Токи фуко определение: Вихревые токи – токи Фуко, что это такое и где они используются | Энергофиксик

Содержание

Вихревые токи – токи Фуко, что это такое и где они используются | Энергофиксик

Вихревые или еще так называемые цикличные токи могут нести в себе помимо вреда еще и пользу. С одной стороны, вихревые токи — это непосредственная причина потерь электроэнергии в проводнике либо же катушке. В то же самое время на этом эффекте построены современные индукционные печи, так что польза от таких токов есть. Давайте поговорим о пользе и вреде немного по подробней.

yandex.ru

yandex.ru

Краткое определение

Для начала давайте дадим определение озвученному явлению. Вихревые токи — это такие токи, которые начинают протекать по причине воздействия переменного магнитного поля. При этом может изменяться не само поле, а положение проводника в этом поле, то есть если проводник начнет перемещаться в статичном поле, то в нем все равно образуются токи Фуко.

И траекторию протекания таких токов определить невозможно. Известно лишь то, что ток проходит в том месте, где сопротивление минимально.

Как открыли это явление

Изначально вихревые токи были зафиксированы в 1824 году ученым
Д.А. Араго во время проведения следующего опыта:

На одной оси были смонтированы медный диск и магнитная стрелка, диск располагался внизу, а стрелка несколько выше. Так вот, когда стрелку вращали, то медный диск также начинал вращаться, так как протекающие токи формировали магнитное поле, которое и вступало во взаимодействие с магнитной стрелкой.

Наблюдаемый эффект получил название – явление Араго.

yandex.ru

yandex.ru

По истечении нескольких лет этот вопрос стал изучать Максвелл Фарадей, который как раз открыл закон электромагнитной индукции. Так вот, согласно открытому закону было сделано предположение, что магнитное поле оказывает непосредственное воздействие на атомарную решетку проводника.

И образующийся в результате данного воздействия электрический ток, всегда формирует магнитное поле во всем проводнике.

А подробно описал вихревые токи уже экспериментатор Фуко, именно поэтому второе название вихревых токов – токи Фуко. С историей немного познакомились, теперь давайте узнаем природу вихревых токов.

Природа вихревых токов

Замкнутые циклические токи могут образоваться в проводнике только в том варианте, когда магнитное поле, в котором находится проводник, имеет нестабильную структуру, то есть имеет вращение или изменяется со временем.

Из этого следует, что сила вихревых токов имеет прямую связь со скоростью изменения магнитного потока, проходящего через проводник.

По общепринятой теории электроны перемещаются в проводнике линейным образом из-за разности потенциалов, а это значит, что ток имеет прямое направление.

yandex.ru

yandex.ru

Токи Фуко ведут себя совершенно по-другому и образуют вихревой замкнутый контур прямо в проводнике. При этом данные токи способны на взаимодействие с магнитным полем, которое их и создало.

Проводя исследование этих токов, ученый Ленц сделал вывод, что сгенерированное вихревыми токами магнитное поле не позволяет магнитному потоку, который и создал эти токи, измениться. При этом направленность силовых линий вихревого тока идентично вектору направления индукционного тока.

Вихревые токи и их вред

Давайте вспомним, как выглядит обычный трансформатор.

Так вот, если вы внимательно посмотрите на сердечник, то вы увидите, что он собран из отдельных пластин. А вам не кажется, что гораздо проще его было выполнить цельным?

Именно таким «дроблением» пытаются максимально снизить негативное воздействие токов Фуко. Ведь вихревые токи нагревают тело, в котором они протекают.

Как же они появляются в трансформаторе? Его работа и основана на принципах взаимодействия магнитных полей переменного характера, а как мы уже знаем переменное поле неизбежно порождает вихревые токи.

yandex.ru

yandex.ru

Получается, что вихревой ток нагревает сердечник. А нагрев ведет к снижению КПД и сильный перегрев приведет к оплавлению изоляции, а значит разрушению трансформатора.

Как снижают потери

Данные потери могут быть описаны следующей формулой:

Как вы знаете, верно следующее утверждение: проводник с маленьким сечением обладает большим сопротивлением, а чем больше сопротивление проводника, тем меньший ток проходит через него.

Именно поэтому сердечник выполнен из цельного куска стали, а не собран из тонких пластин, которые изолированы друг от друга окалиной или слоем лака. Такой способ сборки сердечника максимально уменьшает потери в сердечнике, то есть сводят вихревые токи до минимума.

Полезное использование вихревых токов

Данные токи не только несут негатив. Их давно научились использовать с пользой. Так, например, свойства вихревых токов используются в индукционных счетчиках. Данные токи замедляют вращение алюминиевого диска, который вращается под действием магнитного поля.

Так же создание индукционных сталеплавильных печей оказало несоизмеримый вклад в развитие всей современной индустрии производства стали.

yandex.ru

yandex.ru

Такие печи работают следующим образом: металл, который будут подвергать плавлению, помещают внутрь катушки, через которую начинают пропускать ток повышенной частоты. При этом магнитное поле формирует большие токи внутри металла, и последующий нагрев расплавляет металл.

В многоквартирных домах вы сможете увидеть индукционные плитки, принцип работы которых также основан на использовании эффекта образования вихревых токов.

Заключение

Это все, что я хотел вам рассказать о вихревых токах (токах Фуко). Если статья оказалась вам полезна или интересна, то оцените ее лайком. Спасибо за ваше внимание!

Вихревые токи (токи Фуко): физический смысл, потери, применение

В электрических устройствах, приборах, машинах металлические детали способны иногда перемещаться, находясь в магнитном поле. При этом в них индуцируется ЭДС самоиндукции. В результате воздействия ЭДС в толще металлических деталей будут циркулировать вихревые В электрических устройствах, приборах, машинах металлические детали способны иногда перемещаться, находясь в магнитном поле. При этом в них индуцируется ЭДС самоиндукции. В результате воздействия ЭДС в толще металлических деталей будут циркулировать вихревые токи или их еще называют токи Фуко (по фамилии первого исследователя).

В свою очередь, вихревые токи индуцируют собственные магнитные потоки, замыкающиеся в проводнике, которые в соответствии с правилом Ленца препятствуют изменению магнитного потока прибора или устройства, тем самым ослабляя его.

Рассмотрим процесс формирования вихревых токов в металлическом сердечнике, помещенном в магнитное поле катушки, по которой протекает переменный ток. Вокруг катушки формируется переменный магнитный поток, пересекающий сердечник.

В сердечнике также будет индуцироваться ЭДС, вызывающая в нем так называемые вихревые токи, которые нагревают сердечник. Поскольку сопротивление сердечника незначительно, то наводимые индукционные токи могут быть достаточно большими, что приведет к сильному нагреву сердечника.

Первые исследования в области изучения вихревых токов были проведены в 1824 г. французким физиком Д.Ф. Араго, который обнаружил их наличие в медном диске, находящемся на оси под обращающейся магнитной стрелкой.

Под воздействием вихревых токов диск оборачивался.

Первые подробные исследования вихревых токов были проведены французским исследователем Фуко, и впоследствии по его имени они и получили свое название.

Методы уменьшения вихревых токов

Мощность, расходуемая на нагрев электротехнических устройств электромагнитного типа, значительно снижает их КПД. Поэтому с целью уменьшения величины вихревых токов повышают сопротивление магнитопровода.

Для этого сердечники выполняют не сплошными, а набирают из отдельных тонких пластин (толщиной 0,1- 0,5 мм), покрытым слоем изоляционного материала.

Также при изготовлении сердечника в сырье вводят специальные добавки, увеличивающие его сопротивление.

Практическое применение токов Фуко

В некоторых случаях вихревые токи используют в полезных целях. К примеру, создание устройства магнитного тормоза диска электросчетчика. Оборачиваясь, диск пересекает магнитные линии магнита, в толщине диска формируется вихревые токи, которые создают свои магнитные потоки, препятствующие вращению диска, и вызывающие его торможение.

Полезное действие вихревые токи оказывают при индукционной плавке металлов.

Для этого тигель с металлом размещают в магнитное поле, которое своим воздействием индуцирует вихревые токи, расплавляющие металл, при этом тигель остается холодным.

Вихревые токи

Каждый человек, который изучает электродинамику и другие разделы науки об электричестве, сталкивается с таким понятием, как вихревые токи. Что это такое, какие есть свойства вихревых токов, как определить их в трансформаторе? Об этом и другом далее.

Блок: 1/8 | Кол-во символов: 251
Источник: https://rusenergetics.ru/ustroistvo/toki-fuko

Суть явления

Вихревые или токи фуко — это те, которые протекают из-за воздействия переменного магнитного поля. При этом изменяется не само поле, а проводниковое положение данного поля. То есть если будет происходить проводниковое перемещение статичного поля, то в нем все равно будет образовываться энергия.

Токи Фуко

Фуко возникают там, где изменяется переменное магнитное поля и фактически они ничем не отличаются от энергии, идущей по проводам, или вторичных электрических трансформаторных обмотков.

Определение из учебного пособия

Блок: 2/8 | Кол-во символов: 535
Источник: https://rusenergetics.ru/ustroistvo/toki-fuko

Открытие вихревых токов

По историческим данным, впервые это явление обнаружил в начале 19 века французский исследователь Д. Араго. Специалистам известен его наглядный опыт. Вращение намагниченной стрелкой приводит в движение тонкий диск из меди, расположенный на небольшом расстоянии сверху. Природу явления раскрыл М. Фарадей, объяснивший представленный простой пример перемещения взаимодействием поля и образованных в проводнике токов. Они получили специфическое название по фамилии ученого. Фуко обнаружил нагрев тел при достаточно сильном энергетическом потенциале источника переменного тока.

Блок: 2/8 | Кол-во символов: 597
Источник: https://amperof.ru/teoriya/toki-fuko-ponyatie-primenenie.html

Физические свойства и определение токов Фуко

К вихревым токам относятся электрические токи, которые возникают под влиянием электромагнитной индукции, появляющейся в металлической или другой проводящей среде. Эта индукция появляется под воздействием изменяющегося магнитного потока.

В свою очередь вихревые токи способствуют появлению собственных магнитных потоков. В соответствии с законом Ленца, они оказывают противодействие магнитному потоку катушки и делают его слабее. Это приводит к нагреву сердечника и бесполезным тратам электрической энергии.

Данный процесс можно рассмотреть подробнее на примере металлического сердечника. На него помещается катушка, с пропущенным переменным током. Вокруг катушки происходит образование переменного магнитного тока, пересекающего сердечник. Одновременно в нем наводится индуцированная электродвижущая сила, вызывающая, в свою очередь, вихревые токи. Их действие вызывает нагревание сердечника. При незначительном сопротивлении сердечника, наведенные токи могут иметь довольно большое значение и привести к существенному нагреву.

Блок: 2/4 | Кол-во символов: 1077
Источник: https://electric-220.ru/news/vikhrevye_toki_fuko/2016-06-13-975

Природа вихревых токов

Образование ЭДС в проводниках при воздействии изменяющегося магнитного потока называют индукцией. На принципах этого явления функционируют электродвигатели, генераторы, катушки фильтров и колебательных контуров.

Что это такое токи Фуко, показано на рисунке

При определенном расположении источника переменного поля и проводника приходится учитывать отмеченные выше эффекты. При необходимости в контрольных точках можно измерить определенное напряжение. Важные особенности:

  • с учетом неравномерного распределения электрической проводимости затруднено точное определение траектории токов;
  • они будут возникать при перемещении пластины относительно постоянного магнита;
  • линии образуют замкнутые контуры в толще образца;
  • они расположены перпендикулярно вектору магнитного потока.

Блок: 3/8 | Кол-во символов: 796
Источник: https://amperof.ru/teoriya/toki-fuko-ponyatie-primenenie.html

Практическое применение вихревых токов

Вихревые токи полезны в промышленности для рассеивания нежелательной энергии, например у поворотного кронштейна механического баланса, особенно если сила тока очень высокая. Магнит в конце опоры настраивает вихревые токи в металлической пластине, прикрепленной к концу кронштейна, скажем, ansys.

Схема: вихревые токи

Вихревые потоки, как учит физика, могут быть также использованы в качестве эффективного тормозного усилия в двигателях транзитного поезда. Электромагнитные приспособления и механизмы на поезде около рельсов специально настроены для создания вихревых токов. Благодаря движению тока, получается плавный спуск системы и поезд останавливается.

Закрученные токи вредны в измерительных трансформаторах и для человека. Металлический сердечник используется в трансформаторе, чтобы увеличить поток. К сожалению, вихревые токи, полученные в якоре или сердечнике, могут увеличить потери энергии. Построив металлическую сердцевину чередующихся слоев из проводящих и не проводящих энергию, материалов, размер индуцированных петель уменьшается, таким образом, уменьшая потери энергии. Шум, который производит трансформатор при работе, является следствием именно такого конструктивного решения.

Видео: вихревые токи Фуко

Еще один интересный использования вихревой волны – применение их в электросчетчиках или медицине. В нижней части каждого счетчика расположен тонкий алюминиевый диск, который всегда вращается. Это диск движется в магнитном поле, так что там всегда есть вихревых токи, цель которых замедлить движения диска. Благодаря этому датчик работает точно и без перепадов.

Блок: 2/5 | Кол-во символов: 1624
Источник: https://www.asutpp.ru/vixrevye-toki.html

Литература

  • Сивухин Д. В.: Общий курс физики, том 3. Электричество. 1977
  • Савельев И. В.: Курс общей физики, том 2. Электричество. 1970
  • Неразрушающий контроль: справочник: В 7т. Под общ. ред. В. В. Клюева. Т. 2: В 2 кн.-М.:Машиностроение, 2003.-688 с.: ил.

Блок: 4/5 | Кол-во символов: 254
Источник: https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D1%85%D1%80%D0%B5%D0%B2%D1%8B%D0%B5_%D1%82%D0%BE%D0%BA%D0%B8

Полезное и вредное действие

Имеют токи фуко полезное и вредное действие.

Они нагревают и плавят металлы в области вакуума и демпфера, но в то же время происходят энергопотери в области трансформаторных сердечников и генераторов из-за того, что выделяется большое количество тепла.

Полезное действие индукционных токов

Блок: 4/8 | Кол-во символов: 318
Источник: https://rusenergetics.ru/ustroistvo/toki-fuko

Принципы вихревых токов

Для детального изучения процессов можно рассмотреть действие полей при подключении к источнику типовой катушки индукции. Переменный ток в проводнике образует силовые линии поля. Напряженность создает разницу потенциалов в соседних петлях. Движение электронов формирует вихревые токи. Они движутся по траекториям наименьшего сопротивления, которое изменяется при наличии в изделиях примесей, трещин, полостей и других дефектов.

Закон Ома

Вихревые токи – это направленное движение электронов в проводнике. Поэтому рассматриваемые явления вполне могут быть описаны базовыми физическими формулами и определениями.

Сила тока рассчитывается по закону Ома:

I = (-1/R) * (dФ/dt), где:

  • R – электрическое сопротивление;
  • Ф – магнитный поток;
  • dt – интервал времени.

Понятно, что для практических вычислений сложнее всего выяснить значение проводимости. Кроме отмеченных выше неравномерностей пути прохождения тока (различия проводника), траектория меняется под воздействием переменного поля.

Индуктивность

Следует подчеркнуть проницаемость проводника силовыми линиями электромагнитного поля. Такое воздействие при увеличении тока источника питания интенсифицирует вихревые эффекты в контрольном образце, установленном на небольшом расстоянии. Амплитуда наведенных токов и фаза определяются нагрузкой и проводимостью катушки индукции. Как и в предыдущем примере, разрывы и другие дефекты проводящего участка оказывают существенное влияние на рабочие электрические характеристики конструкции.

Магнитные поля

Зависимость от параметров материалов показана на рисунке.

Цифрами отмечены:

  1. пара или диамагнетики;
  2. ферриты;
  3. железо.

Как будут возникать токи в разных образцах при равных общих условиях

Интересно. Взаимное воздействие оказывают магнитные поля, созданные катушкой и вихревыми процессами.

Дефектоскопия

Рассмотренные недостатки можно преобразовать в достоинства. По изменению вихревых токов определяют наличие дефектов при сканировании контрольных образцов. При создании измерительных приборов учитывают следующие факторы:

  • проводимость определяет силу и путь прохождения токов;
  • ровные поверхности исследовать проще;
  • вихревые процессы активизируется при уменьшении рабочей области.

Обнаружение контура дефектоскопом

С учетом целевого назначения корректируют конструкцию и размещение датчиков. Как правило, катушку устанавливают ближе к месту измерения. Корректируют форму изделия для лучшего соответствия объекту обследования.

Уменьшение вихревых токов

Чтобы успешно бороться с негативными проявлениями вихревых эффектов в электроэнергетике и других областях, пользуются отмеченными особенностями. В частности, увеличивают сопротивление проводников добавлением кремниевых и других присадок. Наборы из пластин размещают параллельно вектору магнитного потока. Обеспечивают надежную изоляцию элементов конструкции.

Блок: 6/8 | Кол-во символов: 2827
Источник: https://amperof.ru/teoriya/toki-fuko-ponyatie-primenenie.html

Как определить в трансформаторе

Узнать, где находятся вихревые токи в трансформаторе, несложно. Как правило, они располагаются в трансформаторных сердечниках. Когда замыкаются в сердечниках, то нагревают их и создают энергию. Поскольку появляются в плоскостях, которые перпендикулярны магнитному потоку по характеристике, происходит трансформаторное уменьшение сердечников.

Обратите внимание! Для их измерения используются изолированные стальные пластины.

Определение в трансформаторе

Блок: 5/8 | Кол-во символов: 489
Источник: https://rusenergetics.ru/ustroistvo/toki-fuko

Полезное и негативное воздействие

Почему явление может применяться для решения практических задач, показано выше на конкретных примерах. Однако следует помнить о потерях, которые способны провоцировать вихревые токи. Для исключения ошибок необходимо тщательно проверять конструкторский расчет. Обязательно нужно оценить степень влияния переменного магнитного поля на проводящие материалы.

Блок: 7/8 | Кол-во символов: 389
Источник: https://amperof.ru/teoriya/toki-fuko-ponyatie-primenenie.html

Видео

Блок: 8/8 | Кол-во символов: 6
Источник: https://amperof.ru/teoriya/toki-fuko-ponyatie-primenenie. html

Кол-во блоков: 19 | Общее кол-во символов: 11195
Количество использованных доноров: 5
Информация по каждому донору:
  1. https://www.asutpp.ru/vixrevye-toki.html: использовано 2 блоков из 5, кол-во символов 1831 (16%)
  2. https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D1%85%D1%80%D0%B5%D0%B2%D1%8B%D0%B5_%D1%82%D0%BE%D0%BA%D0%B8: использовано 1 блоков из 5, кол-во символов 254 (2%)
  3. https://amperof.ru/teoriya/toki-fuko-ponyatie-primenenie.html: использовано 5 блоков из 8, кол-во символов 4615 (41%)
  4. https://electric-220.ru/news/vikhrevye_toki_fuko/2016-06-13-975: использовано 2 блоков из 4, кол-во символов 1731 (15%)
  5. https://rusenergetics.ru/ustroistvo/toki-fuko: использовано 5 блоков из 8, кол-во символов 2764 (25%)

Исследование взаимодействия токов Фуко с переменным магнитным полем

Лекц ия 21 Электромагнитная индукция

Лекц ия 21 Электромагнитная индукция Вопросы. Опыты Фарадея. Направление индукционного тока. Правило Ленца. Электродвижущая сила индукции. Закон электромагнитной индукции. Вихревое электрическое поле.

Подробнее

Тема 2.3. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Тема 2.3. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ 1. Явление электромагнитной индукции (опыты Фарадея) 2. Закон Фарадея 3. Вихревые токи (токи Фуко) 4. Индуктивность контура. Самоиндукция 5. Взаимная индукция 1. Явление

Подробнее

Явление электромагнитной индукции

Магнитное поле Явление электромагнитной индукции. Закон электромагнитной индукции Фарадея. Правило Ленца. Вихревое электрическое поле. Токи Фуко. Генератор, электродвигатель. Явление электромагнитной индукции

Подробнее

Электромагнитная индукция

Электромагнитная индукция Явление электромагнитной индукции Электромагнитная индукция явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его. Явление

Подробнее

ЛЕКЦИЯ 11. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

ЛЕКЦИЯ 11. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ Серюкова Ирина Владимировна, к.ф.-м.н., доцент кафедры «Физики» КрасГАУ Использованная литература 1. Грабовский Р.И. Курс физики.- СПб.: Издательство «Лань», 00. Трофимова

Подробнее

10-6. Магнитный поезд

. Магнитный поезд Приборы и материалы Алюминиевый желоб (рельс) закрепленный так, чтобы можно было регулировать угол наклона; пять одинаковых неодимовых магнитов массой m = 0,73 г (магниты намагничены

Подробнее

Электромагнитная индукция

И. В. Яковлев Материалы по физике MthUs.ru Электромагнитная индукция Задача 1. Проволочное кольцо радиусом r находится в однородном магнитном поле, линии которого перпендикулярны плоскости кольца. Индукция

Подробнее

ЕСТЕСТВОЗНАНИЕ. ФИЗИКА.

ЕСТЕСТВОЗНАНИЕ. ФИЗИКА. Постоянный электрический ток. Сила тока, напряжение, электрическое сопротивление. Закон Ома для участка электрической цепи. Тепловое действие электрического тока. Закон Джоуля-Ленца

Подробнее

Лекц ия 23 Магнитные свойства вещества

Лекц ия 3 Магнитные свойства вещества Вопросы. Магнитное поле в магнитиках. Связь индукции и напряженности магнитного поля в магнитиках. Магнитная проницаемость и восприимчивость. Гиромагнитные явления.

Подробнее

9.Электродинамика. Магнетизм.

9.Электродинамика. Магнетизм. 005 1.Силу Лоренца можно определить по формуле А) F = q υ Bsinα. B) F = I Δ l Bsinα. C) F = qe. D) F = k. E) F = pgv..токи, возникающие в массивных проводниках, называют А)

Подробнее

Магнитное поле.

Лукьянов И.В.

Магнитное поле. Лукьянов И.В. Содержание: 1. Магнитное поле в вакууме. 2. Электромагнитная индукция. 3. Магнитное поле в веществе. Магнитное поле в вакууме. Содержание раздела: 1. Понятие магнитного поля

Подробнее

ЗАДАНИЙ ЧАСТЬ «МАГНИТНОЕ ПОЛЕ».

ФИЗИКА 11.1 класс. Профиль. БАНК ЗАДАНИЙ ЧАСТЬ 2 «МАГНИТНОЕ ПОЛЕ». 1. Подберите наиболее правильное продолжение фразы «Магнитные поля создаются…»: A. атомами железа. Б. электрическими зарядами. B. магнитными

Подробнее

РАБОТА 7 ИЗУЧЕНИЕ МАГНИТНЫХ ПОЛЕЙ

РАБОТА 7 ИЗУЧЕНИЕ МАГНИТНЫХ ПОЛЕЙ Цель работы: Исследование магнитного поля прямого тока, определение магнитной постоянной. Введение Магнитное поле возникает в пространстве, окружающем проводники с током,

Подробнее

Вариант 1 I 3 I 1 I 2 I 4

Вариант 1 1. В некоторой системе отсчета электрические заряды q 1 и q 2 неподвижны. Наблюдатель А находится в покое, а наблюдатель В движется с постоянной скоростью. Одинакова ли по величине сила взаимодействия

Подробнее

Пробный вариант ОГЭ по физике. Часть 1.

Пробный вариант ОГЭ по физике. Часть 1. 1. Для каждого физического понятия из первого столбца подберите соответствующий пример из второго столбца. Физические понятия Примеры А) физическая величина Б) единица

Подробнее

Учитель физики Шпаковская О.Ю.

Учитель физики Шпаковская О.Ю. 9 класс Урок по теме «Электромагнитная индукция» Цель: изучить понятие электромагнитной индукции. Учащиеся должны знать: понятие электромагнитной индукции; понятие индукционный

Подробнее

ПОДГОТОВКА ЭЛЕКТРОМАГНЕТИЗМ.

ПОДГОТОВКА ЭЛЕКТРОМАГНЕТИЗМ. 1. Какой буквой в физике принято обозначать Магнитная индукция? Магнитный поток? Индуктивность? ЭДС индукции? Активная длина проводника? Магнитная проницаемость среды? Энергия

Подробнее

Отложенные задания (40)

Отложенные задания (40) На рисунках изображены постоянные магниты с указанием линий магнитной индукции полей, создаваемых ими, и магнитные стрелки. На каком из рисунков правильно изображено положение магнитной

Подробнее

ИЗУЧЕНИЕ МАГНИТНЫХ ПОЛЕЙ

509 Министерство образования Республики Беларусь БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра физики ЛАБОРАТОРНАЯ РАБОТА.6 ИЗУЧЕНИЕ МАГНИТНЫХ ПОЛЕЙ МЕТОДИЧЕСКОЕ ПОСОБИЕ

Подробнее

ИЗУЧЕНИЕ МАГНИТНЫХ ПОЛЕЙ

Министерство образования Республики Беларусь БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра физики ЛАБОРАТОРНАЯ РАБОТА. 6 ИЗУЧЕНИЕ МАГНИТНЫХ ПОЛЕЙ МЕТОДИЧЕСКОЕ ПОСОБИЕ Минск

Подробнее

Новые свойства катодных лучей.

Jean Perrin, CRAS, 121, 1130 1895 Новые свойства катодных лучей. Сообщение гос-на Дж. Перрэна, представленное гос-м Липманом. Перевод с французского выполнен Николаенко Л.В. I. Существуют две гипотезы

Подробнее

11 класс. 1 полугодие

Обязательный минимум по предмету физика 11 класс 1 полугодие Основные понятия: Магнитное поле. Взаимодействие токов. Магнитное поле. Индукция магнитного поля. Сила Ампера. Сила Лоренца. Электромагнитная

Подробнее

Электромагнитная индукция

И. В. Яковлев Материалы по физике MthUs.ru Электромагнитная индукция Задача 1. Проволочное кольцо радиусом r находится в однородном магнитном поле, линии которого перпендикулярны плоскости кольца. Индукция

Подробнее

Электромагнитная индукция. Лекция 2.7.

Электромагнитная индукция Лекция 2.7. ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ 1. Опыты Фарадея. Индукционный ток. Правило Ленца. 2. Величина Э.Д.С. индукции. 3. Природа Э.Д.С. индукции. 4. Токи Фуко. 5. Явление

Подробнее

Польза и вред действия токов Фуко

Электрическое поле окружает человека повсеместно, как в производственных процессах, так и в повседневной жизни. Большинство людей даже не подразумевают, что в процессе своей жизнедеятельности сталкиваются с таким явлением, как вихревые токи. Эти токи могут оказывать как положительное, так и негативное влияние на жизнь человека, и нет однозначного ответа: больше от них пользы или вреда.

Французский физик Жанн Фуко, давший вразумительное объяснение вихревым потокам

Так, благодаря данному явлению функционируют индукционные электрические плиты и печи, либо свет включается при нажатии на кнопку. Но в тоже время под воздействием этих потоков теряется энергия в катушках и проводнике, и для ее сохранения приходится применять дополнительные технологические действия. Например, данная технология применима в трансформаторах. Его сердцевина (сердечник) состоит из большого количества мелких и плоских шихтовых пластин, которые прочно соединены друг с другом при помощи лака. Очень часто сердечник дополнительно обтянут шпилькой, основное предназначение которой снизить вихревые токи. В современном мире этот феномен стали называть токи Фуко.

История открытия

Первое понятие о вихревых потоках было упомянуто в 1824 году физиком французского происхождения Д.Ф. Арго (1786-1853), который проводил ряд экспериментов с намагниченной стрелкой, крутящейся над диском из меди. В определенный момент он заметил, что без какого-либо дополнительного воздействия диск начинал крутиться вместе со стрелкой. Точного объяснения данного феномена физик дать не смог, но оно получило наименование «явление Арго».

Спустя некоторое время, Максвелл Фарадей, рассматривавший вихревые токи с точки зрения постулата, основанного на знаниях об электромагнитной индукции, который он же и открыл, сделал заключение, что электрическое поле, исходящее от вращающейся стрелки, оказывает прямое воздействие на атомное строение диска из меди, что и способствует образованию направленного движения заряженных частиц. Электроток способствует образованию электромагнитного поля вокруг медного диска.

Понятие вихревых токов

Более тщательно изучил, а также подробно описал в своих работах вихревые токи французский физик Жанн Фуко (1819-1868), впоследствии данное действие было названо в честь него и получило название актуальное в сегодняшние дни – токи Фуко. Эти токи схожи с индукционными токами, вырабатываемыми электрогенераторами. При наличии постоянного или временного магнитно-вихревого поля в непосредственной близости от проводника обязательно образуются токи Фуко: чем объемнее проводник, тем сильнее будет сила потоков тока.

Мощность вихревых токов

Периодические и непостоянные токи появляются в проводниках только в том случае, когда магнитное поле не одинаково и попеременно меняется в зависимости от силы вращения. Соответственно, сила вихревого потока прямо пропорционально связана с изменением магнитного поля вокруг проводника.

Токи Фуко функционируют немного по другому принципу. Они находятся непосредственно в самом проводнике, образуя замкнутые очертания, напрямую взаимодействуя с магнитным полем, послужившим их появлению. Изучая вихревые токи, русский физик Эмилий Христианович Ленц (1804-1865) пришел к выводу, что магнитное поле вихревых потоков не дает измениться магнитному полю, благодаря которому они зародились. Сила индукционного тока и вихревого потока движется по одному векторному направлению.

Варианты уменьшения силы вихревых потоков

Для увеличения КПД различных технических приборов требуется существенное уменьшение вихревых токов. Для этого требуется увеличение электрического сопротивления магнитопровода. Способ уменьшения вредного воздействия  токов Фуко зависит напрямую от типа электрического оборудования.

Якорные сердечники машин с постоянным током и магнитные провода устройств с переменным током в процессе сборки тщательным образом изолируются друг от друга при помощи специальных пластин из штампованной листовой электротехнической стали, толщина которых может варьироваться от 0,1 до 0,5 мм, и «запекаются» специальными лаками или окалиной. Пластины при этом должны быть расположены параллельно магнитным потокам.

В процессе литья деталей сердечника в его состав добавляются специальные компоненты, к примеру, кремний, увеличивающие силу его электрического сопротивления.

В другом случае при сборке сердечников применяются куски железной проволоки, прошедшие специальную тепловую обработку, которые располагаются строго параллельно магнитному полю. Также дополнительно могут быть использованы специальные изолирующие прокладки.

При такой сборке сердечника сила вихревых потоков существенно снижается, а КПД увеличивается.

Уменьшение мощности вихревых потоков

В магнитных проводах устройств с высокой частотой работы для снижения силы вихревого потока провода тщательно изолируются друг от друга и располагаются в виде спирали (жгута), каждый из которых покрыт специальным изолирующим материалом. Такой метод изоляции получил название – лицендрат. Его применяют на сегодняшний день для снижения потоков Фуко.

В процессе передачи электрической энергии на дальние расстояния применяется особый многожильный кабель, где каждая жила изолирована отдельно, это существенно уменьшает потери электроэнергии, тем самым увеличивая производительность.

Применение токов Фуко

Многие ученные разных времен считали и считают, что негативного воздействия от вихревых потоков куда больше, чем позитивного. Но тем не менее, человечество научилось применять токи Фуко во благо в различных областях жизнедеятельности.

Наиболее широкое применение они получили в промышленной и машиностроительной сферах. Так, на основе этого явления удалось создать насос для перекачки и закалки расплавленных металлов, а в металлургической и промышленной отраслях используются индукционные печи, которые в несколько раз превосходят аналогичные системы, работающие по другому принципу. Плавление и закалка различных металлов возможны только с применением этого явления. Вихревые потоки способствуют торможению и снижению скорости вращения металлических дисков в индукционных тормозах, без этого бы просто не функционировали скоростные поезда на магнитных подвесках. Также без вихревых потоков Фуко не обходятся современные вычислительные приборы и аппараты, вакуумные устройства, где необходима полная откачка воздуха и других газов, принцип работы современных трансформаторов возможен только благодаря применению в их конструкции вихревых потоков. Более того, оборудование, работающее на основе токов Фуко, обладает существенной экономичностью и хорошей производительностью.

Индукционный мотор, работающий на вихревых потоках

Таким образом, такое действие, как токи Фуко, – полезное, легко объяснимое и довольно понятное явление на сегодняшний день, представляет собой вихревые потоки, которые возникают под воздействием электромагнитной индукции в металлическом, а также любом другом проводнике. Вихревые токи Фуко многие ученые современности относят к удивительным явлениям в электротехнике, которые современное общество научилось использовать с пользой для себя, при необходимости доводя их до нужной мощности, уменьшая при надобности и направляя полученную энергию в правильное русло. Жанн Фуко был умным и одаренным человеком, который, помимо объяснения феномена вихревых потоков, сделал немало других важных  открытий, одним из них является нагревание металлических объектов, вертящихся в магнитном потоке благодаря воздействию вихревого тока. Он первым дал вразумительное и достаточно понятное объяснения данного факта.

Применение токов Фуко для торможения дисков в индукционных тормозах

Видео

Оцените статью:

Токи фуко — справочник студента

Каждый человек, который изучает электродинамику и другие разделы науки об электричестве, сталкивается с таким понятием, как вихревые токи. Что это такое, какие есть свойства вихревых токов, как определить их в трансформаторе? Об этом и другом далее.

Суть явления

Вихревые или токи фуко — это те, которые протекают из-за воздействия переменного магнитного поля. При этом изменяется не само поле, а проводниковое положение данного поля. То есть если будет происходить проводниковое перемещение статичного поля, то в нем все равно будет образовываться энергия.

Узнай стоимость своей работы

Бесплатная оценка заказа!

Токи Фуко

Фуко возникают там, где изменяется переменное магнитное поля и фактически они ничем не отличаются от энергии, идущей по проводам, или вторичных электрических трансформаторных обмотков.

Определение из учебного пособия

Свойства вихревых токов

Стоит отметить, что вихревая энергия не отличается от индукционной проводной. По направлению и силе Фуко зависит от металлического проводникового элемента, от того, в каком направлении идет переменный магнитный поток, какие имеет свойства металл и как изменяется магнитный поток. При этом токовое распределение очень сложное.

В проводниковых объектах, имеющих габаритные объемы, токи бывают большими, из-за чего значительно повышается температура тела.

Токовая энергия способна создавать нагревание проводника для индукционной печи и металлического плавления. Подобно другим индукционным разновидностям, Фуко взаимодействуют с первичным магнитным полем и тормозят индуктивное движение.

Узнай стоимость своей работы

Бесплатная оценка заказа!

Нагревание как одно из свойств

Полезное и вредное действие

Имеют токи фуко полезное и вредное действие. Они нагревают и плавят металлы в области вакуума и демпфера, но в то же время происходят энергопотери в области трансформаторных сердечников и генераторов из-за того, что выделяется большое количество тепла.

Полезное действие индукционных токов

Как определить в трансформаторе

Узнать, где находятся вихревые токи в трансформаторе, несложно. Как правило, они располагаются в трансформаторных сердечниках. Когда замыкаются в сердечниках, то нагревают их и создают энергию. Поскольку появляются в плоскостях, которые перпендикулярны магнитному потоку по характеристике, происходит трансформаторное уменьшение сердечников.

Определение в трансформаторе

Применение

Нашли вихревые токи применение в электромагнитной индукции. Они используются для того, чтобы тормозить вращающиеся массивные детали. Благодаря магнитоиндукционному торможению они также применяются, чтобы успокоить подвижные части электроизмерительных приборов, в частности, чтобы создать противодействующий момент и притормозить подвижную часть электросчетчиков.

Также используются они в магнитном тормозном диске на электрическом счетчике. В ряде случаев применяются в технологических операциях, которые невозможны без применения высоких частот. К примеру, при откачке воздуха из вакуумных приборов и баллонов с газом. Кроме того, они нужны, чтобы полностью обезгаживать арматуру в высокочастотном генераторе.

Применение в проводниках

Способы уменьшения блуждающих токов

Чтобы уменьшить блуждающие фуковые токи, нужно максимальным образом сделать увеличение сопротивления на токовом пути с помощью заполнения дистиллированной водой циркуляционной системы и встраивания изоляционных шлангов трубопроводов у теплового обменника и вентиля.

Стоит отметить, что нахождение их в электромашинах нежелательно из-за нагрева сердечников и создания энергопотери, поскольку по закону Леннца они размагничивают эти устройства. Чтобы уменьшить их вредное воздействие, используется несколько методов.

Так сердечники машин делают из стали и изолируют друг от друга при помощи лаковой пленки, окалины и прочих материалов. Благодаря этому они не распространяются. Кроме того, поперечный вид сечения на каждом отдельном проводнике уменьшает токовую силу.

В некоторых приборах в качестве сердечников используются катушки с отожженой железной проволокой. При этом полоски на них идут параллельно тем линиям, которые расположены на магнитном потоке.

Обратите внимание! Ограничение вихревой энергии происходит изолирующими прокладками, то есть жгуты состоят из отдельных жил, изолированных между собой.

Уменьшение токовой силы

Возможные проблемы

Вихревые виды проводят энергию и рассеивают ее, выделяя джоулевую теплоту. Такая энергия ротора асинхронной двигательной установки готовится из фурромагнетиков и способствует нагреву сердечников.

Чтобы бороться с подобным явлением, сердечники создаются из тонкой стали, покрываются изоляцией и устанавливаются поперек пластин. Если пластины имеют небольшую толщину, они обладают малой объемной плотностью. Благодаря ферритам и веществам, имеющим большое магнитосопротивление, сердечники делаются сплошными. Направление их ослабляет энергию внутри провода.

В результате он неравномерный. Это явление скин-эффекта или поверхностного эффекта, из-за которого внутренний проводник бесполезен, и в цепях, где есть большая частота, используются проводниковые трубки.

Обратите внимание! Скин-эффект применяется для того, чтобы разогревать поверхностный металл для металлической закалки. При этом закалка может быть проведена на любой глубине.

Проблемы, вызванные индукционными токами

Фуко являются индукционными токами, которые возникают в крупных проводниках сплошного типа. Обозначаются буквой ф. Они имеют свойство нагрева проводников.

В результате чего они чаще используются в индукционного типа печах. Важно отметить, что способны генерировать магнитное поле. В этом механизм их работы. В некоторых случаях они полезны, в других нежелательны.

В любом случае они используются во многих устройствах.

Источник: https://rusenergetics.ru/ustroistvo/toki-fuko

Вихревые токи Фуко: причины возникновения и применение

В электричестве есть целый ряд явлений, которые нужно знать специалистам. Хоть и не вся информация может пригодиться в повседневной практике, но иногда поможет понять причину какой либо проблемы.

Вихревые токи послужили причиной становления некоторых технологических ухищрений при изготовлении электрических машин и даже стали основой для принципа работы некоторых изобретений.

Давайте разберемся, что такое вихревые токи Фуко и как они возникают.

Краткое определение

Вихревые токи — это токи, которые протекают в проводниках под воздействием на них переменного магнитного поля. Не обязательно поле должно изменяться, может и тело двигаться в магнитном поле, все равно в нем начнёт течь ток.

Нельзя найти реальную траекторию движения токов для их учёта, ток протекает там, где находит путь с наименьшим сопротивлением. Вихревые токи всегда протекают по замкнутому контуру. Основные условия для его возникновения — нахождение предмета в переменном магнитном поле или его перемещение относительно поля.

История открытия

В 1824 году учёный Д.Ф. Араго проводил эксперимент. Он на одной оси смонтировал медный диск, над ним расположил магнитную стрелку. При вращении магнитной стрелки диск начинал двигаться.

Так впервые наблюдали явление вихревых токов. Диск начинал вращаться из-за того, что из-за протекания токов появлялось магнитное поле, которое взаимодействовало со стрелкой.

Это назвали, тогда как явление Араго.

Спустя пару лет М. Фарадей, открывший закон электромагнитной индукции, объяснял это явление таким образом: подвижное магнитное поле наводит в диске ток (как в замкнутом контуре) и он взаимодействует с полем стрелки.

Почему второе название — это токи Фуко? Потому что физик Фуко подробно исследовал явление вихревых токов. В ходе своих исследований он сделал великое открытие. Оно заключалось в том, что тела под воздействием вихревых токов нагреваются. С теорией разобрались, теперь мы расскажем о том, где применяются токи Фуко и какие вызывают проблемы.

На видео ниже предоставлено более подробное определение данного явления:

  Как провести проводку в доме из СИП-панелей?

Вред от вихревых токов

Если вы рассматривали конструкцию сетевого трансформатора 50 Гц, наверняка обратили внимание, что его сердечник набран из тонких листов, хотя может показаться что проще было сделать цельную литую конструкцию.

Дело в том, что так борются с вихревыми токами. Фуко установил нагрев тел, в которых они протекают. Так как работа трансформатора и основана на принципах взаимодействия переменных магнитных полей, то вихревые токи неизбежны.

Любой нагрев тел – это выделение энергии в виде тепла. В таком случае будут возникать потери в сердечнике. Чем это опасно? В электроустановке сильный нагрев приводит к разрушению изоляции обмоток и выходу из строя машины. Вихревые токи зависят от магнитных свойств сердечника.

Как снизить потери

Потери энергии в магнитопроводе не приносят пользы, тогда как с ними бороться? Чтобы снизить их величину сердечник набирают из тонких пластин электротехнической стали — это своеобразные меры профилактики для снижения паразитных токов. Такие потери описывает формула, по которой можно произвести расчет:

Как известно: чем меньше сечение проводника, тем больше его сопротивление, а чем больше его сопротивление, тем меньше ток. Пластины изолируют друг от друга окалиной или слоем лака. Сердечники крупных трансформаторов стягиваются изолированной шпилькой. Так снижают потери сердечника, т.е. это и есть основные способы уменьшения токов Фуко.

Какие последствия от влияния этого явления? Магнитное поле, возникающее из-за протекания токов Фуко ослабляет поле, из-за которого они возникли. То есть вихревые токи уменьшают силу электромагнитов. То же самое касается и конструкции деталей электродвигателей и генератора: ротора и статора.

Применение на практике

Теперь о полезных сферах применения токов Фуко. Огромный вклад был внесен в металлургию изобретением индукционных сталеплавильных печей. Они устроены таким образом, что расплавляемую массу металла помещают внутри катушки, через которую протекает ток высокой частоты. Его магнитное поле наводит большие токи внутри металла до его полного плавления.

  Уникальный дом в виде сапога

Примечание автора! Развитие индукционных печей значительно повысило экологичность производства металла и изменило представление о методах плавки.

Я работаю на металлургическом комбинате, где десять лет назад запустили новый высокотехнологичный цех с такими установками, а спустя несколько лет после освоения нового оборудования был закрыт классический мартен.

Это говорит о продуктивности такого способа нагрева металлов. Также используются вихревые токи для поверхностной закалки металла.

Наглядное применение на практике:

Кроме металлургии они используются на производстве электровакуумных приборов. Проблемой является полное удаление газов перед герметизацией колбы. С помощью токов Фуко электроды лампы разогревают до высоких температур, таким способом деактивируя газ.

В быту вы можете встретить кухонные индукционные плиты, на которых готовят пищу, благодаря как раз применению данного явления. Как видите, вихревые токи имеют свои плюсы и минусы.

Токи Фуко несут и пользу, и вред. В некоторых случаях их влияние влечёт за собой не электрические проблемы. Например, трубопровод, проложенный около кабельных линий, быстрее сгнивает без видимых сторонних причин.

В то же время устройства индукционного нагрева довольно показали себя с хорошей стороны, тем более такой прибор для бытового использования можно собрать самому.

Надеемся, теперь вы знаете, что такое вихревые токи Фуко, а также какое применение нашлось им на производстве и в быту.

Источник: https://www.remontostroitel.ru/vihrevye-toki-fuko-prichiny-vozniknoveniya-i-primenenie.html

Вихревые токи: физический смысл, потери, поле, применение

В свою очередь, вихревые токи индуцируют собственные магнитные потоки, замыкающиеся в проводнике, которые в соответствии с правилом Ленца препятствуют изменению магнитного потока прибора или устройства, тем самым ослабляя его.

Рассмотрим процесс формирования вихревых токов в металлическом сердечнике, помещенном в магнитное поле катушки, по которой протекает переменный ток. Вокруг катушки формируется переменный магнитный поток, пересекающий сердечник.

В сердечнике также будет индуцироваться ЭДС, вызывающая в нем так называемые вихревые токи, которые нагревают сердечник. Поскольку сопротивление сердечника незначительно, то наводимые индукционные токи могут быть достаточно большими, что приведет к сильному нагреву сердечника.

Первые исследования в области изучения вихревых токов были проведены в 1824 г. французким физиком Д.Ф. Араго, который обнаружил их наличие в медном диске, находящемся на оси под обращающейся магнитной стрелкой.

Под воздействием вихревых токов диск оборачивался.

Первые подробные исследования вихревых токов были проведены французским исследователем Фуко, и впоследствии по его имени они и получили свое название.

Методы уменьшения вихревых токов

Мощность, расходуемая на нагрев электротехнических устройств электромагнитного типа, значительно снижает их КПД. Поэтому с целью уменьшения величины вихревых токов повышают сопротивление магнитопровода.

Для этого сердечники выполняют не сплошными, а набирают из отдельных тонких пластин (толщиной 0,1- 0,5 мм), покрытым слоем изоляционного материала.

Также при изготовлении сердечника в сырье вводят специальные добавки, увеличивающие его сопротивление.

Практическое применение токов Фуко

В некоторых случаях вихревые токи используют в полезных целях. К примеру, создание устройства магнитного тормоза диска электросчетчика. Оборачиваясь, диск пересекает магнитные линии магнита, в толщине диска формируется вихревые токи, которые создают свои магнитные потоки, препятствующие вращению диска, и вызывающие его торможение.

Полезное действие вихревые токи оказывают при индукционной плавке металлов.

Для этого тигель с металлом размещают в магнитное поле, которое своим воздействием индуцирует вихревые токи, расплавляющие металл, при этом тигель остается холодным.

Источник: https://pue8.ru/elektrotekhnik/592-vikhrevye-toki.html

Вихревые токи Фуко

В некоторых случаях движение металлических деталей в электрических машинах и устройствах происходит через магнитные поля.

В других ситуациях возможны пересечения неподвижных металлических элементов с силовыми линиями магнитного поля, изменяющегося по величине. В результате, внутри металлических деталей происходит индуктирование ЭДС самоиндукции.

Под влиянием ЭДС в них образуются вихревые токи Фуко, замыкающиеся в массе и вызывающие образование вихревых токовых контуров.

Физические свойства и определение токов Фуко

К вихревым токам относятся электрические токи, которые возникают под влиянием электромагнитной индукции, появляющейся в металлической или другой проводящей среде. Эта индукция появляется под воздействием изменяющегося магнитного потока.

В свою очередь вихревые токи способствуют появлению собственных магнитных потоков. В соответствии с законом Ленца, они оказывают противодействие магнитному потоку катушки и делают его слабее. Это приводит к нагреву сердечника и бесполезным тратам электрической энергии. Данный процесс можно рассмотреть подробнее на примере металлического сердечника. На него помещается катушка, с пропущенным переменным током. Вокруг катушки происходит образование переменного магнитного тока, пересекающего сердечник. Одновременно в нем наводится индуцированная электродвижущая сила, вызывающая, в свою очередь, вихревые токи. Их действие вызывает нагревание сердечника. При незначительном сопротивлении сердечника, наведенные токи могут иметь довольно большое значение и привести к существенному нагреву.

Как уменьшить действие токов Фуко

Действие вихревых токов необходимо снизить, поскольку мощности, бесполезно расходуемые для нагрева сердечника, приводят к снижению КПД электромагнитных устройств.

С целью уменьшения этой мощности, в магнитопроводе необходимо увеличить сопротивление. Поэтому для набора сердечников используются отдельные тонкие пластины, толщиной от 0,1 до 0,5 мм.

Изоляция пластин между собой осуществляется специальными лаками или окалиной.

Короткое замыкание: формула для расчета

Набор магнитопроводов для всей аппаратуры переменного тока и сердечников для устройств постоянного тока также осуществляется из пластин, изолированных между собой. Для их изготовления применяется штампованная листовая электротехническая сталь. Плоскости пластин размещаются параллельно с направлением магнитного потока. Таким образом, сечение сердечника оказывается разделенным, что приводит к ослаблению и уменьшению магнитных потоков. Соответственно, наблюдается снижение ЭДС, индуктируемых этими потоками. Именно они способствуют появлению вихревых токов. Практикуется ввод в материал сердечника специальных добавок, способствующих росту его электрического сопротивления.

В некоторых конструкциях катушек для набора сердечников используется отожженная железная проволока. Расположение железных полосок осуществляется параллельно с линиями магнитного потока.

Ограничение вихревых токов, протекающих в перпендикулярных плоскостях с магнитным потоком, выполняется с помощью изолирующих прокладок.

Снижение токов Фуко в проводах происходит следующим образом: в состав жгутов входят отдельные жилы, изолированные между собой.

Использование вихревых токов

Несмотря на большое количество отрицательных моментов, токи Фуко нашли свое применение в различных областях. Например, они успешно используются в электрических счетчиках как магнитный тормоз диска.

Токи Фуко применяются во многих технологических операциях, связанных с токами высокой частоты. Без них не обходится изготовление вакуумных устройств и приборов, где требуется тщательная откачка воздуха и газов.

Металлическая арматура, помещенная внутрь баллона, содержит остатки газа, удаляющиеся только после заваривания колбы. Полное удаление газов производится высокочастотным генератором, в поле которого помещается прибор.

Источник: https://electric-220.ru/news/vikhrevye_toki_fuko/2016-06-13-975

Исследование токов Фуко

Исследование токов Фуко ( Сорокин Антон, МОУ СОШ № 11 г. Ейска, Краснодарский край. Руководитель: Семке А.И.)

Вихревые токи, токи Фуко (в честь Фуко, Жан Бернар Леон) – вихревые индукционные токи, возникающие в массивных проводниках при изменении пронизывающего их магнитного потока.

Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго (1786 — 1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M.

Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819—1868) и названы его именем.

Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть, замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы.

В соответствии с правилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем.

Это свойство используется для демпфирования подвижных частей гальванометров, сейсмографов и др.

Под действием этих ЭДС в массе металлической детали протекают вихревые токи (токи Фуко), которые замыкаются в массе, образуя вихревые контуры токов. Вихревые токи порождают свои собственные магнитные потоки, которые, по правилу Ленца, противодействуют магнитному потоку катушки и ослабляют его. Кроме того, они вызывают нагрев сердечника, что является бесполезной тратой энергии.

  • Объект исследования: электрические токи в сплошных средах
  • Предмет исследования: эффекты, возникающие при порождении токов Фуко
  • Цель работы: Исследовать эффекты, возникающие при порождении токов Фуко в сплошных средах
  • Задачи исследования:

1. Изучить имеющиеся информационные, научные и электронные источники информации по данной теме исследования.

2. Изготовить физический маятник.

3. Провести измерения силы сопротивления при колебаниях физического маятника в обычных условиях и при возникновении токов Фуко.

Гипотеза исследования: энергия магнитного поля, порождаемого токами Фуко, зависит от толщины медных пластин

Результаты исследования. В ходе проведенного исследования мы обнаружили, что число затухающих колебаний зависит от значения тока Фуко и магнитного поля, его порождающего.

При увеличении толщины медных пластин число колебаний уменьшается. При толщине медных пластин равной 6 мм число колебаний стало равным 1.

Результаты данного исследования, возможно, использовать для проектирования тормозных устройств подъемных кранов, эскалаторов, вагонеток в промышленности и транспорте.

Энергия магнитного поля, порождаемого токами Фуко, зависит от толщины медных пластин. С увеличением числа медных пластин, а, следовательно, толщины меди, энергия магнитного поля, порождаемого токами Фуко, увеличилась.

Cиловое действие токов Фуко можно использовать в успокоителях колебаний подвижных частей приборов и аппаратов, в индукционных тормозах (в которых массивный металлический диск вращается в поле электромагнитов).

См. также

Учебное оборудование, производимое и поставляемое ЗАО «Крисмас+» для исследования физических и физико-химических параметров состояния окружающей среды

Путеводитель по выбору оборудования для учебно-исследовательских работ

Источник: https://u-center.info/libraryschoolboy/researchphysical/toki-fuko

Токи Фуко

Токи Фуко (в честь Фуко, Жан Бернар Леон) — это вихревые замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока.

Вихревые токи являются индукционными токами и образуются в проводящем теле либо вследствие изменения во времени магнитного поля, в котором находится тело, либо вследствие движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть. Величина токов Фуко тем больше, чем быстрее меняется магнитный поток.

В отличие от электрического тока в проводах, текущего по точно определённым путям, Вихревые токи замыкаются непосредственно в проводящей массе, образуя вихреобразные контуры.

Эти контуры тока взаимодействуют с породившим их магнитным потоком.

Согласно правилу Ленца, магнитное поле вихревых токов направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего эти вихревые токи.

Если медную пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью ? в пространство между полосами магнита, то пластина практически остановится в момент ее вхождения в магнитное поле

Замедление движения связано с возбуждением в пластине вихревых токов, препятствующих изменению потока вектора магнитной индукции. Поскольку пластина обладает конечным сопротивлением, токи индукции постепенно затухают и пластина медленно двигается в магнитном поле. Если электромагнит отключить, то медная пластина будет совершать обычные колебания, характерные для маятника.

Вихревые токи приводят к неравномерному распределению магнитного потока по сечению магнитопровода.

Это объясняется тем, что в центре сечения магнитопровода намагничивающая сила вихревых токов, направленная навстречу основному потоку, является наибольшей, так как эта часть сечения охватывается наибольшим числом контуров вихревых токов.

Такое «вытеснение» потока из середины сечения магнитопровода выражено тем резче, чем выше частота переменного тока и чем больше Магнитная проницаемость ферромагнетика. При высоких частотах поток проходит лишь в тонком поверхностном слое сердечника.

Это вызывает уменьшение кажущейся (средней по сечению) магнитной проницаемости. Явление вытеснения из ферромагнетика магнитного потока, изменяющегося с большой частотой, аналогично электрическому Скин-эффекту и называемому магнитным скин-эффектом.

В соответствии с законом Джоуля — Ленца вихревые токи нагревают проводники, в которых они возникли. Поэтому вихревые токи приводят к потерям энергии (потери на вихревые токи) в магнитопроводах (в сердечниках трансформаторов и катушек переменного тока, в магнитных цепях машин).

Для уменьшения потерь энергии на вихревые токи (и вредного нагрева магнитопроводов) и уменьшения эффекта «вытеснения» магнитного потока из ферромагнетиков магнитопроводы машин и аппаратов переменного тока делают не из сплошного куска ферромагнетика (электротехнической стали), а из отдельных пластин, изолированных друг от друга.

Такое деление на пластины, расположенные перпендикулярно направлению вихревых токов, ограничивает возможные контуры путей вихревого тока, что сильно уменьшает величину этих токов.

При очень высоких частотах применение ферромагнетиков для магнитопроводов нецелесообразно; в этих случаях их делают из магнитодиэлектриков, в которых вихревые токи практически не возникают из-за очень большого сопротивления этих материалов.

При движении проводящего тела в магнитном поле индуцированные вихревые токи обусловливают заметное механическое взаимодействие тела с полем.

На этом принципе основано, например, торможение подвижной системы в счётчиках электрической энергии, в которых алюминиевый диск вращается в поле постоянного магнита.

В машинах переменного тока с вращающимся полем сплошной металлический ротор увлекается полем из-за возникающих в нём вихревых токов. Взаимодействие вихревого тока с переменным магнитным полем лежит в основе различных типов насосов для перекачки расплавленного металла.

Вихревые токи возникают и в самом проводнике, по которому течёт переменный ток, что приводит к неравномерному распределению тока по сечению проводника. В моменты увеличения тока в проводнике индукционные вихревые токи направлены у поверхности проводника по первичному электрическому току, а у оси проводника — навстречу току.

В результате внутри проводника ток уменьшится, а у поверхности увеличится. Токи высокой частоты практически текут в тонком слое у поверхности проводника, внутри же проводника тока нет. Это явление называется электрическим скин-эффектом.

Чтобы уменьшить потери энергии на вихревые токи, провода большого сечения для переменного тока делают из отдельных жил, изолированных друг от друга.

Вихревые токи применяются для пайки, плавки и поверхностной закалки металлов, а их силовое действие используется в успокоителях колебаний подвижных частей приборов и аппаратов, в индукционных тормозах (в которых массивный металлический диск вращается в поле электромагнитов) и т. п.

Применение токов Фуко

Полезное применение вихревые токи нашли в устройстве магнитного тормоза диска электрического счетчика. Вращаясь, диск пересекает магнитные силовые линии постоянного магнита. В плоскости диска возникают вихревые токи, которые, в свою очередь, создают свои магнитные потоки в виде трубочек вокруг вихревого тока. Взаимодействуя с основным полем магнита, эти потоки тормозят диск.

В ряде случаев, применяя вихревые токи, можно использовать технологические операции, которые невозможно применить без токов высокой частоты. Например, при изготовления вакуумных приборов и устройств из баллона необходимо тщательно откачать воздух и иные газы.

Однако в металлической арматуре, находящейся внутри баллона, имеются остатки газа, которые можно удалить только после заваривания баллона.

Для полного обезгаживания арматуры вакуумный прибор помещают в поле высокочастотного генератора, в результате действия вихревых токов арматура нагревается до сотен градусов, остатки газа при этом нейтрализуются.

Вихревые токи находят полезное применение также при индукционной плавке металлов и поверхностной закалке токами высокой частоты.

Источник: https://www.radioingener.ru/toki-fuko/

Токи Фуко — понятие и применение на практике

Взаимодействие электромагнитного поля с проводниками образует вихревые токи. Это явление способно выполнять полезные и вредные функции.

В определенных ситуациях энергия затрачивается попусту либо ухудшает работоспособность трансформаторов и линий электропередачи.

Однако правильное применение базовых принципов данного эффекта позволяет бесконтактным образом исследовать состав материалов, решать другие практические задачи.

В индукционных варочных панелях токи Фуко разогревают посуду с экономичным потреблением электроэнергии

Открытие вихревых токов

По историческим данным, впервые это явление обнаружил в начале 19 века французский исследователь Д. Араго. Специалистам известен его наглядный опыт. Вращение намагниченной стрелкой приводит в движение тонкий диск из меди, расположенный на небольшом расстоянии сверху.

Природу явления раскрыл М. Фарадей, объяснивший представленный простой пример перемещения взаимодействием поля и образованных в проводнике токов. Они получили специфическое название по фамилии ученого.

Фуко обнаружил нагрев тел при достаточно сильном энергетическом потенциале источника переменного тока.

Природа вихревых токов

Трансформатор — виды и применение

Образование ЭДС в проводниках при воздействии изменяющегося магнитного потока называют индукцией. На принципах этого явления функционируют электродвигатели, генераторы, катушки фильтров и колебательных контуров.

Что это такое токи Фуко, показано на рисунке

При определенном расположении источника переменного поля и проводника приходится учитывать отмеченные выше эффекты. При необходимости в контрольных точках можно измерить определенное напряжение. Важные особенности:

  • с учетом неравномерного распределения электрической проводимости затруднено точное определение траектории токов;
  • они будут возникать при перемещении пластины относительно постоянного магнита;
  • линии образуют замкнутые контуры в толще образца;
  • они расположены перпендикулярно вектору магнитного потока.

Практическое применение вихревых токов

Применение и эксплуатация элегазовых выключателей

Прохождение сильного тока повышает энергетический потенциал молекулярной решетки, что сопровождается нагревом.

Это явление объясняет возможность использования соответствующей технологии для бесконтактного повышения температуры проводящих материалов.

Если приводить пример с индукционной варочной панелью, можно подчеркнуть следующие плюсы:

  • образование тепла в глубине дна посуды обеспечивает эффективный нагрев рабочей зоны;
  • температура на поверхности панели не повышается чрезмерно;
  • тепловое воздействие на продукты выполняется быстрее, по сравнению с аналогами (спиральные ТЭНы, газовые плиты).

Привести пример на основе опыта с вращением диска несложно. Этот же принцип реализован в конструкции электромеханического счетчика потребленной энергии. В данном случае вращение рабочего узла обеспечивается наведенными токами. Ускорение/ замедление соответствует изменению мощности в нагрузке.

При увеличении тока можно нагреть металлы (сплавы) до температуры плавления

При тщательном изучении тематических вопросов можно найти определенные минусы. Электромагнитный поток в цельном сердечнике трансформатора способен увеличить энергетические потери. По этой причине соответствующие детали создают из комплекта пластин, покрытых слоем диэлектрика. Эти элементы соединяют изолированным стержнем.

Вихри и скин-эффект

Что является источником магнитного поля

При определенном расположении рабочего тела и генератора электромагнитных волн токи на поверхности становятся сильнее, чем в глубине. Эту особенность (скин эффект) учитывают при создании специальных покрытий.

Принципы вихревых токов

Для детального изучения процессов можно рассмотреть действие полей при подключении к источнику типовой катушки индукции. Переменный ток в проводнике образует силовые линии поля.

Напряженность создает разницу потенциалов в соседних петлях. Движение электронов формирует вихревые токи.

Они движутся по траекториям наименьшего сопротивления, которое изменяется при наличии в изделиях примесей, трещин, полостей и других дефектов.

Закон Ома

Вихревые токи – это направленное движение электронов в проводнике. Поэтому рассматриваемые явления вполне могут быть описаны базовыми физическими формулами и определениями.

Сила тока рассчитывается по закону Ома:

I = (-1/R) * (dФ/dt), где:

  • R – электрическое сопротивление;
  • Ф – магнитный поток;
  • dt – интервал времени.

Понятно, что для практических вычислений сложнее всего выяснить значение проводимости. Кроме отмеченных выше неравномерностей пути прохождения тока (различия проводника), траектория меняется под воздействием переменного поля.

Индуктивность

Следует подчеркнуть проницаемость проводника силовыми линиями электромагнитного поля. Такое воздействие при увеличении тока источника питания интенсифицирует вихревые эффекты в контрольном образце, установленном на небольшом расстоянии.

Амплитуда наведенных токов и фаза определяются нагрузкой и проводимостью катушки индукции. Как и в предыдущем примере, разрывы и другие дефекты проводящего участка оказывают существенное влияние на рабочие электрические характеристики конструкции.

Магнитные поля

Зависимость от параметров материалов показана на рисунке. Цифрами отмечены:

  1. пара или диамагнетики;
  2. ферриты;
  3. железо.

Как будут возникать токи в разных образцах при равных общих условиях

Интересно. Взаимное воздействие оказывают магнитные поля, созданные катушкой и вихревыми процессами.

Дефектоскопия

Рассмотренные недостатки можно преобразовать в достоинства. По изменению вихревых токов определяют наличие дефектов при сканировании контрольных образцов. При создании измерительных приборов учитывают следующие факторы:

  • проводимость определяет силу и путь прохождения токов;
  • ровные поверхности исследовать проще;
  • вихревые процессы активизируется при уменьшении рабочей области.

Обнаружение контура дефектоскопом

С учетом целевого назначения корректируют конструкцию и размещение датчиков. Как правило, катушку устанавливают ближе к месту измерения. Корректируют форму изделия для лучшего соответствия объекту обследования.

Уменьшение вихревых токов

Чтобы успешно бороться с негативными проявлениями вихревых эффектов в электроэнергетике и других областях, пользуются отмеченными особенностями. В частности, увеличивают сопротивление проводников добавлением кремниевых и других присадок. Наборы из пластин размещают параллельно вектору магнитного потока. Обеспечивают надежную изоляцию элементов конструкции.

Полезное и негативное воздействие

Почему явление может применяться для решения практических задач, показано выше на конкретных примерах. Однако следует помнить о потерях, которые способны провоцировать вихревые токи. Для исключения ошибок необходимо тщательно проверять конструкторский расчет. Обязательно нужно оценить степень влияния переменного магнитного поля на проводящие материалы.

Видео

Источник: https://amperof.ru/teoriya/toki-fuko-ponyatie-primenenie.html

Вихревые токи – токи Фуко, что это такое и где они используются

Вихревые или еще так называемые цикличные токи могут нести в себе помимо вреда еще и пользу. С одной стороны, вихревые токи — это непосредственная причина потерь электроэнергии в проводнике либо же катушке. В то же самое время на этом эффекте построены современные индукционные печи, так что польза от таких токов есть. Давайте поговорим о пользе и вреде немного по подробней.

yandex.ru

Краткое определение

Для начала давайте дадим определение озвученному явлению. Вихревые токи — это такие токи, которые начинают протекать по причине воздействия переменного магнитного поля. При этом может изменяться не само поле, а положение проводника в этом поле, то есть если проводник начнет перемещаться в статичном поле, то в нем все равно образуются токи Фуко.

И траекторию протекания таких токов определить невозможно. Известно лишь то, что ток проходит в том месте, где сопротивление минимально.

Как открыли это явление

Изначально вихревые токи были зафиксированы в 1824 году ученым Д.А. Араго во время проведения следующего опыта:

На одной оси были смонтированы медный диск и магнитная стрелка, диск располагался внизу, а стрелка несколько выше. Так вот, когда стрелку вращали, то медный диск также начинал вращаться, так как протекающие токи формировали магнитное поле, которое и вступало во взаимодействие с магнитной стрелкой.

Наблюдаемый эффект получил название – явление Араго.

yandex.ru

По истечении нескольких лет этот вопрос стал изучать Максвелл Фарадей, который как раз открыл закон электромагнитной индукции. Так вот, согласно открытому закону было сделано предположение, что магнитное поле оказывает непосредственное воздействие на атомарную решетку проводника.

И образующийся в результате данного воздействия электрический ток, всегда формирует магнитное поле во всем проводнике.

А подробно описал вихревые токи уже экспериментатор Фуко, именно поэтому второе название вихревых токов – токи Фуко. С историей немного познакомились, теперь давайте узнаем природу вихревых токов.

Природа вихревых токов

  • Замкнутые циклические токи могут образоваться в проводнике только в том варианте, когда магнитное поле, в котором находится проводник, имеет нестабильную структуру, то есть имеет вращение или изменяется со временем.
  • Из этого следует, что сила вихревых токов имеет прямую связь со скоростью изменения магнитного потока, проходящего через проводник.
  • По общепринятой теории электроны перемещаются в проводнике линейным образом из-за разности потенциалов, а это значит, что ток имеет прямое направление.

yandex.ru

Токи Фуко ведут себя совершенно по-другому и образуют вихревой замкнутый контур прямо в проводнике. При этом данные токи способны на взаимодействие с магнитным полем, которое их и создало.

Проводя исследование этих токов, ученый Ленц сделал вывод, что сгенерированное вихревыми токами магнитное поле не позволяет магнитному потоку, который и создал эти токи, измениться. При этом направленность силовых линий вихревого тока идентично вектору направления индукционного тока.

Вихревые токи и их вред

Давайте вспомним, как выглядит обычный трансформатор.

Так вот, если вы внимательно посмотрите на сердечник, то вы увидите, что он собран из отдельных пластин. А вам не кажется, что гораздо проще его было выполнить цельным?

Именно таким «дроблением» пытаются максимально снизить негативное воздействие токов Фуко. Ведь вихревые токи нагревают тело, в котором они протекают.

Как же они появляются в трансформаторе? Его работа и основана на принципах взаимодействия магнитных полей переменного характера, а как мы уже знаем переменное поле неизбежно порождает вихревые токи.

yandex.ru

Получается, что вихревой ток нагревает сердечник. А нагрев ведет к снижению КПД и сильный перегрев приведет к оплавлению изоляции, а значит разрушению трансформатора.

Как снижают потери

Данные потери могут быть описаны следующей формулой:

Как вы знаете, верно следующее утверждение: проводник с маленьким сечением обладает большим сопротивлением, а чем больше сопротивление проводника, тем меньший ток проходит через него.

Именно поэтому сердечник выполнен из цельного куска стали, а не собран из тонких пластин, которые изолированы друг от друга окалиной или слоем лака. Такой способ сборки сердечника максимально уменьшает потери в сердечнике, то есть сводят вихревые токи до минимума.

Полезное использование вихревых токов

Данные токи не только несут негатив. Их давно научились использовать с пользой. Так, например, свойства вихревых токов используются в индукционных счетчиках. Данные токи замедляют вращение алюминиевого диска, который вращается под действием магнитного поля.

Так же создание индукционных сталеплавильных печей оказало несоизмеримый вклад в развитие всей современной индустрии производства стали.

yandex.ru

Такие печи работают следующим образом: металл, который будут подвергать плавлению, помещают внутрь катушки, через которую начинают пропускать ток повышенной частоты. При этом магнитное поле формирует большие токи внутри металла, и последующий нагрев расплавляет металл.

В многоквартирных домах вы сможете увидеть индукционные плитки, принцип работы которых также основан на использовании эффекта образования вихревых токов.

Заключение

Это все, что я хотел вам рассказать о вихревых токах (токах Фуко). Если статья оказалась вам полезна или интересна, то оцените ее лайком. Спасибо за ваше внимание!

Источник: https://zen.yandex.ru/media/id/5aef12c13dceb76be76f1bb1/5c7a80b99aa57f00b340551f

снижение потерь и мощность вихревых токов

Взаимодействие электромагнитного поля с проводниками образует вихревые токи. Это явление способно выполнять полезные и вредные функции. В определенных ситуациях энергия затрачивается попусту либо ухудшает работоспособность трансформаторов и линий электропередачи. Однако правильное применение базовых принципов данного эффекта позволяет бесконтактным образом исследовать состав материалов, решать другие практические задачи.

В индукционных варочных панелях токи Фуко разогревают посуду с экономичным потреблением электроэнергии

Открытие вихревых токов

По историческим данным, впервые это явление обнаружил в начале 19 века французский исследователь Д. Араго. Специалистам известен его наглядный опыт. Вращение намагниченной стрелкой приводит в движение тонкий диск из меди, расположенный на небольшом расстоянии сверху. Природу явления раскрыл М. Фарадей, объяснивший представленный простой пример перемещения взаимодействием поля и образованных в проводнике токов. Они получили специфическое название по фамилии ученого. Фуко обнаружил нагрев тел при достаточно сильном энергетическом потенциале источника переменного тока.

Природа вихревых токов

Образование ЭДС в проводниках при воздействии изменяющегося магнитного потока называют индукцией. На принципах этого явления функционируют электродвигатели, генераторы, катушки фильтров и колебательных контуров.

Что это такое токи Фуко, показано на рисунке

При определенном расположении источника переменного поля и проводника приходится учитывать отмеченные выше эффекты. При необходимости в контрольных точках можно измерить определенное напряжение. Важные особенности:

  • с учетом неравномерного распределения электрической проводимости затруднено точное определение траектории токов;
  • они будут возникать при перемещении пластины относительно постоянного магнита;
  • линии образуют замкнутые контуры в толще образца;
  • они расположены перпендикулярно вектору магнитного потока.

Практическое применение вихревых токов

Прохождение сильного тока повышает энергетический потенциал молекулярной решетки, что сопровождается нагревом. Это явление объясняет возможность использования соответствующей технологии для бесконтактного повышения температуры проводящих материалов. Если приводить пример с индукционной варочной панелью, можно подчеркнуть следующие плюсы:

  • образование тепла в глубине дна посуды обеспечивает эффективный нагрев рабочей зоны;
  • температура на поверхности панели не повышается чрезмерно;
  • тепловое воздействие на продукты выполняется быстрее, по сравнению с аналогами (спиральные ТЭНы, газовые плиты).

Привести пример на основе опыта с вращением диска несложно. Этот же принцип реализован в конструкции электромеханического счетчика потребленной энергии. В данном случае вращение рабочего узла обеспечивается наведенными токами. Ускорение/ замедление соответствует изменению мощности в нагрузке.

При увеличении тока можно нагреть металлы (сплавы) до температуры плавления

При тщательном изучении тематических вопросов можно найти определенные минусы. Электромагнитный поток в цельном сердечнике трансформатора способен увеличить энергетические потери. По этой причине соответствующие детали создают из комплекта пластин, покрытых слоем диэлектрика. Эти элементы соединяют изолированным стержнем.

Вихри и скин-эффект

При определенном расположении рабочего тела и генератора электромагнитных волн токи на поверхности становятся сильнее, чем в глубине. Эту особенность (скин эффект) учитывают при создании специальных покрытий.

Принципы вихревых токов

Для детального изучения процессов можно рассмотреть действие полей при подключении к источнику типовой катушки индукции. Переменный ток в проводнике образует силовые линии поля. Напряженность создает разницу потенциалов в соседних петлях. Движение электронов формирует вихревые токи. Они движутся по траекториям наименьшего сопротивления, которое изменяется при наличии в изделиях примесей, трещин, полостей и других дефектов.

Закон Ома

Вихревые токи – это направленное движение электронов в проводнике. Поэтому рассматриваемые явления вполне могут быть описаны базовыми физическими формулами и определениями.

Сила тока рассчитывается по закону Ома:

I = (-1/R) * (dФ/dt), где:

  • R – электрическое сопротивление;
  • Ф – магнитный поток;
  • dt – интервал времени.

Понятно, что для практических вычислений сложнее всего выяснить значение проводимости. Кроме отмеченных выше неравномерностей пути прохождения тока (различия проводника), траектория меняется под воздействием переменного поля.

Индуктивность

Следует подчеркнуть проницаемость проводника силовыми линиями электромагнитного поля. Такое воздействие при увеличении тока источника питания интенсифицирует вихревые эффекты в контрольном образце, установленном на небольшом расстоянии. Амплитуда наведенных токов и фаза определяются нагрузкой и проводимостью катушки индукции. Как и в предыдущем примере, разрывы и другие дефекты проводящего участка оказывают существенное влияние на рабочие электрические характеристики конструкции.

Магнитные поля

Зависимость от параметров материалов показана на рисунке. Цифрами отмечены:

  1. пара или диамагнетики;
  2. ферриты;
  3. железо.

Как будут возникать токи в разных образцах при равных общих условиях

Интересно. Взаимное воздействие оказывают магнитные поля, созданные катушкой и вихревыми процессами.

Дефектоскопия

Рассмотренные недостатки можно преобразовать в достоинства. По изменению вихревых токов определяют наличие дефектов при сканировании контрольных образцов. При создании измерительных приборов учитывают следующие факторы:

  • проводимость определяет силу и путь прохождения токов;
  • ровные поверхности исследовать проще;
  • вихревые процессы активизируется при уменьшении рабочей области.

Обнаружение контура дефектоскопом

С учетом целевого назначения корректируют конструкцию и размещение датчиков. Как правило, катушку устанавливают ближе к месту измерения. Корректируют форму изделия для лучшего соответствия объекту обследования.

Уменьшение вихревых токов

Чтобы успешно бороться с негативными проявлениями вихревых эффектов в электроэнергетике и других областях, пользуются отмеченными особенностями. В частности, увеличивают сопротивление проводников добавлением кремниевых и других присадок. Наборы из пластин размещают параллельно вектору магнитного потока. Обеспечивают надежную изоляцию элементов конструкции.

Полезное и негативное воздействие

Почему явление может применяться для решения практических задач, показано выше на конкретных примерах. Однако следует помнить о потерях, которые способны провоцировать вихревые токи. Для исключения ошибок необходимо тщательно проверять конструкторский расчет. Обязательно нужно оценить степень влияния переменного магнитного поля на проводящие материалы.

Видео

FOUCAULT CURRENT — Определение и синонимы слова Foucault current в словаре английский языка

ЭТИМОЛОГИЯ СЛОВА FOUCAULT CURRENT

Назван в честь Ж. Б. Л. Фуко.

ПРОИЗВОДСТВО ФУКО ТОКА

ГРАММАТИЧЕСКАЯ КАТЕГОРИЯ ФУКО ТОКА

Текущий по Фуко — это существительное .Существительное — это тип слова, значение которого определяет реальность. Существительные дают имена всем вещам: людям, предметам, ощущениям, чувствам и т. Д.

ЧТО ОЗНАЧАЕТ НА АНГЛИЙСКОМ ФУКО ТЕКУЩИЙ?

Вихревые токи

Вихревые токи — это электрические токи, индуцируемые в проводниках изменяющимся магнитным полем в проводнике.Эти циркулирующие вихри тока обладают индуктивностью и, таким образом, индуцируют магнитные поля. Эти поля могут вызывать эффекты отталкивания, притяжения, движения, сопротивления и нагрева. Чем сильнее приложенное магнитное поле, тем выше электрическая проводимость проводника и чем быстрее изменяется поле, тем больше возникают токи и тем сильнее создаются поля.

СЛОВА, РИФМУЮЩИХСЯ СО СЛОВОМ FOUCAULT CURRENT

ПЕРЕВОД FOUCAULT CURRENT

Узнайте, как перевести Foucault, текущий на 25 языков с помощью нашего многоязычного переводчика английского языка. переводов нынешнего Фуко с английского на другие языки, представленные в этом разделе, были получены посредством автоматического статистического перевода; где основной единицей перевода является слово «ток Фуко» на английском языке.
Переводчик английский —
китайский 福柯 电流

1325 миллионов говорящих

Переводчик английский —
испанский Corriente Foucault

570 миллионов говорящих

Переводчик с английского языка на
хинди फूको वर्तमान

380 миллионов говорящих

Переводчик английский —
арабский وكو الحالية

280 миллионов говорящих

Переводчик английский —
русский Фуко тока

278 миллионов говорящих

Переводчик с английского на
португальский Atual Foucault

270 миллионов говорящих

Переводчик с английского на
бенгальский Фуко বর্তমান

260 миллионов говорящих

Переводчик английский —
французский à Courants de Foucault

220 миллионов говорящих

Переводчик с английского на малайский
Семаса Фуко

190 миллионов говорящих

Переводчик английский —
немецкий Wirbelstrom

180 миллионов говорящих

Переводчик английский —
японский フ ー コ ー 電流

130 миллионов говорящих

Переводчик английский —
корейский 푸코 전류

85 миллионов говорящих

Переводчик с английского на
яванский Фуко сайки

85 миллионов говорящих

Переводчик с английского на
вьетнамский Foucault hiện tại

80 миллионов говорящих

Переводчик с английского на
тамильский Фуко தற்போதைய

75 миллионов говорящих

Переводчик с английского языка на
маратхи फौकॉल्ट चालू

75 миллионов говорящих

Переводчик английский —
турецкий Foucault Akımı

70 миллионов говорящих

Переводчик английский —
итальянский Corrente di Foucault

65 миллионов говорящих

Переводчик английский —
польский prd Foucault

50 миллионов говорящих

Переводчик английский —
украинский Фуко струму

40 миллионов говорящих

Переводчик с английского на
румынский Фуко Курент

30 миллионов говорящих

Переводчик английский —
греческий Φουκώ ρεύμα

15 миллионов говорящих

Переводчик с английского на
африкаанс Foucault Huidige

14 миллионов говорящих

Переводчик с английского на
шведский Foucault Nuvarande

10 миллионов говорящих

Переводчик с английского на
норвежский Ул. Фуко

5 миллионов говорящих

ТЕНДЕНЦИИ ИСПОЛЬЗОВАНИЯ ТЕРМИНА «FOUCAULT CURRENT»

Термин «ток Фуко» используется очень мало и занимает 186.449 позиция в нашем списке наиболее широко используемых терминов в словаре английского языка. На показанной выше карте показана частотность использования термина «Foucault current» в разных странах. Тенденции основных поисковых запросов и примеры использования слова Foucault current Список основных поисковых запросов, предпринимаемых пользователями для доступа к нашему онлайн-словарю английского языка, и наиболее часто используемых выражений со словом «Foucault current».

ЧАСТОТА ИСПОЛЬЗОВАНИЯ ТЕРМИНА «FOUCAULT CURRENT» ЗА ВРЕМЯ

На графике показано годовое изменение частотности использования слова «Foucault current» за последние 500 лет. Его реализация основана на анализе того, как часто термин «ток Фуко» появляется в оцифрованных печатных источниках на английском языке в период с 1500 года по настоящее время.

Примеры использования в английской литературе, цитаты и новости о Фуко, текущий

10 АНГЛИЙСКИХ КНИГ, КАСАЮЩИХСЯ

«FOUCAULT CURRENT»

Поиск случаев использования слова Foucault current в следующих библиографических источниках.Книги, относящиеся к Фуко, текущий и краткие выдержки из них, чтобы обеспечить контекст его использования в английской литературе.

1

Routledge Dictionnaire Technique Anglais

… RAIL auscultation par courant de Foucault / — текущий toss n PHYS, TV perte par Курант де Фуко / — диффузия n ЯДЕРНАЯ завихренность диффузионная турбулентность / — поток n COAL TECH, REFRIG écoulement turbulent m; ~ рельсовый тормоз n TRANSP ток …

Ив Арден, Нил Клементс, 1994

2

Словарь академической прессы по науке и технологиям

… Французский физик; доказал связь между скоростью света и плотностью СМИ; изобрел маятник Фуко. Призма Фуко и гироскоп. Ток Фуко см вихретоковый. Тест Фуко на острие ножа Оптика, методика раньше …

Кристофер Г. Моррис, 1992

3

Однополые культуры и сексуальность: антропологический читатель

Фуко, современные западные представления о гомосексуализме, то есть концепция гомосексуал как отдельный вид людей — развившийся в 19 века вне сексуальных наук и практики разделения современных государств.

4

Текстовая практика: Том 8

Прежде чем продолжить спорить с текстом в некоторых деталях, я должен указать, что есть серия чрезвычайно выдающихся дискуссий здесь, в частности, об Эмпсоне, Фуко, текущее увлечение Кантом и Рорти (повсюду подвергались резкой критике).

Теренс Хоукс, Жан Ховард, 2005

Каждая петля тока Фуко не является независимой от других, как предполагается в упрощенное лечение. Магнитные поля этих контуров заземления вызывают дополнительные ЭДС в других контурах заземления. Эти наведенные ЭДС являются результатом собственного и …

6

Электрические реле: принципы и применение

Основной магнитный поток Вихревой ( Фуко) ток Магнитный поток от вихревого тока ФИГУРА 2.24 (а) Фуко Жан-Бернар-Леон; (б) вихревые токи в переменном токе магнитный сердечник. реле вообще не запитано при включении ( электромагнитная сила …

7

Прикладная сварочная техника: процессы, нормы и стандарты

Метод используется для проверки сварных швов магнитных и немагнитных материалов, и особенно полезен при испытании стержней, заготовок, сварных труб и трубок. МЕТОД В Вихретоковый контроль, электрический ток — либо вихревой, либо ток Фуко

8

Справочник по асинхронным машинам с переменной скоростью

Потери в стали в статоре, как и в роторе, разбиты по двум источники: (1) потери на гистерезис, соотношение которых: Ph ∝ fsB2M; (2) Текущие потери Фуко потерь, которые имеют соотношение: Pf ∝ f2s B2M; где fs это поставка …

9

Потери переменного тока и макроскопическая теория сверхпроводников

В этом контексте плотность тока, протекающего через матрицу, принципиально не отличается от вихревого тока или тока Фуко в нормальном материале.В теория изложена в главе 8. 1.10. Точка зрения и объем книги. убыток …

10

Словарь пластмасс Уиттингтона, третье издание

ECTFE См. ПОЛИ (ЭТИЛЕН-ХЛОРОТРИФТОРИТИЛЕН), w s. EDC Сокращение от ЭТИЛЕН ДИХЛОРИД, w s. Вихретоковый (ток Фуко ) Ток, индуцируемый в массе проводящего материала изменяющимся магнитным полем.

Что такое вихревые токи?

Эдди токи — это токи, которые циркулируют в проводниках, как вихри в поток.Они индуцируются изменением магнитных полей и течением в замкнутых контурах, перпендикулярно плоскости магнитного поля. Их можно создать, когда проводник движется через магнитное поле, или когда магнитное поле окружение неподвижного проводника меняется, то есть все, что приводит к проводник испытывает изменение силы или направления магнитного поле может производить вихревые токи. Величина вихревого тока пропорциональна величине магнитного поля, площади петли и скорости изменения магнитного потока, и обратно пропорционально удельному сопротивлению дирижер.

Как и любой ток, протекающий через проводник, вихревой ток будет производить свой собственный магнитное поле. Закон Ленца гласит, что направление магнитно-индуцированного ток, как и вихревой ток, будет таким, что создаваемое магнитное поле будет противодействовать изменению магнитного поля, которое его создало. Это сопротивление создало противоположными магнитными полями используется в вихретоковом торможении, которое обычно используется как метод остановки вращающихся электроинструментов и американских горок.

в диаграмма ниже, токопроводящий металлический лист (представляющий движущийся например, автомобиль с горками или электроинструмент), движется мимо неподвижного магнита. В виде лист движется мимо левого края магнита, он почувствует увеличение напряженность магнитного поля, вызывающая вихревые токи против часовой стрелки. Эти токи создают свои собственные магнитные поля и, согласно закону Ленца, направление будет вверх, т.е. противодействовать внешнему магнитному полю, создавая магнитное сопротивление.На другом краю магнита лист будет выходить из магнитное поле, и изменение поля будет в противоположном направлении, таким образом индуцирование вихревых токов по часовой стрелке, которые затем создают магнитное поле, действующее вниз. Это будет притягивать внешний магнит, также создавая сопротивление. Эти силы сопротивления замедляют движущийся лист, обеспечивая торможение. Электромагнит может использоваться для внешнего магнита, что означает, что можно изменять силу торможение осуществляется путем регулирования тока через катушки электромагнита.Преимущество вихревого торможения в том, что оно бесконтактное, поэтому механический износ. Однако вихревое торможение не подходит для торможения на низкой скорости и поскольку проводник должен двигаться, вихревые тормоза не могут удерживать предметы в стационарные позиции. Таким образом, часто необходимо также использовать традиционные фрикционный тормоз.

Эдди течения были впервые обнаружены в 1824 году ученым, а затем премьер-министром Франция, Франсуа Араго.Он понял, что намагнитить можно больше всего. проводящие объекты и был первым свидетелем вращательного магнетизма. Десять лет позже закон Ленца был постулирован Генрихом Ленцем, но только в 1855 г. что французский физик Леон Фуко официально открыл вихревые токи. Он обнаружили, что сила, необходимая для вращения медного диска при размещении его обода между полюсами магнита, такого как подковообразный магнит, увеличивается, и диск нагревается индуцированными вихревыми токами.

Отопление Эффект возникает из-за преобразования электрической энергии в тепловую. и используется в устройствах индукционного нагрева, например в некоторых плитах и ​​сварочных аппаратах. В сопротивление, ощущаемое вихревыми токами в проводнике, вызывает джоулев нагрев и количество выделяемого тепла пропорционально текущему квадрату. Однако для таких приложений, как двигатели, генераторы и трансформаторы, это тепло считается потери энергии и, как таковые, вихревые токи должны быть сведены к минимуму.Это может быть достигается за счет ламинирования металлических сердечников этих устройств, где каждый сердечник состоит из нескольких изолированных листов металла. Это разбивает ядро ​​на многие отдельные магнитные цепи и ограничивает прохождение вихревых токов через него, уменьшая количество тепла, выделяемого за счет джоулева нагрева.

Эдди токи также можно отвести через трещины или прорези в проводнике, которые нарушают цепи и предотвратить циркуляцию токовых петель.Это значит, что вихревые токи могут использоваться для обнаружения дефектов в материалах. Это называется неразрушающий контроль и часто используется в самолетах. Магнитное поле производятся вихревыми токами, где изменение поля показывает наличие неровности; дефект уменьшит размер вихря ток, который, в свою очередь, снижает напряженность магнитного поля.

Другой применение вихревых токов — магнитная левитация. Проводники подвергаются переменные магнитные поля, которые вызывают вихревые токи внутри проводника и создают отталкивающее магнитное поле, раздвигающее магнит и проводник.Это переменное магнитное поле может быть вызвано относительным движением между магнит и проводник (обычно магнит неподвижен, а проводник движется) или с помощью электромагнита, применяемого с переменным током для изменения напряженность магнитного поля.

Что такое вихретоковый ток? — Определение и применение

Что вызывает вихревые токи?

Вихревые токи были впервые обнаружены французским ученым Жаном Фуко более ста лет назад.Фуко заметил, что когда он пытался вращать медный диск между двумя магнитными полюсами, вращать его становилось все труднее, чем быстрее он двигался. Кроме того, диск начинал нагреваться, даже если к нему ничего не прикасалось. Что происходило?

Чтобы понять, что происходило внутри медного диска, вы должны сначала кое-что узнать об электромагнитной индукции . Когда магнитное поле изменяется, электромагнитная индукция вызывает возникновение электрического поля, которое может вызвать протекание тока.Затем этот ток генерирует свое СОБСТВЕННОЕ магнитное поле, которое всегда противоположно направлению приложенного извне магнитного поля. Это принцип, лежащий в основе работы электрогенераторов и двигателей.

Фуко понял, что, вращая медный диск между магнитными полюсами, он вызывает изменение магнитного поля, проходящего через диск. Возникающее в результате индуцированное электрическое поле вызывало образование петель тока внутри диска, в результате чего диск становился горячим.Эти наведенные токовые петли называются вихревыми токами, потому что они всегда движутся по кругу, как водовороты в воде.

Чем быстрее он поворачивал диск, тем быстрее менялось магнитное поле и тем сильнее становились эти вихревые токи. Поскольку вихревые токи создавали магнитные поля в направлении, противоположном полю, создаваемому магнитными полюсами, чем быстрее двигался диск, тем труднее его было повернуть.

Вихретоковые тормоза

Итак, как открытие Фуко привело к разработке магнитных тормозных систем, подобных той, которая останавливала поезд? Возле колес поезда установлены электромагниты.Когда поезду нужно остановиться, эти электромагниты включаются. Проходя мимо дорожек, они создают вихревые токи на дорожках. Эти вихревые токи вызывают нагрев дорожек, как и медный диск Фуко, но они также оказывают магнитное воздействие на электромагниты, установленные на поезде. Это заставляет поезд замедляться и в конечном итоге останавливаться!

Поскольку сила индуцированного магнитного поля зависит от того, насколько быстро движется поезд, вихретоковые тормоза проявляют большую силу, когда поезд движется быстро, и меньшую силу, когда он замедляется.Это позволяет поезду тормозить очень плавно, а поскольку в нем нет движущихся частей, а тормоза даже не касаются рельсов, магнитные тормоза служат очень долго и требуют очень небольшого обслуживания.

Вихретоковые тормоза обычно используются для остановки американских горок и поездов. Кроме того, их можно найти во многих типах оборудования и даже в некоторых типах спортивного оборудования, например, в гребных тренажерах, где они используются для увеличения сопротивления тренажеру, чем быстрее вы заставляете его двигаться.

Индукционные нагреватели

Помимо тормозов, вихревые токи могут использоваться только для нагрева. В индукционных нагревателях переменный ток создает изменяющееся магнитное поле, которое индуцирует вихревые токи и заставляет объект нагреваться, точно так же, как рельсы поезда нагреваются при торможении поезда. Эта технология использовалась для создания индукционных плит, которые у многих людей есть дома. Они могут нагреть сковороду до очень высокой температуры, при этом поверхность плиты останется прохладной на ощупь!

Электромагнитная индукция вызывает в этом металлическом стержне вихревые токи, заставляя его нагреваться и светиться.

Краткое содержание урока

Изменяющееся магнитное поле заставляет ток течь в проводе. Это принцип электромагнитной индукции , и он отвечает за работу электрических генераторов и двигателей. Когда твердый металлический объект помещается в изменяющееся магнитное поле, внутри металла могут возникать петли тока, называемые , вихревые токи , вызывая его нагрев. Эти индуцированные вихревые токи становятся сильнее, когда магнитное поле изменяется быстрее, и они всегда индуцируются в направлении, которое создает магнитное поле, противодействующее приложенному извне полю.

Вихревые токи были впервые обнаружены Фуко в 1800-х годах, и сегодня они используются в магнитных тормозных системах в поездах, американских горках и заводском оборудовании, а также в устройствах индукционного нагрева.

Вихревые токи — определение, демонстрация, недостатки, применение

Вихревые токи

По Фарадею закону электромагнитной индукции в проводнике индуцируется ЭДС, когда магнитный поток, проходящий через него, изменяется.Однако проводник не обязательно должен находиться в форма проволоки или катушки.


Даже для кондуктора в форма листа или пластины, ЭДС индуцируется, когда магнитный поток связан с меняется. Но разница в том, что нет определенного цикла или пути для индуцированный ток утекает. В результате индуцированные токи протекают в концентрические круговые траектории (рисунок 4.11). Как эти электрические токи напоминают водовороты воды, они известны как вихревые токи.Их еще называют Токи Фуко.

Демонстрация

Вот простой демонстрация производства вихревых токов. Рассмотрим маятник, который может колебаться между полюсами мощного электромагнита, как показано на Рисунок 4.12 (а).

Первый электромагнит выключается, маятник немного смещается и отпускается. Он начинает колеблются, и перед остановкой он совершает большое количество колебаний.В воздушное трение — единственная демпфирующая сила.

Когда электромагнит включается, и диск маятника заставляется колебаться, вихревые токи производятся в нем, которые будут противодействовать колебаниям. Сильная демпфирующая сила вихревые токи приведут маятник в состояние покоя за несколько колебаний (рис. 4.12 (б)).


Однако если некоторые слоты врезаны в диск, как показано на Рисунке 4.12 (c), вихревые токи уменьшаются.Теперь маятник совершит несколько колебаний, прежде чем остановится. Этот ясно демонстрирует образование вихревых токов в диске маятник.

Недостатки Eddy токи

При протекании вихревых токов в проводнике большое количество энергии рассеивается в виде тепла. Потеря энергии из-за протекания вихревого тока неизбежна, но может быть уменьшается в большей степени с помощью подходящих мер.

Конструкция сердечник трансформатора и якорь электродвигателя имеют решающее значение для минимизации потери на вихревые токи. Чтобы уменьшить эти потери, сердечник трансформатора состоящий из тонких пластин, изолированных друг от друга (рис. 4.13 (а)), в то время как для обмотка электродвигателя состоит из группы проводов, изолированных от одного другой (рис. 4.13 (б)). Используемая изоляция не допускает возникновения сильных завихрений. токи и, следовательно, потери сведены к минимуму.



Применение вихря токи

Хотя производство вихревые токи в одних случаях нежелательны, в других — полезны. А немного из них

я. Плита индукционная

II. Вихретоковый тормоз

iii. Вихретоковый контроль

iv. Электромагнитное демпфирование

и. Плита индукционная


Используется индукционная плита чтобы приготовить пищу быстро и безопасно с меньшим потреблением энергии. Ниже варочная зона, там плотно намотана катушка изолированного провода. Сковорода из подходящего материала, ставится над зоной нагрева.Когда плита включен, переменный ток, протекающий в катушке, производит высокую частоту переменное магнитное поле, которое индуцирует очень сильные вихревые токи в Сковорода. Вихревые токи в сковороде выделяют так много тепла из-за Джоуля. нагревание, которое используется для приготовления пищи.

Примечание: Частота внутренний Электропитание переменного тока увеличено с 50–60 Гц до примерно 20–40 кГц, прежде чем подавая его на катушку, чтобы произвести переменное магнитное поле высокой частоты. поле.

ii. Вихретоковый тормоз

Этот вихревой ток Тормозная система обычно используется в высокоскоростных поездах и американских горках. Чуть выше рельсов закреплены сильные электромагниты. Чтобы остановить поезд, электромагниты включены. Магнитное поле этих магнитов наводит вихревые токи в рельсах, которые препятствуют движению поезда или препятствуют ему. Это вихретоковый линейный тормоз (рисунок 4.15 (а)).


В некоторых случаях Круглый диск, соединенный с колесом поезда через общий вал, является заставить вращаться между полюсами электромагнита.Когда есть относительное движение между диском и магнитом, вихревые токи индуцируются в диск, который останавливает поезд. Это вихретоковый дисковый тормоз (рис. 4.15 (б))


iii. Вихревой ток тестирование

Это один из самых простых методы неразрушающего контроля для обнаружения дефектов, таких как поверхностные трещины, воздух пузырьки присутствуют в образце. Катушке изолированного провода придают переменное электрический ток, так что он создает переменное магнитное поле.Когда это катушка подводится к испытательной поверхности, при испытании индуцируется вихревой ток поверхность. Наличие дефектов вызывает изменение фазы и амплитуды вихревой ток, который может быть обнаружен другими способами. Выявлены дефекты, присутствующие в образце (рис. 4.16).


iv. Электромагнитный демпфирование

Арматура Катушка гальванометра намотана на цилиндр из мягкого железа.


После отклонения якоря, относительное движение между цилиндром из мягкого железа и радиальным магнитным поле индуцирует вихревой ток в цилиндре (рисунок 4.17). Демпфирующая сила из-за потоку вихревого тока немедленно останавливает якорь, а затем гальванометр показывает устойчивое отклонение. Это называется электромагнитным демпфированием.

Вихревые токи — обзор

16.3.1 Вихревые токи (EC)

Методы, основанные на EC, измеряют реакцию материала на электромагнитные поля в определенном частотном диапазоне, обычно от нескольких кГц до нескольких МГц (Shull, 2002).Принцип любой проверки ЕС показан на рис. 16.2. Магнитная катушка с переменным током индуцирует изменяющееся во времени магнитное поле, которое вызывает возникновение электрического тока в тестируемом объекте. Эти токи создают небольшие магнитные поля вокруг материала, которые, противодействуя исходному полю, изменяют импеданс магнитной катушки. Структурные аномалии отмечаются путем наблюдения за изменением импеданса магнитной катушки. Инспекция на основе ЕС — это бесконтактный метод, который можно использовать для проверки поверхности или приповерхности проводящих материалов (Shull, 2002).Метод не требует подготовки поверхности, и он чувствителен к изменениям отрыва, т. Е. Расстояниям между зондами и испытуемым образцом, которые обычно составляют менее нескольких сантиметров, и он характеризуется глубиной скин-слоя, которая является глубиной проникновение переменного тока.

16.2. Принципиальные схемы вихретокового контроля.

На железнодорожных путях датчики ЕС размещают на постоянном расстоянии от поверхности головки, уделяя особое внимание любым отклонениям отрыва, которые могут возникнуть во время проверки (Thomas et al., 2006). В течение нескольких лет применение этого метода ограничивалось контролем поверхностных сварных швов. Затем были разработаны усовершенствованные системы EC для определения наличия RCF, ожогов диска, следов шлифования и коротковолнового гофра (Thomas et al. , 2000; Junger et al. , 2004; Pohl et al. , 2004, 2006; Томас и др. , 2006; Папаэлиас и др. , 2008). За последние 10 лет эти системы были интегрированы в шлифовальные поезда, инспекционные поезда и тележки для обнаружения повреждений RCF на длинной длине рельса (Thomas et al., 2010 г.).

NEWT разработал систему электромагнитного контроля рельсов, основанную на технологии полевого градиентного изображения (FGI), известную как LIZARD®. Технология контроля рельсов LIZARD® может использоваться для плоских рельсов, стрелочных переводов и переходов (стрелочных переводов) либо в качестве устройства на тележке, либо в качестве переносной переносной системы (LIZARD, 2011a, b). Чтобы достичь скорости контроля выше 70 км / ч, датчики EC комбинируются с ультразвуковым контролем, который описан в разделе 16.3.5. Скорость контроля, достигаемая с помощью комбинированной ультразвуковой / электронной системы, обычно составляет 75 км / ч, но сообщалось о более высоких скоростях, до 100 км / ч (Thomas et al., 2000; Pohl et al. , 2003; Junger et al. , 2004; Thomas et al. , 2006; Papaelias et al. , 2008 г.). Oukhellou et al. (1999) разработал систему, состоящую из бесконтактных двухкатушечных и двухчастотных (10 и 100 кГц) ЕС-датчиков для обнаружения сломанных рельсов и больших сколов в головке рельса, и смонтированную под поездом метро. Система обнаружения, расположенная на расстоянии 20 мм от головки рельса, была разработана для учета вертикальных и горизонтальных смещений, вызванных динамикой тележки, чтобы выдерживать максимальную скорость 100 км / ч и выдерживать ускорение до 10 g.

Чтобы улучшить возможности обнаружения повреждений, измерения на основе EC могут обрабатываться с использованием таких алгоритмов, как классификация множественных сигналов (MUSIC) (Mehel-Said et al. , 2008). Алгоритм MUSIC основан на собственном разложении ковариационной матрицы сигнала, который создает подпространства сигнала и шума. Подход, опробованный на линии метро, ​​особенно эффективен для локализации обстрелов. До применения алгоритма MUSIC та же группа исследователей из Centre de Recherche en Automatique de Nancy во Франции использовала другие алгоритмы, такие как временные эвристические подходы, вейвлет-анализ, обратная фильтрация и анализ независимых компонентов для классификации дефектов или сингулярностей. (Bentoumi et al., 2003, 2004а, б; Lauer et al. , 2004). С помощью предварительной информации, извлеченной из базы данных инфраструктуры, Oukhellou et al. (2008) разработал байесовскую сеть для определения вероятностей реальных или ложных (особенности рельсов) классов дефектов на основе предыдущих решений.

Что такое потери на вихревые токи? — определение и выражение

Когда к магнитному материалу прикладывают переменное магнитное поле, в самом материале индуцируется ЭДС в соответствии с Законом электромагнитной индукции Фарадея.Поскольку магнитный материал является проводящим материалом, эти ЭДС циркулируют ток внутри тела материала.

Эти циркулирующие токи называются вихревыми токами. Они возникают, когда проводник испытывает изменяющееся магнитное поле.

Поскольку эти токи не отвечают за выполнение какой-либо полезной работы, они вызывают потери (потери I 2 R) в магнитном материале, известные как потери на вихревые токи . Как и потери на гистерезис, потери на вихревые токи также увеличивают температуру магнитного материала.

Гистерезис и потери на вихревые токи в магнитном материале также известны под названием потери в стали или потери в сердечнике или магнитные потери .

Вид магнитопровода в разрезе показан на рисунке выше. Когда изменяющийся поток связывается с самим сердечником, он индуцирует в сердечнике ЭДС, которая, в свою очередь, создает циркулирующий ток, называемый Eddy Current . И этот ток в свою очередь вызывает потери, называемые потерями на вихревые токи или потерями (I 2 R), , где I — значение тока, а R — сопротивление пути вихревого тока.

Если сердечник сделан из твердого железа с большей площадью поперечного сечения, величина I будет очень большой, и, следовательно, будут высокими потери. Для уменьшения потерь на вихревые токи в основном есть два метода.

  • За счет уменьшения величины вихревого тока.

Величину тока можно уменьшить, разделив твердый сердечник на тонкие листы, называемые пластинами, в плоскости, параллельной магнитному полю. Каждая пластина изолирована от другой тонким слоем покрытия из лака или оксидной пленки.

Благодаря ламинированию сердечника площадь каждой секции уменьшается, и, следовательно, индуцированная ЭДС также уменьшается. Чем меньше площадь, через которую проходит ток, тем выше сопротивление пути вихревого тока.

Применения вихревых токов

Как вы знаете, под действием вихревых токов выделяемое тепло не используется для какой-либо полезной работы, поскольку они являются основным источником потерь энергии в машинах переменного тока, таких как трансформаторы, генераторы и двигатели. Поэтому они известны как потери на вихревые токи.Однако есть некоторые применения этого вихревого тока, например, при индукционном нагреве.

  • В случае индукционного нагрева железный вал размещен в качестве сердечника индукционной катушки. Когда высокочастотный ток проходит через катушку, вихревой ток выделяет большое количество тепла в самой внешней части вала.
    В центре вала количество тепла уменьшается. Это связано с тем, что крайняя периферия вала обеспечивает путь с низким сопротивлением для вихревых токов.Этот процесс используется в автомобилях для поверхностного упрочнения тяжелых валов.
  • Эффект вихревого тока также используется в электрических приборах, например, в счетчиках энергии индукционного типа для обеспечения тормозного момента
  • Для обеспечения демпфирующего момента в приборах с подвижной катушкой на постоянных магнитах.
  • Вихретоковые приборы используются для обнаружения трещин в металлических деталях.
  • Используется в поездах с вихретоковыми тормозами.


Математическое выражение для потерь на вихревые токи

Трудно определить потери на вихревые токи по значениям сопротивления и тока, но экспериментально потери мощности на вихревые токи в магнитном материале задаются уравнением, показанным ниже:

где,
K e — co -эффективность вихревых токов.Его значение зависит от природы магнитного материала
B м — максимальное значение плотности потока в вб / м 2
T — толщина ламинации в метрах
F — частота изменения магнитного поля в Гц
V — объем магнитного материала в м 3
Это все о вихретоковых потерях.

Вихревые токи — определение, применение и примечания

Ознакомьтесь с этой статьей о вихревых токах, чтобы понять нежелательные эффекты вихревых токов и их применения в индукционных печах, электрических прерывателях, спидометрах и т. Д.успешно сдать вступительные инженерные экзамены, такие как JEE Main и JEE Advanced.

Что такое вихретоковый ток?

Каждый раз, когда магнитный поток, связанный с металлическим листом или блоком, изменяется, в нем индуцируется ЭДС. Индуцированные токи протекают по замкнутым путям в плоскостях, перпендикулярных силовым линиям по всему телу металла. Эти течения выглядят как водовороты или водовороты в воде, поэтому они известны как E ddy currents . Поскольку эти токи были впервые обнаружены Focault в 1895 году, вихревые токи также известны как токи Focault .

Проще говоря, вихревые токи можно определить как: Токи, индуцируемые в твердых металлических массах, когда магнитный поток, проходящий через них, изменяется.

Нежелательные эффекты вихревых токов

Вихревые токи образуются внутри железных сердечников вращающихся якорей электродвигателей и динамо-машин, а также в сердечниках трансформаторов, магнитный поток которых изменяется при использовании. Вихревые токи вызывают ненужный нагрев и потери мощности.Тепло, выделяемое вихревыми токами, может даже повредить изоляцию катушек.

Потери из-за вихревых токов можно минимизировать, используя многослойный сердечник, который вместо единой твердой массы состоит из тонких листов металла, изолированных друг от друга тонким слоем лака.

Вы также должны проверить основной образец бумаги JEE, чтобы улучшить вашу практику — Образец основной бумаги JEE по физике и образец бумаги для химии, образец бумаги с числовыми значениями

Приложения
  1. Индукционная печь: , если образец металла быстро помещается в при изменении магнитного поля возникают очень большие вихревые токи.Вырабатываемого тепла достаточно, чтобы расплавить металл. Этот процесс используется для извлечения некоторых металлов из руд.
  2. Электромагнитное демпфирование: Когда через гальванометр пропускается ток, его катушка претерпевает несколько колебаний, прежде чем остановиться в конечном положении. Когда катушка движется в магнитном поле, в катушке возникает индуцированный ток, который противодействует ее движению. Колебания катушки затухают. Это называется электромагнитным демпфированием.
    Электромагнитное демпфирование можно дополнительно увеличить, намотав катушку на легкую медную или алюминиевую раму.Когда рамка движется в магнитном поле, в рамке возникают вихревые токи, которые сопротивляются движению катушки. Так гальванометр выглядит мертвым, то есть катушка не колеблется — она ​​сразу же отклоняется и остается в конечном положении.
  1. Электрические тормоза: сильное магнитное поле прикладывается к вращающемуся барабану, прикрепленному к колесу. Вихревые токи, возникающие в барабане, создают крутящий момент на барабане, чтобы остановить поезд.
  2. Спидометры: в спидометре, магнит вращается со скоростью автомобиля.Магнит помещен в алюминиевый барабан, который осторожно поворачивается и удерживается на месте с помощью спиральной пружины. При вращении магнита в барабане возникают вихревые токи, которые противодействуют движению магнита. На барабан в противоположном направлении действует крутящий момент, который отклоняет барабан на угол, зависящий от скорости транспортного средства.
  3. Асинхронные двигатели: в асинхронном двигателе переменного тока вращающееся магнитное поле создается двумя однофазными переменными токами, имеющими разность фаз 90 °.металлический ротор помещен в магнитное поле. Вихревые токи, возникающие в роторе, имеют тенденцию противодействовать относительному движению между вращающимся магнитным полем и ротором. В результате ротор также начинает вращаться вокруг своей оси.
  4. Индуктотермия: вихревые токи могут использоваться для нагрева локализованных тканей человеческого тела. Эта ветвь называется индуктотермией.
  5. Счетчики энергии: В счетчиках энергии, используемых для измерения электроэнергии, используются вихревые токи, наведенные в алюминиевом диске.

Обобщенные примечания о вихревых токах
  1. Токи, индуцируемые в твердых металлических массах при изменении магнитного потока, протекающего через них, известны как вихревые токи.
  2. Эти токи были открыты Фоко в 1895 году и известны также как токи Фуко.
  3. Вихревые токи вызывают ненужный нагрев электродвигателей и трансформаторов. Потери мощности можно уменьшить, используя ламинированный сердечник.

Мы надеемся, что эта статья — Вихревые токи помогла вам подготовиться к экзамену.Вы также должны взглянуть на Закон Био-Савара, Единицу магнитной индукции и Закон Ампера, чтобы успешно сдать вступительный экзамен по инженерии, к которому вы готовитесь.

Все самое лучшее для JEE Mains 2020!

Создайте бесплатную учетную запись, чтобы продолжить чтение

  • Получайте мгновенные оповещения о вакансиях бесплатно!

  • Получите ежедневный GK и текущие новости Капсула и PDF-файлы

  • Получите 100+ бесплатных пробных тестов и викторин


Зарегистрироваться бесплатно Создать бесплатный аккаунт? Войти

Следующее сообщение

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *