Тепловые реле: Тепловые реле. Виды и устройство. Работа и применение

Содержание

принцип работы, назначение, устройство, правильный выбор

Основное предназначение тепловых Основное предназначение тепловых реле — защита электрических потребителей от возможных перегрузок в сети. В некоторых моделях предусмотрена также возможность автоматического отключения при появлении асимметрии в разных фазах, а также при пропадании одной из них.

Превышение тока выше номинального значения приводит к перегреву проводников и, как следствие, разрушению изоляции. Грамотно подобранные тепловые реле способны также защитить, например, электродвигатель в случае заклинивания якоря. Их можно также использоваться для регулировки (поддержания) необходимой температуры, например, в холодильном оборудовании или бытовых приборах.

Принцип работы теплового реле

Наиболее широко применяются конструкции, в которых главным элементом является специальная биметаллическая пластина.

Последняя выполнена из двух слов металла с различными температурными линейными коэффициентами расширения. Благодаря этому при нагревании она деформируется (изгибается) и посредством специального рычага замыкает контакты. Как правило, для изготовления таких пластин используют инвар в паре с хромоникелевой или немагнитной сталью.

Так как эта процесс выполняется плавно, неизбежно возникновение электрической дуги между сближающимися контактами.

Чтобы предотвратить их выгорание и образование нагара, применяется «прыгающий» контакт, который резко срабатывает после достижения критических параметров.

Сама пластина нагревается за счет проходящего через нее тока или расположенного рядом нагревателя в виде спирали. Часто применяется и комбинированная схема. В любом случае температура нагрева находится в прямо пропорциональной зависимости от потребляемого электрооборудованием тока.

После срабатывания реле, в зависимости от конструктивного исполнения, возвращается в исходное состояние либо автоматически, по мере остывания, либо с помощью соответствующего переключателя (кнопки).

Правильный выбор тепловых реле

Основной характеристикой теплового реле является время срабатывания в зависимости от нагрузочного тока (так называемая времятоковая характеристика).

Главный критерий – номинальный ток потребления электрооборудования. Тепловое реле должно иметь соответствующие характеристики на 20-30 % выше, что обеспечивает ее срабатывание в течение соответствующей процентной перегрузки в течение 20 минут.

Влияние внешних климатических факторов на тепловые реле

Так как деформация биметаллической пластины зависит от ее фактического нагревания, время срабатывания реле находится в прямой зависимости также от температуры окружающей среды.

И при больших контрастах следует предусматривать в качестве дополнительной функции плавную регулировку. Также для снижения такого влияния следует подбирать реле с максимально возможной температурой срабатывания, а также располагать их в тех же помещениях, где находятся объекты, предназначенные для защиты.

Напоследок необходимо отметить, что тепловые реле не предназначены для предохранения оборудования от таких внештатных ситуаций, как короткое замыкание. В этом случае они сами нуждаются в специальной защите.

Тепловые реле для электродвигателя — принцип действия, защита

08.09.2015

Тепловые реле предохраняют электродвигатель от перегрева, вызванного главным образом его перегрузкой, а также потерей фазы или отклонениями параметров сети от их номинальных значений.

Принцип действия тепловых реле основан на изгибании биметаллического элемента при его нагреве. Биметаллический элемент выполнен из двух металлических пластин с разными коэффициентами линейного расширения. При нагреве одна из пластин удлиняется в большей степени, а поскольку пластины скреплены, происходит изгиб всего элемента. Таким образом, в случае превышения тока определенного значения биметаллический элемент нагревается и изгибается, приводя в действие контакт реле. Очевидно, что при увеличении тока уменьшается время срабатывания реле. Зависимость времени срабатывания реле от тока называется характеристикой теплового реле.


Рис. 1. Характеристика теплового реле

На рисунке 1 приведен пример характеристики реле в холодном состоянии, где Iустн – номинальный ток уставки, а Iуст – ток, который протекает через реле в определенный момент времени. Под номинальным током уставки понимается наибольший ток, который в течение длительного времени при данной настройке реле не приводит к его срабатыванию.

Тепловые реле надежно защищают электродвигатель от перегрузок только в случае его эксплуатации в режиме S1 (продолжительный режим работы). Температурные условия мест, в которых установлены реле и защищаемый двигатель должны быть полностью идентичны. Если двигатель работает в повторно-кратковременном режиме, то защита его от перегрузок тепловым реле неэффективна, кроме того, возможны ложные срабатывания.

В случае, когда величины токов электродвигателя имеют относительно большие значения, тепловое реле может включаться через трансформаторы тока.

Тепловое реле необходимо выбрать таким образом, чтобы его номинальные значения напряжения и тока соответствовали аналогичным значениям двигателя, далее необходимо выставить ток уставки согласно следующим выражениям:

Iустн=Iдн, если Тср=Тн,

где Iдн – номинальное значение линейного тока двигателя, Тср

– температура окружающей среды, в которой установлено тепловое реле, Тн – температура калибровки реле;

, если ,

Современные электродвигатели выполняются с изоляцией класса F и превышением температуры по классу В. Таким образом, даже при температуре окружающей среды 400С обеспечивается температурный запас 250С, благодаря чему электродвигатель может выдерживать кратковременные перегрузки без разрушения изоляции. Реле, подобранные согласно данным рекомендациям, обеспечивают надежную защиту двигателей при длительных перегрузках 15-20%. Таким образом, обеспечивается надежная продолжительная работа электродвигателя и обеспечивается заложенный заводом-изготовителем ресурс работы.

Если же нагрузка двигателя неравномерная (в одни короткие периоды времени больше номинальной, в другие наоборот – меньше), во избежание ложных срабатываний защиту необходимо несколько загрубить. С этой целью токи уставки Iуст, полученные по формулам, приведенным выше, следует увеличить на 10%.

Важно! Тепловое реле не защищает двигатель от коротких замыканий, поэтому его использование возможно только совместно с устройствами защиты от токов короткого замыкания (автоматические выключатели, предохранители, реле максимального тока).


Тепловые реле: основные функции

  1. Главная
  2.   ›  
  3. Тепловые реле: основные функции
  4.  

Тепловые реле способны предохранять двигатель от перегрева, которые возникает в результате перегрузок, а  так же при потере фазы или отклонении параметров сети от номинальных значений. Принцип работы тепловых реле основан на изгибании при нагреве биметаллического элемента. Данный элемент выполняется из двух металлических пластин, которые имеют разный коэффициент линейного расширения. При нагреве одна пластина удлиняется, а т.к. они скреплены между собой, то возникает изгиб элемента в целом. В результате превышения тока определенного значения изгибается и нагревается биметаллический элемент, тем самым приводит в действие контакт реле. 

Получается, что время срабатывания реле уменьшается при увеличении тока. Номинальный ток уставки представляет собой наибольший ток. Именно он при определенной настройке в течение длительного времени не способен привести реле к срабатыванию. Температурные условия в местах, где установлен защищаемый двигатель и реле должны быть идентичны. В случае, когда двигатель работает в повторном кратковременном режиме, защита от перегрузок тепловым реле не помогает, помимо этого могут возникнуть ложные срабатывания. 

Бывает, что величина тока электродвигателя имеет большие значения, в этом случае тепловое реле может срабатывать через трансформаторы тока. Тепловое реле следует выбирать исходя из номинального значения напряжения и тока. Когда нагрузка неравномерная в какой-то период больше номинальной, а в какой-то – меньше, лучше всего загрубить защиту, это поможет избежать ложных срабатываний. Стоит так же отметить, что тепловое реле способно защитить двигатель от коротких замыканий. Его использование возможно лишь с устройствами защиты от токов с коротким замыканием, такими как предохранители, автоматические выключатели или реле максимального тока.

 

Тепловое реле — принцип работы, виды, устройство. Инструкция как выбрать и подключить оборудование

Для безопасности эксплуатации электротехнического оборудования должны использоваться специальные приспособления, которые контролируют соответствие условий и параметров работы нормативным требованиям. Одним из таких устройств является тепловое реле, не допускающее перегрев приборов.

Краткое содержимое статьи:

Назначение устройства

Высокая нагрузка, которую испытывают электродвигатели, обусловливает рост потребления электроэнергии в процессе функционирования. Это часто приводит к превышению нормативных параметров работы оборудования. Перегрузка в электрической цепи является причиной быстрого роста температуры. А она, в свою очередь, вызывает появление неисправностей и аварий.

Назначение теплового реле состоит в создании предпосылок для поддержания нормальных условий эксплуатации посредством возможности отключения электроэнергии при перегрузках и риске аварии.


Это устройство замыкает или размыкает цепь по сигналу, поступающему от агрегата в зависимости от текущей рабочей температуры. В результате электродвигатель защищается от токовых перегрузок.

Среди преимуществ данного устройства можно отметить:

  • компактные размеры;
  • незначительный вес;
  • несложность конструктивного исполнения;
  • долговечность эксплуатации;
  • доступность по цене.

Но при этом потребуется периодическая проверка работоспособности и настройка.

Принципы работы

В тепловом реле чаще всего присутствуют две биметаллические пластины. Они имеют разные коэффициенты расширения – у одной этот параметр больший по величине, а у другой меньший. Там где пластины прилегают друг к другу, обеспечивается их жесткое крепление или прокатом, или сваркой.

При нагревании неподвижно закрепленной пластины происходит ее изгиб. Эта особенность и лежит в основе принципа действия теплового реле. Часто в качестве применяемых материалов выступают инвар и сталь немагнитного или хромированного исполнения.

Биметаллическая часть начинает нагреваться вследствие воздействия тепла. Оно выделяется в пластине нагрузочным током. Но нагрев также может производиться и по другой схеме – через нагреватель, по которому идет ток.

Наиболее высокие показатели эффективности работы реле обеспечиваются при комбинированном способе нагревания – от тепла тока, идущего через пластину, и от нагревателя. После того как пластинка прогнется, ее свободный конец взаимодействует с контактным блоком реле.


Разновидности приспособлений

Применение находят разнообразные типы тепловых реле, которые имеют разные параметры действия и свою сферу использования:

РТЛ – является трехфазной модификацией. Она эффективна при защите моторов электрического типа от перегрузок, роторного заклинивания, фазного перекоса или длительного запуска. Такое реле можно крепить на клеммы ПМЛ на пускателе или непосредственно на КРЛ при самостоятельной эксплуатации.

РТТ – также трехфазный вариант, но применяют его при создании систем безопасности эксплуатации короткозамкнутых моторов. Реле может защитить от продолжительного запуска или заклинивания. Крепится на пускатель ПМЕ и ПМА в корпусной его части или же на отдельную панель при самостоятельной работе.

РТИ – работает при наличии трехфазного питания и защищает двигатели от тяжелых режимов. Для установки используется корпус пускателя типа КМИ или КМТ.

ТРН – устройство на 2 фазы для контроля пуска и последующего функционирования. Предусмотрен ручной способ перевода контактов в первоначальный вид. Преимущество – отсутствие влияния температурного режима вовне.

Твердотельное 3-х фазное с подвижными элементами. Работает с той же целью, что и другие модификации, но может эксплуатироваться даже в условиях риска взрывных явлений. Это обусловлено нечувствительностью к состоянию среды.

РТК – отслеживает состояние и изменение одного показателя, а сам термоконтроль производится щупом.

РТЭ – является непосредственным элементом конструкции агрегата. Оно состоит из проводника, изготовленного из особого сплава. При достижении температурой определенного уровня материал начинает плавиться.

На фото теплового реле можно рассмотреть особенности конструкции отдельных их видов. Эти отличия нужно принимать во внимание при выборе необходимого вам для конкретной ситуации компонента.


Как выбирать

Перед тем, как изучать инструкцию для подключения теплового реле, необходимо изучить основные критерии, на основании которых это устройство выбирается. Важным параметром является связь между нагрузочным током и периодом срабатывания устройства.

Учитывают также и состояние, которое станет сигналом для активизации реле – холодное или перегретое. При этом нагревательные компоненты отличаются термической неустойчивостью в ситуации, когда действуют токи короткого замыкания.

Показатель номинальной нагрузки двигателя является основой для расчета требуемого тока реле. Как правило, термореле будет срабатывать, если в течение 20-30 минут имеет место перегрузка в 20-30%. Причем постоянная компонента периода нагревания электродвижка находится в зависимости от времени перегрузки.

Если такое превышение нормативной нагрузки незначительно по времени, то постоянная будет равна 5-10 минутам. А вот в ситуации длительных отклонений в нагреве будет задействована не одна обмотка, а вся масса движка. Тогда параметр постоянной нагрева растет до 40 минут или 1 часа.

Учитывают и зависимость нагрева пластины от температуры среды. Если окружающее пространство нагревается, то и ток, при котором реле активизируется, будет меньше. Поэтому при отклонении температуры от номинала требуется дополнительная регулировка реле. Также его следует ставить в тех же условиях, в которых работает и сам агрегат.

Существуют и другие значимые характеристики тепловых реле:

  • напряжение силового типа;
  • параметры регулировочных контактов;
  • мощность при запуске контактов;
  • пределы срабатывания;
  • восприимчивость фазных перекосов;
  • класс выключения.

Особенности подключения

Часто используемая схема подключения теплового реле своими руками предполагает использование контакта постоянно замкнутого типа. Этот контакт (NC или НЗ по маркировке) функционирует в последовательной связи с отключающей кнопкой «стоп», расположенной на пульте управления.

В стандартных условиях такой контакт связан с подключением системы сигнализации, которая дает информацию об активизации защиты агрегата. В усложненных схемах возможно построение механизма аварийного размыкания цепи и остановки двигателя.

Само термореле находится в цепи после контакторов, но перед двигателем. Включение размыкающегося реле производится кнопкой «стоп». При этом используется последовательная схема.

Тепловые реле являются эффективным способом обезопасить работу электродвигателя. Они имеют различные характеристики, сферу применения, отличаются стоимостью. Поэтому целесообразно заранее определиться с наиболее подходящим типом устройства, ориентируясь на модели от проверенных производителей.

Фото теплового реле

Тепловые реле ABB серии TA, TF, T16. Характеристики, цены, pdf каталог

Тепловые реле перегрузки являются экономичным электромеханическим устройством для защиты главной цепи. Они обеспечивают надежную защиту двигателей в случае перегрузки или обрыва фазы. Для прямого пуска двигателя электронные реле объединяются вместе с контакторами серии AF и мини-контакторами.

Тепловые реле перегрузки это трехполюсные реле с биметаллическими отключающими элементами. Ток двигателя, протекая через биметаллические элементы, нагревает их. В случае перегрузки (превышения тока) биметаллические элементы деформаруются в результате нагрева и это приводит к срабатыванию реле и изменению положения выходных контактов (95-96 / 97-98).

Характеристики тепловых реле перегрузки серии ТА … DU:

Класс расцепления 10А

Специальная версия с классом расцепления 20 или 30 *

Температура окружающего воздуха при эксплуатация: -25 ° C … +55 ° C

Специальные версии, предназначенные для защиты двигателей ЕЕх *

Тепловые реле T … DU с ручным и автоматическим сбросом предназначены для защиты трёхфазных электродвигателей.

Кнопка сброса также может использоваться для разрыва цепи. Встроенные вспомогательные контакты электрически изолированы и могут использоваться в разных цепях (например, управления и сигнализации).

Все реле снабжены устройством компенсации температуры окружающей среды и защитой от обрыва фазы.

Реле до типа TA 110 DU включительно защищены от непосредственного прикосновения пальцем или тыльной стороной ладони.

Для реле TA 200 DU … TA 450 DU/SU выпускаются дополнительные защитные кожухи.

Клеммы выводов снабжены винтами под отвертку Pozidriv (±) и направляющими для отвёртки, поставляются в незатянутом положении.

Характеристики тепловых реле перегрузки серии TF:

Класс расцепления 10

Температура окружающего воздуха при эксплуатация: -25 ° C … +60 ° C

Пломбировочная крышка для элементов управления

Характеристики тепловых реле перегрузки серии T16:

Класс расцепления 10

Температура окружающего воздуха при эксплуатация: -25 ° C … +60 ° C

Общая характеристика тепловых реле перегрузки:

Ручной или автоматический сброс (по выбору)

Механизм свободного расцепления

Чувствительность к обрыву фазы в соотв. с IEC/EN60947-4-1

Два электрически изолированных вспомогательных контакта — 1 НО + 1 НЗ

Функция тестирования

Индикация срабатывания на передней панели

Температурная компенсация

Возможность использования в цепях постоянного и переменного тока *

Предназначены для применения в однофазных и трехфазных сетях

Все фазы защищены биметаллическим элементом

Все винты клемм доступны с фронтальной стороны

Дополнительные аксессуары:

Комплекты отдельного монтажа *

Соединительные шины *

Клеммные крышки *

Возможность дистанционного срабатывания и сброса *

* Не для всех моделей

Тепловые реле — Безопасность электроустановок

Схема подключения теплового реле

Схемы подключения электродвигателей, в которые включено тепловое реле, могут существенно отличаться между собой, в зависимости от технической необходимости и наличия различных устройств. Тем не менее, в каждой из схем тепловое реле обязательно должно подключаться последовательно с катушкой пускателя. Это обеспечивает надежную защиту от перегрузок оборудования. Так, при превышении определенного уровня потребляемого двигателем тока тепловое реле размыкает цепь, тем самым отключая магнитный пускатель и сам двигатель от источника электропитания.

Принцип работы теплового реле

На сегодняшний день наибольшую популярность приобрели тепловые реле, чье действие основано на использовании свойств биметаллических пластин. Для изготовления биметаллических пластин в таких реле используют, как правило, инвар и хромоникелевую сталь. Сами пластины между собой крепко соединяются посредством сварки или же проката. Поскольку одна из пластин обладает большим коэффициентом расширения при нагревании, а другая меньшим, то в случае воздействия на них высокой температуры (например, при прохождении тока через металл), происходит изгиб пластины в ту сторону, где располагается материал с меньшим коэффициентом расширения.

Таким образом, при определенном уровне нагревания биметаллическая пластина прогибается и оказывает воздействие на систему контактов реле, что приводит к его срабатыванию и размыканию электрической цепи. Также необходимо отметить, что в результате низкой скорости процесса прогиба пластины она не может эффективно гасить дугу, которая возникает в случае размыкания электрической цепи. Для того чтобы решить данную проблему, необходимо ускорить воздействие пластины на контакт. Именно поэтому на большинстве современных реле предусмотрены также ускоряющие устройства, которые позволяют эффективно разорвать цепь в минимальные сроки.

  Виды тепловых реле (РТТ, РТЛ, ТРН, РТИ)

Тепловые реле РТТ применяются в тех случаях, когда требуется обеспечить эффективную защиту трехфазных асинхронных двигателей от перегрузок, длительность которых превышает допустимую (которые могут возникнуть, например, при выпадении одной из фаз). Как правило, они являются комплектующими частями в управляющих схемах электроприводов и в магнитных пускателях.

Тепловые реле РТЛ используются в тех случаях, когда требуется защитить от перегрузок по продолжительности, а также о несимметричности тока, например, при выпадении одной из фаз. Этот тип реле может устанавливаться как на пускателях, так и отдельно, при наличии клеммников.

Двухфазное тепловое реле ТРН используется, как правило, на магнитных пускателях в асинхронных двигателях. Его особенностью является возможность использования в сетях постоянного тока.

Тепловое реле РТИ выполняет те же функции, что и описанные выше, а также обеспечивает защиту от затянутого пуска. Данный тип реле обладает собственным потреблением энергии, поэтому дополнительно при его использовании рекомендуется устанавливать предохранители.

 

Видеоролик

Тепловые реле

К тепловым реле можно отнести большую группу электроприборов, предназначенных для регулировки температуры различных нагревательных приборов, контроля технологических процессов, защиты электродвигателей, аккумуляторов и других устройств с использованием различных датчиков температуры. В этой статье рассматриваем конструкции и возможности тепловых реле с биметаллическими пластинами, используемых в основном для защиты электродвигателей промышленных установок.

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух соединённых плоскими поверхностями металлических полосок с разными коэффициентами линейного расширения. При изменении температуры из-за различного линейного расширения частей, пластина изгибается. При нагревании до определённой температуры, пластина нажимает на защёлку расцепителя и под действием пружины происходит быстрое электрическое разъединение контактов.

В отличие от предохранителей и электромагнитных расцепителей, которые применяются для защиты электрооборудования от коротких замыканий, тепловые реле предназначены для защиты от перегрузки, в основном электродвигателей. Это объясняется тем, что для нагрева биметаллической пластины до температуры, при которой происходит отключение нужно значительно больше времени, чем для срабатывания предохранителя и защищаемое оборудование может выйти из строя.

По конструкции тепловые реле защиты двигателя различаются в зависимости от назначения, способа установки, рабочего тока. Реле изготавливаются и применяются как отдельные электроустановочные изделия, так и в составе пускателей или автоматических выключателей в качестве конструктивных элементов. Чаще всего это двухфазные или однофазные реле с регулировкой тока срабатывания. Изготавливаются варианты с самовозвратом после срабатывания и с ручным возвратом в исходное положе.

Биметаллическая пластинка нагревается за счёт прохождения тока по токонагревающей спирали, которая наматывается на пластину через теплостойкую изоляцию. Количество витков спирали, а также сечение провода выбирается в зависимости от величины тока, на который рассчитано тепловое реле. При больших значениях тока в качестве нагревательного элемента может использоваться и сама биметаллическая пластина, изготовленная в вида буквы U, прикреплённой концами к контактам токоведущих поверхностей. У однофазных тепловых реле ТРП-60 и ТРП-150 одна часть тока проходит через нагревательный элемент, а вторая через биметаллическую пластину. Система рычагов и пружин по конструкции, отключающих контакты тепловых реле, различается в зависимости от типа и назначения реле.

Выбор теплового реле зависит от тока, потребляемого электродвигателем. Величина изменения тока срабатывания реле с помощью регулировки небольшая, поэтому для разных электродвигателей нужно подбирать тепловые реле с подходящими термоэлементами.

При пуске электродвигателя пусковой ток примерно в 5-7 раз превышает номинальный рабочий. Но, тепловое реле не срабатывает из-за замедления на нагрев биметаллической пластинки. Поэтому тепловое реле выбирается по номинальному току нагрузки или немного больше. Рекомендуемое превышение тока срабатывания защиты составляет 5% — 20% от номинального тока электродвигателя. Лучше всего сразу выбирать комплект для конкретного электродвигателя из пускателя и теплового реле, например, по готовой таблице.

Данные тепловых реле встроенных в пускатели ПМЕ и ПАЕ
Тип пускателяТип теплового релеНоминальный ток теплового элемента
или маркировка сменного нагревателя, А
МПЕ-000ТРН-10А0,32
0,4
0,5
0,63
8,0
1,0
1,25
1,6
2,0
2,5
3,2
ПМЕ-100ТРН-100,5
0,63
0,8
1,0
1,25
1,6
2,0
2,6
3,2
4,0
5,0
6,3
8,0
10
ПМЕ-200ТРН-255,0
6,3
8,0
10
12,5
16
20
25
ПАЕ-300ТРН-4012,5
16
20
25
32
40
ПАЕ-400ТРП-6020
25
30
40
50
60
ПАЕ-500ТРП-15050
60
80
100
120
ПАЕ-600ТРП-150100
120
160

Примечания: 
1. Номинальные токи указаны для случая, когда регулятор уставки тока находится в положении 0 и реле установлено открыто на панели при температуре окружающего воздуха 20 С — для реле ТРН и 40 С — для реле ТРП

2. При встройке реле ТРН в пускатель с оболочкой любого исполнения и температуре окружающего воздуха 20 С снижение номинальных токов не требуется. То же не требуется для ТРП 20-60А включительно. требуется снижение номинальных токов при температуре воздуха до 40 С для ТРП.

Настройка теплового реле необходима при изменении температурных условий эксплуатации электрооборудования, подстройки тепловой защиты для конкретного электрооборудования, а также для компенсации разброса характеристик у различных образцов изделий даже одного типа.

Большинство тепловых реле имеют два вида регулировки для установки тока срабатывания. Ближе к концу подвижной части биметаллической пластины находится регулировочный винт, который служит для того, чтобы регулировать расстояние от пластины до поверхности расцепителя, на которую этот винт нажимает для срабатывания реле. Эта регулировка недоступна пользователям без разборки. Вторая регулировка предназначена для подстройки тока срабатывания обслуживающим персоналом. Для этого используют выведенный на лицевую сторону как у реле ТРН регулировочный винт под отвёртку с эксцентриком для механического изменения изгиба. В другом варианте, как у автоматического выключателя АП-50, регулировка выполняется специальным рычажком. Возле регуляторов имеются деления для определения в процентах изменения величины тока. Величина регулировки тока срабатывания теплового реле ограничена и обычно составляет по 25% в одну или другую сторону.

Реле тепловые и токовые
№ п/пТипТок уставки А№ п/пТипТок уставки
1.РТТ-111до 2514.РТЛ-10103,6-6,0
2.РТТ-141до 2515.РТЛ-10125,9-8,0
3.РТТ-211до 4016.РТЛ-10147,0-10
4.РТТ-311до 10017.РТЛ-10169,5-14
5.РТТ-321до 16018.РТЛ-102113-19
6.РТЛ-1001от 0,1 до 0,1719.РТЛ-102218-25
7.РТЛ-10020,16-0,2620.РТЛ-205323-32
8.РТЛ-10030,24-0,421.РТЛ-205530-41
9.РТЛ-10040,38-0,6522.РТЛ-205738-52
10.РТЛ-10050,61-1,023.РТЛ-205947-64
11.РТЛ-10060,95-1,624.РТЛ-206154-74
12.РТЛ-10071,5-2,625РТЛ-206363-86
13.РТЛ-10082,4-4,0

При правильной настройке тока срабатывания обеспечивается защита электродвигателя трёхфазного тока от перегрузки при остановке двигателя от заклинивания ротора, при чрезмерном увеличении механической нагрузки на приводимый в движение механизм, при затяжном пуске электродвигателя. Тепловым реле обеспечивается также защита электродвигателя от перекоса или обрыва фазы по увеличению тока в оставшихся фазах. Для срабатывания тепловой защиты вполне достаточно повышения тока даже в одной из фаз, если ток проходит через нагреватель теплового реле. Поэтому достаточно надёжная защита электродвигателя от перегрузки обеспечивается одним двухфазным реле или двумя однофазными.

Настройка тока срабатывания теплового реле проводится на несложном стенде. Реле подключается через понижающий трансформатор и регулятор тока ЛАТР. Потребляемый ток измеряется амперметром. Правильно настроенное тепловое реле не должно срабатывать при значении тока Iн = 1,05, но должно срабатывать за время не больше 20 минут при токе Iн = 1,2 от номинального значения.

Время срабатывания теплового реле зависит от величины тока и температуры окружающей среды для каждого типа реле. Их значения, с учётом разброса характеристик, приводятся в специальных таблицах. Предварительно проверяемое реле прогревают номинальным током в течение 2-х часов.

Настройку и проверку реле при значительном из количестве можно производить в форсированном режиме сравнением реле, испытанным по вышеизложенному методу и принятым в качестве образца-эталона. На соединенные последовательно с образцовыми 8-10 тепловых элементов с одинаковым номинальным током подаётся 2,5-3 кратный ток уставки, и отчитывается время их срабатывания (обычно 5-8 минут). Тепловые элементы сработавшие с большим отклонением от образцового, подвергаются регулировке изменением положения регулировочного рычага до отключения реле. Эту операцию необходимо выполнить за время не более 25-30 секунд.

При особой требовательности к реле после его охлаждения (через 10-15 минут) испытание повторяют для контроля полученных результатов. Настройку реле можно считать удовлетворительной, если время срабатывания испытуемого реле будет отличаться от образцового не более чем на 10%.

Применение тепловых реле, а также их обслуживание имеет свои особенности. Схема защиты двигателя построена так, что ток электродвигателя проходит через нагреватели теплового реле, а его размыкающий контакт отключает цепь управления пускателем электродвигателя. Поэтому нужно иметь в виду, что при залипании двух или больше контактов на пускателе, реле не обеспечит отключение электродвигателя.

Тепловые реле имеют разброс по отключению, прежде всего это связано с сезонными и суточными изменениями температуры окружающего воздуха. Время срабатывания зависит от того, было ли до этого токовое реле под нагрузкой. Если реле было под нагрузкой и прогретое, то время срабатывания теплового реле уменьшается.

Срабатывание теплового реле обычно сигнализирует о наличии плохо заметной неисправности. Даже непродолжительный осмотр оборудования поможет своевременно выявить скрытые неисправности электрооборудования и предотвратит его выход из строя.

При плохом контакте происходит нагрев места соединения, и тепловое реле преждевременно срабатывает и при нормальном режиме работы защищаемого электрооборудования. Если сильно загрубить уставку теплового реле, то контакт подгорит, а тепловое реле может не сработать при увеличении тока в двух оставшихся фазах.

После срабатывания теплового реле необходимо некоторое время для остывания термоэлемента, только после этого возможно его повторное включение. Перед повторным включением очень желательно проверить на ощупь температуру электродвигателя. Если температура повышена, то нужно дать время для его остывания и проверить двигатель. Время остывания электродвигателя существенно больше, чем время необходимое для остывания и повторного включения теплового реле.

Частые включения электродвигателей не рекомендуются, если двигатель специально не предназначен для работы в таких режимах. Перед повторным включением желательно осмотреть и проверить вал электродвигателя на отсутствие заклинивания, люфтов в подшипниках. Отключив автомат электродвигателя проверить контакты пускателя на отсутствие залипания, состояние подвижной системы, затяжку электрических контактов. После включения автоматического выключателя проверить наличие напряжения на верхних контактах пускателя. При запуске электродвигателя нужно обратить внимание на отсутствие чрезмерного искрения в пусковой аппаратуре, на шумы в двигателе и приводимых в движение механизмах. Нужно проверить потребление тока в каждой фазе защищаемого двигателя по стационарным приборам или токовыми клещами.

Не редки случаи, когда из-за невнимательного осмотра оборудования или закорачивании отключающего контакта теплового реле, за короткое время на одном месте один за другим палят несколько электродвигателей.

Правила устройства электроустановок (3.1.19.) вводят ограничения на применение защиты электродвигателей, отключение которых может привести к серьёзным последствиям. Это некоторые виды сигнализации, средства пожаротушения, вентиляторы, предотвращающие образование взрывоопасных смесей и другие ответственные устройства.

Видеоролик


Тепловые реле РТЭ (реле перезагрузки)

Реле перегрузки является дополнительным устройством для контактора и способно из обычного коммутирующего изделия сделать еще и защитное.

Если в цепи возникает перегрузка по току, то срабатывает тепловая защита и неисправный участок цепи отключается. Отличием реле перегрузки от автоматического выключателя является возможность точной настройки на конкретную нагрузку. Наиболее часто тепловые реле применяются в цепях управления электродвигателей, так как практически все неисправности двигателей не ведут возникновению короткого замыкания, которое легко блокируется автоматическим выключателем, а ведут к значительному возрастанию токов. Диапазон установки токов от 0,4 до 93 ампер позволяет подобрать устройство защиты практически для любого электродвигателя . Наличие двух пар дополнительных контактов, нормально замкнутых и нормально открытых, значительно облегчает проектирование схем управления. Эти контакты могут использоваться как для самодиагностики устройства, так и для командных цепей.

Реле перегрузки устанавливается на контактор КМЭ и имеет три типа размера корпуса. При заказе данного вида оборудования необходимо пользоваться таблицами соответствия, чтобы медные шины реле точно входили в зажимные контакты КМЭ.

При производстве каждое изделие проходит несколько этапов контроля качества, это позволяет практически полностью исключить вероятность выпуска бракованной продукции. Гарантия на данную группу товаров – 5 лет. Срок службы – значительно больше.

Изображение

Наименование

Диапазон регулировки, А

Номинальное рабочее напряжение Uе, В

Номинальное напряжение изоляции Ui, В

Масса

нетто, кг

Артикул

РТЭ-1304

0.4-0,63

660

690

0,165

rel-1304-0.4-063

РТЭ-1305

0,63-1

rel-1305-0.63-1

РТЭ-1306

1-1,6

rel-1306-1-1.6

РТЭ-1307

1,6-2,5

rel-1307-1.6-2.5

РТЭ-1308

2,5-4

rel-1308-2.5-4

РТЭ-1310

4-6

rel-1310-4-6

РТЭ-1312

5,5-8

rel-1312-5.5-8

РТЭ-1314

7-10

rel-1314-7-10

РТЭ-1316

9-13

rel-1316-9-13

РТЭ-1321

12-18

rel-1321-12-18

РТЭ-1322

17-25

rel-1322-17-25

РТЭ-2353

23-32

660

690

0,32

rel-2353-23-32

РТЭ-2355

30-40

rel-2355-30-40

РТЭ-3353

23-32

660

690

0,51

rel-3353-23-32

РТЭ-3355

30-40

rel-3355-30-40

РТЭ-3357

37-50

rel-3357-37-50

РТЭ-3359

48-65

rel-3359-48-65

РТЭ-3361

55-70

rel-3361-55-70

РТЭ-3363

63-80

rel-3363-63-80

РТЭ-3365

80-93

rel-3365-80-93


     

1. Схема установки приставки контактной ПКЭ и приставки выдержки времени ПВЭ на контакторы КМЭ и КТЭ.

2. Схема реализации реверсивной схемы на контакторах КМЭ с использованием блокировочного устройства.

3. Тепловое реле РТЭ.

Конструкция реле перегрузки РТЭ допускает возможность регулировки уставок. Для изменения уставки срабатывания необходимо открыть прозрачную крышку на корпусе реле. Установить необходимый ток уставки срабатывания реле вращением диска синего цвета, расположенного слева, совмещая значение тока (А) на шкале с отметкой на корпусе. Для предотвращения несанкционированного изменения уставки крышка может быть опломбирована.

После открытия прозрачной крышки можно изменить режим повторного включения поворотом переключателя синего цвета «Reset». При повороте влево переключатель выводится из зацепления и переходит в режим кнопки, при нажатии которой осуществляется ручное повторное включение. При нажатии на переключатель и повороте вправо выполняется режим автоматического повторного включения. Переключатель остается в положении автоматического повторного включения до принудительного возврата в положение ручного повторного включения.

При закрытии крышки переключатель блокируется. Функция «Остановка» приводится в действие нажатием кнопки красного цвета «Stop». При нажатии этой кнопки размыкаются контакты 95-96.

Функция «Тестирование» приводится в действие нажатием отверткой на кнопку кранного цвета «Test». Нажатие этой кнопки имитирует срабатывание реле при перегрузке — изменяет положение размыкающих и замыкающих контактов и включает индикатор срабатывания.

 

Если Вам необходима трансформаторная подстанция — опишите ее или прикрепите опросный лист и отправьте нам — и Вы получите бесплатный рассчет в течение 1 дня.

Оставить заявку

Каков принцип работы теплового реле?

Тепловые реле — это защитные электрические устройства, используемые для защиты двигателей или другого электрического оборудования и электрических цепей от перегрузки. При фактической работе двигателя, такой как перетаскивание производственного оборудования на работу, если машина неисправна или цепь ненормальная, двигатель столкнется с перегрузкой, скорость двигателя уменьшится, ток в обмотке увеличится, и температура обмотки двигателя повысится.Если ток перегрузки мал и время перегрузки короткое, а обмотка двигателя не превышает допустимого превышения температуры, перегрузка допустима. Однако, если время перегрузки велико и ток перегрузки велик, повышение температуры обмотки двигателя превысит допустимое значение, что приведет к старению обмотки двигателя, сокращению срока службы двигателя и даже сгоранию обмотки двигателя в серьезных случаях. . Поэтому такую ​​перегрузку мотор не переносит. Тепловое реле использует принцип теплового воздействия тока для отключения цепи двигателя в случае перегрузки, которую двигатель не может выдержать, чтобы обеспечить защиту двигателя от перегрузки.

Тепловые реле Nader

Структура теплового реле

Тепловое реле состоит из нагревательного элемента, биметаллического листа и контакта, среди которых биметаллический лист является ключевым измерительным элементом . Биметаллический лист состоит из двух видов металла с разным коэффициентом теплового расширения. Сторона с большим коэффициентом теплового расширения называется активным слоем, а сторона с малым коэффициентом теплового расширения — пассивным слоем.Тепловое расширение биметаллического листа происходит после нагрева. Однако из-за разных коэффициентов теплового расширения двух слоев металла первые два слоя металла тесно связаны друг с другом, из-за чего биметаллический лист изгибается, как одна сторона пассивного слоя. Механическое усилие, создаваемое изгибом биметаллического листа из-за нагрева, заставит подвижный контакт разорвать цепь.

Структура теплового реле

Принцип работы теплового реле

Когда двигатель работает нормально, тепловой элемент теплового реле не выделяет достаточно тепла для срабатывания функции защиты, и его нормально замкнутый контакт будет оставаться замкнутым штат; Когда двигатель перегружен, тепловой элемент теплового реле будет генерировать достаточно тепла, чтобы сработала функция защиты, и его нормально замкнутый контакт будет отключен, чтобы двигатель потерял мощность через цепь управления, чтобы защитить двигатель. После устранения неисправности следует сбросить тепловое реле, прежде чем можно будет перезапустить двигатель.

Тепловое реле обычно имеет две формы сброса: ручной сброс и автоматический сброс. Преобразование двух форм сброса может быть выполнено регулировкой винта сброса. Когда тепловое реле поставляется с завода, производитель обычно устанавливает его в состояние автоматического сброса. При использовании, устанавливается ли тепловое реле в состояние ручного или автоматического сброса, зависит от конкретной ситуации в цепи управления. В целом, принцип заключается в том, что даже если тепловое реле сбрасывается автоматически после выполнения защитного действия теплового реле, защищенный двигатель не должен перезапускаться автоматически, в противном случае тепловое реле должно быть установлено в состояние ручного сброса. Это сделано для предотвращения повторного запуска двигателя и повреждения оборудования, если неисправность не устранена. Например, для цепи управления ручным запуском и ручным остановом, управляемым кнопкой, тепловое реле может быть установлено в режим автоматического сброса; для цепи автоматического пуска, управляемой автоматическим элементом, тепловое реле должно быть переведено в режим ручного сброса.

Классификация тепловых реле

Биметаллическая пластина: биметаллический лист, изготовленный прокаткой двух видов металлов с разным коэффициентом расширения (обычно никелевый марганец и медная пластина), нагревается и изгибается, чтобы толкать несущий стержень, таким образом, перемещаясь при контакте. Биметаллическая пластина широко используется и часто образует магнитный пускатель с контактором.

Тип термистора: тепловое реле, сопротивление которого изменяется в зависимости от температуры.

Тип плавкого сплава: используя теплоту тока перегрузки, чтобы плавкий сплав достиг определенного значения температуры, сплав плавится и приводит в действие реле.

Принцип работы теплового реле Конструкция теплового реле перегрузки

Коэффициент расширения — одно из основных свойств любого материала. Два разных металла всегда имеют разную степень линейного расширения. Биметаллическая полоса всегда изгибается при нагревании из-за неравенства линейного расширения двух разных металлов.

Принцип работы теплового реле

Тепловое реле работает в зависимости от вышеупомянутых свойств металлов.Основной принцип работы теплового реле заключается в том, что, когда биметаллическая полоса нагревается нагревательной катушкой, протекающей по току системы, она изгибается и замыкает нормально разомкнутые контакты.

Конструкция теплового реле

Конструкция теплового реле довольно проста. Как показано на рисунке выше, биметаллическая полоса состоит из двух металлов — металла A и металла B. Металл A имеет более низкий коэффициент расширения, а металл B имеет более высокий коэффициент расширения.

Когда через нагревательную катушку протекает сверхток, он нагревает биметаллическую ленту.
Из-за тепла, выделяемого змеевиком, оба металла расширяются. Но расширение металла B больше, чем расширение металла A. Из-за такого разного расширения биметаллическая полоса изгибается в сторону металла A, как показано на рисунке ниже.


Полоса изгибается, замыкающий контакт замыкается, что в конечном итоге приводит в действие катушку отключения автоматического выключателя.
Эффект нагрева не мгновенный. Согласно закону нагрева Джоуля, количество выделяемого тепла составляет

Где, I — ток перегрузки, протекающий через нагревательную катушку теплового реле.
R — электрическое сопротивление нагревательной катушки, t — время, в течение которого ток I течет через нагревательную катушку. Следовательно, из приведенного выше уравнения ясно, что теплогенератор у катушки прямо пропорционален времени, в течение которого через катушку протекает сверхток. Следовательно, имеется длительная задержка срабатывания теплового реле.

Вот почему этот тип реле обычно используется там, где допускается перегрузка в течение заданного периода времени, прежде чем оно сработает.Если перегрузка или перегрузка по току упадут до нормального значения до этого заданного времени, реле не сработает для отключения защищенного оборудования.
Типичное применение теплового реле — защита электродвигателя от перегрузки.

Руководство по выбору тепловых реле перегрузки: типы, характеристики, применение

Реле тепловой перегрузки являются защитными устройствами. Они предназначены для отключения электроэнергии, если двигатель потребляет слишком большой ток в течение длительного периода времени. Для этого тепловые реле перегрузки содержат нормально замкнутое (NC) реле.Когда через цепь двигателя протекает чрезмерный ток, реле размыкается из-за повышения температуры двигателя, температуры реле или измеренного тока перегрузки, в зависимости от типа реле.

Реле тепловой перегрузки аналогичны автоматическим выключателям по конструкции и использованию, но большинство автоматических выключателей отличаются тем, что они прерывают цепь, если перегрузка возникает даже на мгновение. Реле тепловой перегрузки, наоборот, предназначены для измерения профиля нагрева двигателя; поэтому перегрузка должна произойти в течение длительного периода, прежде чем цепь будет прервана.

Технические характеристики

База данных GlobalSpec SpecSearch содержит информацию о различных технических характеристиках реле тепловой перегрузки, включая тип, электрические характеристики, сведения о переключателе и характеристики.

Тип

Покупатели могут выбирать между несколькими различными типами реле, включая биметаллических тепловых , твердотельных или типов реле контроля температуры .

Как следует из названия, биметаллические тепловые реле используют биметаллическую полосу для механического размыкания контактов.Биметаллические полосы состоят из двух соединенных между собой кусков металла, которые расширяются с разной скоростью при нагревании. Эта разница заставляет полосу изгибаться при нагревании. В тепловом реле полоса прикрепляется пружиной к контакту. Когда избыточное тепло от сверхтока заставляет полоску изгибаться и растягивать пружину, контакты размыкаются и цепь разрывается. Когда полоска охлаждается, она возвращается к своей первоначальной форме.

Это видео демонстрирует использование биметаллического переключателя, при этом биметаллическая полоса выделена в середине видео.Когда пламя воздействует на выключатель, полоса изгибается, и выключатель размыкается. Обратите внимание, что когда полоска остывает, полоска возвращается в исходное положение, и переключатель замыкается.

Твердотельные реле — это электронные устройства, не имеющие движущихся или механических частей. Вместо этого реле вычисляет среднюю температуру двигателя, отслеживая его пусковой и рабочий токи. Твердотельные реле, как правило, быстрее электромеханических, а также имеют регулируемые уставки и время срабатывания.Поскольку они не способны генерировать искру, их можно использовать во взрывоопасных средах.

Реле контроля температуры непосредственно измеряет температуру двигателя с помощью термистора или терморезисторного датчика (RTD), встроенного в обмотку двигателя. Когда достигается номинальная температура зонда, его сопротивление быстро увеличивается. Это увеличение затем обнаруживается пороговой схемой, которая размыкает контакты реле.

Реле перегрузки из плавящегося сплава (или эвтектического) состоит из катушки нагревателя, эвтектического сплава и механического механизма для размыкания цепи.Используя катушку нагревателя, реле измеряет температуру двигателя, контролируя величину потребляемого тока.

Электрические характеристики

Электрические характеристики реле

включают диапазон тока, информацию о срабатывании, фазу и управляющее напряжение.

Отключение используется для описания размыкающего действия реле перегрузки и автоматических выключателей. Реле тепловой перегрузки могут включать в себя несколько спецификаций об этом действии.

Диапазон тока полной нагрузки относится к диапазону значений тока, на который устанавливается реле.Паспортная табличка двигателя будет включать номинальный ток полной нагрузки для этого конкретного двигателя. Для срабатывания теплового реле перегрузки необходимо, чтобы точка тока полной нагрузки реле соответствовала значению, указанному на паспортной табличке.

Диапазон отключения по температуре применяется к реле, которые предназначены для измерения температуры вместо тока, например, твердотельные реле или реле контроля температуры.

Класс отключения означает максимальное время в секундах, в течение которого реле может выдержать 6-кратный номинальный ток до отключения.Например, реле класса 10 может выдерживать 600% своего номинального тока в течение 10 секунд, пока не сработает. Класс отключения является важной характеристикой, поскольку цепь пуска двигателя увеличивает потребляемый ток на короткие периоды времени при каждом запуске двигателя. Реле перегрузки должно выдерживать эти высокие пусковые токи без отключения. Можно сказать, что синхронизация класса отключения позволяет реле «различать» обычно высокие пусковые токи и аномально высокие токи перегрузки.

Термин «полюс» описывает количество отдельных цепей, управляемых переключателем.Количество цепей определяет количество контактов переключателя, которое, в свою очередь, определяет полюса, необходимые для замыкания или размыкания контактов. Выключатели обычно имеют от одного до четырех полюсов.

Управляющее напряжение — важная спецификация, поскольку напряжение цепи управления часто отличается от заданного напряжения двигателя. Это известно как «раздельное управление». Управляющее напряжение обычно меньше напряжения двигателя, и реле перегрузки следует выбирать в соответствии с этой спецификацией.

Особенности

Покупатели могут выбрать реле с рядом особых атрибутов.

  • Реле с автоматическим сбросом вернется в исходное «замкнутое» положение через заданный период времени. Если после сброса двигатель все еще будет перегружен, реле снова сработает.
  • Реле с компенсацией температуры окружающей среды эффективно работают в широком диапазоне температур окружающей среды.
  • Некоторые реле имеют различные степени контроля фазы .Эти продукты могут проверять обрыв фазы, реверсирование или дисбаланс. При обнаружении каких-либо проблем с фазами реле срабатывает и отключает питание двигателя. В частности, асимметрия фаз может вызвать опасные колебания напряжения или тока двигателя и привести к его повреждению.

  • Обнаружение недогрузки относится к способности реле обнаруживать падение тока в результате разгрузки. Это может произойти, если, например, насос начинает работать всухую. Эти реле предназначены для обнаружения этих различий и срабатывания, как при обнаружении перегрузки.

  • Реле с визуальными индикаторами — это изделия со светодиодами или другими индикаторами состояния.

Стандарты

BS EN 60255-149 — Функциональные требования к тепловым электрическим реле

Список литературы

Качество электроэнергии и приводы — Класс реле перегрузки с выдержкой времени

Изображение кредита:

Eaton Corporation | Benshaw, Inc.| Низковольтная продукция ABB | Enasco | Излишек Skycraft


Принцип работы теплового реле защиты двигателя

Принцип работы

Тепловое реле защиты двигателя содержит три биметаллических полосы вместе с механизмом отключения в корпусе из изоляционного материала. Биметаллические полосы нагреваются током двигателя, заставляя их изгибаться и приводя в действие механизм отключения после определенного хода, который зависит от настройки тока реле.

Принцип работы теплового реле защиты двигателя (фото: andrem.pl)

Механизм расцепления приводит в действие вспомогательный выключатель, который размыкает цепь катушки контактора двигателя ( Рисунок 1 ). Индикатор положения переключения сигнализирует о состоянии « сработал, ».

Рисунок 1 — Принцип действия трехполюсного биметаллического реле защиты электродвигателя с термической задержкой и температурной компенсацией

A = Биметаллические полосы с косвенным нагревом
B = отключающая заслонка
C = расцепляющий рычаг
D = контактный рычаг
E = компенсационная биметаллическая полоса

Биметаллическая полоса может нагреваться напрямую или косвенно .В первом случае ток протекает непосредственно через биметалл , во втором — через изолированную нагревательную обмотку вокруг ленты. Изоляция вызывает некоторую задержку теплового потока, так что инерция тепловых реле с косвенным нагревом больше при более высоких токах, чем у их аналогов с прямым нагревом. Часто оба принципа сочетаются.

Для номинальных токов двигателя более прибл. 100 A , ток двигателя проходит через трансформаторы тока .Затем тепловое реле перегрузки нагревается вторичным током трансформатора тока.

Это означает, с одной стороны, что рассеиваемая мощность снижается, а с другой — повышается стойкость к короткому замыканию.

Ток срабатывания биметаллических реле может быть установлен по шкале токов — путем смещения механизма срабатывания относительно биметаллических лент — так, чтобы характеристика защиты могла быть согласована с защищаемым объектом в ключевой области непрерывного режима.

Простая и экономичная конструкция может только приблизительно соответствовать переходной тепловой характеристике двигателя.

Для пуска с последующим продолжительным режимом работы тепловое реле защиты двигателя обеспечивает идеальную защиту двигателя. При частых запусках в прерывистом режиме значительно более низкая постоянная времени нагрева биметаллических лент по сравнению с двигателем приводит к раннему отключению, при котором тепловая мощность двигателя не используется.

Постоянная времени охлаждения тепловых реле короче, чем у обычных двигателей. Это также способствует увеличению разницы между фактической температурой двигателя и температурой, моделируемой тепловым реле при прерывистой работе.

По этим причинам защита двигателей в прерывистом режиме недостаточна .


Температурная компенсация

Принцип действия тепловых реле защиты двигателя основан на повышении температуры .Следовательно, температура окружающей среды устройства влияет на характеристики отключения.

Поскольку место установки и, следовательно, температура окружающей среды двигателя, который должен быть защищен, обычно отличаются от температуры защитного устройства, промышленным стандартом является то, что характеристика срабатывания биметаллического реле является температурной компенсацией, то есть в значительной степени не зависит от окружающей среды. температура (см. рисунок 2 ниже).

Рисунок 2 — Допуски срабатывания реле перегрузки с температурной компенсацией для защиты двигателя согласно IEC 60947-4-1

I = Перегрузка, кратная установленному току
δ = Температура окружающей среды

— Предельные значения согласно IEC 60947-4-1

Это достигается с помощью компенсационной биметаллической ленты , которая делает относительное положение механизма отключения независимо от температуры.


Чувствительность к обрыву фазы

Характеристика срабатывания трехполюсных реле защиты двигателя применяется при условии, что все три биметаллические полоски одновременно нагружены одинаковым током.

Если при обрыве одного полюсного проводника нагреваются только две биметаллические полосы, то только эти две полосы должны создавать усилие, необходимое для приведения в действие механизма отключения. Это требует более высокого тока или приводит к более длительному времени отключения ( характеристическая кривая c на рисунке ниже ).

Типовые характеристики отключения реле защиты двигателя

I e = Номинальный ток, установленный на шкале
t = Время отключения

Из холодного состояния:
a = 3-полюсная нагрузка, симметричная
b = 2-полюсная нагрузка с дифференциальным расцепителем
c = 2-полюсная нагрузка без дифференциального расцепителя

Из горячего состояния:
d = 3-полюсная нагрузка, симметричная

Если больше двигатели (≥10 кВт) подвергаются этим более высоким токам в течение более длительного времени, следует ожидать повреждения.

Чтобы обеспечить защиту двигателя от тепловой перегрузки в случаях асимметрии питания и обрыва фазы, высококачественные реле защиты двигателя имеют механизмы с чувствительностью к обрыву фазы (дифференциальный расцепитель).

Resource // Распределительное устройство низкого напряжения — Rockwell

Перегрузки, тепловое реле перегрузки, защита двигателя

Двигатель часто является одним из наиболее неотъемлемых компонентов промышленного и коммерческого оборудования.Он играет важную роль в управлении автоматизированными процессами и производственными линиями. А это значит, что вы должны предпринять соответствующие шаги, чтобы обеспечить безопасную и надежную работу любого двигателя. Поскольку тепло является одной из основных проблем двигателя, реле перегрузки предлагают эффективное решение.

Чтобы найти подходящее устройство для вашего применения, Allied Electronics поставляет широкий спектр реле перегрузки для домашнего и коммерческого использования по всей Северной Америке. Мы стремимся предлагать продукты для защиты двигателей от перегрузки высочайшего качества.Выбирайте из таких известных производителей, как ABB, Schneider Electric, Siemens и других — все это доступно для заказа прямо сейчас.

Что такое реле перегрузки?

Реле перегрузки — иногда называемое реле перегрузки контактора — это электромеханическое устройство, которое защищает двигатели от перегрузки или перегрева. Это может произойти, когда двигатель потребляет или потребляет слишком большой ток. В результате может накапливаться тепло, которое может повредить двигатель и его обмотки. Однако с помощью реле перегрузки этого можно избежать, чтобы обеспечить непрерывную работу.

Различные типы реле перегрузки

Не все реле перегрузки работают одинаково, хотя каждый тип по-прежнему обеспечивает ценную и столь необходимую защиту вашего двигателя (ей). Первый тип, который мы можем предоставить, называется реле тепловой перегрузки и включает биметаллические полоски. Если ток приводит к перегреву, обе полоски расширяются и размыкают контакт, прерывая подачу питания на двигатель.

В отличие от тепловых реле перегрузки, электронный вариант не содержит биметаллических полос для защиты двигателя.Вместо этого в этом типе защиты двигателя от перегрузки используются датчики или трансформаторы, чтобы определить, какой ток проходит через двигатель. Когда это количество слишком велико, реле отключит цепь и остановит двигатель.

Как работает реле перегрузки?

Чтобы реле перегрузки обеспечивали защиту, они должны быть подключены последовательно с двигателем. Когда ток течет к двигателю, эта конфигурация означает, что он также должен сначала пройти через реле. Если величина тока достигает чрезмерного уровня, реле срабатывает.Это приведет к разрыву цепи — остановка подачи питания на двигатель до тех пор, пока реле не будет сброшено или проблема не будет решена.

Каждый контактор, электрическое или тепловое реле перегрузки можно определить по их «классу». Это число, которое показывает, сколько времени в секундах требуется реле для срабатывания. Доступны три наиболее распространенных класса: 10, 20 и 30, хотя есть также вариант класса 5 для конкретных приложений. Стандарт NEEMA MG-1 определяет эти классы, которые отключаются при 600% тока полной нагрузки двигателя (FLA).

Кроме того, настройки перегрузки двигателя должны быть установлены на 125% от тока полной нагрузки двигателя. Некоторые из ведущих производителей, которых мы имеем в наличии, встраивают это в свои реле в стандартной комплектации. В противном случае можно установить ток двигателя, указанный на паспортной табличке, плюс 25%.

Защита двигателя от перегрузки: почему это важно?

Защита двигателя от перегрузки необходима для обеспечения безопасной, надежной и продолжительной работы машин и оборудования, в том числе электродвигателя. Реле перегрузки останавливает двигатель от перегрева, который может вызвать повреждение контроллера, двигателя или проводов параллельной цепи.

Реле перегрузки также может снизить риск серьезных отказов, приводящих к электрическому возгоранию.

Вам все еще нужен автоматический выключатель при использовании реле перегрузки?

Да, при использовании электродвигателя важно использовать и реле перегрузки, и автоматический выключатель. Реле предназначено для защиты двигателя от перегрузки в случае перегрева. Но он не предназначен для защиты самой цепи, если через нее проходит слишком большой ток. Вот почему вам также необходимо использовать автоматический выключатель или предохранитель.

Реле перегрузки: применение и применение

Электродвигатели теперь обычно используются во многих различных современных машинах и оборудовании. Это означает, что реле перегрузки могут иметь различное бытовое и коммерческое применение.

В большинстве, если не во всех случаях, роль реле перегрузки одинакова: для защиты двигателя от перегрузки и перегрева. В этом случае реле отключает двигатель до тех пор, пока проблема не будет решена. Некоторые реле перегрузки также могут быть преобразованы в микропроцессорные системы.

Отрасли, в которых используются реле перегрузки электродвигателей, включают:

  • Строительство и гражданское строительство
  • Сборочные линии и производство
  • Отопление, вентиляция и кондиционирование воздуха
  • Производственные линии и оборудование
  • Мастерство: металл, пластик или дерево

Почему вы можете доверять Allied Electronics в отношении своих реле перегрузки

Реле перегрузки — важный компонент в уходе за электродвигателями и их защите.Итак, вы должны быть полностью удовлетворены своим выбором продукта. Это имеет большое значение с точки зрения безопасности и надежности вашего оборудования. В Allied Electronics мы стремимся поставлять самые лучшие продукты для защиты двигателей от перегрузки и предлагаем широкий ассортимент на выбор.

Являясь крупнейшим авторизованным дистрибьютором в Северной Америке, мы предлагаем товары всех ведущих производителей — от ABB и Siemens до Eaton и Schneider Electric. Вы также можете уточнить свой поиск, используя фильтры на этой странице.Это быстрый и удобный способ найти именно то реле перегрузки, которое вам нужно. Фильтры включают требуемую номинальную мощность, управляющее напряжение, тип клеммы и многое другое.

Конечно, есть также возможность найти необходимую защиту двигателя от перегрузки, введя название продукта и / или номер в строке поиска, если вы уже сделали свой выбор.

Если вам понадобится дополнительная помощь, когда дело доходит до реле перегрузки, свяжитесь с нашей дружной командой. Мы здесь, чтобы ответить на любые ваши вопросы о поставляемой нами продукции.Мы также предлагаем бесплатный центр экспертного контента. Он полон статей, призванных предоставить вам любую поддержку или совет, необходимый для получения максимальной отдачи от покупок Allied Electronics.

Принцип работы теплового реле перегрузки

Привет друзья, в этой статье я рассказываю о принципе работы теплового реле перегрузки и его функции в пускателе прямого включения. Я надеюсь, что вы найдете эту статью информативной и полезной.

Реле тепловой перегрузки работает на тепле, выделяемом чрезмерным током перегрузки.Тепло, выделяемое током перегрузки, используется для отключения цепи двигателя. В основном они используются для защиты низковольтных асинхронных двигателей с короткозамкнутым ротором или двигателей постоянного тока с более низкой выходной мощностью.



Функция теплового реле перегрузки, используемого в цепях пускателя двигателя, заключается в предотвращении потребления двигателем чрезмерного тока, который вреден для изоляции двигателя.

Он подключается либо напрямую к линиям двигателя, либо косвенно через трансформаторы тока.Он обесточивает стартер и останавливает двигатель при чрезмерном потреблении тока.


Всякий раз, когда двигатель перегружен, он потребляет больше тока из линии и постепенно нагревается. Реле перегрузки предназначено для защиты двигателя от длительных перегрузок.

Реле перегрузки установлено в цепи управления двигателем, чтобы установить контакт в цепи отключения или механически управлять шиной отключения, таким образом отключая двигатель в случае чрезмерной нагрузки.

Состоит из биметаллических полос.Тепло, выделяемое током перегрузки, используется для нагрева биметаллических полос.

При нормальных условиях эксплуатации полоса остается прямой, но под действием тока короткого замыкания полоса нагревается и изгибается, а контакты реле разъединяются, что обесточивает цепь управления двигателем.

Усилие, необходимое для изгиба биметаллических полос, можно отрегулировать с помощью регулятора. Другими словами, его можно настроить на работу при разных токах перегрузки.

Тепловое реле перегрузки не обеспечивает защиты от короткого замыкания, так как для размыкания контактов требуется достаточно времени.Поэтому этот тип реле используется вместе с предохранителями для защиты цепи от перегрузки и короткого замыкания.

Эти реле имеют обратнозависимые временные характеристики, т.е. время отключения становится меньше при перегрузке и, следовательно, увеличивается ток. Они оцениваются по классу поездки. Класс отключения определяет период времени, который потребуется для работы в условиях перегрузки. Наиболее распространены классы 5, 10, 20 и 30. Реле перегрузки классов 30, 20, 10 и 5 срабатывают в течение 30, 20, 10 и 5 секунд соответственно при 600% тока полной нагрузки двигателя.

Функция реле перегрузки в DOL Starter




Принципиальная схема прямого пускателя для трехфазного асинхронного двигателя показана на рисунке. Пускатель состоит из набора кнопок «пуск» и «стоп» с соответствующими контактами, устройствами защиты от перегрузки и пониженного напряжения.

Кнопка пуска (S 1 , обычно зеленого цвета) представляет собой выключатель с мгновенным контактом, который удерживается нормально разомкнутым с помощью пружины. Кнопка останова (S 2 , обычно красного цвета) представляет собой выключатель с мгновенным контактом, который удерживается нормально замкнутым с помощью пружины.Операция следующая.

Когда нажимается кнопка пуска S 1 , на рабочую катушку «C» (или главный контактор) подается питание через контакт перегрузки «D» (нормально замкнутый). Это замыкает три основных контакта «M», которые подключают двигатель к источнику питания. В то же время вспомогательный контакт «A» также замыкается.

Когда вспомогательный контакт замкнут, новая цепь устанавливается через кнопку останова, вспомогательный контакт и рабочую катушку «C».Поскольку рабочий контур теперь поддерживается вспомогательным контактом, двигатель продолжает работать даже после отпускания кнопки пуска.

Если питание отсутствует или напряжение в сети падает ниже определенного значения, главные и вспомогательные контакты размыкаются. При возврате питания контактор не может замкнуться, пока не будет снова нажата кнопка пуска.

Когда двигатель перегружен, он потребляет ток, превышающий его нормальный рабочий ток. Этот ток перегрузки нагревает биметаллическую полосу теплового реле перегрузки.

Теперь из-за этого тепла биметаллическая полоса начинает гнуться. Через некоторое время он достаточно изгибается, и цепь управления двигателем размыкается в точке «D» (точка показана на рисунке). Он отключает рабочую катушку от питания. В результате мотор останавливается.

Спасибо, что прочитали о принципе работы теплового реле перегрузки .

Трехфазный асинхронный двигатель | Все сообщения

© https://yourelectricalguide.com/ Принцип работы теплового реле перегрузки.

Тепловое реле перегрузки — конструкция, работа и применение

Тепловая перегрузка широко используется для защиты двигателя. По сути, тепловое реле перегрузки — это максимальная токовая защита простейшего типа. Принцип работы теплового реле перегрузки довольно прост, но интересен. На рисунке ниже показано типичное реле тепловой перегрузки. Регулировочная шкала, расположенная на блоке, позволяет настроить отключение в амперах. Имеется кнопка ручного тестирования для проверки работы управляющих контактов реле перегрузки.

Как известно, разные материалы имеют разный коэффициент теплового расширения. Таким образом, если два разных металла, соединенных вместе, нагреваются, то металл, имеющий большее значение коэффициента теплового расширения, будет расширяться больше по сравнению с другим, и это вызовет изгиб биметаллической полосы. Это явление используется в реле тепловой перегрузки.

Из рисунка выше видно, что металл с большим коэффициентом теплового расширения имеет большее расширение при нагревании.Теперь мы хотим использовать эту функцию для защиты двигателя.

Биметаллическое реле перегрузки состоит из небольшого нагревательного элемента, соединенного последовательно с двигателем, и биметаллической ленты, которую можно использовать как рычаг отключения. Биметаллическая полоса состоит из двух разнородных металлов, соединенных вместе. Эти два металла имеют разные характеристики теплового расширения, поэтому биметаллическая полоса изгибается с заданной скоростью при нагревании. В нормальных условиях эксплуатации тепла, выделяемого нагревательным элементом, будет недостаточно для того, чтобы биметаллическая полоса изогнулась настолько, что сработало реле перегрузки.

По мере увеличения тока увеличивается и тепло. Чем горячее становится биметаллическая полоса, тем больше она изгибается. В условиях перегрузки тепло, выделяемое нагревателем, заставит биметаллическую полосу изгибаться до тех пор, пока не сработает механизм, останавливая двигатель. Некоторые реле перегрузки, оснащенные биметаллической лентой, предназначены для автоматического сброса цепи, когда биметаллическая полоса остынет и изменит свою форму, перезапустив двигатель. Если причина перегрузки все еще существует, реле снова срабатывает и сбрасывается через заданные интервалы.Следует проявлять осторожность при выборе этого типа реле перегрузки, поскольку повторное включение в цикл в конечном итоге приведет к повреждению двигателя.

Следует отметить, что биметаллическая полоса реле перегрузки не нагревается мгновенно до изгиба, а для ее нагрева и изгиба потребуется некоторое конечное время, поэтому реле тепловой перегрузки предлагается там, где допускается кратковременная перегрузка по току.

Если перегрузка или перегрузка по току упадут до нормального значения до этого заданного времени, реле не сработает для отключения защищаемого оборудования.Типичное применение теплового реле — защита электродвигателя от перегрузки.

В некоторых случаях двигатель может быть установлен в месте с постоянной температурой окружающей среды. Однако реле управления двигателем и перегрузки может быть установлено в месте с изменяющейся температурой окружающей среды. В таких случаях точка срабатывания реле перегрузки будет изменяться в зависимости от температуры окружающего воздуха, а также тока, протекающего через двигатель, что может привести к преждевременному и ложному срабатыванию. Биметаллические реле перегрузки с внешней компенсацией предназначены для решения этой проблемы. Компенсированная биметаллическая полоса используется вместе с первичной биметаллической полосой. При изменении температуры окружающей среды обе биметаллические полосы будут изгибаться одинаково, и реле перегрузки не отключит двигатель, как показано на рисунке ниже. Однако ток, протекающий через двигатель и нагревательный элемент, воздействует только на первичную биметаллическую ленту. В случае перегрузки основная биметаллическая полоса задействует расцепитель.

Нормальный режим работы
Состояние перегрузки
Реле перегрузки

обычно работают с обратнозависимой временной кривой, когда время отключения становится меньше по мере увеличения тока. Они оцениваются по классу поездки. Класс отключения определяет время, необходимое реле для размыкания в состоянии перегрузки.Классы 5, 10, 20 и 30 являются наиболее распространенными. Реле перегрузки классов 5, 10, 20 и 30 срабатывают в течение 5, 10, 20 и 30 секунд соответственно при 600% тока полной нагрузки двигателя. Класс 5 обычно используется для двигателей, требующих чрезвычайно быстрого отключения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *