Транзистор q1 – Q1 транзистор

Содержание

Q1 транзистор

EveryCircuit is an easy to use, highly interactive circuit simulator and schematic capture tool. Real-time circuit simulation, interactivity, and dynamic visualization make it a must have application for professionals and academia. EveryCircuit user community has collaboratively created the largest searchable library of circuit designs. EveryCircuit app runs online in Chrome browser and on mobile phones and tablets, enabling you to capture design ideas and learn electronics on the go.

Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Урок №23. Полевой (MOSFET) транзистор.

Результаты для SMD-маркировки «Q1»

Блок ограничителя тока — практика в электрических или электронных схемах , устанавливающая верхний предел тока, который может быть доставлен на нагрузку, с целью защиты цепи, генерирующей или передающей ток, от вредного воздействия короткого замыкания или аналогичной проблемы.

В некоторых электронных схемах используется ограничение действующего тока, поскольку предохранитель может не защищать твердотельные устройства. На изображении показан один стиль схемы ограничения тока. Схема представляет собой простой механизм защиты, используемый в регулируемых источниках постоянного тока и усилителях мощности класса-AB.

Q1 — транзитный или выходной транзистор. R sens — это устройство считывания тока нагрузки. Q2 — защитный транзистор, который включается, как только напряжение через Rsens становится около 0,65 В. Это напряжение определяется значением R sens и током нагрузки через него I load.

Когда Q2 включается, он удаляет базовый ток от Q1, тем самым уменьшая ток коллектора Q1. Кроме того, это рассеивание мощности будет оставаться до тех пор, пока существует перегрузка, что означает, что устройства должны быть способны выдерживать это в течение значительного периода времени.

Это рассеивание мощности будет существенно меньше, чем если бы не была предусмотрена схема ограничения тока. В этом методе, выходящем за пределы тока, выходное напряжение будет уменьшаться до значения в зависимости от предела тока и сопротивления нагрузки. Проблема с предыдущей схемой заключается в том, что Q1 не будет насыщен, если его база не будет смещена на 0,5 вольта выше V cc.

Цепи снизу работают более эффективно от одного V cc питания. В обеих цепях R1 позволяет Q1 включать и передавать напряжение и ток нагрузке. Опциональный компонент R2 защищает Q2 в случае короткого замыкания нагрузки. Благодаря своей простоте эта схема иногда используется как источник тока для мощных светодиодов.

Многие разработчики электроники положили небольшой резистор на выходные выводы ИС. Это замедляет скорость кромок, что улучшает электромагнитную совместимость. Некоторые устройства имеют встроенный выходной резистор с ограничением скорости нарастания напряжения; некоторые устройства имеют программируемое ограничение скорости нарастания. Это обеспечивает общий контроль скорости нарастания.

Материал из Википедии — свободной энциклопедии. В электронных силовых цепях [ править править код ]. Категории : Силовая электроника Коммутационные аппараты. Пространства имён Статья Обсуждение. Просмотры Читать Править Править код История. На других языках Добавить ссылки. Эта страница в последний раз была отредактирована 10 сентября в Текст доступен по лицензии Creative Commons Attribution-ShareAlike ; в отдельных случаях могут действовать дополнительные условия.

Подробнее см. Условия использования. Политика конфиденциальности Описание Википедии Отказ от ответственности Свяжитесь с нами Разработчики Заявление о куки Мобильная версия.

Усилитель на одном транзисторе v2

Для сборки устройства достаточно одного дросселя, пары полевых транзисторов, четырех резисторов, двух диодов, двух стабилитронов, и рабочего колебательного контура со средней точкой на катушке. Можно обойтись и без средней точки, и об этом поговорим далее. В сети можно найти много реализаций этой схемы, среди которых индукционные нагреватели, индукционные плитки, высоковольтные трансформаторы, и просто высокочастотные преобразователи напряжения. Схема напоминает генератор Ройера, однако это не он. Давайте же рассмотрим, как эта схема работает.

Когда оба МОП-транзистора закрыты, ток, циркулирующий в Для получения режима ZVS необходимо, чтобы до включения Q1.

Особенности выбора силовых МОП-транзисторов для резонансных LLC-преобразователей

Статья будет полезной для опытных разработчиков источников питания, желающих повысить надежность и эффективность работы своих схем. В последнее время повышение эффективности и увеличение плотности мощности становятся основными проблемами при создании источников питания. Рост общего уровня потребления неизбежно приводит к увеличению стоимости энергии. Это вызывает повышение спроса на источники питания, обладающие высоким КПД, компактными размерами и высокой мощностью. Резонансные LLC-преобразователи все шире применяются в силовой технике благодаря отличной эффективности, высокой плотности мощности и малому уровню электромагнитных помех. Выбор оптимальных силовых МОП-транзисторов для резонансного LLC-преобразователя определяется как эффективностью, так и надежностью их работы. В данной статье анализируются особенности работы силовых МОП-транзисторов в резонансных LLC-преобразователях, а также рассматриваются методы повышения их надежности и эффективности. Одним из преимуществ резонансных LLC-преобразователей является их способность обеспечивать коммутацию силовых транзисторов при нулевых напряжениях ZVS в заданном диапазоне нагрузок. При этом потери на переключения в силовом каскаде первичной стороны практически отсутствуют.

Транзистор

Блок ограничителя тока — практика в электрических или электронных схемах , устанавливающая верхний предел тока, который может быть доставлен на нагрузку, с целью защиты цепи, генерирующей или передающей ток, от вредного воздействия короткого замыкания или аналогичной проблемы. В некоторых электронных схемах используется ограничение действующего тока, поскольку предохранитель может не защищать твердотельные устройства. На изображении показан один стиль схемы ограничения тока. Схема представляет собой простой механизм защиты, используемый в регулируемых источниках постоянного тока и усилителях мощности класса-AB. Q1 — транзитный или выходной транзистор.

Войти через.

Составной транзистор

Войти через. Гарантия возврата денег Возврат за 15 дней. Защита Покупателя. Помощь Служба поддержки Споры и жалобы Сообщить о нарушении авторских прав. Экономьте больше в приложении!

Усилитель на одном транзисторе v2

К этим схемам относят так называемую пару Дарлингтона, пару Шиклаи, каскодную схему включения транзисторов, схему так называемого токового зеркала и др. В этой схеме ток эмиттера предыдущего транзистора является базовым током последующего транзистора. Коэффициент усиления по току пары Дарлингтона очень высок и приблизительно равен произведению коэффициентов усиления по току транзисторов составляющих такую пару. У мощных транзисторов включенных по схеме пары Дарлингтона, конструктивно выпускаемой в одном корпусе например, транзистор КТ гарантированный коэффициент усиления по току при нормальных условиях эксплуатации не менее [2]. У пар Дарлингтона, собранных на маломощных транзисторах этот коэффициент может достигать значения Высокий коэффициент усиления по току обеспечивает управление малым током, поданным на управляющий вход составного транзистора, выходными токами превышающими входной на несколько порядков. Примерами супербета транзисторов могут служить серии одиночных транзисторов КТ, КТ Однако и такие транзисторы иногда объединяют в схеме Дарлингтона.

Резисторы R1 и R2 совместно с сопротивлением перехода «Э — Б» образуют делитель напряжения Vcc для выбора рабочей точки транзистора Q1 в.

Тема в разделе » Схемотехника, компоненты, модули «, создана пользователем Alexey Zhigalo , 28 сен Войти или зарегистрироваться. Искать только в заголовках Сообщения пользователя: Имена участников разделяйте запятой.

Усовершенствования в области полного теплового сопротивления благодаря тонкой структуре кристалла и высокая, свойственная данной МОП-ячейке прочность конструкции обеспечивают превосходную область безопасной работы SOA , а также устойчивость при лавинном процессе. В данной статье исследуются методы контроля и оценки лавинного процесса при обычном одиночном импульсе. Обсуждаются прикладные проблемы в импульсных источниках питания, включая схемотехнические проблемы, присутствующие в источниках питания с периодически повторяющимся лавинным процессом. При этом полевой транзистор действует практически как мощный кремниевый стабилитрон. В идеале, полная запасенная энергия лавинного процесса должна быть ограничена только размером и полным тепловым сопротивлением транзистора, но в реальной ситуации другие факторы также накладывают дополнительные ограничения на рабочий режим. Размер данного дросселя определяется номинальным значением энергии из соотношения для мощности рассеяния в течение лавинного процесса.

Золотые поставщики — это компании, прошедшие предварительную проверку качества. Проверки на месте были проведены Alibaba.

Сейчас этот форум просматривают: Google [Bot] , otanazar79 и гости: 6. Ремонт: Ноутбуков, Компьютеров Виртуальная лаборатория ремонта. Совместно решаема любая проблема. FAQ Личный раздел. Предыдущее посещение: менее минуты назад Текущее время: 11 окт ,

Отправка серийных номеров для Adjustment program, осуществляется каждый день: с до в течении 5 — 15 мин. Прошивки для принтеров Samsung, Xerox вы можете получить в автоматическом режиме, круглосуточно, моментально после оплаты, сделав заказ через магазин. Мануал не могу найти..

all-audio.pro

Составной транзистор (схема Дарлингтона и Шиклаи)

Составной транзистор (транзистор Дарлингтона) — объединение двух или более биполярных транзисторов с целью увеличения коэффициента усиления по току. Такой транзистор используется в схемах, работающих с большими токами (например, в схемах стабилизаторов напряжения, выходных каскадов усилителей мощности) и во входных каскадах усилителей, если необходимо обеспечить большой входной импеданс.

 

Условное обозначение составного транзистора

 

Составной транзистор имеет три вывода (база, эмиттер и коллектор), которые эквивалентны выводам обычного одиночного транзистора. Коэффициент усиления по току типичного составного транзистора (иногда ошибочно называемого «супербета»), у мощных транзисторов ≈ 1000 и у маломощных транзисторов ≈ 50000. Это означает, что небольшого тока базы достаточно для того, чтобы составной транзистор открылся.

В отличие от биполярных, полевые транзисторы не используются в составном включении. Объединять полевые транзисторы нет необходимости, так как они и без того обладают чрезвычайно малым входным током. Однако существуют схемы (например, биполярный транзистор с изолированным затвором), где совместно применяются полевые и биполярные транзисторы. В некотором смысле, такие схемы также можно считать составными транзисторами. Так же для составного транзистора достигнуть повышения значения коэффициента усиления можно, уменьшив толщину базы, но это представляет определенные технологические трудности.

Примером супербета (супер-β) транзисторов может служить серия КТ3102, КТ3107. Однако их также можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316).

 

Фото типичного усилителя на составных транзисторах

 

Схема Дарлингтона

 

Один из видов такого транзистора изобрёл инженер-электрик Сидни Дарлингтон (Sidney Darlington).

 

Принципиальная схема составного транзистора

 

Составной транзистор является каскадным соединением нескольких транзисторов, включенных таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка первого транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого при работе транзисторов в активном режиме приблизительно равен произведению коэффициентов усиления первого и второго транзисторов:

 

βс = β1 ∙ β2

 

Покажем, что составной транзистор действительно имеет коэффициент β, значительно больший, чем у его обоих компонентов. Задавая приращение dlб = dlб1, получаем:

 

dlэ1 = (1 + β1) ∙ dlб = dlб2

 

dlк = dlк1 + dlк2 = β1 ∙ dlб + β2 ∙ ((1 + β1) ∙ dlб)

 

Деля dlк на dlб, находим результирующий дифференциальный коэффициент передачи:

 

βΣ = β1 + β2 + β1 ∙ β2

 

Поскольку всегда β>1, можно считать:

 

βΣ = β1β1

 

Следует подчеркнуть, что коэффициенты β1 и β1 могут различаться даже в случае однотипных транзисторов, поскольку ток эмиттера Iэ2 в 1 + β2 раз больше тока эмиттера Iэ1 (это вытекает из очевидного равенства Iб2 = Iэ1).

 

Схема Шиклаи

 

Паре Дарлингтона подобно соединение транзисторов по схеме Шиклаи, названное так в честь его изобретателя Джорджа Шиклаи, также иногда называемое комплементарным транзистором Дарлингтона. В отличие от схемы Дарлингтона, состоящей из двух транзисторов одного типа проводимости, схема Шиклаи содержит транзисторы разной полярности (p–n–p и n–p–n). Пара Шиклаи ведет себя как n–p–n-транзистор c большим коэффициентом усиления. Входное напряжение — это напряжение между базой и эмиттером транзистора Q1, а напряжение насыщения равно, по крайней мере, падению напряжения на диоде. Между базой и эмиттером транзистора Q2 рекомендуется включать резистор с небольшим сопротивлением. Такая схема применяется в мощных двухтактных выходных каскадах при использовании выходных транзисторов одной полярности.

 

Каскад Шиклаи, подобный транзистору с n–p–n переходом

 

Каскодная схема

 

Составной транзистор, выполненный по так называемой каскодной схеме, характеризуется тем, что транзистор VT1 включен по схеме с общим эмиттером, а транзистор VT2 — по схеме с общей базой. Такой составной транзистор эквивалентен одиночному транзистору, включенному по схеме с общим эмиттером, но при этом он имеет гораздо лучшие частотные свойства и большую неискаженную мощность в нагрузке, а также позволяет значительно уменьшить эффект Миллера (увеличение эквивалентной ёмкости инвертирующего усилительного элемента, обусловленное обратной связью с выхода на вход данного элемента при его выключении).

 

Достоинства и недостатки составных транзисторов

 

Высокие значения коэффициента усиления в составных транзисторах реализуются только в статическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ — граничная частота усиления по току и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 и VT2.

 

Достоинства:

а) Высокий коэффициент усиления по току.

б) Cхема Дарлингтона изготавливается в виде интегральных схем и при одинаковом токе рабочая поверхность кремния меньше, чем у биполярных транзисторов. Данные схемы представляют большой интерес при высоких напряжениях.

 

Недостатки:

а) Низкое быстродействие, особенно перехода из открытого состояния в закрытое. По этой причине составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, на высоких частотах их параметры хуже, чем у одиночного транзистора.

б) Прямое падение напряжения на переходе база-эмиттер в схеме Дарлингтона почти в два раза больше, чем в обычном транзисторе, и составляет для кремниевых транзисторов около 1,2 — 1,4 В (не может быть меньше, чем удвоенное падение напряжения на p-n переходе).

в) Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В (по сравнению с 0,2 В у обычных транзисторов) для маломощных транзисторов и около 2 В для транзисторов большой мощности (не может быть меньше чем падение напряжения на p-n переходе плюс падение напряжения на насыщенном входном транзисторе).

Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора. Величина резистора выбирается с таким расчётом, чтобы ток коллектор-эмиттер транзистора VT1 в закрытом состоянии создавал на резисторе падение напряжения, недостаточное для открытия транзистора VT2. Таким образом, ток утечки транзистора VT1 не усиливается транзистором VT2, тем самым уменьшается общий ток коллектор-эмиттер составного транзистора в закрытом состоянии. Кроме того, применение резистора R1 способствует увеличению быстродействия составного транзистора за счёт форсирования закрытия транзистора VT2. Обычно сопротивление R1 составляет сотни Ом в мощном транзисторе Дарлингтона и несколько кОм в малосигнальном транзисторе Дарлингтона. Примером схемы с эмиттерным резистором служит мощный n-p-n — транзистор Дарлингтона типа кт825, его коэффициент усиления по току равен 10000 (типичное значение) для коллекторного тока, равного 10 А.

ldsound.ru

Составной транзистор — Википедия

Пара Дарлингтона составленная из транзисторов n-p-n типа

Составно́й транзи́стор — электрическое соединение двух (или более) биполярных транзисторов, полевых транзисторов или IGBT-транзисторов, с целью улучшения их электрических характеристик. К этим схемам относят так называемую пару Дарлингтона, пару Шиклаи, каскодную схему включения транзисторов, схему так называемого токового зеркала и др.

Пара Дарлингтона с резистором, который используется в качестве нагрузки транзистора VT1.

Составной транзистор (или схема) Дарлингтона (часто — пара Дарлингтона) была предложена в 1953 году инженером Bell Laboratories Сидни Дарлингтоном (Sidney Darlington). Схема является каскадным соединением двух (редко — трех или более) биполярных[1] транзисторов, включённых таким образом, что нагрузкой в эмиттерной цепи предыдущего каскада является переход база-эмиттер транзистора последующего каскада (то есть эмиттер предыдущего транзистора соединяется с базой последующего), при этом коллекторы транзисторов соединены. В этой схеме ток эмиттера предыдущего транзистора является базовым током последующего транзистора.

Коэффициент усиления по току пары Дарлингтона очень высок и приблизительно равен произведению коэффициентов усиления по току транзисторов составляющих такую пару. У мощных транзисторов включенных по схеме пары Дарлингтона, конструктивно выпускаемой в одном корпусе (например, транзистор КТ825) гарантированный коэффициент усиления по току при нормальных условиях эксплуатации) не менее 750[2].

У пар Дарлингтона, собранных на маломощных транзисторах этот коэффициент может достигать значения 50000.

Высокий коэффициент усиления по току обеспечивает управление малым током, поданным на управляющий вход составного транзистора, выходными токами превышающими входной на несколько порядков.

Достигнуть повышения коэффициента усиления по току можно также уменьшив толщину базы при изготовлении транзистора, такие транзисторы выпускаются промышленностью и называются «супербета транзистор», но процесс их изготовления представляет определённые технологические трудности и такие транзисторы имеют очень низкие коллекторные рабочие напряжения, не превышающие нескольких вольт. Примерами супербета транзисторов могут служить серии одиночных транзисторов КТ3102, КТ3107. Однако и такие транзисторы иногда объединяют в схеме Дарлингтона. Поэтому в относительно сильноточных и высоковольтных схемах, где требуется снизить управляющий ток, используются пары Дарлингтона или пары Шиклаи.

Иногда и схему Дарлингтона не совсем корректно называют «супербета транзистор»[3].

Составные транзисторы Дарлингтона используются в сильноточных схемах, например, в схемах линейных стабилизаторов напряжения, выходных каскадах усилителей мощности) и во входных каскадах усилителей, если необходимо обеспечить большой входной импеданс и малые входные токи.

Составной транзистор имеет три электрических вывода, которые эквивалентны выводам базы, эмиттера и коллектора обычного одиночного транзистора. Иногда в схеме для ускорения закрывания выходного транзистора и снижения влияния начального тока входного транзистора используется резистивная нагрузка эмиттера входного транзистора, как показано на рисунке.

Пару Дарлингтона электрически в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в линейном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов, например, двух:

βD≈β1⋅β2{\displaystyle \beta _{D}\approx \beta _{1}\cdot \beta _{2}}
где βD{\displaystyle \beta _{D}} — коэффициент усиления по току пары Дарлингтона;
β1,{\displaystyle \beta _{1},} β2{\displaystyle \beta _{2}} — коэффициенты усиления по току транзисторов пары.

Покажем, что составной транзистор действительно имеет коэффициент β{\displaystyle \beta }, значительно больший, чем у его обоих транзисторов. Анализ проведен для схемы без эмиттерного резистора R1{\displaystyle R_{1}} (см. рисунок).

Ток эмиттера IE{\displaystyle I_{E}} любого транзистора через базовый ток IB,{\displaystyle I_{B},} статический коэффициент передачи тока базы β{\displaystyle \beta } и из 1-го правила Кирхгофа выражается формулой:

IE=IB+IC=IB+IB⋅β=IB⋅(1+β),{\displaystyle I_{E}=I_{B}+I_{C}=I_{B}+I_{B}\cdot \beta =I_{B}\cdot (1+\beta ),}
где IC{\displaystyle I_{C}} — ток коллектора.

Так как ток эмиттера второго транзистора IE2{\displaystyle I_{E2}}, опять же из 1-го правила Кирхгофа равен:

IE2=IB1+IC1+IC2,{\displaystyle I_{E2}=I_{B1}+I_{C1}+I_{C2},}
где IB1{\displaystyle I_{B1}} — базовый ток 1-го транзистора;
IC1,{\displaystyle I_{C1},} IC2{\displaystyle I_{C2}} — коллекторные токи транзисторов.

Имеем:

βD=β1+β2+β1⋅β2,{\displaystyle \beta _{D}=\beta _{1}+\beta _{2}+\beta _{1}\cdot \beta _{2},}
где β1,{\displaystyle \beta _{1},} β2,{\displaystyle \beta _{2},} — статические коэффициенты передачи тока базы на коллектор транзисторов 1 и 2.

Так как у транзисторов β>>1,{\displaystyle \beta >>1,} то βD≈β1⋅β2.{\displaystyle \beta _{D}\approx \beta _{1}\cdot \beta _{2}.}

Следует отметить, что коэффициенты β1{\displaystyle \beta _{1}} и β2{\displaystyle \beta _{2}} различаются даже в случае применения пары совершенно одинаковых по всем параметрам транзисторов, поскольку ток эмиттера IE2{\displaystyle I_{E2}} в 1+β2{\displaystyle 1+\beta _{2}} раз больше тока эмиттера IE1{\displaystyle I_{E1}}, (это вытекает из очевидного равенства IB2=IE1,{\displaystyle I_{B2}=I_{E1},} а статический коэффициент передачи тока транзистора заметно зависит от тока коллектора и может различаться в разы при разных токах[4].

Каскад Шиклаи, эквивалентный n-p-n транзистору

Паре Дарлингтона подобно соединение транзисторов по схеме Шиклаи (Sziklai pair), названное так в честь его изобретателя Джорджа К. Шиклаи, также иногда называемое комплементарным транзистором Дарлингтона[5].
В отличие от схемы Дарлингтона, состоящей из двух транзисторов одного типа проводимости, схема Шиклаи содержит транзисторы разного типа проводимости(p-n-p и n-p-n).
Пара Шиклаи электрически эквивалентна n-p-n-транзистору c большим коэффициентом усиления. Входное напряжение — это напряжение между базой и эмиттером транзистора Q1, а напряжение насыщения равно по крайней мере падению напряжения на диоде[уточнить]. Между базой и эмиттером транзистора Q2 обычно включают резистор с небольшим сопротивлением. Такая схема применяется в мощных двухтактных выходных каскадах при использовании выходных транзисторов одной проводимости.[уточнить]

Основная статья: Каскодный усилитель

Составной транзистор, выполненный по так называемой каскодной схеме, характеризуется тем, что транзистор VT1 включен по схеме с общим эмиттером, а транзистор VT2 — по схеме с общей базой. Такой составной транзистор эквивалентен одиночному транзистору, включенному по схеме с общим эмиттером, но при этом он имеет гораздо лучшие частотные свойства, высокое выходное сопротивление и больший линейный диапазон, то есть меньше искажает передаваемый сигнал. Так как потенциал коллектора входного транзистора практически не изменяется, это существенно подавляет нежелательное влияние эффекта Миллера и расширяет рабочий диапазон по частоте.

Достоинства и недостатки составных транзисторов[править | править код]

Высокие значения коэффициента усиления в составных транзисторах реализуются только в статическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ — граничная частота усиления по току и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 и VT2.

Достоинства составных пар Дарлингтона и Шиклаи:

  • Высокий коэффициент усиления по току.
  • Схема Дарлингтона изготавливается в составе интегральных схем и при одинаковом токе площадь занимаемая парой на поверхности кристалла кремния меньше, чем у одиночного биполярного транзистора.
  • Применяются при относительно высоких напряжениях.

Недостатки составного транзистора:

  • Низкое быстродействие, особенно в ключевом режиме при переходе из открытого состояния в закрытое. Поэтому составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, работающих в линейном режиме. На высоких частотах их частотные параметры хуже, чем у одиночного транзистора.
  • Прямое падение напряжения Uбэ составного транзистора в схеме Дарлингтона почти в два раза больше[6], чем у одиночного транзистора, и составляет для кремниевых транзисторов около 1,2 — 1,4 В, так как равна сумме падений напряжения на прямосмещённых p-n переходах двух транзисторов.
  • Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В (по сравнению с 0,2 В у обычных транзисторов) для маломощных транзисторов и около 2 В для транзисторов большой мощности, так как не может быть меньше чем падение напряжения на прямосмещённом p-n переходе плюс падение напряжения на насыщенном входном транзисторе.[уточнить]

Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора. Величина резистора выбирается с таким расчётом, чтобы ток коллектор-эмиттер транзистора VT1 в закрытом состоянии (начальный ток коллектора) создавал на резисторе падение напряжения, недостаточное для открытия транзистора VT2. Таким образом, ток утечки транзистора VT1 не усиливается транзистором VT2, тем самым уменьшается общий ток коллектор-эмиттер составного транзистора в закрытом состоянии. Кроме того, применение резистора R1 способствует увеличению быстродействия составного транзистора за счёт форсирования закрытия транзистора, так как неосновные носители, накопленные в базе VT2 при его запирании из режима насыщения не только рассасываются, но и стекают через этот резистор. Обычно сопротивление R1 выбирают величиной сотни ом в мощном транзисторе Дарлингтона и несколько килоом в маломощном транзисторе Дарлингтона. Примером схемы Дарлингтона выполненной в одном корпусе со встроенным эмиттерным резистором служит мощный n-p-n транзистор Дарлингтона типа КТ827, его типовой коэффициент усиления по току около 1000 при коллекторном токе 10 А.

  1. ↑ Полевые транзисторы, в отличие от биполярных, не используются в составном включении, так как обладая высоким входным сопротивлением, управляются напряжением, а не током и такое включение нецелесообразно.
  2. ↑ Технический паспорт транзистора КТ825.
  3. ↑ Супербе́та (супер-β) транзисторами называют транзисторы со сверхбольшим значением коэффициента усиления по току, полученным за счёт очень малой толщины базы, а не за счёт составного включения. При этом рабочий базовый ток одиночного транзистора можно снизить до десятков пА. Такие транзисторы применены в первом каскаде операционных усилителей со сверхмалыми входными токами, например, типов LM111 и LM316.
  4. Степаненко И. П. Основы теории транзисторов и транзисторных схем. — 4-е изд., перераб. и доп.. — М.: Энергия, 1977. — С. 233, 234. — 672 с.
  5. Хоровиц П., Хилл У. Искусство схемотехники: В 3-х томах: Пер. с. англ. — 4-е изд., перераб. и доп. — М.: Мир, 1993. — Т. 1. — С. 104, 105. — 413 с. — 50 000 экз. — ISBN 5-03-002337-2.
  6. ↑ Это не всегда (не во всех применениях) является недостатком, но всегда — особенностью, которую надо учитывать при расчёте схемы по постоянному току, и которая не позволяет напрямую заменить одиночный транзистор на составной Дарлингтона.

ru.wikipedia.org

схема, принцип работы,​ чем отличаются биполярные и полевые [Амперка / Вики]

Транзистор — повсеместный и важный компонент в современной микроэлектронике.
Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо
более сильным.

В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала
на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это
кнопка, которая нажимается не пальцем, а подачей напряжения.
В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

  • TO-92 — компактный, для небольших нагрузок

  • TO-220AB — массивный, хорошо рассеивающий тепло, для больших нагрузок

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

  • Коллектор (collector) — на него подаётся высокое напряжение, которым хочется управлять

  • База (base) — через неё подаётся небольшой ток, чтобы разблокировать большой; база заземляется, чтобы заблокировать его

  • Эмиттер (emitter) — через него проходит ток с коллектора и базы, когда транзистор «открыт»

Основной характеристикой биполярного транзистора является показатель hfe
также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер
способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит
через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент,
который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас».
Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные
10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на
контактах. Превышение этих величин ведёт к избыточному нагреву
и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит
из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав
кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive —
с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N.
PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется,
когда через неё идёт ток.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством.
Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой»
осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов,
не идёт.

Полевые транзисторы обладают тремя контактами:

  • Сток (drain) — на него подаётся высокое напряжение, которым хочется управлять

  • Затвор (gate) — на него подаётся напряжение, чтобы разрешить течение тока; затвор заземляется, чтобы заблокировать ток.

  • Исток (source) — через него проходит ток со стока, когда транзистор «открыт»

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор.
Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки
и, опять же, обладает «перевёрнутым» поведением.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер
обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В
выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении
таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется
напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения
не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый
ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора
hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

wiki.amperka.ru

Управление мощной нагрузкой постоянного тока. Часть 2

Когда на раскачку нагрузки мощности одного транзистора не хватает, то применяют составной транзистор (транзистор Дарлингтона). Тут суть в том, что один транзистор открывает другой. А вместе они работают как единый транзистор с коэффициентом усиления по току равным произведению коэффициентов первого и второго транзов.

Если взять, например, транзистор MJE3055T у него максимальный ток 10А, а коэффициент усиления всего около 50, соответственно, чтобы он открылся полностью, ему надо вкачать в базу ток около двухста миллиампер. Обычный вывод МК столько не потянет, а если влючить между ними транзистор послабже (какой-нибудь BC337), способный протащить эти 200мА, то запросто. Но это так, чтобы знал. Вдруг придется городить управление из подручного хлама — пригодится.

На практике обычно используются готовые транзисторные сборки. Внешне от обычного транзистора ничем не отличается. Такой же корпус, такие же три ножки. Вот только мощи в нем больно дофига, а управляющий ток микроскопический 🙂 В прайсах обычно не заморачиваются и пишут просто — транзистор Дарлигнтона или составной транзистор.

Например пара BDW93C (NPN) и BDW94С (PNP) Вот их внутренняя структура из даташита.

Обрати внимание, что там уже встроен защитный диод (нужен для защиты транзистора от пробоя при обрыве индуктивной нагрузки) и есть дополнительные резисторы. Когда VT1 закрыт то у него все равно есть ток утечки, так вот чтобы он не приоткрывал транзистор VT2 ставят R2, который отводит через себя значительную часть этого тока. R1 стоит для той же цели, но для защиты от утечки со стороны внешнего мира.

Мало того, существуют сборки дарлингтонов. Когда в один корпус упаковывают сразу несколько. Незаменимая вещь когда надо рулить каким-нибудь мощным светодиодным таблом или шаговым двигателем (хотя там лучше L298 или L293 я еще не встречал). Отличный пример такой сборки — очень популярная и легко доступная ULN2003, способная протащить до 500мА на каждый из своих семи сборок. Выходы можно включать в параллель, чтобы повысить предельный ток. Итого, одна ULN может протащить через себя аж 3.5А, если запараллелить все ее входы и выходы. Что мне в ней радует — выход напротив входа, очень удобно под нее плату разводить. Напрямик.

В даташите указана внутренняя структура этой микросхемы. Как видишь, тут также есть защитные диоды. Несмотря на то, что нарисованы как будто бы операционные усилители, здесь выход типа открытый коллектор. То есть он умеет замыкать только на землю. Что становится ясно из того же даташита если поглядеть на структуру одного вентиля.

Что до практического применения, то вот таким макаром, через одну ULN2003 можно рулить, например, семью релюшками или соленоидами.

Продолжение следует

easyelectronics.ru

Управление мощной нагрузкой постоянного тока. Часть 3.

Кроме транзисторов и сборок Дарлингтона есть еще один хороший способ рулить мощной постоянной нагрузкой — полевые МОП транзисторы.
Полевой транзистор работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал. Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением.

МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.

Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.

Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной, по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.

Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.

МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь. Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.

Нагрузка включается в цепь стока. Вообще, в теории, полевому транзистору совершенно без разницы что считать у него истоком, а что стоком — разницы между ними нет. Но на практике есть, дело в том, что для улучшения характеристик исток и сток делают разной величины и конструкции плюс ко всему, в мощных полевиках часто есть обратный диод (его еще называют паразитным, т.к. он образуется сам собой в силу особенности техпроцесса производства).

У меня самыми ходовыми МОП транзисторами являются IRF630 (n канальный) и IRF9630 (p канальный) в свое время я намутил их с полтора десятка каждого вида. Обладая не сильно габаритным корпусом TO-92 этот транзистор может лихо протащить через себя до 9А. Сопротивление в открытом состоянии у него всего 0.35 Ома.
Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314, способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.

Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5.
Тут вариантов три:

  • На более мелких транзисторах сорудить цепочку, подающую питалово с высоковольтной цепи на затвор, чтобы прокачать его высоким напряжением
  • применить специальную микросхему драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117.

    Надо только не забывать, что есть драйверы верхнего и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и комутирующего транзистора. Если обратишь внимание, то увидишь что с драйвером и в верхнем и нижнем плече используются N канальные транзисторы. Просто у них лучше характеристики чем у P канальных. Но тут возникает другая проблема. Для того, чтобы открыть N канальный транзистор в верхнем плече надо ему на затвор подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Чем собственно и отличается драйвер нижнего плеча от драйвера верхнего плеча.

  • Применить транзистор с малым отпирающим напряжением. Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.

Но вообще, правильней все же ставить драйвер, ведь кроме основных функций формирования управляющих сигналов он в качестве дополнительной фенечки обеспечивает и токовую защиту, защиту от пробоя, перенапряжения, оптимизирует скорость открытия на максимум, в общем, жрет свой ток не напрасно.

Выбор транзистора тоже не очень сложен, особенно если не заморачиваться на предельные режимы. В первую очередь тебя должно волновать значение тока стока — I Drain или ID выбираешь транзистор по максимальному току для твоей нагрузки, лучше с запасом процентов так на 10. Следующий важный для тебя параметр это VGS — напряжение насыщения Исток-Затвор или, проще говоря, управляющее напряжение. Иногда его пишут, но чаще приходится выглядывать из графиков. Ищешь график выходной характеристики Зависимость ID от VDS при разных значениях VGS. И прикидыываешь какой у тебя будет режим.

Вот, например, надо тебе запитать двигатель на 12 вольт, с током 8А. На драйвер пожмотился и имеешь только 5 вольтовый управляющий сигнал. Первое что пришло на ум после этой статьи — IRF630. По току подходит с запасом 9А против требуемых 8. Но глянем на выходную характеристику:

Видишь, на 5 вольтах на затворе и токе в 8А падение напряжения на транзисторе составит около 4.5В По закону Ома тогда выходит, что сопротивление этого транзистора в данный момент 4.5/8=0.56Ом. А теперь посчитаем потери мощности — твой движок жрет 5А. P=I*U или, если применить тот же закон Ома, P=I2R. При 8 амперах и 0.56Оме потери составят 35Вт. Больно дофига, не кажется? Вот и мне тоже кажется что слишком. Посмотрим тогда на IRL630.

При 8 амперах и 5 вольтах на Gate напряжение на транзисторе составит около 3 вольт. Что даст нам 0.37Ом и 23Вт потерь, что заметно меньше.

Если собираешься загнать на этот ключ ШИМ, то надо поинтересоваться временем открытия и закрытия транзистора, выбрать наибольшее и относительно времени посчитать предельную частоту на которую он способен. Зовется эта величина Switch Delay или ton,toff, в общем, как то так. Ну, а частота это 1/t. Также не лишней будет посмотреть на емкость затвора Ciss исходя из нее, а также ограничительного резистора в затворной цепи, можно рассчитать постоянную времени заряда затворной RC цепи и прикинуть быстродействие. Если постоянная времени будет больше чем период ШИМ, то транзистор будет не открыватся/закрываться, а повиснет в некотором промежуточном состоянии, так как напряжение на его затворе будет проинтегрировано этой RC цепью в постоянное напряжение.

При обращении с этими транзисторами учитывай тот факт, что статического электричества они боятся не просто сильно, а ОЧЕНЬ СИЛЬНО. Пробить затвор статическим зарядом более чем реально. Так что как купил, сразу же в фольгу и не доставай пока не будешь запаивать. Предварительно заземлись за батарею и надень шапочку из фольги :).

А в процессе проектирования схемы запомни еще одно простое правило — ни в коем случае нельзя оставлять висеть затвор полевика просто так — иначе он нажрет помех из воздуха и сам откроется. Поэтому обязательно надо поставить резистор килоом на 10 от Gate до GND для N канального или на +V для P канального, чтобы паразитный заряд стекал. Вот вроде бы все, в следующий раз накатаю про мостовые схемы для управления движков.

easyelectronics.ru

Транзистор — Википедия

Дискретные транзисторы в различном конструктивном оформлении

Транзи́стор (англ. transistor), полупроводнико́вый трио́д — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами[1], способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.

Транзисторами также называются дискретные электронные приборы, которые, выполняя функцию одиночного транзистора, имеют в своем составе много элементов, конструктивно являясь интегральной схемой, например составной транзистор или многие транзисторы большой мощности[2].

Транзисторы по структуре, принципу действия и параметрам делятся на два класса — биполярные и полевые (униполярные). В биполярном транзисторе используются полупроводники с обоими типами проводимости, он работает за счет взаимодействия двух, близко расположенных на кристалле, p-n переходов и управляется изменением тока через база-эмиттерный переход, при этом вывод эмиттера всегда является общим для управляющего и выходного токов. В полевом транзисторе используется полупроводник только одного типа проводимости, расположенный в виде тонкого канала, на который воздействует электрическое поле изолированного от канала затвора[3], управление осуществляется изменением напряжения между затвором и истоком. Полевой транзистор, в отличие от биполярного, управляется напряжением, а не током. В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). В цифровой технике, в составе микросхем (логика, память, процессоры, компьютеры, цифровая связь и т. п.), напротив, биполярные транзисторы почти полностью вытеснены полевыми. В 1990-е годы был разработан новый тип гибридных биполярно-полевых транзисторов — IGBT которые сейчас широко применяются в силовой электронике.

В 1956 году за исследования транзисторного эффекта Уильям Шокли, Джон Бардин и Уолтер Браттейн получили Нобелевскую премию по физике.[4]

К 1980-м годам транзисторы, благодаря своей миниатюрности, экономичности, устойчивости к механическим воздействиям и невысокой стоимости практически полностью вытеснили электронные лампы из малосигнальной электроники. Благодаря своей способности работать при низких напряжениях и значительных токах, транзисторы позволили уменьшить потребность в электромагнитных реле и механических переключателях в оборудовании, а благодаря способности к миниатюризации и интеграции позволили создать интегральные схемы, заложив основы микроэлектроники. С 1990-х в связи с появлением новых мощных транзисторов, стали активно вытесняться электронными устройствами трансформаторы, электромеханические и тиристорные ключи в силовой электротехнике, начал активно развиваться Частотно-регулируемый привод и инверторные преобразователи напряжения.

На принципиальных схемах транзистор обычно обозначается «VT» или «Q» с добавлением позиционного индекса, например, VT12. До 1970-х гг. в русскоязычной литературе и документации также применялись обозначения «Т», «ПП» (полупроводниковый прибор) или «ПТ» (полупроводниковый триод).

Изобретение транзистора, являющееся одним из важнейших достижений XX века[5], стало следствием длительного развития полупроводниковой электроники, которое началось в 1833 году, когда Майкл Фарадей провёл первые эксперименты с полупроводниковым материалом — сульфидом серебра.

В 1874 году немецкий физик Карл Фердинанд Браун впервые обнаружил явление односторонней проводимости контакта металл—полупроводник.

В 1906 году инженер Гринлиф Виттер Пиккард изобретает точечный полупроводниковый диод-детектор.

В 1910 году английский физик Уильям Икклз обнаружил у некоторых полупроводниковых диодов способность генерировать электрические колебания, а инженер Олег Лосев в 1922 году самостоятельно разработал диоды, обладающие при некоторых напряжениях смещения отрицательным дифференциальным сопротивлением, с помощью которых впервые успешно использовал усилительные и генераторные свойства полупроводников (Кристадинный эффект), в детекторных и гетеродинных радиоприёмниках собственной конструкции.

Особенностью этого периода развития было то, что физика полупроводников была ещё плохо изучена, все достижения являлись следствием экспериментов, учёные затруднялись объяснить, что происходит внутри кристалла, часто выдвигая ошибочные гипотезы.

В то же время на рубеже 1920—1930 годов в радиотехнике началась эпоха бурного индустриального развития электронных ламп, физика которых была изучена, и в этом направлении работала основная масса учёных-радиотехников, в то время как хрупкие и капризные полупроводниковые детекторы открытой конструкции, в которых нужно было при помощи металлической иглы вручную искать на кристалле «активные точки», стали уделом кустарей-одиночек и радиолюбителей, строивших на них простейшие радиоприемники. Потенциальных перспектив полупроводников никто не видел.

Создание биполярного и полевого транзисторов произошло разными путями.

Полевой транзистор[править | править код]

Первый шаг в создании полевого транзистора сделал австро-венгерский физик Юлий Эдгар Лилиенфельд, который предложил метод управления током в образце путём подачи на него поперечного электрического поля, которое, воздействуя на носители заряда, будет управлять проводимостью. Патенты были получены в Канаде (22 октября 1925 года) и Германии (1928 год)[6][7].

В 1934 году немецкий физик Оскар Хайл (англ.)русск. в Великобритании также запатентовал «бесконтактное реле», основанное на аналогичном принципе. Однако несмотря на то, что полевые транзисторы основаны на простом электростатическом эффекте поля и по протекающим в них физическим процессам проще биполярных, создать работоспособный образец полевого транзистора долго не удавалось.

Создатели не могли обойти неизвестные на тот момент явления в поверхностном слое полупроводника, которые не позволяли управлять электрическим полем внутри кристалла у транзисторов такого типа (МДП-транзистор — металл, диэлектрик, полупроводник). Работоспособный полевой транзистор был создан уже после открытия биполярного транзистора. В 1952 году Уильям Шокли теоретически описал модель полевого транзистора другого типа, модуляция тока в котором, в отличие от ранее предложенных МДП[8] структур, осуществлялась изменением толщины проводящего канала за счёт расширения или сужения обеднённой области, прилегающего к каналу р-n-перехода. Это происходило при подаче на переход управляющего напряжения запирающей полярности затворного диода. Транзистор получил название «полевой транзистор с управляющим р-n-переходом» (мешающие работе поверхностные явления устранялись, так как проводящий канал находился внутри кристалла).

Первый полевой МДП-транзистор, запатентованный ещё в 1920-е годы и сейчас составляющий основу компьютерной индустрии, впервые был создан в 1960 году после работ американцев Канга и Аталлы, предложивших в качестве слоя затворного диэлектрика формировать на поверхности кремниевого кристалла с помощью окисления поверхности кремния тончайший слой диоксида кремния, изолирующий металлический затвор от проводящего канала, такая структура получила название МОП-структура (Металл-Окисел-Полупроводник).

В 90-х годах XX века МОП-технология стала доминировать над биполярной[9]

Биполярный транзистор[править | править код]

Копия первого в мире работающего транзистора

В отличие от полевого, первый биполярный транзистор создавался экспериментально, а его физический принцип действия был объяснён уже позднее.

В 1929—1933 гг., в ЛФТИ, Олег Лосев под руководством А. Ф. Иоффе провёл ряд экспериментов с полупроводниковым устройством, конструктивно повторяющим точечный транзистор на кристалле карборунда (SiC), однако достаточного коэффициента усиления получить тогда не удалось. Изучая явления электролюминесценции в полупроводниках, Лосев исследовал около 90 различных материалов, особенно выделяя кремний, и в 1939 году он вновь упоминает о работах над трёхэлектродными системами в своих записях, но начавшаяся война и гибель инженера в блокадном Ленинграде зимой 1942 года привели к тому, что некоторые его работы оказались утеряны и сейчас неизвестно, насколько далеко он продвинулся в создании транзистора. В начале 1930-х годов точечные трёхэлектродные усилители изготовили также радиолюбители Ларри Кайзер из Канады и Роберт Адамс из Новой Зеландии, однако их работы не были запатентованы и не подвергались научному анализу[5].

Успеха добилось опытно-конструкторское подразделение Bell Telephone Laboratories фирмы American Telephone and Telegraph, с 1936 года в нём, под руководством Джозефа Бекера, работала группа ученых специально нацеленная на создание твердотельных усилителей. До 1941 года изготовить полупроводниковый усилительный прибор не удалось (предпринимались попытки создания прототипа полевого транзистора). После войны, в 1945 году, исследования возобновились под руководством физика-теоретика Уильяма Шокли, после ещё 2 лет неудач, 16 декабря 1947 года, исследователь Уолтер Браттейн, пытаясь преодолеть поверхностный эффект в германиевом кристалле и экспериментируя с двумя игольчатыми электродами, перепутал полярность приложенного напряжения и неожиданно получил устойчивое усиление сигнала. Последующее изучение открытия, совместно с теоретиком Джоном Бардиным показало, что никакого эффекта поля нет, в кристалле идут ещё не изученные процессы, это был не полевой, а неизвестный прежде, биполярный транзистор. 23 декабря 1947 года состоялась презентация действующего макета изделия руководству фирмы, эта дата стала считаться датой рождения транзистора. Узнав об успехе, уже отошедший от дел Уильям Шокли, вновь подключается к исследованиям и за короткое время создает теорию биполярного транзистора, в которой уже наметил замену точечной технологии изготовления, более перспективной, плоскостной.

Первоначально новый прибор назывался «германиевый триод» или «полупроводниковый триод», по аналогии с вакуумным триодом — электронной лампой схожей структуры, в мае 1948 года в лаборатории прошел конкурс на оригинальное название изобретения, в котором победил Джон Пирс (John R. Pierce), предложивший слово «transistor», образованное путём соединения терминов «transconductance» (активная межэлектродная проводимость) и «variable resistor» или «varistor» (переменное сопротивление, варистор) или, по другим версиям, от слов «transfer» — передача и «resist» — сопротивление.

30 июня 1948 г. в штаб-квартире фирмы в Нью-Йорке состоялась официальная презентация нового прибора, на транзисторах был собран радиоприемник. И все же, мировой сенсации не состоялось, первоначально открытие не оценили по достоинству, ибо первые точечные транзисторы, в сравнении с электронными лампами, имели очень плохие и неустойчивые характеристики.

В 1956 году Уильям Шокли (en:William Shockley), Уолтер Браттейн (en:Walter Houser Brattain) и Джон Бардин (en:John Bardeen) были награждены Нобелевской премией по физике «за исследования полупроводников и открытие транзисторного эффекта»[10]. Интересно, что Джон Бардин вскоре был удостоен Нобелевской премии вторично за создание теории сверхпроводимости.

Создание биполярного транзистора в Европе[править | править код]

Параллельно с работами американских ученых, в Европе, биполярный транзистор был создан физиком-экспериментатором Гербертом Матаре (en:Herbert Mataré) и теоретиком Генрихом Велкером (en:Heinrich Welker). В 1944 году, Герберт Матаре, работая в фирме Телефункен, разработал полупроводниковый «дуодиод» (двойной диод), который, конструктивно был похож на будущий точечный биполярный транзистор. Прибор использовался в качестве смесителя в радиолокационной технике, как два, близких по параметрам, выпрямительных точечных диода, выполненных на одном кристалле германия. Тогда же Матаре впервые обнаружил влияние тока одного диода на параметры другого и начал исследования в этом направлении. После войны Герберт Матаре, в Париже, встретился с Иоганном Велкером, где оба физика, работая в филиале американской корпорации Westinghouse Electric, продолжили эксперименты над дуодиодом в инициативном порядке. В начале июня 1948 года, ещё не зная о результатах исследований группы Шокли в Bell Labs, они на основе дуодиода создали стабильно работающий биполярный транзистор, который был назван «транзитрон», однако, патентная заявка на изобретение, отправленная в августе 1948 года, рассматривалась французским бюро патентов очень долго и только в 1952 году был получен патент на изобретение. Серийно выпускаемые фирмой Westinghouse транзитроны, несмотря на то что по качеству они успешно конкурировали с транзисторами, также не смогли завоевать рынок и вскоре работы в этом направлении прекратились[5].

Развитие транзисторных технологий[править | править код]

Несмотря на миниатюрность и экономичность, первые транзисторы отличались высоким уровнем шумов, маленькой мощностью, нестабильностью характеристик во времени и сильной зависимостью параметров от температуры. Точечный транзистор, не являясь монолитной конструкцией, был чувствителен к ударам и вибрациям. Фирма-создатель Bell Telephone Laboratories не оценила перспективы нового прибора, выгодных военных заказов не ожидалось и лицензия на изобретение вскоре начала продаваться всем желающим за 25 тыс. долларов. В 1951 году был создан плоскостной транзистор, конструктивно представляющий собой монолитный кристалл полупроводника, и примерно в это же время появились первые транзисторы на основе кремния. Характеристики транзисторов быстро улучшались и вскоре они стали активно конкурировать с электронными радиолампами.

Позднее транзисторы заменили вакуумные лампы в большинстве электронных устройств, совершив революцию в создании интегральных схем и компьютеров. В начале 21-го века транзистор стал одним из самых массовых изделий, производимых человечеством. В 2013 году на каждого жителя Земли было выпущено около 15 миллиардов транзисторов (большинство из них — в составе интегральных схем)[11].

С появлением интегральных микросхем началась борьба за уменьшение размера элементарного транзистора. В 2012 году самые маленькие транзисторы содержали считанные атомы вещества[12]. Транзисторы стали основной частью компьютеров и других цифровых устройств. В некоторых конструкциях процессоров их количество превышало миллиард штук.

p-n-p канал p-типа
n-p-n канал n-типа
Биполярные Полевые

Обозначение транзисторов разных типов.
Условные обозначения:
Э — эмиттер, К — коллектор, Б — база;
З — затвор, И — исток, С — сток.

Ниже приведена формальная классификация транзисторов, где ток образуется потоком носителей заряда, а состояния, между которыми переключается прибор, определяются по величине сигнала: малый сигнал — большой сигнал, закрытое состояние — открытое состояние, на которых реализуется двоичная логика работы транзистора. Современная технология может оперировать не только электрическим зарядом, но и магнитными моментами, спином отдельного электрона, фононами и световыми квантами, квантовыми состояниями в общем случае.

По основному полупроводниковому материалу[править | править код]

Помимо основного полупроводникового материала, применяемого обычно в виде легированного в некоторых частях монокристалла, транзистор содержит в своей конструкции металлические выводы, изолирующие элементы, корпус (пластиковый, металлостеклянный или металлокерамический). Иногда употребляются комбинированные наименования, частично описывающие технологические разновидности (например, «кремний на сапфире» или «металл-окисел-полупроводник»). Однако основная классификация указывает на применённый полупроводниковый материал — кремний, германий, арсенид галлия и др.

Другие материалы для транзисторов до недавнего времени не использовались. В настоящее время имеются транзисторы на основе, например, прозрачных полупроводников для использования в матрицах дисплеев. Перспективный материал для транзисторов — полупроводниковые полимеры. Также имеются отдельные сообщения о транзисторах на основе углеродных нанотрубок[13], о графеновых полевых транзисторах.

По структуре[править | править код]

 

 

 

 

Транзисторы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Биполярные

 

 

 

 

 

 

Полевые

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p-n-p

 

n-p-n

 

С затвором в виде p-n-перехода

 

С изолированным затвором

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

С каналом n-типа

 

С каналом p-типа

 

Со встроенным каналом

 

С индуцированным каналом

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

С каналом n-типа

 

С каналом p-типа

 

С каналом n-типа

 

С каналом p-типа

 

 

Принцип действия и способы применения транзисторов существенно зависят от их типа и внутренней структуры.

  • Биполярные
    • n-p-n структуры, «обратной проводимости».
    • p-n-p структуры, «прямой проводимости».
В биполярном транзисторе носители заряда движутся от эмиттера через тонкую базу к коллектору. База отделена от эмиттера и коллектора p-n переходами. Ток протекает через транзистор лишь тогда, когда носители заряда инжектируются из эмиттера в базу через p-n переход. В базе они являются неосновными носителями заряда и легко захватываются другим p-n переходом между базой и коллектором, ускоряясь при этом. В базовом слое носители заряда распространяются за счёт диффузионного механизма, если нет градиента легирующей примеси в слое базы, или по действием электрического поля при неравномерном легировании базы, для повышения быстродействия прибора толщина базового слоя должна быть как можно тоньше, но чрезмерное снижение толщины базы вызывает снижение предельно допустимого напряжения коллектора. Управление током между эмиттером и коллектором осуществляется изменением напряжения между базой и эмиттером, от которого зависят условия инжекции носителей заряда в базу и ток базы.
В полевом транзисторе ток протекает от истока к стоку через канал под затвором. Канал существует в легированном полупроводнике в промежутке между затвором и нелегированной подложкой, в которой нет носителей заряда, и она не может проводить ток. Преимущественно под затвором существует область обеднения, в которой тоже нет носителей заряда благодаря образованию между легированным полупроводником и металлическим затвором контакта Шоттки. Таким образом ширина канала ограничена пространством между подложкой и областью обеднения. Приложенное к затвору напряжение увеличивает или уменьшает ширину области обеднения и, тем самым, площадь поперечного сечения канала, управляя током стока и равного ему током истока.

Другие разновидности транзисторов[править | править код]

Составные транзисторы[править | править код]

  • Транзисторы со встроенными резисторами (Resistor-equipped transistors (RETs)) — биполярные транзисторы со встроенными в один корпус резисторами.
  • Транзистор Дарлингтона, пара Шиклаи — комбинация двух биполярных транзисторов, работающая как биполярный транзистор с высоким коэффициентом усиления по току.
    • на транзисторах одной структуры;
    • на транзисторах разной структуры.
  • Лямбда-диод — двухполюсник, сочетание из двух полевых транзисторов, имеющая, как и туннельный диод, значительный участок с отрицательным дифференциальным сопротивлением.
  • Биполярный транзистор, управляемый полевым транзистором с изолированным затвором (IGBT) — силовой электронный прибор, предназначенный, в основном, для управления электрическими приводами.

По мощности[править | править код]

По рассеиваемой в виде тепла мощности различают:

  • маломощные транзисторы до 100 мВт;
  • транзисторы средней мощности от 0,1 до 1 Вт;
  • мощные транзисторы (больше 1 Вт).

По исполнению[править | править код]

  • дискретные транзисторы;
    • корпусные
      • для свободного монтажа
      • для установки на радиатор
      • для автоматизированных систем пайки
    • бескорпусные
  • транзисторы в составе интегральных схем.

По материалу и конструкции корпуса[править | править код]

  • В металлостеклянном/металлокерамическом корпусе.
Материал корпуса — металл. Материал изоляторов, через которые проходят выводы — стекло, либо керамика. Имеют наибольший диапазон температур окружающей среды и максимальную защищённость от воздействия внешних факторов.
  • В пластмассовом корпусе.
Отличаются меньшей стоимостью и более мягкими допустимыми условиями эксплуатации. У мощных приборов в пластмассовом корпусе кроме выводов часто имеется металлический теплоотвод — кристаллодержатель для монтажа прибора на внешний радиатор.

Прочие типы[править | править код]

Выделение по некоторым характеристикам[править | править код]

Транзисторы BISS (Breakthrough in Small Signal, дословно — «прорыв в малом сигнале») — биполярные транзисторы с улучшенными малосигнальными параметрами. Существенное улучшение параметров транзисторов BISS достигнуто за счёт изменения конструкции зоны эмиттера. Первые разработки этого класса устройств также носили наименование «микротоковые приборы».

Транзисторы со встроенными резисторами RET (Resistor-equipped transistors) — биполярные транзисторы со встроенными в один корпус с кристаллом резисторами.
RET — это транзистор общего назначения со встроенным одним или двумя резисторами. Такая конструкция транзистора позволяет сократить количество внешних навесных компонентов и минимизирует необходимую площадь монтажа. RET транзисторы применяются для непосредственного подключения к выходам микросхем без использования токоограничивающих резисторов.

Применение гетеропереходов позволяет создавать высокоскоростные и высокочастотные полевые транзисторы, такие как например, HEMT.

Для включения в схему транзистор должен иметь четыре вывода — два входных и два выходных. Но транзисторы почти всех разновидностей имеют только три вывода. Для включения трёхвыводного прибора необходимо один из выводов назначить общим, и, поскольку таких комбинаций может быть только три, то существуют три основные схемы включения транзистора:

Схемы включения биполярного транзистора[править | править код]

  • с общим эмиттером (ОЭ) — осуществляет усиление как по току, так и по напряжению — наиболее часто применяемая схема;
  • с общим коллектором (ОК) — осуществляет усиление только по току — применяется для согласования высокоимпедансных источников сигнала с низкоомными сопротивлениями нагрузок;
  • с общей базой (ОБ) — усиление только по напряжению, в силу своих недостатков в однотранзисторных каскадах усиления применяется редко (в основном в усилителях СВЧ), обычно в составных схемах (например, каскодных).

Схемы включения полевого транзистора[править | править код]

Полевые транзисторы, как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения:

  • с общим истоком (ОИ) — аналог ОЭ биполярного транзистора;
  • с общим стоком (ОС) — аналог ОК биполярного транзистора;
  • с общим затвором (ОЗ) — аналог ОБ биполярного транзистора.

Схемы с открытым коллектором (стоком)[править | править код]

«Открытым коллектором (стоком)» называют включение транзистора по схеме с общим эмиттером (истоком) в составе электронного модуля или микросхемы, когда коллекторный (стоковый) вывод не соединяется с другими элементами модуля (микросхемы), а непосредственно выводится наружу (на разъем модуля или вывод микросхемы). Выбор нагрузки транзистора и тока коллектора (стока) при этом оставляется за разработчиком конечной схемы, в составе которой применяются модуль или микросхема. В частности, нагрузка такого транзистора может быть подключена к источнику питания с более высоким или низким напряжением, чем напряжение питания модуля/микросхемы. Такой подход значительно расширяет рамки применимости модуля или микросхемы за счет небольшого усложнения конечной схемы. Транзисторы с открытым коллектором (стоком) применяются в логических элементах ТТЛ, микросхемах с мощными ключевыми выходными каскадами, преобразователях уровней, шинных формирователях (драйверах) и т. п.

Статья с подробным описанием принципа (в англоязычном разделе).

Реже применяется обратное включение — с открытым эмиттером (истоком). Оно также позволяет выбирать нагрузку транзистора изменением внешних компонентов, подавать на эмиттер/сток напряжение полярности, противоположной напряжению питания основной схемы (например, отрицательное напряжение для схем с биполярными транзисторами n-p-n или N-канальными полевыми), и т. п.

Вне зависимости от типа транзистора, принцип применения его един:

  • Источник питания питает электрической энергией нагрузку, которой может быть громкоговоритель, реле, лампа накаливания, вход другого, более мощного транзистора, электронной лампы и т. п. Именно источник питания даёт нужную мощность для «раскачки» нагрузки.
  • Транзистор же используется для ограничения силы тока, поступающего в нагрузку, и включается в разрыв между источником питания и нагрузкой. То есть транзистор представляет собой некий вариант полупроводникового резистора, сопротивление которого можно очень быстро изменять.
  • Выходное сопротивление транзистора меняется в зависимости от напряжения на управляющем электроде. Важно то, что это напряжение, а также сила тока, потребляемая входной цепью транзистора, гораздо меньше напряжения и силы тока в выходной цепи.

Надо заметить, что это положение не всегда верно: так в схеме с общим коллектором (ОК) ток на выходе в β раз больше, чем на входе, напряжение же на выходе несколько ниже входного; в схеме с общей базой увеличивается напряжение на выходе по сравнению с входом, но выходной ток немного меньше входного. Таким образом, в схеме ОК происходит усиление только по току, а в схеме ОБ — только по напряжению. За счёт контролируемого управления источником питания достигается усиление сигнала либо по току, либо по напряжению либо по мощности (схемы с общим эмиттером — ОЭ).

  • Если мощности входного сигнала недостаточно для «раскачки» входной цепи применяемого транзистора, или конкретный транзистор не даёт нужного усиления, применяют каскадное включение транзисторов, когда более чувствительный и менее мощный транзистор управляет энергией источника питания на входе более мощного транзистора. Также подключение выхода одного транзистора ко входу другого может использоваться в генераторных схемах типа мультивибратора. В этом случае применяются одинаковые по мощности транзисторы.

Транзистор применяется в:

  • Усилительных схемах. Работает, как правило, в усилительном режиме[18]

ru.wikipedia.org

Отправить ответ

avatar
  Подписаться  
Уведомление о