Трансформатор с тремя выводами – Как прозвонить трансформатор или как определить обмотки трансформатора

Содержание

Как прозвонить трансформатор или как определить обмотки трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. На первых порах занятий радиоэлектроникой у начинающих радиолюбителей, да и не только у радиолюбителей, возникает очень много вопросов, связанных с прозвонкой или определением обмоток трансформатора. Это хорошо, если у трансформатора всего две обмотки. А если их несколько, да и еще у каждой обмотки несколько выводов. Тут просто караул кричи. В этой статье я расскажу Вам, как можно определить обмотки трансформатора визуальным осмотром и с помощью мультиметра.

Как Вы знаете, трансформаторы предназначены для преобразования переменного напряжения одной величины в переменное напряжение другой величины. Самый обычный трансформатор имеет одну первичную и одну вторичную обмотки. Питающее напряжение подается на первичную обмотку, а ко вторичной обмотке подключается нагрузка. На практике же большинство трансформаторов может иметь несколько обмоток, что и вызывает затруднение в их определении.

1. Определение обмоток визуальным осмотром.

При визуальном осмотре трансформатора обращают внимание на его внешний защитный слой изоляции, потому как у некоторых моделей на внешнем слое изображают электрическую схему с обозначением всех обмоток и выводов; у некоторых моделей выводы обмоток только маркируют цифрами. Также можно встретить старые отечественные трансформаторы, на внешнем слое которых указывают маркировку в виде цифрового кода, по которому в справочниках для радиолюбителей есть вся информация о конкретном трансформаторе.

Если трансформатор попался без опознавательных знаков, то обращают внимание на диаметр обмоточного провода, которым намотаны обмотки. Диаметр провода можно определить по выступающим выводам концов обмоток, выпущенных для закрепления на контактных лепестках, расположенных на элементах каркаса трансформатора. Как правило, первичную обмотку мотают проводом меньшего сечения, по отношению к вторичной. Диаметр провода вторичной обмотки всегда больше.

Исключением могут быть повышающие трансформаторы, работающие в схемах преобразователей напряжения и тока. Их первичная обмотка выполнена толстым проводом, так как генерирует высокое напряжение во вторичной обмотке. Но такие трансформаторы встречаются очень редко.

При изготовлении трансформаторов первичную обмотку, как правило, мотают первой. Ее легко определить по выступающим концам выводов обмотки, расположенных ближе к магнитопроводу. Вторичную обмотку наматывают поверх первичной, и поэтому концы ее выводов расположены ближе к внешнему слою изоляции.

В некоторых моделях сетевых трансформаторов, используемых в блоках питания бытовой радиоаппаратуры, обмотки располагают на пластмассовом каркасе, разделенном на две части: в одной части находится первичная обмотка, а в другой вторичная. К выводам первичной обмотки припаивают гибкий монтажный провод, а выводы вторичной обмотки оставляют в виде обмоточного провода.

2. Определение обмоток по сопротивлению.

Когда предварительный анализ обмоток произведен, необходимо убедиться в правильности сделанных выводов, а заодно прозвонить обмотки на отсутствие обрыва. Для этого воспользуемся мультиметром. Если Вы не знаете как измерить сопротивление мультиметром, то прочитайте эту статью.

Вначале прозвоним обычный сетевой трансформатор, у которого всего две обмотки.
Мультиметр переводим в режим «Прозвонка» и производим измерение сопротивления предполагаемых первичной и вторичной обмоток. Здесь все просто: у какой из обмоток величина сопротивления больше, та обмотка и является первичной.

Это объясняется тем, что в маломощных трансформаторах и трансформаторах средней мощности первичная обмотка может содержать 1000…5000 витков, намотанных тонким медным проводом, и при этом может достичь сопротивления до 1,5 кОм. Тогда как вторичная обмотка содержит небольшое количество витков, намотанных толстым проводом, и ее сопротивление может составлять всего несколько десятков ом.

Теперь прозвоним трансформатор, у которого несколько обмоток. Для этого воспользуемся листком бумаги, ручкой и мультиметром. На бумаге будем зарисовывать и записывать величины сопротивлений обмоток.

Делается это так: одним щупом мультиметра садимся на любой крайний вывод, а вторым щупом по очереди касаемся остальных выводов трансформатора и записываем полученное значение сопротивлений. Выводы, между которыми мультиметр покажет сопротивление, и будут являться выводами одной обмотки. Если обмотка без средних отводов, то сопротивление будет только между двумя выводами. Если же обмотка имеет один или несколько отводов, то мультиметр покажет сопротивление между всеми этими отводами.

Например. Первичная обмотка может иметь несколько отводов, когда трансформатор рассчитан на работу в сети с напряжениями 110В, 127В и 220В. Вторичная обмотка также может иметь один или несколько отводов, когда хотят от одного трансформатора получить несколько напряжений.

Идем дальше. Когда первая обмотка и ее выводы будут найдены, то переходим к поиску следующей обмотки. Щупом опять садимся на следующий свободный вывод, а другим поочередно касаемся оставшихся выводов и записываем результат. И таким образом производим измерение, пока не будут найдены все обмотки.

Например. Между выводами с номерами 1 и 2 величина сопротивления составила 21 Ом, тогда как между остальными выводами мультиметр показал бесконечность. Из этого следует, что мы нашли обмотку, у которой выводы обозначены номерами 1 и 2. Нарисуем ее так:

Теперь щупом садимся на вывод

3, а другим щупом поочередно касаемся выводов с номерами от 4 до 10. Мультиметр показал сопротивление только между выводами 3, 4 и 5. Причем между выводами 3 и 4 величина сопротивления составила 6 Ом, а между парой выводов 3, 5 и 4, 5 получилось по 3 Ома. Отсюда делаем вывод, что эта обмотка с отводом посередине, т.е. пары 3, 5 и 4, 5 намотаны равным количеством витков, и что с этой обмотки снимается два одинаковых напряжения относительно общего вывода 5. Рисуем так:

Производим измерение далее.
Между выводами

6 и 7 величина сопротивления составила 16 Ом. Рисуем так:

Ну и между выводами 9 и 10 сопротивление составило 270 Ом.
А так как среди всех обмоток эта оказалась с самой большой величиной сопротивления, то она и является первичной. Рисуем так:

Вывод 8, к которому припаяна желто-зеленая жилка, ни как не звонился, поэтому смело утверждаем, что это экранирующая обмотка (экран), которую наматывают поверх первичной, чтобы устранить влияние ее магнитного поля на другие обмотки. Как правило, экранирующую обмотку соединяют с корпусом радиоаппаратуры.

В итоге у нас получилось четыре обмотки, из которых одна сетевая и три понижающих. Экранирующая обмотка обозначается пунктирной линией и располагается параллельно с сердечником. И вот на основе полученных результатов нарисуем электрическую схему трансформатора.

Теперь остается подать напряжение на первичную обмотку и измерить выходящие напряжения. Однако тут есть один момент, который необходимо знать, если Вы сомневаетесь в правильности определения первичной (сетевой) обмотки.

Здесь все просто: чтобы не сжечь обмотку трансформатора и ограничить через нее нежелательный ток нужно последовательно с этой обмоткой включить лампу накаливания на напряжение 220В и мощностью 40 – 100 Вт. Если обмотка определена правильно, то нить накала лампы должна не гореть или еле тлеть. Если же лампа будет гореть достаточно ярко, то есть вероятность того, что сетевая обмотка трансформатора рассчитана на питающее напряжение 110 — 127В или Вы ее прозвонили неправильно.

Второй момент, по которому можно судить о правильности подключения трансформатора к сети — это сама работа трансформатора. При правильном включении работа трансформатора практически беззвучна и сопровождается слегка ощутимой вибрацией. Если же он будет громко гудеть и сильно вибрировать, и при этом будет нагреваться обмотка и из нее может пойти дым, то трансформатор однозначно включен неправильно. В этом случае тут же отключайте трансформатор от сети, чтобы не повредить обмотку.

Однако и тут есть пару нюансов, которые необходимо учитывать, потому как у некоторых трансформаторов каркас с обмотками может неплотно прилегать к сердечнику и от этого работа трансформатора может сопровождаться некоторым гудением и вибрацией, но при этом обмотка греться не будет. В этом случае в зазор между сердечником и каркасом можно вставить кусочек дерева, пластмассы или кусок провода в изоляции и, тем самым, плотно зафиксировать каркас.

Также характерный гул и вибрацию может вызвать плохая стяжка пластин, из которых собран сердечник магнитопровода. Как правило, стягивание сердечника производится металлической скобой, специальными планками, болтами или стяжками, которые обеспечивают необходимую механическую прочность и жесткое соединение деталей сердечника.

Ну вот в принципе и все, что хотел сказать о прозвонке и определению обмоток трансформатора. Если у Вас возникли вопросы по этой теме, то задавайте их в комментариях к статье. Также, в дополнение к статье, можете посмотреть видеоролик.

Удачи!

sesaga.ru

Трехфазный трансформатор: схема подключения, типы соединений

В данной статье вы узнаете что такое трехфазный трансформатор тока, какие бывают его соединения, подробно опишем его конструкцию.

Описание трехфазного трансформатора

До сих пор мы рассматривали конструкцию и работу однофазного двухобмоточного трансформатора напряжения, который можно использовать для увеличения или уменьшения его вторичного напряжения по отношению к первичному напряжению питания. Но трансформаторы напряжения также могут быть сконструированы для подключения не только к одной однофазной, но и для двухфазных, трехфазных, шестифазных и даже сложных комбинаций до 24 фаз для некоторых выпрямительных трансформаторов постоянного тока.

Если мы возьмем три однофазных трансформатора и соединим их первичные обмотки друг с другом и их вторичные обмотки друг с другом в фиксированной конфигурации, мы можем использовать трансформаторы от трехфазного источника питания.

Трехфазные, также записанные как 3-фазные или 3φ источники питания, используются для выработки, передачи и распределения электроэнергии, а также для всех промышленных применений. Трехфазные источники питания имеют много электрических преимуществ по сравнению с однофазными, и при рассмотрении трехфазных трансформаторов нам приходится иметь дело с тремя переменными напряжениями и токами, различающимися по фазе на 120 градусов, как показано ниже.

Трехфазные напряжения и токи

Трансформатор не может действовать как устройство для изменения фазы и превращать однофазное в трехфазное или трехфазное в однофазное. Чтобы обеспечить совместимость трансформаторных соединений с трехфазными источниками питания, нам необходимо соединить их особым образом, чтобы сформировать конфигурацию трехфазного трансформатора.

Трехфазный трансформатор или 3φ трансформатор может быть сконструирован либо путем соединения вместе три однофазных трансформатора, тем самого образуя так называемый трехфазный трансформаторный блок, или с помощью одного предварительно собранного и сбалансированного трехфазного трансформатора, который состоит из трех пар однофазных обмоток, установленные на одном ламинированном сердечнике.

Преимущества создания одного трехфазного трансформатора в том, что при одинаковой номинальной мощности кВА он будет меньше, дешевле и легче, чем три отдельных однофазных трансформатора, соединенных вместе, поскольку медный и железный сердечник используются более эффективно. Способы подключения первичной и вторичной обмоток одинаковы, будь то использование только одного трехфазного трансформатора или трех отдельных однофазных трансформаторов. Рассмотрим схему ниже:

Трехфазные трансформаторные соединения

Первичная и вторичная обмотки трансформатора могут быть подключены в различной конфигурации, как показано выше, для удовлетворения практически любых требований. В случае трехфазных обмоток трансформатора возможны три формы подключения: «звезда», «треугольник» и «взаимосвязанная звезда».

Комбинации трех обмоток могут быть с первичным соединенным треугольником и вторичной соединенной звездой, или звезда-треугольник, звезда-звезда или треугольник, в зависимости от использования трансформаторов. Когда трансформаторы используются для обеспечения трех или более фаз, их обычно называют многофазным трансформатором .

Трехфазный трансформатор звезда и треугольник

Но что мы подразумеваем под «звездой» (также известной как тройник) и «треугольником» (также известной как сетка) при работе с трехфазными трансформаторными соединениями. Трехфазный трансформатор имеет три комплекта первичной и вторичной обмоток. В зависимости от того, как эти наборы обмоток связаны между собой, определяется, является ли соединение звездой или треугольником.

Три доступных напряжения, каждое из которых смещено друг от друга на 120 электрических градусов, не только определяют тип электрических соединений, используемых на первичной и вторичной сторонах, но и определяют поток токов трансформатора.

При подключении трех однофазных трансформаторов магнитный поток в трех трансформаторах различается по фазе на 120 градусов. С одним трехфазным трансформатором в сердечнике есть три магнитных потока, различающихся по фазе времени на 120 градусов.

Стандартный метод маркировки трехфазных обмоток трансформатора заключается в маркировке трех первичных обмоток заглавными (заглавными буквами) буквами A, B и C , которые используются для обозначения трех отдельных фаз КРАСНОГО,  ЖЕЛТОГО и СИНЕГО (см. картинку ниже). Вторичные обмотки помечены маленькими (строчными буквами) буквами a, b и c. Каждая обмотка имеет два конца, обычно обозначенные 1 и 2, так что, например, вторая обмотка первичной обмотки имеет концы, которые будут обозначены как В1 и В2, в то время как третья обмотка вторичной обмотки будет обозначена с1 и с2, как показано ниже.

Символы обычно используются на трехфазном трансформаторе для обозначения типа или типов соединений, используемых в верхнем регистре Y для подключения звездой, D для подключения треугольником, звезды и Z для взаимосвязанных первичных обмоток звезды, со строчными буквами y, d и z для их соответствующих вторичных. Тогда звезда-звезда будет обозначаться как Yy, дельта-дельта будет обозначаться как Dd, а взаимосвязанная звезда и взаимосвязанная звезда будут Zz для однотипных подключенных трансформаторов.

Таблица идентификация обмотки трансформатора
СоединениеПервичная обмоткаВторичная обмотка
Треугольник (дельта)Dd
ЗвездаYy
ВзаимосвязанноеZz

Теперь мы знаем, что существует четыре различных способа соединения трех однофазных трансформаторов между их первичной и вторичной трехфазными цепями. Эти четыре стандартные конфигурации представлены как: Дельта-Дельта (Dd), Звезда-Звезда (Yy), Звезда-Дельта (Yd) и Дельта-Звезда (Dy).

Трансформаторы для работы под высоким напряжением со звездообразными соединениями имеют то преимущество, что снижают напряжение на отдельном трансформаторе, уменьшают необходимое количество витков и увеличивают размер проводников, делая обмотки катушек легче и дешевле для изолирования, чем дельта-трансформаторы.

Тем не менее, соединение треугольник-треугольник имеет одно большое преимущество перед конфигурацией звезда-треугольник, заключающееся в том, что если один трансформатор из группы трех должен выйти из строя или отключиться, два оставшихся будут продолжать выдавать трехфазную мощность с мощностью, равной приблизительно две трети первоначальной мощности трансформаторного блока.

Трансформатор дельта-дельта соединения

В дельта подключении ( Dd ) группа трансформаторов, напряжение линии V L равно напряжению питания V L  = V S . Но ток в каждой фазной обмотке задается как: 1 / √ 3 × I L тока линии, где L — ток линии.

Один из недостатков трехфазных трансформаторов, соединенных треугольником, состоит в том, что каждый трансформатор должен быть намотан для напряжения полной линии (в нашем примере выше 100 В) и для 57,7% линейного тока. Большее число витков в обмотке, вместе с изоляцией между витками, требует большей и более дорогой катушки, чем звездное соединение. Другим недостатком трехфазных трансформаторов, соединенных треугольником, является отсутствие «нейтрального» или общего подключения.

В схеме «звезда-звезда» ( Yy ) каждый трансформатор имеет одну клемму, соединенную с общим соединением, или нейтральную точку с тремя оставшимися концами первичных обмоток, подключенными к трехфазному сетевому питанию. Число витков в обмотке трансформатора для соединения «звезда» составляет 57,7% от требуемого для соединения треугольником.

Соединение звездой требует использования трех трансформаторов, и если какой-либо один трансформатор выйдет из строя или отключится, вся группа может быть отключена. Тем не менее трехфазный трансформатор со звездообразным соединением особенно удобен и экономичен в системах распределения электроэнергии, поскольку четвертый провод может быть подключен в качестве нейтральной точки ( n ) из трех вторичных проводов,  как показано на рисунке.

Трансформатор звезда-звезда соединения

Напряжение между любой линии трехфазного трансформатора называется «линейное напряжение» V L , в то время как напряжение между линией и нейтральной точкой трансформатора с соединением звезда называется «фаза напряжения» V P . Это фазовое напряжение между нейтральной точкой и любым из подключений к линии составляет 1 / √ 3  × V L от напряжения сети. Тогда выше, напряжение фазы первичной стороны P задается как:

Вторичный ток в каждой фазе группы трансформаторов соединенных «звездой» такое же, что и для линии тока питания, то I L = I S .

Тогда соотношение между линейными и фазовыми напряжениями и токами в трехфазной системе можно суммировать как:

СоединениеФазовое напряжениеЛинейное напряжениеФазный токЛиния тока
ЗвездаP = V L ÷ √ 3L = √ 3 × V PI P = I LL = I P
ДельтаP = V LL = V PP = I L ÷√ 3L = √ 3 × I P

Где, опять же, L — это напряжение между линиями, а P — это напряжение между фазами и нейтралью на первичной или вторичной стороне.

Другими возможными соединениями для трехфазных трансформаторов являются звезда-треугольник Yd, где первичная обмотка соединена звездой, а вторичная обмотка соединена треугольником или треугольником Dy с первичным соединением первичной обмотки и вторичной обмоткой со звездой.

Трансформаторы с соединением треугольником и звездой широко используются при низком распределении мощности, при этом первичные обмотки обеспечивают трехпроводную сбалансированную нагрузку для коммунального предприятия, а вторичные обмотки обеспечивают требуемое нейтральное или заземляющее 4-проводное соединение.

Когда первичная и вторичная обмотки имеют разные типы соединений обмотки, звезда или треугольник, общее отношение витков трансформатора становится более сложным. Если трехфазный трансформатор подключен как дельта-дельта ( Dd ) или звезда-звезда ( Yy ), то трансформатор может иметь отношение витков 1: 1. То есть входные и выходные напряжения для обмоток одинаковы.

Однако, если 3-фазный трансформатор соединен звезда-треугольник, ( Yd ) каждое звездообразное соединение первичной обмотки будет получать напряжение фазы V P от источника, который равен 1 / √ 3  × V L .

Тогда каждая соответствующая вторичная обмотка будет иметь то же самое напряжение, индуцированное в ней, и, поскольку эти обмотки соединены треугольником, напряжение 1 / √ 3  × V L станет напряжением вторичной линии. Затем при соотношении витков 1: 1 трансформатор, подключенный по схеме звезда-треугольник, будет обеспечивать коэффициент линейного напряжения с понижением √ 3 : 1 .

Тогда для  трансформатора, подключенного звезда-треугольник ( Yd ), отношение витков становится равным:

Аналогично, для дельта-звезда ( Dy ) соединенный трансформатор, с 1: 1 соотношением витков, трансформатор будет обеспечивать 1: √ 3 соотношение повышающего линейного напряжения. Тогда для трансформатора, соединенного треугольником-звезда, отношение витков становится равным:

Затем для четырех основных конфигураций трехфазного трансформатора мы можем перечислить вторичные напряжения и токи трансформатора по отношению к напряжению первичной линии, V L и его току первичной линии I L, как показано в следующей таблице.

Где: n равно числу витков трансформатора числа вторичных обмоток N S, деленной на число первичных обмоток N P . ( N S / N P  ) и V L — линейное напряжение, при этом V P — это напряжение между фазой и нейтралью.

Пример трехфазного трансформатора

К первичной обмотке  трансформатора 50 ВА, подключенного к треугольнику ( Dy ), подключено трехфазное питание 100 В, 50 Гц. Если трансформатор имеет 500 витков на первичной обмотке и 100 витков на вторичной обмотке, рассчитайте вторичные стороны напряжений и токов.

Приведенные данные: номинальный трансформатор, 50 ВА, напряжение питания, 100 В, первичные витки 500 , вторичные витки, 100.

Получается, что на вторичную сторону трансформатора подается линейное напряжение, V Lоколо 35 В, дающее фазное напряжение, V P 20 В при 0,834 Ампер.

Конструкция трехфазного трансформатора

Ранее мы уже говорили, что трехфазный трансформатор представляет собой три взаимосвязанных однофазных трансформатора на одном многослойном сердечнике, и можно достичь значительной экономии в стоимости, размере и весе, объединив три обмотки в одну магнитную цепь, как показано на рисунке.

Трехфазный трансформатор обычно имеет три магнитных цепи, которые чередуются, чтобы обеспечить равномерное распределение диэлектрического потока между обмотками высокого и низкого напряжения. Исключением из этого правила является трехфазный трансформатор типа корпусной. В конструкции типа корпусной, даже несмотря на то, что три ядра находятся вместе, они не переплетены.

Трехфазный трансформатор с сердечником является наиболее распространенным методом построения трехфазного трансформатора, позволяя фазам быть магнитно связанными. Поток каждой конечности использует две другие ветви для своего обратного пути с тремя магнитными потоками в сердечнике, создаваемыми линейными напряжениями, различающимися по фазе времени на 120 градусов. Таким образом, поток в сердечнике остается почти синусоидальным, создавая синусоидальное вторичное напряжение питания.

Конструкция трехфазного трансформатора с кожухом пятиступенчатого типа тяжелее и дороже в сборке, чем сердечник. Пятиконтактные сердечники обычно используются для очень больших силовых трансформаторов, так как они могут быть выполнены с уменьшенной высотой. Материалы сердечника трансформаторов типа корпусной, электрические обмотки, стальной корпус и охлаждение практически такие же, как и для более крупных однофазных типов.

meanders.ru

Схема подключения трансформатора, как правильно его подсоединить к цепи.

 

 

 

Тема: как нужно соединять трансформатор с электрической цепью.

 

Применение силовых понижающих (реже повышающих) трансформаторов имеет большое распространение. Они являются достаточно простым и недорогим решением для функции преобразования электрической энергии, а именно напряжения и тока. Для тех, кто не особо знаком с электротехникой уточню — трансформаторы представляют собой электрическую машину, состоящую из магнитопровода определенной формы, на котором содержаться намотки изолированного провода (медного чаще всего). В зависимости от количества витков на трансформаторе и его сечения зависит напряжение и ток, который преобразуется.

 

Самый простой вариант трансформатора содержит на себе две обмотки. Входная обмотка называется первичной, а выходная — вторичной. Изначально каждый трансформатор рассчитывается на свою мощность, напряжение, ток, частоту. Чаще всего можно встретить обычный понижающий трансформатор, у которого входная обмотка рассчитана на напряжение 220 вольт, а вторичная на то напряжение, которое используется тем или иным устройством (наиболее ходовыми являются 3, 5, 9, 12, 24 вольта). От количества витков зависит напряжение, а от диаметра провода обмотки — сила тока.

 

 

Схема подключения трансформатора достаточно проста. На вход подается питание (переменное напряжение). Если это обычный понижающий транс, рассчитанный на стандартное сетевое напряжение, то подключаем 220 вольт. Полярность тут не имеет значения. Обычно на самом электротехническом устройстве пишется, где у него, какая обмотка, на сколько вольт она рассчитана. Входные провода (или выводы, клеммы) как правило делаются хорошо изолированными, расположенные отдельно от выходных. В принципе легко понять, какие выводы соответствуют входу.

 

 

 

 

Если вам попался силовой трансформатор, у которого нет четкого указания, надписи, где у него входные клеммы, выводы, провода, а вы точно знаете, что он на 220 вольт, то можно первичную обмотку просто вызвонить тестером, мультиметром. Итак, сначала зрительно определяем, какие выводы наиболее похожи на вход. Далее начинаем измерять сопротивление обмоток. Так как первичная обмотка рассчитана на большее напряжение (220 вольт), значит она будет иметь наибольшее сопротивление относительно всех остальных. Для примера, у большинства понижающих трансформаторов размерами примерно с кулак взрослого человека сопротивление входной, первичной обмотки будет лежать в пределах 10-1000 ом. Чем больше трансформатор, тем меньше сопротивление на его входной обмотки.

 

Вторичная обмотка силового понижающего трансформатора в простом варианте имеет два вывода (провода, клеммы). Она наматывается проводом большего диаметра, в сравнении с первичной обмоткой. На ее выводах будет пониженное переменное напряжение (когда на вход подадим питание). Для большинства устройств нужно постоянное низковольтное напряжение, а поскольку со вторичной обмотки выходит переменное напряжение, то ее в большинстве случаев подключают к диодному, выпрямительному мосту, который и преобразует переменное напряжение в постоянное.

 

Для некоторых электротехнических устройств нужно несколько различных низковольтных напряжений. В этом случае ставятся силовые понижающие трансформаторы, у которых имеется одна входная обмотка (первичная), рассчитанная на 220 или 380 вольт, и несколько выходных (вторичные). Либо может быть вторичная обмотка со средней точкой. То есть, у выходной обмотки электрической машины (транса) выходит 3 провода (один провод общий для двух одинаковых обмоток, ну и по проводу, идущие от других концов этих обмоток). У таких понижающих трансформаторов относительно общего провода будет два одинаковых низковольтных напряжения, а общее напряжение будет равно сумме этих двух напряжений.

 

В промышленности широко используются также напряжения величиной в 380 вольт. Следовательно, те трансформаторы, что там используются могут быть рассчитаны как на входное переменное напряжение 220 вольт, так и на 380 вольт. Если на таких трансах есть надпись (входного и выходного напряжения), значит хорошо. Если же непонятно, на какое входное напряжение рассчитан трансформатор, то — если на транс, рассчитанный на 380 вольт подать 220 вольт, на выходе мы всего лишь получим меньшее напряжение, чем он изначально должен выдавать, если же наоборот, транс рассчитан на 220 вольт, а мы на него подадим 380 вольт, то он быстро начнет греться и в скором времени просто выйдет из строя.

 

P.S. Трансформаторы рассчитаны на работу именно с переменным током, от постоянного они будут просто греться, не выдавая на выходе никакого напряжения. Также стоит учесть, что в большинстве случаев (когда обмотки между собой не связаны, к примеру две первичные, которые подключаются последовательно) полярность подключения к выводам трансформатора не имеет значения. Главное, чтобы вы были уверены в том, что само устройство рассчитано на то напряжение, которое вы на него собираетесь подавать и получать. Ну, и не забываем — мощность имеет значение! Подбирайте именно такой трансформатор, который без перегрузки может обеспечить ваше устройство нужным напряжением и током.

 

electrohobby.ru

Устройство 3-трехфазного трансформатора, схема подключения, принцип работы

 

Устройство 3 фазного трансформатора

Устроен трехфазный трансформатор преимущественно с  стержневыми сердечниками. Если использовать три однофазных трансформатора, где каждый трансформатор  имеет свою обмотку, а затем их объединить, как показано на рисунке где у них есть общий стержень, не имеющий обмоток то получится устройство трехфазного трансформатора. Принцип действия в том, что три стержня здесь объединены в общий «нуль». Через этот общий «0» будут проходить общие магнитные потоки, которые равные по величине, но по фазе сдвинутые на 1/3 периода, то сумма потоков будет равна «нулю» в произвольный момент времени. Если магнитный поток (Фа + Фb + Фс= 0), то общий стержень становиться ненужным.

Конструкция трехфазного трансформатора имеет всего три стержня расположенных в одной плоскости.

Принцип работы трёхфазного трансформатора, как и однофазного, базируется на законе электромагнитной индукции. При подключении к сети первичной обмотки, в ней начинает протекать переменный ток. Из-за него в сердечнике магнитопровода из стали появляется основной магнитный поток, который охватывает обмотки в каждой фазе. … Ф — максимальное значение основного магнитного потока, Вб; W 1, W 2 — количество витков в первичной и вторичной обмотках соответственно.

Обмотки трехфазного трансформатора располагаются на каждом из стержней и включают для каждой фазы свои обмотки высшего и низшего напряжения. Ярмо сверху и снизу объединяет стержни трансформаторов.

Обмотки однофазных трансформаторов не чем не отличаются конструктивно  от трех фазных.

Первичные обмотки трансформатора называются обмотками высшего напряжения (ВН) и обозначаются заглавными буквами, а вторичные обмотки называются обмтками низшего напряжения (НН) и обозначаются малыми буквами.

Детальный принцип работы 3- фазного трансформатора

Трехфазный ток можно трансформировать тремя совершенно отдельными однофазными трансформаторами. В этом случае обмотки всех трех фаз магнитно не связаны друг с другом: каждая фаза имеет свою магнитную цепь. Но тот же трехфазный ток можно трансформировать и одним трехфазным трансформатором, у которого обмотки всех трех фаз магнитно связаны между собою, так как имеют общую магнитную цепь.

Чтобы уяснить себе принцип действия и устройства трехфазного трансформатора, представим себе три однофазных трансформатора, приставленных один к другому так, что три стержня их образуют один общий центральный стержень (рис. 1). На каждом из остальных трех стержней наложены первичные и вторичные обмотки (на рис. 1 вторичные обмотки не изображены).

Предположим, что первичные катушки всех стержней трансформатора совершенно одинаковы и намотаны в одном направлении (на рис. 1 первичные катушки намотаны по часовой стрелке, если смотреть на них сверху). Соединим все верхние концы катушек в нейтраль О, а нижние концы катушек подведем к трем зажимам трехфазной сети.

рис 1

Токи в катушках трансформатора создадут переменные во времени магнитные потоки, которые будут замыкаться каждый в своей магнитной цепи. В центральном составном стержне магнитные потоки сложатся и в сумме дадут ноль, ибо эти потоки создаются симметричными трехфазными токами, относительно которых мы знаем, что сумма мгновенных значений их равна нулю в любой момент времени.

Например, если бы в катушке АХ ток I, был наибольший и проходил в указанном на рис. 1 направлении, то магнитный поток был бы равен наибольшему своему значению Ф и был направлен в центральном составном стержне сверху вниз. В двух других катушках BY и CZтоки I2 и I3 в тот же момент времени равны половине наибольшего тока и имеют обратное направление по отношению к току в катушке АХ (таково свойство трехфазных токов). По этой причине в стержнях катушек BY и CZ магнитные по токи будут равны половине наибольшего потока и в центральном составном стержне будут иметь обратное направление по отношению к потоку катушки АХ. Сумма потоков в рассматриваемый момент равна нулю. То же самое имеет место и для любого другого момента.

Отсутствие потока в центральном стержне не означает отсутствия потоков в остальных стержнях. Если бы мы уничтожили центральный стержень, а верхние и нижние ярма соединили в общие ярма (см. рис. 2), то поток катушки АХ нашел бы себе путь через сердечники катушек BY и CZ, причем магнитодвижущие силы этих катушек сложились бы с магнитодвижущей силой катушки АХ. В таком случае мы получили бы трехфазный трансформатор с общей магнитною цепью всех трех фаз.

Рисунок 2.

Так как токи в катушках смещены по фазе на 1/3 периода, то и создаваемые ими магнитные потоки также смещены во времени на 1/3 периода, т. е. наибольшие значения магнитных потоков в стержнях катушек следуют друг за другом через 1/3 периода.

Следствием сдвига по фазе магнитных потоков в сердечниках на 1/3 периода является такой же сдвиг по фазе и электродвижущих сил, индуктируемых как в первичных, так и во вторичных катушках, наложенных на стержнях. Электродвижущие силы первичных катушек почти уравновешивают приложенное трехфазное напряжение. Электродвижущие силы вторичных катушек при правильном соединении концов катушек дают трехфазное вторичное напряжение, которое подается во вторичную цепь.

Как обозначаются начала первичной обмотки трехфазного трансформатора

Все начала первичных обмоток трехфазного трансформатора обозначают большими буквами: А, В, С; начала вторичных обмоток — малыми буквами: а, Ь, с. Концы обмоток обозначаются соответственно: X, У, Z и х, у, z. Зажим выведенной нулевой точки при соединении звездой обозначают буквой О.

А, В, С – обозначают начало обмоток высшего напряжения, а буквы X, Y и Z означают конец этих обмоток.

Трансформаторы с «нулевой точкой» имеют выведенный конце под клемму обозначенный большой буквой О.

Аналогично обозначают концы обмоток низшего напряжения, но используют для этого строчные  буквы х, у, z – это конец фазных обмоток, а, в, с их начало.

Звезда и треугольник – это основные способы соединения обмоток 3 -х фазного  трансформатора.

Соединяя свободные выводы трех обмоток между собой их начала, или концы образуют нейтральную точку. Остальные свободные зажимы подключаются к трехфазной нагрузке или входному напряжению, идущему на трансформатор от линии электропередач.

Соединение обмоток трансформатора в звезду

Соединение обмоток в треугольник происходит по принципу последовательного подключения, когда конец одной обмотки соединяется с началом другой, а конец второй обмотки соединяется с началом третей обмотки.

соединение в треугольник

Точки соединения обмоток подключаются внешние устройства. Обозначение выводов трехфазного трансформатора и их схемы подключения.

∆ — соединение обмоток трансформатора треугольником.

Y – соединение обмоток трансформатора звездой.

обозначение трехфазных трансформаторов

Соединение обмоток под чертой указывает на обмотки низшего напряжения, а над чертой высшего напряжения.

Цифра – указывает на угол между векторами ЭДС с 30° градусами угловых единиц.

Расшифровка обозначение указывает, что обмотки высшего в первом случае соединены звездой, низшего напряжения так же звездой. При этом обмотки низшего напряжения имеют подключенную «0» точку.

Сколько стержней должен иметь магнитопровод трехфазного трансформатора?

Трехфазные трансформаторы используются для питания трехфазных или двухфазных сетей, имеющих либо общий трехфазный магнитопровод, либо два или три отдельных магнитопровода стержневого типа.

По способу сборки в современных конструкциях как для однофазных, так и для трехфазных магнитопроводов преимущественное распространение получили шихтованные типы, как более надежные в эксплуатации, удобные в производстве, требующие менее сложного оборудования и приспособлений для сборки.

Где применяется трехфазный трансформатор

Трёхфазный трансформатор используется для преобразования напряжения и применяется как устройство в сфере электрификации промышленных предприятий и жилых помещений. Кроме того, 3 фазные трансформаторы незаменимы на судах, так как с их помощью осуществляется питание приборов различного номинала.

Видео: Принцип работы трансформатора

Трансформаторы могут получать переменный ток с одним напряжением и выдавать его с другим. Таким образом, они служат для повышения эффективности передачи электроэнергии на большие расстояния. В данном видео мы рассмотрим принцип работы и конструкцию простейшего устройства трехфазного трансформатора.

Видео: Что такое звезда и треугольник в трансформаторе

transformator220.ru

Переключение обмоток трансформатора лабораторных источников питания. Часть первая. — Блоки питания — Источники питания

Николай Петрушов

Лабораторный источник питания для радиолюбителя является первостепенной и неотъемлемой частью радиолюбительской лаборатории. Каждый решает для себя сам — купить такой источник, или собрать его самому.
Конечно, хочется иметь в своей лаборатории источник питания с широкой регулировкой напряжения, вольт эдак до 50, и конечно с током нагрузки, желательно не менее 5 ампер.
Промышленные источники питания с такими характеристиками для рядового радиолюбителя просто не доступны, и остаётся единственный путь — изготовить такой источник самому. Но при самостоятельном изготовлении источника питания с такими характеристиками, приходится решать ряд проблем, одной из которых самой главной, является его КПД во всём диапазоне выходных напряжений.

Дело в том, что при максимальном выходном напряжении источника питания в 50 вольт, и при установке выходного напряжения, например 5 вольт и токе нагрузке 5 ампер — на выходных транзисторах будет выделяться бесполезная мощность 225 ватт. То есть КПД источника в таком режиме будет до безобразия мал.
Решить такую проблему можно разными способами, например коммутацией вторичных обмоток силового трансформатора, или сделать источник питания импульсным, или собрать импульсный пред-регулятор. Но как показала личная практика — хороший лабораторный источник питания не должен иметь ни каких импульсных каскадов и быть чисто, только линейным. Для каких либо цифровых, или не ответственных схем, вполне может подойти и импульсный источник питания, а вот для наладки какой либо приёмной аппаратуры — только линейный.
Поэтому в линейных промышленных источниках питания пошли по первому пути, где вторичная силовая обмотка трансформатора имеет несколько отводов и коммутируется двумя-тремя реле.
Эти меры частично решают данную проблему и значительно повышают КПД источника питания.
Ещё более улучшить его КПД и уменьшить нагрев выходных транзисторов, можно увеличением количества отводов силовой обмотки трансформатора и, например установки галетного переключателя, как сделано в блоке питания, схема которого обозначена на рисунке ниже. Одно неудобство — увеличивается количество органов регулировки и установки выходного напряжения.

Чтобы избавиться от этого недостатка — была разработана схема блока переключения обмоток трансформатора на реле, представленная ниже.

Вашему вниманию предлагается блок переключения обмоток трансформатора для лабораторных источников питания, который выполнен всего на трёх реле, и который переключает вторичные обмотки силового трансформатора с шагом в 5 вольт, и имеет восемь ступеней регулировки выходного напряжения.

Блок переключения меняет напряжение с трансформатора на входе блока питания ступенями по пять вольт, от 8-ми до 43 вольт в зависимости от выходного напряжения блока питания. Такое максимальное выходное напряжение (43 вольта) выбрано не случайно, и обусловлено применением в фильтре распространённых электролитических конденсаторов с рабочим напряжением 63 вольта. При этом напряжение на конденсаторах фильтра будет около 60 вольт и максимальное выходное напряжение блока питания может достигать 50-52 вольта. Вы вполне сами можете изменить максимальное выходное напряжение с трансформатора и напряжение ступеней регулирования под свои нужды. Например начальную обмотку сделать на 10-12 вольт, и ступени изменения сделать по 6 вольт. Тогда максимальное переменное напряжение, подаваемое на мост — составит 52-54 вольта. Конденсаторы фильтра в таком случае необходимо ставить на рабочее напряжение 80 вольт.
Схема блока собрана на 13-ти транзисторах и одной микросхеме. При кажущейся сложности схемы, она довольно простая, и при правильной сборке не требует никакого налаживания, начинает работать сразу и работает надёжно.

Схема блока переключения обмоток трансформатора.

В схеме применены реле на рабочее напряжение 12 вольт. Контакты реле на схеме трансформатора, обозначены в исходном положении (все реле обесточены).
Можно применять реле на любые рабочие напряжения, с коммутируемым током через контакты не менее 10 ампер. При использовании реле на другие рабочие напряжения, например на 24 вольта, необходимо будет вторичную обмотку силового трансформатора, которая питает данный блок (обмотка V), намотать на напряжение 17-18 вольт и стабилизатор 7805 желательно установить на небольшой радиатор.

Схема работает следующим образом;
Когда выходное напряжение блока питания не превышает 6,2 вольт, стабилитроны закрыты и все реле обесточены. На выпрямительный мост блока питания — подаётся переменное напряжение 8 вольт с первой части вторичной обмотки II силового трансформатора. При повышении выходного напряжения блока питания более 6,2 вольт, открывается стабилитрон ZD1, на вход микросхемы 1 (вывод 11) — подаётся логический ноль. Микросхема К555ИВ3 — является приоритетным шифратором (выше приоритет имеет вход с более высоким номером), и на выходе выдаёт двоичный код 1-2-4-8 в зависимости от того, на каком входе присутствует логический ноль. Самый высокий приоритет у входа 9 (вывод 10, мы его, вход 8 и выход 8 не используем), то есть если на этом входе логический ноль, то на выходе будет двоичный код девятки 1-0-0-1 (вернее 0-1-1-0, так как активный уровень микросхемы — логический ноль), в не зависимости от входных уровней на других входах. Поэтому после открывания стабилитрона ZD1 — срабатывает реле Р1 и переключает своими контактами обмотку II. Выходное напряжение с выхода трансформатора повышается на 5 вольт. При дальнейшем повышении выходного напряжения блока питания до уровня 12,4-12,6 вольт, открывается второй стабилитрон, на второй вход микросхемы К555ИВ3 (вывод 12) подаётся логический ноль и срабатывает реле Р2, а Р1 выключается (двоичный код двойки 0-1-0). К первой части обмотки II подключается обмотка III, и на выходе трансформатора переменное напряжение повышается ещё на 5 вольт. Ну и так далее, при повышении выходного напряжения блока питания — срабатывание всех реле происходит в двоичном коде. Пороги срабатывания выбраны следующие; 6,2 — 12,5 — 18,6 — 24,8 — 31 — 37,5 — 43,5 вольт и зависят от применённых стабилитронов.

Трансформатор блока питания.

Силовой трансформатор для применения с данным блоком, имеет три силовых обмотки. Намотать одну силовую обмотку с несколькими выводами, или три силовых обмотки — особой разницы нет, так как в основном трансформатор для своего источника питания, основная часть радиолюбителей изготавливает самостоятельно. Поэтому мотаем три обмотки, проводом рассчитанным на наш максимальный ток нагрузки. Первая на 13 вольт с отводом от 8-ми вольт (8+5), вторую на 10 вольт и третья на 20 вольт. Начало обмоток на схеме обозначены точками. Вы можете по своему усмотрению выбрать для себя необходимые напряжения и намотать свои обмотки, только необходимо помнить, что напряжение обмотки III должно быть в два раза больше второй части обмотки II, а напряжение обмотки IV — в два раза больше напряжения обмотки III.
Транзисторы в данном блоке переключения применены КТ315 и выходные КТ815. Вместо них можно ставить любые транзисторы соответствующей структуры и мощности.
Блок собран на печатной плате — размером 55х70 мм. Печатная плата рассчитана без установки на неё реле, так как они могут применяться самые разнообразные. Реле установлены на отдельной плате.

Печатная плата блока переключения обмоток трансформатора.

Зарубежные аналоги для микросхемы К555ИВ3 — 74LS/HC/HCT 147. Стабилитроны можно ставить на необходимые Вам пороги переключений. Печатная плата разработана в формате Sprint-Layout 6.0 и изображена со стороны деталей. То есть при её изготовлении рисунок нужно «зеркалить». Плата также имеется в архиве.

Архив для статьи

 

 

vprl.ru

РадиоКот :: Трансформатор

РадиоКот >Обучалка >Аналоговая техника >Основы электроники >

Трансформатор

В очередной раз ставим опыт. Только на сей раз — не с водой, а с гвоздями и проволокой.

Итак, берем большой гвоздь, или, лучше — болт. И наматываем на него витков 50…100 медной проволоки (с изоляцией). Концы проволоки подключаем к батарейке.
Все. С этого момента ничем не примечательный доселе болт, становится магнитом! Можете проверить, он будет примагничивать все подряд…
Радуемся. Отключаем болт от батарейки — а то она быстро сядет =)


Только что мы сотворили своими руками электромагнит. С другой стороны — это все та же катушка индуктивности, не правда ли?
Правильно! У катушки индуктивности при протекании через нее тока, появляются магнитные свойства. Иными словами, вокруг нее возникает магнитное поле (МП).

Это свойство катушки широко используется. Например, именно на этом свойстве работают все электромоторы. Ни один электровоз и ни один лифт не сдвинулся бы с места, если бы при протекании по обмоткам тока, вокруг них не возникало МП. Поистине, чудесное свойство.


А теперь, подходим к вопросу с другой стороны. Возьмем довольно мощный постоянный магнит. Можно, например, вытащить из любимого телевизора (или — из любимых компьютерных колонок) громкоговоритель. На нем точно есть магнит… =))).

И еще, нам понадобится вольтметр! Такой прибор для измерения напряжения. Лучше — стрелочный, а не цифровой. И лучше — с нулем по середине шкалы, чтобы он мерил как положительные, так и отрицательные напряжения. Он выглядит примерно так:

Теперь, подключим вольтметр к нашей катушке (которая намотана на болт), и поднесем к ней магнит, внимательно наблюдая за показаниями вольтметра. В момент, когда мы будем подносить магнит к катушке, стрелка вольтметра отклонится в одну сторону. Когда мы будем удалять магнит, стрелка качнется в другую сторону. Чем быстрее движется магнит — тем сильнее отклоняется стрелка.

А все почему? Потому что, при изменении силы магнитного поля вокруг катушки, в катушке возникает ток (а значит — между ее концами появится напряжение). Заметим: при изменении. Если просто положить магнит рядом с катушкой, тока не будет, потому что сила магнитного поля, создаваемого магнитом — постоянна.

Если бы не это свойство — мы бы все до сих пор сидели в темноте и без интернета. Поскольку именно на основе этого свойства работают электрогенераторы на любой электростанции.


А теперь свяжем все во едино:

1. При протекании тока по катушке, вокруг нее образуется МП.
2. При изменении МП вокруг катушки, в ней возникает ток.

Попробуем совместить эти свойства.
Давайте намотаем на болт еще одну катушку (поверх старой). Тоже, витков 100. Чтобы не перепутать выводы, предварительно завяжем на выводах старой катушки узелки.

Ко второй (новой) катушке подключаем вольтметр, а первой (старой) — батарейку. В момент подключения батарейки, смотрим на вольтметр. Как вы думаете, что произойдет?
Правильно! При подключении батарейки, через первую катушку потечет ток. Вокруг нее появится МП (то есть, оно изменится от 0 до некоторого значения). А значит, во второй катушке в этот момент возникнет ток. И стрелка отклонится.

При отключении батарейки происходит то же самое. МП резко падает до нуля, в результате чего, во второй обмотке, опять же, возникает ток, но уже — в обратную сторону.


Если очень часто отключать-подключать батарейку, стрелка вольтметра будет не переставая дергаться туда-сюда…

Так вот, к чему я это все?
Подключая и отключая батарейку, мы, по сути, создаем в первой обмотке переменный ток. При этом и во второй обмотке тоже возникает переменный ток. Так на фига ж мы будем мучиться с батарейкой! Надо просто взять да подать на первую обмотку переменный ток, например, из розетки… СТОП! Только не так резко!!! Обмоточка у нас слабовата, сгореть может. Чтобы не сгорела — надо, чтоб в ней было больше тысячи витков: мотать лениво и проволоки жалко. Так что, давайте просто представим, что мы подключили обмотку в розетку. Что же будет? Да все то же! Вокруг катушки возникнет переменное магнитное поле, и во второй катушке появится переменный ток.

Заметим, что на 2-й обмотке, синусоида сдвинута относительно 1-й на 1/4 периода. Это не ачепятка. Посмотрите предыдущий график, и подумайте, почему так…

Подумали? Правильно! Ток на 2-й обмотке максимален тогда, когда скорость нарастания тока 1-й обмотки максимальна. Это соответствует точкам 4 и 8. И минимален, когда скорость падения тока на 1-й обмотке максимальна. (Точки 2 и 6.)

В точках 1,3,5,7 и 9, ток в 1-й обмотке находится в максимуме, либо в минимуме. То есть скорость его изменения равна 0. В этот момент ток во 2-й обмотке равен 0 (переходит через ось x).

Ну, в общем, не буду вас мучить, и открою страшную тайну. То что мы только что сделали, называется трансформатор. Обмотки, которые мы называли «первая» и «вторая», в трансформаторе называются — «первичная» и «вторичная».
Первичная — это та, на которую подается напряжение. Вторичная, это та, с которой напряжение снимается. Первичная обмотка всегда одна. Вторичных может быть — сколько душе угодно.

На схеме трансформатор обозначают так:

Главная задача трансформатора — преобразование электрической энергии. Причем, посредником в этом преобразовании является магнитное поле. Поэтому, первичная и вторичная обмотки не имеют между собой электрического контакта. Обычно, в таком случае говорят: «обмотки развязаны гальванически».

Трансформаторы — они, собственно, везде вокруг нас! Вот некоторые места, где можно встретить трансформатор:
— трансформаторная будка
— зарядное устройство для мобилы
— блок питания любимого компа
— вспышка фотоаппарата
— компьютерный модем
— древний телефонный аппарат
— абонентская радиоточка (если кто-то еще о них помнит)
— и т.д. и т.п.

Трансформаторы главным образом применяются в источниках питания. Дело в том, что трансформаторы бывают понижающие и повышающие. В понижающих трансформаторах, выходное напряжение (на вторичной обмотке) меньше, чем входное (на первичной). Это используется для питания низковольтных устройств (например, того же кампутера) из сети 220В. То есть, ставим трансформатор, первичку врубаем в сеть, а со вторички снимаем низкое напряжение, которое кушает наше устройство.

С другой стороны, иногда необходимо выполнить обратное преобразование. Например, в фотоаппарате для питания вспышки требуется напряжение до 300В. Вспышка, как всем известно, питается от батареек, которые в сумме выдают от силы, вольта три. Таким образом — налицо необходимость повышения напряжения аж в 100 раз! Что сделаем? Конечно, поставим трансформатор. Только, он будет уже повышающий. При этом, напряжение на трансформатор подается через специальный преобразователь, который делает постоянное напряжение батареек переменным. (Постоянку транс не кушает =))

Однако, силовыми цепями, применение трансформатора не ограничивается. Его широко используют и в сигнальных цепях. Например, он есть в любом модеме. Модем (для тех, кто не в танке) — енто такое устройство, которое позволяет передавать данные между двумя устройствами (компьютерами) по телефонной линии. Так вот, чтобы гальванически отвязать телефонную линию от схемы компьютера (то есть, лишить их электрического контакта между собой), в модеме стоит трансформатор. Линия подключается к одной обмотке, схема модема — к другой. При этом все передаваемые и получаемые сигналы проходят через трансформатор без каких либо проблем в обе стороны!

Последний момент. Чем определяется напряжение обмотки?
Ответ прост: количеством витков. Причем, напряжение строго пропорционально количеству витков, и для одного отдельно взятого трансформатора, коэффициент пропорциональности постоянен вне зависимости — первичная обмотка или — вторичная.

Пример:

Трансформатор с входным напряжением 220В имеет в первичной обмотке 880 витков. Сколько витков должно быть во вторичной обмотке, чтобы снять с нее 12В?

Решение:

Выясняем, сколько витков приходится на один вольт (собственно, коэффициент пропорциональности). 880/220 = 4.
Умножаем напряжение, которое нужно снять с вторички на этот коэффициент: 12*4=48. Получилось 48 витков!

Пока что — это все по трансформаторам

<<—Вспомним пройденное—-Поехали дальше—>>


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Ответы@Mail.Ru: Трансформатор с 3 проводами

ха ха снало подключают а потом напругу меряют вот так вася

Мультиметром и определи где какая обмотка. Сопротивление померяй.

Либо это автотрансформатор, либо проводов не менее 4 (первичная и вторичная обмотка).

Приложи ко всем проводам и перепроверь

С тремя проводами это не трансформатор, а двухобмоточный дроссель фильтра выпрямителя некоторых старых телевизоров. Применяется в двухзвенном фильтре. Но то, что он не показывает сопротивление, значит либо обрыв, либо не правильно замеряешь. = ========= Теперь вижу что трансформатор, но не три вывода, а ПЯТЬ !!!Голову только людям морочишь.

синий провод= у вас экран- земля.. 2 чёрных= 220 ————— лучше тестером перепроверить ————— экран никуда не включать!!! ———————

синий центральный провод тобишь нуль. можно подключить в двухпериодный, или мостов схеме выпрямитель

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *