнальные контакты. Контакты слаботочные, и включаются в цепь управления пускателем.

При срабатывании реле необходимо устранить причину аварии, затем привести реле в исходное состояние. Для этого на корпусе имеется красная кнопка возврата, на которой напечатана буква R (Reset). В некоторых моделях возврат осуществляется автоматически.


Тепловое реле РТЛ. Контакты для механической и электрической фиксации в пускателе

Как правило, тепловое реле крепится непосредственно на выходные . И без пускателя не используется. Соответственно, тепловое реле включено с двигателем последовательно.

Для различных вариантов пускателей необходимо передвинуть выводы (контакты) теплового реле для правильной фиксации. На фото видно (слева), как рекомендовано передвинуть ножки для разных пускателей. Фиксация также обеспечивается специальным крючочком, который зацепляется за пускатель.

Выбор теплового реле по мощности двигателя

У теплового реле есть один основной параметр, показывающий ток, при котором реле отключит электродвигатель. Ниже приводится таблица по выбору теплового реле для электродвигателей .

Номинальный
ток пускателя, А

Тип реле

Диапазон регулирования максимального тока, А

Мощность
электродвигателя, кВт

Может, это будет интересно:

Распространенные марки тепловых реле — РТЛ и РТИ, которые по параметрам идентичны, и отличаются в основном креплением и конструкцией.

В интернете гуляет табличка выбора теплового реле двигателя по мощности, где подробно перечислены параметры тепловых реле серии РТЛ. Стоит сказать об ошибке — во второй строке внизу вместо «РТЛ-ЮООМ» следует читать «РТЛ-1000М». Кто-то распознавал бездумно.

/ Выбор электротеплового реле — таблица параметров, pdf, 34.01 kB, скачан:5014 раз./

И ещё фото старенькой теплушки, фото новых легко найти в интернете.

Подробно про схему подключения теплового теле и схему подключения пускателя к трехфазному двигателю рассказано . Рекомендую.

Выбор теплового реле по мощности двигателя

Тепловое реле обеспечивает защиту двигателей от перегрузки. Тепловое реле выбирают так, чтобы максимальный ток продолжительного режима с данным тепловым элементом был не меньше номинального тока защищаемого электродвигателя, а ток уставки реле был равен допустимому току перегрузки или несколько больше длительного тока защищаемого двигателя (в пределах 5%). Время срабатывания реле должно быть не менее времени, необходимого для пуска электродвигателя.

Номинальный ток нагревательного и комбинированного элемента Iном.нагр. теплового реле или комбинированного расцепителя выбирается из условия

Ток уставки (срабатывания) максимально-токовых реле Iуст: для асинхронных двигателей с короткозамкнутым ротором

где Iном – номинальный ток защищаемого двигателя.

По данным расчетов выбираем тепловое реле ТРТ-135 с током уставки 35 А.

Аналогично производим расчет и выбор остальных уставок тепловых реле и данные заносим в таблицу 4.5 [6, c. 125].

Для двигателя М2:

По данным расчетов выбираем тепловое реле ТРТ-115 с током уставки 6 А.

Для двигателя М3:

По данным расчетов выбираем тепловое реле ТРТ-115 с током уставки 6 А.

Таблица 4.5 – Данные выбранных тепловых реле

В данной статье будет рассматриваться выбор теплового реле для асинхронного электродвигателя.

Тепловое реле предназначено для защиты двигателя от длительных перегрузок свыше 5 – 20 % от номинальной мощности. Исходя из этого, формула по определению тока срабатывания теплового реле определяется по выражению:

где: Iн.д. – номинальный ток двигателя, А.

Тепловое реле целесообразно устанавливать только на двигатели с длительным режимом работы и равномерным характером нагрузки (рабочий период которых составляет не менее 30 мин.) [Л1, с.32].

Если же двигатель работает с частыми пусками или с резко меняющейся нагрузкой применять тепловые реле нецелесообразно. Так например для двигателей с повторно-кратковременным режимом, от перегрева тепловое реле не защищает, но установка которого может привести к ложным отключениям. Из-за этого тепловое реле не применяется в крановых электроприводах, приводах быстрых перемещений металлорежущих станков и т.п.

Требуется выбрать тепловое реле для двигателя типа M2AA160MLB4 (фирмы АББ) мощностью 15 кВт со следующими техническими характеристиками:

  • коэффициент мощности cosϕ = 0,82;
  • коэффициент полезного действия, η = 89,2%;
  • номинальное напряжение Uном. = 380 В.

1. Определяем номинальный ток двигателя:

2. Определяем ток срабатывания теплового реле:

Iн.р ≥ 1,2* Iн.д. = 1,2*31,2 = 37,44 А

Выбираем тепловое реле типа LRE355 фирмы «Schneider Electric» с диапазоном уставки по току 30 40 А.

Тепловая защита также может осуществляться автоматическими выключателями с тепловым расцепителем (например автоматические выключатели типа MS фирмы АББ), который действует аналогично тепловому реле.

1. Защита асинхронных двигателей до 500 В. Е.Н.Зимин.

Токозависимые защитные устройства имеют разный принцип действия и несут в себе различные функции, направленные на защиту электродвигателя .

Предохранители
Предохранители предназначены для защиты электрических сетей от перегрузок и коротких замыканий. Конструктивно они состоят из корпуса из электроизоляционного материала и плавкой вставки, выбираемой из такого расчета, чтобы она плавилась прежде, чем температура двигателя достигнет опасных пределов в результате протекания токов перегруза или короткого замыкания. Включаются предохранители последовательно защищаемой сети. Предохранители способны защитить асинхронные электродвигатели, (далее по тексту АД), только от токов короткого замыкания в 10-100 раз превышающие номинальные токи. Токи же перегруза или другие токовые аварии, они будут воспринимать как пусковые токи, не реагируя на них. В лучшем случае, они способны отключить электродвигатель только через несколько минут, что может привести к перегреву обмоток и к аварии АД. Поэтому, для защиты электродвигателей от короткого замыкания в нем самом или в подводящем кабеле, используют предохранители с плавкой вставкой типа аМ с более пологой токо-временной характеристикой. Они способны выдерживать, не расплавляясь, токи в 5-10 раз превышающие номинальные в течение 10 с, что вполне достаточно для запуска двигателя. Для защиты от перегрузки необходимо использовать другие устройства. Предохранители абсолютно не способны защищать от аварий, связанных с авариями сетевого напряжения, от аварий, связанных с нарушением режимов работы АД или тепловым перегрузом, а также от режима холостого хода двигателя. В то же время, при однофазном коротком замыкании, а иногда при сильном перекосе фаз они, как правило, отключают только одну фазу, что приводит к аварийному режиму работы на двух фазах.

Автоматические выключатели (автоматы)
Автоматические выключатели (автоматы) предназначены для включения и отключения асинхронных электродвигателей и других приемников электроэнергии, а также для защиты их от токов перегрузки и короткого замыкания. Автоматы совмещают в себе функцию рубильника, предохранителя и теплового реле. Обеспечивают одновременное отключение всех трех фаз в случае возникновения аварийных ситуаций. В рабочем режиме включение и отключение производится вручную; в аварийном режиме он отключается автоматически электромагнитным или тепловым расцепителем. Важной составной частью автомата является расцепитель, который контролирует заданный параметр защищаемой сети и воздействует на расцепляющее устройство, отключающее автомат. Наибольшее распространение получили расцепители следующих типов:

  1. электромагнитные, для защиты от токов короткого замыкания;
  2. тепловые для защиты от перегрузок;
  3. комбинированные.

Электромагнитный расцепитель состоит из катушки с подвижным сердечником и возвратной пружины. При протекании по катушке тока короткого замыкания сердечник мгновенно втягивается и воздействует на отключающую рейку механизма свободного расцепления.

Тепловой расцепитель представляет собой биметаллическую пластину, соединенную последовательно с контактом. При нагревании ее током перегрузки она изгибается и воздействует на отключающую рейку механизма свободного расцепления с обратно-зависимой выдержкой времени.

Выбор автоматических выключателей производится по номинальному току, характеристике срабатывания, отключающей способности, условиям монтажа и эксплуатации. Правильный выбор характеристики автоматического выключателя является залогом его своевременного срабатывания.

В соответствии со стандартами IEC 898 (стандарт международной электротехнической комиссии) и EN 60898 (европейская норма) по характеристикам срабатывания выключатели бывают трех типов: B, C, D.

Тип B – величина тока срабатывания магнитного расцепителя равна Iв= KIн, при K=3–6 (K=I/Iн – кратность тока к номинальному значению). Бытовое применение, где ток нагрузки невысокий и ток к. з. может попасть в зону работы теплового, а не электромагнитного расцепителя.

Тип C – величина тока срабатывания магнитного расцепителя Iс= KIн, при K=5–10. Бытовое и промышленное применение: для двигателей с временем пуска до 1 сек, нагрузки с малыми индуктивными токами (холодильных машин и кондиционеров).

Тип D – величина тока срабатывания магнитного расцепителя >

Для выбора автоматического выключателя по отключающей способности необходимо выполнить расчет ожидаемого тока короткого замыкания. Как показывает практика, для большинства типа сетей его значение не превышает 4,5 кА. Для обеспечения контроля за другими видами аварий автоматические выключатели снабжают целым рядом дополнительных устройств. Расцепитель минимального напряжения отключает автомат при недопустимом снижении напряжения, ниже 0,7Uн, расцепитель нулевого напряжения срабатывает при напряжении в сети менее 0,35Uн, где Uн – номинальное напряжение в сети. Независимый расцепитель предназначен для дистанционного отключения автоматического выключателя, электромагнитный привод для дистанционного оперирования выключателем. Расцепитель токов утечки на землю обеспечивает непрерывный контроль за состоянием изоляции установки, защиту от опасности возгорания или взрыва.

Тепловые реле (расцепители)
Тепловые реле применяются для защиты электродвигателей от перегрузок недопустимой продолжительности, а также от обрыва одной из фаз. Конструктивно представляют собой набор биметаллических расцепителей (по одному на каждую фазу), по которым протекает ток электродвигателя, оказывающий тепловое действие. Под действием тепла происходит изгиб биметаллической пластины, приводящий в действие механизм расцепления. При этом происходит изменение состояния вспомогательных контактов, которые используются в цепях управления и сигнализации. Реле снабжаются биметаллическим температурным компенсатором с обратным прогибом по отношению к биметаллическим пластинам для компенсации зависимости от температуры окружающей среды, обладают возможностью ручного или автоматического взвода (возврата). Реле имеет шкалу, калиброванную в амперах. В соответствии с международными стандартами шкала должна соответствовать значению номинального тока двигателя, а не тока срабатывания. Ток несрабатывания реле составляет 1,05 I ном. При перегрузке электродвигателя на 20% (1,2 I ном), произойдет его срабатывание в соответствии с токовременной характеристикой.

Реле, в зависимости от конструкции, могут монтироваться непосредственно на магнитные пускатели, в корпуса пускателей или на щиты. Правильно подобранные тепловые реле защищают двигатель не только от перегрузки, но и от заклинивания ротора, перекоса фаз и от затянутого пуска.

Недостатком тепловых реле является то, что трудно подобрать реле из имеющихся в наличии так, чтобы ток теплового элемента соответствовал току электродвигателя. Кроме того, сами реле требуют защиты от короткого замыкания, поэтому в схемах должны быть предусмотрены предохранители или автоматы. Тепловые реле не способны защитить двигатель от перегрева двигателя в режиме холостого хода или недогруза. Поскольку тепловые процессы, происходящие в биметалле, носят достаточно инерционный характер, реле плохо защищает от перегруза, связанного с быстропеременной нагрузкой на валу электродвигателя. Если нагрев обмоток обусловлен неисправностью вентилятора (погнуты лопасти или проскальзывание на валу), загрязнением оребренной поверхности двигателя, тепловое реле тоже окажется бессильным, т. к. потребляемый ток не возрастает или возрастает незначительно. В таких случаях, только встроенная тепловая защита способна обнаружить опасное повышение температуры и вовремя отключить двигатель.

Таблица выбора теплового реле типа РТЛ (для пускателей типа ПМЛ)

Правильный выбор теплушки для электродвигателя | СамЭлектрик.ру

Тепловое реле служит для тепловой защиты. Реле защищает двигатель от перекоса фаз или пропадании фазы, от механической перегрузки и заклинивания ротора.

Тепловое реле двигателя, так же, как и защитный автомат, имеет время-токовую характеристику, которая показывает, что тепловое реле не может сработать при превышении тока уставки мгновенно.

Подробнее про эти характеристики – здесь. Для РТЛ это характеристика «D».

Важно, что спасти от короткого замыкания тепловое реле не может – просто не успеет. Поэтому в цепь питания двигателя всегда перед пускателем ставят автоматический выключатель, предохраняющий от КЗ.

Во всех современных “теплушках” есть одна пара нормально открытых (НО, NO) контактов и одна пара нормально закрытых (НЗ, NC). Обычно схему питания контактора строят так, что при срабатывании теплового реле НЗ контакты разрывают цепь питания катушки контактора, а НО контакты замыкаются и включают цепь индикации аварии.

Тепловая защита электродвигателя заключается в том, что при прохождении через силовые контакты теплового реле тока двигателя нагревается специальная биметаллическая пластина, которая приводит в действие сигнальные контакты. Контакты слаботочные, и включаются в цепь управления пускателем.

При срабатывании реле необходимо устранить причину аварии, затем привести реле в исходное состояние. Для этого на корпусе имеется красная кнопка возврата, на которой напечатана буква R (Reset). В некоторых моделях возврат осуществляется автоматически.

Тепловое реле РТЛ. Контакты для механической и электрической фиксации в пускателе

Тепловое реле РТЛ. Контакты для механической и электрической фиксации в пускателе

Как правило, тепловое реле крепится непосредственно на выходные контакты пускателя. И без пускателя не используется. Соответственно, тепловое реле включено с двигателем последовательно.

Для различных вариантов пускателей необходимо передвинуть выводы (контакты) теплового реле для правильной фиксации.

На фото видно (слева), как рекомендовано передвинуть ножки для разных пускателей.

Фиксация также обеспечивается специальным крючочком, который зацепляется за пускатель.

Такие тепловые реле можно применять только для контакторов советских разработок типа ПМЛ, для других производителей тепловые реле РТЛ могут не подойти.

Выбор теплового реле по мощности двигателя

У теплового реле есть один основной параметр, показывающий ток, при котором реле отключит электродвигатель. Ниже приводится таблица по выбору теплового реле для электродвигателей.

таблица по выбору теплового реле

таблица по выбору теплового реле

Распространенные марки тепловых реле – РТЛ и РТИ, которые по параметрам идентичны, и отличаются в основном креплением и конструкцией.

В интернете гуляет табличка выбора теплового реле двигателя по мощности, где подробно перечислены параметры тепловых реле серии РТЛ. Стоит сказать об ошибке – во второй строке внизу вместо “РТЛ-ЮООМ” следует читать “РТЛ-1000М”. Кто-то распознавал бездумно.

Выбор теплового реле (6124 Загрузки)

И ещё фото старенькой теплушки, фото новых легко найти в интернете.

Такое тепловое реле ставится на пускатель ПМЕ.

Подробно про схему подключения теплового реле и схему подключения пускателя к трехфазному двигателю рассказано в другой моей статье. Рекомендую.

Полная версия статьи здесь — https://samelectric.ru/spravka/vybor-teplovogo-rele.html

Статьи в тему двигателей

Если дочитали до сюда, значит тема двигателей вам интересна. Вот, что у меня ещё есть на Дзене:

Статьи в тему производства:

Некоторые мои статьи на Дзене про электродвигатели и пром.оборудование:

Если интересны темы канала, заходите также на мой сайт — https://samelectric.ru/ и в группу ВК — https://vk.com/samelectric

Не забываем подписываться и ставить лайки, впереди много интересного!

Расчет и выбор тепловых реле и предохранителей .

Цель работы:Освоить методику расчета тепловых реле и предохранителей.

План работы

Необходимо выбрать тепловое реле (предохранитель) для защиты асинхронного двигателя 4AP132S4, работающего в продолжительном режиме.

По справочнику[Кравчик А.Э. и др. Выбор и применение асинхронных двигателей. – М.: Энергоатомиздат, 1987.] определим его параметры:

Номинальная мощность двигателя, Рном 7,5 кВт
Коэффициент полезного действия, h ном 87,5 %
Коэффициент мощности, cosj 0,86
Номинальное линейное напряжение на обмотке статора, U ном.л 380 В
Коэффициент кратности пускового тока, kj 6,5
Время пуска двигателя, t п

 

 

1. Выбор тепловых реле.

Тепловые реле выбираются согласно условию

I тр ≥ 1,25 I н.д

где I тр — ток теплового реле, номинальный, А., I н.д — номинальный ток двигателя.

 

2.  Выбор предохранителей и их плавких вставок

Выбор предохранителей и их плавких вставок производится по двум критериям на основе технических условий и каталогов.

1. Номинальные токи предохранителя (I нп) и плавкой вставки (I нв) не должны быть меньше максимального рабочего тока цепи (I раб):

I нпI раб , I нвI раб (1)

За максимальный рабочий ток в расчетах принимается:

а) для одного электроприемника – его номинальный ток, который указывается в паспортных данных или определяется по следующим формулам:

− для двигателя:

3. I н = Pн*1000/ √3Uн cosϕ η

Практическая работа № 16

Тема: Расчет и выбор автоматических выключателей .

Цель работы:Освоить методику расчета автоматических выключателей.

План работы

Выбор автоматических выключателей производится с соблюдением следующих условий:

1) номинальное напряжение автомата не должно быть ниже напряжения сети, т.е.

U на > U с; (1)

2) номинальные токи автомата и его расцепителя не должны быть меньше максимального рабочего тока, т.е.

I наI раб; I нрI раб ; (2)

3) автомат должен отключать максимальные токи КЗ, проходящие по защищаемой линии

I отклI к max

Токи срабатывания расцепителей I сп и I ск выбираются такими, чтобы расцепители не срабатывали в нормальном режиме и при кратковременных перегрузках. Ток срабатывания расцепителя с зависимой характеристикой определяется следующим образом

I сп = (1,1−1,3)I раб

Для расцепителей мгновенного срабатывания всех типов автоматов ток уставки определяется по соотношению

I ск = (1,25 −1,35)I пик

где I пик – пиковый ток одного или группы электроприемников. Настройка расцепителей автоматов проверяется по тем же условиям, что и плавкая вставка предохранителей.

АВТОМАТЫ выбираются согласно условиям:

U н.а ≥ Uc I н.р ≥1,25 I раб — для линии с одним ЭД;

I н ≥ I н.р , I н.р ≥ 1,1 I пик — для групповой линии с несколькими ЭД, где

I н.а — номинальный ток автомата, А;

I н.р — номинальный ток расцепителя. А;

I раб – рабочий ток в линии, А;

I пик — максимальный ток в линии, А;

U н.а — номинальное напряжение автомата, В;

Uc — напряжение сети, В;

I н.р ≥ I раб — для линии без ЭД.

 к0 ≥ I 0 / I н.р

I0 ≥ Iдл — для линии без ЭД;

I 0 ≥1,2 I п — для линии с одним ЭД;

I 0 1,25-1,35 I пик — для групповой линии с несколькими ЭД,

где ко – кратность отсечки;

Io — ток осечки, А;

I П— пусковой ток, А,

I п = кп* I н, где

кп — кратность пускового тока, Принимается кп =6,5…7,5 — для АД; кп =2…3 — для СД и МПТ; (или согласно справочных данных на двигатель).

Для группы двигателей

I н — номинальный ток, А;

I пик — пиковый ток, А,

I пик = I пуск max + (I pk и I н),

где I р – расчетный ток всей группы; k и, I н – коэффициент использования и номинальный ток двигателя, для которого взят наибольший пусковой ток.

 По типу проводника, числу фаз и условию выбора формируется окончательно марка аппарата защиты.

 

 

Пример выбора автоматического выключателя в цепи асинхронного двигателя

Задача. Выбрать сечение провода и автомат в цепи трехфазного асинхронного двигателя мощностью 55 кВт, напряжением 380 В. Номинальный ток двигателя 102 А, а пусковой ток 510 А.

Решение. Выбираем три одножильных провода с поливинилхлоридной изоляцией и алюминиевыми жилами, которые прокладываются в одной трубе. Сечение провода выбираем так, чтобы выполнялось условие:

I доп > I р.

В нашем случае I р = I н = 102 А. Выбираем сечение S = 50 мм2 с допустимым током 130 А. По условиям (1), (2) и справочной таблице выбираем автомат А3715Б с номинальным током 160 А. Ток срабатывания теплового расцепителя определяется следующим образом:

I сп = (1,1 – 1,3)I раб; I раб = I н = 102 А; k = 1,2;

I сп = 1,2 · 102 = 122 А.

Принимаем тепловой расцепитель с номинальным током 125А, а ток срабатывания по справочной таблице равен 145 А. Ток срабатывания электромагнитного расцепителя равен:

I ск = (1,25 – 1,35) I пик, I ск = 1,25 · 510 = 637 А.

Принимаем I ск = 640 А.

Практическая работа № 17.

Тепловое реле для электродвигателя

В течение длительного рабочего процесса у любых электродвигателей перегреваются обмотки, портится изоляционное покрытие. Подобные ситуации нередко приводят к межвитковым замыканиям, выгоранию полюсов и другим негативным последствиям, требующим срочного дорогостоящего ремонта. Избежать этого помогает тепловое реле для электродвигателя, установленное в цепь питания и обеспечивающее надежную защиту от перегрева.

Как работает тепловое реле защиты электродвигателя

Данный прибор осуществляет контроль над величиной тока, и в случае длительного отклонения от номинала установки производит размыкание контактов. Таким образом, цепь управления остается без питания, а пусковое устройство размыкается. Тепловое реле защищает агрегат от механических перегрузок, заклинивания ротора, перекоса фаз и других аварийных ситуаций.

Общее устройство всех тепловых реле включает в себя одни и те же детали, отличающиеся лишь небольшими конструктивными особенностями. Основной элемент представляет собой чувствительную биметаллическую пластину, состоящую из двух металлических сплавов – железа с никелем и железа с латунью. Они соединяются друг с другом с помощью пайки и обладают различными коэффициентами теплового расширения.

Данный коэффициент указывает на степень удлинения металлической пластины при ее нагреве. Этот показатель составляет для латуни 18,7, а для сплава железа с никелем – 1,5. В результате, длина латуни во время нагревания увеличивается значительно быстрее, давая тем самым толчок для изгиба биметаллической пластины в свою сторону. Данное свойство лежит в основе работы всех тепловых реле.

Внутри корпуса прибора находятся биметаллическая пластина с нагревательным элементом, толкатель, исполнительная пластина и пружина замыкающего контакта. Температурный компенсатор состоит из пластины и регулировочного винта. Кроме того, тепловое реле оборудуется контактами, эксцентриком с движком уставки тока срабатывания и кнопкой возврата прибора в рабочее состояние.

Причины срабатывания теплового реле электродвигателя

Под действием электрического тока, протекающего по проводнику, происходит его нагревание. С возрастанием силы тока в проводнике с одним и тем же поперечным сечением, увеличивается и его нагрев, то есть происходит рост нагрузки. В связи с этим, причины срабатывания заключаются преимущественно в повышении температуры.

Эта же тепловая энергия нагревает и биметаллическую пластину, которая под влиянием температуры изгибается и соприкасается с исполнительной пластиной температурного компенсатора через толкатель. В свою очередь, эта пластина расцепляет замкнутые контакты в магнитном пускателе и приводит в рабочее состояние кнопку включения реле. Сам температурный компенсатор является своеобразным противовесом, снижающим влияние дополнительного нагрева под действием температуры окружающей среды. Изгиб пластины происходит в противоположную сторону, а для его регулировки используется специальный винт.

Эксцентрик или регулятор тока срабатывания оборудован шкалой на 5 делений влево и 5 делений вправо, для соответствующего уменьшения и увеличения тока относительно центральной риски. Чтобы отрегулировать ток срабатывания, необходимо изменить зазор между исполнительной пластиной и толкателем. Изменение зазора выполняется движком эксцентрика, воздействующим на пластину температурного компенсатора. После срабатывания теплового реле специалисты рекомендуют выдержать временную паузу, чтобы тепловой расцепитель мог остыть. Следует тщательно осмотреть электродвигатель и найти причину срабатывания прибора.

Тепловое реле для электродвигателя схема подключения

Непосредственное подключение тепловых реле к контакторы осуществляется напрямую с помощью штыревых контактов. После подключения, в зависимости от величины тока, протекающего в цепи, необходимо отрегулировать уставки срабатывания колесиком поворотного регулятора. Нужный ток уставки обозначен на шкале специальными рисками, нанесенными на корпус прибора.

Панель управления реле оборудована кнопкой TEST, с помощью которой проверяется работоспособность устройства путем имитации срабатывания защиты. Кнопка STOP красного цвета позволяет принудительно разомкнуть нормально замкнутый контакт. При этом отключается питание, поступающее на катушку контактора, что в свою очередь приводит к отключению нагрузки. Примерно по такой схеме подключаются и работают все тепловые реле для защиты электродвигателей и их модификации.

Для работы теплового реле предусмотрен ручной или автоматический режим, задаваемый при помощи поворотного переключателя RESET. Автоматический режим предполагает утопленный выключатель и автоматическое включение реле после срабатывания, когда остынет биметаллическая пластина. Перевод прибора в ручной режим осуществляется поворотом переключателя против часовой стрелки.

Схема подключения с нормально замкнутыми контактами используется для управления электродвигателем с помощью магнитного пускателя. К силовым контактам теплового реле выполняется подключение лишь двух фаз, а третья фаза подключается напрямую к двигателю. В работе современных устройств принимают участие все три фазы совместно с дополнительным нормально замкнутым контактом реле. При возникновении перегрузок он размыкается и разрывает цепь питания контактора.

Выбор теплового реле для электродвигателя

В условиях разнообразия конструкций и моделей электрических двигателей и соответствующих тепловых реле, выбор наиболее подходящего сочетания может вызвать определенные затруднения, особенно у неспециалистов. Для того чтобы выбрать наиболее оптимальное устройство, отвечающее всем требованиям, необходимо придерживаться определенных рекомендаций.

Основным требованием ко всем тепловым реле является соответствие их номинала току оборудования, которое требуется защитить. Сами устройства тоже должны быть защищены от коротких замыканий, поэтому в схемах подключения используются предохранители.

Необходимо заранее установить условия эксплуатации тепловых реле, и в каких пределах они могут применяться. Если в системе защиты велика вероятность работы электродвигателя в аварийных режимах, не связанных с ростом потребления электроэнергии, в этих случаях тепловое реле будет бесполезным и не обеспечит надежную защиту. Для этого в обмотку статора электродвигателя включаются элементы специальной тепловой защиты.

Если же тепловая защита двигателя не связана с какими-либо специальными требованиями, решение вопроса как подобрать тепловое реле для электродвигателя, таблица поможет выбрать наиболее подходящее устройство с оптимальными техническими характеристиками.

Защитное устройство выбирается с учетом максимального рабочего тока реле, который не должен быть меньше, чем номинальный ток защищаемого электродвигателя. Тем не менее, рекомендуется, чтобы установочный ток реле незначительно превышал номинал агрегата. Следует обращать внимание и на возможность регулировок тока с большим запасом в обе стороны – увеличения и уменьшения. В этом случае обеспечивается более надежная и управляемая защита.

Как узнать, правильно ли установлен ток на реле тепловой перегрузки двигателя

Пуск с током полной нагрузки…

Ток полной нагрузки при заданном напряжении, указанном на паспортной табличке, является нормативным для настройки реле перегрузки. Из-за переменного напряжения во всем мире двигатели для насосов предназначены для использования как с частотой 50 Гц, так и с частотой 60 Гц в широком диапазоне напряжений.

Как узнать, какой ток установить на реле перегрузки двигателя (фото: Эдвард CSANYI, EEP)

Следовательно, диапазон тока указан на паспортной табличке двигателя.Точную допустимую нагрузку по току можно рассчитать, зная напряжение.

Рисунок 1 — Тепловое реле перегрузки двигателя

Пример расчета

Когда мы знаем точное напряжение для установки, ток полной нагрузки можно рассчитать как 254 Δ / 440 Y В, 60 Гц . Данные указаны на паспортной табличке, как показано на рисунке ниже:

  • f = 60 Гц
  • U = 220-277 ∆ / 380 — 480 Y V
  • I n = 5.70 — 5,00 / 3,30 — 2,90 A
Рисунок 1 — Ток полной нагрузки при заданном напряжении, указанном на паспортной табличке, является нормативным для настройки реле перегрузки

Расчет данных 60 Гц:

  • U a = фактическое напряжение 254 ∆ / 440 YV (фактическое напряжение)
  • U min = 220 ∆ / 380 YV (минимальные значения в диапазоне напряжений)
  • U max = 277 ∆ / 480 YV (Максимальные значения в диапазоне напряжений)
Соотношение напряжений определяется следующими уравнениями:

U = (U A — U min ) / (U max — U мин )
, что в данном случае: U Δ = (254 — 220) / (227 — 220) = 0.6

U Y = (U A — U min ) / (U max — U min )
, который в данном случае: U Y = (440-380 ) / (480-380) = 0,6

Итак, U Δ = U Y


Расчет фактического тока полной нагрузки (I)

I мин = 570 / 3,30 A
(текущие значения для треугольника и звезды при минимальном напряжении)

I max = 500/2.90 A
(Текущие значения для треугольника и звезды при максимальных напряжениях)

Теперь можно рассчитать ток полной нагрузки по первой формуле:

  • I для значений Delta: 5,70 + (5,00 — 5,70) × 0,6 = 5,28 = 5,30 A
  • I для значений Star: 3,30 + (2,90 — 3,30) × 0,6 = 3,06 = 3,10 A

Значения для тока полной нагрузки соответствуют допустимый ток полной нагрузки двигателя при 254 ∆ / 440 YV, 60 Гц.

Практическое правило: Внешнее реле перегрузки двигателя всегда настраивается на номинальный ток, указанный на паспортной табличке.

Однако, если двигатели спроектированы с учетом эксплуатационного фактора, который затем указан на паспортной табличке , например. 1.15, установленный ток для реле перегрузки может быть увеличен на 15% по сравнению с током полной нагрузки или рабочим коэффициентом А (SFA) , который обычно указан на паспортной табличке.

Если двигатель подключен звездой = 440 В 60 Гц , реле перегрузки должно быть установлено на 3.1 А .

Ссылка // Моторная книга Grundfos

Соответствующее содержание EEP с рекламными ссылками

На каком уровне должны быть установлены перегрузки двигателя? — MVOrganizing

На каком уровне следует установить перегрузку двигателя?

2) Неправильно настроена тепловая перегрузка. Основное требование для настройки защиты от перегрузки для двигателей составляет 125% от их тока полной нагрузки в соответствии с NEC; тем не менее, убедитесь, что вы прочитали инструкции по реле перегрузки.

Что такое перегрузка двигателя?

Перегрузка двигателя возникает, когда двигатель находится под чрезмерной нагрузкой. Первичные симптомы, сопровождающие перегрузку двигателя, — это чрезмерное потребление тока, недостаточный крутящий момент и перегрев. Чрезмерный нагрев двигателя — основная причина отказа двигателя.

Как рассчитать перегрузку звезда-треугольник?

Реле перегрузки в обмотке: в обмотках означает, что перегрузка помещается после точки, где проводка к контакторам разделена на основную и треугольную.В этом случае перегрузка всегда измеряет ток внутри обмоток. Настройка реле перегрузки (в обмотке) = 0,58 X FLC (линейный ток).

Как работает двигатель при перегрузке?

Реле перегрузки защищают двигатель, считывая ток, протекающий в двигателе. Во многих из них используются небольшие нагреватели, часто биметаллические элементы, которые изгибаются при нагревании током, подаваемым в двигатель. Когда ток слишком велик в течение слишком длительного времени, нагреватели размыкают контакты реле, проводя ток к катушке контактора.

Что вызывает перегрузку двигателя?

Перегрузка двигателя может быть вызвана увеличением нагрузки, приводимой двигателем, отказом подшипников в двигателе или ведомой нагрузке, а также проблемами с электричеством, такими как низкое входное напряжение или однофазность.

Как выбрать перегрузку двигателя?

3. Реле тепловой перегрузки

  1. Мин. Настройка реле тепловой перегрузки = 70% x ток полной нагрузки (фаза)
  2. мин. Уставка теплового реле перегрузки = 70% x4 = 3 ампер.
  3. Макс. Настройка реле тепловой перегрузки = 120% x ток полной нагрузки (фаза)
  4. Макс. Настройка реле тепловой перегрузки = 120% x4 = 4 Ампер.

Как рассчитать перегрузку?

Перегрузки определены с использованием 125% FLA, 7A x 1.25 = 8,75 А. Максимально допустимый размер перегрузок — 9,8 А. Перегрузка может составлять 140% от FLA, если перегрузка срабатывает при номинальной нагрузке или не позволяет двигателю запуститься, 7A x 1,4 = 9,8A.

Что такое защита от перегрузки класса 10?

Реле перегрузки класса 10, например, должно отключать двигатель за 10 секунд или меньше при 600% тока полной нагрузки (обычно достаточно времени для достижения двигателем полной скорости). Для многих промышленных нагрузок, особенно для высокоинерционных нагрузок, требуется класс 30.

Что такое защита от перегрузки?

Защита от перегрузки — это защита от перегрузки по току, которая может вызвать перегрев защищаемого оборудования. Следовательно, перегрузка также является разновидностью перегрузки по току. Защита от перегрузки обычно работает по кривой с обратнозависимой выдержкой времени, когда время отключения становится меньше по мере увеличения тока.

Что такое напряжение перегрузки?

Перенапряжение — это напряжение, превышающее максимальное значение рабочего напряжения в электрической цепи.

Что такое перегрузка компрессора?

Когда компрессор отключается и сильно нагревается, используется термин: тепловая перегрузка. Внешний змеевик загрязнен или перевернут, поэтому система не может отводить тепло, это заставляет компрессор работать больше и, следовательно, нагреваться. 2. Компрессор работает в режиме «короткого цикла».

Что такое тепловая защита от перегрузки?

Реле тепловой перегрузки — это экономичные электромеханические устройства защиты главной цепи. Они обеспечивают надежную защиту двигателей в случае перегрузки или обрыва фазы.

Какие два основных типа тепловых реле перегрузки?

Существует два основных типа реле перегрузки: тепловые и магнитные. Тепловые перегрузки возникают при последовательном подключении нагревателя к двигателю. Количество выделяемого тепла зависит от тока двигателя. Тепловые перегрузки можно разделить на два типа: тип плавления припоя или тигель с припоем и тип биметаллической ленты.

Что вызывает срабатывание тепловой перегрузки?

Причины могут включать большое изменение нагрузки (напр.g., измельчитель металлолома подается слишком много за один раз), перекос, сломанный приводной механизм или неправильные настройки привода двигателя. Проблемы с питанием (например, низкое напряжение или низкий коэффициент мощности) также могут вызвать состояние перегрузки.

Что такое тепловая защита двигателя?

Тепловая защита — это метод защиты двигателя вентилятора, который активируется, когда двигатель, работающий при номинальном напряжении, по какой-либо причине блокируется, но питание все еще подается. Он использует тепловое реле внутри двигателя для разрыва цепи катушки обмотки при температуре ниже уровня, который может вызвать возгорание.

Все ли двигатели нуждаются в защите от перегрузки?

КАЖДОМУ двигателю необходима защита от перегрузки того или иного типа. Некоторые малые двигатели имеют конструктивную защиту по сопротивлению. Некоторые двигатели могут быть защищены от перегрузки автоматическими выключателями или плавкими предохранителями. У некоторых двигателей есть внутренние датчики температуры, которые отключают пускатель двигателя.

Что необходимо сделать, прежде чем можно будет сбросить перегрузку двигателя?

Проверьте контактор пускателя двигателя, предохранители и реле перегрузки. 4) Устраните основную причину перегрузки и сбросьте перегрузки, нажав кнопку сброса.Запустите двигатель, проверьте его токи и сравните с номинальным значением FLA и размером нагревателя при перегрузке с помощью токоизмерительных клещей.

Почему в двигателе используется термистор?

Термистор — это небольшой датчик нелинейного сопротивления, который может быть встроен в изоляцию обмотки двигателя, чтобы обеспечить тесную тепловую связь с обмоткой. Он изготовлен из оксида металла или полупроводника.

Каков принцип работы термистора?

Принцип работы термистора заключается в том, что его сопротивление зависит от его температуры.Мы можем измерить сопротивление термистора с помощью омметра.

Можно ли обойти термистор?

Можно ли обойти термистор до покупки нового? Вы могли бы обойти это, если бы у вас было что-то, что было бы правильным сопротивлением; однако вы не можете просто перепрыгнуть через него, так как это не сработает.

Как работают термисторы?

Термисторы меняют сопротивление при изменении температуры; это резисторы, зависящие от температуры. Они идеально подходят для сценариев, в которых необходимо поддерживать одну определенную температуру, они чувствительны к небольшим изменениям температуры.Они могут измерять жидкость, газ или твердые тела, в зависимости от типа термистора.

Как прочитать термистор?

Характеристики термистора Обычно выражаются в процентах (например, 1%, 10% и т. Д.). Например, если указанное сопротивление при 25 ° C для термистора с допуском 10% составляет 10000 Ом, то измеренное сопротивление при этой температуре может находиться в диапазоне от 9000 Ом до 11000 Ом.

Термистор — это датчик?

Термисторы

, производные от термина термочувствительные резисторы, представляют собой очень точный и экономичный датчик для измерения температуры.Доступны 2 типа, NTC (отрицательный температурный коэффициент) и PTC (положительный температурный коэффициент), это термистор NTC, который обычно используется для измерения температуры.

Что такое термисторные датчики?

Термистор — это специальный тип переменного резистивного элемента, который изменяет свое физическое сопротивление при изменении температуры. Термистор — это твердотельное устройство для измерения температуры, которое действует как электрический резистор, но чувствительно к температуре.

Какие типы термисторов?

Два основных типа термисторов — это NTC (отрицательный температурный коэффициент) и PTC (положительный температурный коэффициент). Термисторы измеряют температуру с помощью сопротивления.

В чем разница между RTD и термистором?

RTD — это тип прибора, используемый для измерения температуры, тогда как термистор — это терморезистор, сопротивление которого изменяется в зависимости от температуры. RTD изготовлен из металлов с положительным температурным коэффициентом, тогда как термистор изготовлен из полупроводниковых материалов.

Почему у RTD 3 провода?

Для компенсации сопротивления выводного провода трехпроводные термометры сопротивления имеют третий провод, который обеспечивает измерение сопротивления выводного провода и вычитает это сопротивление из считываемого значения. Поскольку 3-проводные термометры сопротивления настолько эффективны и доступны по цене, они стали отраслевым стандартом.

Где используется RTD?

Иногда называемые термометрами сопротивления, RTD обычно используются в лабораторных и промышленных приложениях, поскольку они обеспечивают точные и надежные измерения в широком диапазоне температур.

Что означает RTD?

Температурный датчик сопротивления

Настройка и расчет реле перегрузки

Реле перегрузки является одним из важных устройств управления двигателем. Оно может предотвратить перегрев двигателя или сгорание обмотки из-за перегрузки по току.

Нам необходимо правильно установить значение реле перегрузки в зависимости от нашего приложения и тока полной нагрузки двигателя. Если мы установим низкий уровень от FLA, это может вызвать сбои в работе двигателя и процесс неработоспособности.

Но если мы установим высокий уровень от FLA, реле перегрузки не сможет защитить двигатель в случае перегрузки. Это может вызвать отказ двигателя или ожоги обмотки. Поэтому мы должны рассчитать и получить правильную настройку для реле перегрузки.

Как настроить защиту от перегрузки?

В основном для установки значения перегрузки мы ссылаемся на эту формулу:

1) IB ≤ In ≤ IZ

IB = ожидаемый рабочий ток цепи
IZ = допустимая нагрузка по току проводника, кабеля или двигателя
In = номинальный ток защитного устройства

2) I2 ≤ 1,45 x IZ

Примечание:
IZ = Максимальный ток проводника, кабеля или двигателя

Для регулируемых защитных устройств In соответствует установленному значению.
I2 = ток, вызывающий срабатывание защитного устройства в условиях, указанных в правилах оборудования (высокий испытательный ток).

Общая практика

Обычно настройка реле перегрузки зависит от FLA (ампер полной нагрузки) двигателя. Мы можем видеть на ТАБЛИЧКА двигателя . Обычно настройка для перегрузки от 5% до 10% больше, чем FLA.

Но это зависит от работы и функций двигателя. Для более подробной настройки, пожалуйста, обратитесь к руководству по эксплуатации двигателя от производителя.

Мы также можем установить значение реле перегрузки в зависимости от значения коэффициента обслуживания двигателя. Например, если коэффициент обслуживания 1,15, мы можем установить 125% от FLA, а если коэффициент обслуживания равен 1.0, мы можем установить 115% от FLA двигателя.

Ручной и автоматический сброс.

Обычно реле перегрузки имеет 2 варианта сброса. Мы можем выбрать ручной или автоматический сброс после срабатывания перегрузки двигателя.

Я рекомендовал использовать функцию ручного сброса, потому что мы можем знать, когда он срабатывает, и мы можем устранить основную причину проблемы с отключением.Итак, после того, как мы нашли основную причину, мы можем сбросить реле перегрузки и продолжить работу.

Реле перегрузки | Что такое защита от перегрузки?

Введение в двигатели

Электродвигатели являются неотъемлемой частью промышленного оборудования, игрушек, транспортных средств и электронных устройств. Они предназначены для преобразования электрической энергии в механическую. Эти устройства могут питаться от источников переменного или постоянного тока. Воздуходувки, вентиляторы, компрессоры, краны, экструдеры и дробилки — это несколько важных устройств, оснащенных электродвигателями.

Что такое асинхронный двигатель?

Асинхронный двигатель, также называемый синхронным двигателем, является одним из основных типов электродвигателей переменного тока, используемых в коммерческих и промышленных условиях. Эти двигатели оснащены обмотками Armortisseur и работают по принципу электромагнитной индукции. Электромагнитное поле в роторе создается вращающимся полем статора. Короче говоря, мощность передается на обмотку ротора от статора через индукцию. Существует два основных типа асинхронных двигателей — однофазные асинхронные двигатели и трехфазные асинхронные двигатели.

Введение в трехфазные асинхронные двигатели

Это один из наиболее широко используемых типов электродвигателей; и является неотъемлемой частью почти 80% промышленных приложений. Его популярность обусловлена ​​прочной конструкцией, отличными рабочими характеристиками, регулировкой скорости и отсутствием коммутатора. Как и любой обычный асинхронный двигатель, этот двигатель также состоит из статора и ротора.

  • Статор: Это неподвижный элемент асинхронного двигателя.Статор представляет собой небольшую цилиндрическую раму, на которой находится цилиндрический сердечник ротора. Он имеет различные штамповки с прорезями для размещения трехфазных обмоток. Обмотки статора разделены на 120 градусов.
  • Ротор: Это вращающаяся часть двигателя. Ротор имеет многослойные цилиндрические пазы с медными или алюминиевыми проводниками, соединенными концами. Это вал двигателя.

Ротор трехфазного асинхронного двигателя классифицируется как ротор с фазной обмоткой или ротор с контактным кольцом и ротор с короткозамкнутым ротором.Среди этих двух ротор с короткозамкнутым ротором является одним из самых распространенных.

Асинхронные двигатели с короткозамкнутым ротором

Асинхронные двигатели, оснащенные ротором с короткозамкнутым ротором, известны как асинхронные двигатели с короткозамкнутым ротором. Они получили свое название, потому что ротор напоминает вращающуюся цилиндрическую «клетку», которую вы можете найти в клетке для домашней белки или хомяка. Эти двигатели доступны в размерах от долей лошадиных сил (л.с.) менее одного киловатта до 10 000 л.с. (десятки мегаватт).Такие факторы, как простота, прочная конструкция и постоянная скорость при различных размерах нагрузки, способствовали их популярности. Как и другие асинхронные двигатели, двигатель с короткозамкнутым ротором состоит из:

  • Ротор: Это деталь цилиндрической формы, установленная на валу. Он содержит продольно организованные токопроводящие шины. Стержни изготовлены из меди или алюминия и вставлены в канавки, которые соединяются на концах, образуя структуру, подобную клетке. Ротор имеет многослойный сердечник, который помогает избежать потерь мощности из-за гистерезиса и вихревых токов.Провода ротора перекошены, что позволяет избежать зазубрин при запуске оборудования. Кроме того, этот перекос обеспечивает улучшенный коэффициент трансформации между ротором и статором.
  • Статор: Состоит из трехфазной обмотки вдоль сердечника. Статор помещен в металлический корпус. Обмотки в статоре организованы так, что они расположены на расстоянии 120 градусов друг от друга в пространстве, и установлены на многослойном железном сердечнике. Этот железный сердечник обеспечивает путь сопротивления для потока, создаваемого токами переменного тока.

Что такое защита от перегрузки?

Когда двигатель потребляет избыточный ток, это называется перегрузкой. Это может вызвать перегрев двигателя и повреждение обмоток двигателя. В связи с этим важно защитить двигатель, параллельную цепь двигателя и компоненты параллельной цепи двигателя от условий перегрузки. Реле перегрузки защищают двигатель, параллельную цепь двигателя и компоненты параллельной цепи двигателя от чрезмерного нагрева в условиях перегрузки.Реле перегрузки являются частью пускателя двигателя (блок контактора плюс реле перегрузки). Они защищают двигатель, контролируя ток, протекающий в цепи. Если ток превышает определенный предел в течение определенного периода времени, реле перегрузки срабатывает, приводя в действие вспомогательный контакт, который прерывает цепь управления двигателем, обесточивая контактор. Это приводит к отключению питания двигателя. Без питания двигатель и его компоненты цепи не перегреваются и не выходят из строя.Реле перегрузки можно сбросить вручную, а некоторые реле перегрузки автоматически сбрасываются через определенный период времени. После этого мотор можно перезапустить.

Как работает реле перегрузки

Реле перегрузки подключено последовательно с двигателем, поэтому ток, который течет к двигателю во время работы двигателя, также проходит через реле перегрузки. Он сработает на определенном уровне, когда через него протекает избыточный ток. Это приводит к размыканию цепи между двигателем и источником питания.Реле перегрузки можно сбросить вручную или автоматически по истечении заданного времени. Двигатель можно перезапустить после выявления и устранения причины перегрузки.

Типы реле перегрузки

Биметаллическое реле перегрузки

Многие реле перегрузки содержат биметаллические элементы или биметаллические полосы, также называемые нагревательными элементами. Биметаллические ленты изготовлены из двух типов металлов: один с низким коэффициентом расширения, а другой с высоким коэффициентом расширения.Эти биметаллические полосы нагреваются за счет намотки на биметаллическую полосу, по которой проходит ток. Обе металлические полоски расширятся из-за тепла. Однако металл с высоким коэффициентом расширения будет расширяться больше по сравнению с металлом с низким коэффициентом расширения. Такое разное расширение биметаллических полос приводит к изгибу биметалла по направлению к металлу с низким коэффициентом расширения. Когда полоса изгибается, он приводит в действие механизм вспомогательных контактов и вызывает размыкание нормально замкнутого контакта реле перегрузки.В результате цепь катушки контактора прерывается. Количество выделяемого тепла можно рассчитать по закону нагрева Джоуля. Он выражается как H ∝ I2Rt.

  • I — ток перегрузки, протекающий через обмотку вокруг биметаллической ленты реле перегрузки.
  • R — электрическое сопротивление обмотки биметаллической ленты.
  • t — это период времени, в течение которого ток I протекает через обмотку вокруг биметаллической ленты.

Приведенное выше уравнение определяет, что тепло, выделяемое обмоткой, будет прямо пропорционально периоду времени прохождения максимального тока через обмотку. Другими словами, чем ниже ток, тем больше времени потребуется реле перегрузки для срабатывания, и чем выше ток, тем быстрее сработает реле перегрузки, фактически оно сработает намного быстрее, потому что срабатывание реле является функцией текущий квадрат.

Биметаллические реле перегрузки часто используются, когда требуется автоматический сброс цепи, и происходит потому, что биметалл остыл и вернулся в исходное состояние (форму).Как только это произойдет, двигатель можно будет перезапустить. Если причина перегрузки не устранена, реле снова сработает и сбрасывается с заданными интервалами. При выборе реле перегрузки важно соблюдать осторожность, поскольку повторное отключение и сброс могут сократить механический срок службы реле и вызвать повреждение двигателя.

Во многих случаях двигатель устанавливается в месте с постоянной температурой окружающей среды, а реле перегрузки и пускатель двигателя могут быть установлены в другом месте, где температура окружающей среды отличается.В таких приложениях точка срабатывания реле перегрузки может варьироваться в зависимости от нескольких факторов. Ток, протекающий через двигатель, и температура окружающего воздуха являются двумя факторами, которые могут вызвать преждевременное отключение. В таких случаях используются биметаллические реле перегрузки с компенсацией внешней среды. Реле этого типа имеют два типа биметаллических полос: компенсированная биметаллическая полоса и первичная нескомпенсированная биметаллическая полоса. При температуре окружающей среды обе эти полоски изгибаются одинаково, предотвращая ложное срабатывание реле перегрузки.Однако первичная биметаллическая полоса — единственная полоса, на которую влияет ток, протекающий через нагревательный элемент и двигатель. В случае перегрузки расцепитель будет задействован основной биметаллической полосой.

Эвтектическое реле перегрузки

Этот тип реле перегрузки состоит из обмотки нагревателя, механического механизма для активации отключающего механизма и эвтектического сплава. Эвтектический сплав — это комбинация двух или более материалов, которые затвердевают или плавятся при определенной известной температуре.

В реле перегрузки эвтектический сплав находится в трубке, которая часто используется вместе с подпружиненным храповым колесом для активации отключающего механизма во время операций по перегрузке. Ток двигателя проходит через небольшую обмотку нагревателя. Во время перегрузки трубка из эвтектического сплава нагревается обмоткой нагревателя. Сплав плавится под действием тепла, освобождая храповое колесо и позволяя ему вращаться. Это действие инициирует размыкание замкнутых вспомогательных контактов в реле перегрузки.

Реле перегрузки Eutectic можно сбросить вручную только после срабатывания. Этот сброс обычно выполняется с помощью кнопки сброса, которая расположена на крышке реле. Нагреватель, установленный на реле, выбирается исходя из тока полной нагрузки двигателя.

Твердотельное реле перегрузки

Эти реле обычно называют электронными реле перегрузки. В отличие от биметаллических и эвтектических реле перегрузки, эти электронные реле перегрузки измеряют ток электронным способом.Несмотря на то, что они доступны в различных исполнениях, они обладают общими характеристиками и преимуществами. Безнагревная конструкция — одно из главных преимуществ этих реле. Такая конструкция помогает снизить затраты и усилия по установке. Кроме того, конструкция без обогревателя нечувствительна к изменению температуры окружающей среды, что помогает свести к минимуму нежелательные срабатывания. Эти реле также обеспечивают защиту от потери фазы — более эффективно, чем реле перегрузки из биметаллических или эвтектических сплавов. Эти реле могут легко обнаружить обрыв фазы и задействовать вспомогательный контакт для размыкания цепи управления двигателем.Твердотельные реле перегрузки позволяют легко регулировать время срабатывания и уставки.

Срабатывание реле перегрузки

Время срабатывания реле перегрузки будет уменьшаться при увеличении тока. Эта функция нанесена на график обратной зависимости времени ниже и называется классом отключения. Класс отключения также указывает время, необходимое реле для размыкания в состоянии перегрузки.

Классы отключения 5, 10, 20 и 30 являются общими. Эти классы предполагают, что реле перегрузки сработает через 5, 10, 20 и 30 секунд.Это отключение обычно происходит, когда двигатель работает на 720% от своей полной нагрузки. Класс отключения 5 подходит для двигателей, требующих быстрого отключения, тогда как класс 10 обычно предпочтительнее для двигателей с низкой тепловой мощностью, таких как погружные насосы. Классы 10 и 20 используются для приложений общего назначения, тогда как класс 30 используется для нагрузок с высокой инерцией. Реле класса 30 помогают избежать ложных срабатываний.

Мы надеемся, что эта короткая статья дала вам хорошее базовое представление о реле перегрузки.Поищите другие информационные документы от c3controls на c3controls.com/blog.

Отказ от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется при том понимании, что авторы и издатели не участвуют в предоставлении технических или других профессиональных консультаций или услуг. Инженерная практика определяется обстоятельствами конкретного объекта, уникальными для каждого проекта. Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может принять во внимание все соответствующие факторы и желаемые результаты.Информация в этом техническом документе была размещена с разумной тщательностью и вниманием. Однако возможно, что некоторая информация в этих официальных документах является неполной, неверной или неприменимой к определенным обстоятельствам или условиям. Мы не несем ответственности за прямые или косвенные убытки, возникшие в результате использования информации, содержащейся в этом техническом документе, или действий на ее основе.

Защита двигателя: три распространенные ошибки и как их избежать

Если говорить о защите двигателя , они не имеют надлежащего размера или конфигурации, могут разворачиваться два возможных сценария.Есть несколько случаев, когда они срабатывают постоянно и отнимают драгоценное время у обслуживающего персонала, а в некоторых случаях они могут даже не срабатывать в ответ на небольшое пониженное напряжение или перегрузку, условия, которые не всегда очевидны и которые сокращают срок службы моторы.

Чтобы избежать некоторых типичных ошибок при настройке защиты двигателя, следует помнить о следующих шагах.

1) Установлена ​​слишком высокая защита от пониженного напряжения — Двигатели, которые работают ниже номинального напряжения, могут страдать от перегрева и иметь более короткий срок службы.Национальная ассоциация производителей электрооборудования (NEMA) не рекомендует эксплуатировать двигатели при напряжении ниже 90% от их номинального напряжения в течение длительного времени. Убедитесь, что если защита от пониженного напряжения установлена ​​слишком высоко, она может и, вероятно, приведет к отключению двигателя, когда в этом нет необходимости.

Например, трехфазный двигатель, если он имеет номинальное напряжение 230 В, что означает, что минимальное рабочее напряжение, приемлемое в соответствии с NEMA, составляет 207 В (230 В x 90%). Однако, если регулируемое реле минимального напряжения установлено на 220 В, снижения напряжения на 5% будет достаточно для отключения двигателя.

2) Неправильно настроена тепловая перегрузка — Основное требование для настройки защиты от перегрузки для двигателей составляет 125% от их тока полной нагрузки в соответствии с NEC; тем не менее, убедитесь, что вы прочитали инструкции по реле перегрузки.

Некоторые производители имеют встроенную настройку 125%, что означает, что вы должны установить защиту от перегрузки в соответствии с током, указанным на паспортной табличке двигателя.

Если значение 125% не встроено в реле, вы должны установить его на токе, указанном на паспортной табличке двигателя, + 25%.

Например, предположим, что вы хотите защитить двигатель током полной нагрузки 60 А, и у вас есть реле перегрузки, которое можно установить от 50 до 100 А. Если устройство уже имеет коэффициент 125%, вы должны установить его на 60 А. В противном случае правильная настройка — 75 А (60 А + 25%).

Если защита от перегрузки установлена ​​на слишком низкое значение, двигатель может быть отключен даже при нормальной работе. Например, если в описанном выше защитном устройстве циферблат установлен на 50 А, а для двигателя 60 А он был оставлен таким же, оно может не сработать немедленно, если двигатель просто слегка нагружен, что создает впечатление, что он работает правильно.Однако более высокие нагрузки двигателя, которые приводят к току выше 50 А, приведут к срабатыванию устройства.

Конечно, не следует устанавливать слишком высокую защиту от перегрузки, поскольку двигатель не будет должным образом защищен от перегрузки. Например, если вы добавите 25% при настройке реле перегрузки, которое уже имеет встроенное значение 125%, фактическое значение защиты от перегрузки будет 156%, что не соответствует требованиям NEC.

3) Неправильно установлена ​​магнитная защита. — В таких обстоятельствах, как неисправность, магнитная защита должна немедленно отключать двигатель, но должна пропускать пусковой ток без отключения.Также следует иметь в виду, что если магнитная защита зафиксирована, убедитесь, что ее кривая срабатывания допускает пусковой ток, который может составлять только до 800% от номинального тока. Принимая во внимание, что если магнитная защита регулируется, то установите такое значение, чтобы она не срабатывала при пусковом токе. Убедитесь, что пусковой ток ниже, если двигатель оснащен пускателем пониженного напряжения, твердотельным пускателем или частотно-регулируемым приводом.

Схема подключения

, типы и применение

Реле перегрузки — это электрическое устройство, используемое для защиты электродвигателя от перегрева.Поэтому очень важно иметь достаточную защиту двигателя. Электродвигатель может безопасно эксплуатироваться с помощью реле перегрузки, предохранителей или автоматических выключателей. Но это реле защищает двигатель, в то время как автоматический выключатель в противном случае защищает цепь. Точнее, предохранители, а также автоматические выключатели предназначены для обнаружения перегрузки по току в цепи, тогда как реле предназначено для обнаружения перегрева, если электродвигатель нагревается. Например, реле перегрузки можно исследовать без отключения выключателя (выключателя).Одно не восстанавливает другое. В этой статье обсуждается обзор реле перегрузки, типов и его работы.


Что такое реле перегрузки?

Реле перегрузки может быть определено как , это электрическое устройство, в основном предназначенное для имитации нагревательных прототипов электродвигателя, а также прерывания протекания тока, когда устройство обнаружения тепла в реле достигает фиксированной температуры. Конструкция реле перегрузки может быть выполнена с нагревателем в сочетании с обычно закрытыми соединениями, которые разблокируются, когда нагреватель становится слишком горячим.Это реле можно подключать последовательно, а также размещать между самим двигателем и контактором, чтобы избежать перезапуска двигателя при срабатывании перегрузки.

Схема подключения

Схема соединений реле перегрузки показана ниже, а соединения реле перегрузки , обозначенные символом , могут показаться двумя противоположными вопросительными знаками, иначе как символом «S». Работа реле перегрузки обсуждается ниже.

Несмотря на то, что на рынке доступно несколько типов реле перегрузки, наиболее распространенным типом реле является «биметаллическое тепловое реле перегрузки».Конструирование этого реле может быть выполнено с использованием двух разных видов металлических полос, и эти полосы могут быть соединены друг с другом, а также увеличиваться с различной скоростью при нагревании. Всякий раз, когда полоса нагревается до определенной температуры, полоса может закручиваться достаточно далеко, чтобы разорвать эту цепь.

Схема электрических соединений реле перегрузки

Всякий раз, когда ток, протекающий по направлению к двигателю, превышает то, за что заряжены нагреватели, перегрузка обнаруживается позже, чем через несколько секунд. Классы реле перегрузки можно разделить на три типа в зависимости от продолжительности исследования реле.Реле перегрузки классов 10, 20 и 30 можно исследовать позже, чем через 10 секунд, 20 секунд и 30 секунд соответственно. Одной из основных характеристик безопасности этого реле является то, что двигатель не запускается немедленно. Например, когда реле перегрузки исследует биметаллическое реле, то биметаллические соединения NC (нормально замкнутые) разблокируют цепь до тех пор, пока полоса не остынет. Если кто-нибудь попытается нажать пусковой выключатель, чтобы замкнуть переключатели контактора, двигатель не включится.

Реле перегрузки работает

Принцип работы реле перегрузки зависит от электротермических свойств биметаллической ленты. Расположение этого в цепи двигателя может быть выполнено так же, как протекание тока к двигателю может осуществляться с помощью его полюсов. Когда ток увеличивает фиксированное значение, биметаллическая полоса нагревается и изгибается.

Эти реле всегда работают с подрядчиками. Как только биметаллические полоски нагреваются, может сработать контактный расцепитель, который прерывает подачу питания на катушку контактора, деактивирует его и прерывает ток к двигателю.Время, необходимое для отключения, всегда обратно пропорционально протеканию тока через реле. Поэтому эти реле называются токовозависимыми, а также реле с обратной выдержкой времени.

Это реле может быть подключено к двигателю последовательно, так что ток будет течь по направлению к двигателю. Когда мотор активируется, тогда движущийся мотор через OLR будет там. Как только избыточный ток протекает через реле, оно срабатывает на определенном уровне, поэтому цепь между источником питания и двигателем размыкается.По истечении заранее установленного периода это реле может сброситься автоматически или вручную. Как только перегрузка будет обнаружена и устранена, двигатель снова будет активирован.

Детали реле перегрузки

Помимо контактов, а также биметаллической полосы, в реле перегрузки есть еще несколько деталей, которые обсуждаются ниже.

Клемма

На схеме реле входные клеммы обозначены L1, L2 и L3, которые устанавливаются непосредственно на контактор.Электропитание двигателя может быть подключено к клеммам T1, T2 и T3.

Настройка диапазона ампер

Вращающаяся ручка может быть доступна на СТАРОМ. Используя это, можно установить номинальный ток, протекающий по направлению к двигателю. Подача тока может быть установлена ​​в одном из указанных верхних и нижних пределов. В электронном OLD также предусмотрена дополнительная ручка для отключения по выбору класса.

Кнопка сброса

Эта кнопка доступна поверх СТАРОГО, и используется для сброса реле после отключения и устранения неисправности.
Кнопка выбора ручного или автоматического сброса

С помощью этих кнопок можно выбрать ручной или автоматический сброс реле после отключения. Как только устройство настроено на автоматический сброс, становится возможен удаленный сброс реле

Вспомогательный контакт

Это реле включает в себя два вспомогательных контакта: один нормально разомкнутый, а другой — нормально замкнутый. Для сигнализации о срабатывании используется нормально разомкнутый контакт, при отключении подрядчика — нормально замкнутый контакт. Контакты NC могут напрямую переключать катушки контактора.

Кнопка тестирования

Кнопка тестирования используется для проверки проводки управления.

Типы реле перегрузки

Они подразделяются на два типа, а именно: тепловое реле перегрузки и магнитное реле перегрузки .

Термореле перегрузки

Реле теплового типа — это защитное устройство, которое в основном предназначено для отключения электроэнергии, когда двигатель использует слишком большой ток в течение длительного периода времени.

Для этого в этих реле есть реле NC (нормально замкнутое).Как только в цепи двигателя подается экстремальный ток, реле размыкается из-за повышения температуры двигателя, температуры реле, в противном случае обнаруживается ток перегрузки в зависимости от типа реле.

Тепловое реле перегрузки

Эти реле относятся к автоматическим выключателям как в конструкции, так и в области применения; однако большинство автоматических выключателей нарушают работу цепи, если даже на мгновение происходит перегрузка. Они одинаково предназначены для расчета профиля нагрева двигателя; таким образом, перегрузка должна произойти в течение всего периода, прежде чем цепь разомкнется.Реле тепловой перегрузки подразделяются на два типа, а именно: паяльные ванны и биметаллические ленты.

Магнитное реле перегрузки

Магнитное реле перегрузки может работать, определяя напряженность магнитного поля, создаваемого током, протекающим по направлению к двигателю. Это реле может быть построено с переменным магнитным сердечником внутри катушки, которая удерживает ток двигателя. Расположение потока внутри катушки тянет сердечник вверх. Когда ядро ​​увеличивается достаточно далеко, он отключает набор соединений на вершине реле.

Магнитное реле перегрузки

Основное различие между реле теплового типа и реле магнитного типа заключается в том, что реле перегрузки магнитного типа не реагирует на температуру окружающей среды. Как правило, они используются в областях, где наблюдаются резкие перепады температуры окружающей среды. Магнитные реле перегрузки подразделяются на два типа: электронные и приборные.

Биметаллическое тепловое реле перегрузки

Работа биметаллического теплового реле перегрузки в основном зависит от нагревательных свойств биметаллической ленты.В методе прямого нагрева полный поток тока к двигателю может быть обеспечен с помощью реле перегрузки, которое также называется OLR. В результате он непосредственно нагревается за счет протекания тока.

Однако в случае непрямого нагрева полоса может быть расположена в плотном контакте через проводник внутри реле. Сильный поток тока к электродвигателю нагревается проводником и биметаллической полосой. Здесь проводник должен быть изолирован, чтобы ток не проходил по всей полосе.

Электронное реле перегрузки

Обычно электронные реле перегрузки называют твердотельными реле перегрузки. Внутри реле этого типа нет биметаллической полосы. В качестве альтернативы он включает в себя трансформаторы тока или датчики температуры, чтобы определять сумму тока, протекающего по направлению к двигателю. Для защиты в этом виде реле используется технология, основанная на микропроцессоре. Здесь PTC играет ключевую роль в обнаружении температуры, а также в отключении цепи при возникновении ошибок перегрузки.Некоторые типы реле перегрузки поставляются с датчиками Холла, а также трансформаторами тока для непосредственного обнаружения протекания тока.

Основным преимуществом электронного реле перегрузки по сравнению с тепловым реле перегрузки является отсутствие биметаллической полосы, что приводит к меньшим тепловым потерям в реле. Кроме того, эти типы реле более точны по сравнению с тепловыми реле.

Некоторые производители электронных устройств OLD включают дополнительные функции, такие как защита от замыкания на землю и остановки двигателя.Электронные реле перегрузки используются там, где часто требуется запуск и остановка двигателей. Эти реле могут быть спроектированы таким образом, чтобы выдерживать начальный ток двигателя в течение ограниченного периода времени.

Реле перегрузки Eutectic

Реле эвтектической перегрузки включает в себя нагреватель обмотки, эвтектический сплав и механическое устройство для активации механизма отключения. Здесь эвтектический сплав представляет собой смесь двух других материалов, которые в противном случае плавятся, затвердевают при определенной температуре.В OLR эвтектический сплав заключен в трубку для частого использования через храповое колесо, нагруженное пружиной, чтобы активировать отключающее устройство на протяжении всего процесса перегрузки.

Ток в двигатель подается через небольшую обмотку нагревателя во время перегрузки, трубка из эвтектического сплава может нагреваться через обмотку нагревателя, и сплав растворяется из-за тепла, так что храповое колесо вращается. Это действие начинает размыкать замкнутые вспомогательные контакты в OLR.Реле такого типа можно просто сбросить вручную после отключения. Таким образом, обычно этот сброс может быть выполнен с помощью кнопки сброса, которая расположена на крышке реле. Нагреватель, подключенный через реле, можно выбрать в зависимости от тока полной нагрузки двигателя.

Реле перегрузки холодильника

В цепи компрессора холодильника используется защитное устройство, такое как реле перегрузки. Питание на обмотки двигателя компрессора подается от перегруженной машины.Этот тип реле в основном используется для включения пусковой обмотки в цепь до тех пор, пока компрессор не достигнет рабочей скорости.

Каким образом OLR защищает от сбоев фазы?

При нормальной работе OLR ток через каждый полюс к электродвигателю остается одинаковым. Если какая-либо фаза прерывается, ток через оставшиеся две фазы увеличивается до обычного значения. Поэтому реле нагревается и срабатывает. Обрыв фазы также называют обрывом фазы, иначе однофазным двигателем.

Эти реле не могут защищать от короткого замыкания, но они должны использоваться через устройства защиты от короткого замыкания, чтобы защитить их, иначе любые короткие замыкания в электродвигателе могут легко их повредить. Эти реле могут защищать от потери фаз, дисбаланса фаз, перегрузок, но не от коротких замыканий.

Что вызывает отключение OLR?

Из приведенного выше обсуждения можно выделить три основных состояния для дополнительных поездок:

  • Перегрузка мотора.
  • Обрыв фазы на входе
  • Дисбаланс фаз

А также доступны некоторые дополнительные функции защиты, но они меняются от одного дизайнера к другому.

Срабатывание реле перегрузки

Время, используемое для разблокировки контактора при перегрузках, может быть обозначено через класс отключения. Как правило, оно делится на разные классы, такие как Class5, 10, 20 и 30. Это реле срабатывает через 5 секунд, 10 секунд, 20 секунд и 30 секунд соответственно при токе полной нагрузки на электродвигатель.

Обычно используемые реле перегрузки относятся к классам 10 и 20, тогда как OLR класса 30 в основном используются для защиты двигателей при работе с нагрузками с высокой неактивной нагрузкой.Реле типа 5 в основном используются для двигателей, которые требуют очень быстрого отключения.

Приложения

Применения реле перегрузки включают следующее.

  • Широко используется для защиты двигателя.
  • Его можно использовать для обнаружения как условий перегрузки, так и состояний неисправности, а затем объявления команд отключения для защитного устройства.
  • Это реле превратилось в микропроцессорные системы, а также в твердотельную электронику.
  • Эти реле отключают устройство, когда оно потребляет слишком большой ток.

Итак, это все о реле перегрузки. Из приведенной выше информации, наконец, мы можем сделать вывод, что это электромеханические устройства защиты от перегрузки , используемые для схем. Эти устройства обеспечивают надежную защиту двигателей при обрыве фазы, в противном случае происходит перегрузка. Вот вам вопрос, какова функция реле перегрузки?

Источники изображений: Temco Industrial

Как устроено тепловое реле?

Тепловое реле обычно состоит из нагревательного элемента, управляющего контакта и системы действия, механизма сброса, устройства установки тока и элемента температурной компенсации. Когда деформация достигает определенного расстояния, шатун толкается, чтобы размыкать цепь управления, так что контактор теряет питание и главная цепь отключается, тем самым реализуя защиту двигателя от перегрузки.

При фактической работе двигателя, такой как перетаскивание производственного оборудования на работу, если машина неисправна или цепь ненормальная, двигатель столкнется с перегрузкой, скорость двигателя уменьшится, ток в обмотке увеличится, и температура обмотки двигателя увеличится.Если ток перегрузки небольшой и время перегрузки короткое, а обмотка двигателя не превышает допустимого превышения температуры, перегрузка допустима. Однако, если время перегрузки велико и ток перегрузки велик, повышение температуры обмотки двигателя превысит допустимое значение, что приведет к старению обмотки двигателя, сокращению срока службы двигателя и даже сгоранию обмотки двигателя в серьезных случаях. . Поэтому такую ​​перегрузку мотор не переносит. Тепловое реле должно использовать принцип теплового воздействия тока для отключения цепи двигателя в случае перегрузки, которую двигатель не может выдержать, чтобы обеспечить защиту двигателя от перегрузки.(Каков принцип работы теплового реле?)

Схема принципа работы теплового реле

Когда тепловое реле используется для защиты двигателя от перегрузки, термоэлемент подключается последовательно с обмоткой статора двигателя , нормально замкнутый контакт теплового реле включен последовательно в цепь управления электромагнитной катушкой контактора переменного тока, а ручка регулировки тока установки регулируется так, чтобы шток переключения в елочку и шток толкателя находились на нужном расстоянии .

Когда двигатель работает нормально, термический элемент нагревается током термического элемента, то есть номинальным током двигателя. Биметаллический лист изгибается после нагрева, так что толкатель только контактирует со штоком переключения передач в елочку, но не может толкать рычаг в елочку. В это время нормально замкнутый контакт находится в замкнутом состоянии, контактор переменного тока остается замкнутым, и двигатель работает нормально.

Если двигатель перегружен, ток в обмотке увеличивается, и ток в термоэлементе также увеличивается, температура биметаллического листа повышается, а степень изгиба увеличивается.Он толкает стержень переключения передач в елочку, который толкает нормально замкнутый контакт, так что контакт размыкается, что приводит к отключению цепи катушки контактора переменного тока, размыканию контактора и отключению питания двигателя, а двигатель защищен остановившись. 8 — Нормально замкнутый статический контакт, 9 — Подвижный контакт, 10 — Рычаг, 11 — Нормально открытый статический контакт (регулировочный винт сброса), 12 — Компенсирующий биметаллический лист, 13 — Толкатель, 14 — Шатун, 15 — Нажимная пружина

Тепловой элемент

Тепловой элемент является сердцем теплового реле :

1.В тепловом реле прямого нагрева используется биметаллический лист в качестве теплового элемента, позволяющего напрямую пропускать электрическую серу. Поскольку сам биметаллический лист имеет определенное сопротивление, он может выделять тепло, когда через него проходит ток. Поскольку биметаллический лист используется как в качестве чувствительного, так и в качестве нагревательного элемента, этот метод нагрева имеет характеристики : простая конструкция, небольшой объем, экономия материала, небольшая постоянная времени нагрева и быстрое изменение температуры.

2.Косвенный нагрев — это выделение тепла через термоэлемент, который электрически не связан с биметаллическим листом. Термоэлементы имеют нитевидную форму или обвязаны биметаллическим листом. Поскольку тепло, генерируемое термоэлементом, передается биметаллическому листу через воздух, постоянная времени нагрева велика, а скорость, отражающая изменение температуры, относительно мала .

3. Комбинированный нагрев фактически представляет собой комбинацию прямого и косвенного нагрева.Постоянная времени нагрева смеси находится между двумя вышеуказанными формами. Величину сопротивления можно легко отрегулировать путем параллельного или последовательного соединения различных сопротивлений, и он имеет преимущества прямого и косвенного нагрева, поэтому получил широкое распространение.

4. Нагреватель трансформатора тока в основном используется для теплового реле большой мощности и пускового теплового реле большой нагрузки.

Управляющий контакт и система действия

В настоящее время широко используемая конструкция теплового реле представляет собой подвижный контакт пружинного типа.Когда двигатель перегружен, нормально замкнутый контакт будет отключен. После остановки двигателя биметаллический лист теплового реле охладится и вернется в исходное состояние. Подвижный контакт нормально замкнутого контакта автоматически возвращается в исходное положение под действием пружины. Однако традиционная пружина подвижного контакта пружинного типа легко отпадает, в результате чего вспомогательный контакт не электризуется, в результате чего тепловое реле не может использоваться. Существующий более безопасный метод заключается в модернизации подвижного контакта пружинного типа до динамического контакта с листовой пружиной и установке контактного моста в контактный мост с листовой пружиной , чтобы вибрация подвижного контакта была больше, когда он контактирует с статический контакт.Из-за влияния инерции движения и столкновения контактный мост пружинного типа будет производить динамическую упругую деформацию. В разные динамические моменты исходный контактный мост с плоской листовой пружиной будет отличаться, а кривизна вызывает изгиб и растяжение, что дополнительно приводит в движение сферический подвижный контакт для создания фрикционного качения относительно статического контакта, что приводит к более полному повреждению сопротивления поверхностной мембраны, обеспечивает эффект контактной проводимости и повышает надежность оборудования.

Механизм сброса и защита от обрыва фазы

После того, как термоэлемент нагревается и изгибается, ток главной цепи отключается путем нажатия пускового устройства, чтобы сработало тепловое реле. Биметаллический лист охлаждают, восстанавливая исходное состояние. Очевидно, на это нужно время. Есть два способа сброса теплового реле: ручной и автоматический. Ручной сброс обычно составляет не менее 5 минут, автоматический сброс — не более 10 минут.

Режим сброса можно выбрать с помощью кнопки сброса. В нормальном состоянии, когда кнопка сброса указывает на A (автоматический сброс), NC замкнут, а NO отключен; в состоянии отключения, когда кнопка сброса указывает на A, NC размыкается, а NO закрывается. После отключения и остановки двигателя подвижный контакт не может быть сброшен. Подвижный контакт можно сбросить только после нажатия кнопки сброса. В это время тепловое реле находится в состоянии ручного сброса. Если перегрузка двигателя является неисправностью, чтобы избежать легкого повторного запуска двигателя, тепловое реле должно перейти в режим ручного сброса.В состоянии ручного сброса принцип сброса такой же. Чтобы переключить тепловое реле из режима ручного сброса в режим автоматического сброса, просто поверните кнопку сброса в положение A (автоматический сброс).

Некоторые типы тепловых реле также имеют защиту от обрыва фазы. Структурная схема представлена ​​на рисунке ниже. Функция защиты от обрыва фазы теплового реле обеспечивается механизмом дифференциального усиления, состоящим из внутренних и внешних толкателей. Когда двигатель работает нормально, ток теплового элемента через тепловое реле нормальный, и как внутренний, так и внешний толкающие стержни перемещаются вперед в соответствующее положение; при обрыве фазы источника питания ток фазы равен нулю, а биметаллический лист фазы охлаждается и сбрасывается, что заставляет внутренний толкатель перемещаться вправо, а биметаллический лист двух других фаз увеличивает степень изгиба из-за увеличения тока, который заставляет внешний толкатель перемещаться влево Функция дифференциального усиления подталкивает нормально замкнутый контакт к размыканию через короткое время после обрыва фазы, так что контактор переменного тока размыкается и двигатель защищается при сбое питания.

Установка тока устройства и температурной компенсации

Установочный ток относится к максимальному току, который проходит через нагревательный элемент в течение длительного времени без срабатывания теплового реле. Когда ток, проходящий через нагревательный элемент, превышает 20% установленного значения тока, тепловое реле срабатывает в течение 20 минут. Установочный ток теплового реле можно изменить, установив ручку тока. При выборе и настройке теплового реле значение тока настройки должно соответствовать номинальному току двигателя.

Конструкция высокоточной установки тока реле тепловой перегрузки включает в себя опору (1), компенсирующее двойное золото (3), регулировочный винт (4) и установочный кулачок (5).

Реле тепловой перегрузки — это наиболее широко используемый электрический компонент для защиты двигателя. В процессе эксплуатации заказчику необходимо отрегулировать значение тока уставки теплового реле перегрузки в соответствии с фактическим рабочим состоянием двигателя. Если точность настройки теплового реле перегрузки невысока, это легко может вызвать аварийное отключение или перегрев двигателя.

Левый рычаг тяги переключения передач в елочку также изготовлен из биметаллического листа. При изменении температуры окружающей среды биметаллический лист в главной цепи будет в определенной степени деформироваться и изгибаться. В это время левый рычаг тяги переключения передач в елочку также будет деформироваться и изгибаться в том же направлении, чтобы сохранить расстояние между рычагом в форме елочки и толкателем в основном неизменным, чтобы обеспечить точность срабатывания теплового реле. Этот эффект называется температурной компенсацией.

Из рисунка ниже видно, как решить проблему низкой общей точности традиционной структуры путем компенсации двойного золота.

Отверстие для заклепки и резьбовое отверстие устанавливаются на компенсационном двойном металле. Отверстие для клепки совпадает с бобышкой для клепки, а отверстие с резьбой соединяется с резьбой регулировочного винта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *