Токовое реле времени: Реле времени токовое серии РСВ 13

Содержание

Реле времени токовое серии РСВ 13

  • 4 августа 2009 г. в 13:17
  • 339
  • Поделиться

  • Пожаловаться

Назначение

Реле времени токовое серии РСВ 13 предназначено для применения в схемах защиты стационарных систем и объектов на переменном оперативном токе с целью получения регулируемых выдержек времени и включается непосредственно во вторичные цепи измерительных трансформаторов тока.

Условия эксплуатации

Климатическое исполнение УХЛ или О, категория размещения «4» по ГОСТ 15150-69.

Диапазон рабочих температур окружающего воздуха от минус 40 до плюс 55°С для исполнения УХЛ4 от минус 10 до плюс 55°С для исполнения О4.

Группа механического исполнения М4 по ГОСТ 17516.1-90. Реле сейсмостойки при воздействии землетрясений интенсивностью 9 баллов по MSK-64 при уровне установки над нулевой отметкой до 10м.

Степень защиты оболочки реле IP40, а контактных зажимов для присоединения внешних проводников — IP00 по ГОСТ 14255—69.

Фотографии, изображения
Скачать документацию

Производитель

Чебоксарский электроаппаратный завод, ЗАО

ЗАО «ЧЭАЗ» предлагает технические решения, позволяющие на современном уровне обеспечить электроснабжение и управление на электрических станциях, подстанциях, энергообъектах крупных промышленных предприятий и ЖКХ.

Смотрите также компании в каталоге, рубрика «Реле времени»

Похожие документы

×
  • ВКонтакте
  • Facebook
  • Twitter
  • elec.ru/library/manuals/rele-vremeni-tokovoe-serii-rsv-13.html»>Pinterest

Реле времени токовое РСВ 13

Реле времени токовое РСВ 13 предназначено для применения в схемах защиты стационарных систем и объектов на переменном оперативном токе с целью получения регулируемых выдержек времени и включается непосредственно во вторичные цепи измерительных трансформаторов тока.

Технические данные РСВ 13

Номинальный ток 2 или 5 Ампер.

Минимальный ток срабатывания в зависимости от способа соединения секций первичной обмотки трансформатора — последовательно или параллельно, соответственно для номинального тока 2 и 5 Ампер — 1; 2 Ампер или 2,5; 5 Ампер.

Номинальная частота 50 или 60 Герц.

Номинальный ток, А

  • РСВ 13-14 — 1; 2 Ампер
  • РСВ 13-18 — 2,5; 5 Ампер.

Диапазон регулирования уставок выдержки времени 0,1 — 9,9 сек.

Максимальная уставка — 12,7 сек.

Способ регулировки уставки ступенчатый.

Дискретность переключения уставок 0,1 сек.

Класс точности реле, а/в — 1,5/0,5.

Время замкнутого состояния временно-замыкающих контактов 0,4±0,4 сек.

Срабатывание каждого последующего контакта реле возможно после возврата предыдущего. Этим исключается их одновременная работа.

Реле имеет 2 временно замыкающих (скользящие) выходные контакты (К1, К2) и 1 конечный замыкающий (К3) выходной контакт.

Длительно допустимый ток контактов 5 Ампер.

Потребляемая мощность реле при двукратном токе срабатывания не более 7 ВА

Коммутационная способность контактов выходного реле при напряжении от 24 до 242 Вольт:

  • в цепях постоянного тока с постоянной времени индуктивной нагрузки не более 0,02 сек., токе до 0,23 Ампер — 50 Ватт.
  • в цепях переменного тока с коэффициентом мощности не менее 0,4 токе до 0,5 Ампер — 110 ВА.

Коммутационная износостойкость 20·103 циклов ВО.

Конструктивное исполнение по способу присоединения внешних проводников переднее, заднее (винтом или шпилькой).

Габаритные размеры не более 118х147х168 мм.

Масса не более 2,5 кг.

Структура условного обозначения

РСВ 13-ХХ-Х4

РСВ — реле статическое времени;

13 — порядковый номер разработки;

ХХ — исполнение по номинальному току: 14 — 2 Ампер, 18 — 5 Ампер;

Х4 — климатическое исполнение (УХЛ, О) и категория размещения (4) по ГОСТ 15150-69.

  • Габаритные, установочные и присоединительные размеры и электрическая схема подключения реле времени РСВ 13

Принцип действия реле тока: устройство и назначение

Токовое электромеханическое реле

Что такое реле тока? Такой вопрос часто возникает у студентов и электриков самоучек. Ответ на него достаточно прост, но в учебниках и многих статьях в интернете он содержит огромное количество формул и отсылок к разнообразным законам. В нашей статье мы постараемся объяснить, что это такое, и как оно работает буквально на пальцах.

Устройство реле тока

Для начала давайте разберем принцип реле тока и его устройство. На данный момент существуют электромагнитные, индукционные и электронные реле.

Мы будем разбирать устройство наиболее распространенных электромагнитных реле. Тем более, что они дают возможность наиболее наглядно понять их принцип работы.

Устройство электромагнитного реле тока

  • Начнем с основных элементов любого реле тока. Оно в обязательном порядке имеет магнитопровод. Причем, этот магнитопровод имеет участок с воздушным зазором. Таких зазоров может быть 1, 2 или более — в зависимости от конструкции магнитопровода. На нашем фото таких зазора два.
  • На неподвижной части магнитопровода имеется катушка. А подвижная часть магнитопровода закреплена пружиной, которая противодействует соединению двух частей магнитопровода.

Принцип действия электромагнитного токового реле

  • При появлении на катушке напряжения, в магнитопроводе наводится ЭДС.
    Благодаря этому, подвижная и неподвижная части магнитопровода становятся как два магнита, которые хотят соединиться. Не дает им это сделать пружина.
  • По мере увеличения тока в катушке, ЭДС будет нарастать. Соответственно, будет нарастать притяжение подвижного и неподвижного участка магнитопровода. При достижении определенного значения силы тока, ЭДС будет настолько велико, что преодолеет противодействие пружины.
  • Воздушный зазор между двумя участками магнитопровода начнет сокращаться. Но как говорит инструкция и логика, чем меньше воздушный зазор, тем больше становится сила притяжения, и тем с большей скоростью магнитопроводы соединяются. В результате, процесс коммутации занимает сотые доли секунды.

Существуют токовые реле разных типов исполнения

  • К подвижной части магнитопровода жестко прикреплены подвижные контакты. Они замыкаются с неподвижными контактами и сигнализируют, что сила тока на катушке реле достигла установленного значения.

Регулировка тока возврата токового реле

  • Для возврата в исходное положение, сила тока в реле должна уменьшиться как на видео. Насколько оно должно уменьшится, зависит от так называемого коэффициента возврата реле.

Оно зависит от конструкции, а также может настраиваться индивидуального для каждого реле за счет натяжения или ослабления пружины. Это вполне можно сделать своими руками.

Назначение и способы подключения токового реле

Реле тока и напряжения, являются основными элементами практически всех основных защит. Поэтому, давайте более детально разберемся с их сферой применения и схемой подключения.

Назначение токового реле

И в первую очередь, давайте разберемся, а зачем собственно говоря нужно это токовое реле? Для ответа на этот вопрос нам следует немного погрузиться в теорию. Но мы постараемся сделать это максимально поверхностно и доступно.

  • Любая электроустановка имеет два основных параметра своей работы — это ток и напряжение. Контролируя эти два параметра, можно оценить работоспособность оборудования и вероятные неисправности.
  • Реле тока, как несложно догадаться, контролирует ток. И если его уменьшение говорит лишь о снижении нагрузки, то его увеличение в большинстве случаев говорит о серьезных неисправностях. Дабы не рассматривать вопрос более детально, давайте возьмем в качестве примера электродвигатель.

Релейная схема защит электродвигателя

  • Электродвигатель имеет номинальный ток, например, 50А. Незначительное увеличение тока, допустим до 55А, сигнализирует о перегрузе. В этом случае, двигатель не должен отключаться немедленно, ведь перегруз может носить временный характер, и согласно ПУЭ, большинство электродвигателей допускается периодически перегружать.
  • Но длительный режим работы с повышенным номинальным током может сигнализировать о неисправности механической части или других проблемах. Поэтому, после нагрузки, через определенный промежуток времени, двигатель должен быть отключен.

Схема защиты от перегруза

  • Схема реле тока и реле времени позволяет обеспечить такую защиту. При увеличении тока выше номинального значения в 50А, срабатывает токовое реле. Своими контактами оно запускает в работу реле времени, которое отсчитывает допустимое время работы двигателя в перегаженном состоянии. Если за этот период времени токовое реле не отпало, то реле времени срабатывает и отключает электродвигатель.

Обратите внимание! Защита от перегруза должна быть отстроена от времени пуска двигателя. Как известно, при пуске пусковой ток может доходить до десятикратного номинального (обычно пяти- или шестикратное). Поэтому, для исключения ложного срабатывания защиты от перегруза, время срабатывания реле времени должно быть больше времени разворота двигателя.

Токовая отсечка

  • Теперь возьмем другую ситуацию. На нашем двигателе происходит короткое замыкание. Его необходимо отключить в максимально сжатые сроки. Короткое замыкание характеризуется резким возрастанием тока. В зависимости от вида короткого замыкания, эти токи могут превышать значения 10-кратного номинального значения.
  • Исходя из этого, нам нужно поставить реле тока, схема которого будет реагировать на такой ток, и сразу же отключать его. Такую защиту называют токовой отсечкой. Когда защита мгновенно отключает электрооборудование при достижении определенного значения тока.

Токовые реле с выдержкой времени

  • Но бывают короткие замыкания, которые имеют не такие большие токи. В этом случае, реле тока и схема его подключения несколько изменяется. Ее принцип действия похож на защиту от перегруза, только чем больше ток, тем быстрее она отключит наш электродвигатель. Достигается это за счет объединения в одном устройстве и реле времени и тока. Такая защита называется максимальной токовой.

Токовые защиты, встроенные в выключатель

  • Существуют так же защиты от однофазных замыканий на землю, защиты от токов обратной последовательности, дифференциальные защиты, дистанционные защиты и множество других релейных схем, которые используют реле тока.

Но это уже более специфические защиты, которые требуют более глубоко понимания процессов. Поэтому в нашей статье мы не будем их рассматривать.

Схемы подключения токовых реле

Разобрав устройство и назначение реле тока, можно перейти к вопросу их подключения. Существует два основных варианта – непосредственно или через трансформатор тока.

Давайте рассмотрим каждый из этих вариантов:

  • Непосредственно могут подключаться реле к электроустановкам напряжением до 1000В. Это связано с тем, что при большем напряжении размеры реле пришлось бы значительно увеличивать для обеспечения соответствующей изоляции и протекания больших токов. А из-за этого увеличилась бы и цена реле.

Непосредственное подключение токового реле

  • Потребители до 1000В обычно не самые ответственные, поэтому защита реализуется на одной или двух фазах. Но возможен вариант реализации защит и на всех трех фазах. Для этого просто последовательно с нагрузкой включается катушка токового реле на одной или нескольких фазах.

Токовое реле

  • Многие токовые реле содержат две катушки. Для них может применяться последовательное или параллельное соединение обмоток реле тока. Это необходимо для изменения пределов срабатывания реле.
  • В качестве примера, возьмем реле РТ 40. При параллельном подключении катушек, ток срабатывания варьирует в пределах 0,1 – 100А. При последовательном подключении обмоток, предел срабатывания можно регулировать в пределах 0,2 – 200А.

Обратите внимание! Если вам необходим предел срабатывания в 0,1 – 100А, то в принципе вы можете вовсе не подключать вторую обмотку.

Трансформатор тока 6 – 10кВ

Трансформатор тока 110кВ и выше

  • Значительно чаще, электрические схемы соединения реле тока предполагают использование трансформаторов тока. Эти устройства позволяют преобразовать любой ток до значений в 1 или 5 А.

Схема подключения реле тока через трансформатор тока

  • Такие потребители обычно относятся к ответственным, поэтому токовые защиты реализуются по каждой фазе. Принцип подключения прост. Катушка реле просто подключаются к выводам трансформатора тока.

Внимание! Но тут следует помнить, что трансформаторы тока и вся вторичная коммутация работают в режиме близком к короткому замыканию. Поэтому разкорачивание таких цепей чревато повреждением трансформатора тока, а также серьезными последствиями для человека. Поэтому прежде чем выполнять какие-либо переключения в токовых цепях их следует закоротить перемычкой. Или же производить переключения на электрооборудовании, выведенном в ремонт.

Вывод

Реле тока и электрическая схема его подключения имеет множество нюансов. Если вдаваться в каждый, то получится полноценный учебник. Наша же цель была дать вам общие представления о данном реле максимально доступным языком. Поэтому некоторые вопросы в нашей статье раскрыты не полностью или же упрощенно. Более детально по каждому аспекту следует разбираться, исходя из существующих условий.

принцип действия, виды, примеры схем

В силу разных причин аварии в электросетях случаются довольно часто. При коротком замыкании губительно действует на все электроприборы сверхток. Если не предпринять защитных мер, то последствием от неуправляемого увеличения тока может стать не только повреждение электроустановок на участке от места аварии до источника питания, но и выведение из строя всей энергосистемы. Во избежание негативных последствий, вызванных авариями, применяются разные схемы электрозащиты:

  • отсечка;
  • дифференциально-фазная;
  • высокоэффективная максимальная токовая защита электрических цепей (МТЗ).

Из перечисленных видов защиты самой распространённой является МТЗ. Этот простой и надёжный способ предотвращения опасных перегрузок линий нашёл широкое повсеместное применение благодаря обеспечению селективности, то есть, обладанию способностью избирательно реагировать на различные ситуации.

Устройство и принцип действия

Конструктивно МТЗ состоят из двух важных узлов: автоматического выключателя и реле времени. Они могут быть объединены в одной конструкции либо размещаться отдельными блоками.

Отличия от токовой отсечки

Из всех видов защиты по надёжности лидирует токовая отсечка. Примером может служить защита бытовой электросети устройствами с применением плавких предохранителей или пакетных автоматов. Метод токовых отсечек гарантирует обесточивания защищаемой цепи в аварийных ситуациях. Но для возобновления подачи электроэнергии необходимо устранить причину отсечения и заменить предохранитель, либо включить автомат.

Недостатком такой системы является то, что отключение может происходить не только вследствие КЗ, но и в результате даже кратковременного превышения параметров по току нагрузки. Кроме того, требуется участие человека для восстановления защиты. Эти недостатки не критичны в бытовой сети, но они неприемлемы при защите разветвлённых линий электропередач.

Благодаря тому, что в конструкциях МТЗ предусмотрены реле времени, задерживающие срабатывание механизмов отсечения, они кратковременно игнорируют перепады напряжений. Кроме того, токовые реле сконструированы таким образом, что они возвращаются в исходное положение после ликвидации причины, вызвавшей размыкание контактов.

Именно эти два фактора кардинально отличают МТЗ от простых токовых отсечек, со всеми их недостатками.

Принцип действия МТЗ

Между узлом задержки и токовым реле существует зависимая связь, благодаря которой отключение происходит не на начальной стадии возрастания тока, а спустя некоторое время после возникновения нештатной ситуации. Данный промежуток времени слишком короткий для того, чтобы величина тока достигла критического уровня, способного навредить защищаемой цепи. Но этого хватает для предотвращения возможных ложных срабатываний защитных устройств.

Принцип действия систем МТЗ напоминает защиту токовой отсечки. Но разница в том, что токовая отсечка мгновенно разрывает цепь, а МТЗ делает это спустя некоторое, наперёд заданное время. Этот промежуток, от момента аварийного возрастания тока до его отсечения, называется выдержкой времени. В зависимости от целей и характера защиты каждая отдельная ступень времени задаётся на основании расчётов.

Наименьшая выдержка времени задаётся на самых удалённых участках линий. По мере приближения МТЗ к источнику тока, временные задержки увеличиваются. Эти величины определяются временем, необходимым для срабатывания защиты и именуются ступенями селективности. Сети, построенные по указанному принципу, образуют зоны действия ступеней селективности.

Такой подход обеспечивает защиту поврежденного участка, но не отключает линию полностью, так как ступени селективности увеличиваются по мере удаления МТЗ от места аварии. Разница величин ступеней позволяет защитным устройствам, находящимся на смежных участках, оставаться в состоянии ожидания до момента восстановления параметров тока. Так как напряжение приходит в норму практически сразу после отсечения зоны с коротким замыканием, то авария не влияет на работу смежных участков.

Примеры использования защиты

МТЗ используют:

  • с целью локализации и обезвреживания междуфазных КЗ;
  • для защиты сетей от кратковременных перегрузок;
  • для обесточивания трансформаторов тока в аварийных ситуациях;
  • в качестве протектора при запуске мощного, энергозависимого оборудования.

Задержка времени очень полезна при пуске двигателей. Дело в том, что на старте в цепях обмоток наблюдается значительное увеличение пусковых токов, которое системы защиты могут воспринимать как аварийную ситуацию. Благодаря небольшой задержке времени МТЗ игнорирует изменение параметров сети, возникающие при пуске или самозапуске электродвигателей. За короткое время показатели тока приближаются к норме и причина для аварийного отключения устраняется. Таким образом, предотвращается ложное срабатывание.

Пример подключения МТЗ электродвигателя иллюстрирует схема на рисунке 1. На этой схеме реле времени обеспечивает уверенный пуск электромотора до момента реагирования токового реле.

Рисунок 1. МТЗ с выдержкой времени

Аналогично работает задержка времени при кратковременных перегрузках в защищаемой сети, которые не связаны с аварийными КЗ. Отсечка действует лишь в тех случаях, когда на защищаемой линии возникает значительное превышение номинальных значений, которое по времени превосходит величину выдержки.

Для надёжности защиты на практике часто используют схемы двухступенчатой и даже трёхступенчатой защиты участков цепей. Стандартная трёхступенчатая защитная характеристика выглядит следующим образом (Рис. 2):

Рис. 2. Карта селективности стандартной трёхступенчатой защиты

На абсциссе отмечено значения тока, а на оси ординат время задержки в секундах. Кривая в виде гиперболы отображает снижение времени защиты от возрастания перегрузок. При достижении тока отметки 170 А включается отсчёт времени МТЗ. Задержка времени составляет 0,2 с, после чего на отметке 200 А происходит отключение. То есть, разрыв цепи происходит в случае отказа защиты остальных устройств.

Расчет тока срабатывания МТЗ

Стабильность работы и надёжность функционирования максимально-токовой защиты зависит от настройки параметров по току срабатывания. Расчёты должны обеспечивать гарантированное срабатывание реле при авариях, однако на её работу не должны влиять параметры тока нагрузки, а также кратковременные всплески, возникающие в режиме запуска двигателей.

Следует помнить, что слишком чувствительные реле могут вызывать ложные срабатывания. С другой стороны, заниженные параметры срабатывания не могут гарантировать безопасности стабильной работы электроприборов. Поэтому при расчетах уставок необходимо выбирать золотую середину.

Существует формула для расчёта среднего значения тока, на который реагирует электромагнитное реле [ 1 ]:

Iс.з. > Iн. макс.,

где Iс.з. – минимальный первичный ток, на который должна реагировать защита, а Iн. макс. – предельное значение тока нагрузки.

Ток возврата реле подбирается таким образом, чтобы его хватило повторного замыкания контактов в отработавшем устройстве. Для его определения используем формулу:

Iвз = kн.×kз.×Iраб. макс.

Здесь Iвз– ток возврата, kн. – коэффициент надёжности,  kз – коэффициент самозапуска, Iраб. макс. величина максимального рабочего тока.

Для того чтобы токи возврата и срабатывания максимально приблизить, вводится коэффициент возврата, рассчитываемый по формуле:

kвIвз Iс.з с учётом которого Iс.з. = kн.×kз.×Iраб. макс / kв

В идеальном случае kв = 1, но на практике этот коэффициент всегда меньший за единицу. Чувствительность защиты тем выше, чем выше значение kв.. Отсюда вывод: для повышения чувствительности необходимо подобрать kв в диапазоне, стремящимся к 1.

Виды максимально-токовых защит

В электрических сетях используют 4 разновидности МТЗ. Их применение диктуется условиями, которые требуется создать для уверенной работы электрооборудования.

МТЗ с независимой от тока выдержкой времени

В таких устройствах выдержка времени не меняется. Для задания уставок периода, достаточного для активации реле с независимыми характеристиками, учитывают ступени селективности. Каждая последующая выдержка (в сторону источника тока) увеличивается от предыдущей на промежуток времени, соответствующий ступени селективности. То есть, при расчётах необходимо соблюдать условия селективности.

МТЗ с зависимой от тока выдержкой времени

В данной защите процесс задания уставок МТЗ требует более сложных расчётов. Зависимые характеристики, в случаях с индукционными реле, выбирают по стандарту МЭК: tсз = A / (k— 1), где A, n – коэффициенты чувствительности, k = Iраб  / Iср — кратность тока.

Из формулы следует, что выдержка времени уже не является константой. Она зависит от нескольких параметров, в т. ч. и от силы тока, попадающего на обмотки реле, причём эта зависимость обратная. Однако выдержка не линейная, её характеристика приближается к гиперболе (рис. 3). Такие МТЗ используют для защиты от опасных перегрузок.

Рисунок 3. Характеристика МТЗ с зависимой выдержкой

МТЗ с ограниченно-зависимой от тока выдержкой времени

В устройствах данного вида релейных защит совмещено две ступени защиты: зависимая часть с гиперболической характеристикой и независимая. Примечательно, что времятоковая характеристика независимой части является прямой, плавно сопряжённой с гиперболой. При малых кратностях критичных токов характеристика зависимого периода более крутая, а при больших – пологая кривая (применяется для защиты электромоторов большой мощности).

МТЗ с пуском (блокировкой) от реле минимального напряжения

В данном виде дифференциальной защиты применена комбинация МТЗ с использованием влияния минимального напряжения. В электромеханическом реле произойдёт размыкание контактов только тогда, когда возрастание тока в сети приведёт к падению разницы потенциалов. Если падение превысит нижнюю границу напряжения уставки – это вызовет отработку защиты. Поскольку уставка задана на падение напряжения, то реле не среагирует на резкие скачки тока в сети.

Примеры и описание схем МТЗ

С целью защиты обмоток трансформаторов, а также других элементов сетей с односторонним питанием используются различные схемы.

МТЗ на постоянном оперативном токе.

Особенность данной схемы в том, что управление элементами защиты осуществляется выпрямленным током, который меняет полярность, реагируя на аварийные ситуации. Мониторинг изменения напряжения выполняют интегральные микроэлементы.

Для защиты линий от последствий междуфазных замыканий используют двухфазные схемы на двух, либо на одном токовом реле.

Однорелейная на оперативном токе

В данной защите используется токовое пусковое реле, которое реагирует на изменение разности потенциалов двух фаз. Однорелейная МТЗ реагирует на все межфазные КЗ.

Схема на 1 реле

Преимущества: одно токовое реле и всего два провода для подсоединения.

Недостатки:

  • сравнительно низкая чувствительность;
  • недостаточная надёжность – при отказе одного элемента защиты участок цепи остаётся незащищённым.

Однорелейка применяется в распределительных сетях, где напряжение не превышает 10 тыс. В, а также для безопасного запуска электромоторов.

Двухрелейная на оперативном токе

В данной схеме токовые цепи образуют неполную звезду. Двухрелейная МТЗ реагирует на аварийные междуфазные короткие замыкания.

Схема на 2 реле

К недостаткам этой схемы можно отнести ограниченную чувствительность. МТЗ выполненные по двухфазным схемам нашли широкое применение, особенно в сетях, где используется изолированная нейтраль. Но при добавлении промежуточных реле могут работать в сетях с глухозаземлённой нейтралью.

Трехрелейная

Схема очень надёжная. Она предотвращает последствия всех КЗ, реагируя также и на однофазные замыкания. Трехфазные схемы можно применять в случаях с глухозаземлённой нейтралью, вопреки тому, что там возможны ситуации с междуфазными так и однофазными замыканиями.

Из рисунка 4 можно понять схему работы трёхфазной, трёхлинейной МТЗ.

Рисунок 4. Схема трёхфазной трёхрелейной защиты

Схема двухфазного трёхрелейного подключения МТЗ изображена на рисунке 5.

Рис. 5. Схема двухфазного трёхрелейного подключения МТЗ

На схема обозначены:

  • KA — реле тока;
  • KT — реле времени;
  • KL — промежуточное реле;
  • KH — указательное реле;
  • YAT — катушка отключения;
  • SQ — блок контакт, размыкающий цепь;
  • TA — трансформатор тока.

Видео в дополнение темы

Таблица замены НВА и реле снятых с производства

Таблица аналогов реле и автоматики, устаревшей или снятой с производства                                                 

Наименование

Серия или тип по алфавиту

Год прекращения

производства

Современная 

замена

Бесконтактный датчик

БВК 201

1988

БВК 261

Бесконтактный датчик

БВК 202

1988

БВК 262

Бесконтактный датчик

БВК 203

1988

БВК 263

Бесконтактный датчик

БВК 204

1988

БВК 264

Бесконтактный датчик

БВК 322

1988

БВК 422

Бесконтактный датчик

БВК 323

1988

БВК 423

Бесконтактный датчик

БВК 324

1988

БВК 424

Таймер-выключатель бытовой

БЗТ-300

 произв. в наст. вр.

ВЛ-61

Путевой выключатель

ВК 200

1986

ВП 16

Реле времени

ВЛ 10

1980

ВЛ 64

Реле времени

ВЛ 23

1983

ВЛ  56

Реле времени

ВЛ 27

1983

ВЛ  56

Реле времени

ВЛ 34

1983

ВЛ  56

Реле времени

ВЛ 40

1986

ВЛ 65

Реле времени

ВЛ 41

1986

ВЛ 65

Реле времени

ВЛ 42

1987

ВЛ 65 ВЛ78

Реле времени

ВЛ 43

1986

ВЛ 64

Реле времени

ВЛ 44

1987

ВЛ 63

Реле времени

ВЛ 45

1986

ВЛ 68

Реле времени

ВЛ 47

1986

ВЛ 68

Реле времени

ВЛ 48

1986

ВЛ64, ВЛ68

Реле времени

ВЛ 56

1986

ВЛ81

Реле времени

ВС 10-31

1986

ВС-43-31

Реле времени

ВС 10-32

1986

ВС-43-32

Реле времени

ВС 10-33

1986

ВС-43-32

Реле времени

ВС 10-34

1986

ВС-43-33

Реле времени

ВС 10-35

1986

ВС-43-33

Реле времени

ВС 10-36

1986

ВС-43-34

Реле времени

ВС 10-37

1986

ВС-43-34

Реле времени

ВС 10-38

1986

ВС-43-35

Реле времени

ВС 10-61

1986

ВС-43-61

Реле времени

ВС 10-62

1986

ВС-43-62

Реле времени

ВС 10-63

1986

ВС-43-62

Реле времени

ВС 10-64

1986

ВС-43-63

Реле времени

ВС 10-65

1986

ВС-43-63

Реле времени

ВС 10-66

1986

ВС-43-64

Реле времени

ВС 10-67

1986

ВС-43-64

Реле времени

ВС 10-68

1986

ВС-43-65

Реле токовое дифф. с торможением

ДЗТ-1

1972 или ранее

ДЗТ-11

Реле токовое дифф.с торможением

ДЗТ-3 

1972 или ранее

ДЗТ-13

Реле токовое дифф.с торможением

ДЗТ-3/2

1972 или ранее

ДЗТ-13/2

Реле токовое дифф.с торможением

ДЗТ-4

1972 или ранее

ДЗТ-14

Реле времени

Е-58

1972 или ранее

Реле контроля трехфазного напряж.

ЕЛ-8

1973 или ранее

ЕЛ-12

Реле контроля трехфазного напряж.

ЕЛ-10

1974 или ранее

ЕЛ-11

Реле понижения частоты

ИВЧ-011А

1972 или ранее

ИВЧ 3

Реле мощности

ИМБ-171А

1972 или ранее

Реле мощности

ИМБ-178А

1972 или ранее

Комплект защиты

КЗ 1

1972 или ранее

КЗ 9/2

Комплект защиты

КЗ 2

1972 или ранее

КЗ 12

Комплект защиты

КЗ 3

1972 или ранее

КЗ 13

Комплект защиты

КЗ 4

1972 или ранее

КЗ 14

Комплект защиты

КЗ 5

1972 или ранее

КЗ 15

Комплект защиты

КЗ 31

1972 или ранее

КЗ 35

Комплект защиты

КЗ 32

1972 или ранее

КЗ 36

Комплект защиты

КЗ 33

1972 или ранее

КЗ 37

Комплект защиты

КЗ 34

1972 или ранее

КЗ 38

Устр. блокир.при ниспр.цепей напряж.

КРБ 11

1972 или ранее

КРБ 13

Устройство блокировки при качаниях

КРБ 121

1972 или ранее

КРБ 123

Устройство блокировки при качаниях

КРБ 122

1972 или ранее

КРБ 124

Устройство блокировки при качаниях

КРБ 123

1972 или ранее

КРБ 125

Устройство блокировки при качаниях

КРБ 124

1972 или ранее

КРБ 126

Реле максимального тока с тормож.

МЗТ-1

1972 или ранее

МЗТ-11

Реле слаботочное

МРС

1987

Без замены

Реле промежуточное

ПЭ1-1

1972 или ранее

в завис.от парам.

Реле промежуточное

ПЭ 6

1972 или ранее

ПЭ-37

Реле промежуточное

ПЭ 20

1986

ПЭ-36

Реле промежуточное

ПЭ 21

1986

ПЭ-37

Реле промежуточное

ПЭ 23

1986

в завис. от парам.

Реле промежуточное

ПЭ 27

1986

РЭП11

Реле слаботочное

РА

1976

РПУ2М211

Реле слаботочное

РА-4П

1976

РПУ2М211

Реле слаботочное

РАД-4П

1976

РПУ2М211

Реле мощности

РБМ-273

1972 или ранее

РБМ-275

Реле мощности

РБМ-274

1972 или ранее

РБМ-276

Реле времени

РВ-01

 произв. в наст. вр.

ВЛ-76, ВЛ76А,   ВЛ-69

Реле времени

РВ-03

 произв. в наст. вр.

ВЛ103, ВЛ103А. ВЛ79, ВЛ79А

Реле времени

РВ-112

 произв. в наст. вр.

ВЛ100А

Реле времени

РВ-114…247

 произв. в наст. вр.

ВЛ102, ВЛ73,       ВЛ 73А

Реле времени

РВ-130

 произв. в наст. вр.

ВЛ-74, ВЛ-74А, ВЛ54

Реле времени

РВ-130П

 произв. в наст. вр.

ВЛ-70

Реле времени

РВ-150

 произв. в наст. вр.

ВЛ-81

Реле времени

РВ-150-1М

 произв. в наст. вр.

ВЛ-66

Реле времени

РВ-150-2М

 произв. в наст. вр.

ВЛ-76, ВЛ76А

Реле времени

РВ-150-3М

 произв. в наст. вр.

ВЛ-73, ВЛ73А

Реле времени

РВ-190

 произв. в наст. вр.

ВЛ-79, ВЛ79А, ВЛ55

Реле времени

РВ-247

 произв. в наст. вр.

ВЛ102, ВЛ73, 73А

Реле времени

РВ-215

 произв. в наст. вр.

ВЛ101А

Реле времени

РВ-225

 произв. в наст. вр.

ВЛ101А

Реле времени

РВ-235

 произв. в наст. вр.

ВЛ101А

Реле времени

РВ-245

 произв. в наст. вр.

ВЛ101А

Реле времени

РВ-248

 произв. в наст. вр.

ВЛ100А

Реле времени

2 РВМ

 произв. в наст. вр.

РВЦ-03

Реле времени

РВМ-12 РВМ-13

1972 или ранее

РСВ13-18

Реле времени

РВТ-1200

1986

ВС43-3  43-6

Реле слаботочное

РВЭ1

1988

РВЭ1А

Реле слаботочное

РВЭ2

1989

РВЭ2А

Реле слаботочное

РВЭ3

1989

РВЭ3А

Реле слаботочное

РДЧГ

1979

РЭС59

Реле токовое дифференциальное

РИС-3ЭМ

1995

РТД-11, РТД-12

Реле времени

РКВ 11-33-111

1985

РВП 72-3121

Реле времени

РКВ 11-33-112

1986

РВП 72-3121

Реле времени

РКВ 11-33-121

1986

РВП 72-3221

Реле времени

РКВ 11-33-122

1986

РВП 72-3221

Реле времени

РКВ 11-33-211

1986

РВП 72-3122

Реле времени

РКВ 11-33-212

1986

РВП 72-3122

Реле времени

РКВ 11-33-221

1986

РВП 72-3222

Реле времени

РКВ 11-33-222

1986

РВП 72-3222

Реле времени

РКВ 11-33-331

1986

РВП 72-3323

Реле времени

РКВ 11-33-332

1986

РВП 72-3323

Реле времени

РКВ 11-43-111

1986

РВП 72-3121

Реле времени

РКВ 11-43-112

1986

РВП 72-3121

Реле времени

РКВ 11-43-121

1986

РВП 72-3221

Реле времени

РКВ 11-43-122

1986

РВП 72-3221

Реле времени

РКВ 11-43-211

1986

РВП 72-3122

Реле времени

РКВ 11-43-212

1986

РВП 72-3122

Реле времени

РКВ 11-43-221

1986

РВП 72-3222

Реле времени

РКВ 11-43-222

1986

РВП 72-3222

Реле времени

РКВ 11-43-331

1987

РВП 72-3323

Реле времени

РКВ 11-43-332

1987

РВП 72-3323

Реле слаботочное

РКНС

1987

Без замены

Реле слаботочное

РКП

1982

Без замены

Реле мощности обратной последоват.

РМОП 1М

1972 или ранее

РМОП 2

Реле макс. напряжения без опер. пит.

РН53

 произв. в наст. вр.

НЛ-6

Реле мин. напряжения без опер. пит.

РН54

 произв. в наст. вр.

НЛ-7, ВЛ103А

Реле  макс.напряжения с опер. пит.

РН58

 произв. в наст. вр.

НЛ4

Реле макс. напряжения без опер. пит.

РН153

 произв. в наст. вр.

НЛ-6

Реле мин. напряжения без опер. пит.

РН154

 произв. в наст. вр.

НЛ-7, 

Реле токовое дифференциальное

РНТ-562

1972 или ранее

РНТ-565

Реле токовое дифференциальное

РНТ-563

1972 или ранее

РНТ-566

Реле токовое дифференциальное

РНТ-563/2

1972 или ранее

РНТ-566/2

Реле токовое дифференциальное

РНТ-564

1972 или ранее

РНТ-567

Фильтр-реле напряжен обрат. послед.

РНФ-1

1972 или ранее

РНФ-1М

Реле промежуточное

РП-16-1

 произв. в наст. вр.

ПЭ40

Реле промежуточное

РП-16-2

 произв. в наст. вр.

ПЭ42

Реле промежуточное

РП-16-3

 произв. в наст. вр.

ПЭ42

Реле промежуточное

РП-16-4

 произв. в наст. вр.

ПЭ42

Реле промежуточное

РП-16-7

 произв. в наст. вр.

ПЭ40

Реле промежуточное

РП-17-1

 произв. в наст. вр.

ПЭ41

Реле промежуточное

РП-17-2

 произв. в наст. вр.

ПЭ43

Реле промежуточное

РП-17-3

 произв. в наст. вр.

ПЭ43

Реле промежуточное

РП-17-4

 произв. в наст. вр.

ПЭ41

Реле промежуточное

РП-17-7

 произв. в наст. вр.

ПЭ40

Реле промежуточное

РП-18-1

 произв. в наст. вр.

ПЭ44

Реле промежуточное

РП-18-2

 произв. в наст. вр.

ПЭ44

Реле промежуточное

РП-18-3

 произв. в наст. вр.

ПЭ45

Реле промежуточное

РП-18-4

 произв. в наст. вр.

ПЭ45

Реле промежуточное

РП-18-5

 произв. в наст. вр.

ПЭ45

Реле промежуточное

РП-18-6

 произв. в наст. вр.

ПЭ45

Реле промежуточное

РП-18-7

 произв. в наст. вр.

ПЭ45

Реле промежуточное

РП-18-8

 произв. в наст. вр.

ПЭ45

Реле промежуточное

РП-18-9

 произв. в наст. вр.

ПЭ45

Реле промежуточное

РП-18-0

 произв. в наст. вр.

ПЭ45

Реле промежуточное

РП-23

 произв. в наст. вр.

ПЭ40

Реле промежуточное

РП-25

 произв. в наст. вр.

ПЭ40

Реле промежуточное

РП-251

 произв. в наст. вр.

ПЭ44

Реле промежуточное

РП-253

 произв. в наст. вр.

ПЭ44

Реле промежуточное

РП-254

 произв. в наст. вр.

ПЭ42, ПЭ-45

Реле промежуточное

РП-255

 произв. в наст. вр.

ПЭ42, ПЭ-45

Реле промежуточное

РП 351

1972 или ранее

РП 12

Реле промежуточное

РП 352

1972 или ранее

РП 11

Реле времени

РПВ-01

 произв. в наст. вр.

ВЛ108

Реле слаботочное

РПВ2

1983

РПА11, РПА12

Реле слаботочное

РПС24

1984

РПС34

Реле слаботочное

РПС26

1984

РПС36

Реле слаботочное

РПС48

1988

Без замены

Реле промежуточное

РПТ-100

1972 или ранее

ПЭ-36

Реле времени

РСВ-01-1

 произв. в наст. вр.

ВЛ-76, ВЛ76А,   ВЛ-68

Реле времени

РСВ-01-3

 произв. в наст. вр.

ВЛ-81

Реле времени

РСВ-01-4

 произв. в наст. вр.

ВЛ-76, ВЛ76А

Реле времени

РСВ-13

 произв. в наст. вр.

ВЛ104

Реле времени

РСВ-14

 произв. в наст. вр.

ВЛ100А

Реле времени

РСВ-160

 произв. в наст. вр.

ВЛ100А

Реле времени

РСВ-260

 произв. в наст. вр.

ВЛ100А

Реле слаботочное

РСМ

1984

РЭС6

Реле  макс. мин.напр с одним порогом

РСН12

 произв. в наст. вр.

НЛ8

Реле  макс. напряжения с опер. пит.

РСН14

 произв. в наст. вр.

НЛ4

Реле  макс.напряжения с опер. пит.

РСН15

 произв. в наст. вр.

НЛ4

Реле  мин.напряжения с опер. пит.

РСН16

 произв. в наст. вр.

НЛ5

Реле  мин.напряжения с опер. пит.

РСН17

 произв. в наст. вр.

НЛ5

Реле  макс. мин.напр с одним порогом

РСН18

 произв. в наст. вр.

НЛ8

Реле защиты от увеличения тока

РСТ11

 произв. в наст. вр.

АЛ-1

Реле защиты от увеличения тока

РСТ13

 произв. в наст. вр.

АЛ-1

Фильтр-реле тока обратной последов.

РТ 2

1972 или ранее

Без замены

Реле  тока земляной защиты

РТЗ-51

 произв. в наст. вр.

АЛ-4

Реле слаботочное

РТН 1

1970

РТН 3

Реле слаботочное

РТН 2

1970

РТН 3

Реле слаботочное

РТН 6

1989

РМВ 11

Реле слаботочное

РТС 5

1978

РМВ 11

Фильтр-реле тока обратной последов.

РТФ 1

1972 или ранее

РТФ 1М

Фильтр-реле тока обратной последов.

РТФ 2

1972 или ранее

РТФ 7/1

Фильтр-реле тока обратной последов.

РТФ 3

1972 или ранее

Без замены

Реле напряжения

РЭ 510

1972 или ранее

РЭВ 820

Реле времени

РЭ-511

1972 или ранее

РЭВ-811

Реле времени

РЭ-513

1973 или ранее

РЭВ-812

Реле времени

РЭ-515

1974 или ранее

РЭВ-814

Реле максимального тока

РЭ 571

1972 или ранее

РЭВ 571

Реле максимального тока

РЭ 572

1972 или ранее

РЭВ 572

Реле минимального тока

РЭ 530

1972 или ранее

РЭВ 830

Реле времени

РЭ-583

1972 или ранее

РЭВ-881

Реле времени

РЭ-585

1972 или ранее

РЭВ-882

Реле максимального перем. тока

РЭВ-201

90-е годы

РЭ12-2

Реле максимального тока с руч. возв

РЭВ-202

90-е годы

РЭ12-4

Реле максимального перем. тока

РЭВ-203

90-е годы

РЭ12-2

Реле максимального тока с руч. возв

РЭВ-204

90-е годы

РЭ12-4

Реле мин. напряж с норм коэф

РЭВ311

90-е годы

РЭ15

Реле мин. напряж с норм коэф

РЭВ312

90-е годы

РЭ13-5

Реле максимального пост. тока

РЭВ571

90-е годы

РЭ12-1

Реле максимального перем. тока

РЭВ571Т

90-е годы

РЭ13-2

Реле мин. напряж с норм коэф

РЭВ572

90-е годы

РЭ12-3

Реле времени

РЭВ 811

 произв. в наст. вр.

РЭ16-12-2, 30-2

Реле времени

РЭВ 812

 произв. в наст. вр.

РЭ16-12-2, 30-2

Реле времени

РЭВ 813

 произв. в наст. вр.

РЭ16-12-2, 30-2

Реле времени

РЭВ 814

 произв. в наст. вр.

РЭ16-12-2, 30-2

Реле времени

РЭВ 815

 произв. в наст. вр.

РЭ16-12-2, 30-2

Реле времени

РЭВ 816

 произв. в наст. вр.

РЭ16-12-2, 30-2

Реле времени

РЭВ 817

 произв. в наст. вр.

РЭ16-12-2, 30-2

Реле времени

РЭВ 818

 произв. в наст. вр.

РЭ16-12-2, 30-2

Реле контроля напряж.

РЭВ 821

 произв. в наст. вр.

РЭ 14

Реле промежуточное.

РЭВ 822

 произв. в наст. вр.

РЭ16-11-1, 12-1, 20-1,     РЭП15

Реле контроля напряж.

РЭВ 825

 произв. в наст. вр.

РЭ 14

Реле промежуточное.

РЭВ 826

 произв. в наст. вр.

РЭ16-11-1, 12-1, 20-1,     РЭП15

Реле с секционированной катушкой

РЭВ 827

 произв. в наст. вр.

РЭ17, 

Реле с секционированной катушкой

РЭВ 828

 произв. в наст. вр.

РЭ17, 

Реле времени

РЭВ 830

 произв. в наст. вр.

РЭ12-5

Реле 

РЭВ 852

 произв. в наст. вр.

Без замены

Реле времени

РЭВ 881

 произв. в наст. вр.

РЭ16-12-3, 30-3

Реле времени

РЭВ 882

 произв. в наст. вр.

РЭ16-12-3, 30-3

Реле времени

РЭВ 883

 произв. в наст. вр.

РЭ16-12-3, 30-3

Реле времени

РЭВ 884

 произв. в наст. вр.

РЭ16-12-3, 30-3

Реле слаботочное

РЭН17

1976

РЭН29

Реле слаботочное

РЭС14

1985

РЭК75

Реле слаботочное

РЭС37

1986

Без замены

Реле слаботочное

РЭС42

1998

РГК-42

Реле слаботочное

РЭС45

1985

РЭС42,РЭС64

Реле слаботочное

РЭС46

1985

РЭС43

Реле слаботочное

РЭС54

1998

РЭК88

Реле слаботочное

РЭС55

1998

РГК-37

Реле слаботочное

РЭС59

1998

РЭК90

Реле слаботочное

РЭС60

1989

РЭК37

Реле температурное

ТР 200

1986

ТРМ 11-11 

Реле слаботочное

ТРВ-1В

1982

РТН 3

Реле токвое

ТРН 10

1986

РТТ 111

Реле времени

ЭВ 122

1986

РВ 128

Реле времени

ЭВ 123

1986

РВ 127

Реле слаботочное

ЭМС

1983

СИ105

Реле напряжения

ЭН 524

1972 или ранее

РН 53

Реле напряжения

ЭН 524/М

1972 или ранее

РН51/М

Реле напряжения

ЭН 526

1972 или ранее

РН53

Реле напряжения

ЭН 526/60-ДМ

1972 или ранее

РН53/60Д

Реле напряжения

ЭН 528

1972 или ранее

РН54

Реле напряжения

ЭН 529

1972 или ранее

РН54

Реле контроля синхронизма

ЭН 535

1972 или ранее

РН55

Реле максимального тока

ЭТ-521

1972 или ранее

РТ-40

Реле максимального тока

ЭТ-522

1972 или ранее

РТ-40

Реле максимального тока

ЭТ-523

1972 или ранее

РТ-40

Реле максимального тока

ЭТ-521/Ф

1972 или ранее

РТ-40/Ф

Реле максимального тока

ЭТ-521/1Д

1972 или ранее

РТ-40/1Д

Реле максимального тока

ЭТ-521/Р

1972 или ранее

РТ-40/Р

токовое реле с зависимой выдержкой времени РСТ-82АВ (Страница 1) — Спрашивайте

Да, понятно, что нужно ориентироваться на классиков, на индукционные реле тока (в нашей стране РТ-80, ранее  — ИТ-80). Если они вам известны только по картинкам, и аналогии с ними вам ничем не помогут … тогда придётся думать самому, к сожалению 🙂
  Понятно, что у вас горит, и нужно молоко, а не корову, но всё-таки давайте разберёмся. С уставкой по току всё понятно — это ток, при котором срабатывает измерительный орган (в руководстве это приложение Д, в схеме на рис. Д1 — компаратор К1), задаётся выбором схемы включения (последовательно или параллельно) и переключателем SB2. Уставка у вас 6.4 А, дальше надо посмотреть на минимальный ток по исполнению реле и подобрать ближайшее значение. Предположим, у вас исполнение 10, номинальный ток 10 А, соединение обмоток параллельное. Минимальная уставка, Imin = 2,5 A (соединение параллельное, всё умножается на 2). Вам нужно набрать 3,2 А (3,2 х 2 = 6,4), т.е 0.4 + 0,2 + 0,1 = 0,7 (это сумма дополнительных переключателей SB2. 
   Как работает орган выдержки времени, зависимой от кратности входного тока к уставке? Каким-то образом формирует инверсную характеристику срабатывания, т. е. чем кратность тока на входе реле относительно тока уставки  выше, тем быстрее срабатывает реле. Если вы зададите переключателями время срабатывания 1,4 с, то … при каком токе реле будет срабатывать с этим временем, при  какой кратности входного тока? С индукционным реле понятно — это время срабатывания при кратности по крайней мере 3-5, т.е. в независимой (практически независимой, мало зависимой части характеристики). Предположим, что и здесь  аналогично, какого-то специального указания я в тексте не нашёл. «По таблице 3 и приложению Б выбирается нужное время срабатывания реле при необходимых кратностях входного тока относительно тока срабатывания (путем перемножения значений времени срабатывания из таблицы 3 на коэффициент времени)«. Едва ли у вас есть такая точка согласования. Тогда вам нужно выбрать характеристику типа В или А сначала (аналог РТ-90 и РТ-80). Дальше — пытаться при, скажем, кратности 5-10 найти положение переключателя SB3 такое, чтобы время срабатывания было 1,4 с примерно. Если заданы уставки отсечки в этом реле, тогда точка согласования — ток срабатывания отсечки, т.е. 1.4 с должно быть при этом токе.

Вторичные реле максимального тока. Принцип действия и устройство

Из числа токовых реле, которые выпускает промышленность, наиболее простыми являются реле максимального тока прямого действия. Несмотря на различные конструкции данных реле, вся их работа основана на электромагнитном принципе.

На рисунке ниже показан принцип действия максимального токового реле, которое представляет собой электромагнит с сердечником.

Последовательно с вторичной обмоткой измерительного трансформатора тока 6 подключается катушка реле 3. Когда по питающей линии А протекает рабочий ток (нормальный режим работы электроприемника), электромагнитный сердечник 4 не будет втянут в катушку, поскольку электромагнитная сила Fэ, которую создает обомотка реле, будет значительно меньше, чем противодействующая ей сила пружины Fп. В случае возниконевения на линии А короткого замыкания ток катушки реле значительно возрастет и станет больше установленного значения. В таком случае электромагнитная сила катушки Fэ превысит противодействующую ей силу пружины Fп, что приведет к втягиванию сердечника в катушку реле. После втягивания сердечника в катушку, подвижная система 2 отопрет защелку выключателя Б, удерживающую выключатель во включенном положении. Под действием отключающей пружины 1 выключатель разорвет цепь линии А.

Промышленность изготавливаются вторичные реле максимального тока типа РТВ (реле токовое с выдержкой времени) и РТМ (реле токовое мгновенного действия). У РТМ есть поворотный переключатель, с помощью которого можно изменять количество витков катушки, что, в свою очередь, будет менять значение уставки тока срабатывания.

Уставка тока – это настройка реле на заданный ток срабатывания. Стандартом предусмотрены следующие уставки: 5, 7, 9, 13 и 15 А.

Ток срабатывания реле – минимальное значение протекающего через обмотку тока, при котором происходит срабатывание реле (Iср).

В случае необходимости отключения участка электрической цепи с выдержкой времени применяют РТВ, которое, как правило, имеет ту же конструкцию, но дополнительно оборудовано механизмом выдержки времени (часовым механизмом). Данный механизм, прикрепленный к сердечнику, удерживает его от мгновенного втягивания в катушку, тем самым изменяя уставку его времени срабатывания. Скорость работы часового механизма напрямую зависит от тока, протекающего в катушке реле.

Уставка времени – это настройка механизма выдержки времени на определенное значение в секундах. Реле имеет уставки тока 5, 6, 7, 8, 9, 10 А. РТВ и РТМ называют встроенными, так как они встраиваются непосредственно в приводы выключателей. Для непосредственного отключения  выключателя эти реле должны развивать огромные усилия, что делает их конструкции громоздкими, а это влияет на точность.

Как работают реле? — Объясни это!

Как работают реле? — Объясни это!

Реклама

Криса Вудфорда. Последнее изменение: 19 августа 2020 г.

Вы можете этого не осознавать, но вы постоянно начеку, остерегаетесь угроз, готовы действовать в любой момент. Миллионы лет эволюции заставили ваш мозг спасти вашу кожу, когда малейшая опасность угрожает вашему существованию.Если вы используете силу инструмент, например, и крошечная щепа летит к вашему глазу, один из ваши ресницы отправят сигнал в ваш мозг, который заставит вас веки закрываются в мгновение ока — достаточно быстро, чтобы защитите свое зрение. Здесь происходит то, что крошечный стимул вызывает гораздо больший и полезный отклик. Вы можете найти тот же трюк работает во всех машинах и электрических приборы, где датчики готовы включить или выключается за доли секунды с помощью умных магнитных переключателей, называемых реле.Давайте подробнее рассмотрим, как они работают!

На фото: типичное реле со снятым пластиковым корпусом. Вы можете увидеть два пружинных контакта слева и катушку электромагнита (красно-коричневый цилиндр медного цвета) справа. В этом реле, когда через катушку протекает ток, он превращает ее в электромагнит. Магнит толкает переключатель влево, сжимая пружинные контакты вместе и замыкая цепь, к которой они прикреплены. Это реле от электронного программатора погружного нагревателя горячей воды.Электронная схема в программаторе включает или выключает магнит в заранее запрограммированное время дня, используя относительно небольшой ток. Это позволяет протекать через пружинные контакты гораздо большему току для питания элемента, который нагревает горячую воду.

Что такое реле?

Изображение: Если бы реле были собаками: Предположим, у вас есть огромная свирепая собака, которая так крепко спит, что никогда не просыпается, когда он услышал шум. В качестве сторожевой собаки это было бы бесполезно! Но что, если вы купите еще и маленькую, очень бдительную собаку? Если маленькая собака услышал шум, он начал лаять и разбудил большую собаку, которая могла бы атаковать злоумышленника.Так работают реле: они используйте небольшой электрический ток, чтобы вызвать гораздо больший.

Реле — это электромагнитный переключатель, управляемый относительно небольшой электрический ток, который может включать или выключать гораздо более мощный электрический Текущий. Сердце реле — электромагнит (катушка с проводом, которая становится временный магнит, когда через него проходит электричество). Вы можете думать о реле как своего рода электрический рычаг: включите его слабым током, и он включает («усиливает») другой прибор используя гораздо больший ток.Почему это полезно? Как имя предполагает, что многие датчики являются невероятно чувствительными частями электронное оборудование и вырабатывают только малые электрические токи. Но часто они нужны нам, чтобы приводить в движение более крупные устройства, использующие большие токи. Реле перекрывают разрыв, позволяя токи, чтобы активировать более крупные. Это означает, что реле могут работать как переключатели. (включение и выключение) или как усилители (преобразование малых токи в более крупные).

Как работают реле

Вот две простые анимации, иллюстрирующие, как реле используют одну цепь для включения второй цепи.

Когда мощность протекает через первую цепь (1), она активирует электромагнит (коричневый), создавая магнитное поле (синее), которое притягивает контакт (красный) и активирует вторую цепь (2). Когда питание отключается, пружина возвращает контакт в исходное положение, снова отключая вторую цепь.

Это пример «нормально разомкнутого» (NO) реле: контакты во второй цепи по умолчанию не подключены и включаются только тогда, когда через магнит протекает ток.Другие реле являются «нормально замкнутыми» (NC; контакты соединены так, что по умолчанию через них протекает ток) и отключаются только тогда, когда срабатывает магнит, растягивая или раздвигая контакты. Наиболее распространены нормально разомкнутые реле.

Вот еще одна анимация, показывающая, как реле связывает две цепи. вместе. По сути, это то же самое, нарисованное немного по-другому. Слева — входная цепь, питаемая от переключателя. или какой-то датчик. Когда этот контур активирован, он питает ток к электромагниту, который замыкает металлический переключатель и активирует вторую, выходную цепь (с правой стороны). Относительно небольшой ток во входной цепи, таким образом, активирует больший ток в выходная цепь:

  1. Входная цепь (синяя петля) отключена, и ток не течет через нее, пока что-то (датчик или замыкание переключателя) не включит ее. Выходная цепь (красная петля) также отключена.
  2. Когда во входной цепи течет небольшой ток, он активирует электромагнит (показанный здесь темно-синей катушкой), который создает вокруг него магнитное поле.
  3. Электромагнит, находящийся под напряжением, притягивает к себе металлический стержень в выходной цепи, замыкая переключатель и позволяя гораздо большему току проходить через выходную цепь.
  4. В выходной цепи работает сильноточный прибор, например, лампа или электрический двигатель.

Реле на практике

Фото: Еще один взгляд на реле. Вверху: Если смотреть прямо вниз, вы можете увидеть пружинные контакты слева, механизм переключения посередине и катушку электромагнита справа. Внизу: то же реле, снятое спереди.

Предположим, вы хотите построить систему охлаждения с электронным управлением. система, которая включает или выключает вентилятор в зависимости от комнатной температуры изменения. Вы можете использовать какую-то схему электронного термометра, чтобы почувствовать температуру, но будет производить только небольшие электрические токи — слишком малы, чтобы приводить в действие электродвигатель в большой большой вентилятор. Вместо этого вы можете подключить цепь термометра к входная цепь реле. Когда в этом цепь, реле активирует свою выходную цепь, пропустить гораздо больший ток и включить вентилятор.

Реле не всегда включаются; иногда вместо этого они очень услужливо выключают вещи. В Например, для оборудования электростанций и линий электропередачи вы найдете защитные реле , которые срабатывают при возникновении неисправностей, чтобы предотвратить повреждение от таких вещей, как скачки тока. Когда-то для этой цели широко применялись электромагнитные реле, подобные описанным выше. В наши дни электронные реле на основе интегральных схем вместо этого выполняют ту же работу; они измеряют напряжение или ток в цепи и автоматически принимают меры, если они превышают заданное предел.

Реле прочие

На фото: четыре старомодных реле максимальной токовой защиты, изображенные на устаревшей подстанции в 1986 году, незадолго до ее сноса. Фото любезно предоставлено Библиотекой Конгресса США.

До сих пор мы рассматривали переключающие реле очень общего назначения, но есть довольно много вариантов эта основная тема, включая (и это далеко не исчерпывающий список):

  • Реле высокого напряжения: они специально разработаны для коммутации высоких напряжений и токов. значительно превышает возможности обычных реле (обычно до 10 000 вольт и 30 ампер).
  • Электронные и полупроводниковые реле (также называемые твердотельными реле или SSR): переключают токи полностью электронными, без движущихся частей, поэтому они быстрее, тише, меньше, надежнее, и служат дольше, чем электромагнитные реле. К сожалению, они обычно дороже, меньше эффективны и не всегда работают так чисто и предсказуемо (из-за таких проблем, как токи утечки).
  • Реле таймера и задержки срабатывания: они запускают выходные токи на ограниченный период времени (обычно от доли секунды до примерно 100 часов или четырех дней).
  • Тепловые реле: они включаются и выключаются, чтобы останавливать такие вещи, как электродвигатели, от перегрева, что-то вроде биметаллических ленточных термостатов.
  • Реле максимального тока и направленные реле: сконфигурированные различными способами, они предотвращают протекание чрезмерных токов в неправильном направлении по цепи (обычно в оборудовании для выработки электроэнергии, распределения или питания).
  • Реле дифференциальной защиты: срабатывают при несимметрии тока или напряжения в двух разных частях цепи.
  • Реле защиты по частоте (иногда называемые реле понижения и повышения частоты): эти твердотельные устройства срабатывают, когда частота переменного тока слишком высока, слишком мала или и того, и другого.

Кто изобрел реле?

Фото: реле широко использовались для коммутации и маршрутизации вызовов на телефонных станциях. например, этот, сделанный в 1952 году. Фото любезно предоставлено NASA Glenn Research Center (NASA-GRC).

Реле были изобретены в 1835 году пионером американского электромагнетизма. Джозеф Генри; на демонстрации в колледже Нью-Джерси, Генри использовал небольшой электромагнит, чтобы включать и выключать больший, и предположил, что реле можно использовать для управления электрическими машинами на очень больших расстояниях.Генри применил эту идею к другому изобретению, над которым работал в то время, электрическому телеграфу (предшественнику телефона), который был успешно разработан Уильямом Куком и Чарльзом Уитстоном в Англии и (гораздо более знаменитым) Сэмюэлем Ф. Б. Морзе в Соединенные Штаты. Реле позже использовались в телефонной коммутации и первых электронных компьютерах и оставались чрезвычайно популярными до появления транзисторов в конце 1940-х годов; по словам Бэнкрофта Герарди, в ознаменование 100-летия работы Генри по электромагнетизму, к тому времени только в Соединенных Штатах работало около 70 миллионов реле. Транзисторы — это крошечные электронные компоненты, которые могут выполнять ту же работу, что и реле, работая как усилители или переключатели. Хотя они переключаются быстрее, потребляют гораздо меньше электроэнергии, занимают небольшую часть места и стоят намного меньше, чем реле, они обычно работают только с небольшими токами, поэтому реле все еще используются во многих приложениях. Именно разработка транзисторов подтолкнула компьютерную революцию с середины 20-го века. Но без реле не было бы транзисторов, поэтому реле — и такие пионеры, как Джозеф Генри — тоже заслуживают признания!

Узнать больше

На этом сайте

Другие сайты

  • Электромеханическое реле Джозефа Генри: краткий отчет о том, как Джозеф Генри изобрел реле в 1835 году.
  • Генри как пионер электротехники Бэнкрофт Герарди, Bell Systems Technical Journal, июль 1932 г. Эта интересная историческая статья из архивов Bell была опубликована в ознаменование столетия электрических открытий Джозефа Генри. Он дает прекрасное представление о важности Генри и о том, как он при своей жизни помог «подключить» мир к электричеству.

Видео

  • Как сделать реле: довольно простое 2,5-минутное видео-руководство покажет вам, как намотать свои собственные электромагниты и установить их на плату, чтобы создать собственное самодельное реле.
  • Как работает автомобильное реле: это короткое и простое видеообъяснение расскажет вам о том, что я объяснил выше. То же объяснение, немного другие слова.

Книги

Простые практичные руководства
  • СДЕЛАТЬ: Электроника Чарльза Платта. Maker Media, 2015. Эксперимент 7 по исследованию реле — отличное практическое введение. Вы можете открыть реле и поэкспериментировать с внутренними механизмами!
  • Свидетель: Электроника Роджера Бриджмена.New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • Телефонные проекты для злого гения Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
Подробные технические книги
  • Электрические реле: принципы и применение Владимира Гуревича. CRC Press, 2018. После начала краткой истории реле эта книга проведет нас через магнитные принципы, работа релейных контактов, внешний вид и упаковка, а также сопутствующие устройства, такие как герконы.В следующих главах рассматриваются варианты основных реле, включая реле высокого напряжения, тепловые реле и реле времени.
  • Свидетель: Электроника Роджера Бриджмена. New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • Телефонные проекты для злого гения Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
История науки

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2009/2020) Реле. Получено с https://www.explainthatstuff.com/howrelayswork.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают реле? — Объясни это!

Как работают реле? — Объясни это!

Реклама

Криса Вудфорда. Последнее изменение: 19 августа 2020 г.

Вы можете этого не осознавать, но вы постоянно начеку, остерегаетесь угроз, готовы действовать в любой момент.Миллионы лет эволюции заставили ваш мозг спасти вашу кожу, когда малейшая опасность угрожает вашему существованию. Если вы используете силу инструмент, например, и крошечная щепа летит к вашему глазу, один из ваши ресницы отправят сигнал в ваш мозг, который заставит вас веки закрываются в мгновение ока — достаточно быстро, чтобы защитите свое зрение. Здесь происходит то, что крошечный стимул вызывает гораздо больший и полезный отклик. Вы можете найти тот же трюк работает во всех машинах и электрических приборы, где датчики готовы включить или выключается за доли секунды с помощью умных магнитных переключателей, называемых реле.Давайте подробнее рассмотрим, как они работают!

На фото: типичное реле со снятым пластиковым корпусом. Вы можете увидеть два пружинных контакта слева и катушку электромагнита (красно-коричневый цилиндр медного цвета) справа. В этом реле, когда через катушку протекает ток, он превращает ее в электромагнит. Магнит толкает переключатель влево, сжимая пружинные контакты вместе и замыкая цепь, к которой они прикреплены. Это реле от электронного программатора погружного нагревателя горячей воды.Электронная схема в программаторе включает или выключает магнит в заранее запрограммированное время дня, используя относительно небольшой ток. Это позволяет протекать через пружинные контакты гораздо большему току для питания элемента, который нагревает горячую воду.

Что такое реле?

Изображение: Если бы реле были собаками: Предположим, у вас есть огромная свирепая собака, которая так крепко спит, что никогда не просыпается, когда он услышал шум. В качестве сторожевой собаки это было бы бесполезно! Но что, если вы купите еще и маленькую, очень бдительную собаку? Если маленькая собака услышал шум, он начал лаять и разбудил большую собаку, которая могла бы атаковать злоумышленника.Так работают реле: они используйте небольшой электрический ток, чтобы вызвать гораздо больший.

Реле — это электромагнитный переключатель, управляемый относительно небольшой электрический ток, который может включать или выключать гораздо более мощный электрический Текущий. Сердце реле — электромагнит (катушка с проводом, которая становится временный магнит, когда через него проходит электричество). Вы можете думать о реле как своего рода электрический рычаг: включите его слабым током, и он включает («усиливает») другой прибор используя гораздо больший ток.Почему это полезно? Как имя предполагает, что многие датчики являются невероятно чувствительными частями электронное оборудование и вырабатывают только малые электрические токи. Но часто они нужны нам, чтобы приводить в движение более крупные устройства, использующие большие токи. Реле перекрывают разрыв, позволяя токи, чтобы активировать более крупные. Это означает, что реле могут работать как переключатели. (включение и выключение) или как усилители (преобразование малых токи в более крупные).

Как работают реле

Вот две простые анимации, иллюстрирующие, как реле используют одну цепь для включения второй цепи.

Когда мощность протекает через первую цепь (1), она активирует электромагнит (коричневый), создавая магнитное поле (синее), которое притягивает контакт (красный) и активирует вторую цепь (2). Когда питание отключается, пружина возвращает контакт в исходное положение, снова отключая вторую цепь.

Это пример «нормально разомкнутого» (NO) реле: контакты во второй цепи по умолчанию не подключены и включаются только тогда, когда через магнит протекает ток.Другие реле являются «нормально замкнутыми» (NC; контакты соединены так, что по умолчанию через них протекает ток) и отключаются только тогда, когда срабатывает магнит, растягивая или раздвигая контакты. Наиболее распространены нормально разомкнутые реле.

Вот еще одна анимация, показывающая, как реле связывает две цепи. вместе. По сути, это то же самое, нарисованное немного по-другому. Слева — входная цепь, питаемая от переключателя. или какой-то датчик. Когда этот контур активирован, он питает ток к электромагниту, который замыкает металлический переключатель и активирует вторую, выходную цепь (с правой стороны). Относительно небольшой ток во входной цепи, таким образом, активирует больший ток в выходная цепь:

  1. Входная цепь (синяя петля) отключена, и ток не течет через нее, пока что-то (датчик или замыкание переключателя) не включит ее. Выходная цепь (красная петля) также отключена.
  2. Когда во входной цепи течет небольшой ток, он активирует электромагнит (показанный здесь темно-синей катушкой), который создает вокруг него магнитное поле.
  3. Электромагнит, находящийся под напряжением, притягивает к себе металлический стержень в выходной цепи, замыкая переключатель и позволяя гораздо большему току проходить через выходную цепь.
  4. В выходной цепи работает сильноточный прибор, например, лампа или электрический двигатель.

Реле на практике

Фото: Еще один взгляд на реле. Вверху: Если смотреть прямо вниз, вы можете увидеть пружинные контакты слева, механизм переключения посередине и катушку электромагнита справа. Внизу: то же реле, снятое спереди.

Предположим, вы хотите построить систему охлаждения с электронным управлением. система, которая включает или выключает вентилятор в зависимости от комнатной температуры изменения. Вы можете использовать какую-то схему электронного термометра, чтобы почувствовать температуру, но будет производить только небольшие электрические токи — слишком малы, чтобы приводить в действие электродвигатель в большой большой вентилятор. Вместо этого вы можете подключить цепь термометра к входная цепь реле. Когда в этом цепь, реле активирует свою выходную цепь, пропустить гораздо больший ток и включить вентилятор.

Реле не всегда включаются; иногда вместо этого они очень услужливо выключают вещи. В Например, для оборудования электростанций и линий электропередачи вы найдете защитные реле , которые срабатывают при возникновении неисправностей, чтобы предотвратить повреждение от таких вещей, как скачки тока. Когда-то для этой цели широко применялись электромагнитные реле, подобные описанным выше. В наши дни электронные реле на основе интегральных схем вместо этого выполняют ту же работу; они измеряют напряжение или ток в цепи и автоматически принимают меры, если они превышают заданное предел.

Реле прочие

На фото: четыре старомодных реле максимальной токовой защиты, изображенные на устаревшей подстанции в 1986 году, незадолго до ее сноса. Фото любезно предоставлено Библиотекой Конгресса США.

До сих пор мы рассматривали переключающие реле очень общего назначения, но есть довольно много вариантов эта основная тема, включая (и это далеко не исчерпывающий список):

  • Реле высокого напряжения: они специально разработаны для коммутации высоких напряжений и токов. значительно превышает возможности обычных реле (обычно до 10 000 вольт и 30 ампер).
  • Электронные и полупроводниковые реле (также называемые твердотельными реле или SSR): переключают токи полностью электронными, без движущихся частей, поэтому они быстрее, тише, меньше, надежнее, и служат дольше, чем электромагнитные реле. К сожалению, они обычно дороже, меньше эффективны и не всегда работают так чисто и предсказуемо (из-за таких проблем, как токи утечки).
  • Реле таймера и задержки срабатывания: они запускают выходные токи на ограниченный период времени (обычно от доли секунды до примерно 100 часов или четырех дней).
  • Тепловые реле: они включаются и выключаются, чтобы останавливать такие вещи, как электродвигатели, от перегрева, что-то вроде биметаллических ленточных термостатов.
  • Реле максимального тока и направленные реле: сконфигурированные различными способами, они предотвращают протекание чрезмерных токов в неправильном направлении по цепи (обычно в оборудовании для выработки электроэнергии, распределения или питания).
  • Реле дифференциальной защиты: срабатывают при несимметрии тока или напряжения в двух разных частях цепи.
  • Реле защиты по частоте (иногда называемые реле понижения и повышения частоты): эти твердотельные устройства срабатывают, когда частота переменного тока слишком высока, слишком мала или и того, и другого.

Кто изобрел реле?

Фото: реле широко использовались для коммутации и маршрутизации вызовов на телефонных станциях. например, этот, сделанный в 1952 году. Фото любезно предоставлено NASA Glenn Research Center (NASA-GRC).

Реле были изобретены в 1835 году пионером американского электромагнетизма. Джозеф Генри; на демонстрации в колледже Нью-Джерси, Генри использовал небольшой электромагнит, чтобы включать и выключать больший, и предположил, что реле можно использовать для управления электрическими машинами на очень больших расстояниях.Генри применил эту идею к другому изобретению, над которым работал в то время, электрическому телеграфу (предшественнику телефона), который был успешно разработан Уильямом Куком и Чарльзом Уитстоном в Англии и (гораздо более знаменитым) Сэмюэлем Ф. Б. Морзе в Соединенные Штаты. Реле позже использовались в телефонной коммутации и первых электронных компьютерах и оставались чрезвычайно популярными до появления транзисторов в конце 1940-х годов; по словам Бэнкрофта Герарди, в ознаменование 100-летия работы Генри по электромагнетизму, к тому времени только в Соединенных Штатах работало около 70 миллионов реле. Транзисторы — это крошечные электронные компоненты, которые могут выполнять ту же работу, что и реле, работая как усилители или переключатели. Хотя они переключаются быстрее, потребляют гораздо меньше электроэнергии, занимают небольшую часть места и стоят намного меньше, чем реле, они обычно работают только с небольшими токами, поэтому реле все еще используются во многих приложениях. Именно разработка транзисторов подтолкнула компьютерную революцию с середины 20-го века. Но без реле не было бы транзисторов, поэтому реле — и такие пионеры, как Джозеф Генри — тоже заслуживают признания!

Узнать больше

На этом сайте

Другие сайты

  • Электромеханическое реле Джозефа Генри: краткий отчет о том, как Джозеф Генри изобрел реле в 1835 году.
  • Генри как пионер электротехники Бэнкрофт Герарди, Bell Systems Technical Journal, июль 1932 г. Эта интересная историческая статья из архивов Bell была опубликована в ознаменование столетия электрических открытий Джозефа Генри. Он дает прекрасное представление о важности Генри и о том, как он при своей жизни помог «подключить» мир к электричеству.

Видео

  • Как сделать реле: довольно простое 2,5-минутное видео-руководство покажет вам, как намотать свои собственные электромагниты и установить их на плату, чтобы создать собственное самодельное реле.
  • Как работает автомобильное реле: это короткое и простое видеообъяснение расскажет вам о том, что я объяснил выше. То же объяснение, немного другие слова.

Книги

Простые практичные руководства
  • СДЕЛАТЬ: Электроника Чарльза Платта. Maker Media, 2015. Эксперимент 7 по исследованию реле — отличное практическое введение. Вы можете открыть реле и поэкспериментировать с внутренними механизмами!
  • Свидетель: Электроника Роджера Бриджмена.New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • Телефонные проекты для злого гения Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
Подробные технические книги
  • Электрические реле: принципы и применение Владимира Гуревича. CRC Press, 2018. После начала краткой истории реле эта книга проведет нас через магнитные принципы, работа релейных контактов, внешний вид и упаковка, а также сопутствующие устройства, такие как герконы.В следующих главах рассматриваются варианты основных реле, включая реле высокого напряжения, тепловые реле и реле времени.
  • Свидетель: Электроника Роджера Бриджмена. New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • Телефонные проекты для злого гения Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
История науки

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2009/2020) Реле. Получено с https://www.explainthatstuff.com/howrelayswork.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают реле? — Объясни это!

Как работают реле? — Объясни это!

Реклама

Криса Вудфорда. Последнее изменение: 19 августа 2020 г.

Вы можете этого не осознавать, но вы постоянно начеку, остерегаетесь угроз, готовы действовать в любой момент.Миллионы лет эволюции заставили ваш мозг спасти вашу кожу, когда малейшая опасность угрожает вашему существованию. Если вы используете силу инструмент, например, и крошечная щепа летит к вашему глазу, один из ваши ресницы отправят сигнал в ваш мозг, который заставит вас веки закрываются в мгновение ока — достаточно быстро, чтобы защитите свое зрение. Здесь происходит то, что крошечный стимул вызывает гораздо больший и полезный отклик. Вы можете найти тот же трюк работает во всех машинах и электрических приборы, где датчики готовы включить или выключается за доли секунды с помощью умных магнитных переключателей, называемых реле.Давайте подробнее рассмотрим, как они работают!

На фото: типичное реле со снятым пластиковым корпусом. Вы можете увидеть два пружинных контакта слева и катушку электромагнита (красно-коричневый цилиндр медного цвета) справа. В этом реле, когда через катушку протекает ток, он превращает ее в электромагнит. Магнит толкает переключатель влево, сжимая пружинные контакты вместе и замыкая цепь, к которой они прикреплены. Это реле от электронного программатора погружного нагревателя горячей воды.Электронная схема в программаторе включает или выключает магнит в заранее запрограммированное время дня, используя относительно небольшой ток. Это позволяет протекать через пружинные контакты гораздо большему току для питания элемента, который нагревает горячую воду.

Что такое реле?

Изображение: Если бы реле были собаками: Предположим, у вас есть огромная свирепая собака, которая так крепко спит, что никогда не просыпается, когда он услышал шум. В качестве сторожевой собаки это было бы бесполезно! Но что, если вы купите еще и маленькую, очень бдительную собаку? Если маленькая собака услышал шум, он начал лаять и разбудил большую собаку, которая могла бы атаковать злоумышленника.Так работают реле: они используйте небольшой электрический ток, чтобы вызвать гораздо больший.

Реле — это электромагнитный переключатель, управляемый относительно небольшой электрический ток, который может включать или выключать гораздо более мощный электрический Текущий. Сердце реле — электромагнит (катушка с проводом, которая становится временный магнит, когда через него проходит электричество). Вы можете думать о реле как своего рода электрический рычаг: включите его слабым током, и он включает («усиливает») другой прибор используя гораздо больший ток.Почему это полезно? Как имя предполагает, что многие датчики являются невероятно чувствительными частями электронное оборудование и вырабатывают только малые электрические токи. Но часто они нужны нам, чтобы приводить в движение более крупные устройства, использующие большие токи. Реле перекрывают разрыв, позволяя токи, чтобы активировать более крупные. Это означает, что реле могут работать как переключатели. (включение и выключение) или как усилители (преобразование малых токи в более крупные).

Как работают реле

Вот две простые анимации, иллюстрирующие, как реле используют одну цепь для включения второй цепи.

Когда мощность протекает через первую цепь (1), она активирует электромагнит (коричневый), создавая магнитное поле (синее), которое притягивает контакт (красный) и активирует вторую цепь (2). Когда питание отключается, пружина возвращает контакт в исходное положение, снова отключая вторую цепь.

Это пример «нормально разомкнутого» (NO) реле: контакты во второй цепи по умолчанию не подключены и включаются только тогда, когда через магнит протекает ток.Другие реле являются «нормально замкнутыми» (NC; контакты соединены так, что по умолчанию через них протекает ток) и отключаются только тогда, когда срабатывает магнит, растягивая или раздвигая контакты. Наиболее распространены нормально разомкнутые реле.

Вот еще одна анимация, показывающая, как реле связывает две цепи. вместе. По сути, это то же самое, нарисованное немного по-другому. Слева — входная цепь, питаемая от переключателя. или какой-то датчик. Когда этот контур активирован, он питает ток к электромагниту, который замыкает металлический переключатель и активирует вторую, выходную цепь (с правой стороны). Относительно небольшой ток во входной цепи, таким образом, активирует больший ток в выходная цепь:

  1. Входная цепь (синяя петля) отключена, и ток не течет через нее, пока что-то (датчик или замыкание переключателя) не включит ее. Выходная цепь (красная петля) также отключена.
  2. Когда во входной цепи течет небольшой ток, он активирует электромагнит (показанный здесь темно-синей катушкой), который создает вокруг него магнитное поле.
  3. Электромагнит, находящийся под напряжением, притягивает к себе металлический стержень в выходной цепи, замыкая переключатель и позволяя гораздо большему току проходить через выходную цепь.
  4. В выходной цепи работает сильноточный прибор, например, лампа или электрический двигатель.

Реле на практике

Фото: Еще один взгляд на реле. Вверху: Если смотреть прямо вниз, вы можете увидеть пружинные контакты слева, механизм переключения посередине и катушку электромагнита справа. Внизу: то же реле, снятое спереди.

Предположим, вы хотите построить систему охлаждения с электронным управлением. система, которая включает или выключает вентилятор в зависимости от комнатной температуры изменения. Вы можете использовать какую-то схему электронного термометра, чтобы почувствовать температуру, но будет производить только небольшие электрические токи — слишком малы, чтобы приводить в действие электродвигатель в большой большой вентилятор. Вместо этого вы можете подключить цепь термометра к входная цепь реле. Когда в этом цепь, реле активирует свою выходную цепь, пропустить гораздо больший ток и включить вентилятор.

Реле не всегда включаются; иногда вместо этого они очень услужливо выключают вещи. В Например, для оборудования электростанций и линий электропередачи вы найдете защитные реле , которые срабатывают при возникновении неисправностей, чтобы предотвратить повреждение от таких вещей, как скачки тока. Когда-то для этой цели широко применялись электромагнитные реле, подобные описанным выше. В наши дни электронные реле на основе интегральных схем вместо этого выполняют ту же работу; они измеряют напряжение или ток в цепи и автоматически принимают меры, если они превышают заданное предел.

Реле прочие

На фото: четыре старомодных реле максимальной токовой защиты, изображенные на устаревшей подстанции в 1986 году, незадолго до ее сноса. Фото любезно предоставлено Библиотекой Конгресса США.

До сих пор мы рассматривали переключающие реле очень общего назначения, но есть довольно много вариантов эта основная тема, включая (и это далеко не исчерпывающий список):

  • Реле высокого напряжения: они специально разработаны для коммутации высоких напряжений и токов. значительно превышает возможности обычных реле (обычно до 10 000 вольт и 30 ампер).
  • Электронные и полупроводниковые реле (также называемые твердотельными реле или SSR): переключают токи полностью электронными, без движущихся частей, поэтому они быстрее, тише, меньше, надежнее, и служат дольше, чем электромагнитные реле. К сожалению, они обычно дороже, меньше эффективны и не всегда работают так чисто и предсказуемо (из-за таких проблем, как токи утечки).
  • Реле таймера и задержки срабатывания: они запускают выходные токи на ограниченный период времени (обычно от доли секунды до примерно 100 часов или четырех дней).
  • Тепловые реле: они включаются и выключаются, чтобы останавливать такие вещи, как электродвигатели, от перегрева, что-то вроде биметаллических ленточных термостатов.
  • Реле максимального тока и направленные реле: сконфигурированные различными способами, они предотвращают протекание чрезмерных токов в неправильном направлении по цепи (обычно в оборудовании для выработки электроэнергии, распределения или питания).
  • Реле дифференциальной защиты: срабатывают при несимметрии тока или напряжения в двух разных частях цепи.
  • Реле защиты по частоте (иногда называемые реле понижения и повышения частоты): эти твердотельные устройства срабатывают, когда частота переменного тока слишком высока, слишком мала или и того, и другого.

Кто изобрел реле?

Фото: реле широко использовались для коммутации и маршрутизации вызовов на телефонных станциях. например, этот, сделанный в 1952 году. Фото любезно предоставлено NASA Glenn Research Center (NASA-GRC).

Реле были изобретены в 1835 году пионером американского электромагнетизма. Джозеф Генри; на демонстрации в колледже Нью-Джерси, Генри использовал небольшой электромагнит, чтобы включать и выключать больший, и предположил, что реле можно использовать для управления электрическими машинами на очень больших расстояниях.Генри применил эту идею к другому изобретению, над которым работал в то время, электрическому телеграфу (предшественнику телефона), который был успешно разработан Уильямом Куком и Чарльзом Уитстоном в Англии и (гораздо более знаменитым) Сэмюэлем Ф. Б. Морзе в Соединенные Штаты. Реле позже использовались в телефонной коммутации и первых электронных компьютерах и оставались чрезвычайно популярными до появления транзисторов в конце 1940-х годов; по словам Бэнкрофта Герарди, в ознаменование 100-летия работы Генри по электромагнетизму, к тому времени только в Соединенных Штатах работало около 70 миллионов реле. Транзисторы — это крошечные электронные компоненты, которые могут выполнять ту же работу, что и реле, работая как усилители или переключатели. Хотя они переключаются быстрее, потребляют гораздо меньше электроэнергии, занимают небольшую часть места и стоят намного меньше, чем реле, они обычно работают только с небольшими токами, поэтому реле все еще используются во многих приложениях. Именно разработка транзисторов подтолкнула компьютерную революцию с середины 20-го века. Но без реле не было бы транзисторов, поэтому реле — и такие пионеры, как Джозеф Генри — тоже заслуживают признания!

Узнать больше

На этом сайте

Другие сайты

  • Электромеханическое реле Джозефа Генри: краткий отчет о том, как Джозеф Генри изобрел реле в 1835 году.
  • Генри как пионер электротехники Бэнкрофт Герарди, Bell Systems Technical Journal, июль 1932 г. Эта интересная историческая статья из архивов Bell была опубликована в ознаменование столетия электрических открытий Джозефа Генри. Он дает прекрасное представление о важности Генри и о том, как он при своей жизни помог «подключить» мир к электричеству.

Видео

  • Как сделать реле: довольно простое 2,5-минутное видео-руководство покажет вам, как намотать свои собственные электромагниты и установить их на плату, чтобы создать собственное самодельное реле.
  • Как работает автомобильное реле: это короткое и простое видеообъяснение расскажет вам о том, что я объяснил выше. То же объяснение, немного другие слова.

Книги

Простые практичные руководства
  • СДЕЛАТЬ: Электроника Чарльза Платта. Maker Media, 2015. Эксперимент 7 по исследованию реле — отличное практическое введение. Вы можете открыть реле и поэкспериментировать с внутренними механизмами!
  • Свидетель: Электроника Роджера Бриджмена.New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • Телефонные проекты для злого гения Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
Подробные технические книги
  • Электрические реле: принципы и применение Владимира Гуревича. CRC Press, 2018. После начала краткой истории реле эта книга проведет нас через магнитные принципы, работа релейных контактов, внешний вид и упаковка, а также сопутствующие устройства, такие как герконы.В следующих главах рассматриваются варианты основных реле, включая реле высокого напряжения, тепловые реле и реле времени.
  • Свидетель: Электроника Роджера Бриджмена. New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • Телефонные проекты для злого гения Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
История науки

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2009/2020) Реле. Получено с https://www.explainthatstuff.com/howrelayswork.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Применение реле

| Основы работы с реле 1-3 | OMRON

Параметры электрического реле

Номинальные параметры реле включают номиналы катушек и номинальные токи контактов.

1. Спецификация катушки

При фактическом использовании убедитесь, что не превышают номинал катушки; это может привести не только к снижению производительности, но и к сгоранию катушки из-за перенапряжения и т. д. Обязательно внимательно выберите спецификацию катушки переменного тока, проверив соответствующий источник питания каждого реле (номинальное напряжение, номинальная частота).

Некоторые типы реле не могут работать при определенном номинальном напряжении и номинальной частоте.
Использование в таких условиях может вызвать ненормальный нагрев и неисправность.
В следующей таблице показаны характеристики катушки переменного тока.

Пример: 100 В переменного тока
Названия рейтингов * Применимый источник питания
(номинальное напряжение, номинальная частота)
Этикетки товаров Описание в каталоге
Рейтинг 1 AC 100 В 60 Гц 100VAC 60 Гц AC 100 В 60 Гц
Рейтинг 2 100 В переменного тока, 50 Гц, 100 В переменного тока, 60 Гц 100VAC 100 В переменного тока
Рейтинг 3 AC 100 В 50 Гц, AC 100 В 60 Гц
AC 110 В 60 Гц
100/110 В переменного тока, 60 Гц 100 В переменного тока,
50 Гц или 100 / (110) В переменного тока
AC 100 / (110) В
Рейтинг 4 AC 100 В 50 Гц, AC 100 В 60 Гц
AC 110 В 50 Гц, AC 110 В 60 Гц
100/110 В переменного тока AC 100/110 В

* Примечание: , что указанные здесь рейтинговые названия официально не определены Японскими промышленными стандартами (JIS) или подобными.

2. Контактная информация

Номинальные параметры контактов являются стандартными значениями для гарантированной работы реле и обычно указывают номинальный ток контактов реле.
Номинальные параметры зависят от применяемого напряжения и типов электрических нагрузок. Другими словами, номинал включает в себя спецификацию максимального напряжения, приложенного к контактам реле, и максимального тока, который может быть пропущен для управления электрической нагрузкой.

  • Параметры контактов обычно указываются в соответствии с резистивными нагрузками.
    Убедитесь, что вы выбрали правильный тип реле, применимый к управляемой вами электрической нагрузке и отвечающий вашим требованиям к долговечности.

Электрическое реле пускового тока

Пусковой ток — это большой ток, который протекает мгновенно при первом включении питания и подается в электрическую цепь для управления нагрузкой, превышая значение тока в установившемся режиме.
Это происходит с электрическими нагрузками, такими как электродвигатели и лампы накаливания.

1. Пусковой ток
  • Активная нагрузка

    Сразу после включения питания ток остается на постоянном уровне.

  • Ламповая нагрузка

    Пусковой ток, примерно в 10 раз превышающий ток в установившемся состоянии, протекает сразу после включения питания, а затем возвращается к своему постоянному уровню.

2. Пусковой ток и номинальные значения

Рейтинг TV — это один из типичных рейтингов, утвержденных правилами UL и CSA для оценки способности выдерживать пусковой ток.Рейтинг показывает уровень способности реле переключать нагрузку, включая пусковой ток.

Например, реле для блоков питания телевизоров должны иметь рейтинг ТВ.
T Испытание на переключение (испытание на долговечность) этих реле проводится с использованием вольфрамовой лампы в качестве нагрузки и должно выдержать в общей сложности 25000 раз испытание на долговечность.

Рейтинг ТВ Пусковой ток Устойчивый ток Пример видов продукции
ТВ-3 51 А 3 А G2R-1A
G2RL-1A-E-ASI
ТВ-5 78 А 5 А G5RL-1A (-E) -LN
ТВ-8 117 A 8 А G4W-1112P-US-TV8
G5RL-U1A-E
G5RL-K1A-E
G5RL-1A-E-TV8
ТВ-10 141 A 10 А G7L
ТВ-15 191 А 15 А G4A

Цепи постоянного тока

Дуга — это электрическая искра, возникающая между контактами, когда реле замыкает электрическую цепь.
По мере увеличения амплитуды напряжения и тока возникает дуга. Когда переключатель замыкается медленно, для образования дуги требуется больше времени. Это может привести к быстрому износу контактов.

Коммутация цепей постоянного тока

В переменном токе (AC), который постоянно меняет направление потока, дуга гаснет каждый раз, когда возникает перенапряжение.
С другой стороны, косвенный ток (постоянный ток) течет только в одном направлении, что позволяет формировать дугу дольше, что приводит к более быстрому износу контактов и снижению долговечности.

Также возникает переходное явление контакта, которое может вызвать неровности в точках контакта, которые могут вызвать неисправности, которые невозможно разделить, потому что они защемлены.

  • Контакты, которые соединены последовательно, увеличивают контактный зазор на равную длину, что позволяет эффективно контролировать дугу.

Минимальная нагрузка электрических реле

Реле может столкнуться с проблемой увеличения контактного сопротивления при переключении приложений с минимальной нагрузкой.При повышении контактного сопротивления контакты обычно восстанавливаются при последующей операции. Контактное сопротивление также может увеличиваться из-за образования пленки.

Определение того, предсказывает ли измеренное значение контактного сопротивления отказ реле, должно зависеть от того, вызывает ли оно проблему в цепи или нет.
По этой причине в качестве стандартной интенсивности отказов контактного сопротивления реле указаны только значения по умолчанию. Интенсивность отказов (*) выражается как уровень P (эталонное значение) как один показатель минимальных применимых нагрузок.

* Примечания: Частота отказов

Процент отказов в единицу времени (или количество операций) во время непрерывного переключения реле при индивидуально заданных типах испытаний и нагрузках.

Скорость может варьироваться в зависимости от частоты переключения, условий окружающей среды и ожидаемого уровня надежности. Поэтому пользователи должны протестировать реле в реальных условиях эксплуатации, чтобы убедиться в его применимости.

В этом каталоге частота отказов дается как уровень P (эталонное значение).Это выражает уровень отказа на уровне надежности 60% (λ 60) (JIS C5003).

Использование реле с минимальной нагрузкой

При выборе подходящего реле для переключения приложения с минимальной нагрузкой обязательно учитывайте тип нагрузки, которую вы переключаете, а также требуемый материал контактов и расположение контактов.

Надежность контакта при управлении минутными нагрузками во многом зависит от материала контакта и расположения контактов.
Например, сдвоенные контактные точки более надежны, чем одиночные контактные точки для приложений с минимальной нагрузкой просто по той причине, что резервирование при параллельной работе сдвоенного контакта обеспечивает большую надежность, чем то, что обеспечивает одинарный контакт.

Долговечность и срок службы электрического реле

Долговечность (срок службы) реле — это количество раз, которое реле может переключаться до тех пор, пока оно не перестанет соответствовать указанным значениям с точки зрения рабочих характеристик и рабочих характеристик. Реле
делится на две категории: механическая прочность (срок службы реле) и электрическая прочность (срок службы реле).

Механическая износостойкость (срок службы реле)
Здесь показано, сколько циклов реле может проработать на указанной частоте коммутации без нагрузки на контакты.
Электрическая износостойкость (срок службы реле)
Здесь показано, сколько циклов реле может проработать при указанной частоте коммутации с номинальной нагрузкой, приложенной к контактам.
Коммутационная способность

Пользователи должны проверить максимальную коммутационную способность каждого реле, используя графики, чтобы найти реле, подходящее для их приложений.
Кривая максимальной коммутационной способности и долговечности может использоваться в качестве руководства при выборе реле.
Обратите внимание, что полученные здесь значения являются ориентировочными; реле необходимо протестировать в условиях реальной нагрузки.
Ниже показано, как читать графики максимальной коммутационной способности и кривой долговечности.

Например, если контактное напряжение (V1) уже определено, максимальный контактный ток (I1) может быть получен из точки пересечения на характеристической кривой.
И наоборот, если максимальный контактный ток I1 уже определен, может быть получено контактное напряжение (V1).
Затем полученный I1 используется для получения количества рабочих циклов из кривой долговечности.

Пример на этих графиках:
Если напряжение контакта 40 В,
Ток переключения контактов до 2 А …… * 1
Количество рабочих циклов при максимальном токе контакта 2 А составляет прибл.340 000 раз …… * 2

  • Долговечность реле сильно зависит от типа нагрузки, условий переключения и условий окружающей среды; Работа реле должна быть проверена и оценена в реальных условиях.

Анализ отказов электрических реле

Пользователи могут столкнуться с определенными проблемами, связанными с реле при эксплуатации своего оборудования.
В таких случаях причину необходимо определить с помощью метода FTA (анализа дефектных трещин).
В следующей таблице перечислены конкретные виды отказов и возможные причины.

Проблемы, видимые снаружи реле
События отказа Контрольный список Возможные причины
Реле не работает 1. Напряжение может быть неправильно подано на релейный вход
  • Перегорел предохранитель или сработал автоматический выключатель
  • Неправильная проводка, возможна утечка
  • Ослабленные клеммные винтовые соединения
2.Спецификация реле может быть неправильно выбрана для используемого с ним входного напряжения.
  • К реле было приложено переменное напряжение 200 В с номинальным напряжением 100 В переменного тока.
3. Возможны падения входного напряжения.
  • Недостаточная мощность источника питания
  • Длинная проводка
4. Реле может быть повреждено.
  • Обрыв катушки реле
  • Повреждение в результате падения или механического удара
5.Выходная цепь может работать неправильно.
  • Проверить источник питания на выходной стороне
  • Сбой нагрузки
  • Неправильная проводка
  • Ошибка подключения
6. Контакты реле могут работать неправильно.
  • Плохое выравнивание контактов
  • Изношены контакты (до конца срока службы реле)
  • Механическая неисправность
Нет признаков восстановления реле 1.На реле нельзя вообще подавать напряжение.
  • Утечка тока из цепи защиты (поглотитель перенапряжения)
  • Напряжение, подаваемое через байпасную цепь
  • Использование полупроводниковой цепи управления, сохраняющей остаточное напряжение
2. Ненормальное состояние реле
  • Контактная сварка
  • Износ изоляции
  • Механическая неисправность
  • Индуцированное напряжение (большая длина проводки)
Ошибка работы реле.

Световой индикатор не работает должным образом.

1. Напряжение на входной клемме реле могло превысить номинальное напряжение.
  • Индуцированное напряжение (большая длина проводки)
  • Цепь байпаса от индуктивного напряжения (реле с фиксацией не удерживает. )
2. Возможно, реле подверглось сильной вибрации или ударам.
  • Плохие условия эксплуатации
выгорание 1.Возможное выгорание катушки
  • Катушка реле не подходит для применения
  • Напряжение превысило номинальный диапазон
  • Неидеальная работа электромагнита с характеристиками переменного тока (недостаточное соединение якоря)
2. Возможное выгорание контактов
  • Ток, превышающий номинал контакта
  • Пусковой ток превышает допустимую
  • Ток короткого замыкания
  • Плохое соединение с внешними компонентами (аномальное тепловыделение из-за нарушения соединения, например, с розетками)
Проблемы, видимые изнутри реле
События отказа Контрольный список Возможные причины
Контактная сварка 1. Возможно, был большой ток.
  • Бросок тока напр. от ламповой нагрузки
  • Ток короткого замыкания нагрузки
2. Контактный компонент может вызывать ненормальную вибрацию.
  • Подвержены внешним силам (например, ударам / вибрации)
  • Реле переменного тока гудит
  • Дребезжащий шум в контактах при падении напряжения, вызывающем неправильную работу (напряжение может упасть сразу после запуска двигателя).
3. Возможно, реле превысило свою коммутационную способность контактов (слишком высокая частота коммутации).
4. Возможно, истек срок службы реле.
Обрыв контакта 1. На контактных поверхностях могут быть посторонние предметы.
  • Силикон, уголь или другие посторонние вещества
2.Возможна коррозия контактных поверхностей.
  • Контактное сульфирование от SO2 и h3S
3. Выход из строя контактов может быть вызван механическими повреждениями.
  • Смещение клеммы, смещение контакта или след контакта
4. Возможен износ контактов.
  • Окончание срока службы реле
Жужжание 1.Приложенное напряжение не может быть приложено.
  • Катушка реле не подходит для применения
  • Колебания рабочего напряжения с коэффициентом пульсаций
  • Входное напряжение медленно растет
2. Тип реле может быть неправильно выбран для приложения.
  • Характеристики постоянного тока, используемые для линий переменного тока
3. Электромагнит может работать неправильно.
  • Между подвижным якорем и железным сердечником застрял посторонний предмет
Чрезмерный износ контактов реле 1. Тип реле может быть неправильно выбран для приложения.
  • Номинальные значения напряжения, тока и пускового тока не соответствуют приложению
2. При переключении нагрузки необходимо учитывать меры против перенапряжения (например, элемент поглощения перенапряжения).
  • Пусковой ток двигателя, соленоида, ламповой нагрузки

реле | Electronics Club

Реле | Клуб электроники

Выбор | Защитные диоды | Герконовые реле | Преимущества и недостатки

См. Также: Переключатели | Диоды

Реле — это переключатель с электрическим приводом . Ток, протекающий через катушку реле создает магнитное поле, которое притягивает рычаг и меняет контакты переключателя.Ток катушки может быть включен или выключен, поэтому реле имеют два положения переключателя, и большинство из них двойной ход ( переключающий ) переключайте контакты, как показано на схеме.


Условное обозначение цепи

Реле

позволяют одной цепи переключать вторую цепь, которая может быть полностью отделена от первой. Например, цепь батареи низкого напряжения может использовать реле для переключения цепи сети 230 В переменного тока. Внутри реле нет электрического соединения между двумя цепями, связь магнитная и механическая.

Катушка реле пропускает относительно большой ток, обычно 30 мА для реле 12 В, но для реле, рассчитанных на работу от более низких напряжений, он может достигать 100 мА. Большинство микросхем не могут обеспечить этот ток и транзистор обычно используется для усиления небольшого тока ИС до большего значения, необходимого для катушки реле. Максимальный выходной ток популярной микросхемы таймера 555 составляет 200 мА, этого достаточно для непосредственного питания катушки реле.

Реле

обычно бывают SPDT или DPDT, но они могут иметь гораздо больше наборов переключающих контактов, например, легко доступны реле с 4 наборами переключающих контактов.Для получения дополнительной информации о переключающих контактах и ​​терминах, используемых для их описания см. страницу о переключателях.

На анимированной картинке показано рабочее реле с катушкой и переключающими контактами. Вы можете увидеть рычаг слева, притягиваемый магнетизмом, когда катушка включенный. Этот рычаг перемещает контакты переключателя. Есть один набор контактов (SPDT) на переднем плане и еще один позади них, что делает реле DPDT.


Реле с контактами катушки и переключателя

В каталоге или на веб-сайте поставщика должны быть указаны подключения реле.Катушка обычно видна, и ее можно подключить любым способом. Катушки реле при выключении производят короткие всплески высокого напряжения, и это может разрушить транзисторы и микросхемы в цепи. Для предотвращения повреждений необходимо подключить защитный диод на катушке реле.

Большинство реле предназначены для монтажа на печатной плате, но вы можете припаять провода прямо к контактам. при условии, что вы позаботитесь о том, чтобы пластиковый корпус реле не плавился.

Переключатели реле обычно имеют маркировку COM, NC и NO:

  • COM = Общий, всегда подключайтесь к нему, это подвижная часть переключателя.
  • NC = нормально замкнутый, COM подключен к этому, когда катушка реле выключена .
  • NO = нормально открытый, к нему подключен COM, когда катушка реле на .

Подключитесь к COM и NO , если вы хотите, чтобы коммутируемая цепь была включена , когда катушка реле находится на .

Подключитесь к COM и NC , если вы хотите, чтобы коммутируемая цепь была включена , когда катушка реле выключена .



Выбор реле

При выборе реле необходимо учитывать несколько особенностей:

  1. Физический размер и расположение штифтов
    Если вы выбираете реле для существующей печатной платы, вам необходимо убедиться, что его размеры и расположение штифтов подходят. Вы должны найти эту информацию в каталог поставщика или на его сайте.
  2. Напряжение катушки
    Номинальное напряжение и сопротивление катушки реле должны соответствовать цепи, питающей катушка реле. Многие реле имеют катушку, рассчитанную на питание 12 В, но реле 5 В и 24 В также легко доступны. Некоторые реле отлично работают с напряжением питания. что немного ниже их номинального значения.
  3. Сопротивление катушки
    Цепь должна обеспечивать ток, необходимый для катушки реле. Вы можете использовать закон Ома для расчета силы тока:
Ток катушки реле = напряжение питания
сопротивление катушки

Например: реле питания 12 В с сопротивлением катушки 400 пропускает ток 30 мА.Это нормально для микросхемы таймера 555 (максимальный выходной ток 200 мА), но это слишком много для большинства микросхем, и они потребуют транзистор для усиления тока.

  1. Номиналы переключателей (напряжение и ток)
    Переключающие контакты реле должны соответствовать цепи, которой они должны управлять. Вам нужно будет проверить номинальное напряжение и ток. Обратите внимание, что номинальное напряжение обычно выше для переменного тока, например: «5 А при 24 В постоянного тока или 125 В переменного тока».
  2. Расположение переключающих контактов (SPDT, DPDT и т. Д.)
    Большинство реле SPDT или DPDT, которые часто описываются как «однополюсное переключение» (SPCO). или «двухполюсное переключение» (DPCO).Для получения дополнительной информации см. Страницу переключатели.

Rapid Electronics: реле


Защитные диоды для реле

Транзисторы и ИС должны быть защищены от кратковременного образования высокого напряжения. когда обмотка реле выключена. На схеме показано, как сигнальный диод (например, 1N4148) подключается «назад» через катушку реле для обеспечения этой защиты.

Ток, протекающий через катушку реле, создает магнитное поле, которое внезапно схлопывается. при отключении тока.Внезапный коллапс магнитного поля вызывает кратковременное высокое напряжение на катушке реле, которое может повредить транзисторы и ИС. Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку. (и диод), поэтому магнитное поле гаснет быстро, а не мгновенно. Это предотвращает индуцированное напряжение становится достаточно высоким, чтобы вызвать повреждение транзисторов и ИС.



Герконовое реле

Герконовые реле состоят из катушки, окружающей геркон.Герконовые переключатели обычно работают с магнитом, но в герконовом реле течет ток. через катушку для создания магнитного поля и замыкания геркона.

Реле

обычно имеют более высокое сопротивление катушки, чем стандартные реле. (1000 например) и широкий диапазон питающих напряжений (например, 9-20В). Они способны переключать намного быстрее стандартных реле, до нескольких сотен раз в секунду; но они может переключать только малые токи (например, максимум 500 мА).

Показанное герконовое реле подключается к стандартному 14-контактному разъему DIL («держатель IC»).

Rapid Electronics: герконовые реле

Фотография © Rapid Electronics


Сравнение реле и транзисторов

Подобно реле, транзисторы могут использоваться в качестве переключателя с электрическим управлением. Для коммутации малых токов постоянного тока (<1 А) при низком напряжении они обычно лучше выбор чем реле. Однако транзисторы не могут переключать переменный ток (например, электросеть). а в простых схемах они обычно не подходят для коммутации больших токов (> 5 А).В этих случаях потребуется реле, но учтите, что для переключения может потребоваться транзистор малой мощности. ток для катушки реле.

Основные преимущества и недостатки реле перечислены ниже:

Преимущества реле:
  • Реле могут переключать переменного тока и постоянного тока, транзисторы могут переключать только постоянный ток.
  • Реле
  • могут переключать на более высокие напряжения , чем стандартные транзисторы.
  • Реле
  • часто являются лучшим выбором для переключения больших токов (> 5A).
  • Реле могут переключать множество контактов одновременно.
Недостатки реле:
  • Реле на более громоздкие, чем на транзисторы для коммутации малых токов.
  • Реле не могут переключаться быстро (за исключением герконовых реле), транзисторы могут переключаться много раз в секунду.
  • Реле потребляют больше энергии из-за тока, протекающего через их катушку.
  • Реле требуют большего тока, чем могут обеспечить многие ИС , поэтому низкое энергопотребление Транзистор может понадобиться для переключения тока катушки реле.

Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку. У них есть широкий ассортимент реле и других компонентов для электроники, и я рад рекомендую их как поставщика.


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google.Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Веб-сайт размещен на Tsohost

Реле тока

, серия RAS-A | Kasuga Electric Works

Номер детали Объемная скидка Дней до отгрузки Рабочая температура окружающей среды
(℃)
Емкость выходного контакта Потребляемая мощность Перегрузочная способность: 1 секунда непрерывной Время установки Диапазон времени установки
( Секунды)
Диапазон настройки времени компенсации пуска (только для операций сверхтока)
(секунды)
Доступно

7 дней и более

от -10 до +50 Не сопротивляется при: 250 В переменного тока, 6 А (cos Ø = 1), 30 В постоянного тока, 6 А (L / R = 0 мс), нагрузка на проводник: 250 В переменного тока, 1 А (cos Ø = 0. 4), 30 В постоянного тока 1A (L / R = 7 мс) 6 ВА или меньше 15A / 125A 0,1 до 30 0 до 25

Загрузка …

Основная информация

заявка Для двигателя Конфигурация контактов 1c Форма клеммы Винтовое крепление
Габаритная высота (мм) 95 Габаритная ширина (мм) 23 Размерная глубина (мм) 116
Тип Реле тока Диапазон тока (A) AC / DC 6. От 0 до 14,0 А Номинальное напряжение питания AC100 до 220

Пожалуйста, проверьте тип / размеры / характеристики детали RAS140A в реле тока серии RAS-A.

MSD 8961 MSD Сильноточное реле, SPST

Сильноточное реле SPST рассчитано на 30 А при входном напряжении 12 В постоянного тока.

ЧАСТЬ № 8961

Будьте первым, кто оставит отзыв 39 долларов.70 Предлагаемая розничная торговля
35,73 $ Твоя цена

Бесплатная доставка при заказе от $ 100 *

В наличии

Обзор

Сильноточные реле MSD — это то, что вам нужно для активации аксессуаров, потребляющих большой ток.Эти реле очень надежны благодаря полностью автоматизированному производственному процессу и сложной процедуре намотки катушки. Реле идеально подходит для использования с переключателем MSD RPM Activated, когда 12 вольт ответственны за активацию сильноточного устройства, такого как закись азота. Реле DPST также рассчитано на 30 ампер при входном напряжении 12 вольт. Это реле — лучший выбор, когда требуется 12 вольт для одновременной активации нескольких сильноточных устройств, таких как многоступенчатые закись азота.

Спецификации

9050 9050 Ограниченная гарантия на 1 год
Марка MSD
Код выбросов 5
Тип продукта Реле
Гарантия

Выбросы

5

Эта деталь разрешена для продажи или использования на транспортных средствах с контролируемыми выбросами, неконтролируемых (не контролируемых выбросами) транспортных средствах и транспортных средствах, предназначенных только для гонок, поскольку она не влияет на выбросы транспортных средств и не покрывается нормы выбросов.

Технические ресурсы

Информация о гарантии

Также купил Отзывы

Будьте первым напишите отзыв

Написать рецензию

* Бесплатная доставка и обработка предлагаются только для соседних США при заказах на сумму более 100 долларов, за исключением деталей для оформления и негабаритных грузов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *